C++-ify parser_state
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "target-float.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67 \f
68 /* Global variables declared in parser-defs.h (and commented there). */
69 const struct block *expression_context_block;
70 CORE_ADDR expression_context_pc;
71 const struct block *innermost_block;
72 int arglist_len;
73 static struct type_stack type_stack;
74 const char *lexptr;
75 const char *prev_lexptr;
76 int paren_depth;
77 int comma_terminates;
78
79 /* True if parsing an expression to attempt completion. */
80 int parse_completion;
81
82 /* The index of the last struct expression directly before a '.' or
83 '->'. This is set when parsing and is only used when completing a
84 field name. It is -1 if no dereference operation was found. */
85 static int expout_last_struct = -1;
86
87 /* If we are completing a tagged type name, this will be nonzero. */
88 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
89
90 /* The token for tagged type name completion. */
91 static char *expout_completion_name;
92
93 \f
94 static unsigned int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101
102
103 /* Non-zero if an expression parser should set yydebug. */
104 int parser_debug;
105
106 static void
107 show_parserdebug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111 }
112
113
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *);
120 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123
124 /* Data structure for saving values of arglist_len for function calls whose
125 arguments contain other function calls. */
126
127 static std::vector<int> *funcall_chain;
128
129 /* Begin counting arguments for a function call,
130 saving the data about any containing call. */
131
132 void
133 start_arglist (void)
134 {
135 funcall_chain->push_back (arglist_len);
136 arglist_len = 0;
137 }
138
139 /* Return the number of arguments in a function call just terminated,
140 and restore the data for the containing function call. */
141
142 int
143 end_arglist (void)
144 {
145 int val = arglist_len;
146 arglist_len = funcall_chain->back ();
147 funcall_chain->pop_back ();
148 return val;
149 }
150
151 \f
152
153 /* See definition in parser-defs.h. */
154
155 parser_state::parser_state (size_t initial_size,
156 const struct language_defn *lang,
157 struct gdbarch *gdbarch)
158 : expout_size (initial_size),
159 expout (XNEWVAR (expression,
160 (sizeof (expression)
161 + EXP_ELEM_TO_BYTES (expout_size)))),
162 expout_ptr (0)
163 {
164 expout->language_defn = lang;
165 expout->gdbarch = gdbarch;
166 }
167
168 expression_up
169 parser_state::release ()
170 {
171 /* Record the actual number of expression elements, and then
172 reallocate the expression memory so that we free up any
173 excess elements. */
174
175 expout->nelts = expout_ptr;
176 expout.reset (XRESIZEVAR (expression, expout.release (),
177 (sizeof (expression)
178 + EXP_ELEM_TO_BYTES (expout_ptr))));
179
180 return std::move (expout);
181 }
182
183 /* This page contains the functions for adding data to the struct expression
184 being constructed. */
185
186 /* Add one element to the end of the expression. */
187
188 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
189 a register through here. */
190
191 static void
192 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
193 {
194 if (ps->expout_ptr >= ps->expout_size)
195 {
196 ps->expout_size *= 2;
197 ps->expout.reset (XRESIZEVAR (expression, ps->expout.release (),
198 (sizeof (expression)
199 + EXP_ELEM_TO_BYTES (ps->expout_size))));
200 }
201 ps->expout->elts[ps->expout_ptr++] = *expelt;
202 }
203
204 void
205 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
206 {
207 union exp_element tmp;
208
209 memset (&tmp, 0, sizeof (union exp_element));
210 tmp.opcode = expelt;
211 write_exp_elt (ps, &tmp);
212 }
213
214 void
215 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
216 {
217 union exp_element tmp;
218
219 memset (&tmp, 0, sizeof (union exp_element));
220 tmp.symbol = expelt;
221 write_exp_elt (ps, &tmp);
222 }
223
224 void
225 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
226 {
227 union exp_element tmp;
228
229 memset (&tmp, 0, sizeof (union exp_element));
230 tmp.msymbol = expelt;
231 write_exp_elt (ps, &tmp);
232 }
233
234 void
235 write_exp_elt_block (struct parser_state *ps, const struct block *b)
236 {
237 union exp_element tmp;
238
239 memset (&tmp, 0, sizeof (union exp_element));
240 tmp.block = b;
241 write_exp_elt (ps, &tmp);
242 }
243
244 void
245 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
246 {
247 union exp_element tmp;
248
249 memset (&tmp, 0, sizeof (union exp_element));
250 tmp.objfile = objfile;
251 write_exp_elt (ps, &tmp);
252 }
253
254 void
255 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
256 {
257 union exp_element tmp;
258
259 memset (&tmp, 0, sizeof (union exp_element));
260 tmp.longconst = expelt;
261 write_exp_elt (ps, &tmp);
262 }
263
264 void
265 write_exp_elt_floatcst (struct parser_state *ps, const gdb_byte expelt[16])
266 {
267 union exp_element tmp;
268 int index;
269
270 for (index = 0; index < 16; index++)
271 tmp.floatconst[index] = expelt[index];
272
273 write_exp_elt (ps, &tmp);
274 }
275
276 void
277 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
278 {
279 union exp_element tmp;
280
281 memset (&tmp, 0, sizeof (union exp_element));
282 tmp.type = expelt;
283 write_exp_elt (ps, &tmp);
284 }
285
286 void
287 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
288 {
289 union exp_element tmp;
290
291 memset (&tmp, 0, sizeof (union exp_element));
292 tmp.internalvar = expelt;
293 write_exp_elt (ps, &tmp);
294 }
295
296 /* Add a string constant to the end of the expression.
297
298 String constants are stored by first writing an expression element
299 that contains the length of the string, then stuffing the string
300 constant itself into however many expression elements are needed
301 to hold it, and then writing another expression element that contains
302 the length of the string. I.e. an expression element at each end of
303 the string records the string length, so you can skip over the
304 expression elements containing the actual string bytes from either
305 end of the string. Note that this also allows gdb to handle
306 strings with embedded null bytes, as is required for some languages.
307
308 Don't be fooled by the fact that the string is null byte terminated,
309 this is strictly for the convenience of debugging gdb itself.
