Introduce objfile::require_partial_symbols
[deliverable/binutils-gdb.git] / gdb / objfiles.h
1 /* Definitions for symbol file management in GDB.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (OBJFILES_H)
21 #define OBJFILES_H
22
23 #include "hashtab.h"
24 #include "gdb_obstack.h" /* For obstack internals. */
25 #include "objfile-flags.h"
26 #include "symfile.h"
27 #include "progspace.h"
28 #include "registry.h"
29 #include "gdb_bfd.h"
30 #include "psymtab.h"
31 #include <atomic>
32 #include <bitset>
33 #include <vector>
34 #include "gdbsupport/next-iterator.h"
35 #include "gdbsupport/safe-iterator.h"
36 #include "bcache.h"
37 #include "gdbarch.h"
38 #include "gdbsupport/refcounted-object.h"
39 #include "jit.h"
40 #include "quick-symbol.h"
41
42 struct htab;
43 struct objfile_data;
44 struct partial_symbol;
45
46 /* This structure maintains information on a per-objfile basis about the
47 "entry point" of the objfile, and the scope within which the entry point
48 exists. It is possible that gdb will see more than one objfile that is
49 executable, each with its own entry point.
50
51 For example, for dynamically linked executables in SVR4, the dynamic linker
52 code is contained within the shared C library, which is actually executable
53 and is run by the kernel first when an exec is done of a user executable
54 that is dynamically linked. The dynamic linker within the shared C library
55 then maps in the various program segments in the user executable and jumps
56 to the user executable's recorded entry point, as if the call had been made
57 directly by the kernel.
58
59 The traditional gdb method of using this info was to use the
60 recorded entry point to set the entry-file's lowpc and highpc from
61 the debugging information, where these values are the starting
62 address (inclusive) and ending address (exclusive) of the
63 instruction space in the executable which correspond to the
64 "startup file", i.e. crt0.o in most cases. This file is assumed to
65 be a startup file and frames with pc's inside it are treated as
66 nonexistent. Setting these variables is necessary so that
67 backtraces do not fly off the bottom of the stack.
68
69 NOTE: cagney/2003-09-09: It turns out that this "traditional"
70 method doesn't work. Corinna writes: ``It turns out that the call
71 to test for "inside entry file" destroys a meaningful backtrace
72 under some conditions. E.g. the backtrace tests in the asm-source
73 testcase are broken for some targets. In this test the functions
74 are all implemented as part of one file and the testcase is not
75 necessarily linked with a start file (depending on the target).
76 What happens is, that the first frame is printed normally and
77 following frames are treated as being inside the entry file then.
78 This way, only the #0 frame is printed in the backtrace output.''
79 Ref "frame.c" "NOTE: vinschen/2003-04-01".
80
81 Gdb also supports an alternate method to avoid running off the bottom
82 of the stack.
83
84 There are two frames that are "special", the frame for the function
85 containing the process entry point, since it has no predecessor frame,
86 and the frame for the function containing the user code entry point
87 (the main() function), since all the predecessor frames are for the
88 process startup code. Since we have no guarantee that the linked
89 in startup modules have any debugging information that gdb can use,
90 we need to avoid following frame pointers back into frames that might
91 have been built in the startup code, as we might get hopelessly
92 confused. However, we almost always have debugging information
93 available for main().
94
95 These variables are used to save the range of PC values which are
96 valid within the main() function and within the function containing
97 the process entry point. If we always consider the frame for
98 main() as the outermost frame when debugging user code, and the
99 frame for the process entry point function as the outermost frame
100 when debugging startup code, then all we have to do is have
101 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
102 current PC is within the range specified by these variables. In
103 essence, we set "ceilings" in the frame chain beyond which we will
104 not proceed when following the frame chain back up the stack.
