Fix accessing TLS variables with no debug info
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "doublest.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67 \f
68 /* Global variables declared in parser-defs.h (and commented there). */
69 const struct block *expression_context_block;
70 CORE_ADDR expression_context_pc;
71 const struct block *innermost_block;
72 int arglist_len;
73 static struct type_stack type_stack;
74 const char *lexptr;
75 const char *prev_lexptr;
76 int paren_depth;
77 int comma_terminates;
78
79 /* True if parsing an expression to attempt completion. */
80 int parse_completion;
81
82 /* The index of the last struct expression directly before a '.' or
83 '->'. This is set when parsing and is only used when completing a
84 field name. It is -1 if no dereference operation was found. */
85 static int expout_last_struct = -1;
86
87 /* If we are completing a tagged type name, this will be nonzero. */
88 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
89
90 /* The token for tagged type name completion. */
91 static char *expout_completion_name;
92
93 \f
94 static unsigned int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101
102
103 /* Non-zero if an expression parser should set yydebug. */
104 int parser_debug;
105
106 static void
107 show_parserdebug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111 }
112
113
114 static void free_funcalls (void *ignore);
115
116 static int prefixify_subexp (struct expression *, struct expression *, int,
117 int);
118
119 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
120 const struct block *, int,
121 int, int *);
122 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
123 const struct block *, int,
124 int, int *);
125
126 void _initialize_parse (void);
127
128 /* Data structure for saving values of arglist_len for function calls whose
129 arguments contain other function calls. */
130
131 struct funcall
132 {
133 struct funcall *next;
134 int arglist_len;
135 };
136
137 static struct funcall *funcall_chain;
138
139 /* Begin counting arguments for a function call,
140 saving the data about any containing call. */
141
142 void
143 start_arglist (void)
144 {
145 struct funcall *newobj;
146
147 newobj = XNEW (struct funcall);
148 newobj->next = funcall_chain;
149 newobj->arglist_len = arglist_len;
150 arglist_len = 0;
151 funcall_chain = newobj;
152 }
153
154 /* Return the number of arguments in a function call just terminated,
155 and restore the data for the containing function call. */
156
157 int
158 end_arglist (void)
159 {
160 int val = arglist_len;
161 struct funcall *call = funcall_chain;
162
163 funcall_chain = call->next;
164 arglist_len = call->arglist_len;
165 xfree (call);
166 return val;
167 }
168
169 /* Free everything in the funcall chain.
170 Used when there is an error inside parsing. */
171
172 static void
173 free_funcalls (void *ignore)
174 {
175 struct funcall *call, *next;
176
177 for (call = funcall_chain; call; call = next)
178 {
179 next = call->next;
180 xfree (call);
181 }
182 }
183 \f
184
185 /* See definition in parser-defs.h. */
186
187 void
188 initialize_expout (struct parser_state *ps, size_t initial_size,
189 const struct language_defn *lang,
190 struct gdbarch *gdbarch)
191 {
192 ps->expout_size = initial_size;
193 ps->expout_ptr = 0;
194 ps->expout
195 = (struct expression *) xmalloc (sizeof (struct expression)
196 + EXP_ELEM_TO_BYTES (ps->expout_size));
197 ps->expout->language_defn = lang;
198 ps->expout->gdbarch = gdbarch;
199 }
200
201 /* See definition in parser-defs.h. */
202
203 void
204 reallocate_expout (struct parser_state *ps)
205 {
206 /* Record the actual number of expression elements, and then
207 reallocate the expression memory so that we free up any
208 excess elements. */
209
210 ps->expout->nelts = ps->expout_ptr;
211 ps->expout = (struct expression *)
212 xrealloc (ps->expout,
213 sizeof (struct expression)
214 + EXP_ELEM_TO_BYTES (ps->expout_ptr));
215 }
216
217 /* This page contains the functions for adding data to the struct expression
218 being constructed. */
219
220 /* Add one element to the end of the expression. */
221
222 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
223 a register through here. */
224
225 static void
226 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
227 {
228 if (ps->expout_ptr >= ps->expout_size)
229 {
230 ps->expout_size *= 2;
231 ps->expout = (struct expression *)
232 xrealloc (ps->expout, sizeof (struct expression)
233 + EXP_ELEM_TO_BYTES (ps->expout_size));
234 }
235 ps->expout->elts[ps->expout_ptr++] = *expelt;
236 }
237
238 void
239 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
240 {
241 union exp_element tmp;
242
243 memset (&tmp, 0, sizeof (union exp_element));
244 tmp.opcode = expelt;
245 write_exp_elt (ps, &tmp);
246 }
247
248 void
249 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
250 {
251 union exp_element tmp;
252
253 memset (&tmp, 0, sizeof (union exp_element));
254 tmp.symbol = expelt;
255 write_exp_elt (ps, &tmp);
256 }
257
258 void
259 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
260 {
261 union exp_element tmp;
262
263 memset (&tmp, 0, sizeof (union exp_element));
264 tmp.msymbol = expelt;
265 write_exp_elt (ps, &tmp);
266 }
267
268 void
269 write_exp_elt_block (struct parser_state *ps, const struct block *b)
270 {
271 union exp_element tmp;
272
273 memset (&tmp, 0, sizeof (union exp_element));
274 tmp.block = b;
275 write_exp_elt (ps, &tmp);
276 }
277
278 void
279 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
280 {
281 union exp_element tmp;
282
283 memset (&tmp, 0, sizeof (union exp_element));
284 tmp.objfile = objfile;
285 write_exp_elt (ps, &tmp);
286 }
287
288 void
289 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.longconst = expelt;
295 write_exp_elt (ps, &tmp);
296 }
297
298 void
299 write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
300 {
301 union exp_element tmp;
302
303 memset (&tmp, 0, sizeof (union exp_element));
304 tmp.doubleconst = expelt;
305 write_exp_elt (ps, &tmp);
306 }
307
308 void
309 write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
310 {
311 union exp_element tmp;
312 int index;
313
314 for (index = 0; index < 16; index++)
315 tmp.decfloatconst[index] = expelt[index];
316
317 write_exp_elt (ps, &tmp);
318 }
319
320 void
321 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
322 {
323 union exp_element tmp;
324
325 memset (&tmp, 0, sizeof (union exp_element));
326 tmp.type = expelt;
327 write_exp_elt (ps, &tmp);
328 }
329
330 void
331 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
332 {
333 union exp_element tmp;
334
335 memset (&tmp, 0, sizeof (union exp_element));
336 tmp.internalvar = expelt;
337 write_exp_elt (ps, &tmp);
338 }
339
340 /* Add a string constant to the end of the expression.
341
342 String constants are stored by first writing an expression element
343 that contains the length of the string, then stuffing the string
344 constant itself into however many expression elements are needed
345 to hold it, and then writing another expression element that contains
346 the length of the string. I.e. an expression element at each end of
347 the string records the string length, so you can skip over the
348 expression elements containing the actual string bytes from either
349 end of the string. Note that this also allows gdb to handle
350 strings with embedded null bytes, as is required for some languages.