310 Gdb does not depend up the string being null terminated, since the
311 actual length is recorded in expression elements at each end of the
312 string. The null byte is taken into consideration when computing how
313 many expression elements are required to hold the string constant, of
314 course. */
315
316
317 void
318 write_exp_string (struct parser_state *ps, struct stoken str)
319 {
320 int len = str.length;
321 size_t lenelt;
322 char *strdata;
323
324 /* Compute the number of expression elements required to hold the string
325 (including a null byte terminator), along with one expression element
326 at each end to record the actual string length (not including the
327 null byte terminator). */
328
329 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
330
331 increase_expout_size (ps, lenelt);
332
333 /* Write the leading length expression element (which advances the current
334 expression element index), then write the string constant followed by a
335 terminating null byte, and then write the trailing length expression
336 element. */
337
338 write_exp_elt_longcst (ps, (LONGEST) len);
339 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
340 memcpy (strdata, str.ptr, len);
341 *(strdata + len) = '\0';
342 ps->expout_ptr += lenelt - 2;
343 write_exp_elt_longcst (ps, (LONGEST) len);
344 }
345
346 /* Add a vector of string constants to the end of the expression.
347
348 This adds an OP_STRING operation, but encodes the contents
349 differently from write_exp_string. The language is expected to
350 handle evaluation of this expression itself.
351
352 After the usual OP_STRING header, TYPE is written into the
353 expression as a long constant. The interpretation of this field is
354 up to the language evaluator.
355
356 Next, each string in VEC is written. The length is written as a
357 long constant, followed by the contents of the string. */
358
359 void
360 write_exp_string_vector (struct parser_state *ps, int type,
361 struct stoken_vector *vec)
362 {
363 int i, len;
364 size_t n_slots;
365
366 /* Compute the size. We compute the size in number of slots to
367 avoid issues with string padding. */
368 n_slots = 0;
369 for (i = 0; i < vec->len; ++i)
370 {
371 /* One slot for the length of this element, plus the number of
372 slots needed for this string. */
373 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
374 }
375
376 /* One more slot for the type of the string. */
377 ++n_slots;
378
379 /* Now compute a phony string length. */
380 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
381
382 n_slots += 4;
383 increase_expout_size (ps, n_slots);
384
385 write_exp_elt_opcode (ps, OP_STRING);
386 write_exp_elt_longcst (ps, len);
387 write_exp_elt_longcst (ps, type);
388
389 for (i = 0; i < vec->len; ++i)
390 {
391 write_exp_elt_longcst (ps, vec->tokens[i].length);
392 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
393 vec->tokens[i].length);
394 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
395 }
396
397 write_exp_elt_longcst (ps, len);
398 write_exp_elt_opcode (ps, OP_STRING);
399 }
400
401 /* Add a bitstring constant to the end of the expression.
402
403 Bitstring constants are stored by first writing an expression element
404 that contains the length of the bitstring (in bits), then stuffing the
405 bitstring constant itself into however many expression elements are
406 needed to hold it, and then writing another expression element that
407 contains the length of the bitstring. I.e. an expression element at
408 each end of the bitstring records the bitstring length, so you can skip
409 over the expression elements containing the actual bitstring bytes from
410 either end of the bitstring. */
411
412 void
413 write_exp_bitstring (struct parser_state *ps, struct stoken str)
414 {
415 int bits = str.length; /* length in bits */
416 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
417 size_t lenelt;
418 char *strdata;
419
420 /* Compute the number of expression elements required to hold the bitstring,
421 along with one expression element at each end to record the actual
422 bitstring length in bits. */
423
424 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
425
426 increase_expout_size (ps, lenelt);
427
428 /* Write the leading length expression element (which advances the current
429 expression element index), then write the bitstring constant, and then
430 write the trailing length expression element. */
431
432 write_exp_elt_longcst (ps, (LONGEST) bits);
433 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
434 memcpy (strdata, str.ptr, len);
435 ps->expout_ptr += lenelt - 2;
436 write_exp_elt_longcst (ps, (LONGEST) bits);
437 }
438
439 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
440 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
441 address. */
442
443 type *
444 find_minsym_type_and_address (minimal_symbol *msymbol,
445 struct objfile *objfile,
446 CORE_ADDR *address_p)
447 {
448 bound_minimal_symbol bound_msym = {msymbol, objfile};
449 struct gdbarch *gdbarch = get_objfile_arch (objfile);
450 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
451 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
452 CORE_ADDR pc;
453
454 bool is_tls = (section != NULL
455 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
456
457 /* Addresses of TLS symbols are really offsets into a
458 per-objfile/per-thread storage block. */
459 CORE_ADDR addr = (is_tls
460 ? MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym)
461 : BMSYMBOL_VALUE_ADDRESS (bound_msym));
462
463 /* The minimal symbol might point to a function descriptor;
464 resolve it to the actual code address instead. */
465 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
466 if (pc != addr)
467 {
468 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
469
470 /* In this case, assume we have a code symbol instead of
471 a data symbol. */
472
473 if (ifunc_msym.minsym != NULL
474 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
475 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
476 {
477 /* A function descriptor has been resolved but PC is still in the
478 STT_GNU_IFUNC resolver body (such as because inferior does not
479 run to be able to call it). */
480
481 type = mst_text_gnu_ifunc;
482 }
483 else
484 type = mst_text;
485 section = NULL;
486 addr = pc;
487 }
488
489 if (overlay_debugging)
490 addr = symbol_overlayed_address (addr, section);
491
492 if (is_tls)
493 {
494 /* Skip translation if caller does not need the address. */
495 if (address_p != NULL)
496 *address_p = target_translate_tls_address (objfile, addr);
497 return objfile_type (objfile)->nodebug_tls_symbol;
498 }
499
500 if (address_p != NULL)
501 *address_p = addr;
502
503 switch (type)
504 {
505 case mst_text:
506 case mst_file_text:
507 case mst_solib_trampoline:
508 return objfile_type (objfile)->nodebug_text_symbol;
509
510 case mst_text_gnu_ifunc:
511 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
512
513 case mst_data:
514 case mst_file_data:
515 case mst_bss:
516 case mst_file_bss:
517 return objfile_type (objfile)->nodebug_data_symbol;
518
519 case mst_slot_got_plt:
520 return objfile_type (objfile)->nodebug_got_plt_symbol;
521
522 default:
523 return objfile_type (objfile)->nodebug_unknown_symbol;
524 }
525 }
526
527 /* Add the appropriate elements for a minimal symbol to the end of
528 the expression. */
529
530 void
531 write_exp_msymbol (struct parser_state *ps,
532 struct bound_minimal_symbol bound_msym)
533 {
534 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
535 write_exp_elt_objfile (ps, bound_msym.objfile);
536 write_exp_elt_msym (ps, bound_msym.minsym);
537 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
538 }
539
540 /* Mark the current index as the starting location of a structure
541 expression. This is used when completing on field names. */
542
543 void
544 mark_struct_expression (struct parser_state *ps)
545 {
546 gdb_assert (parse_completion
547 && expout_tag_completion_type == TYPE_CODE_UNDEF);
548 expout_last_struct = ps->expout_ptr;
549 }
550
551 /* Indicate that the current parser invocation is completing a tag.
