daily update
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986, 1989-2001, 2004-2005, 2007-2012 Free Software
4 Foundation, Inc.
5
6 Modified from expread.y by the Department of Computer Science at the
7 State University of New York at Buffalo, 1991.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* Parse an expression from text in a string,
25 and return the result as a struct expression pointer.
26 That structure contains arithmetic operations in reverse polish,
27 with constants represented by operations that are followed by special data.
28 See expression.h for the details of the format.
29 What is important here is that it can be built up sequentially
30 during the process of parsing; the lower levels of the tree always
31 come first in the result. */
32
33 #include "defs.h"
34 #include <ctype.h>
35 #include "arch-utils.h"
36 #include "gdb_string.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "frame.h"
40 #include "expression.h"
41 #include "value.h"
42 #include "command.h"
43 #include "language.h"
44 #include "f-lang.h"
45 #include "parser-defs.h"
46 #include "gdbcmd.h"
47 #include "symfile.h" /* for overlay functions */
48 #include "inferior.h"
49 #include "doublest.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "source.h"
53 #include "objfiles.h"
54 #include "exceptions.h"
55 #include "user-regs.h"
56
57 /* Standard set of definitions for printing, dumping, prefixifying,
58 * and evaluating expressions. */
59
60 const struct exp_descriptor exp_descriptor_standard =
61 {
62 print_subexp_standard,
63 operator_length_standard,
64 operator_check_standard,
65 op_name_standard,
66 dump_subexp_body_standard,
67 evaluate_subexp_standard
68 };
69 \f
70 /* Global variables declared in parser-defs.h (and commented there). */
71 struct expression *expout;
72 int expout_size;
73 int expout_ptr;
74 struct block *expression_context_block;
75 CORE_ADDR expression_context_pc;
76 struct block *innermost_block;
77 int arglist_len;
78 static struct type_stack type_stack;
79 char *lexptr;
80 char *prev_lexptr;
81 int paren_depth;
82 int comma_terminates;
83
84 /* True if parsing an expression to find a field reference. This is
85 only used by completion. */
86 int in_parse_field;
87
88 /* The index of the last struct expression directly before a '.' or
89 '->'. This is set when parsing and is only used when completing a
90 field name. It is -1 if no dereference operation was found. */
91 static int expout_last_struct = -1;
92 \f
93 static unsigned int expressiondebug = 0;
94 static void
95 show_expressiondebug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
99 }
100
101
102 /* Non-zero if an expression parser should set yydebug. */
103 int parser_debug;
104
105 static void
106 show_parserdebug (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108 {
109 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
110 }
111
112
113 static void free_funcalls (void *ignore);
114
115 static int prefixify_subexp (struct expression *, struct expression *, int,
116 int);
117
118 static struct expression *parse_exp_in_context (char **, CORE_ADDR,
119 struct block *, int,
120 int, int *);
121
122 void _initialize_parse (void);
123
124 /* Data structure for saving values of arglist_len for function calls whose
125 arguments contain other function calls. */
126
127 struct funcall
128 {
129 struct funcall *next;
130 int arglist_len;
131 };
132
133 static struct funcall *funcall_chain;
134
135 /* Begin counting arguments for a function call,
136 saving the data about any containing call. */
137
138 void
139 start_arglist (void)
140 {
141 struct funcall *new;
142
143 new = (struct funcall *) xmalloc (sizeof (struct funcall));
144 new->next = funcall_chain;
145 new->arglist_len = arglist_len;
146 arglist_len = 0;
147 funcall_chain = new;
148 }
149
150 /* Return the number of arguments in a function call just terminated,
151 and restore the data for the containing function call. */
152
153 int
154 end_arglist (void)
155 {
156 int val = arglist_len;
157 struct funcall *call = funcall_chain;
158
159 funcall_chain = call->next;
160 arglist_len = call->arglist_len;
161 xfree (call);
162 return val;
163 }
164
165 /* Free everything in the funcall chain.
