Switch objfile to hold a list of psymbol readers
[deliverable/binutils-gdb.git] / gdb / objfiles.h
1 /* Definitions for symbol file management in GDB.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (OBJFILES_H)
21 #define OBJFILES_H
22
23 #include "hashtab.h"
24 #include "gdb_obstack.h" /* For obstack internals. */
25 #include "objfile-flags.h"
26 #include "symfile.h"
27 #include "progspace.h"
28 #include "registry.h"
29 #include "gdb_bfd.h"
30 #include "psymtab.h"
31 #include <atomic>
32 #include <bitset>
33 #include <vector>
34 #include "gdbsupport/next-iterator.h"
35 #include "gdbsupport/safe-iterator.h"
36 #include "bcache.h"
37 #include "gdbarch.h"
38 #include "gdbsupport/refcounted-object.h"
39 #include "jit.h"
40 #include "quick-symbol.h"
41 #include <forward_list>
42
43 struct htab;
44 struct objfile_data;
45 struct partial_symbol;
46
47 /* This structure maintains information on a per-objfile basis about the
48 "entry point" of the objfile, and the scope within which the entry point
49 exists. It is possible that gdb will see more than one objfile that is
50 executable, each with its own entry point.
51
52 For example, for dynamically linked executables in SVR4, the dynamic linker
53 code is contained within the shared C library, which is actually executable
54 and is run by the kernel first when an exec is done of a user executable
55 that is dynamically linked. The dynamic linker within the shared C library
56 then maps in the various program segments in the user executable and jumps
57 to the user executable's recorded entry point, as if the call had been made
58 directly by the kernel.
59
60 The traditional gdb method of using this info was to use the
61 recorded entry point to set the entry-file's lowpc and highpc from
62 the debugging information, where these values are the starting
63 address (inclusive) and ending address (exclusive) of the
64 instruction space in the executable which correspond to the
65 "startup file", i.e. crt0.o in most cases. This file is assumed to
66 be a startup file and frames with pc's inside it are treated as
67 nonexistent. Setting these variables is necessary so that
68 backtraces do not fly off the bottom of the stack.
69
70 NOTE: cagney/2003-09-09: It turns out that this "traditional"
71 method doesn't work. Corinna writes: ``It turns out that the call
72 to test for "inside entry file" destroys a meaningful backtrace
73 under some conditions. E.g. the backtrace tests in the asm-source
74 testcase are broken for some targets. In this test the functions
75 are all implemented as part of one file and the testcase is not
76 necessarily linked with a start file (depending on the target).
77 What happens is, that the first frame is printed normally and
78 following frames are treated as being inside the entry file then.
79 This way, only the #0 frame is printed in the backtrace output.''
80 Ref "frame.c" "NOTE: vinschen/2003-04-01".
81
82 Gdb also supports an alternate method to avoid running off the bottom
83 of the stack.
84
85 There are two frames that are "special", the frame for the function
86 containing the process entry point, since it has no predecessor frame,
87 and the frame for the function containing the user code entry point
88 (the main() function), since all the predecessor frames are for the
89 process startup code. Since we have no guarantee that the linked
90 in startup modules have any debugging information that gdb can use,
91 we need to avoid following frame pointers back into frames that might
92 have been built in the startup code, as we might get hopelessly
93 confused. However, we almost always have debugging information
94 available for main().
95
96 These variables are used to save the range of PC values which are
97 valid within the main() function and within the function containing
98 the process entry point. If we always consider the frame for
99 main() as the outermost frame when debugging user code, and the
100 frame for the process entry point function as the outermost frame
101 when debugging startup code, then all we have to do is have
102 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
103 current PC is within the range specified by these variables. In
104 essence, we set "ceilings" in the frame chain beyond which we will
105 not proceed when following the frame chain back up the stack.
