* powerpc.cc (Target_powerpc::Scan::reloc_needs_plt_for_ifunc): Make
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "gdb_string.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "frame.h"
39 #include "expression.h"
40 #include "value.h"
41 #include "command.h"
42 #include "language.h"
43 #include "f-lang.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h"
48 #include "doublest.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "source.h"
52 #include "objfiles.h"
53 #include "exceptions.h"
54 #include "user-regs.h"
55
56 /* Standard set of definitions for printing, dumping, prefixifying,
57 * and evaluating expressions. */
58
59 const struct exp_descriptor exp_descriptor_standard =
60 {
61 print_subexp_standard,
62 operator_length_standard,
63 operator_check_standard,
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
68 \f
69 /* Global variables declared in parser-defs.h (and commented there). */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 const struct block *expression_context_block;
74 CORE_ADDR expression_context_pc;
75 const struct block *innermost_block;
76 int arglist_len;
77 static struct type_stack type_stack;
78 char *lexptr;
79 char *prev_lexptr;
80 int paren_depth;
81 int comma_terminates;
82
83 /* True if parsing an expression to attempt completion. */
84 int parse_completion;
85
86 /* The index of the last struct expression directly before a '.' or
87 '->'. This is set when parsing and is only used when completing a
88 field name. It is -1 if no dereference operation was found. */
89 static int expout_last_struct = -1;
90
91 /* If we are completing a tagged type name, this will be nonzero. */
92 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
93
94 /* The token for tagged type name completion. */
95 static char *expout_completion_name;
96
97 \f
98 static unsigned int expressiondebug = 0;
99 static void
100 show_expressiondebug (struct ui_file *file, int from_tty,
101 struct cmd_list_element *c, const char *value)
102 {
103 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
104 }
105
106
107 /* Non-zero if an expression parser should set yydebug. */
108 int parser_debug;
109
110 static void
111 show_parserdebug (struct ui_file *file, int from_tty,
112 struct cmd_list_element *c, const char *value)
113 {
114 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
115 }
116
117
118 static void free_funcalls (void *ignore);
119
120 static int prefixify_subexp (struct expression *, struct expression *, int,
121 int);
122
123 static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
124 const struct block *, int,
125 int, int *);
126 static struct expression *parse_exp_in_context_1 (char **, CORE_ADDR,
127 const struct block *, int,
128 int, int *);
129
130 void _initialize_parse (void);
131
132 /* Data structure for saving values of arglist_len for function calls whose
133 arguments contain other function calls. */
134
135 struct funcall
136 {
137 struct funcall *next;
138 int arglist_len;
139 };
140
141 static struct funcall *funcall_chain;
142
143 /* Begin counting arguments for a function call,
144 saving the data about any containing call. */
145
146 void
147 start_arglist (void)
148 {
149 struct funcall *new;
150
151 new = (struct funcall *) xmalloc (sizeof (struct funcall));
152 new->next = funcall_chain;
153 new->arglist_len = arglist_len;
154 arglist_len = 0;
155 funcall_chain = new;
156 }
157
158 /* Return the number of arguments in a function call just terminated,
159 and restore the data for the containing function call. */
160
161 int
162 end_arglist (void)
163 {
164 int val = arglist_len;
165 struct funcall *call = funcall_chain;
166
167 funcall_chain = call->next;
168 arglist_len = call->arglist_len;
169 xfree (call);
170 return val;
171 }
172
173 /* Free everything in the funcall chain.
174 Used when there is an error inside parsing. */
175
176 static void
177 free_funcalls (void *ignore)
178 {
179 struct funcall *call, *next;
180
181 for (call = funcall_chain; call; call = next)
182 {
183 next = call->next;
184 xfree (call);
185 }
186 }
187 \f
188 /* This page contains the functions for adding data to the struct expression
189 being constructed. */
190
191 /* See definition in parser-defs.h. */
192
193 void
194 initialize_expout (int initial_size, const struct language_defn *lang,
195 struct gdbarch *gdbarch)
196 {
197 expout_size = initial_size;
198 expout_ptr = 0;
199 expout = xmalloc (sizeof (struct expression)
200 + EXP_ELEM_TO_BYTES (expout_size));
201 expout->language_defn = lang;
202 expout->gdbarch = gdbarch;
203 }
204
205 /* See definition in parser-defs.h. */
206
207 void
208 reallocate_expout (void)
209 {
210 /* Record the actual number of expression elements, and then
211 reallocate the expression memory so that we free up any
212 excess elements. */
213
214 expout->nelts = expout_ptr;
215 expout = xrealloc ((char *) expout,
216 sizeof (struct expression)
217 + EXP_ELEM_TO_BYTES (expout_ptr));
218 }
219
220 /* Add one element to the end of the expression. */
221
222 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
223 a register through here. */
224
225 static void
226 write_exp_elt (const union exp_element *expelt)
227 {
228 if (expout_ptr >= expout_size)
229 {
230 expout_size *= 2;
231 expout = (struct expression *)
232 xrealloc ((char *) expout, sizeof (struct expression)
233 + EXP_ELEM_TO_BYTES (expout_size));
234 }
235 expout->elts[expout_ptr++] = *expelt;
236 }
237
238 void
239 write_exp_elt_opcode (enum exp_opcode expelt)
240 {
241 union exp_element tmp;
242
243 memset (&tmp, 0, sizeof (union exp_element));
244 tmp.opcode = expelt;
245 write_exp_elt (&tmp);
246 }
247
248 void
249 write_exp_elt_sym (struct symbol *expelt)
250 {
251 union exp_element tmp;
252
253 memset (&tmp, 0, sizeof (union exp_element));
254 tmp.symbol = expelt;
255 write_exp_elt (&tmp);
256 }
257
258 void
259 write_exp_elt_block (const struct block *b)
260 {
261 union exp_element tmp;
262
263 memset (&tmp, 0, sizeof (union exp_element));
264 tmp.block = b;
265 write_exp_elt (&tmp);
266 }
267
268 void
269 write_exp_elt_objfile (struct objfile *objfile)
270 {
271 union exp_element tmp;
272
273 memset (&tmp, 0, sizeof (union exp_element));
274 tmp.objfile = objfile;
275 write_exp_elt (&tmp);
276 }
277
278 void
279 write_exp_elt_longcst (LONGEST expelt)
280 {
281 union exp_element tmp;
282
283 memset (&tmp, 0, sizeof (union exp_element));
284 tmp.longconst = expelt;
285 write_exp_elt (&tmp);
286 }
287
288 void
289 write_exp_elt_dblcst (DOUBLEST expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.doubleconst = expelt;
295 write_exp_elt (&tmp);
296 }
297
298 void
299 write_exp_elt_decfloatcst (gdb_byte expelt[16])
300 {
301 union exp_element tmp;
302 int index;
303
304 for (index = 0; index < 16; index++)
305 tmp.decfloatconst[index] = expelt[index];
306
307 write_exp_elt (&tmp);
308 }
309
310 void
311 write_exp_elt_type (struct type *expelt)
312 {
313 union exp_element tmp;
314
315 memset (&tmp, 0, sizeof (union exp_element));
316 tmp.type = expelt;
317 write_exp_elt (&tmp);
318 }
319
320 void
321 write_exp_elt_intern (struct internalvar *expelt)
322 {
323 union exp_element tmp;
324
325 memset (&tmp, 0, sizeof (union exp_element));
326 tmp.internalvar = expelt;
327 write_exp_elt (&tmp);
328 }
329
330 /* Add a string constant to the end of the expression.