552 TAG is the type code of the tag, and PTR and LENGTH represent the
553 start of the tag name. */
554
555 void
556 mark_completion_tag (enum type_code tag, const char *ptr, int length)
557 {
558 gdb_assert (parse_completion
559 && expout_tag_completion_type == TYPE_CODE_UNDEF
560 && expout_completion_name == NULL
561 && expout_last_struct == -1);
562 gdb_assert (tag == TYPE_CODE_UNION
563 || tag == TYPE_CODE_STRUCT
564 || tag == TYPE_CODE_ENUM);
565 expout_tag_completion_type = tag;
566 expout_completion_name = (char *) xmalloc (length + 1);
567 memcpy (expout_completion_name, ptr, length);
568 expout_completion_name[length] = '\0';
569 }
570
571 \f
572 /* Recognize tokens that start with '$'. These include:
573
574 $regname A native register name or a "standard
575 register name".
576
577 $variable A convenience variable with a name chosen
578 by the user.
579
580 $digits Value history with index <digits>, starting
581 from the first value which has index 1.
582
583 $$digits Value history with index <digits> relative
584 to the last value. I.e. $$0 is the last
585 value, $$1 is the one previous to that, $$2
586 is the one previous to $$1, etc.
587
588 $ | $0 | $$0 The last value in the value history.
589
590 $$ An abbreviation for the second to the last
591 value in the value history, I.e. $$1 */
592
593 void
594 write_dollar_variable (struct parser_state *ps, struct stoken str)
595 {
596 struct block_symbol sym;
597 struct bound_minimal_symbol msym;
598 struct internalvar *isym = NULL;
599
600 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
601 and $$digits (equivalent to $<-digits> if you could type that). */
602
603 int negate = 0;
604 int i = 1;
605 /* Double dollar means negate the number and add -1 as well.
606 Thus $$ alone means -1. */
607 if (str.length >= 2 && str.ptr[1] == '$')
608 {
609 negate = 1;
610 i = 2;
611 }
612 if (i == str.length)
613 {
614 /* Just dollars (one or two). */
615 i = -negate;
616 goto handle_last;
617 }
618 /* Is the rest of the token digits? */
619 for (; i < str.length; i++)
620 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
621 break;
622 if (i == str.length)
623 {
624 i = atoi (str.ptr + 1 + negate);
625 if (negate)
626 i = -i;
627 goto handle_last;
628 }
629
630 /* Handle tokens that refer to machine registers:
631 $ followed by a register name. */
632 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
633 str.ptr + 1, str.length - 1);
634 if (i >= 0)
635 goto handle_register;
636
637 /* Any names starting with $ are probably debugger internal variables. */
638
639 isym = lookup_only_internalvar (copy_name (str) + 1);
640 if (isym)
641 {
642 write_exp_elt_opcode (ps, OP_INTERNALVAR);
643 write_exp_elt_intern (ps, isym);
644 write_exp_elt_opcode (ps, OP_INTERNALVAR);
645 return;
646 }
647
648 /* On some systems, such as HP-UX and hppa-linux, certain system routines
649 have names beginning with $ or $$. Check for those, first. */
650
651 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
652 VAR_DOMAIN, NULL);
653 if (sym.symbol)
654 {
655 write_exp_elt_opcode (ps, OP_VAR_VALUE);
656 write_exp_elt_block (ps, sym.block);
657 write_exp_elt_sym (ps, sym.symbol);
658 write_exp_elt_opcode (ps, OP_VAR_VALUE);
659 return;
660 }
661 msym = lookup_bound_minimal_symbol (copy_name (str));
662 if (msym.minsym)
663 {
664 write_exp_msymbol (ps, msym);
665 return;
666 }
667
668 /* Any other names are assumed to be debugger internal variables. */
669
670 write_exp_elt_opcode (ps, OP_INTERNALVAR);
671 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
672 write_exp_elt_opcode (ps, OP_INTERNALVAR);
673 return;
674 handle_last:
675 write_exp_elt_opcode (ps, OP_LAST);
676 write_exp_elt_longcst (ps, (LONGEST) i);
677 write_exp_elt_opcode (ps, OP_LAST);
678 return;
679 handle_register:
680 write_exp_elt_opcode (ps, OP_REGISTER);
681 str.length--;
682 str.ptr++;
683 write_exp_string (ps, str);
684 write_exp_elt_opcode (ps, OP_REGISTER);
685 return;
686 }
687
688
689 const char *
690 find_template_name_end (const char *p)
691 {
692 int depth = 1;
693 int just_seen_right = 0;
694 int just_seen_colon = 0;
695 int just_seen_space = 0;
696
697 if (!p || (*p != '<'))
698 return 0;
699
700 while (*++p)
701 {
702 switch (*p)
703 {
704 case '\'':
705 case '\"':
706 case '{':
707 case '}':
708 /* In future, may want to allow these?? */
709 return 0;
710 case '<':
711 depth++; /* start nested template */
712 if (just_seen_colon || just_seen_right || just_seen_space)
713 return 0; /* but not after : or :: or > or space */
714 break;
715 case '>':
716 if (just_seen_colon || just_seen_right)
717 return 0; /* end a (nested?) template */
718 just_seen_right = 1; /* but not after : or :: */
719 if (--depth == 0) /* also disallow >>, insist on > > */
720 return ++p; /* if outermost ended, return */
721 break;
722 case ':':
723 if (just_seen_space || (just_seen_colon > 1))
724 return 0; /* nested class spec coming up */
725 just_seen_colon++; /* we allow :: but not :::: */
726 break;
727 case ' ':
728 break;
729 default:
730 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
731 (*p >= 'A' && *p <= 'Z') ||
732 (*p >= '0' && *p <= '9') ||
733 (*p == '_') || (*p == ',') || /* commas for template args */
734 (*p == '&') || (*p == '*') || /* pointer and ref types */
735 (*p == '(') || (*p == ')') || /* function types */
736 (*p == '[') || (*p == ']'))) /* array types */
737 return 0;
738 }
739 if (*p != ' ')
740 just_seen_space = 0;
741 if (*p != ':')
742 just_seen_colon = 0;
743 if (*p != '>')
744 just_seen_right = 0;
745 }
746 return 0;
747 }
748 \f
749
750 /* Return a null-terminated temporary copy of the name of a string token.
751
752 Tokens that refer to names do so with explicit pointer and length,
753 so they can share the storage that lexptr is parsing.
754 When it is necessary to pass a name to a function that expects
755 a null-terminated string, the substring is copied out
756 into a separate block of storage.
