2000-11-30 Fernando Nasser <fnasser@redhat.com>
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2 Copyright (C) 1986, 89, 90, 91, 94, 98, 1999 Free Software Foundation, Inc.
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include <ctype.h>
33
34 #include "defs.h"
35 #include "gdb_string.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "frame.h"
39 #include "expression.h"
40 #include "value.h"
41 #include "command.h"
42 #include "language.h"
43 #include "parser-defs.h"
44 #include "linespec.h"
45 #include "gdbcmd.h"
46 #include "symfile.h" /* for overlay functions */
47 #include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace
48 with "gdbarch.h" when appropriate. */
49
50 \f
51 /* Symbols which architectures can redefine. */
52
53 /* Some systems have routines whose names start with `$'. Giving this
54 macro a non-zero value tells GDB's expression parser to check for
55 such routines when parsing tokens that begin with `$'.
56
57 On HP-UX, certain system routines (millicode) have names beginning
58 with `$' or `$$'. For example, `$$dyncall' is a millicode routine
59 that handles inter-space procedure calls on PA-RISC. */
60 #ifndef SYMBOLS_CAN_START_WITH_DOLLAR
61 #define SYMBOLS_CAN_START_WITH_DOLLAR (0)
62 #endif
63
64
65 \f
66 /* Global variables declared in parser-defs.h (and commented there). */
67 struct expression *expout;
68 int expout_size;
69 int expout_ptr;
70 struct block *expression_context_block;
71 struct block *innermost_block;
72 int arglist_len;
73 union type_stack_elt *type_stack;
74 int type_stack_depth, type_stack_size;
75 char *lexptr;
76 char *namecopy;
77 int paren_depth;
78 int comma_terminates;
79 \f
80 static int expressiondebug = 0;
81
82 extern int hp_som_som_object_present;
83
84 static void free_funcalls (void *ignore);
85
86 static void prefixify_expression (struct expression *);
87
88 static void
89 prefixify_subexp (struct expression *, struct expression *, int, int);
90
91 void _initialize_parse (void);
92
93 /* Data structure for saving values of arglist_len for function calls whose
94 arguments contain other function calls. */
95
96 struct funcall
97 {
98 struct funcall *next;
99 int arglist_len;
100 };
101
102 static struct funcall *funcall_chain;
103
104 /* Assign machine-independent names to certain registers
105 (unless overridden by the REGISTER_NAMES table) */
106
107 unsigned num_std_regs = 0;
108 struct std_regs *std_regs;
109
110 /* The generic method for targets to specify how their registers are
111 named. The mapping can be derived from three sources:
112 REGISTER_NAME; std_regs; or a target specific alias hook. */
113
114 int
115 target_map_name_to_register (char *str, int len)
116 {
117 int i;
118
119 /* First try target specific aliases. We try these first because on some
120 systems standard names can be context dependent (eg. $pc on a
121 multiprocessor can be could be any of several PCs). */
122 #ifdef REGISTER_NAME_ALIAS_HOOK
123 i = REGISTER_NAME_ALIAS_HOOK (str, len);
124 if (i >= 0)
125 return i;
126 #endif
127
128 /* Search architectural register name space. */
129 for (i = 0; i < NUM_REGS; i++)
130 if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
131 && STREQN (str, REGISTER_NAME (i), len))
132 {
133 return i;
134 }
135
136 /* Try pseudo-registers, if any. */
137 for (i = NUM_REGS; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
138 if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
139 && STREQN (str, REGISTER_NAME (i), len))
140 {
141 return i;
142 }
143
144 /* Try standard aliases. */
145 for (i = 0; i < num_std_regs; i++)
146 if (std_regs[i].name && len == strlen (std_regs[i].name)
147 && STREQN (str, std_regs[i].name, len))
148 {
149 return std_regs[i].regnum;
150 }
151
152 return -1;
153 }
154
155 /* Begin counting arguments for a function call,
156 saving the data about any containing call. */
157
158 void
159 start_arglist (void)
160 {
161 register struct funcall *new;
162
163 new = (struct funcall *) xmalloc (sizeof (struct funcall));
164 new->next = funcall_chain;
165 new->arglist_len = arglist_len;
166 arglist_len = 0;
167 funcall_chain = new;
168 }
169
170 /* Return the number of arguments in a function call just terminated,
171 and restore the data for the containing function call. */
172
173 int
174 end_arglist (void)
175 {
176 register int val = arglist_len;
177 register struct funcall *call = funcall_chain;
178 funcall_chain = call->next;
179 arglist_len = call->arglist_len;
180 free ((PTR) call);
181 return val;
182 }
183
184 /* Free everything in the funcall chain.