106
107 A nice side effect is that we can still debug startup code without
108 running off the end of the frame chain, assuming that we have usable
109 debugging information in the startup modules, and if we choose to not
110 use the block at main, or can't find it for some reason, everything
111 still works as before. And if we have no startup code debugging
112 information but we do have usable information for main(), backtraces
113 from user code don't go wandering off into the startup code. */
114
115 struct entry_info
116 {
117 /* The unrelocated value we should use for this objfile entry point. */
118 CORE_ADDR entry_point;
119
120 /* The index of the section in which the entry point appears. */
121 int the_bfd_section_index;
122
123 /* Set to 1 iff ENTRY_POINT contains a valid value. */
124 unsigned entry_point_p : 1;
125
126 /* Set to 1 iff this object was initialized. */
127 unsigned initialized : 1;
128 };
129
130 /* Sections in an objfile. The section offsets are stored in the
131 OBJFILE. */
132
133 struct obj_section
134 {
135 /* BFD section pointer */
136 struct bfd_section *the_bfd_section;
137
138 /* Objfile this section is part of. */
139 struct objfile *objfile;
140
141 /* True if this "overlay section" is mapped into an "overlay region". */
142 int ovly_mapped;
143 };
144
145 /* Relocation offset applied to S. */
146 #define obj_section_offset(s) \
147 (((s)->objfile->section_offsets)[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
148
149 /* The memory address of section S (vma + offset). */
150 #define obj_section_addr(s) \
151 (bfd_section_vma (s->the_bfd_section) \
152 + obj_section_offset (s))
153
154 /* The one-passed-the-end memory address of section S
155 (vma + size + offset). */
156 #define obj_section_endaddr(s) \
157 (bfd_section_vma (s->the_bfd_section) \
158 + bfd_section_size ((s)->the_bfd_section) \
159 + obj_section_offset (s))
160
161 #define ALL_OBJFILE_OSECTIONS(objfile, osect) \
162 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
163 if (osect->the_bfd_section == NULL) \
164 { \
165 /* Nothing. */ \
166 } \
167 else
168
169 #define SECT_OFF_DATA(objfile) \
170 ((objfile->sect_index_data == -1) \
171 ? (internal_error (__FILE__, __LINE__, \
172 _("sect_index_data not initialized")), -1) \
173 : objfile->sect_index_data)
174
175 #define SECT_OFF_RODATA(objfile) \
176 ((objfile->sect_index_rodata == -1) \
177 ? (internal_error (__FILE__, __LINE__, \
178 _("sect_index_rodata not initialized")), -1) \
179 : objfile->sect_index_rodata)
180
181 #define SECT_OFF_TEXT(objfile) \
182 ((objfile->sect_index_text == -1) \
183 ? (internal_error (__FILE__, __LINE__, \
184 _("sect_index_text not initialized")), -1) \
185 : objfile->sect_index_text)
186
187 /* Sometimes the .bss section is missing from the objfile, so we don't
188 want to die here. Let the users of SECT_OFF_BSS deal with an
189 uninitialized section index. */
190 #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
191
192 /* The "objstats" structure provides a place for gdb to record some
193 interesting information about its internal state at runtime, on a
194 per objfile basis, such as information about the number of symbols
195 read, size of string table (if any), etc. */
196
197 struct objstats
198 {
199 /* Number of full symbols read. */
200 int n_syms = 0;
201
202 /* Number of ".stabs" read (if applicable). */
203 int n_stabs = 0;
204
205 /* Number of types. */
206 int n_types = 0;
207
208 /* Size of stringtable, (if applicable). */
209 int sz_strtab = 0;
210 };
211
212 #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
213 #define OBJSTATS struct objstats stats
214 extern void print_objfile_statistics (void);
215
216 /* Number of entries in the minimal symbol hash table. */
217 #define MINIMAL_SYMBOL_HASH_SIZE 2039
218
219 /* An iterator for minimal symbols. */
220
221 struct minimal_symbol_iterator
222 {
223 typedef minimal_symbol_iterator self_type;
224 typedef struct minimal_symbol *value_type;
225 typedef struct minimal_symbol *&reference;
226 typedef struct minimal_symbol **pointer;
227 typedef std::forward_iterator_tag iterator_category;
228 typedef int difference_type;
229
230 explicit minimal_symbol_iterator (struct minimal_symbol *msym)
231 : m_msym (msym)
232 {
233 }
234
235 value_type operator* () const
236 {
237 return m_msym;
238 }
239
240 bool operator== (const self_type &other) const
241 {
242 return m_msym == other.m_msym;
243 }
244
245 bool operator!= (const self_type &other) const
246 {
247 return m_msym != other.m_msym;
248 }
249
250 self_type &operator++ ()
251 {
252 ++m_msym;
253 return *this;
254 }
255
256 private:
257 struct minimal_symbol *m_msym;
258 };
259