351
352 Don't be fooled by the fact that the string is null byte terminated,
353 this is strictly for the convenience of debugging gdb itself.
354 Gdb does not depend up the string being null terminated, since the
355 actual length is recorded in expression elements at each end of the
356 string. The null byte is taken into consideration when computing how
357 many expression elements are required to hold the string constant, of
358 course. */
359
360
361 void
362 write_exp_string (struct parser_state *ps, struct stoken str)
363 {
364 int len = str.length;
365 size_t lenelt;
366 char *strdata;
367
368 /* Compute the number of expression elements required to hold the string
369 (including a null byte terminator), along with one expression element
370 at each end to record the actual string length (not including the
371 null byte terminator). */
372
373 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
374
375 increase_expout_size (ps, lenelt);
376
377 /* Write the leading length expression element (which advances the current
378 expression element index), then write the string constant followed by a
379 terminating null byte, and then write the trailing length expression
380 element. */
381
382 write_exp_elt_longcst (ps, (LONGEST) len);
383 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
384 memcpy (strdata, str.ptr, len);
385 *(strdata + len) = '\0';
386 ps->expout_ptr += lenelt - 2;
387 write_exp_elt_longcst (ps, (LONGEST) len);
388 }
389
390 /* Add a vector of string constants to the end of the expression.
391
392 This adds an OP_STRING operation, but encodes the contents
393 differently from write_exp_string. The language is expected to
394 handle evaluation of this expression itself.
395
396 After the usual OP_STRING header, TYPE is written into the
397 expression as a long constant. The interpretation of this field is
398 up to the language evaluator.
399
400 Next, each string in VEC is written. The length is written as a
401 long constant, followed by the contents of the string. */
402
403 void
404 write_exp_string_vector (struct parser_state *ps, int type,
405 struct stoken_vector *vec)
406 {
407 int i, len;
408 size_t n_slots;
409
410 /* Compute the size. We compute the size in number of slots to
411 avoid issues with string padding. */
412 n_slots = 0;
413 for (i = 0; i < vec->len; ++i)
414 {
415 /* One slot for the length of this element, plus the number of
416 slots needed for this string. */
417 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
418 }
419
420 /* One more slot for the type of the string. */
421 ++n_slots;
422
423 /* Now compute a phony string length. */
424 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
425
426 n_slots += 4;
427 increase_expout_size (ps, n_slots);
428
429 write_exp_elt_opcode (ps, OP_STRING);
430 write_exp_elt_longcst (ps, len);
431 write_exp_elt_longcst (ps, type);
432
433 for (i = 0; i < vec->len; ++i)
434 {
435 write_exp_elt_longcst (ps, vec->tokens[i].length);
436 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
437 vec->tokens[i].length);
438 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
439 }
440
441 write_exp_elt_longcst (ps, len);
442 write_exp_elt_opcode (ps, OP_STRING);
443 }
444
445 /* Add a bitstring constant to the end of the expression.
446
447 Bitstring constants are stored by first writing an expression element
448 that contains the length of the bitstring (in bits), then stuffing the
449 bitstring constant itself into however many expression elements are
450 needed to hold it, and then writing another expression element that
451 contains the length of the bitstring. I.e. an expression element at
452 each end of the bitstring records the bitstring length, so you can skip
453 over the expression elements containing the actual bitstring bytes from
454 either end of the bitstring. */
455
456 void
457 write_exp_bitstring (struct parser_state *ps, struct stoken str)
458 {
459 int bits = str.length; /* length in bits */
460 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
461 size_t lenelt;
462 char *strdata;
463
464 /* Compute the number of expression elements required to hold the bitstring,
465 along with one expression element at each end to record the actual
466 bitstring length in bits. */
467
468 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
469
470 increase_expout_size (ps, lenelt);
471
472 /* Write the leading length expression element (which advances the current
473 expression element index), then write the bitstring constant, and then
474 write the trailing length expression element. */
475
476 write_exp_elt_longcst (ps, (LONGEST) bits);
477 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
478 memcpy (strdata, str.ptr, len);
479 ps->expout_ptr += lenelt - 2;
480 write_exp_elt_longcst (ps, (LONGEST) bits);
481 }
482
483 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
484 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
485 address. */
486
487 type *
488 find_minsym_type_and_address (minimal_symbol *msymbol,
489 struct objfile *objfile,
490 CORE_ADDR *address_p)
491 {
492 bound_minimal_symbol bound_msym = {msymbol, objfile};
493 struct gdbarch *gdbarch = get_objfile_arch (objfile);
494 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
495 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
496 CORE_ADDR pc;
497
498 bool is_tls = (section != NULL
499 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
500
501 /* Addresses of TLS symbols are really offsets into a
502 per-objfile/per-thread storage block. */
503 CORE_ADDR addr = (is_tls
504 ? MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym)
505 : BMSYMBOL_VALUE_ADDRESS (bound_msym));
506
507 /* The minimal symbol might point to a function descriptor;
508 resolve it to the actual code address instead. */
509 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
510 if (pc != addr)
511 {
512 struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
513
514 /* In this case, assume we have a code symbol instead of
515 a data symbol. */
516
517 if (ifunc_msym.minsym != NULL
518 && MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
519 && BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
520 {
521 /* A function descriptor has been resolved but PC is still in the
522 STT_GNU_IFUNC resolver body (such as because inferior does not
523 run to be able to call it). */
524
525 type = mst_text_gnu_ifunc;
526 }
527 else
528 type = mst_text;
529 section = NULL;
530 addr = pc;
531 }
532
533 if (overlay_debugging)
534 addr = symbol_overlayed_address (addr, section);
535
536 if (is_tls)
537 {
538 /* Skip translation if caller does not need the address. */
539 if (address_p != NULL)
540 *address_p = target_translate_tls_address (objfile, addr);
541 return objfile_type (objfile)->nodebug_tls_symbol;
542 }
543
544 if (address_p != NULL)
545 *address_p = addr;
546
547 struct type *the_type;
548
549 switch (type)
550 {
551 case mst_text:
552 case mst_file_text:
553 case mst_solib_trampoline:
554 return objfile_type (objfile)->nodebug_text_symbol;
555
556 case mst_text_gnu_ifunc:
557 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
558
559 case mst_data:
560 case mst_file_data:
561 case mst_bss:
562 case mst_file_bss:
563 return objfile_type (objfile)->nodebug_data_symbol;
564
565 case mst_slot_got_plt:
566 return objfile_type (objfile)->nodebug_got_plt_symbol;
567
568 default:
569 return objfile_type (objfile)->nodebug_unknown_symbol;
570 }
571 }
572
573 /* Add the appropriate elements for a minimal symbol to the end of
574 the expression. */
575
576 void
577 write_exp_msymbol (struct parser_state *ps,
578 struct bound_minimal_symbol bound_msym)
579 {
580 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
581 write_exp_elt_objfile (ps, bound_msym.objfile);
582 write_exp_elt_msym (ps, bound_msym.minsym);
583 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
584 }
585
586 /* Mark the current index as the starting location of a structure
587 expression. This is used when completing on field names. */
588
589 void
590 mark_struct_expression (struct parser_state *ps)
591 {
592 gdb_assert (parse_completion
593 && expout_tag_completion_type == TYPE_CODE_UNDEF);
594 expout_last_struct = ps->expout_ptr;
595 }
596
597 /* Indicate that the current parser invocation is completing a tag.