166 Used when there is an error inside parsing. */
167
168 static void
169 free_funcalls (void *ignore)
170 {
171 struct funcall *call, *next;
172
173 for (call = funcall_chain; call; call = next)
174 {
175 next = call->next;
176 xfree (call);
177 }
178 }
179 \f
180 /* This page contains the functions for adding data to the struct expression
181 being constructed. */
182
183 /* See definition in parser-defs.h. */
184
185 void
186 initialize_expout (int initial_size, const struct language_defn *lang,
187 struct gdbarch *gdbarch)
188 {
189 expout_size = initial_size;
190 expout_ptr = 0;
191 expout = xmalloc (sizeof (struct expression)
192 + EXP_ELEM_TO_BYTES (expout_size));
193 expout->language_defn = lang;
194 expout->gdbarch = gdbarch;
195 }
196
197 /* See definition in parser-defs.h. */
198
199 void
200 reallocate_expout (void)
201 {
202 /* Record the actual number of expression elements, and then
203 reallocate the expression memory so that we free up any
204 excess elements. */
205
206 expout->nelts = expout_ptr;
207 expout = xrealloc ((char *) expout,
208 sizeof (struct expression)
209 + EXP_ELEM_TO_BYTES (expout_ptr));
210 }
211
212 /* Add one element to the end of the expression. */
213
214 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
215 a register through here. */
216
217 static void
218 write_exp_elt (const union exp_element *expelt)
219 {
220 if (expout_ptr >= expout_size)
221 {
222 expout_size *= 2;
223 expout = (struct expression *)
224 xrealloc ((char *) expout, sizeof (struct expression)
225 + EXP_ELEM_TO_BYTES (expout_size));
226 }
227 expout->elts[expout_ptr++] = *expelt;
228 }
229
230 void
231 write_exp_elt_opcode (enum exp_opcode expelt)
232 {
233 union exp_element tmp;
234
235 memset (&tmp, 0, sizeof (union exp_element));
236 tmp.opcode = expelt;
237 write_exp_elt (&tmp);
238 }
239
240 void
241 write_exp_elt_sym (struct symbol *expelt)
242 {
243 union exp_element tmp;
244
245 memset (&tmp, 0, sizeof (union exp_element));
246 tmp.symbol = expelt;
247 write_exp_elt (&tmp);
248 }
249
250 void
251 write_exp_elt_block (struct block *b)
252 {
253 union exp_element tmp;
254
255 memset (&tmp, 0, sizeof (union exp_element));
256 tmp.block = b;
257 write_exp_elt (&tmp);
258 }
259
260 void
261 write_exp_elt_objfile (struct objfile *objfile)
262 {
263 union exp_element tmp;
264
265 memset (&tmp, 0, sizeof (union exp_element));
266 tmp.objfile = objfile;
267 write_exp_elt (&tmp);
268 }
269
270 void
271 write_exp_elt_longcst (LONGEST expelt)
272 {
273 union exp_element tmp;
274
275 memset (&tmp, 0, sizeof (union exp_element));
276 tmp.longconst = expelt;
277 write_exp_elt (&tmp);
278 }
279
280 void
281 write_exp_elt_dblcst (DOUBLEST expelt)
282 {
283 union exp_element tmp;
284
285 memset (&tmp, 0, sizeof (union exp_element));
286 tmp.doubleconst = expelt;
287 write_exp_elt (&tmp);
288 }
289
290 void
291 write_exp_elt_decfloatcst (gdb_byte expelt[16])
292 {
293 union exp_element tmp;
294 int index;
295
296 for (index = 0; index < 16; index++)
297 tmp.decfloatconst[index] = expelt[index];
298
299 write_exp_elt (&tmp);
300 }
301
302 void
303 write_exp_elt_type (struct type *expelt)
304 {
305 union exp_element tmp;
306
307 memset (&tmp, 0, sizeof (union exp_element));
308 tmp.type = expelt;
309 write_exp_elt (&tmp);
310 }
311
312 void
313 write_exp_elt_intern (struct internalvar *expelt)
314 {
315 union exp_element tmp;
316
317 memset (&tmp, 0, sizeof (union exp_element));
318 tmp.internalvar = expelt;
319 write_exp_elt (&tmp);
320 }
321
322 /* Add a string constant to the end of the expression.