757
758 N.B. A single buffer is reused on each call. */
759
760 char *
761 copy_name (struct stoken token)
762 {
763 /* A temporary buffer for identifiers, so we can null-terminate them.
764 We allocate this with xrealloc. parse_exp_1 used to allocate with
765 alloca, using the size of the whole expression as a conservative
766 estimate of the space needed. However, macro expansion can
767 introduce names longer than the original expression; there's no
768 practical way to know beforehand how large that might be. */
769 static char *namecopy;
770 static size_t namecopy_size;
771
772 /* Make sure there's enough space for the token. */
773 if (namecopy_size < token.length + 1)
774 {
775 namecopy_size = token.length + 1;
776 namecopy = (char *) xrealloc (namecopy, token.length + 1);
777 }
778
779 memcpy (namecopy, token.ptr, token.length);
780 namecopy[token.length] = 0;
781
782 return namecopy;
783 }
784 \f
785
786 /* See comments on parser-defs.h. */
787
788 int
789 prefixify_expression (struct expression *expr)
790 {
791 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
792 struct expression *temp;
793 int inpos = expr->nelts, outpos = 0;
794
795 temp = (struct expression *) alloca (len);
796
797 /* Copy the original expression into temp. */
798 memcpy (temp, expr, len);
799
800 return prefixify_subexp (temp, expr, inpos, outpos);
801 }
802
803 /* Return the number of exp_elements in the postfix subexpression
804 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
805
806 static int
807 length_of_subexp (struct expression *expr, int endpos)
808 {
809 int oplen, args;
810
811 operator_length (expr, endpos, &oplen, &args);
812
813 while (args > 0)
814 {
815 oplen += length_of_subexp (expr, endpos - oplen);
816 args--;
817 }
818
819 return oplen;
820 }
821
822 /* Sets *OPLENP to the length of the operator whose (last) index is
823 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
824 operator takes. */
825
826 void
827 operator_length (const struct expression *expr, int endpos, int *oplenp,
828 int *argsp)
829 {
830 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
831 oplenp, argsp);
832 }
833
834 /* Default value for operator_length in exp_descriptor vectors. */
835
836 void
837 operator_length_standard (const struct expression *expr, int endpos,
838 int *oplenp, int *argsp)
839 {
840 int oplen = 1;
841 int args = 0;
842 enum range_type range_type;
843 int i;
844
845 if (endpos < 1)
846 error (_("?error in operator_length_standard"));
847
848 i = (int) expr->elts[endpos - 1].opcode;
849
850 switch (i)
851 {
852 /* C++ */
853 case OP_SCOPE:
854 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
855 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
856 break;
857
858 case OP_LONG:
859 case OP_FLOAT:
860 case OP_VAR_VALUE:
861 case OP_VAR_MSYM_VALUE:
862 oplen = 4;
863 break;
864
865 case OP_FUNC_STATIC_VAR:
866 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
867 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
868 args = 1;
869 break;
870
871 case OP_TYPE:
872 case OP_BOOL:
873 case OP_LAST:
874 case OP_INTERNALVAR:
875 case OP_VAR_ENTRY_VALUE:
876 oplen = 3;
877 break;
878
879 case OP_COMPLEX:
880 oplen = 3;
881 args = 2;
882 break;
883
884 case OP_FUNCALL:
885 case OP_F77_UNDETERMINED_ARGLIST:
886 oplen = 3;
887 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
888 break;
889
890 case TYPE_INSTANCE:
891 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
892 args = 1;
893 break;
894
895 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
896 oplen = 4;
897 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
898 break;
899
900 case UNOP_MAX:
901 case UNOP_MIN:
902 oplen = 3;
903 break;
904
905 case UNOP_CAST_TYPE:
906 case UNOP_DYNAMIC_CAST:
907 case UNOP_REINTERPRET_CAST:
908 case UNOP_MEMVAL_TYPE:
909 oplen = 1;
910 args = 2;
911 break;
912
913 case BINOP_VAL:
914 case UNOP_CAST:
915 case UNOP_MEMVAL:
916 oplen = 3;
917 args = 1;
918 break;
919
920 case UNOP_ABS:
921 case UNOP_CAP:
922 case UNOP_CHR:
923 case UNOP_FLOAT:
924 case UNOP_HIGH:
925 case UNOP_ODD:
926 case UNOP_ORD:
927 case UNOP_TRUNC:
928 case OP_TYPEOF:
929 case OP_DECLTYPE:
930 case OP_TYPEID:
931 oplen = 1;
932 args = 1;
933 break;
934
935 case OP_ADL_FUNC:
936 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
937 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
938 oplen++;
939 oplen++;
940 break;
941
942 case STRUCTOP_STRUCT:
943 case STRUCTOP_PTR:
944 args = 1;
945 /* fall through */
946 case OP_REGISTER:
947 case OP_M2_STRING:
948 case OP_STRING:
949 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
950 NSString constant. */
951 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
952 case OP_NAME:
953 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
954 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
955 break;
956
957 case OP_ARRAY:
958 oplen = 4;
959 args = longest_to_int (expr->elts[endpos - 2].longconst);
960 args -= longest_to_int (expr->elts[endpos - 3].longconst);
961 args += 1;
962 break;
963
964 case TERNOP_COND:
965 case TERNOP_SLICE:
966 args = 3;
967 break;
968
969 /* Modula-2 */
970 case MULTI_SUBSCRIPT:
971 oplen = 3;
972 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
973 break;
974
975 case BINOP_ASSIGN_MODIFY:
976 oplen = 3;
977 args = 2;
978 break;
979
980 /* C++ */
981 case OP_THIS:
982 oplen = 2;
983 break;
984
985 case OP_RANGE:
986 oplen = 3;
987 range_type = (enum range_type)
988 longest_to_int (expr->elts[endpos - 2].longconst);
989
990 switch (range_type)
991 {
992 case LOW_BOUND_DEFAULT:
993 case HIGH_BOUND_DEFAULT:
994 args = 1;
995 break;
996 case BOTH_BOUND_DEFAULT:
997 args = 0;
998 break;
999 case NONE_BOUND_DEFAULT:
1000 args = 2;
1001 break;
1002 }
1003
1004 break;
1005
1006 default:
1007 args = 1 + (i < (int) BINOP_END);
1008 }
1009
1010 *oplenp = oplen;
1011 *argsp = args;
1012 }
1013
1014 /* Copy the subexpression ending just before index INEND in INEXPR
1015 into OUTEXPR, starting at index OUTBEG.