105
106 A nice side effect is that we can still debug startup code without
107 running off the end of the frame chain, assuming that we have usable
108 debugging information in the startup modules, and if we choose to not
109 use the block at main, or can't find it for some reason, everything
110 still works as before. And if we have no startup code debugging
111 information but we do have usable information for main(), backtraces
112 from user code don't go wandering off into the startup code. */
113
114 struct entry_info
115 {
116 /* The unrelocated value we should use for this objfile entry point. */
117 CORE_ADDR entry_point;
118
119 /* The index of the section in which the entry point appears. */
120 int the_bfd_section_index;
121
122 /* Set to 1 iff ENTRY_POINT contains a valid value. */
123 unsigned entry_point_p : 1;
124
125 /* Set to 1 iff this object was initialized. */
126 unsigned initialized : 1;
127 };
128
129 /* Sections in an objfile. The section offsets are stored in the
130 OBJFILE. */
131
132 struct obj_section
133 {
134 /* BFD section pointer */
135 struct bfd_section *the_bfd_section;
136
137 /* Objfile this section is part of. */
138 struct objfile *objfile;
139
140 /* True if this "overlay section" is mapped into an "overlay region". */
141 int ovly_mapped;
142 };
143
144 /* Relocation offset applied to S. */
145 #define obj_section_offset(s) \
146 (((s)->objfile->section_offsets)[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
147
148 /* The memory address of section S (vma + offset). */
149 #define obj_section_addr(s) \
150 (bfd_section_vma (s->the_bfd_section) \
151 + obj_section_offset (s))
152
153 /* The one-passed-the-end memory address of section S
154 (vma + size + offset). */
155 #define obj_section_endaddr(s) \
156 (bfd_section_vma (s->the_bfd_section) \
157 + bfd_section_size ((s)->the_bfd_section) \
158 + obj_section_offset (s))
159
160 #define ALL_OBJFILE_OSECTIONS(objfile, osect) \
161 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
162 if (osect->the_bfd_section == NULL) \
163 { \
164 /* Nothing. */ \
165 } \
166 else
167
168 #define SECT_OFF_DATA(objfile) \
169 ((objfile->sect_index_data == -1) \
170 ? (internal_error (__FILE__, __LINE__, \
171 _("sect_index_data not initialized")), -1) \
172 : objfile->sect_index_data)
173
174 #define SECT_OFF_RODATA(objfile) \
175 ((objfile->sect_index_rodata == -1) \
176 ? (internal_error (__FILE__, __LINE__, \
177 _("sect_index_rodata not initialized")), -1) \
178 : objfile->sect_index_rodata)
179
180 #define SECT_OFF_TEXT(objfile) \
181 ((objfile->sect_index_text == -1) \
182 ? (internal_error (__FILE__, __LINE__, \
183 _("sect_index_text not initialized")), -1) \
184 : objfile->sect_index_text)
185
186 /* Sometimes the .bss section is missing from the objfile, so we don't
187 want to die here. Let the users of SECT_OFF_BSS deal with an
188 uninitialized section index. */
189 #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
190
191 /* The "objstats" structure provides a place for gdb to record some
192 interesting information about its internal state at runtime, on a
193 per objfile basis, such as information about the number of symbols
194 read, size of string table (if any), etc. */
195
196 struct objstats
197 {
198 /* Number of full symbols read. */
199 int n_syms = 0;
200
201 /* Number of ".stabs" read (if applicable). */
202 int n_stabs = 0;
203
204 /* Number of types. */
205 int n_types = 0;
206
207 /* Size of stringtable, (if applicable). */
208 int sz_strtab = 0;
209 };
210
211 #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
212 #define OBJSTATS struct objstats stats
213 extern void print_objfile_statistics (void);
214
215 /* Number of entries in the minimal symbol hash table. */
216 #define MINIMAL_SYMBOL_HASH_SIZE 2039
217
218 /* An iterator for minimal symbols. */
219
220 struct minimal_symbol_iterator
221 {
222 typedef minimal_symbol_iterator self_type;
223 typedef struct minimal_symbol *value_type;
224 typedef struct minimal_symbol *&reference;
225 typedef struct minimal_symbol **pointer;
226 typedef std::forward_iterator_tag iterator_category;
227 typedef int difference_type;
228
229 explicit minimal_symbol_iterator (struct minimal_symbol *msym)
230 : m_msym (msym)
231 {
232 }
233
234 value_type operator* () const
235 {
236 return m_msym;
237 }
238
239 bool operator== (const self_type &other) const
240 {
241 return m_msym == other.m_msym;
242 }
243
244 bool operator!= (const self_type &other) const
245 {
246 return m_msym != other.m_msym;
247 }
248
249 self_type &operator++ ()
250 {
251 ++m_msym;
252 return *this;
253 }
254
255 private:
256 struct minimal_symbol *m_msym;
257 };
258