598 TAG is the type code of the tag, and PTR and LENGTH represent the
599 start of the tag name. */
600
601 void
602 mark_completion_tag (enum type_code tag, const char *ptr, int length)
603 {
604 gdb_assert (parse_completion
605 && expout_tag_completion_type == TYPE_CODE_UNDEF
606 && expout_completion_name == NULL
607 && expout_last_struct == -1);
608 gdb_assert (tag == TYPE_CODE_UNION
609 || tag == TYPE_CODE_STRUCT
610 || tag == TYPE_CODE_ENUM);
611 expout_tag_completion_type = tag;
612 expout_completion_name = (char *) xmalloc (length + 1);
613 memcpy (expout_completion_name, ptr, length);
614 expout_completion_name[length] = '\0';
615 }
616
617 \f
618 /* Recognize tokens that start with '$'. These include:
619
620 $regname A native register name or a "standard
621 register name".
622
623 $variable A convenience variable with a name chosen
624 by the user.
625
626 $digits Value history with index <digits>, starting
627 from the first value which has index 1.
628
629 $$digits Value history with index <digits> relative
630 to the last value. I.e. $$0 is the last
631 value, $$1 is the one previous to that, $$2
632 is the one previous to $$1, etc.
633
634 $ | $0 | $$0 The last value in the value history.
635
636 $$ An abbreviation for the second to the last
637 value in the value history, I.e. $$1 */
638
639 void
640 write_dollar_variable (struct parser_state *ps, struct stoken str)
641 {
642 struct block_symbol sym;
643 struct bound_minimal_symbol msym;
644 struct internalvar *isym = NULL;
645
646 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
647 and $$digits (equivalent to $<-digits> if you could type that). */
648
649 int negate = 0;
650 int i = 1;
651 /* Double dollar means negate the number and add -1 as well.
652 Thus $$ alone means -1. */
653 if (str.length >= 2 && str.ptr[1] == '$')
654 {
655 negate = 1;
656 i = 2;
657 }
658 if (i == str.length)
659 {
660 /* Just dollars (one or two). */
661 i = -negate;
662 goto handle_last;
663 }
664 /* Is the rest of the token digits? */
665 for (; i < str.length; i++)
666 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
667 break;
668 if (i == str.length)
669 {
670 i = atoi (str.ptr + 1 + negate);
671 if (negate)
672 i = -i;
673 goto handle_last;
674 }
675
676 /* Handle tokens that refer to machine registers:
677 $ followed by a register name. */
678 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
679 str.ptr + 1, str.length - 1);
680 if (i >= 0)
681 goto handle_register;
682
683 /* Any names starting with $ are probably debugger internal variables. */
684
685 isym = lookup_only_internalvar (copy_name (str) + 1);
686 if (isym)
687 {
688 write_exp_elt_opcode (ps, OP_INTERNALVAR);
689 write_exp_elt_intern (ps, isym);
690 write_exp_elt_opcode (ps, OP_INTERNALVAR);
691 return;
692 }
693
694 /* On some systems, such as HP-UX and hppa-linux, certain system routines
695 have names beginning with $ or $$. Check for those, first. */
696
697 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
698 VAR_DOMAIN, NULL);
699 if (sym.symbol)
700 {
701 write_exp_elt_opcode (ps, OP_VAR_VALUE);
702 write_exp_elt_block (ps, sym.block);
703 write_exp_elt_sym (ps, sym.symbol);
704 write_exp_elt_opcode (ps, OP_VAR_VALUE);
705 return;
706 }
707 msym = lookup_bound_minimal_symbol (copy_name (str));
708 if (msym.minsym)
709 {
710 write_exp_msymbol (ps, msym);
711 return;
712 }
713
714 /* Any other names are assumed to be debugger internal variables. */
715
716 write_exp_elt_opcode (ps, OP_INTERNALVAR);
717 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
718 write_exp_elt_opcode (ps, OP_INTERNALVAR);
719 return;
720 handle_last:
721 write_exp_elt_opcode (ps, OP_LAST);
722 write_exp_elt_longcst (ps, (LONGEST) i);
723 write_exp_elt_opcode (ps, OP_LAST);
724 return;
725 handle_register:
726 write_exp_elt_opcode (ps, OP_REGISTER);
727 str.length--;
728 str.ptr++;
729 write_exp_string (ps, str);
730 write_exp_elt_opcode (ps, OP_REGISTER);
731 return;
732 }
733
734
735 const char *
736 find_template_name_end (const char *p)
737 {
738 int depth = 1;
739 int just_seen_right = 0;
740 int just_seen_colon = 0;
741 int just_seen_space = 0;
742
743 if (!p || (*p != '<'))
744 return 0;
745
746 while (*++p)
747 {
748 switch (*p)
749 {
750 case '\'':
751 case '\"':
752 case '{':
753 case '}':
754 /* In future, may want to allow these?? */
755 return 0;
756 case '<':
757 depth++; /* start nested template */
758 if (just_seen_colon || just_seen_right || just_seen_space)
759 return 0; /* but not after : or :: or > or space */
760 break;
761 case '>':
762 if (just_seen_colon || just_seen_right)
763 return 0; /* end a (nested?) template */
764 just_seen_right = 1; /* but not after : or :: */
765 if (--depth == 0) /* also disallow >>, insist on > > */
766 return ++p; /* if outermost ended, return */
767 break;
768 case ':':
769 if (just_seen_space || (just_seen_colon > 1))
770 return 0; /* nested class spec coming up */
771 just_seen_colon++; /* we allow :: but not :::: */
772 break;
773 case ' ':
774 break;
775 default:
776 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
777 (*p >= 'A' && *p <= 'Z') ||
778 (*p >= '0' && *p <= '9') ||
779 (*p == '_') || (*p == ',') || /* commas for template args */
780 (*p == '&') || (*p == '*') || /* pointer and ref types */
781 (*p == '(') || (*p == ')') || /* function types */
782 (*p == '[') || (*p == ']'))) /* array types */
783 return 0;
784 }
785 if (*p != ' ')
786 just_seen_space = 0;
787 if (*p != ':')
788 just_seen_colon = 0;
789 if (*p != '>')
790 just_seen_right = 0;
791 }
792 return 0;
793 }
794 \f
795
796 /* Return a null-terminated temporary copy of the name of a string token.
797
798 Tokens that refer to names do so with explicit pointer and length,
799 so they can share the storage that lexptr is parsing.
800 When it is necessary to pass a name to a function that expects
801 a null-terminated string, the substring is copied out
802 into a separate block of storage.