185 Used when there is an error inside parsing. */
186
187 static void
188 free_funcalls (void *ignore)
189 {
190 register struct funcall *call, *next;
191
192 for (call = funcall_chain; call; call = next)
193 {
194 next = call->next;
195 free ((PTR) call);
196 }
197 }
198 \f
199 /* This page contains the functions for adding data to the struct expression
200 being constructed. */
201
202 /* Add one element to the end of the expression. */
203
204 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
205 a register through here */
206
207 void
208 write_exp_elt (union exp_element expelt)
209 {
210 if (expout_ptr >= expout_size)
211 {
212 expout_size *= 2;
213 expout = (struct expression *)
214 xrealloc ((char *) expout, sizeof (struct expression)
215 + EXP_ELEM_TO_BYTES (expout_size));
216 }
217 expout->elts[expout_ptr++] = expelt;
218 }
219
220 void
221 write_exp_elt_opcode (enum exp_opcode expelt)
222 {
223 union exp_element tmp;
224
225 tmp.opcode = expelt;
226
227 write_exp_elt (tmp);
228 }
229
230 void
231 write_exp_elt_sym (struct symbol *expelt)
232 {
233 union exp_element tmp;
234
235 tmp.symbol = expelt;
236
237 write_exp_elt (tmp);
238 }
239
240 void
241 write_exp_elt_block (struct block *b)
242 {
243 union exp_element tmp;
244 tmp.block = b;
245 write_exp_elt (tmp);
246 }
247
248 void
249 write_exp_elt_longcst (LONGEST expelt)
250 {
251 union exp_element tmp;
252
253 tmp.longconst = expelt;
254
255 write_exp_elt (tmp);
256 }
257
258 void
259 write_exp_elt_dblcst (DOUBLEST expelt)
260 {
261 union exp_element tmp;
262
263 tmp.doubleconst = expelt;
264
265 write_exp_elt (tmp);
266 }
267
268 void
269 write_exp_elt_type (struct type *expelt)
270 {
271 union exp_element tmp;
272
273 tmp.type = expelt;
274
275 write_exp_elt (tmp);
276 }
277
278 void
279 write_exp_elt_intern (struct internalvar *expelt)
280 {
281 union exp_element tmp;
282
283 tmp.internalvar = expelt;
284
285 write_exp_elt (tmp);
286 }
287
288 /* Add a string constant to the end of the expression.
289
290 String constants are stored by first writing an expression element
291 that contains the length of the string, then stuffing the string
292 constant itself into however many expression elements are needed
293 to hold it, and then writing another expression element that contains
294 the length of the string. I.E. an expression element at each end of
295 the string records the string length, so you can skip over the
296 expression elements containing the actual string bytes from either
297 end of the string. Note that this also allows gdb to handle
298 strings with embedded null bytes, as is required for some languages.
299
300 Don't be fooled by the fact that the string is null byte terminated,
301 this is strictly for the convenience of debugging gdb itself. Gdb
302 Gdb does not depend up the string being null terminated, since the
303 actual length is recorded in expression elements at each end of the
304 string. The null byte is taken into consideration when computing how
305 many expression elements are required to hold the string constant, of
306 course. */
307
308
309 void
310 write_exp_string (struct stoken str)
311 {
312 register int len = str.length;
313 register int lenelt;
314 register char *strdata;
315
316 /* Compute the number of expression elements required to hold the string
317 (including a null byte terminator), along with one expression element
318 at each end to record the actual string length (not including the
319 null byte terminator). */
320
321 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
322
323 /* Ensure that we have enough available expression elements to store
324 everything. */
325
326 if ((expout_ptr + lenelt) >= expout_size)
327 {
328 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
329 expout = (struct expression *)
330 xrealloc ((char *) expout, (sizeof (struct expression)
331 + EXP_ELEM_TO_BYTES (expout_size)));
332 }
333
334 /* Write the leading length expression element (which advances the current
335 expression element index), then write the string constant followed by a
336 terminating null byte, and then write the trailing length expression
337 element. */
338
339 write_exp_elt_longcst ((LONGEST) len);
340 strdata = (char *) &expout->elts[expout_ptr];
341 memcpy (strdata, str.ptr, len);
342 *(strdata + len) = '\0';
343 expout_ptr += lenelt - 2;
344 write_exp_elt_longcst ((LONGEST) len);
345 }
346
347 /* Add a bitstring constant to the end of the expression.