260 /* Some objfile data is hung off the BFD. This enables sharing of the
261 data across all objfiles using the BFD. The data is stored in an
262 instance of this structure, and associated with the BFD using the
263 registry system. */
264
265 struct objfile_per_bfd_storage
266 {
267 objfile_per_bfd_storage ()
268 : minsyms_read (false)
269 {}
270
271 ~objfile_per_bfd_storage ();
272
273 /* The storage has an obstack of its own. */
274
275 auto_obstack storage_obstack;
276
277 /* String cache. */
278
279 gdb::bcache string_cache;
280
281 /* The gdbarch associated with the BFD. Note that this gdbarch is
282 determined solely from BFD information, without looking at target
283 information. The gdbarch determined from a running target may
284 differ from this e.g. with respect to register types and names. */
285
286 struct gdbarch *gdbarch = NULL;
287
288 /* Hash table for mapping symbol names to demangled names. Each
289 entry in the hash table is a demangled_name_entry struct, storing the
290 language and two consecutive strings, both null-terminated; the first one
291 is a mangled or linkage name, and the second is the demangled name or just
292 a zero byte if the name doesn't demangle. */
293
294 htab_up demangled_names_hash;
295
296 /* The per-objfile information about the entry point, the scope (file/func)
297 containing the entry point, and the scope of the user's main() func. */
298
299 entry_info ei {};
300
301 /* The name and language of any "main" found in this objfile. The
302 name can be NULL, which means that the information was not
303 recorded. */
304
305 const char *name_of_main = NULL;
306 enum language language_of_main = language_unknown;
307
308 /* Each file contains a pointer to an array of minimal symbols for all
309 global symbols that are defined within the file. The array is
310 terminated by a "null symbol", one that has a NULL pointer for the
311 name and a zero value for the address. This makes it easy to walk
312 through the array when passed a pointer to somewhere in the middle
313 of it. There is also a count of the number of symbols, which does
314 not include the terminating null symbol. */
315
316 gdb::unique_xmalloc_ptr<minimal_symbol> msymbols;
317 int minimal_symbol_count = 0;
318
319 /* The number of minimal symbols read, before any minimal symbol
320 de-duplication is applied. Note in particular that this has only
321 a passing relationship with the actual size of the table above;
322 use minimal_symbol_count if you need the true size. */
323
324 int n_minsyms = 0;
325
326 /* This is true if minimal symbols have already been read. Symbol
327 readers can use this to bypass minimal symbol reading. Also, the
328 minimal symbol table management code in minsyms.c uses this to
329 suppress new minimal symbols. You might think that MSYMBOLS or
330 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
331 for multiple readers to install minimal symbols into a given
332 per-BFD. */
333
334 bool minsyms_read : 1;
335
336 /* This is a hash table used to index the minimal symbols by (mangled)
337 name. */
338
339 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
340
341 /* This hash table is used to index the minimal symbols by their
342 demangled names. Uses a language-specific hash function via
343 search_name_hash. */
344
345 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
346
347 /* All the different languages of symbols found in the demangled
348 hash table. */
349 std::bitset<nr_languages> demangled_hash_languages;
350 };
351
352 /* An iterator that first returns a parent objfile, and then each
353 separate debug objfile. */
354
355 class separate_debug_iterator
356 {
357 public:
358
359 explicit separate_debug_iterator (struct objfile *objfile)
360 : m_objfile (objfile),
361 m_parent (objfile)
362 {
363 }
364
365 bool operator!= (const separate_debug_iterator &other)
366 {
367 return m_objfile != other.m_objfile;
368 }
369
370 separate_debug_iterator &operator++ ();
371
372 struct objfile *operator* ()
373 {
374 return m_objfile;
375 }
376
377 private:
378
379 struct objfile *m_objfile;
380 struct objfile *m_parent;
381 };
382
383 /* A range adapter wrapping separate_debug_iterator. */
384
385 class separate_debug_range
386 {
387 public:
388
389 explicit separate_debug_range (struct objfile *objfile)
390 : m_objfile (objfile)
391 {
392 }
393
394 separate_debug_iterator begin ()
395 {
396 return separate_debug_iterator (m_objfile);
397 }
398
399 separate_debug_iterator end ()
400 {
401 return separate_debug_iterator (nullptr);
402 }
403
404 private:
405
406 struct objfile *m_objfile;
407 };
408
409 /* Master structure for keeping track of each file from which
410 gdb reads symbols. There are several ways these get allocated: 1.