323
324 String constants are stored by first writing an expression element
325 that contains the length of the string, then stuffing the string
326 constant itself into however many expression elements are needed
327 to hold it, and then writing another expression element that contains
328 the length of the string. I.e. an expression element at each end of
329 the string records the string length, so you can skip over the
330 expression elements containing the actual string bytes from either
331 end of the string. Note that this also allows gdb to handle
332 strings with embedded null bytes, as is required for some languages.
333
334 Don't be fooled by the fact that the string is null byte terminated,
335 this is strictly for the convenience of debugging gdb itself.
336 Gdb does not depend up the string being null terminated, since the
337 actual length is recorded in expression elements at each end of the
338 string. The null byte is taken into consideration when computing how
339 many expression elements are required to hold the string constant, of
340 course. */
341
342
343 void
344 write_exp_string (struct stoken str)
345 {
346 int len = str.length;
347 int lenelt;
348 char *strdata;
349
350 /* Compute the number of expression elements required to hold the string
351 (including a null byte terminator), along with one expression element
352 at each end to record the actual string length (not including the
353 null byte terminator). */
354
355 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
356
357 /* Ensure that we have enough available expression elements to store
358 everything. */
359
360 if ((expout_ptr + lenelt) >= expout_size)
361 {
362 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
363 expout = (struct expression *)
364 xrealloc ((char *) expout, (sizeof (struct expression)
365 + EXP_ELEM_TO_BYTES (expout_size)));
366 }
367
368 /* Write the leading length expression element (which advances the current
369 expression element index), then write the string constant followed by a
370 terminating null byte, and then write the trailing length expression
371 element. */
372
373 write_exp_elt_longcst ((LONGEST) len);
374 strdata = (char *) &expout->elts[expout_ptr];
375 memcpy (strdata, str.ptr, len);
376 *(strdata + len) = '\0';
377 expout_ptr += lenelt - 2;
378 write_exp_elt_longcst ((LONGEST) len);
379 }
380
381 /* Add a vector of string constants to the end of the expression.
382
383 This adds an OP_STRING operation, but encodes the contents
384 differently from write_exp_string. The language is expected to
385 handle evaluation of this expression itself.
386
387 After the usual OP_STRING header, TYPE is written into the
388 expression as a long constant. The interpretation of this field is
389 up to the language evaluator.
390
391 Next, each string in VEC is written. The length is written as a
392 long constant, followed by the contents of the string. */
393
394 void
395 write_exp_string_vector (int type, struct stoken_vector *vec)
396 {
397 int i, n_slots, len;
398
399 /* Compute the size. We compute the size in number of slots to
400 avoid issues with string padding. */
401 n_slots = 0;
402 for (i = 0; i < vec->len; ++i)
403 {
404 /* One slot for the length of this element, plus the number of
405 slots needed for this string. */
406 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
407 }
408
409 /* One more slot for the type of the string. */
410 ++n_slots;
411
412 /* Now compute a phony string length. */
413 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
414
415 n_slots += 4;
416 if ((expout_ptr + n_slots) >= expout_size)
417 {
418 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
419 expout = (struct expression *)
420 xrealloc ((char *) expout, (sizeof (struct expression)
421 + EXP_ELEM_TO_BYTES (expout_size)));
422 }
423
424 write_exp_elt_opcode (OP_STRING);
425 write_exp_elt_longcst (len);
426 write_exp_elt_longcst (type);
427
428 for (i = 0; i < vec->len; ++i)
429 {
430 write_exp_elt_longcst (vec->tokens[i].length);
431 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
432 vec->tokens[i].length);
433 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
434 }
435
436 write_exp_elt_longcst (len);
437 write_exp_elt_opcode (OP_STRING);
438 }
439
440 /* Add a bitstring constant to the end of the expression.