259 /* Some objfile data is hung off the BFD. This enables sharing of the
260 data across all objfiles using the BFD. The data is stored in an
261 instance of this structure, and associated with the BFD using the
262 registry system. */
263
264 struct objfile_per_bfd_storage
265 {
266 objfile_per_bfd_storage ()
267 : minsyms_read (false)
268 {}
269
270 ~objfile_per_bfd_storage ();
271
272 /* The storage has an obstack of its own. */
273
274 auto_obstack storage_obstack;
275
276 /* String cache. */
277
278 gdb::bcache string_cache;
279
280 /* The gdbarch associated with the BFD. Note that this gdbarch is
281 determined solely from BFD information, without looking at target
282 information. The gdbarch determined from a running target may
283 differ from this e.g. with respect to register types and names. */
284
285 struct gdbarch *gdbarch = NULL;
286
287 /* Hash table for mapping symbol names to demangled names. Each
288 entry in the hash table is a demangled_name_entry struct, storing the
289 language and two consecutive strings, both null-terminated; the first one
290 is a mangled or linkage name, and the second is the demangled name or just
291 a zero byte if the name doesn't demangle. */
292
293 htab_up demangled_names_hash;
294
295 /* The per-objfile information about the entry point, the scope (file/func)
296 containing the entry point, and the scope of the user's main() func. */
297
298 entry_info ei {};
299
300 /* The name and language of any "main" found in this objfile. The
301 name can be NULL, which means that the information was not
302 recorded. */
303
304 const char *name_of_main = NULL;
305 enum language language_of_main = language_unknown;
306
307 /* Each file contains a pointer to an array of minimal symbols for all
308 global symbols that are defined within the file. The array is
309 terminated by a "null symbol", one that has a NULL pointer for the
310 name and a zero value for the address. This makes it easy to walk
311 through the array when passed a pointer to somewhere in the middle
312 of it. There is also a count of the number of symbols, which does
313 not include the terminating null symbol. */
314
315 gdb::unique_xmalloc_ptr<minimal_symbol> msymbols;
316 int minimal_symbol_count = 0;
317
318 /* The number of minimal symbols read, before any minimal symbol
319 de-duplication is applied. Note in particular that this has only
320 a passing relationship with the actual size of the table above;
321 use minimal_symbol_count if you need the true size. */
322
323 int n_minsyms = 0;
324
325 /* This is true if minimal symbols have already been read. Symbol
326 readers can use this to bypass minimal symbol reading. Also, the
327 minimal symbol table management code in minsyms.c uses this to
328 suppress new minimal symbols. You might think that MSYMBOLS or
329 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
330 for multiple readers to install minimal symbols into a given
331 per-BFD. */
332
333 bool minsyms_read : 1;
334
335 /* This is a hash table used to index the minimal symbols by (mangled)
336 name. */
337
338 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
339
340 /* This hash table is used to index the minimal symbols by their
341 demangled names. Uses a language-specific hash function via
342 search_name_hash. */
343
344 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
345
346 /* All the different languages of symbols found in the demangled
347 hash table. */
348 std::bitset<nr_languages> demangled_hash_languages;
349 };
350
351 /* An iterator that first returns a parent objfile, and then each
352 separate debug objfile. */
353
354 class separate_debug_iterator
355 {
356 public:
357
358 explicit separate_debug_iterator (struct objfile *objfile)
359 : m_objfile (objfile),
360 m_parent (objfile)
361 {
362 }
363
364 bool operator!= (const separate_debug_iterator &other)
365 {
366 return m_objfile != other.m_objfile;
367 }
368
369 separate_debug_iterator &operator++ ();
370
371 struct objfile *operator* ()
372 {
373 return m_objfile;
374 }
375
376 private:
377
378 struct objfile *m_objfile;
379 struct objfile *m_parent;
380 };
381
382 /* A range adapter wrapping separate_debug_iterator. */
383
384 class separate_debug_range
385 {
386 public:
387
388 explicit separate_debug_range (struct objfile *objfile)
389 : m_objfile (objfile)
390 {
391 }
392
393 separate_debug_iterator begin ()
394 {
395 return separate_debug_iterator (m_objfile);
396 }
397
398 separate_debug_iterator end ()
399 {
400 return separate_debug_iterator (nullptr);
401 }
402
403 private:
404
405 struct objfile *m_objfile;
406 };
407
408 /* Master structure for keeping track of each file from which
409 gdb reads symbols. There are several ways these get allocated: 1.