348
349 Bitstring constants are stored by first writing an expression element
350 that contains the length of the bitstring (in bits), then stuffing the
351 bitstring constant itself into however many expression elements are
352 needed to hold it, and then writing another expression element that
353 contains the length of the bitstring. I.E. an expression element at
354 each end of the bitstring records the bitstring length, so you can skip
355 over the expression elements containing the actual bitstring bytes from
356 either end of the bitstring. */
357
358 void
359 write_exp_bitstring (struct stoken str)
360 {
361 register int bits = str.length; /* length in bits */
362 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
363 register int lenelt;
364 register char *strdata;
365
366 /* Compute the number of expression elements required to hold the bitstring,
367 along with one expression element at each end to record the actual
368 bitstring length in bits. */
369
370 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
371
372 /* Ensure that we have enough available expression elements to store
373 everything. */
374
375 if ((expout_ptr + lenelt) >= expout_size)
376 {
377 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
378 expout = (struct expression *)
379 xrealloc ((char *) expout, (sizeof (struct expression)
380 + EXP_ELEM_TO_BYTES (expout_size)));
381 }
382
383 /* Write the leading length expression element (which advances the current
384 expression element index), then write the bitstring constant, and then
385 write the trailing length expression element. */
386
387 write_exp_elt_longcst ((LONGEST) bits);
388 strdata = (char *) &expout->elts[expout_ptr];
389 memcpy (strdata, str.ptr, len);
390 expout_ptr += lenelt - 2;
391 write_exp_elt_longcst ((LONGEST) bits);
392 }
393
394 /* Add the appropriate elements for a minimal symbol to the end of
395 the expression. The rationale behind passing in text_symbol_type and
396 data_symbol_type was so that Modula-2 could pass in WORD for
397 data_symbol_type. Perhaps it still is useful to have those types vary
398 based on the language, but they no longer have names like "int", so
399 the initial rationale is gone. */
400
401 static struct type *msym_text_symbol_type;
402 static struct type *msym_data_symbol_type;
403 static struct type *msym_unknown_symbol_type;
404
405 void
406 write_exp_msymbol (struct minimal_symbol *msymbol,
407 struct type *text_symbol_type, struct type *data_symbol_type)
408 {
409 CORE_ADDR addr;
410
411 write_exp_elt_opcode (OP_LONG);
412 write_exp_elt_type (lookup_pointer_type (builtin_type_void));
413
414 addr = SYMBOL_VALUE_ADDRESS (msymbol);
415 if (overlay_debugging)
416 addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
417 write_exp_elt_longcst ((LONGEST) addr);
418
419 write_exp_elt_opcode (OP_LONG);
420
421 write_exp_elt_opcode (UNOP_MEMVAL);
422 switch (msymbol->type)
423 {
424 case mst_text:
425 case mst_file_text:
426 case mst_solib_trampoline:
427 write_exp_elt_type (msym_text_symbol_type);
428 break;
429
430 case mst_data:
431 case mst_file_data:
432 case mst_bss:
433 case mst_file_bss:
434 write_exp_elt_type (msym_data_symbol_type);
435 break;
436
437 default:
438 write_exp_elt_type (msym_unknown_symbol_type);
439 break;
440 }
441 write_exp_elt_opcode (UNOP_MEMVAL);
442 }
443 \f
444 /* Recognize tokens that start with '$'. These include:
445
446 $regname A native register name or a "standard
447 register name".
448
449 $variable A convenience variable with a name chosen
450 by the user.
451
452 $digits Value history with index <digits>, starting
453 from the first value which has index 1.
454
455 $$digits Value history with index <digits> relative
456 to the last value. I.E. $$0 is the last
457 value, $$1 is the one previous to that, $$2
458 is the one previous to $$1, etc.
459
460 $ | $0 | $$0 The last value in the value history.
461
462 $$ An abbreviation for the second to the last
463 value in the value history, I.E. $$1
464
465 */
466
467 void
468 write_dollar_variable (struct stoken str)
469 {
470 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
471 and $$digits (equivalent to $<-digits> if you could type that). */
472
473 int negate = 0;
474 int i = 1;
475 /* Double dollar means negate the number and add -1 as well.
476 Thus $$ alone means -1. */
477 if (str.length >= 2 && str.ptr[1] == '$')
478 {
479 negate = 1;
480 i = 2;
481 }
482 if (i == str.length)
483 {
484 /* Just dollars (one or two) */
485 i = -negate;
486 goto handle_last;
487 }
488 /* Is the rest of the token digits? */
489 for (; i < str.length; i++)
490 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
491 break;
492 if (i == str.length)
493 {
494 i = atoi (str.ptr + 1 + negate);
495 if (negate)
496 i = -i;
497 goto handle_last;
498 }
499
500 /* Handle tokens that refer to machine registers:
501 $ followed by a register name. */
502 i = target_map_name_to_register (str.ptr + 1, str.length - 1);
503 if (i >= 0)
504 goto handle_register;
505
506 if (SYMBOLS_CAN_START_WITH_DOLLAR)
507 {
508 struct symbol *sym = NULL;
509 struct minimal_symbol *msym = NULL;
510
511 /* On HP-UX, certain system routines (millicode) have names beginning
512 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
513 calls on PA-RISC. Check for those, first. */
514
515 /* This code is not enabled on non HP-UX systems, since worst case
516 symbol table lookup performance is awful, to put it mildly. */
517
518 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
519 VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
520 if (sym)
521 {
522 write_exp_elt_opcode (OP_VAR_VALUE);
523 write_exp_elt_block (block_found); /* set by lookup_symbol */
524 write_exp_elt_sym (sym);
525 write_exp_elt_opcode (OP_VAR_VALUE);
526 return;
527 }
528 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
529 if (msym)
530 {
531 write_exp_msymbol (msym,
532 lookup_function_type (builtin_type_int),
533 builtin_type_int);
534 return;
535 }
536 }
537
538 /* Any other names starting in $ are debugger internal variables. */
539
540 write_exp_elt_opcode (OP_INTERNALVAR);
541 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
542 write_exp_elt_opcode (OP_INTERNALVAR);
543 return;
544 handle_last:
545 write_exp_elt_opcode (OP_LAST);
546 write_exp_elt_longcst ((LONGEST) i);
547 write_exp_elt_opcode (OP_LAST);
548 return;
549 handle_register:
550 write_exp_elt_opcode (OP_REGISTER);
551 write_exp_elt_longcst (i);
552 write_exp_elt_opcode (OP_REGISTER);
553 return;
554 }
555
556
557 /* Parse a string that is possibly a namespace / nested class
558 specification, i.e., something of the form A::B::C::x. Input
559 (NAME) is the entire string; LEN is the current valid length; the
560 output is a string, TOKEN, which points to the largest recognized
561 prefix which is a series of namespaces or classes. CLASS_PREFIX is
562 another output, which records whether a nested class spec was
563 recognized (= 1) or a fully qualified variable name was found (=
564 0). ARGPTR is side-effected (if non-NULL) to point to beyond the
565 string recognized and consumed by this routine.