441
442 Bitstring constants are stored by first writing an expression element
443 that contains the length of the bitstring (in bits), then stuffing the
444 bitstring constant itself into however many expression elements are
445 needed to hold it, and then writing another expression element that
446 contains the length of the bitstring. I.e. an expression element at
447 each end of the bitstring records the bitstring length, so you can skip
448 over the expression elements containing the actual bitstring bytes from
449 either end of the bitstring. */
450
451 void
452 write_exp_bitstring (struct stoken str)
453 {
454 int bits = str.length; /* length in bits */
455 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
456 int lenelt;
457 char *strdata;
458
459 /* Compute the number of expression elements required to hold the bitstring,
460 along with one expression element at each end to record the actual
461 bitstring length in bits. */
462
463 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
464
465 /* Ensure that we have enough available expression elements to store
466 everything. */
467
468 if ((expout_ptr + lenelt) >= expout_size)
469 {
470 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
471 expout = (struct expression *)
472 xrealloc ((char *) expout, (sizeof (struct expression)
473 + EXP_ELEM_TO_BYTES (expout_size)));
474 }
475
476 /* Write the leading length expression element (which advances the current
477 expression element index), then write the bitstring constant, and then
478 write the trailing length expression element. */
479
480 write_exp_elt_longcst ((LONGEST) bits);
481 strdata = (char *) &expout->elts[expout_ptr];
482 memcpy (strdata, str.ptr, len);
483 expout_ptr += lenelt - 2;
484 write_exp_elt_longcst ((LONGEST) bits);
485 }
486
487 /* Add the appropriate elements for a minimal symbol to the end of
488 the expression. */
489
490 void
491 write_exp_msymbol (struct minimal_symbol *msymbol)
492 {
493 struct objfile *objfile = msymbol_objfile (msymbol);
494 struct gdbarch *gdbarch = get_objfile_arch (objfile);
495
496 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
497 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
498 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
499 CORE_ADDR pc;
500
501 /* The minimal symbol might point to a function descriptor;
502 resolve it to the actual code address instead. */
503 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
504 if (pc != addr)
505 {
506 struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc);
507
508 /* In this case, assume we have a code symbol instead of
509 a data symbol. */
510
511 if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc
512 && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
513 {
514 /* A function descriptor has been resolved but PC is still in the
515 STT_GNU_IFUNC resolver body (such as because inferior does not
516 run to be able to call it). */
517
518 type = mst_text_gnu_ifunc;
519 }
520 else
521 type = mst_text;
522 section = NULL;
523 addr = pc;
524 }
525
526 if (overlay_debugging)
527 addr = symbol_overlayed_address (addr, section);
528
529 write_exp_elt_opcode (OP_LONG);
530 /* Let's make the type big enough to hold a 64-bit address. */
531 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
532 write_exp_elt_longcst ((LONGEST) addr);
533 write_exp_elt_opcode (OP_LONG);
534
535 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
536 {
537 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
538 write_exp_elt_objfile (objfile);
539 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
540 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
541 return;
542 }
543
544 write_exp_elt_opcode (UNOP_MEMVAL);
545 switch (type)
546 {
547 case mst_text:
548 case mst_file_text:
549 case mst_solib_trampoline:
550 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
551 break;
552
553 case mst_text_gnu_ifunc:
554 write_exp_elt_type (objfile_type (objfile)
555 ->nodebug_text_gnu_ifunc_symbol);
556 break;
557
558 case mst_data:
559 case mst_file_data:
560 case mst_bss:
561 case mst_file_bss:
562 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
563 break;
564
565 case mst_slot_got_plt:
566 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
567 break;
568
569 default:
570 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
571 break;
572 }
573 write_exp_elt_opcode (UNOP_MEMVAL);
574 }
575
576 /* Mark the current index as the starting location of a structure
577 expression. This is used when completing on field names. */
578
579 void
580 mark_struct_expression (void)
581 {
582 expout_last_struct = expout_ptr;
583 }
584
585 \f
586 /* Recognize tokens that start with '$'. These include:
587
588 $regname A native register name or a "standard
589 register name".