331
332 String constants are stored by first writing an expression element
333 that contains the length of the string, then stuffing the string
334 constant itself into however many expression elements are needed
335 to hold it, and then writing another expression element that contains
336 the length of the string. I.e. an expression element at each end of
337 the string records the string length, so you can skip over the
338 expression elements containing the actual string bytes from either
339 end of the string. Note that this also allows gdb to handle
340 strings with embedded null bytes, as is required for some languages.
341
342 Don't be fooled by the fact that the string is null byte terminated,
343 this is strictly for the convenience of debugging gdb itself.
344 Gdb does not depend up the string being null terminated, since the
345 actual length is recorded in expression elements at each end of the
346 string. The null byte is taken into consideration when computing how
347 many expression elements are required to hold the string constant, of
348 course. */
349
350
351 void
352 write_exp_string (struct stoken str)
353 {
354 int len = str.length;
355 int lenelt;
356 char *strdata;
357
358 /* Compute the number of expression elements required to hold the string
359 (including a null byte terminator), along with one expression element
360 at each end to record the actual string length (not including the
361 null byte terminator). */
362
363 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
364
365 /* Ensure that we have enough available expression elements to store
366 everything. */
367
368 if ((expout_ptr + lenelt) >= expout_size)
369 {
370 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
371 expout = (struct expression *)
372 xrealloc ((char *) expout, (sizeof (struct expression)
373 + EXP_ELEM_TO_BYTES (expout_size)));
374 }
375
376 /* Write the leading length expression element (which advances the current
377 expression element index), then write the string constant followed by a
378 terminating null byte, and then write the trailing length expression
379 element. */
380
381 write_exp_elt_longcst ((LONGEST) len);
382 strdata = (char *) &expout->elts[expout_ptr];
383 memcpy (strdata, str.ptr, len);
384 *(strdata + len) = '\0';
385 expout_ptr += lenelt - 2;
386 write_exp_elt_longcst ((LONGEST) len);
387 }
388
389 /* Add a vector of string constants to the end of the expression.
390
391 This adds an OP_STRING operation, but encodes the contents
392 differently from write_exp_string. The language is expected to
393 handle evaluation of this expression itself.
394
395 After the usual OP_STRING header, TYPE is written into the
396 expression as a long constant. The interpretation of this field is
397 up to the language evaluator.
398
399 Next, each string in VEC is written. The length is written as a
400 long constant, followed by the contents of the string. */
401
402 void
403 write_exp_string_vector (int type, struct stoken_vector *vec)
404 {
405 int i, n_slots, len;
406
407 /* Compute the size. We compute the size in number of slots to
408 avoid issues with string padding. */
409 n_slots = 0;
410 for (i = 0; i < vec->len; ++i)
411 {
412 /* One slot for the length of this element, plus the number of
413 slots needed for this string. */
414 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
415 }
416
417 /* One more slot for the type of the string. */
418 ++n_slots;
419
420 /* Now compute a phony string length. */
421 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
422
423 n_slots += 4;
424 if ((expout_ptr + n_slots) >= expout_size)
425 {
426 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
427 expout = (struct expression *)
428 xrealloc ((char *) expout, (sizeof (struct expression)
429 + EXP_ELEM_TO_BYTES (expout_size)));
430 }
431
432 write_exp_elt_opcode (OP_STRING);
433 write_exp_elt_longcst (len);
434 write_exp_elt_longcst (type);
435
436 for (i = 0; i < vec->len; ++i)
437 {
438 write_exp_elt_longcst (vec->tokens[i].length);
439 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
440 vec->tokens[i].length);
441 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
442 }
443
444 write_exp_elt_longcst (len);
445 write_exp_elt_opcode (OP_STRING);
446 }
447
448 /* Add a bitstring constant to the end of the expression.
449
450 Bitstring constants are stored by first writing an expression element
451 that contains the length of the bitstring (in bits), then stuffing the
452 bitstring constant itself into however many expression elements are
453 needed to hold it, and then writing another expression element that
454 contains the length of the bitstring. I.e. an expression element at
455 each end of the bitstring records the bitstring length, so you can skip
456 over the expression elements containing the actual bitstring bytes from
457 either end of the bitstring. */
458
459 void
460 write_exp_bitstring (struct stoken str)
461 {
462 int bits = str.length; /* length in bits */
463 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
464 int lenelt;
465 char *strdata;
466
467 /* Compute the number of expression elements required to hold the bitstring,
468 along with one expression element at each end to record the actual
469 bitstring length in bits. */
470
471 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
472
473 /* Ensure that we have enough available expression elements to store
474 everything. */
475
476 if ((expout_ptr + lenelt) >= expout_size)
477 {
478 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
479 expout = (struct expression *)
480 xrealloc ((char *) expout, (sizeof (struct expression)
481 + EXP_ELEM_TO_BYTES (expout_size)));
482 }
483
484 /* Write the leading length expression element (which advances the current
485 expression element index), then write the bitstring constant, and then
486 write the trailing length expression element. */
487
488 write_exp_elt_longcst ((LONGEST) bits);
489 strdata = (char *) &expout->elts[expout_ptr];
490 memcpy (strdata, str.ptr, len);
491 expout_ptr += lenelt - 2;
492 write_exp_elt_longcst ((LONGEST) bits);
493 }
494
495 /* Add the appropriate elements for a minimal symbol to the end of
496 the expression. */
497
498 void
499 write_exp_msymbol (struct minimal_symbol *msymbol)
500 {
501 struct objfile *objfile = msymbol_objfile (msymbol);
502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
503
504 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
505 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
506 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
507 CORE_ADDR pc;
508
509 /* The minimal symbol might point to a function descriptor;
510 resolve it to the actual code address instead. */
511 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
512 if (pc != addr)
513 {
514 struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc);
515
516 /* In this case, assume we have a code symbol instead of
517 a data symbol. */
518
519 if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc
520 && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
521 {
522 /* A function descriptor has been resolved but PC is still in the
523 STT_GNU_IFUNC resolver body (such as because inferior does not
524 run to be able to call it). */
525
526 type = mst_text_gnu_ifunc;
527 }
528 else
529 type = mst_text;
530 section = NULL;
531 addr = pc;
532 }
533
534 if (overlay_debugging)
535 addr = symbol_overlayed_address (addr, section);
536
537 write_exp_elt_opcode (OP_LONG);
538 /* Let's make the type big enough to hold a 64-bit address. */
539 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
540 write_exp_elt_longcst ((LONGEST) addr);
541 write_exp_elt_opcode (OP_LONG);
542
543 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
544 {
545 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
546 write_exp_elt_objfile (objfile);
547 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
548 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
549 return;
550 }
551
552 write_exp_elt_opcode (UNOP_MEMVAL);
553 switch (type)
554 {
555 case mst_text:
556 case mst_file_text:
557 case mst_solib_trampoline:
558 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
559 break;
560
561 case mst_text_gnu_ifunc:
562 write_exp_elt_type (objfile_type (objfile)
563 ->nodebug_text_gnu_ifunc_symbol);
564 break;
565
566 case mst_data:
567 case mst_file_data:
568 case mst_bss:
569 case mst_file_bss:
570 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
571 break;
572
573 case mst_slot_got_plt:
574 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
575 break;
576
577 default:
578 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
579 break;
580 }
581 write_exp_elt_opcode (UNOP_MEMVAL);
582 }
583
584 /* Mark the current index as the starting location of a structure
585 expression. This is used when completing on field names. */
586
587 void
588 mark_struct_expression (void)
589 {
590 gdb_assert (parse_completion
591 && expout_tag_completion_type == TYPE_CODE_UNDEF);
592 expout_last_struct = expout_ptr;
593 }
594
595 /* Indicate that the current parser invocation is completing a tag.