566
567 The return value is a pointer to the symbol for the base class or
568 variable if found, or NULL if not found. Callers must check this
569 first -- if NULL, the outputs may not be correct.
570
571 This function is used c-exp.y. This is used specifically to get
572 around HP aCC (and possibly other compilers), which insists on
573 generating names with embedded colons for namespace or nested class
574 members.
575
576 (Argument LEN is currently unused. 1997-08-27)
577
578 Callers must free memory allocated for the output string TOKEN. */
579
580 static const char coloncolon[2] =
581 {':', ':'};
582
583 struct symbol *
584 parse_nested_classes_for_hpacc (char *name, int len, char **token,
585 int *class_prefix, char **argptr)
586 {
587 /* Comment below comes from decode_line_1 which has very similar
588 code, which is called for "break" command parsing. */
589
590 /* We have what looks like a class or namespace
591 scope specification (A::B), possibly with many
592 levels of namespaces or classes (A::B::C::D).
593
594 Some versions of the HP ANSI C++ compiler (as also possibly
595 other compilers) generate class/function/member names with
596 embedded double-colons if they are inside namespaces. To
597 handle this, we loop a few times, considering larger and
598 larger prefixes of the string as though they were single
599 symbols. So, if the initially supplied string is
600 A::B::C::D::foo, we have to look up "A", then "A::B",
601 then "A::B::C", then "A::B::C::D", and finally
602 "A::B::C::D::foo" as single, monolithic symbols, because
603 A, B, C or D may be namespaces.
604
605 Note that namespaces can nest only inside other
606 namespaces, and not inside classes. So we need only
607 consider *prefixes* of the string; there is no need to look up
608 "B::C" separately as a symbol in the previous example. */
609
610 register char *p;
611 char *start, *end;
612 char *prefix = NULL;
613 char *tmp;
614 struct symbol *sym_class = NULL;
615 struct symbol *sym_var = NULL;
616 struct type *t;
617 int prefix_len = 0;
618 int done = 0;
619 char *q;
620
621 /* Check for HP-compiled executable -- in other cases
622 return NULL, and caller must default to standard GDB
623 behaviour. */
624
625 if (!hp_som_som_object_present)
626 return (struct symbol *) NULL;
627
628 p = name;
629
630 /* Skip over whitespace and possible global "::" */
631 while (*p && (*p == ' ' || *p == '\t'))
632 p++;
633 if (p[0] == ':' && p[1] == ':')
634 p += 2;
635 while (*p && (*p == ' ' || *p == '\t'))
636 p++;
637
638 while (1)
639 {
640 /* Get to the end of the next namespace or class spec. */
641 /* If we're looking at some non-token, fail immediately */
642 start = p;
643 if (!(isalpha (*p) || *p == '$' || *p == '_'))
644 return (struct symbol *) NULL;
645 p++;
646 while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
647 p++;
648
649 if (*p == '<')
650 {
651 /* If we have the start of a template specification,
652 scan right ahead to its end */
653 q = find_template_name_end (p);
654 if (q)
655 p = q;
656 }
657
658 end = p;
659
660 /* Skip over "::" and whitespace for next time around */
661 while (*p && (*p == ' ' || *p == '\t'))
662 p++;
663 if (p[0] == ':' && p[1] == ':')
664 p += 2;
665 while (*p && (*p == ' ' || *p == '\t'))
666 p++;
667
668 /* Done with tokens? */
669 if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
670 done = 1;
671
672 tmp = (char *) alloca (prefix_len + end - start + 3);
673 if (prefix)
674 {
675 memcpy (tmp, prefix, prefix_len);
676 memcpy (tmp + prefix_len, coloncolon, 2);
677 memcpy (tmp + prefix_len + 2, start, end - start);
678 tmp[prefix_len + 2 + end - start] = '\000';
679 }
680 else
681 {
682 memcpy (tmp, start, end - start);
683 tmp[end - start] = '\000';
684 }
685
686 prefix = tmp;
687 prefix_len = strlen (prefix);
688
689 /* See if the prefix we have now is something we know about */
690
691 if (!done)
692 {
693 /* More tokens to process, so this must be a class/namespace */
694 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
695 0, (struct symtab **) NULL);
696 }
697 else
698 {
699 /* No more tokens, so try as a variable first */
700 sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE,
701 0, (struct symtab **) NULL);
702 /* If failed, try as class/namespace */
703 if (!sym_var)
704 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
705 0, (struct symtab **) NULL);
706 }
707
708 if (sym_var ||
709 (sym_class &&
710 (t = check_typedef (SYMBOL_TYPE (sym_class)),
711 (TYPE_CODE (t) == TYPE_CODE_STRUCT
712 || TYPE_CODE (t) == TYPE_CODE_UNION))))
713 {
714 /* We found a valid token */