590
591 $variable A convenience variable with a name chosen
592 by the user.
593
594 $digits Value history with index <digits>, starting
595 from the first value which has index 1.
596
597 $$digits Value history with index <digits> relative
598 to the last value. I.e. $$0 is the last
599 value, $$1 is the one previous to that, $$2
600 is the one previous to $$1, etc.
601
602 $ | $0 | $$0 The last value in the value history.
603
604 $$ An abbreviation for the second to the last
605 value in the value history, I.e. $$1 */
606
607 void
608 write_dollar_variable (struct stoken str)
609 {
610 struct symbol *sym = NULL;
611 struct minimal_symbol *msym = NULL;
612 struct internalvar *isym = NULL;
613
614 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
615 and $$digits (equivalent to $<-digits> if you could type that). */
616
617 int negate = 0;
618 int i = 1;
619 /* Double dollar means negate the number and add -1 as well.
620 Thus $$ alone means -1. */
621 if (str.length >= 2 && str.ptr[1] == '$')
622 {
623 negate = 1;
624 i = 2;
625 }
626 if (i == str.length)
627 {
628 /* Just dollars (one or two). */
629 i = -negate;
630 goto handle_last;
631 }
632 /* Is the rest of the token digits? */
633 for (; i < str.length; i++)
634 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
635 break;
636 if (i == str.length)
637 {
638 i = atoi (str.ptr + 1 + negate);
639 if (negate)
640 i = -i;
641 goto handle_last;
642 }
643
644 /* Handle tokens that refer to machine registers:
645 $ followed by a register name. */
646 i = user_reg_map_name_to_regnum (parse_gdbarch,
647 str.ptr + 1, str.length - 1);
648 if (i >= 0)
649 goto handle_register;
650
651 /* Any names starting with $ are probably debugger internal variables. */
652
653 isym = lookup_only_internalvar (copy_name (str) + 1);
654 if (isym)
655 {
656 write_exp_elt_opcode (OP_INTERNALVAR);
657 write_exp_elt_intern (isym);
658 write_exp_elt_opcode (OP_INTERNALVAR);
659 return;
660 }
661
662 /* On some systems, such as HP-UX and hppa-linux, certain system routines
663 have names beginning with $ or $$. Check for those, first. */
664
665 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
666 VAR_DOMAIN, (int *) NULL);
667 if (sym)
668 {
669 write_exp_elt_opcode (OP_VAR_VALUE);
670 write_exp_elt_block (block_found); /* set by lookup_symbol */
671 write_exp_elt_sym (sym);
672 write_exp_elt_opcode (OP_VAR_VALUE);
673 return;
674 }
675 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
676 if (msym)
677 {
678 write_exp_msymbol (msym);
679 return;
680 }
681
682 /* Any other names are assumed to be debugger internal variables. */
683
684 write_exp_elt_opcode (OP_INTERNALVAR);
685 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
686 write_exp_elt_opcode (OP_INTERNALVAR);
687 return;
688 handle_last:
689 write_exp_elt_opcode (OP_LAST);
690 write_exp_elt_longcst ((LONGEST) i);
691 write_exp_elt_opcode (OP_LAST);
692 return;
693 handle_register:
694 write_exp_elt_opcode (OP_REGISTER);
695 str.length--;
696 str.ptr++;
697 write_exp_string (str);
698 write_exp_elt_opcode (OP_REGISTER);
699 return;
700 }
701
702
703 char *
704 find_template_name_end (char *p)
705 {
706 int depth = 1;
707 int just_seen_right = 0;
708 int just_seen_colon = 0;
709 int just_seen_space = 0;
710
711 if (!p || (*p != '<'))
712 return 0;
713
714 while (*++p)
715 {
716 switch (*p)
717 {
718 case '\'':
719 case '\"':
720 case '{':
721 case '}':
722 /* In future, may want to allow these?? */
723 return 0;
724 case '<':
725 depth++; /* start nested template */
726 if (just_seen_colon || just_seen_right || just_seen_space)
727 return 0; /* but not after : or :: or > or space */
728 break;
729 case '>':
730 if (just_seen_colon || just_seen_right)