596 TAG is the type code of the tag, and PTR and LENGTH represent the
597 start of the tag name. */
598
599 void
600 mark_completion_tag (enum type_code tag, const char *ptr, int length)
601 {
602 gdb_assert (parse_completion
603 && expout_tag_completion_type == TYPE_CODE_UNDEF
604 && expout_completion_name == NULL
605 && expout_last_struct == -1);
606 gdb_assert (tag == TYPE_CODE_UNION
607 || tag == TYPE_CODE_STRUCT
608 || tag == TYPE_CODE_CLASS
609 || tag == TYPE_CODE_ENUM);
610 expout_tag_completion_type = tag;
611 expout_completion_name = xmalloc (length + 1);
612 memcpy (expout_completion_name, ptr, length);
613 expout_completion_name[length] = '\0';
614 }
615
616 \f
617 /* Recognize tokens that start with '$'. These include:
618
619 $regname A native register name or a "standard
620 register name".
621
622 $variable A convenience variable with a name chosen
623 by the user.
624
625 $digits Value history with index <digits>, starting
626 from the first value which has index 1.
627
628 $$digits Value history with index <digits> relative
629 to the last value. I.e. $$0 is the last
630 value, $$1 is the one previous to that, $$2
631 is the one previous to $$1, etc.
632
633 $ | $0 | $$0 The last value in the value history.
634
635 $$ An abbreviation for the second to the last
636 value in the value history, I.e. $$1 */
637
638 void
639 write_dollar_variable (struct stoken str)
640 {
641 struct symbol *sym = NULL;
642 struct minimal_symbol *msym = NULL;
643 struct internalvar *isym = NULL;
644
645 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
646 and $$digits (equivalent to $<-digits> if you could type that). */
647
648 int negate = 0;
649 int i = 1;
650 /* Double dollar means negate the number and add -1 as well.
651 Thus $$ alone means -1. */
652 if (str.length >= 2 && str.ptr[1] == '$')
653 {
654 negate = 1;
655 i = 2;
656 }
657 if (i == str.length)
658 {
659 /* Just dollars (one or two). */
660 i = -negate;
661 goto handle_last;
662 }
663 /* Is the rest of the token digits? */
664 for (; i < str.length; i++)
665 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
666 break;
667 if (i == str.length)
668 {
669 i = atoi (str.ptr + 1 + negate);
670 if (negate)
671 i = -i;
672 goto handle_last;
673 }
674
675 /* Handle tokens that refer to machine registers:
676 $ followed by a register name. */
677 i = user_reg_map_name_to_regnum (parse_gdbarch,
678 str.ptr + 1, str.length - 1);
679 if (i >= 0)
680 goto handle_register;
681
682 /* Any names starting with $ are probably debugger internal variables. */
683
684 isym = lookup_only_internalvar (copy_name (str) + 1);
685 if (isym)
686 {
687 write_exp_elt_opcode (OP_INTERNALVAR);
688 write_exp_elt_intern (isym);
689 write_exp_elt_opcode (OP_INTERNALVAR);
690 return;
691 }
692
693 /* On some systems, such as HP-UX and hppa-linux, certain system routines
694 have names beginning with $ or $$. Check for those, first. */
695
696 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
697 VAR_DOMAIN, NULL);
698 if (sym)
699 {
700 write_exp_elt_opcode (OP_VAR_VALUE);
701 write_exp_elt_block (block_found); /* set by lookup_symbol */
702 write_exp_elt_sym (sym);
703 write_exp_elt_opcode (OP_VAR_VALUE);
704 return;
705 }
706 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
707 if (msym)
708 {
709 write_exp_msymbol (msym);
710 return;
711 }
712
713 /* Any other names are assumed to be debugger internal variables. */
714
715 write_exp_elt_opcode (OP_INTERNALVAR);
716 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
717 write_exp_elt_opcode (OP_INTERNALVAR);
718 return;
719 handle_last:
720 write_exp_elt_opcode (OP_LAST);
721 write_exp_elt_longcst ((LONGEST) i);
722 write_exp_elt_opcode (OP_LAST);
723 return;
724 handle_register:
725 write_exp_elt_opcode (OP_REGISTER);
726 str.length--;
727 str.ptr++;
728 write_exp_string (str);
729 write_exp_elt_opcode (OP_REGISTER);
730 return;
731 }
732
733
734 char *
735 find_template_name_end (char *p)
736 {
737 int depth = 1;
738 int just_seen_right = 0;
739 int just_seen_colon = 0;
740 int just_seen_space = 0;
741
742 if (!p || (*p != '<'))
743 return 0;
744
745 while (*++p)
746 {
747 switch (*p)
748 {
749 case '\'':
750 case '\"':
751 case '{':
752 case '}':
753 /* In future, may want to allow these?? */
754 return 0;
755 case '<':
756 depth++; /* start nested template */
757 if (just_seen_colon || just_seen_right || just_seen_space)
758 return 0; /* but not after : or :: or > or space */
759 break;
760 case '>':
761 if (just_seen_colon || just_seen_right)
762 return 0; /* end a (nested?) template */
763 just_seen_right = 1; /* but not after : or :: */
764 if (--depth == 0) /* also disallow >>, insist on > > */
765 return ++p; /* if outermost ended, return */
766 break;
767 case ':':
768 if (just_seen_space || (just_seen_colon > 1))
769 return 0; /* nested class spec coming up */
770 just_seen_colon++; /* we allow :: but not :::: */
771 break;
772 case ' ':
773 break;
774 default:
775 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
776 (*p >= 'A' && *p <= 'Z') ||
777 (*p >= '0' && *p <= '9') ||
778 (*p == '_') || (*p == ',') || /* commas for template args */
779 (*p == '&') || (*p == '*') || /* pointer and ref types */
780 (*p == '(') || (*p == ')') || /* function types */
781 (*p == '[') || (*p == ']'))) /* array types */
782 return 0;
783 }
784 if (*p != ' ')
785 just_seen_space = 0;
786 if (*p != ':')
787 just_seen_colon = 0;
788 if (*p != '>')
789 just_seen_right = 0;
790 }
791 return 0;
792 }
793 \f
794
795 /* Return a null-terminated temporary copy of the name of a string token.