410 The main symbol file, symfile_objfile, set by the symbol-file command,
411 2. Additional symbol files added by the add-symbol-file command,
412 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
413 for modules that were loaded when GDB attached to a remote system
414 (see remote-vx.c).
415
416 GDB typically reads symbols twice -- first an initial scan which just
417 reads "partial symbols"; these are partial information for the
418 static/global symbols in a symbol file. When later looking up
419 symbols, lookup_symbol is used to check if we only have a partial
420 symbol and if so, read and expand the full compunit. */
421
422 struct objfile
423 {
424 private:
425
426 /* The only way to create an objfile is to call objfile::make. */
427 objfile (bfd *, const char *, objfile_flags);
428
429 public:
430
431 /* Normally you should not call delete. Instead, call 'unlink' to
432 remove it from the program space's list. In some cases, you may
433 need to hold a reference to an objfile that is independent of its
434 existence on the program space's list; for this case, the
435 destructor must be public so that shared_ptr can reference
436 it. */
437 ~objfile ();
438
439 /* Create an objfile. */
440 static objfile *make (bfd *bfd_, const char *name_, objfile_flags flags_,
441 objfile *parent = nullptr);
442
443 /* Remove an objfile from the current program space, and free
444 it. */
445 void unlink ();
446
447 DISABLE_COPY_AND_ASSIGN (objfile);
448
449 /* A range adapter that makes it possible to iterate over all
450 psymtabs in one objfile. */
451
452 psymtab_storage::partial_symtab_range psymtabs ()
453 {
454 return partial_symtabs->range ();
455 }
456
457 /* Reset the storage for the partial symbol tables. */
458
459 void reset_psymtabs ()
460 {
461 partial_symtabs.reset (new psymtab_storage ());
462 }
463
464 typedef next_adapter<struct compunit_symtab> compunits_range;
465
466 /* A range adapter that makes it possible to iterate over all
467 compunits in one objfile. */
468
469 compunits_range compunits ()
470 {
471 return compunits_range (compunit_symtabs);
472 }
473
474 /* A range adapter that makes it possible to iterate over all
475 minimal symbols of an objfile. */
476
477 class msymbols_range
478 {
479 public:
480
481 explicit msymbols_range (struct objfile *objfile)
482 : m_objfile (objfile)
483 {
484 }
485
486 minimal_symbol_iterator begin () const
487 {
488 return minimal_symbol_iterator (m_objfile->per_bfd->msymbols.get ());
489 }
490
491 minimal_symbol_iterator end () const
492 {
493 return minimal_symbol_iterator
494 (m_objfile->per_bfd->msymbols.get ()
495 + m_objfile->per_bfd->minimal_symbol_count);
496 }
497
498 private:
499
500 struct objfile *m_objfile;
501 };
502
503 /* Return a range adapter for iterating over all minimal
504 symbols. */
505
506 msymbols_range msymbols ()
507 {
508 return msymbols_range (this);
509 }
510
511 /* Return a range adapter for iterating over all the separate debug
512 objfiles of this objfile. */
513
514 separate_debug_range separate_debug_objfiles ()
515 {
516 return separate_debug_range (this);
517 }
518
519 CORE_ADDR text_section_offset () const
520 {
521 return section_offsets[SECT_OFF_TEXT (this)];
522 }
523
524 CORE_ADDR data_section_offset () const
525 {
526 return section_offsets[SECT_OFF_DATA (this)];
527 }
528
529 /* Intern STRING and return the unique copy. The copy has the same
530 lifetime as the per-BFD object. */
531 const char *intern (const char *str)
532 {
533 return (const char *) per_bfd->string_cache.insert (str, strlen (str) + 1);
534 }
535
536 /* Intern STRING and return the unique copy. The copy has the same
537 lifetime as the per-BFD object. */
538 const char *intern (const std::string &str)
539 {
540 return (const char *) per_bfd->string_cache.insert (str.c_str (),
541 str.size () + 1);
542 }
543
544 /* Retrieve the gdbarch associated with this objfile. */
545 struct gdbarch *arch () const
546 {
547 return per_bfd->gdbarch;
548 }
549
550 /* Return true if OBJFILE has partial symbols. */
551
552 bool has_partial_symbols ();
553
554 /* See quick_symbol_functions. */
555 struct symtab *find_last_source_symtab ();
556
557 /* See quick_symbol_functions. */