1016 In the process, convert it from suffix to prefix form.
1017 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1018 Otherwise, it returns the index of the subexpression which is the
1019 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1020
1021 static int
1022 prefixify_subexp (struct expression *inexpr,
1023 struct expression *outexpr, int inend, int outbeg)
1024 {
1025 int oplen;
1026 int args;
1027 int i;
1028 int *arglens;
1029 int result = -1;
1030
1031 operator_length (inexpr, inend, &oplen, &args);
1032
1033 /* Copy the final operator itself, from the end of the input
1034 to the beginning of the output. */
1035 inend -= oplen;
1036 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1037 EXP_ELEM_TO_BYTES (oplen));
1038 outbeg += oplen;
1039
1040 if (expout_last_struct == inend)
1041 result = outbeg - oplen;
1042
1043 /* Find the lengths of the arg subexpressions. */
1044 arglens = (int *) alloca (args * sizeof (int));
1045 for (i = args - 1; i >= 0; i--)
1046 {
1047 oplen = length_of_subexp (inexpr, inend);
1048 arglens[i] = oplen;
1049 inend -= oplen;
1050 }
1051
1052 /* Now copy each subexpression, preserving the order of
1053 the subexpressions, but prefixifying each one.
1054 In this loop, inend starts at the beginning of
1055 the expression this level is working on
1056 and marches forward over the arguments.
1057 outbeg does similarly in the output. */
1058 for (i = 0; i < args; i++)
1059 {
1060 int r;
1061
1062 oplen = arglens[i];
1063 inend += oplen;
1064 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1065 if (r != -1)
1066 {
1067 /* Return immediately. We probably have only parsed a
1068 partial expression, so we don't want to try to reverse
1069 the other operands. */
1070 return r;
1071 }
1072 outbeg += oplen;
1073 }
1074
1075 return result;
1076 }
1077 \f
1078 /* Read an expression from the string *STRINGPTR points to,
1079 parse it, and return a pointer to a struct expression that we malloc.
1080 Use block BLOCK as the lexical context for variable names;
1081 if BLOCK is zero, use the block of the selected stack frame.
1082 Meanwhile, advance *STRINGPTR to point after the expression,
1083 at the first nonwhite character that is not part of the expression
1084 (possibly a null character).
1085
1086 If COMMA is nonzero, stop if a comma is reached. */
1087
1088 expression_up
1089 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1090 int comma)
1091 {
1092 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1093 }
1094
1095 static expression_up
1096 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1097 const struct block *block,
1098 int comma, int void_context_p, int *out_subexp)
1099 {
1100 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1101 void_context_p, out_subexp);
1102 }
1103
1104 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1105 no value is expected from the expression.
1106 OUT_SUBEXP is set when attempting to complete a field name; in this
1107 case it is set to the index of the subexpression on the
1108 left-hand-side of the struct op. If not doing such completion, it
1109 is left untouched. */
1110
1111 static expression_up
1112 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1113 const struct block *block,
1114 int comma, int void_context_p, int *out_subexp)
1115 {
1116 const struct language_defn *lang = NULL;
1117 int subexp;
1118
1119 lexptr = *stringptr;
1120 prev_lexptr = NULL;
1121
1122 paren_depth = 0;
1123 type_stack.depth = 0;
1124 expout_last_struct = -1;
1125 expout_tag_completion_type = TYPE_CODE_UNDEF;
1126 xfree (expout_completion_name);
1127 expout_completion_name = NULL;
1128
1129 comma_terminates = comma;
1130
1131 if (lexptr == 0 || *lexptr == 0)
1132 error_no_arg (_("expression to compute"));
1133
1134 std::vector<int> funcalls;
1135 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1136 &funcalls);
1137
1138 expression_context_block = block;
1139
1140 /* If no context specified, try using the current frame, if any. */
1141 if (!expression_context_block)
1142 expression_context_block = get_selected_block (&expression_context_pc);
1143 else if (pc == 0)
1144 expression_context_pc = BLOCK_START (expression_context_block);
1145 else
1146 expression_context_pc = pc;
1147
1148 /* Fall back to using the current source static context, if any. */
1149
1150 if (!expression_context_block)
1151 {
1152 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1153 if (cursal.symtab)
1154 expression_context_block
1155 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1156 STATIC_BLOCK);
1157 if (expression_context_block)
1158 expression_context_pc = BLOCK_START (expression_context_block);
1159 }
1160
1161 if (language_mode == language_mode_auto && block != NULL)
1162 {
1163 /* Find the language associated to the given context block.
1164 Default to the current language if it can not be determined.
1165
1166 Note that using the language corresponding to the current frame
1167 can sometimes give unexpected results. For instance, this
1168 routine is often called several times during the inferior
1169 startup phase to re-parse breakpoint expressions after
1170 a new shared library has been loaded. The language associated
1171 to the current frame at this moment is not relevant for
1172 the breakpoint. Using it would therefore be silly, so it seems
1173 better to rely on the current language rather than relying on
1174 the current frame language to parse the expression. That's why
1175 we do the following language detection only if the context block
1176 has been specifically provided. */
1177 struct symbol *func = block_linkage_function (block);
1178
1179 if (func != NULL)
1180 lang = language_def (SYMBOL_LANGUAGE (func));
1181 if (lang == NULL || lang->la_language == language_unknown)
1182 lang = current_language;
1183 }
1184 else
1185 lang = current_language;
1186
1187 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1188 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1189 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1190 to the value matching SELECTED_FRAME as set by get_current_arch. */
1191
1192 parser_state ps (10, lang, get_current_arch ());
1193
1194 scoped_restore_current_language lang_saver;
1195 set_language (lang->la_language);
1196
1197 TRY
1198 {
1199 if (lang->la_parser (&ps))
1200 lang->la_error (NULL);
1201 }
1202 CATCH (except, RETURN_MASK_ALL)
1203 {
1204 if (! parse_completion)
1205 throw_exception (except);
1206 }
1207 END_CATCH
1208
1209 /* We have to operate on an "expression *", due to la_post_parser,
1210 which explains this funny-looking double release. */
1211 expression_up result = ps.release ();
1212
1213 /* Convert expression from postfix form as generated by yacc