731 return 0; /* end a (nested?) template */
732 just_seen_right = 1; /* but not after : or :: */
733 if (--depth == 0) /* also disallow >>, insist on > > */
734 return ++p; /* if outermost ended, return */
735 break;
736 case ':':
737 if (just_seen_space || (just_seen_colon > 1))
738 return 0; /* nested class spec coming up */
739 just_seen_colon++; /* we allow :: but not :::: */
740 break;
741 case ' ':
742 break;
743 default:
744 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
745 (*p >= 'A' && *p <= 'Z') ||
746 (*p >= '0' && *p <= '9') ||
747 (*p == '_') || (*p == ',') || /* commas for template args */
748 (*p == '&') || (*p == '*') || /* pointer and ref types */
749 (*p == '(') || (*p == ')') || /* function types */
750 (*p == '[') || (*p == ']'))) /* array types */
751 return 0;
752 }
753 if (*p != ' ')
754 just_seen_space = 0;
755 if (*p != ':')
756 just_seen_colon = 0;
757 if (*p != '>')
758 just_seen_right = 0;
759 }
760 return 0;
761 }
762 \f
763
764 /* Return a null-terminated temporary copy of the name of a string token.
765
766 Tokens that refer to names do so with explicit pointer and length,
767 so they can share the storage that lexptr is parsing.
768 When it is necessary to pass a name to a function that expects
769 a null-terminated string, the substring is copied out
770 into a separate block of storage.
771
772 N.B. A single buffer is reused on each call. */
773
774 char *
775 copy_name (struct stoken token)
776 {
777 /* A temporary buffer for identifiers, so we can null-terminate them.
778 We allocate this with xrealloc. parse_exp_1 used to allocate with
779 alloca, using the size of the whole expression as a conservative
780 estimate of the space needed. However, macro expansion can
781 introduce names longer than the original expression; there's no
782 practical way to know beforehand how large that might be. */
783 static char *namecopy;
784 static size_t namecopy_size;
785
786 /* Make sure there's enough space for the token. */
787 if (namecopy_size < token.length + 1)
788 {
789 namecopy_size = token.length + 1;
790 namecopy = xrealloc (namecopy, token.length + 1);
791 }
792
793 memcpy (namecopy, token.ptr, token.length);
794 namecopy[token.length] = 0;
795
796 return namecopy;
797 }
798 \f
799
800 /* See comments on parser-defs.h. */
801
802 int
803 prefixify_expression (struct expression *expr)
804 {
805 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
806 struct expression *temp;
807 int inpos = expr->nelts, outpos = 0;
808
809 temp = (struct expression *) alloca (len);
810
811 /* Copy the original expression into temp. */
812 memcpy (temp, expr, len);
813
814 return prefixify_subexp (temp, expr, inpos, outpos);
815 }
816
817 /* Return the number of exp_elements in the postfix subexpression
818 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
819
820 int
821 length_of_subexp (struct expression *expr, int endpos)
822 {
823 int oplen, args;
824
825 operator_length (expr, endpos, &oplen, &args);
826
827 while (args > 0)
828 {
829 oplen += length_of_subexp (expr, endpos - oplen);
830 args--;
831 }
832
833 return oplen;
834 }
835
836 /* Sets *OPLENP to the length of the operator whose (last) index is
837 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
838 operator takes. */
839
840 void
841 operator_length (const struct expression *expr, int endpos, int *oplenp,
842 int *argsp)
843 {
844 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
845 oplenp, argsp);
846 }
847
848 /* Default value for operator_length in exp_descriptor vectors. */
849
850 void
851 operator_length_standard (const struct expression *expr, int endpos,
852 int *oplenp, int *argsp)
853 {
854 int oplen = 1;
855 int args = 0;
856 enum f90_range_type range_type;