803
804 N.B. A single buffer is reused on each call. */
805
806 char *
807 copy_name (struct stoken token)
808 {
809 /* A temporary buffer for identifiers, so we can null-terminate them.
810 We allocate this with xrealloc. parse_exp_1 used to allocate with
811 alloca, using the size of the whole expression as a conservative
812 estimate of the space needed. However, macro expansion can
813 introduce names longer than the original expression; there's no
814 practical way to know beforehand how large that might be. */
815 static char *namecopy;
816 static size_t namecopy_size;
817
818 /* Make sure there's enough space for the token. */
819 if (namecopy_size < token.length + 1)
820 {
821 namecopy_size = token.length + 1;
822 namecopy = (char *) xrealloc (namecopy, token.length + 1);
823 }
824
825 memcpy (namecopy, token.ptr, token.length);
826 namecopy[token.length] = 0;
827
828 return namecopy;
829 }
830 \f
831
832 /* See comments on parser-defs.h. */
833
834 int
835 prefixify_expression (struct expression *expr)
836 {
837 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
838 struct expression *temp;
839 int inpos = expr->nelts, outpos = 0;
840
841 temp = (struct expression *) alloca (len);
842
843 /* Copy the original expression into temp. */
844 memcpy (temp, expr, len);
845
846 return prefixify_subexp (temp, expr, inpos, outpos);
847 }
848
849 /* Return the number of exp_elements in the postfix subexpression
850 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
851
852 static int
853 length_of_subexp (struct expression *expr, int endpos)
854 {
855 int oplen, args;
856
857 operator_length (expr, endpos, &oplen, &args);
858
859 while (args > 0)
860 {
861 oplen += length_of_subexp (expr, endpos - oplen);
862 args--;
863 }
864
865 return oplen;
866 }
867
868 /* Sets *OPLENP to the length of the operator whose (last) index is
869 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
870 operator takes. */
871
872 void
873 operator_length (const struct expression *expr, int endpos, int *oplenp,
874 int *argsp)
875 {
876 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
877 oplenp, argsp);
878 }
879
880 /* Default value for operator_length in exp_descriptor vectors. */
881
882 void
883 operator_length_standard (const struct expression *expr, int endpos,
884 int *oplenp, int *argsp)
885 {
886 int oplen = 1;
887 int args = 0;
888 enum range_type range_type;
889 int i;
890
891 if (endpos < 1)
892 error (_("?error in operator_length_standard"));
893
894 i = (int) expr->elts[endpos - 1].opcode;
895
896 switch (i)
897 {
898 /* C++ */
899 case OP_SCOPE:
900 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
901 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
902 break;
903
904 case OP_LONG:
905 case OP_DOUBLE:
906 case OP_DECFLOAT:
907 case OP_VAR_VALUE:
908 case OP_VAR_MSYM_VALUE:
909 oplen = 4;
910 break;
911
912 case OP_FUNC_STATIC_VAR:
913 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
914 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
915 args = 1;
916 break;
917
918 case OP_TYPE:
919 case OP_BOOL:
920 case OP_LAST:
921 case OP_INTERNALVAR:
922 case OP_VAR_ENTRY_VALUE:
923 oplen = 3;
924 break;
925
926 case OP_COMPLEX:
927 oplen = 3;
928 args = 2;
929 break;
930
931 case OP_FUNCALL:
932 case OP_F77_UNDETERMINED_ARGLIST:
933 oplen = 3;
934 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
935 break;
936
937 case TYPE_INSTANCE:
938 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
939 args = 1;
940 break;
941
942 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
943 oplen = 4;
944 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
945 break;
946
947 case UNOP_MAX:
948 case UNOP_MIN:
949 oplen = 3;
950 break;
951
952 case UNOP_CAST_TYPE:
953 case UNOP_DYNAMIC_CAST:
954 case UNOP_REINTERPRET_CAST:
955 case UNOP_MEMVAL_TYPE:
956 oplen = 1;
957 args = 2;
958 break;
959
960 case BINOP_VAL:
961 case UNOP_CAST:
962 case UNOP_MEMVAL:
963 oplen = 3;
964 args = 1;
965 break;
966
967 case UNOP_ABS:
968 case UNOP_CAP:
969 case UNOP_CHR:
970 case UNOP_FLOAT:
971 case UNOP_HIGH:
972 case UNOP_ODD:
973 case UNOP_ORD:
974 case UNOP_TRUNC:
975 case OP_TYPEOF:
976 case OP_DECLTYPE:
977 case OP_TYPEID:
978 oplen = 1;
979 args = 1;
980 break;
981
982 case OP_ADL_FUNC:
983 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
984 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
985 oplen++;
986 oplen++;
987 break;
988
989 case STRUCTOP_STRUCT:
990 case STRUCTOP_PTR:
991 args = 1;
992 /* fall through */
993 case OP_REGISTER:
994 case OP_M2_STRING:
995 case OP_STRING:
996 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
997 NSString constant. */
998 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
999 case OP_NAME:
1000 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
1001 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1002 break;
1003
1004 case OP_ARRAY:
1005 oplen = 4;
1006 args = longest_to_int (expr->elts[endpos - 2].longconst);
1007 args -= longest_to_int (expr->elts[endpos - 3].longconst);
1008 args += 1;
1009 break;
1010
1011 case TERNOP_COND:
1012 case TERNOP_SLICE:
1013 args = 3;
1014 break;
1015
1016 /* Modula-2 */
1017 case MULTI_SUBSCRIPT:
1018 oplen = 3;
1019 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
1020 break;
1021
1022 case BINOP_ASSIGN_MODIFY:
1023 oplen = 3;
1024 args = 2;
1025 break;
1026
1027 /* C++ */
1028 case OP_THIS:
1029 oplen = 2;
1030 break;
1031
1032 case OP_RANGE:
1033 oplen = 3;
1034 range_type = (enum range_type)
1035 longest_to_int (expr->elts[endpos - 2].longconst);
1036
1037 switch (range_type)
1038 {
1039 case LOW_BOUND_DEFAULT:
1040 case HIGH_BOUND_DEFAULT:
1041 args = 1;
1042 break;
1043 case BOTH_BOUND_DEFAULT:
1044 args = 0;
1045 break;
1046 case NONE_BOUND_DEFAULT:
1047 args = 2;
1048 break;
1049 }
1050
1051 break;
1052
1053 default:
1054 args = 1 + (i < (int) BINOP_END);
1055 }
1056
1057 *oplenp = oplen;
1058 *argsp = args;
1059 }
1060
1061 /* Copy the subexpression ending just before index INEND in INEXPR
1062 into OUTEXPR, starting at index OUTBEG.