1214 parser, to a prefix form. */
1215
1216 if (expressiondebug)
1217 dump_raw_expression (result.get (), gdb_stdlog,
1218 "before conversion to prefix form");
1219
1220 subexp = prefixify_expression (result.get ());
1221 if (out_subexp)
1222 *out_subexp = subexp;
1223
1224 lang->la_post_parser (&result, void_context_p);
1225
1226 if (expressiondebug)
1227 dump_prefix_expression (result.get (), gdb_stdlog);
1228
1229 *stringptr = lexptr;
1230 return result;
1231 }
1232
1233 /* Parse STRING as an expression, and complain if this fails
1234 to use up all of the contents of STRING. */
1235
1236 expression_up
1237 parse_expression (const char *string)
1238 {
1239 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1240 if (*string)
1241 error (_("Junk after end of expression."));
1242 return exp;
1243 }
1244
1245 /* Same as parse_expression, but using the given language (LANG)
1246 to parse the expression. */
1247
1248 expression_up
1249 parse_expression_with_language (const char *string, enum language lang)
1250 {
1251 gdb::optional<scoped_restore_current_language> lang_saver;
1252 if (current_language->la_language != lang)
1253 {
1254 lang_saver.emplace ();
1255 set_language (lang);
1256 }
1257
1258 return parse_expression (string);
1259 }
1260
1261 /* Parse STRING as an expression. If parsing ends in the middle of a
1262 field reference, return the type of the left-hand-side of the
1263 reference; furthermore, if the parsing ends in the field name,
1264 return the field name in *NAME. If the parsing ends in the middle
1265 of a field reference, but the reference is somehow invalid, throw
1266 an exception. In all other cases, return NULL. Returned non-NULL
1267 *NAME must be freed by the caller. */
1268
1269 struct type *
1270 parse_expression_for_completion (const char *string, char **name,
1271 enum type_code *code)
1272 {
1273 expression_up exp;
1274 struct value *val;
1275 int subexp;
1276
1277 TRY
1278 {
1279 parse_completion = 1;
1280 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1281 }
1282 CATCH (except, RETURN_MASK_ERROR)
1283 {
1284 /* Nothing, EXP remains NULL. */
1285 }
1286 END_CATCH
1287
1288 parse_completion = 0;
1289 if (exp == NULL)
1290 return NULL;
1291
1292 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1293 {
1294 *code = expout_tag_completion_type;
1295 *name = expout_completion_name;
1296 expout_completion_name = NULL;
1297 return NULL;
1298 }
1299
1300 if (expout_last_struct == -1)
1301 return NULL;
1302
1303 *name = extract_field_op (exp.get (), &subexp);
1304 if (!*name)
1305 return NULL;
1306
1307 /* This might throw an exception. If so, we want to let it
1308 propagate. */
1309 val = evaluate_subexpression_type (exp.get (), subexp);
1310 /* (*NAME) is a part of the EXP memory block freed below. */
1311 *name = xstrdup (*name);
1312
1313 return value_type (val);
1314 }
1315
1316 /* A post-parser that does nothing. */
1317
1318 void
1319 null_post_parser (expression_up *exp, int void_context_p)
1320 {
1321 }
1322
1323 /* Parse floating point value P of length LEN.
1324 Return false if invalid, true if valid.
1325 The successfully parsed number is stored in DATA in
1326 target format for floating-point type TYPE.
1327
1328 NOTE: This accepts the floating point syntax that sscanf accepts. */
1329
1330 bool
1331 parse_float (const char *p, int len,
1332 const struct type *type, gdb_byte *data)
1333 {
1334 return target_float_from_string (data, type, std::string (p, len));
1335 }
1336 \f
1337 /* Stuff for maintaining a stack of types. Currently just used by C, but
1338 probably useful for any language which declares its types "backwards". */
1339
1340 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1341
1342 static void
1343 type_stack_reserve (struct type_stack *stack, int howmuch)
1344 {
1345 if (stack->depth + howmuch >= stack->size)
1346 {
1347 stack->size *= 2;
1348 if (stack->size < howmuch)
1349 stack->size = howmuch;
1350 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements,
1351 stack->size);
1352 }
1353 }
1354
1355 /* Ensure that there is a single open slot in the global type stack. */
1356
1357 static void
1358 check_type_stack_depth (void)
1359 {
1360 type_stack_reserve (&type_stack, 1);
1361 }
1362
1363 /* A helper function for insert_type and insert_type_address_space.
1364 This does work of expanding the type stack and inserting the new
1365 element, ELEMENT, into the stack at location SLOT. */
1366
1367 static void
1368 insert_into_type_stack (int slot, union type_stack_elt element)
1369 {
1370 check_type_stack_depth ();
1371
1372 if (slot < type_stack.depth)
1373 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1374 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1375 type_stack.elements[slot] = element;
1376 ++type_stack.depth;
1377 }
1378
1379 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1380 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1381 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1382 previous tp_pointer) if there is anything on the stack, or simply pushed
1383 if the stack is empty. Other values for TP are invalid. */
1384
1385 void
1386 insert_type (enum type_pieces tp)
1387 {
1388 union type_stack_elt element;
1389 int slot;
1390
1391 gdb_assert (tp == tp_pointer || tp == tp_reference
1392 || tp == tp_rvalue_reference || tp == tp_const
1393 || tp == tp_volatile);
1394
1395 /* If there is anything on the stack (we know it will be a
1396 tp_pointer), insert the qualifier above it. Otherwise, simply
1397 push this on the top of the stack. */
1398 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1399 slot = 1;
1400 else
1401 slot = 0;
1402
1403 element.piece = tp;
1404 insert_into_type_stack (slot, element);
1405 }
1406
1407 void
1408 push_type (enum type_pieces tp)
1409 {
1410 check_type_stack_depth ();
1411 type_stack.elements[type_stack.depth++].piece = tp;
1412 }
1413
1414 void
1415 push_type_int (int n)
1416 {
1417 check_type_stack_depth ();
1418 type_stack.elements[type_stack.depth++].int_val = n;
1419 }
1420
1421 /* Insert a tp_space_identifier and the corresponding address space
1422 value into the stack. STRING is the name of an address space, as
1423 recognized by address_space_name_to_int. If the stack is empty,
1424 the new elements are simply pushed. If the stack is not empty,
1425 this function assumes that the first item on the stack is a
1426 tp_pointer, and the new values are inserted above the first
1427 item. */
1428
1429 void
1430 insert_type_address_space (struct parser_state *pstate, char *string)
1431 {
1432 union type_stack_elt element;
1433 int slot;
1434
1435 /* If there is anything on the stack (we know it will be a
1436 tp_pointer), insert the address space qualifier above it.