715 *token = (char *) xmalloc (prefix_len + 1);
716 memcpy (*token, prefix, prefix_len);
717 (*token)[prefix_len] = '\000';
718 break;
719 }
720
721 /* No variable or class/namespace found, no more tokens */
722 if (done)
723 return (struct symbol *) NULL;
724 }
725
726 /* Out of loop, so we must have found a valid token */
727 if (sym_var)
728 *class_prefix = 0;
729 else
730 *class_prefix = 1;
731
732 if (argptr)
733 *argptr = done ? p : end;
734
735 return sym_var ? sym_var : sym_class; /* found */
736 }
737
738 char *
739 find_template_name_end (char *p)
740 {
741 int depth = 1;
742 int just_seen_right = 0;
743 int just_seen_colon = 0;
744 int just_seen_space = 0;
745
746 if (!p || (*p != '<'))
747 return 0;
748
749 while (*++p)
750 {
751 switch (*p)
752 {
753 case '\'':
754 case '\"':
755 case '{':
756 case '}':
757 /* In future, may want to allow these?? */
758 return 0;
759 case '<':
760 depth++; /* start nested template */
761 if (just_seen_colon || just_seen_right || just_seen_space)
762 return 0; /* but not after : or :: or > or space */
763 break;
764 case '>':
765 if (just_seen_colon || just_seen_right)
766 return 0; /* end a (nested?) template */
767 just_seen_right = 1; /* but not after : or :: */
768 if (--depth == 0) /* also disallow >>, insist on > > */
769 return ++p; /* if outermost ended, return */
770 break;
771 case ':':
772 if (just_seen_space || (just_seen_colon > 1))
773 return 0; /* nested class spec coming up */
774 just_seen_colon++; /* we allow :: but not :::: */
775 break;
776 case ' ':
777 break;
778 default:
779 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
780 (*p >= 'A' && *p <= 'Z') ||
781 (*p >= '0' && *p <= '9') ||
782 (*p == '_') || (*p == ',') || /* commas for template args */
783 (*p == '&') || (*p == '*') || /* pointer and ref types */
784 (*p == '(') || (*p == ')') || /* function types */
785 (*p == '[') || (*p == ']'))) /* array types */
786 return 0;
787 }
788 if (*p != ' ')
789 just_seen_space = 0;
790 if (*p != ':')
791 just_seen_colon = 0;
792 if (*p != '>')
793 just_seen_right = 0;
794 }
795 return 0;
796 }
797 \f
798
799
800 /* Return a null-terminated temporary copy of the name
801 of a string token. */
802
803 char *
804 copy_name (struct stoken token)
805 {
806 memcpy (namecopy, token.ptr, token.length);
807 namecopy[token.length] = 0;
808 return namecopy;
809 }
810 \f
811 /* Reverse an expression from suffix form (in which it is constructed)
812 to prefix form (in which we can conveniently print or execute it). */
813
814 static void
815 prefixify_expression (register struct expression *expr)
816 {
817 register int len =
818 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
819 register struct expression *temp;
820 register int inpos = expr->nelts, outpos = 0;
821
822 temp = (struct expression *) alloca (len);
823
824 /* Copy the original expression into temp. */
825 memcpy (temp, expr, len);
826
827 prefixify_subexp (temp, expr, inpos, outpos);
828 }
829
830 /* Return the number of exp_elements in the subexpression of EXPR
831 whose last exp_element is at index ENDPOS - 1 in EXPR. */
832
833 int
834 length_of_subexp (register struct expression *expr, register int endpos)
835 {
836 register int oplen = 1;
837 register int args = 0;
838 register int i;
839
840 if (endpos < 1)
841 error ("?error in length_of_subexp");
842
843 i = (int) expr->elts[endpos - 1].opcode;
844
845 switch (i)
846 {
847 /* C++ */
848 case OP_SCOPE:
849 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
850 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
851 break;
852
853 case OP_LONG:
854 case OP_DOUBLE:
855 case OP_VAR_VALUE:
856 oplen = 4;
857 break;
858
859 case OP_TYPE:
860 case OP_BOOL:
861 case OP_LAST:
862 case OP_REGISTER:
863 case OP_INTERNALVAR:
864 oplen = 3;
865 break;
866
867 case OP_COMPLEX:
868 oplen = 1;
869 args = 2;
870 break;
871
872 case OP_FUNCALL:
873 case OP_F77_UNDETERMINED_ARGLIST:
874 oplen = 3;
875 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
876 break;
877
878 case UNOP_MAX:
879 case UNOP_MIN:
880 oplen = 3;
881 break;
882
883 case BINOP_VAL:
884 case UNOP_CAST:
885 case UNOP_MEMVAL:
886 oplen = 3;
887 args = 1;
888 break;
889
890 case UNOP_ABS:
891 case UNOP_CAP:
892 case UNOP_CHR:
893 case UNOP_FLOAT:
894 case UNOP_HIGH:
895 case UNOP_ODD:
896 case UNOP_ORD:
897 case UNOP_TRUNC:
898 oplen = 1;
899 args = 1;
900 break;
901
902 case OP_LABELED:
903 case STRUCTOP_STRUCT:
904 case STRUCTOP_PTR:
905 args = 1;
906 /* fall through */
907 case OP_M2_STRING:
908 case OP_STRING:
909 case OP_NAME:
910 case OP_EXPRSTRING:
911 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
912 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
913 break;
914
915 case OP_BITSTRING:
916 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
917 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
918 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
919 break;
920
921 case OP_ARRAY:
922 oplen = 4;
923 args = longest_to_int (expr->elts[endpos - 2].longconst);
924 args -= longest_to_int (expr->elts[endpos - 3].longconst);
925 args += 1;
926 break;
927
928 case TERNOP_COND:
929 case TERNOP_SLICE:
930 case TERNOP_SLICE_COUNT:
931 args = 3;
932 break;
933
934 /* Modula-2 */
935 case MULTI_SUBSCRIPT:
936 oplen = 3;
937 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
938 break;
939
940 case BINOP_ASSIGN_MODIFY:
941 oplen = 3;
942 args = 2;
943 break;
944
945 /* C++ */
946 case OP_THIS:
947 oplen = 2;
948 break;
949
950 default:
951 args = 1 + (i < (int) BINOP_END);
952 }
953
954 while (args > 0)
955 {
956 oplen += length_of_subexp (expr, endpos - oplen);
957 args--;
958 }
959
960 return oplen;
961 }
962
963 /* Copy the subexpression ending just before index INEND in INEXPR
964 into OUTEXPR, starting at index OUTBEG.
965 In the process, convert it from suffix to prefix form. */
966
967 static void
968 prefixify_subexp (register struct expression *inexpr,
969 struct expression *outexpr, register int inend, int outbeg)
970 {
971 register int oplen = 1;
972 register int args = 0;
973 register int i;
974 int *arglens;
975 enum exp_opcode opcode;
976
977 /* Compute how long the last operation is (in OPLEN),
978 and also how many preceding subexpressions serve as
979 arguments for it (in ARGS). */
980
981 opcode = inexpr->elts[inend - 1].opcode;
982 switch (opcode)
983 {
984 /* C++ */
985 case OP_SCOPE:
986 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
987 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
988 break;
989
990 case OP_LONG:
991 case OP_DOUBLE:
992 case OP_VAR_VALUE:
993 oplen = 4;
994 break;
995
996 case OP_TYPE:
997 case OP_BOOL:
998 case OP_LAST:
999 case OP_REGISTER:
1000 case OP_INTERNALVAR:
1001 oplen = 3;
1002 break;
1003
1004 case OP_COMPLEX:
1005 oplen = 1;
1006 args = 2;
1007 break;
1008
1009 case OP_FUNCALL:
1010 case OP_F77_UNDETERMINED_ARGLIST:
1011 oplen = 3;
1012 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1013 break;
1014
1015 case UNOP_MIN:
1016 case UNOP_MAX:
1017 oplen = 3;
1018 break;
1019
1020 case UNOP_CAST:
1021 case UNOP_MEMVAL:
1022 oplen = 3;
1023 args = 1;
1024 break;
1025
1026 case UNOP_ABS:
1027 case UNOP_CAP:
1028 case UNOP_CHR:
1029 case UNOP_FLOAT:
1030 case UNOP_HIGH:
1031 case UNOP_ODD:
1032 case UNOP_ORD:
1033 case UNOP_TRUNC:
1034 oplen = 1;
1035 args = 1;
1036 break;
1037
1038 case STRUCTOP_STRUCT:
1039 case STRUCTOP_PTR:
1040 case OP_LABELED:
1041 args = 1;
1042 /* fall through */
1043 case OP_M2_STRING:
1044 case OP_STRING:
1045 case OP_NAME:
1046 case OP_EXPRSTRING:
1047 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1048 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1049 break;
1050
1051 case OP_BITSTRING:
1052 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1053 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1054 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
1055 break;
1056
1057 case OP_ARRAY:
1058 oplen = 4;
1059 args = longest_to_int (inexpr->elts[inend - 2].longconst);
1060 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
1061 args += 1;
1062 break;
1063
1064 case TERNOP_COND:
1065 case TERNOP_SLICE:
1066 case TERNOP_SLICE_COUNT:
1067 args = 3;
1068 break;
1069
1070 case BINOP_ASSIGN_MODIFY:
1071 oplen = 3;
1072 args = 2;
1073 break;
1074
1075 /* Modula-2 */
1076 case MULTI_SUBSCRIPT:
1077 oplen = 3;
1078 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1079 break;
1080
1081 /* C++ */
1082 case OP_THIS:
1083 oplen = 2;
1084 break;
1085
1086 default:
1087 args = 1 + ((int) opcode < (int) BINOP_END);
1088 }
1089
1090 /* Copy the final operator itself, from the end of the input
1091 to the beginning of the output. */
1092 inend -= oplen;
1093 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1094 EXP_ELEM_TO_BYTES (oplen));
1095 outbeg += oplen;
1096
1097 /* Find the lengths of the arg subexpressions. */
1098 arglens = (int *) alloca (args * sizeof (int));
1099 for (i = args - 1; i >= 0; i--)
1100 {
1101 oplen = length_of_subexp (inexpr, inend);
1102 arglens[i] = oplen;
1103 inend -= oplen;
1104 }
1105
1106 /* Now copy each subexpression, preserving the order of
1107 the subexpressions, but prefixifying each one.