1063 In the process, convert it from suffix to prefix form.
1064 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1065 Otherwise, it returns the index of the subexpression which is the
1066 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1067
1068 static int
1069 prefixify_subexp (struct expression *inexpr,
1070 struct expression *outexpr, int inend, int outbeg)
1071 {
1072 int oplen;
1073 int args;
1074 int i;
1075 int *arglens;
1076 int result = -1;
1077
1078 operator_length (inexpr, inend, &oplen, &args);
1079
1080 /* Copy the final operator itself, from the end of the input
1081 to the beginning of the output. */
1082 inend -= oplen;
1083 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1084 EXP_ELEM_TO_BYTES (oplen));
1085 outbeg += oplen;
1086
1087 if (expout_last_struct == inend)
1088 result = outbeg - oplen;
1089
1090 /* Find the lengths of the arg subexpressions. */
1091 arglens = (int *) alloca (args * sizeof (int));
1092 for (i = args - 1; i >= 0; i--)
1093 {
1094 oplen = length_of_subexp (inexpr, inend);
1095 arglens[i] = oplen;
1096 inend -= oplen;
1097 }
1098
1099 /* Now copy each subexpression, preserving the order of
1100 the subexpressions, but prefixifying each one.
1101 In this loop, inend starts at the beginning of
1102 the expression this level is working on
1103 and marches forward over the arguments.
1104 outbeg does similarly in the output. */
1105 for (i = 0; i < args; i++)
1106 {
1107 int r;
1108
1109 oplen = arglens[i];
1110 inend += oplen;
1111 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1112 if (r != -1)
1113 {
1114 /* Return immediately. We probably have only parsed a
1115 partial expression, so we don't want to try to reverse
1116 the other operands. */
1117 return r;
1118 }
1119 outbeg += oplen;
1120 }
1121
1122 return result;
1123 }
1124 \f
1125 /* Read an expression from the string *STRINGPTR points to,
1126 parse it, and return a pointer to a struct expression that we malloc.
1127 Use block BLOCK as the lexical context for variable names;
1128 if BLOCK is zero, use the block of the selected stack frame.
1129 Meanwhile, advance *STRINGPTR to point after the expression,
1130 at the first nonwhite character that is not part of the expression
1131 (possibly a null character).
1132
1133 If COMMA is nonzero, stop if a comma is reached. */
1134
1135 expression_up
1136 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1137 int comma)
1138 {
1139 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1140 }
1141
1142 static expression_up
1143 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1144 const struct block *block,
1145 int comma, int void_context_p, int *out_subexp)
1146 {
1147 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1148 void_context_p, out_subexp);
1149 }
1150
1151 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1152 no value is expected from the expression.
1153 OUT_SUBEXP is set when attempting to complete a field name; in this
1154 case it is set to the index of the subexpression on the
1155 left-hand-side of the struct op. If not doing such completion, it
1156 is left untouched. */
1157
1158 static expression_up
1159 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1160 const struct block *block,
1161 int comma, int void_context_p, int *out_subexp)
1162 {
1163 struct cleanup *old_chain;
1164 const struct language_defn *lang = NULL;
1165 struct parser_state ps;
1166 int subexp;
1167
1168 lexptr = *stringptr;
1169 prev_lexptr = NULL;
1170
1171 paren_depth = 0;
1172 type_stack.depth = 0;
1173 expout_last_struct = -1;
1174 expout_tag_completion_type = TYPE_CODE_UNDEF;
1175 xfree (expout_completion_name);
1176 expout_completion_name = NULL;
1177
1178 comma_terminates = comma;
1179
1180 if (lexptr == 0 || *lexptr == 0)
1181 error_no_arg (_("expression to compute"));
1182
1183 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1184 funcall_chain = 0;
1185
1186 expression_context_block = block;
1187
1188 /* If no context specified, try using the current frame, if any. */
1189 if (!expression_context_block)
1190 expression_context_block = get_selected_block (&expression_context_pc);
1191 else if (pc == 0)
1192 expression_context_pc = BLOCK_START (expression_context_block);
1193 else
1194 expression_context_pc = pc;
1195
1196 /* Fall back to using the current source static context, if any. */
1197
1198 if (!expression_context_block)
1199 {
1200 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1201 if (cursal.symtab)
1202 expression_context_block
1203 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1204 STATIC_BLOCK);
1205 if (expression_context_block)
1206 expression_context_pc = BLOCK_START (expression_context_block);
1207 }
1208
1209 if (language_mode == language_mode_auto && block != NULL)
1210 {
1211 /* Find the language associated to the given context block.
1212 Default to the current language if it can not be determined.
1213
1214 Note that using the language corresponding to the current frame
1215 can sometimes give unexpected results. For instance, this
1216 routine is often called several times during the inferior
1217 startup phase to re-parse breakpoint expressions after
1218 a new shared library has been loaded. The language associated
1219 to the current frame at this moment is not relevant for
1220 the breakpoint. Using it would therefore be silly, so it seems
1221 better to rely on the current language rather than relying on
1222 the current frame language to parse the expression. That's why
1223 we do the following language detection only if the context block
1224 has been specifically provided. */
1225 struct symbol *func = block_linkage_function (block);
1226
1227 if (func != NULL)
1228 lang = language_def (SYMBOL_LANGUAGE (func));
1229 if (lang == NULL || lang->la_language == language_unknown)
1230 lang = current_language;
1231 }
1232 else
1233 lang = current_language;
1234
1235 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1236 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1237 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1238 to the value matching SELECTED_FRAME as set by get_current_arch. */
1239
1240 initialize_expout (&ps, 10, lang, get_current_arch ());
1241
1242 scoped_restore_current_language lang_saver;
1243 set_language (lang->la_language);
1244
1245 TRY
1246 {
1247 if (lang->la_parser (&ps))
1248 lang->la_error (NULL);
1249 }
1250 CATCH (except, RETURN_MASK_ALL)
1251 {
1252 if (! parse_completion)
1253 {
1254 xfree (ps.expout);
1255 throw_exception (except);
1256 }
1257 }
1258 END_CATCH
1259
1260 reallocate_expout (&ps);
1261
1262 /* Convert expression from postfix form as generated by yacc
1263 parser, to a prefix form. */
1264
1265 if (expressiondebug)
1266 dump_raw_expression (ps.expout, gdb_stdlog,
1267 "before conversion to prefix form");
1268
1269 subexp = prefixify_expression (ps.expout);
1270 if (out_subexp)
1271 *out_subexp = subexp;
1272
1273 lang->la_post_parser (&ps.expout, void_context_p);
1274
1275 if (expressiondebug)
1276 dump_prefix_expression (ps.expout, gdb_stdlog);
1277
1278 discard_cleanups (old_chain);
1279
1280 *stringptr = lexptr;
1281 return expression_up (ps.expout);
1282 }
1283
1284 /* Parse STRING as an expression, and complain if this fails
1285 to use up all of the contents of STRING. */
1286
1287 expression_up
1288 parse_expression (const char *string)
1289 {