1437 Otherwise, simply push this on the top of the stack. */
1438 if (type_stack.depth)
1439 slot = 1;
1440 else
1441 slot = 0;
1442
1443 element.piece = tp_space_identifier;
1444 insert_into_type_stack (slot, element);
1445 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1446 string);
1447 insert_into_type_stack (slot, element);
1448 }
1449
1450 enum type_pieces
1451 pop_type (void)
1452 {
1453 if (type_stack.depth)
1454 return type_stack.elements[--type_stack.depth].piece;
1455 return tp_end;
1456 }
1457
1458 int
1459 pop_type_int (void)
1460 {
1461 if (type_stack.depth)
1462 return type_stack.elements[--type_stack.depth].int_val;
1463 /* "Can't happen". */
1464 return 0;
1465 }
1466
1467 /* Pop a type list element from the global type stack. */
1468
1469 static VEC (type_ptr) *
1470 pop_typelist (void)
1471 {
1472 gdb_assert (type_stack.depth);
1473 return type_stack.elements[--type_stack.depth].typelist_val;
1474 }
1475
1476 /* Pop a type_stack element from the global type stack. */
1477
1478 static struct type_stack *
1479 pop_type_stack (void)
1480 {
1481 gdb_assert (type_stack.depth);
1482 return type_stack.elements[--type_stack.depth].stack_val;
1483 }
1484
1485 /* Append the elements of the type stack FROM to the type stack TO.
1486 Always returns TO. */
1487
1488 struct type_stack *
1489 append_type_stack (struct type_stack *to, struct type_stack *from)
1490 {
1491 type_stack_reserve (to, from->depth);
1492
1493 memcpy (&to->elements[to->depth], &from->elements[0],
1494 from->depth * sizeof (union type_stack_elt));
1495 to->depth += from->depth;
1496
1497 return to;
1498 }
1499
1500 /* Push the type stack STACK as an element on the global type stack. */
1501
1502 void
1503 push_type_stack (struct type_stack *stack)
1504 {
1505 check_type_stack_depth ();
1506 type_stack.elements[type_stack.depth++].stack_val = stack;
1507 push_type (tp_type_stack);
1508 }
1509
1510 /* Copy the global type stack into a newly allocated type stack and
1511 return it. The global stack is cleared. The returned type stack
1512 must be freed with type_stack_cleanup. */
1513
1514 struct type_stack *
1515 get_type_stack (void)
1516 {
1517 struct type_stack *result = XNEW (struct type_stack);
1518
1519 *result = type_stack;
1520 type_stack.depth = 0;
1521 type_stack.size = 0;
1522 type_stack.elements = NULL;
1523
1524 return result;
1525 }
1526
1527 /* A cleanup function that destroys a single type stack. */
1528
1529 void
1530 type_stack_cleanup (void *arg)
1531 {
1532 struct type_stack *stack = (struct type_stack *) arg;
1533
1534 xfree (stack->elements);
1535 xfree (stack);
1536 }
1537
1538 /* Push a function type with arguments onto the global type stack.
1539 LIST holds the argument types. If the final item in LIST is NULL,
1540 then the function will be varargs. */
1541
1542 void
1543 push_typelist (VEC (type_ptr) *list)
1544 {
1545 check_type_stack_depth ();
1546 type_stack.elements[type_stack.depth++].typelist_val = list;
1547 push_type (tp_function_with_arguments);
1548 }
1549
1550 /* Pop the type stack and return a type_instance_flags that
1551 corresponds the const/volatile qualifiers on the stack. This is
1552 called by the C++ parser when parsing methods types, and as such no
1553 other kind of type in the type stack is expected. */
1554
1555 type_instance_flags
1556 follow_type_instance_flags ()
1557 {
1558 type_instance_flags flags = 0;
1559
1560 for (;;)
1561 switch (pop_type ())
1562 {
1563 case tp_end:
1564 return flags;
1565 case tp_const:
1566 flags |= TYPE_INSTANCE_FLAG_CONST;
1567 break;
1568 case tp_volatile:
1569 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1570 break;
1571 default:
1572 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1573 }
1574 }
1575
1576
1577 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1578 as modified by all the stuff on the stack. */
1579 struct type *
1580 follow_types (struct type *follow_type)
1581 {
1582 int done = 0;
1583 int make_const = 0;
1584 int make_volatile = 0;
1585 int make_addr_space = 0;
1586 int array_size;
1587
1588 while (!done)
1589 switch (pop_type ())
1590 {
1591 case tp_end:
1592 done = 1;
1593 if (make_const)
1594 follow_type = make_cv_type (make_const,
1595 TYPE_VOLATILE (follow_type),
1596 follow_type, 0);
1597 if (make_volatile)
1598 follow_type = make_cv_type (TYPE_CONST (follow_type),
1599 make_volatile,
1600 follow_type, 0);
1601 if (make_addr_space)
1602 follow_type = make_type_with_address_space (follow_type,
1603 make_addr_space);
1604 make_const = make_volatile = 0;
1605 make_addr_space = 0;
1606 break;
1607 case tp_const:
1608 make_const = 1;
1609 break;
1610 case tp_volatile:
1611 make_volatile = 1;
1612 break;
1613 case tp_space_identifier:
1614 make_addr_space = pop_type_int ();
1615 break;
1616 case tp_pointer:
1617 follow_type = lookup_pointer_type (follow_type);
1618 if (make_const)
1619 follow_type = make_cv_type (make_const,
1620 TYPE_VOLATILE (follow_type),
1621 follow_type, 0);
1622 if (make_volatile)
1623 follow_type = make_cv_type (TYPE_CONST (follow_type),
1624 make_volatile,
1625 follow_type, 0);
1626 if (make_addr_space)
1627 follow_type = make_type_with_address_space (follow_type,
1628 make_addr_space);
1629 make_const = make_volatile = 0;
1630 make_addr_space = 0;
1631 break;
1632 case tp_reference:
1633 follow_type = lookup_lvalue_reference_type (follow_type);
1634 goto process_reference;
1635 case tp_rvalue_reference:
1636 follow_type = lookup_rvalue_reference_type (follow_type);
1637 process_reference:
1638 if (make_const)
1639 follow_type = make_cv_type (make_const,
1640 TYPE_VOLATILE (follow_type),
1641 follow_type, 0);
1642 if (make_volatile)
1643 follow_type = make_cv_type (TYPE_CONST (follow_type),
1644 make_volatile,
1645 follow_type, 0);
1646 if (make_addr_space)
1647 follow_type = make_type_with_address_space (follow_type,
1648 make_addr_space);
1649 make_const = make_volatile = 0;
1650 make_addr_space = 0;
1651 break;
1652 case tp_array:
1653 array_size = pop_type_int ();
1654 /* FIXME-type-allocation: need a way to free this type when we are
1655 done with it. */
1656 follow_type =
1657 lookup_array_range_type (follow_type,
1658 0, array_size >= 0 ? array_size - 1 : 0);
1659 if (array_size < 0)
1660 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1661 = PROP_UNDEFINED;
1662 break;
1663 case tp_function:
1664 /* FIXME-type-allocation: need a way to free this type when we are
1665 done with it. */
1666 follow_type = lookup_function_type (follow_type);
1667 break;
1668
1669 case tp_function_with_arguments:
1670 {
1671 VEC (type_ptr) *args = pop_typelist ();
1672
1673 follow_type
1674 = lookup_function_type_with_arguments (follow_type,
1675 VEC_length (type_ptr, args),
1676 VEC_address (type_ptr,
1677 args));
1678 VEC_free (type_ptr, args);
1679 }
1680 break;
1681
1682 case tp_type_stack:
1683 {
1684 struct type_stack *stack = pop_type_stack ();
1685 /* Sort of ugly, but not really much worse than the
1686 alternatives. */
1687 struct type_stack save = type_stack;
1688
1689 type_stack = *stack;
1690 follow_type = follow_types (follow_type);
1691 gdb_assert (type_stack.depth == 0);
1692
1693 type_stack = save;
1694 }
1695 break;
1696 default:
1697 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1698 }
1699 return follow_type;
1700 }
1701 \f
1702 /* This function avoids direct calls to fprintf
1703 in the parser generated debug code. */
1704 void
1705 parser_fprintf (FILE *x, const char *y, ...)