857 int i;
858
859 if (endpos < 1)
860 error (_("?error in operator_length_standard"));
861
862 i = (int) expr->elts[endpos - 1].opcode;
863
864 switch (i)
865 {
866 /* C++ */
867 case OP_SCOPE:
868 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
869 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
870 break;
871
872 case OP_LONG:
873 case OP_DOUBLE:
874 case OP_DECFLOAT:
875 case OP_VAR_VALUE:
876 oplen = 4;
877 break;
878
879 case OP_TYPE:
880 case OP_BOOL:
881 case OP_LAST:
882 case OP_INTERNALVAR:
883 case OP_VAR_ENTRY_VALUE:
884 oplen = 3;
885 break;
886
887 case OP_COMPLEX:
888 oplen = 3;
889 args = 2;
890 break;
891
892 case OP_FUNCALL:
893 case OP_F77_UNDETERMINED_ARGLIST:
894 oplen = 3;
895 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
896 break;
897
898 case TYPE_INSTANCE:
899 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
900 args = 1;
901 break;
902
903 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
904 oplen = 4;
905 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
906 break;
907
908 case UNOP_MAX:
909 case UNOP_MIN:
910 oplen = 3;
911 break;
912
913 case UNOP_CAST_TYPE:
914 case UNOP_DYNAMIC_CAST:
915 case UNOP_REINTERPRET_CAST:
916 case UNOP_MEMVAL_TYPE:
917 oplen = 1;
918 args = 2;
919 break;
920
921 case BINOP_VAL:
922 case UNOP_CAST:
923 case UNOP_MEMVAL:
924 oplen = 3;
925 args = 1;
926 break;
927
928 case UNOP_MEMVAL_TLS:
929 oplen = 4;
930 args = 1;
931 break;
932
933 case UNOP_ABS:
934 case UNOP_CAP:
935 case UNOP_CHR:
936 case UNOP_FLOAT:
937 case UNOP_HIGH:
938 case UNOP_ODD:
939 case UNOP_ORD:
940 case UNOP_TRUNC:
941 case OP_TYPEOF:
942 case OP_DECLTYPE:
943 oplen = 1;
944 args = 1;
945 break;
946
947 case OP_ADL_FUNC:
948 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
949 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
950 oplen++;
951 oplen++;
952 break;
953
954 case OP_LABELED:
955 case STRUCTOP_STRUCT:
956 case STRUCTOP_PTR:
957 args = 1;
958 /* fall through */
959 case OP_REGISTER:
960 case OP_M2_STRING:
961 case OP_STRING:
962 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
963 NSString constant. */
964 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
965 case OP_NAME:
966 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
967 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
968 break;
969
970 case OP_BITSTRING:
971 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
972 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
973 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
974 break;
975
976 case OP_ARRAY:
977 oplen = 4;
978 args = longest_to_int (expr->elts[endpos - 2].longconst);
979 args -= longest_to_int (expr->elts[endpos - 3].longconst);
980 args += 1;
981 break;
982
983 case TERNOP_COND:
984 case TERNOP_SLICE:
985 case TERNOP_SLICE_COUNT:
986 args = 3;
987 break;
988
989 /* Modula-2 */
990 case MULTI_SUBSCRIPT:
991 oplen = 3;
992 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
993 break;
994
995 case BINOP_ASSIGN_MODIFY:
996 oplen = 3;
997 args = 2;
998 break;
999
1000 /* C++ */
1001 case OP_THIS:
1002 oplen = 2;
1003 break;
1004
1005 case OP_F90_RANGE:
1006 oplen = 3;
1007
1008 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1009 switch (range_type)
1010 {
1011 case LOW_BOUND_DEFAULT:
1012 case HIGH_BOUND_DEFAULT:
1013 args = 1;
1014 break;
1015 case BOTH_BOUND_DEFAULT:
1016 args = 0;
1017 break;
1018 case NONE_BOUND_DEFAULT:
1019 args = 2;
1020 break;
1021 }
1022
1023 break;
1024
1025 default:
1026 args = 1 + (i < (int) BINOP_END);
1027 }
1028
1029 *oplenp = oplen;
1030 *argsp = args;
1031 }
1032
1033 /* Copy the subexpression ending just before index INEND in INEXPR
1034 into OUTEXPR, starting at index OUTBEG.