411 The main symbol file, symfile_objfile, set by the symbol-file command,
412 2. Additional symbol files added by the add-symbol-file command,
413 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
414 for modules that were loaded when GDB attached to a remote system
415 (see remote-vx.c).
416
417 GDB typically reads symbols twice -- first an initial scan which just
418 reads "partial symbols"; these are partial information for the
419 static/global symbols in a symbol file. When later looking up
420 symbols, lookup_symbol is used to check if we only have a partial
421 symbol and if so, read and expand the full compunit. */
422
423 struct objfile
424 {
425 private:
426
427 /* The only way to create an objfile is to call objfile::make. */
428 objfile (bfd *, const char *, objfile_flags);
429
430 public:
431
432 /* Normally you should not call delete. Instead, call 'unlink' to
433 remove it from the program space's list. In some cases, you may
434 need to hold a reference to an objfile that is independent of its
435 existence on the program space's list; for this case, the
436 destructor must be public so that shared_ptr can reference
437 it. */
438 ~objfile ();
439
440 /* Create an objfile. */
441 static objfile *make (bfd *bfd_, const char *name_, objfile_flags flags_,
442 objfile *parent = nullptr);
443
444 /* Remove an objfile from the current program space, and free
445 it. */
446 void unlink ();
447
448 DISABLE_COPY_AND_ASSIGN (objfile);
449
450 /* Reset the storage for the partial symbol tables. */
451
452 void reset_psymtabs ()
453 {
454 partial_symtabs.reset (new psymtab_storage ());
455 }
456
457 typedef next_adapter<struct compunit_symtab> compunits_range;
458
459 /* A range adapter that makes it possible to iterate over all
460 compunits in one objfile. */
461
462 compunits_range compunits ()
463 {
464 return compunits_range (compunit_symtabs);
465 }
466
467 /* A range adapter that makes it possible to iterate over all
468 minimal symbols of an objfile. */
469
470 class msymbols_range
471 {
472 public:
473
474 explicit msymbols_range (struct objfile *objfile)
475 : m_objfile (objfile)
476 {
477 }
478
479 minimal_symbol_iterator begin () const
480 {
481 return minimal_symbol_iterator (m_objfile->per_bfd->msymbols.get ());
482 }
483
484 minimal_symbol_iterator end () const
485 {
486 return minimal_symbol_iterator
487 (m_objfile->per_bfd->msymbols.get ()
488 + m_objfile->per_bfd->minimal_symbol_count);
489 }
490
491 private:
492
493 struct objfile *m_objfile;
494 };
495
496 /* Return a range adapter for iterating over all minimal
497 symbols. */
498
499 msymbols_range msymbols ()
500 {
501 return msymbols_range (this);
502 }
503
504 /* Return a range adapter for iterating over all the separate debug
505 objfiles of this objfile. */
506
507 separate_debug_range separate_debug_objfiles ()
508 {
509 return separate_debug_range (this);
510 }
511
512 CORE_ADDR text_section_offset () const
513 {
514 return section_offsets[SECT_OFF_TEXT (this)];
515 }
516
517 CORE_ADDR data_section_offset () const
518 {
519 return section_offsets[SECT_OFF_DATA (this)];
520 }
521
522 /* Intern STRING and return the unique copy. The copy has the same
523 lifetime as the per-BFD object. */
524 const char *intern (const char *str)
525 {
526 return (const char *) per_bfd->string_cache.insert (str, strlen (str) + 1);
527 }
528
529 /* Intern STRING and return the unique copy. The copy has the same
530 lifetime as the per-BFD object. */
531 const char *intern (const std::string &str)
532 {
533 return (const char *) per_bfd->string_cache.insert (str.c_str (),
534 str.size () + 1);
535 }
536
537 /* Retrieve the gdbarch associated with this objfile. */
538 struct gdbarch *arch () const
539 {
540 return per_bfd->gdbarch;
541 }
542
543 /* Return true if OBJFILE has partial symbols. */
544
545 bool has_partial_symbols ();
546
547 /* See quick_symbol_functions. */
548 struct symtab *find_last_source_symtab ();
549
550 /* See quick_symbol_functions. */
551 void forget_cached_source_info ();
552
553 /* See quick_symbol_functions. */
554 bool map_symtabs_matching_filename