1706 {
1707 va_list args;
1708
1709 va_start (args, y);
1710 if (x == stderr)
1711 vfprintf_unfiltered (gdb_stderr, y, args);
1712 else
1713 {
1714 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1715 vfprintf_unfiltered (gdb_stderr, y, args);
1716 }
1717 va_end (args);
1718 }
1719
1720 /* Implementation of the exp_descriptor method operator_check. */
1721
1722 int
1723 operator_check_standard (struct expression *exp, int pos,
1724 int (*objfile_func) (struct objfile *objfile,
1725 void *data),
1726 void *data)
1727 {
1728 const union exp_element *const elts = exp->elts;
1729 struct type *type = NULL;
1730 struct objfile *objfile = NULL;
1731
1732 /* Extended operators should have been already handled by exp_descriptor
1733 iterate method of its specific language. */
1734 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1735
1736 /* Track the callers of write_exp_elt_type for this table. */
1737
1738 switch (elts[pos].opcode)
1739 {
1740 case BINOP_VAL:
1741 case OP_COMPLEX:
1742 case OP_FLOAT:
1743 case OP_LONG:
1744 case OP_SCOPE:
1745 case OP_TYPE:
1746 case UNOP_CAST:
1747 case UNOP_MAX:
1748 case UNOP_MEMVAL:
1749 case UNOP_MIN:
1750 type = elts[pos + 1].type;
1751 break;
1752
1753 case TYPE_INSTANCE:
1754 {
1755 LONGEST arg, nargs = elts[pos + 2].longconst;
1756
1757 for (arg = 0; arg < nargs; arg++)
1758 {
1759 struct type *type = elts[pos + 3 + arg].type;
1760 struct objfile *objfile = TYPE_OBJFILE (type);
1761
1762 if (objfile && (*objfile_func) (objfile, data))
1763 return 1;
1764 }
1765 }
1766 break;
1767
1768 case OP_VAR_VALUE:
1769 {
1770 const struct block *const block = elts[pos + 1].block;
1771 const struct symbol *const symbol = elts[pos + 2].symbol;
1772
1773 /* Check objfile where the variable itself is placed.
1774 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1775 if ((*objfile_func) (symbol_objfile (symbol), data))
1776 return 1;
1777
1778 /* Check objfile where is placed the code touching the variable. */
1779 objfile = lookup_objfile_from_block (block);
1780
1781 type = SYMBOL_TYPE (symbol);
1782 }
1783 break;
1784 case OP_VAR_MSYM_VALUE:
1785 objfile = elts[pos + 1].objfile;
1786 break;
1787 }
1788
1789 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1790
1791 if (type && TYPE_OBJFILE (type)
1792 && (*objfile_func) (TYPE_OBJFILE (type), data))
1793 return 1;
1794 if (objfile && (*objfile_func) (objfile, data))
1795 return 1;
1796
1797 return 0;
1798 }
1799
1800 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1801 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1802 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1803 returns non-zero value then (any other) non-zero value is immediately
1804 returned to the caller. Otherwise zero is returned after iterating
1805 through whole EXP. */
1806
1807 static int
1808 exp_iterate (struct expression *exp,
1809 int (*objfile_func) (struct objfile *objfile, void *data),
1810 void *data)
1811 {
1812 int endpos;
1813
1814 for (endpos = exp->nelts; endpos > 0; )
1815 {
1816 int pos, args, oplen = 0;
1817
1818 operator_length (exp, endpos, &oplen, &args);
1819 gdb_assert (oplen > 0);
1820
1821 pos = endpos - oplen;
1822 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1823 objfile_func, data))
1824 return 1;
1825
1826 endpos = pos;
1827 }
1828
1829 return 0;
1830 }
1831
1832 /* Helper for exp_uses_objfile. */
1833
1834 static int
1835 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1836 {
1837 struct objfile *objfile = (struct objfile *) objfile_voidp;
1838
1839 if (exp_objfile->separate_debug_objfile_backlink)
1840 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1841
1842 return exp_objfile == objfile;
1843 }
1844
1845 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1846 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1847 file. */
1848
1849 int
1850 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1851 {
1852 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1853
1854 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1855 }
1856
1857 /* See definition in parser-defs.h. */
1858
1859 void
1860 increase_expout_size (struct parser_state *ps, size_t lenelt)
1861 {
1862 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1863 {
1864 ps->expout_size = std::max (ps->expout_size * 2,
1865 ps->expout_ptr + lenelt + 10);
1866 ps->expout.reset (XRESIZEVAR (expression,
1867 ps->expout.release (),
1868 (sizeof (struct expression)
1869 + EXP_ELEM_TO_BYTES (ps->expout_size))));
1870 }
1871 }
1872
1873 void
1874 _initialize_parse (void)
1875 {
1876 type_stack.size = 0;
1877 type_stack.depth = 0;
1878 type_stack.elements = NULL;
1879
1880 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1881 &expressiondebug,
1882 _("Set expression debugging."),
1883 _("Show expression debugging."),
1884 _("When non-zero, the internal representation "
1885 "of expressions will be printed."),
1886 NULL,
1887 show_expressiondebug,
1888 &setdebuglist, &showdebuglist);
1889 add_setshow_boolean_cmd ("parser", class_maintenance,
1890 &parser_debug,
1891 _("Set parser debugging."),
1892 _("Show parser debugging."),
1893 _("When non-zero, expression parser "
1894 "tracing will be enabled."),
1895 NULL,
1896 show_parserdebug,
1897 &setdebuglist, &showdebuglist);
1898 }
This page took 0.068261 seconds and 4 git commands to generate.