1108 In this loop, inend starts at the beginning of
1109 the expression this level is working on
1110 and marches forward over the arguments.
1111 outbeg does similarly in the output. */
1112 for (i = 0; i < args; i++)
1113 {
1114 oplen = arglens[i];
1115 inend += oplen;
1116 prefixify_subexp (inexpr, outexpr, inend, outbeg);
1117 outbeg += oplen;
1118 }
1119 }
1120 \f
1121 /* This page contains the two entry points to this file. */
1122
1123 /* Read an expression from the string *STRINGPTR points to,
1124 parse it, and return a pointer to a struct expression that we malloc.
1125 Use block BLOCK as the lexical context for variable names;
1126 if BLOCK is zero, use the block of the selected stack frame.
1127 Meanwhile, advance *STRINGPTR to point after the expression,
1128 at the first nonwhite character that is not part of the expression
1129 (possibly a null character).
1130
1131 If COMMA is nonzero, stop if a comma is reached. */
1132
1133 struct expression *
1134 parse_exp_1 (char **stringptr, struct block *block, int comma)
1135 {
1136 struct cleanup *old_chain;
1137
1138 lexptr = *stringptr;
1139
1140 paren_depth = 0;
1141 type_stack_depth = 0;
1142
1143 comma_terminates = comma;
1144
1145 if (lexptr == 0 || *lexptr == 0)
1146 error_no_arg ("expression to compute");
1147
1148 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1149 funcall_chain = 0;
1150
1151 expression_context_block = block ? block : get_selected_block ();
1152
1153 namecopy = (char *) alloca (strlen (lexptr) + 1);
1154 expout_size = 10;
1155 expout_ptr = 0;
1156 expout = (struct expression *)
1157 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1158 expout->language_defn = current_language;
1159 make_cleanup (free_current_contents, &expout);
1160
1161 if (current_language->la_parser ())
1162 current_language->la_error (NULL);
1163
1164 discard_cleanups (old_chain);
1165
1166 /* Record the actual number of expression elements, and then
1167 reallocate the expression memory so that we free up any
1168 excess elements. */
1169
1170 expout->nelts = expout_ptr;
1171 expout = (struct expression *)
1172 xrealloc ((char *) expout,
1173 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1174
1175 /* Convert expression from postfix form as generated by yacc
1176 parser, to a prefix form. */
1177
1178 if (expressiondebug)
1179 dump_prefix_expression (expout, gdb_stdlog,
1180 "before conversion to prefix form");
1181
1182 prefixify_expression (expout);
1183
1184 if (expressiondebug)
1185 dump_postfix_expression (expout, gdb_stdlog,
1186 "after conversion to prefix form");
1187
1188 *stringptr = lexptr;
1189 return expout;
1190 }
1191
1192 /* Parse STRING as an expression, and complain if this fails
1193 to use up all of the contents of STRING. */
1194
1195 struct expression *
1196 parse_expression (char *string)
1197 {
1198 register struct expression *exp;
1199 exp = parse_exp_1 (&string, 0, 0);
1200 if (*string)
1201 error ("Junk after end of expression.");
1202 return exp;
1203 }
1204 \f
1205 /* Stuff for maintaining a stack of types. Currently just used by C, but
1206 probably useful for any language which declares its types "backwards". */
1207
1208 void
1209 push_type (enum type_pieces tp)
1210 {
1211 if (type_stack_depth == type_stack_size)
1212 {
1213 type_stack_size *= 2;
1214 type_stack = (union type_stack_elt *)
1215 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1216 }
1217 type_stack[type_stack_depth++].piece = tp;
1218 }
1219
1220 void
1221 push_type_int (int n)
1222 {
1223 if (type_stack_depth == type_stack_size)
1224 {
1225 type_stack_size *= 2;
1226 type_stack = (union type_stack_elt *)
1227 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1228 }
1229 type_stack[type_stack_depth++].int_val = n;
1230 }
1231
1232 enum type_pieces
1233 pop_type (void)
1234 {
1235 if (type_stack_depth)
1236 return type_stack[--type_stack_depth].piece;
1237 return tp_end;
1238 }
1239
1240 int
1241 pop_type_int (void)
1242 {
1243 if (type_stack_depth)
1244 return type_stack[--type_stack_depth].int_val;
1245 /* "Can't happen". */
1246 return 0;
1247 }
1248