1290 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1291 if (*string)
1292 error (_("Junk after end of expression."));
1293 return exp;
1294 }
1295
1296 /* Same as parse_expression, but using the given language (LANG)
1297 to parse the expression. */
1298
1299 expression_up
1300 parse_expression_with_language (const char *string, enum language lang)
1301 {
1302 gdb::optional<scoped_restore_current_language> lang_saver;
1303 if (current_language->la_language != lang)
1304 {
1305 lang_saver.emplace ();
1306 set_language (lang);
1307 }
1308
1309 return parse_expression (string);
1310 }
1311
1312 /* Parse STRING as an expression. If parsing ends in the middle of a
1313 field reference, return the type of the left-hand-side of the
1314 reference; furthermore, if the parsing ends in the field name,
1315 return the field name in *NAME. If the parsing ends in the middle
1316 of a field reference, but the reference is somehow invalid, throw
1317 an exception. In all other cases, return NULL. Returned non-NULL
1318 *NAME must be freed by the caller. */
1319
1320 struct type *
1321 parse_expression_for_completion (const char *string, char **name,
1322 enum type_code *code)
1323 {
1324 expression_up exp;
1325 struct value *val;
1326 int subexp;
1327
1328 TRY
1329 {
1330 parse_completion = 1;
1331 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1332 }
1333 CATCH (except, RETURN_MASK_ERROR)
1334 {
1335 /* Nothing, EXP remains NULL. */
1336 }
1337 END_CATCH
1338
1339 parse_completion = 0;
1340 if (exp == NULL)
1341 return NULL;
1342
1343 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1344 {
1345 *code = expout_tag_completion_type;
1346 *name = expout_completion_name;
1347 expout_completion_name = NULL;
1348 return NULL;
1349 }
1350
1351 if (expout_last_struct == -1)
1352 return NULL;
1353
1354 *name = extract_field_op (exp.get (), &subexp);
1355 if (!*name)
1356 return NULL;
1357
1358 /* This might throw an exception. If so, we want to let it
1359 propagate. */
1360 val = evaluate_subexpression_type (exp.get (), subexp);
1361 /* (*NAME) is a part of the EXP memory block freed below. */
1362 *name = xstrdup (*name);
1363
1364 return value_type (val);
1365 }
1366
1367 /* A post-parser that does nothing. */
1368
1369 void
1370 null_post_parser (struct expression **exp, int void_context_p)
1371 {
1372 }
1373
1374 /* Parse floating point value P of length LEN.
1375 Return 0 (false) if invalid, 1 (true) if valid.
1376 The successfully parsed number is stored in D.
1377 *SUFFIX points to the suffix of the number in P.
1378
1379 NOTE: This accepts the floating point syntax that sscanf accepts. */
1380
1381 int
1382 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1383 {
1384 char *copy;
1385 int n, num;
1386
1387 copy = (char *) xmalloc (len + 1);
1388 memcpy (copy, p, len);
1389 copy[len] = 0;
1390
1391 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1392 xfree (copy);
1393
1394 /* The sscanf man page suggests not making any assumptions on the effect
1395 of %n on the result, so we don't.
1396 That is why we simply test num == 0. */
1397 if (num == 0)
1398 return 0;
1399
1400 *suffix = p + n;
1401 return 1;
1402 }
1403
1404 /* Parse floating point value P of length LEN, using the C syntax for floats.
1405 Return 0 (false) if invalid, 1 (true) if valid.
1406 The successfully parsed number is stored in *D.
1407 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1408
1409 int
1410 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1411 DOUBLEST *d, struct type **t)
1412 {
1413 const char *suffix;
1414 int suffix_len;
1415 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1416
1417 if (! parse_float (p, len, d, &suffix))
1418 return 0;
1419
1420 suffix_len = p + len - suffix;
1421
1422 if (suffix_len == 0)
1423 *t = builtin_types->builtin_double;
1424 else if (suffix_len == 1)
1425 {
1426 /* Handle suffixes: 'f' for float, 'l' for long double. */
1427 if (tolower (*suffix) == 'f')
1428 *t = builtin_types->builtin_float;
1429 else if (tolower (*suffix) == 'l')
1430 *t = builtin_types->builtin_long_double;
1431 else
1432 return 0;
1433 }
1434 else
1435 return 0;
1436
1437 return 1;
1438 }
1439 \f
1440 /* Stuff for maintaining a stack of types. Currently just used by C, but
1441 probably useful for any language which declares its types "backwards". */
1442
1443 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1444
1445 static void
1446 type_stack_reserve (struct type_stack *stack, int howmuch)
1447 {
1448 if (stack->depth + howmuch >= stack->size)
1449 {
1450 stack->size *= 2;
1451 if (stack->size < howmuch)
1452 stack->size = howmuch;
1453 stack->elements = XRESIZEVEC (union type_stack_elt, stack->elements,
1454 stack->size);
1455 }
1456 }
1457
1458 /* Ensure that there is a single open slot in the global type stack. */
1459
1460 static void
1461 check_type_stack_depth (void)
1462 {
1463 type_stack_reserve (&type_stack, 1);
1464 }
1465
1466 /* A helper function for insert_type and insert_type_address_space.
1467 This does work of expanding the type stack and inserting the new
1468 element, ELEMENT, into the stack at location SLOT. */
1469
1470 static void
1471 insert_into_type_stack (int slot, union type_stack_elt element)
1472 {
1473 check_type_stack_depth ();
1474
1475 if (slot < type_stack.depth)
1476 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1477 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1478 type_stack.elements[slot] = element;
1479 ++type_stack.depth;
1480 }
1481
1482 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1483 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1484 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1485 previous tp_pointer) if there is anything on the stack, or simply pushed
1486 if the stack is empty. Other values for TP are invalid. */
1487
1488 void
1489 insert_type (enum type_pieces tp)
1490 {
1491 union type_stack_elt element;
1492 int slot;
1493
1494 gdb_assert (tp == tp_pointer || tp == tp_reference
1495 || tp == tp_rvalue_reference || tp == tp_const
1496 || tp == tp_volatile);
1497
1498 /* If there is anything on the stack (we know it will be a
1499 tp_pointer), insert the qualifier above it. Otherwise, simply
1500 push this on the top of the stack. */
1501 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1502 slot = 1;
1503 else
1504 slot = 0;
1505
1506 element.piece = tp;
1507 insert_into_type_stack (slot, element);
1508 }
1509
1510 void
1511 push_type (enum type_pieces tp)
1512 {
1513 check_type_stack_depth ();
1514 type_stack.elements[type_stack.depth++].piece = tp;
1515 }
1516
1517 void
1518 push_type_int (int n)
1519 {
1520 check_type_stack_depth ();
1521 type_stack.elements[type_stack.depth++].int_val = n;
1522 }
1523
1524 /* Insert a tp_space_identifier and the corresponding address space
1525 value into the stack. STRING is the name of an address space, as
1526 recognized by address_space_name_to_int. If the stack is empty,
1527 the new elements are simply pushed. If the stack is not empty,
1528 this function assumes that the first item on the stack is a
1529 tp_pointer, and the new values are inserted above the first
1530 item. */
1531
1532 void
1533 insert_type_address_space (struct parser_state *pstate, char *string)
1534 {
1535 union type_stack_elt element;
1536 int slot;
1537
1538 /* If there is anything on the stack (we know it will be a
1539 tp_pointer), insert the address space qualifier above it.