555 (const char *name, const char *real_path,
556 gdb::function_view<bool (symtab *)> callback);
557
558 /* See quick_symbol_functions. */
559 struct compunit_symtab *lookup_symbol (block_enum kind, const char *name,
560 domain_enum domain);
561
562 /* See quick_symbol_functions. */
563 void print_stats (bool print_bcache);
564
565 /* See quick_symbol_functions. */
566 void dump ();
567
568 /* See quick_symbol_functions. */
569 void expand_symtabs_for_function (const char *func_name);
570
571 /* See quick_symbol_functions. */
572 void expand_all_symtabs ();
573
574 /* See quick_symbol_functions. */
575 void expand_symtabs_with_fullname (const char *fullname);
576
577 /* See quick_symbol_functions. */
578 void map_matching_symbols
579 (const lookup_name_info &name, domain_enum domain,
580 int global,
581 gdb::function_view<symbol_found_callback_ftype> callback,
582 symbol_compare_ftype *ordered_compare);
583
584 /* See quick_symbol_functions. */
585 void expand_symtabs_matching
586 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
587 const lookup_name_info *lookup_name,
588 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
589 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
590 enum search_domain kind);
591
592 /* See quick_symbol_functions. */
593 struct compunit_symtab *find_pc_sect_compunit_symtab
594 (struct bound_minimal_symbol msymbol,
595 CORE_ADDR pc,
596 struct obj_section *section,
597 int warn_if_readin);
598
599 /* See quick_symbol_functions. */
600 void map_symbol_filenames (symbol_filename_ftype *fun, void *data,
601 int need_fullname);
602
603 /* See quick_symbol_functions. */
604 struct compunit_symtab *find_compunit_symtab_by_address (CORE_ADDR address);
605
606 /* See quick_symbol_functions. */
607 enum language lookup_global_symbol_language (const char *name,
608 domain_enum domain,
609 bool *symbol_found_p);
610
611 /* See quick_symbol_functions. */
612 void require_partial_symbols (bool verbose);
613
614
615 /* The object file's original name as specified by the user,
616 made absolute, and tilde-expanded. However, it is not canonicalized
617 (i.e., it has not been passed through gdb_realpath).
618 This pointer is never NULL. This does not have to be freed; it is
619 guaranteed to have a lifetime at least as long as the objfile. */
620
621 const char *original_name = nullptr;
622
623 CORE_ADDR addr_low = 0;
624
625 /* Some flag bits for this objfile. */
626
627 objfile_flags flags;
628
629 /* The program space associated with this objfile. */
630
631 struct program_space *pspace;
632
633 /* List of compunits.
634 These are used to do symbol lookups and file/line-number lookups. */
635
636 struct compunit_symtab *compunit_symtabs = nullptr;
637
638 /* The partial symbol tables. */
639
640 std::shared_ptr<psymtab_storage> partial_symtabs;
641
642 /* The object file's BFD. Can be null if the objfile contains only
643 minimal symbols, e.g. the run time common symbols for SunOS4. */
644
645 bfd *obfd;
646
647 /* The per-BFD data. Note that this is treated specially if OBFD
648 is NULL. */
649
650 struct objfile_per_bfd_storage *per_bfd = nullptr;
651
652 /* The modification timestamp of the object file, as of the last time
653 we read its symbols. */
654
655 long mtime = 0;
656
657 /* Obstack to hold objects that should be freed when we load a new symbol
658 table from this object file. */
659
660 struct obstack objfile_obstack {};
661
662 /* Structure which keeps track of functions that manipulate objfile's
663 of the same type as this objfile. I.e. the function to read partial
664 symbols for example. Note that this structure is in statically
665 allocated memory, and is shared by all objfiles that use the
666 object module reader of this type. */
667
668 const struct sym_fns *sf = nullptr;
669
670 /* The "quick" (aka partial) symbol functions for this symbol
671 reader. */
672 std::forward_list<quick_symbol_functions_up> qf;
673
674 /* Per objfile data-pointers required by other GDB modules. */
675
676 REGISTRY_FIELDS {};
677
678 /* Set of relocation offsets to apply to each section.