796
797 Tokens that refer to names do so with explicit pointer and length,
798 so they can share the storage that lexptr is parsing.
799 When it is necessary to pass a name to a function that expects
800 a null-terminated string, the substring is copied out
801 into a separate block of storage.
802
803 N.B. A single buffer is reused on each call. */
804
805 char *
806 copy_name (struct stoken token)
807 {
808 /* A temporary buffer for identifiers, so we can null-terminate them.
809 We allocate this with xrealloc. parse_exp_1 used to allocate with
810 alloca, using the size of the whole expression as a conservative
811 estimate of the space needed. However, macro expansion can
812 introduce names longer than the original expression; there's no
813 practical way to know beforehand how large that might be. */
814 static char *namecopy;
815 static size_t namecopy_size;
816
817 /* Make sure there's enough space for the token. */
818 if (namecopy_size < token.length + 1)
819 {
820 namecopy_size = token.length + 1;
821 namecopy = xrealloc (namecopy, token.length + 1);
822 }
823
824 memcpy (namecopy, token.ptr, token.length);
825 namecopy[token.length] = 0;
826
827 return namecopy;
828 }
829 \f
830
831 /* See comments on parser-defs.h. */
832
833 int
834 prefixify_expression (struct expression *expr)
835 {
836 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
837 struct expression *temp;
838 int inpos = expr->nelts, outpos = 0;
839
840 temp = (struct expression *) alloca (len);
841
842 /* Copy the original expression into temp. */
843 memcpy (temp, expr, len);
844
845 return prefixify_subexp (temp, expr, inpos, outpos);
846 }
847
848 /* Return the number of exp_elements in the postfix subexpression
849 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
850
851 int
852 length_of_subexp (struct expression *expr, int endpos)
853 {
854 int oplen, args;
855
856 operator_length (expr, endpos, &oplen, &args);
857
858 while (args > 0)
859 {
860 oplen += length_of_subexp (expr, endpos - oplen);
861 args--;
862 }
863
864 return oplen;
865 }
866
867 /* Sets *OPLENP to the length of the operator whose (last) index is
868 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
869 operator takes. */
870
871 void
872 operator_length (const struct expression *expr, int endpos, int *oplenp,
873 int *argsp)
874 {
875 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
876 oplenp, argsp);
877 }
878
879 /* Default value for operator_length in exp_descriptor vectors. */
880
881 void
882 operator_length_standard (const struct expression *expr, int endpos,
883 int *oplenp, int *argsp)
884 {
885 int oplen = 1;
886 int args = 0;
887 enum f90_range_type range_type;
888 int i;
889
890 if (endpos < 1)
891 error (_("?error in operator_length_standard"));
892
893 i = (int) expr->elts[endpos - 1].opcode;
894
895 switch (i)
896 {
897 /* C++ */
898 case OP_SCOPE:
899 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
900 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
901 break;
902
903 case OP_LONG:
904 case OP_DOUBLE:
905 case OP_DECFLOAT:
906 case OP_VAR_VALUE:
907 oplen = 4;
908 break;
909
910 case OP_TYPE:
911 case OP_BOOL:
912 case OP_LAST:
913 case OP_INTERNALVAR:
914 case OP_VAR_ENTRY_VALUE:
915 oplen = 3;
916 break;
917
918 case OP_COMPLEX:
919 oplen = 3;
920 args = 2;
921 break;
922
923 case OP_FUNCALL:
924 case OP_F77_UNDETERMINED_ARGLIST:
925 oplen = 3;
926 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
927 break;
928
929 case TYPE_INSTANCE:
930 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
931 args = 1;
932 break;
933
934 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
935 oplen = 4;
936 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
937 break;
938
939 case UNOP_MAX:
940 case UNOP_MIN:
941 oplen = 3;
942 break;
943
944 case UNOP_CAST_TYPE:
945 case UNOP_DYNAMIC_CAST:
946 case UNOP_REINTERPRET_CAST:
947 case UNOP_MEMVAL_TYPE:
948 oplen = 1;
949 args = 2;
950 break;
951
952 case BINOP_VAL:
953 case UNOP_CAST:
954 case UNOP_MEMVAL:
955 oplen = 3;
956 args = 1;
957 break;
958
959 case UNOP_MEMVAL_TLS:
960 oplen = 4;
961 args = 1;
962 break;
963
964 case UNOP_ABS:
965 case UNOP_CAP:
966 case UNOP_CHR:
967 case UNOP_FLOAT:
968 case UNOP_HIGH:
969 case UNOP_ODD:
970 case UNOP_ORD:
971 case UNOP_TRUNC:
972 case OP_TYPEOF:
973 case OP_DECLTYPE:
974 oplen = 1;
975 args = 1;
976 break;
977
978 case OP_ADL_FUNC:
979 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
980 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
981 oplen++;
982 oplen++;
983 break;
984
985 case STRUCTOP_STRUCT:
986 case STRUCTOP_PTR:
987 args = 1;
988 /* fall through */
989 case OP_REGISTER:
990 case OP_M2_STRING:
991 case OP_STRING:
992 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
993 NSString constant. */
994 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
995 case OP_NAME:
996 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
997 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
998 break;
999
1000 case OP_ARRAY:
1001 oplen = 4;
1002 args = longest_to_int (expr->elts[endpos - 2].longconst);
1003 args -= longest_to_int (expr->elts[endpos - 3].longconst);
1004 args += 1;
1005 break;
1006
1007 case TERNOP_COND:
1008 case TERNOP_SLICE:
1009 args = 3;
1010 break;
1011
1012 /* Modula-2 */
1013 case MULTI_SUBSCRIPT:
1014 oplen = 3;
1015 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
1016 break;
1017
1018 case BINOP_ASSIGN_MODIFY:
1019 oplen = 3;
1020 args = 2;
1021 break;
1022
1023 /* C++ */
1024 case OP_THIS:
1025 oplen = 2;
1026 break;
1027
1028 case OP_F90_RANGE:
1029 oplen = 3;
1030
1031 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1032 switch (range_type)
1033 {
1034 case LOW_BOUND_DEFAULT:
1035 case HIGH_BOUND_DEFAULT:
1036 args = 1;
1037 break;
1038 case BOTH_BOUND_DEFAULT:
1039 args = 0;
1040 break;
1041 case NONE_BOUND_DEFAULT:
1042 args = 2;
1043 break;
1044 }
1045
1046 break;
1047
1048 default:
1049 args = 1 + (i < (int) BINOP_END);
1050 }
1051
1052 *oplenp = oplen;
1053 *argsp = args;
1054 }
1055
1056 /* Copy the subexpression ending just before index INEND in INEXPR
1057 into OUTEXPR, starting at index OUTBEG.