1540 Otherwise, simply push this on the top of the stack. */
1541 if (type_stack.depth)
1542 slot = 1;
1543 else
1544 slot = 0;
1545
1546 element.piece = tp_space_identifier;
1547 insert_into_type_stack (slot, element);
1548 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1549 string);
1550 insert_into_type_stack (slot, element);
1551 }
1552
1553 enum type_pieces
1554 pop_type (void)
1555 {
1556 if (type_stack.depth)
1557 return type_stack.elements[--type_stack.depth].piece;
1558 return tp_end;
1559 }
1560
1561 int
1562 pop_type_int (void)
1563 {
1564 if (type_stack.depth)
1565 return type_stack.elements[--type_stack.depth].int_val;
1566 /* "Can't happen". */
1567 return 0;
1568 }
1569
1570 /* Pop a type list element from the global type stack. */
1571
1572 static VEC (type_ptr) *
1573 pop_typelist (void)
1574 {
1575 gdb_assert (type_stack.depth);
1576 return type_stack.elements[--type_stack.depth].typelist_val;
1577 }
1578
1579 /* Pop a type_stack element from the global type stack. */
1580
1581 static struct type_stack *
1582 pop_type_stack (void)
1583 {
1584 gdb_assert (type_stack.depth);
1585 return type_stack.elements[--type_stack.depth].stack_val;
1586 }
1587
1588 /* Append the elements of the type stack FROM to the type stack TO.
1589 Always returns TO. */
1590
1591 struct type_stack *
1592 append_type_stack (struct type_stack *to, struct type_stack *from)
1593 {
1594 type_stack_reserve (to, from->depth);
1595
1596 memcpy (&to->elements[to->depth], &from->elements[0],
1597 from->depth * sizeof (union type_stack_elt));
1598 to->depth += from->depth;
1599
1600 return to;
1601 }
1602
1603 /* Push the type stack STACK as an element on the global type stack. */
1604
1605 void
1606 push_type_stack (struct type_stack *stack)
1607 {
1608 check_type_stack_depth ();
1609 type_stack.elements[type_stack.depth++].stack_val = stack;
1610 push_type (tp_type_stack);
1611 }
1612
1613 /* Copy the global type stack into a newly allocated type stack and
1614 return it. The global stack is cleared. The returned type stack
1615 must be freed with type_stack_cleanup. */
1616
1617 struct type_stack *
1618 get_type_stack (void)
1619 {
1620 struct type_stack *result = XNEW (struct type_stack);
1621
1622 *result = type_stack;
1623 type_stack.depth = 0;
1624 type_stack.size = 0;
1625 type_stack.elements = NULL;
1626
1627 return result;
1628 }
1629
1630 /* A cleanup function that destroys a single type stack. */
1631
1632 void
1633 type_stack_cleanup (void *arg)
1634 {
1635 struct type_stack *stack = (struct type_stack *) arg;
1636
1637 xfree (stack->elements);
1638 xfree (stack);
1639 }
1640
1641 /* Push a function type with arguments onto the global type stack.
1642 LIST holds the argument types. If the final item in LIST is NULL,
1643 then the function will be varargs. */
1644
1645 void
1646 push_typelist (VEC (type_ptr) *list)
1647 {
1648 check_type_stack_depth ();
1649 type_stack.elements[type_stack.depth++].typelist_val = list;
1650 push_type (tp_function_with_arguments);
1651 }
1652
1653 /* Pop the type stack and return a type_instance_flags that
1654 corresponds the const/volatile qualifiers on the stack. This is
1655 called by the C++ parser when parsing methods types, and as such no
1656 other kind of type in the type stack is expected. */
1657
1658 type_instance_flags
1659 follow_type_instance_flags ()
1660 {
1661 type_instance_flags flags = 0;
1662
1663 for (;;)
1664 switch (pop_type ())
1665 {
1666 case tp_end:
1667 return flags;
1668 case tp_const:
1669 flags |= TYPE_INSTANCE_FLAG_CONST;
1670 break;
1671 case tp_volatile:
1672 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1673 break;
1674 default:
1675 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1676 }
1677 }
1678
1679
1680 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1681 as modified by all the stuff on the stack. */
1682 struct type *
1683 follow_types (struct type *follow_type)
1684 {
1685 int done = 0;
1686 int make_const = 0;
1687 int make_volatile = 0;
1688 int make_addr_space = 0;
1689 int array_size;
1690
1691 while (!done)
1692 switch (pop_type ())
1693 {
1694 case tp_end:
1695 done = 1;
1696 if (make_const)
1697 follow_type = make_cv_type (make_const,
1698 TYPE_VOLATILE (follow_type),
1699 follow_type, 0);
1700 if (make_volatile)
1701 follow_type = make_cv_type (TYPE_CONST (follow_type),
1702 make_volatile,
1703 follow_type, 0);
1704 if (make_addr_space)
1705 follow_type = make_type_with_address_space (follow_type,
1706 make_addr_space);
1707 make_const = make_volatile = 0;
1708 make_addr_space = 0;
1709 break;
1710 case tp_const:
1711 make_const = 1;
1712 break;
1713 case tp_volatile:
1714 make_volatile = 1;
1715 break;
1716 case tp_space_identifier:
1717 make_addr_space = pop_type_int ();
1718 break;
1719 case tp_pointer:
1720 follow_type = lookup_pointer_type (follow_type);
1721 if (make_const)
1722 follow_type = make_cv_type (make_const,
1723 TYPE_VOLATILE (follow_type),
1724 follow_type, 0);
1725 if (make_volatile)
1726 follow_type = make_cv_type (TYPE_CONST (follow_type),
1727 make_volatile,
1728 follow_type, 0);
1729 if (make_addr_space)
1730 follow_type = make_type_with_address_space (follow_type,
1731 make_addr_space);
1732 make_const = make_volatile = 0;
1733 make_addr_space = 0;
1734 break;
1735 case tp_reference:
1736 follow_type = lookup_lvalue_reference_type (follow_type);
1737 goto process_reference;
1738 case tp_rvalue_reference:
1739 follow_type = lookup_rvalue_reference_type (follow_type);
1740 process_reference:
1741 if (make_const)
1742 follow_type = make_cv_type (make_const,
1743 TYPE_VOLATILE (follow_type),
1744 follow_type, 0);
1745 if (make_volatile)
1746 follow_type = make_cv_type (TYPE_CONST (follow_type),
1747 make_volatile,
1748 follow_type, 0);
1749 if (make_addr_space)
1750 follow_type = make_type_with_address_space (follow_type,
1751 make_addr_space);
1752 make_const = make_volatile = 0;
1753 make_addr_space = 0;
1754 break;
1755 case tp_array:
1756 array_size = pop_type_int ();
1757 /* FIXME-type-allocation: need a way to free this type when we are
1758 done with it. */
1759 follow_type =
1760 lookup_array_range_type (follow_type,
1761 0, array_size >= 0 ? array_size - 1 : 0);
1762 if (array_size < 0)
1763 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1764 = PROP_UNDEFINED;
1765 break;
1766 case tp_function:
1767 /* FIXME-type-allocation: need a way to free this type when we are
1768 done with it. */
1769 follow_type = lookup_function_type (follow_type);
1770 break;
1771
1772 case tp_function_with_arguments:
1773 {
1774 VEC (type_ptr) *args = pop_typelist ();
1775
1776 follow_type
1777 = lookup_function_type_with_arguments (follow_type,
1778 VEC_length (type_ptr, args),
1779 VEC_address (type_ptr,
1780 args));
1781 VEC_free (type_ptr, args);
1782 }
1783 break;
1784
1785 case tp_type_stack:
1786 {
1787 struct type_stack *stack = pop_type_stack ();
1788 /* Sort of ugly, but not really much worse than the
1789 alternatives. */
1790 struct type_stack save = type_stack;
1791
1792 type_stack = *stack;
1793 follow_type = follow_types (follow_type);
1794 gdb_assert (type_stack.depth == 0);
1795
1796 type_stack = save;
1797 }
1798 break;
1799 default:
1800 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1801 }
1802 return follow_type;
1803 }
1804 \f
1805 /* This function avoids direct calls to fprintf
1806 in the parser generated debug code. */
1807 void
1808 parser_fprintf (FILE *x, const char *y, ...)