679 The table is indexed by the_bfd_section->index, thus it is generally
680 as large as the number of sections in the binary.
681
682 These offsets indicate that all symbols (including partial and
683 minimal symbols) which have been read have been relocated by this
684 much. Symbols which are yet to be read need to be relocated by it. */
685
686 ::section_offsets section_offsets;
687
688 /* Indexes in the section_offsets array. These are initialized by the
689 *_symfile_offsets() family of functions (som_symfile_offsets,
690 xcoff_symfile_offsets, default_symfile_offsets). In theory they
691 should correspond to the section indexes used by bfd for the
692 current objfile. The exception to this for the time being is the
693 SOM version.
694
695 These are initialized to -1 so that we can later detect if they
696 are used w/o being properly assigned to. */
697
698 int sect_index_text = -1;
699 int sect_index_data = -1;
700 int sect_index_bss = -1;
701 int sect_index_rodata = -1;
702
703 /* These pointers are used to locate the section table, which
704 among other things, is used to map pc addresses into sections.
705 SECTIONS points to the first entry in the table, and
706 SECTIONS_END points to the first location past the last entry
707 in the table. The table is stored on the objfile_obstack. The
708 sections are indexed by the BFD section index; but the
709 structure data is only valid for certain sections
710 (e.g. non-empty, SEC_ALLOC). */
711
712 struct obj_section *sections = nullptr;
713 struct obj_section *sections_end = nullptr;
714
715 /* GDB allows to have debug symbols in separate object files. This is
716 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
717 Although this is a tree structure, GDB only support one level
718 (ie a separate debug for a separate debug is not supported). Note that
719 separate debug object are in the main chain and therefore will be
720 visited by objfiles & co iterators. Separate debug objfile always
721 has a non-nul separate_debug_objfile_backlink. */
722
723 /* Link to the first separate debug object, if any. */
724
725 struct objfile *separate_debug_objfile = nullptr;
726
727 /* If this is a separate debug object, this is used as a link to the
728 actual executable objfile. */
729
730 struct objfile *separate_debug_objfile_backlink = nullptr;
731
732 /* If this is a separate debug object, this is a link to the next one
733 for the same executable objfile. */
734
735 struct objfile *separate_debug_objfile_link = nullptr;
736
737 /* Place to stash various statistics about this objfile. */
738
739 OBJSTATS;
740
741 /* A linked list of symbols created when reading template types or
742 function templates. These symbols are not stored in any symbol
743 table, so we have to keep them here to relocate them
744 properly. */
745
746 struct symbol *template_symbols = nullptr;
747
748 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
749 block *) that have one.
750
751 In the context of nested functions (available in Pascal, Ada and GNU C,
752 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
753 for a function is a way to get the frame corresponding to the enclosing
754 function.
755
756 Very few blocks have a static link, so it's more memory efficient to
757 store these here rather than in struct block. Static links must be
758 allocated on the objfile's obstack. */
759 htab_up static_links;
760
761 /* JIT-related data for this objfile, if the objfile is a JITer;
762 that is, it produces JITed objfiles. */
763 std::unique_ptr<jiter_objfile_data> jiter_data = nullptr;
764
765 /* JIT-related data for this objfile, if the objfile is JITed;
766 that is, it was produced by a JITer. */
767 std::unique_ptr<jited_objfile_data> jited_data = nullptr;
768
769 /* A flag that is set to true if the JIT interface symbols are not
770 found in this objfile, so that we can skip the symbol lookup the
771 next time. If an objfile does not have the symbols, it will
772 never have them. */
773 bool skip_jit_symbol_lookup = false;
774 };
775
776 /* A deleter for objfile. */
777
778 struct objfile_deleter
779 {
780 void operator() (objfile *ptr) const
781 {
782 ptr->unlink ();
783 }
784 };
785
786 /* A unique pointer that holds an objfile. */
787
788 typedef std::unique_ptr<objfile, objfile_deleter> objfile_up;
789
790 /* Declarations for functions defined in objfiles.c */
791