1249 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1250 as modified by all the stuff on the stack. */
1251 struct type *
1252 follow_types (struct type *follow_type)
1253 {
1254 int done = 0;
1255 int array_size;
1256 struct type *range_type;
1257
1258 while (!done)
1259 switch (pop_type ())
1260 {
1261 case tp_end:
1262 done = 1;
1263 break;
1264 case tp_pointer:
1265 follow_type = lookup_pointer_type (follow_type);
1266 break;
1267 case tp_reference:
1268 follow_type = lookup_reference_type (follow_type);
1269 break;
1270 case tp_array:
1271 array_size = pop_type_int ();
1272 /* FIXME-type-allocation: need a way to free this type when we are
1273 done with it. */
1274 range_type =
1275 create_range_type ((struct type *) NULL,
1276 builtin_type_int, 0,
1277 array_size >= 0 ? array_size - 1 : 0);
1278 follow_type =
1279 create_array_type ((struct type *) NULL,
1280 follow_type, range_type);
1281 if (array_size < 0)
1282 TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
1283 = BOUND_CANNOT_BE_DETERMINED;
1284 break;
1285 case tp_function:
1286 /* FIXME-type-allocation: need a way to free this type when we are
1287 done with it. */
1288 follow_type = lookup_function_type (follow_type);
1289 break;
1290 }
1291 return follow_type;
1292 }
1293 \f
1294 static void build_parse (void);
1295 static void
1296 build_parse (void)
1297 {
1298 int i;
1299
1300 msym_text_symbol_type =
1301 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1302 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1303 msym_data_symbol_type =
1304 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1305 "<data variable, no debug info>", NULL);
1306 msym_unknown_symbol_type =
1307 init_type (TYPE_CODE_INT, 1, 0,
1308 "<variable (not text or data), no debug info>",
1309 NULL);
1310
1311 /* create the std_regs table */
1312
1313 num_std_regs = 0;
1314 #ifdef PC_REGNUM
1315 if (PC_REGNUM >= 0)
1316 num_std_regs++;
1317 #endif
1318 #ifdef FP_REGNUM
1319 if (FP_REGNUM >= 0)
1320 num_std_regs++;
1321 #endif
1322 #ifdef SP_REGNUM
1323 if (SP_REGNUM >= 0)
1324 num_std_regs++;
1325 #endif
1326 #ifdef PS_REGNUM
1327 if (PS_REGNUM >= 0)
1328 num_std_regs++;
1329 #endif
1330 /* create an empty table */
1331 std_regs = xmalloc ((num_std_regs + 1) * sizeof *std_regs);
1332 i = 0;
1333 /* fill it in */
1334 #ifdef PC_REGNUM
1335 if (PC_REGNUM >= 0)
1336 {
1337 std_regs[i].name = "pc";
1338 std_regs[i].regnum = PC_REGNUM;
1339 i++;
1340 }
1341 #endif
1342 #ifdef FP_REGNUM
1343 if (FP_REGNUM >= 0)
1344 {
1345 std_regs[i].name = "fp";
1346 std_regs[i].regnum = FP_REGNUM;
1347 i++;
1348 }
1349 #endif
1350 #ifdef SP_REGNUM
1351 if (SP_REGNUM >= 0)
1352 {
1353 std_regs[i].name = "sp";
1354 std_regs[i].regnum = SP_REGNUM;
1355 i++;
1356 }
1357 #endif
1358 #ifdef PS_REGNUM
1359 if (PS_REGNUM >= 0)
1360 {
1361 std_regs[i].name = "ps";
1362 std_regs[i].regnum = PS_REGNUM;
1363 i++;
1364 }
1365 #endif
1366 memset (&std_regs[i], 0, sizeof (std_regs[i]));
1367 }
1368
1369 void
1370 _initialize_parse (void)
1371 {
1372 type_stack_size = 80;
1373 type_stack_depth = 0;
1374 type_stack = (union type_stack_elt *)
1375 xmalloc (type_stack_size * sizeof (*type_stack));
1376
1377 build_parse ();
1378
1379 /* FIXME - For the moment, handle types by swapping them in and out.
1380 Should be using the per-architecture data-pointer and a large
1381 struct. */
1382 register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL);
1383 register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL);
1384 register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL);
1385
1386 register_gdbarch_swap (&num_std_regs, sizeof (std_regs), NULL);
1387 register_gdbarch_swap (&std_regs, sizeof (std_regs), NULL);
1388 register_gdbarch_swap (NULL, 0, build_parse);
1389
1390 add_show_from_set (
1391 add_set_cmd ("expression", class_maintenance, var_zinteger,
1392 (char *) &expressiondebug,
1393 "Set expression debugging.\n\
1394 When non-zero, the internal representation of expressions will be printed.",
1395 &setdebuglist),
1396 &showdebuglist);
1397 }
This page took 0.057989 seconds and 4 git commands to generate.