1058 In the process, convert it from suffix to prefix form.
1059 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1060 Otherwise, it returns the index of the subexpression which is the
1061 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1062
1063 static int
1064 prefixify_subexp (struct expression *inexpr,
1065 struct expression *outexpr, int inend, int outbeg)
1066 {
1067 int oplen;
1068 int args;
1069 int i;
1070 int *arglens;
1071 int result = -1;
1072
1073 operator_length (inexpr, inend, &oplen, &args);
1074
1075 /* Copy the final operator itself, from the end of the input
1076 to the beginning of the output. */
1077 inend -= oplen;
1078 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1079 EXP_ELEM_TO_BYTES (oplen));
1080 outbeg += oplen;
1081
1082 if (expout_last_struct == inend)
1083 result = outbeg - oplen;
1084
1085 /* Find the lengths of the arg subexpressions. */
1086 arglens = (int *) alloca (args * sizeof (int));
1087 for (i = args - 1; i >= 0; i--)
1088 {
1089 oplen = length_of_subexp (inexpr, inend);
1090 arglens[i] = oplen;
1091 inend -= oplen;
1092 }
1093
1094 /* Now copy each subexpression, preserving the order of
1095 the subexpressions, but prefixifying each one.
1096 In this loop, inend starts at the beginning of
1097 the expression this level is working on
1098 and marches forward over the arguments.
1099 outbeg does similarly in the output. */
1100 for (i = 0; i < args; i++)
1101 {
1102 int r;
1103
1104 oplen = arglens[i];
1105 inend += oplen;
1106 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1107 if (r != -1)
1108 {
1109 /* Return immediately. We probably have only parsed a
1110 partial expression, so we don't want to try to reverse
1111 the other operands. */
1112 return r;
1113 }
1114 outbeg += oplen;
1115 }
1116
1117 return result;
1118 }
1119 \f
1120 /* Read an expression from the string *STRINGPTR points to,
1121 parse it, and return a pointer to a struct expression that we malloc.
1122 Use block BLOCK as the lexical context for variable names;
1123 if BLOCK is zero, use the block of the selected stack frame.
1124 Meanwhile, advance *STRINGPTR to point after the expression,
1125 at the first nonwhite character that is not part of the expression
1126 (possibly a null character).
1127
1128 If COMMA is nonzero, stop if a comma is reached. */
1129
1130 struct expression *
1131 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1132 int comma)
1133 {
1134 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1135 }
1136
1137 static struct expression *
1138 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1139 const struct block *block,
1140 int comma, int void_context_p, int *out_subexp)
1141 {
1142 struct expression *expr;
1143 char *const_hack = *stringptr ? xstrdup (*stringptr) : NULL;
1144 char *orig = const_hack;
1145 struct cleanup *back_to = make_cleanup (xfree, const_hack);
1146
1147 expr = parse_exp_in_context_1 (&const_hack, pc, block, comma,
1148 void_context_p, out_subexp);
1149 (*stringptr) += const_hack - orig;
1150 do_cleanups (back_to);
1151 return expr;
1152 }
1153
1154 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1155 no value is expected from the expression.
1156 OUT_SUBEXP is set when attempting to complete a field name; in this
1157 case it is set to the index of the subexpression on the
1158 left-hand-side of the struct op. If not doing such completion, it
1159 is left untouched. */
1160
1161 static struct expression *
1162 parse_exp_in_context_1 (char **stringptr, CORE_ADDR pc,
1163 const struct block *block,
1164 int comma, int void_context_p, int *out_subexp)
1165 {
1166 volatile struct gdb_exception except;
1167 struct cleanup *old_chain, *inner_chain;
1168 const struct language_defn *lang = NULL;
1169 int subexp;
1170
1171 lexptr = *stringptr;
1172 prev_lexptr = NULL;
1173
1174 paren_depth = 0;
1175 type_stack.depth = 0;
1176 expout_last_struct = -1;
1177 expout_tag_completion_type = TYPE_CODE_UNDEF;
1178 xfree (expout_completion_name);
1179 expout_completion_name = NULL;
1180
1181 comma_terminates = comma;
1182
1183 if (lexptr == 0 || *lexptr == 0)
1184 error_no_arg (_("expression to compute"));
1185
1186 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1187 funcall_chain = 0;
1188
1189 expression_context_block = block;
1190
1191 /* If no context specified, try using the current frame, if any. */
1192 if (!expression_context_block)
1193 expression_context_block = get_selected_block (&expression_context_pc);
1194 else if (pc == 0)
1195 expression_context_pc = BLOCK_START (expression_context_block);
1196 else
1197 expression_context_pc = pc;
1198
1199 /* Fall back to using the current source static context, if any. */
1200
1201 if (!expression_context_block)
1202 {
1203 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1204 if (cursal.symtab)
1205 expression_context_block
1206 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1207 if (expression_context_block)
1208 expression_context_pc = BLOCK_START (expression_context_block);
1209 }
1210
1211 if (language_mode == language_mode_auto && block != NULL)
1212 {
1213 /* Find the language associated to the given context block.