1809 {
1810 va_list args;
1811
1812 va_start (args, y);
1813 if (x == stderr)
1814 vfprintf_unfiltered (gdb_stderr, y, args);
1815 else
1816 {
1817 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1818 vfprintf_unfiltered (gdb_stderr, y, args);
1819 }
1820 va_end (args);
1821 }
1822
1823 /* Implementation of the exp_descriptor method operator_check. */
1824
1825 int
1826 operator_check_standard (struct expression *exp, int pos,
1827 int (*objfile_func) (struct objfile *objfile,
1828 void *data),
1829 void *data)
1830 {
1831 const union exp_element *const elts = exp->elts;
1832 struct type *type = NULL;
1833 struct objfile *objfile = NULL;
1834
1835 /* Extended operators should have been already handled by exp_descriptor
1836 iterate method of its specific language. */
1837 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1838
1839 /* Track the callers of write_exp_elt_type for this table. */
1840
1841 switch (elts[pos].opcode)
1842 {
1843 case BINOP_VAL:
1844 case OP_COMPLEX:
1845 case OP_DECFLOAT:
1846 case OP_DOUBLE:
1847 case OP_LONG:
1848 case OP_SCOPE:
1849 case OP_TYPE:
1850 case UNOP_CAST:
1851 case UNOP_MAX:
1852 case UNOP_MEMVAL:
1853 case UNOP_MIN:
1854 type = elts[pos + 1].type;
1855 break;
1856
1857 case TYPE_INSTANCE:
1858 {
1859 LONGEST arg, nargs = elts[pos + 2].longconst;
1860
1861 for (arg = 0; arg < nargs; arg++)
1862 {
1863 struct type *type = elts[pos + 3 + arg].type;
1864 struct objfile *objfile = TYPE_OBJFILE (type);
1865
1866 if (objfile && (*objfile_func) (objfile, data))
1867 return 1;
1868 }
1869 }
1870 break;
1871
1872 case OP_VAR_VALUE:
1873 {
1874 const struct block *const block = elts[pos + 1].block;
1875 const struct symbol *const symbol = elts[pos + 2].symbol;
1876
1877 /* Check objfile where the variable itself is placed.
1878 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1879 if ((*objfile_func) (symbol_objfile (symbol), data))
1880 return 1;
1881
1882 /* Check objfile where is placed the code touching the variable. */
1883 objfile = lookup_objfile_from_block (block);
1884
1885 type = SYMBOL_TYPE (symbol);
1886 }
1887 break;
1888 case OP_VAR_MSYM_VALUE:
1889 objfile = elts[pos + 1].objfile;
1890 break;
1891 }
1892
1893 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1894
1895 if (type && TYPE_OBJFILE (type)
1896 && (*objfile_func) (TYPE_OBJFILE (type), data))
1897 return 1;
1898 if (objfile && (*objfile_func) (objfile, data))
1899 return 1;
1900
1901 return 0;
1902 }
1903
1904 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1905 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1906 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1907 returns non-zero value then (any other) non-zero value is immediately
1908 returned to the caller. Otherwise zero is returned after iterating
1909 through whole EXP. */
1910
1911 static int
1912 exp_iterate (struct expression *exp,
1913 int (*objfile_func) (struct objfile *objfile, void *data),
1914 void *data)
1915 {
1916 int endpos;
1917
1918 for (endpos = exp->nelts; endpos > 0; )
1919 {
1920 int pos, args, oplen = 0;
1921
1922 operator_length (exp, endpos, &oplen, &args);
1923 gdb_assert (oplen > 0);
1924
1925 pos = endpos - oplen;
1926 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1927 objfile_func, data))
1928 return 1;
1929
1930 endpos = pos;
1931 }
1932
1933 return 0;
1934 }
1935
1936 /* Helper for exp_uses_objfile. */
1937
1938 static int
1939 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1940 {
1941 struct objfile *objfile = (struct objfile *) objfile_voidp;
1942
1943 if (exp_objfile->separate_debug_objfile_backlink)
1944 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1945
1946 return exp_objfile == objfile;
1947 }
1948
1949 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1950 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1951 file. */
1952
1953 int
1954 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1955 {
1956 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1957
1958 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1959 }
1960
1961 /* See definition in parser-defs.h. */
1962
1963 void
1964 increase_expout_size (struct parser_state *ps, size_t lenelt)
1965 {
1966 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1967 {
1968 ps->expout_size = std::max (ps->expout_size * 2,
1969 ps->expout_ptr + lenelt + 10);
1970 ps->expout = (struct expression *)
1971 xrealloc (ps->expout, (sizeof (struct expression)
1972 + EXP_ELEM_TO_BYTES (ps->expout_size)));
1973 }
1974 }
1975
1976 void
1977 _initialize_parse (void)
1978 {
1979 type_stack.size = 0;
1980 type_stack.depth = 0;
1981 type_stack.elements = NULL;
1982
1983 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1984 &expressiondebug,
1985 _("Set expression debugging."),
1986 _("Show expression debugging."),
1987 _("When non-zero, the internal representation "
1988 "of expressions will be printed."),
1989 NULL,
1990 show_expressiondebug,
1991 &setdebuglist, &showdebuglist);
1992 add_setshow_boolean_cmd ("parser", class_maintenance,
1993 &parser_debug,
1994 _("Set parser debugging."),
1995 _("Show parser debugging."),
1996 _("When non-zero, expression parser "
1997 "tracing will be enabled."),
1998 NULL,
1999 show_parserdebug,
2000 &setdebuglist, &showdebuglist);
2001 }
This page took 0.074359 seconds and 4 git commands to generate.