792 extern int entry_point_address_query (CORE_ADDR *entry_p);
793
794 extern CORE_ADDR entry_point_address (void);
795
796 extern void build_objfile_section_table (struct objfile *);
797
798 extern void free_objfile_separate_debug (struct objfile *);
799
800 extern void objfile_relocate (struct objfile *, const section_offsets &);
801 extern void objfile_rebase (struct objfile *, CORE_ADDR);
802
803 extern int objfile_has_full_symbols (struct objfile *objfile);
804
805 extern int objfile_has_symbols (struct objfile *objfile);
806
807 extern int have_partial_symbols (void);
808
809 extern int have_full_symbols (void);
810
811 extern void objfile_set_sym_fns (struct objfile *objfile,
812 const struct sym_fns *sf);
813
814 extern void objfiles_changed (void);
815
816 /* Return true if ADDR maps into one of the sections of OBJFILE and false
817 otherwise. */
818
819 extern bool is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
820
821 /* Return true if ADDRESS maps into one of the sections of a
822 OBJF_SHARED objfile of PSPACE and false otherwise. */
823
824 extern bool shared_objfile_contains_address_p (struct program_space *pspace,
825 CORE_ADDR address);
826
827 /* This operation deletes all objfile entries that represent solibs that
828 weren't explicitly loaded by the user, via e.g., the add-symbol-file
829 command. */
830
831 extern void objfile_purge_solibs (void);
832
833 /* Functions for dealing with the minimal symbol table, really a misc
834 address<->symbol mapping for things we don't have debug symbols for. */
835
836 extern int have_minimal_symbols (void);
837
838 extern struct obj_section *find_pc_section (CORE_ADDR pc);
839
840 /* Return non-zero if PC is in a section called NAME. */
841 extern int pc_in_section (CORE_ADDR, const char *);
842
843 /* Return non-zero if PC is in a SVR4-style procedure linkage table
844 section. */
845
846 static inline int
847 in_plt_section (CORE_ADDR pc)
848 {
849 return (pc_in_section (pc, ".plt")
850 || pc_in_section (pc, ".plt.sec"));
851 }
852
853 /* Keep a registry of per-objfile data-pointers required by other GDB
854 modules. */
855 DECLARE_REGISTRY(objfile);
856
857 /* In normal use, the section map will be rebuilt by find_pc_section
858 if objfiles have been added, removed or relocated since it was last
859 called. Calling inhibit_section_map_updates will inhibit this
860 behavior until the returned scoped_restore object is destroyed. If
861 you call inhibit_section_map_updates you must ensure that every
862 call to find_pc_section in the inhibited region relates to a
863 section that is already in the section map and has not since been
864 removed or relocated. */
865 extern scoped_restore_tmpl<int> inhibit_section_map_updates
866 (struct program_space *pspace);
867
868 extern void default_iterate_over_objfiles_in_search_order
869 (struct gdbarch *gdbarch,
870 iterate_over_objfiles_in_search_order_cb_ftype *cb,
871 void *cb_data, struct objfile *current_objfile);
872
873 /* Reset the per-BFD storage area on OBJ. */
874
875 void set_objfile_per_bfd (struct objfile *obj);
876
877 /* Return canonical name for OBJFILE.
878 This is the real file name if the file has been opened.
879 Otherwise it is the original name supplied by the user. */
880
881 const char *objfile_name (const struct objfile *objfile);
882
883 /* Return the (real) file name of OBJFILE if the file has been opened,
884 otherwise return NULL. */
885
886 const char *objfile_filename (const struct objfile *objfile);
887
888 /* Return the name to print for OBJFILE in debugging messages. */
889
890 extern const char *objfile_debug_name (const struct objfile *objfile);
891
892 /* Return the name of the file format of OBJFILE if the file has been opened,
893 otherwise return NULL. */
894
895 const char *objfile_flavour_name (struct objfile *objfile);
896
897 /* Set the objfile's notion of the "main" name and language. */
898
899 extern void set_objfile_main_name (struct objfile *objfile,
900 const char *name, enum language lang);
901
902 extern void objfile_register_static_link
903 (struct objfile *objfile,
904 const struct block *block,
905 const struct dynamic_prop *static_link);
906
907 extern const struct dynamic_prop *objfile_lookup_static_link
908 (struct objfile *objfile, const struct block *block);
909
910 #endif /* !defined (OBJFILES_H) */
This page took 0.079568 seconds and 5 git commands to generate.