1214 Default to the current language if it can not be determined.
1215
1216 Note that using the language corresponding to the current frame
1217 can sometimes give unexpected results. For instance, this
1218 routine is often called several times during the inferior
1219 startup phase to re-parse breakpoint expressions after
1220 a new shared library has been loaded. The language associated
1221 to the current frame at this moment is not relevant for
1222 the breakpoint. Using it would therefore be silly, so it seems
1223 better to rely on the current language rather than relying on
1224 the current frame language to parse the expression. That's why
1225 we do the following language detection only if the context block
1226 has been specifically provided. */
1227 struct symbol *func = block_linkage_function (block);
1228
1229 if (func != NULL)
1230 lang = language_def (SYMBOL_LANGUAGE (func));
1231 if (lang == NULL || lang->la_language == language_unknown)
1232 lang = current_language;
1233 }
1234 else
1235 lang = current_language;
1236
1237 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1238 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1239 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1240 to the value matching SELECTED_FRAME as set by get_current_arch. */
1241 initialize_expout (10, lang, get_current_arch ());
1242 inner_chain = make_cleanup_restore_current_language ();
1243 set_language (lang->la_language);
1244
1245 TRY_CATCH (except, RETURN_MASK_ALL)
1246 {
1247 if (lang->la_parser ())
1248 lang->la_error (NULL);
1249 }
1250 if (except.reason < 0)
1251 {
1252 if (! parse_completion)
1253 {
1254 xfree (expout);
1255 throw_exception (except);
1256 }
1257 }
1258
1259 reallocate_expout ();
1260
1261 /* Convert expression from postfix form as generated by yacc
1262 parser, to a prefix form. */
1263
1264 if (expressiondebug)
1265 dump_raw_expression (expout, gdb_stdlog,
1266 "before conversion to prefix form");
1267
1268 subexp = prefixify_expression (expout);
1269 if (out_subexp)
1270 *out_subexp = subexp;
1271
1272 lang->la_post_parser (&expout, void_context_p);
1273
1274 if (expressiondebug)
1275 dump_prefix_expression (expout, gdb_stdlog);
1276
1277 do_cleanups (inner_chain);
1278 discard_cleanups (old_chain);
1279
1280 *stringptr = lexptr;
1281 return expout;
1282 }
1283
1284 /* Parse STRING as an expression, and complain if this fails
1285 to use up all of the contents of STRING. */
1286
1287 struct expression *
1288 parse_expression (const char *string)
1289 {
1290 struct expression *exp;
1291
1292 exp = parse_exp_1 (&string, 0, 0, 0);
1293 if (*string)
1294 error (_("Junk after end of expression."));
1295 return exp;
1296 }
1297
1298 /* Parse STRING as an expression. If parsing ends in the middle of a
1299 field reference, return the type of the left-hand-side of the
1300 reference; furthermore, if the parsing ends in the field name,
1301 return the field name in *NAME. If the parsing ends in the middle
1302 of a field reference, but the reference is somehow invalid, throw
1303 an exception. In all other cases, return NULL. Returned non-NULL
1304 *NAME must be freed by the caller. */
1305
1306 struct type *
1307 parse_expression_for_completion (const char *string, char **name,
1308 enum type_code *code)
1309 {
1310 struct expression *exp = NULL;
1311 struct value *val;
1312 int subexp;
1313 volatile struct gdb_exception except;
1314
1315 TRY_CATCH (except, RETURN_MASK_ERROR)
1316 {
1317 parse_completion = 1;
1318 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1319 }
1320 parse_completion = 0;
1321 if (except.reason < 0 || ! exp)
1322 return NULL;
1323
1324 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1325 {
1326 *code = expout_tag_completion_type;
1327 *name = expout_completion_name;
1328 expout_completion_name = NULL;
1329 return NULL;
1330 }
1331
1332 if (expout_last_struct == -1)
1333 {
1334 xfree (exp);
1335 return NULL;
1336 }
1337
1338 *name = extract_field_op (exp, &subexp);
1339 if (!*name)
1340 {
1341 xfree (exp);
1342 return NULL;
1343 }
1344
1345 /* This might throw an exception. If so, we want to let it
1346 propagate. */
1347 val = evaluate_subexpression_type (exp, subexp);
1348 /* (*NAME) is a part of the EXP memory block freed below. */
1349 *name = xstrdup (*name);
1350 xfree (exp);
1351
1352 return value_type (val);
1353 }
1354
1355 /* A post-parser that does nothing. */
1356
1357 void
1358 null_post_parser (struct expression **exp, int void_context_p)
1359 {
1360 }
1361
1362 /* Parse floating point value P of length LEN.
1363 Return 0 (false) if invalid, 1 (true) if valid.
1364 The successfully parsed number is stored in D.
1365 *SUFFIX points to the suffix of the number in P.
1366
1367 NOTE: This accepts the floating point syntax that sscanf accepts. */
1368
1369 int
1370 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1371 {
1372 char *copy;
1373 int n, num;
1374
1375 copy = xmalloc (len + 1);
1376 memcpy (copy, p, len);
1377 copy[len] = 0;
1378
1379 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1380 xfree (copy);
1381
1382 /* The sscanf man page suggests not making any assumptions on the effect
1383 of %n on the result, so we don't.
1384 That is why we simply test num == 0. */
1385 if (num == 0)
1386 return 0;
1387
1388 *suffix = p + n;
1389 return 1;
1390 }
1391
1392 /* Parse floating point value P of length LEN, using the C syntax for floats.
1393 Return 0 (false) if invalid, 1 (true) if valid.
1394 The successfully parsed number is stored in *D.
1395 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1396
1397 int
1398 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1399 DOUBLEST *d, struct type **t)
1400 {
1401 const char *suffix;
1402 int suffix_len;
1403 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1404
1405 if (! parse_float (p, len, d, &suffix))
1406 return 0;
1407
1408 suffix_len = p + len - suffix;
1409
1410 if (suffix_len == 0)
1411 *t = builtin_types->builtin_double;
1412 else if (suffix_len == 1)
1413 {
1414 /* Handle suffixes: 'f' for float, 'l' for long double. */
1415 if (tolower (*suffix) == 'f')
1416 *t = builtin_types->builtin_float;
1417 else if (tolower (*suffix) == 'l')
1418 *t = builtin_types->builtin_long_double;
1419 else
1420 return 0;
1421 }
1422 else
1423 return 0;
1424
1425 return 1;
1426 }
1427 \f
1428 /* Stuff for maintaining a stack of types. Currently just used by C, but
1429 probably useful for any language which declares its types "backwards". */
1430
1431 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1432
1433 static void
1434 type_stack_reserve (struct type_stack *stack, int howmuch)
1435 {
1436 if (stack->depth + howmuch >= stack->size)
1437 {
1438 stack->size *= 2;
1439 if (stack->size < howmuch)
1440 stack->size = howmuch;
1441 stack->elements = xrealloc (stack->elements,
1442 stack->size * sizeof (union type_stack_elt));
1443 }
1444 }
1445
1446 /* Ensure that there is a single open slot in the global type stack. */
1447
1448 static void
1449 check_type_stack_depth (void)
1450 {
1451 type_stack_reserve (&type_stack, 1);
1452 }
1453
1454 /* A helper function for insert_type and insert_type_address_space.