558 void forget_cached_source_info ();
559
560 /* See quick_symbol_functions. */
561 bool map_symtabs_matching_filename
562 (const char *name, const char *real_path,
563 gdb::function_view<bool (symtab *)> callback);
564
565 /* See quick_symbol_functions. */
566 struct compunit_symtab *lookup_symbol (block_enum kind, const char *name,
567 domain_enum domain);
568
569 /* See quick_symbol_functions. */
570 void print_stats (bool print_bcache);
571
572 /* See quick_symbol_functions. */
573 void dump ();
574
575 /* See quick_symbol_functions. */
576 void expand_symtabs_for_function (const char *func_name);
577
578 /* See quick_symbol_functions. */
579 void expand_all_symtabs ();
580
581 /* See quick_symbol_functions. */
582 void expand_symtabs_with_fullname (const char *fullname);
583
584 /* See quick_symbol_functions. */
585 void map_matching_symbols
586 (const lookup_name_info &name, domain_enum domain,
587 int global,
588 gdb::function_view<symbol_found_callback_ftype> callback,
589 symbol_compare_ftype *ordered_compare);
590
591 /* See quick_symbol_functions. */
592 void expand_symtabs_matching
593 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
594 const lookup_name_info *lookup_name,
595 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
596 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
597 enum search_domain kind);
598
599 /* See quick_symbol_functions. */
600 struct compunit_symtab *find_pc_sect_compunit_symtab
601 (struct bound_minimal_symbol msymbol,
602 CORE_ADDR pc,
603 struct obj_section *section,
604 int warn_if_readin);
605
606 /* See quick_symbol_functions. */
607 void map_symbol_filenames (symbol_filename_ftype *fun, void *data,
608 int need_fullname);
609
610 /* See quick_symbol_functions. */
611 struct compunit_symtab *find_compunit_symtab_by_address (CORE_ADDR address);
612
613 /* See quick_symbol_functions. */
614 enum language lookup_global_symbol_language (const char *name,
615 domain_enum domain,
616 bool *symbol_found_p);
617
618 /* See quick_symbol_functions. */
619 void require_partial_symbols (bool verbose);
620
621
622 /* The object file's original name as specified by the user,
623 made absolute, and tilde-expanded. However, it is not canonicalized
624 (i.e., it has not been passed through gdb_realpath).
625 This pointer is never NULL. This does not have to be freed; it is
626 guaranteed to have a lifetime at least as long as the objfile. */
627
628 const char *original_name = nullptr;
629
630 CORE_ADDR addr_low = 0;
631
632 /* Some flag bits for this objfile. */
633
634 objfile_flags flags;
635
636 /* The program space associated with this objfile. */
637
638 struct program_space *pspace;
639
640 /* List of compunits.
641 These are used to do symbol lookups and file/line-number lookups. */
642
643 struct compunit_symtab *compunit_symtabs = nullptr;
644
645 /* The partial symbol tables. */
646
647 std::shared_ptr<psymtab_storage> partial_symtabs;
648
649 /* The object file's BFD. Can be null if the objfile contains only
650 minimal symbols, e.g. the run time common symbols for SunOS4. */
651
652 bfd *obfd;
653
654 /* The per-BFD data. Note that this is treated specially if OBFD
655 is NULL. */
656
657 struct objfile_per_bfd_storage *per_bfd = nullptr;
658
659 /* The modification timestamp of the object file, as of the last time
660 we read its symbols. */
661
662 long mtime = 0;
663
664 /* Obstack to hold objects that should be freed when we load a new symbol
665 table from this object file. */
666
667 struct obstack objfile_obstack {};
668
669 /* Structure which keeps track of functions that manipulate objfile's
670 of the same type as this objfile. I.e. the function to read partial
671 symbols for example. Note that this structure is in statically
672 allocated memory, and is shared by all objfiles that use the
673 object module reader of this type. */
674
675 const struct sym_fns *sf = nullptr;
676
677 /* The "quick" (aka partial) symbol functions for this symbol
678 reader. */
679 quick_symbol_functions_up qf;
680
681 /* Per objfile data-pointers required by other GDB modules. */
682
683 REGISTRY_FIELDS {};
684
685 /* Set of relocation offsets to apply to each section.