1455 This does work of expanding the type stack and inserting the new
1456 element, ELEMENT, into the stack at location SLOT. */
1457
1458 static void
1459 insert_into_type_stack (int slot, union type_stack_elt element)
1460 {
1461 check_type_stack_depth ();
1462
1463 if (slot < type_stack.depth)
1464 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1465 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1466 type_stack.elements[slot] = element;
1467 ++type_stack.depth;
1468 }
1469
1470 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1471 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1472 a qualifier, it is inserted at slot 1 (just above a previous
1473 tp_pointer) if there is anything on the stack, or simply pushed if
1474 the stack is empty. Other values for TP are invalid. */
1475
1476 void
1477 insert_type (enum type_pieces tp)
1478 {
1479 union type_stack_elt element;
1480 int slot;
1481
1482 gdb_assert (tp == tp_pointer || tp == tp_reference
1483 || tp == tp_const || tp == tp_volatile);
1484
1485 /* If there is anything on the stack (we know it will be a
1486 tp_pointer), insert the qualifier above it. Otherwise, simply
1487 push this on the top of the stack. */
1488 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1489 slot = 1;
1490 else
1491 slot = 0;
1492
1493 element.piece = tp;
1494 insert_into_type_stack (slot, element);
1495 }
1496
1497 void
1498 push_type (enum type_pieces tp)
1499 {
1500 check_type_stack_depth ();
1501 type_stack.elements[type_stack.depth++].piece = tp;
1502 }
1503
1504 void
1505 push_type_int (int n)
1506 {
1507 check_type_stack_depth ();
1508 type_stack.elements[type_stack.depth++].int_val = n;
1509 }
1510
1511 /* Insert a tp_space_identifier and the corresponding address space
1512 value into the stack. STRING is the name of an address space, as
1513 recognized by address_space_name_to_int. If the stack is empty,
1514 the new elements are simply pushed. If the stack is not empty,
1515 this function assumes that the first item on the stack is a
1516 tp_pointer, and the new values are inserted above the first
1517 item. */
1518
1519 void
1520 insert_type_address_space (char *string)
1521 {
1522 union type_stack_elt element;
1523 int slot;
1524
1525 /* If there is anything on the stack (we know it will be a
1526 tp_pointer), insert the address space qualifier above it.
1527 Otherwise, simply push this on the top of the stack. */
1528 if (type_stack.depth)
1529 slot = 1;
1530 else
1531 slot = 0;
1532
1533 element.piece = tp_space_identifier;
1534 insert_into_type_stack (slot, element);
1535 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1536 insert_into_type_stack (slot, element);
1537 }
1538
1539 enum type_pieces
1540 pop_type (void)
1541 {
1542 if (type_stack.depth)
1543 return type_stack.elements[--type_stack.depth].piece;
1544 return tp_end;
1545 }
1546
1547 int
1548 pop_type_int (void)
1549 {
1550 if (type_stack.depth)
1551 return type_stack.elements[--type_stack.depth].int_val;
1552 /* "Can't happen". */
1553 return 0;
1554 }
1555
1556 /* Pop a type list element from the global type stack. */
1557
1558 static VEC (type_ptr) *
1559 pop_typelist (void)
1560 {
1561 gdb_assert (type_stack.depth);
1562 return type_stack.elements[--type_stack.depth].typelist_val;
1563 }
1564
1565 /* Pop a type_stack element from the global type stack. */
1566
1567 static struct type_stack *
1568 pop_type_stack (void)
1569 {
1570 gdb_assert (type_stack.depth);
1571 return type_stack.elements[--type_stack.depth].stack_val;
1572 }
1573
1574 /* Append the elements of the type stack FROM to the type stack TO.
1575 Always returns TO. */
1576
1577 struct type_stack *
1578 append_type_stack (struct type_stack *to, struct type_stack *from)
1579 {
1580 type_stack_reserve (to, from->depth);
1581
1582 memcpy (&to->elements[to->depth], &from->elements[0],
1583 from->depth * sizeof (union type_stack_elt));
1584 to->depth += from->depth;
1585
1586 return to;
1587 }
1588
1589 /* Push the type stack STACK as an element on the global type stack. */
1590
1591 void
1592 push_type_stack (struct type_stack *stack)
1593 {
1594 check_type_stack_depth ();
1595 type_stack.elements[type_stack.depth++].stack_val = stack;
1596 push_type (tp_type_stack);
1597 }
1598
1599 /* Copy the global type stack into a newly allocated type stack and
1600 return it. The global stack is cleared. The returned type stack
1601 must be freed with type_stack_cleanup. */
1602
1603 struct type_stack *
1604 get_type_stack (void)
1605 {
1606 struct type_stack *result = XNEW (struct type_stack);
1607
1608 *result = type_stack;
1609 type_stack.depth = 0;
1610 type_stack.size = 0;
1611 type_stack.elements = NULL;
1612
1613 return result;
1614 }
1615
1616 /* A cleanup function that destroys a single type stack. */
1617
1618 void
1619 type_stack_cleanup (void *arg)
1620 {
1621 struct type_stack *stack = arg;
1622
1623 xfree (stack->elements);
1624 xfree (stack);
1625 }
1626
1627 /* Push a function type with arguments onto the global type stack.
1628 LIST holds the argument types. If the final item in LIST is NULL,
1629 then the function will be varargs. */
1630
1631 void
1632 push_typelist (VEC (type_ptr) *list)
1633 {
1634 check_type_stack_depth ();
1635 type_stack.elements[type_stack.depth++].typelist_val = list;
1636 push_type (tp_function_with_arguments);
1637 }
1638
1639 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1640 as modified by all the stuff on the stack. */
1641 struct type *
1642 follow_types (struct type *follow_type)
1643 {
1644 int done = 0;
1645 int make_const = 0;
1646 int make_volatile = 0;
1647 int make_addr_space = 0;
1648 int array_size;
1649
1650 while (!done)
1651 switch (pop_type ())
1652 {
1653 case tp_end:
1654 done = 1;
1655 if (make_const)
1656 follow_type = make_cv_type (make_const,
1657 TYPE_VOLATILE (follow_type),
1658 follow_type, 0);
1659 if (make_volatile)
1660 follow_type = make_cv_type (TYPE_CONST (follow_type),
1661 make_volatile,
1662 follow_type, 0);
1663 if (make_addr_space)
1664 follow_type = make_type_with_address_space (follow_type,
1665 make_addr_space);
1666 make_const = make_volatile = 0;
1667 make_addr_space = 0;
1668 break;
1669 case tp_const:
1670 make_const = 1;
1671 break;
1672 case tp_volatile:
1673 make_volatile = 1;
1674 break;
1675 case tp_space_identifier:
1676 make_addr_space = pop_type_int ();
1677 break;
1678 case tp_pointer:
1679 follow_type = lookup_pointer_type (follow_type);
1680 if (make_const)
1681 follow_type = make_cv_type (make_const,
1682 TYPE_VOLATILE (follow_type),
1683 follow_type, 0);
1684 if (make_volatile)
1685 follow_type = make_cv_type (TYPE_CONST (follow_type),
1686 make_volatile,
1687 follow_type, 0);
1688 if (make_addr_space)
1689 follow_type = make_type_with_address_space (follow_type,
1690 make_addr_space);
1691 make_const = make_volatile = 0;
1692 make_addr_space = 0;
1693 break;
1694 case tp_reference:
1695 follow_type = lookup_reference_type (follow_type);
1696 if (make_const)
1697 follow_type = make_cv_type (make_const,
1698 TYPE_VOLATILE (follow_type),
1699 follow_type, 0);
1700 if (make_volatile)
1701 follow_type = make_cv_type (TYPE_CONST (follow_type),
1702 make_volatile,
1703 follow_type, 0);
1704 if (make_addr_space)
1705 follow_type = make_type_with_address_space (follow_type,
1706 make_addr_space);
1707 make_const = make_volatile = 0;
1708 make_addr_space = 0;
1709 break;
1710 case tp_array:
1711 array_size = pop_type_int ();
1712 /* FIXME-type-allocation: need a way to free this type when we are
1713 done with it. */
1714 follow_type =
1715 lookup_array_range_type (follow_type,
1716 0, array_size >= 0 ? array_size - 1 : 0);
1717 if (array_size < 0)
1718 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1719 break;
1720 case tp_function:
1721 /* FIXME-type-allocation: need a way to free this type when we are
1722 done with it. */
1723 follow_type = lookup_function_type (follow_type);
1724 break;
1725
1726 case tp_function_with_arguments:
1727 {
1728 VEC (type_ptr) *args = pop_typelist ();
1729
1730 follow_type
1731 = lookup_function_type_with_arguments (follow_type,
1732 VEC_length (type_ptr, args),
1733 VEC_address (type_ptr,
1734 args));
1735 VEC_free (type_ptr, args);
1736 }
1737 break;
1738
1739 case tp_type_stack:
1740 {
1741 struct type_stack *stack = pop_type_stack ();
1742 /* Sort of ugly, but not really much worse than the
1743 alternatives. */
1744 struct type_stack save = type_stack;
1745
1746 type_stack = *stack;
1747 follow_type = follow_types (follow_type);
1748 gdb_assert (type_stack.depth == 0);
1749
1750 type_stack = save;
1751 }
1752 break;
1753 default:
1754 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1755 }
1756 return follow_type;
1757 }
1758 \f
1759 /* This function avoids direct calls to fprintf
1760 in the parser generated debug code. */
1761 void
1762 parser_fprintf (FILE *x, const char *y, ...)