686 The table is indexed by the_bfd_section->index, thus it is generally
687 as large as the number of sections in the binary.
688
689 These offsets indicate that all symbols (including partial and
690 minimal symbols) which have been read have been relocated by this
691 much. Symbols which are yet to be read need to be relocated by it. */
692
693 ::section_offsets section_offsets;
694
695 /* Indexes in the section_offsets array. These are initialized by the
696 *_symfile_offsets() family of functions (som_symfile_offsets,
697 xcoff_symfile_offsets, default_symfile_offsets). In theory they
698 should correspond to the section indexes used by bfd for the
699 current objfile. The exception to this for the time being is the
700 SOM version.
701
702 These are initialized to -1 so that we can later detect if they
703 are used w/o being properly assigned to. */
704
705 int sect_index_text = -1;
706 int sect_index_data = -1;
707 int sect_index_bss = -1;
708 int sect_index_rodata = -1;
709
710 /* These pointers are used to locate the section table, which
711 among other things, is used to map pc addresses into sections.
712 SECTIONS points to the first entry in the table, and
713 SECTIONS_END points to the first location past the last entry
714 in the table. The table is stored on the objfile_obstack. The
715 sections are indexed by the BFD section index; but the
716 structure data is only valid for certain sections
717 (e.g. non-empty, SEC_ALLOC). */
718
719 struct obj_section *sections = nullptr;
720 struct obj_section *sections_end = nullptr;
721
722 /* GDB allows to have debug symbols in separate object files. This is
723 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
724 Although this is a tree structure, GDB only support one level
725 (ie a separate debug for a separate debug is not supported). Note that
726 separate debug object are in the main chain and therefore will be
727 visited by objfiles & co iterators. Separate debug objfile always
728 has a non-nul separate_debug_objfile_backlink. */
729
730 /* Link to the first separate debug object, if any. */
731
732 struct objfile *separate_debug_objfile = nullptr;
733
734 /* If this is a separate debug object, this is used as a link to the
735 actual executable objfile. */
736
737 struct objfile *separate_debug_objfile_backlink = nullptr;
738
739 /* If this is a separate debug object, this is a link to the next one
740 for the same executable objfile. */
741
742 struct objfile *separate_debug_objfile_link = nullptr;
743
744 /* Place to stash various statistics about this objfile. */
745
746 OBJSTATS;
747
748 /* A linked list of symbols created when reading template types or
749 function templates. These symbols are not stored in any symbol
750 table, so we have to keep them here to relocate them
751 properly. */
752
753 struct symbol *template_symbols = nullptr;
754
755 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
756 block *) that have one.
757
758 In the context of nested functions (available in Pascal, Ada and GNU C,
759 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
760 for a function is a way to get the frame corresponding to the enclosing
761 function.
762
763 Very few blocks have a static link, so it's more memory efficient to
764 store these here rather than in struct block. Static links must be
765 allocated on the objfile's obstack. */
766 htab_up static_links;
767
768 /* JIT-related data for this objfile, if the objfile is a JITer;
769 that is, it produces JITed objfiles. */
770 std::unique_ptr<jiter_objfile_data> jiter_data = nullptr;
771
772 /* JIT-related data for this objfile, if the objfile is JITed;
773 that is, it was produced by a JITer. */
774 std::unique_ptr<jited_objfile_data> jited_data = nullptr;
775
776 /* A flag that is set to true if the JIT interface symbols are not
777 found in this objfile, so that we can skip the symbol lookup the
778 next time. If an objfile does not have the symbols, it will
779 never have them. */
780 bool skip_jit_symbol_lookup = false;
781 };
782
783 /* A deleter for objfile. */
784
785 struct objfile_deleter
786 {
787 void operator() (objfile *ptr) const
788 {
789 ptr->unlink ();
790 }
791 };
792
793 /* A unique pointer that holds an objfile. */
794
795 typedef std::unique_ptr<objfile, objfile_deleter> objfile_up;
796
797 /* Declarations for functions defined in objfiles.c */
798
799 extern int entry_point_address_query (CORE_ADDR *entry_p);
800
801 extern CORE_ADDR entry_point_address (void);
802
803 extern void build_objfile_section_table (struct objfile *);
804
805 extern void free_objfile_separate_debug (struct objfile *);
806
807 extern void objfile_relocate (struct objfile *, const section_offsets &);
808 extern void objfile_rebase (struct objfile *, CORE_ADDR);
809
810 extern int objfile_has_full_symbols (struct objfile *objfile);
811
812 extern int objfile_has_symbols (struct objfile *objfile);
813
814 extern int have_partial_symbols (void);
815
816 extern int have_full_symbols (void);
817
818 extern void objfile_set_sym_fns (struct objfile *objfile,
819 const struct sym_fns *sf);
820
821 extern void objfiles_changed (void);
822
823 /* Return true if ADDR maps into one of the sections of OBJFILE and false
824 otherwise. */
825
826 extern bool is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
827
828 /* Return true if ADDRESS maps into one of the sections of a
829 OBJF_SHARED objfile of PSPACE and false otherwise. */
830
831 extern bool shared_objfile_contains_address_p (struct program_space *pspace,
832 CORE_ADDR address);
833
834 /* This operation deletes all objfile entries that represent solibs that
835 weren't explicitly loaded by the user, via e.g., the add-symbol-file
836 command. */
837
838 extern void objfile_purge_solibs (void);
839
840 /* Functions for dealing with the minimal symbol table, really a misc
841 address<->symbol mapping for things we don't have debug symbols for. */
842
843 extern int have_minimal_symbols (void);
844
845 extern struct obj_section *find_pc_section (CORE_ADDR pc);
846
847 /* Return non-zero if PC is in a section called NAME. */
848 extern int pc_in_section (CORE_ADDR, const char *);
849
850 /* Return non-zero if PC is in a SVR4-style procedure linkage table
851 section. */
852
853 static inline int
854 in_plt_section (CORE_ADDR pc)
855 {
856 return (pc_in_section (pc, ".plt")
857 || pc_in_section (pc, ".plt.sec"));
858 }
859
860 /* Keep a registry of per-objfile data-pointers required by other GDB
861 modules. */
862 DECLARE_REGISTRY(objfile);
863
864 /* In normal use, the section map will be rebuilt by find_pc_section
865 if objfiles have been added, removed or relocated since it was last
866 called. Calling inhibit_section_map_updates will inhibit this
867 behavior until the returned scoped_restore object is destroyed. If
868 you call inhibit_section_map_updates you must ensure that every
869 call to find_pc_section in the inhibited region relates to a
870 section that is already in the section map and has not since been
871 removed or relocated. */
872 extern scoped_restore_tmpl<int> inhibit_section_map_updates
873 (struct program_space *pspace);
874
875 extern void default_iterate_over_objfiles_in_search_order
876 (struct gdbarch *gdbarch,
877 iterate_over_objfiles_in_search_order_cb_ftype *cb,
878 void *cb_data, struct objfile *current_objfile);
879
880 /* Reset the per-BFD storage area on OBJ. */
881
882 void set_objfile_per_bfd (struct objfile *obj);
883
884 /* Return canonical name for OBJFILE.
885 This is the real file name if the file has been opened.
886 Otherwise it is the original name supplied by the user. */
887
888 const char *objfile_name (const struct objfile *objfile);
889
890 /* Return the (real) file name of OBJFILE if the file has been opened,
891 otherwise return NULL. */
892
893 const char *objfile_filename (const struct objfile *objfile);
894
895 /* Return the name to print for OBJFILE in debugging messages. */
896
897 extern const char *objfile_debug_name (const struct objfile *objfile);
898
899 /* Return the name of the file format of OBJFILE if the file has been opened,
900 otherwise return NULL. */
901
902 const char *objfile_flavour_name (struct objfile *objfile);
903
904 /* Set the objfile's notion of the "main" name and language. */
905
906 extern void set_objfile_main_name (struct objfile *objfile,
907 const char *name, enum language lang);
908
909 extern void objfile_register_static_link
910 (struct objfile *objfile,
911 const struct block *block,
912 const struct dynamic_prop *static_link);
913
914 extern const struct dynamic_prop *objfile_lookup_static_link
915 (struct objfile *objfile, const struct block *block);
916
917 #endif /* !defined (OBJFILES_H) */
This page took 0.055529 seconds and 5 git commands to generate.