1763 {
1764 va_list args;
1765
1766 va_start (args, y);
1767 if (x == stderr)
1768 vfprintf_unfiltered (gdb_stderr, y, args);
1769 else
1770 {
1771 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1772 vfprintf_unfiltered (gdb_stderr, y, args);
1773 }
1774 va_end (args);
1775 }
1776
1777 /* Implementation of the exp_descriptor method operator_check. */
1778
1779 int
1780 operator_check_standard (struct expression *exp, int pos,
1781 int (*objfile_func) (struct objfile *objfile,
1782 void *data),
1783 void *data)
1784 {
1785 const union exp_element *const elts = exp->elts;
1786 struct type *type = NULL;
1787 struct objfile *objfile = NULL;
1788
1789 /* Extended operators should have been already handled by exp_descriptor
1790 iterate method of its specific language. */
1791 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1792
1793 /* Track the callers of write_exp_elt_type for this table. */
1794
1795 switch (elts[pos].opcode)
1796 {
1797 case BINOP_VAL:
1798 case OP_COMPLEX:
1799 case OP_DECFLOAT:
1800 case OP_DOUBLE:
1801 case OP_LONG:
1802 case OP_SCOPE:
1803 case OP_TYPE:
1804 case UNOP_CAST:
1805 case UNOP_MAX:
1806 case UNOP_MEMVAL:
1807 case UNOP_MIN:
1808 type = elts[pos + 1].type;
1809 break;
1810
1811 case TYPE_INSTANCE:
1812 {
1813 LONGEST arg, nargs = elts[pos + 1].longconst;
1814
1815 for (arg = 0; arg < nargs; arg++)
1816 {
1817 struct type *type = elts[pos + 2 + arg].type;
1818 struct objfile *objfile = TYPE_OBJFILE (type);
1819
1820 if (objfile && (*objfile_func) (objfile, data))
1821 return 1;
1822 }
1823 }
1824 break;
1825
1826 case UNOP_MEMVAL_TLS:
1827 objfile = elts[pos + 1].objfile;
1828 type = elts[pos + 2].type;
1829 break;
1830
1831 case OP_VAR_VALUE:
1832 {
1833 const struct block *const block = elts[pos + 1].block;
1834 const struct symbol *const symbol = elts[pos + 2].symbol;
1835
1836 /* Check objfile where the variable itself is placed.
1837 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1838 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1839 return 1;
1840
1841 /* Check objfile where is placed the code touching the variable. */
1842 objfile = lookup_objfile_from_block (block);
1843
1844 type = SYMBOL_TYPE (symbol);
1845 }
1846 break;
1847 }
1848
1849 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1850
1851 if (type && TYPE_OBJFILE (type)
1852 && (*objfile_func) (TYPE_OBJFILE (type), data))
1853 return 1;
1854 if (objfile && (*objfile_func) (objfile, data))
1855 return 1;
1856
1857 return 0;
1858 }
1859
1860 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1861 The functions are never called with NULL OBJFILE. Functions get passed an
1862 arbitrary caller supplied DATA pointer. If any of the functions returns
1863 non-zero value then (any other) non-zero value is immediately returned to
1864 the caller. Otherwise zero is returned after iterating through whole EXP.
1865 */
1866
1867 static int
1868 exp_iterate (struct expression *exp,
1869 int (*objfile_func) (struct objfile *objfile, void *data),
1870 void *data)
1871 {
1872 int endpos;
1873
1874 for (endpos = exp->nelts; endpos > 0; )
1875 {
1876 int pos, args, oplen = 0;
1877
1878 operator_length (exp, endpos, &oplen, &args);
1879 gdb_assert (oplen > 0);
1880
1881 pos = endpos - oplen;
1882 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1883 objfile_func, data))
1884 return 1;
1885
1886 endpos = pos;
1887 }
1888
1889 return 0;
1890 }
1891
1892 /* Helper for exp_uses_objfile. */
1893
1894 static int
1895 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1896 {
1897 struct objfile *objfile = objfile_voidp;
1898
1899 if (exp_objfile->separate_debug_objfile_backlink)
1900 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1901
1902 return exp_objfile == objfile;
1903 }
1904
1905 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1906 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1907 file. */
1908
1909 int
1910 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1911 {
1912 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1913
1914 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1915 }
1916
1917 void
1918 _initialize_parse (void)
1919 {
1920 type_stack.size = 0;
1921 type_stack.depth = 0;
1922 type_stack.elements = NULL;
1923
1924 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1925 &expressiondebug,
1926 _("Set expression debugging."),
1927 _("Show expression debugging."),
1928 _("When non-zero, the internal representation "
1929 "of expressions will be printed."),
1930 NULL,
1931 show_expressiondebug,
1932 &setdebuglist, &showdebuglist);
1933 add_setshow_boolean_cmd ("parser", class_maintenance,
1934 &parser_debug,
1935 _("Set parser debugging."),
1936 _("Show parser debugging."),
1937 _("When non-zero, expression parser "
1938 "tracing will be enabled."),
1939 NULL,
1940 show_parserdebug,
1941 &setdebuglist, &showdebuglist);
1942 }
This page took 0.067947 seconds and 4 git commands to generate.