1035 In the process, convert it from suffix to prefix form.
1036 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1037 Otherwise, it returns the index of the subexpression which is the
1038 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1039
1040 static int
1041 prefixify_subexp (struct expression *inexpr,
1042 struct expression *outexpr, int inend, int outbeg)
1043 {
1044 int oplen;
1045 int args;
1046 int i;
1047 int *arglens;
1048 int result = -1;
1049
1050 operator_length (inexpr, inend, &oplen, &args);
1051
1052 /* Copy the final operator itself, from the end of the input
1053 to the beginning of the output. */
1054 inend -= oplen;
1055 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1056 EXP_ELEM_TO_BYTES (oplen));
1057 outbeg += oplen;
1058
1059 if (expout_last_struct == inend)
1060 result = outbeg - oplen;
1061
1062 /* Find the lengths of the arg subexpressions. */
1063 arglens = (int *) alloca (args * sizeof (int));
1064 for (i = args - 1; i >= 0; i--)
1065 {
1066 oplen = length_of_subexp (inexpr, inend);
1067 arglens[i] = oplen;
1068 inend -= oplen;
1069 }
1070
1071 /* Now copy each subexpression, preserving the order of
1072 the subexpressions, but prefixifying each one.
1073 In this loop, inend starts at the beginning of
1074 the expression this level is working on
1075 and marches forward over the arguments.
1076 outbeg does similarly in the output. */
1077 for (i = 0; i < args; i++)
1078 {
1079 int r;
1080
1081 oplen = arglens[i];
1082 inend += oplen;
1083 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1084 if (r != -1)
1085 {
1086 /* Return immediately. We probably have only parsed a
1087 partial expression, so we don't want to try to reverse
1088 the other operands. */
1089 return r;
1090 }
1091 outbeg += oplen;
1092 }
1093
1094 return result;
1095 }
1096 \f
1097 /* Read an expression from the string *STRINGPTR points to,
1098 parse it, and return a pointer to a struct expression that we malloc.
1099 Use block BLOCK as the lexical context for variable names;
1100 if BLOCK is zero, use the block of the selected stack frame.
1101 Meanwhile, advance *STRINGPTR to point after the expression,
1102 at the first nonwhite character that is not part of the expression
1103 (possibly a null character).
1104
1105 If COMMA is nonzero, stop if a comma is reached. */
1106
1107 struct expression *
1108 parse_exp_1 (char **stringptr, CORE_ADDR pc, struct block *block, int comma)
1109 {
1110 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1111 }
1112
1113 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1114 no value is expected from the expression.
1115 OUT_SUBEXP is set when attempting to complete a field name; in this
1116 case it is set to the index of the subexpression on the
1117 left-hand-side of the struct op. If not doing such completion, it
1118 is left untouched. */
1119
1120 static struct expression *
1121 parse_exp_in_context (char **stringptr, CORE_ADDR pc, struct block *block,
1122 int comma, int void_context_p, int *out_subexp)
1123 {
1124 volatile struct gdb_exception except;
1125 struct cleanup *old_chain;
1126 const struct language_defn *lang = NULL;
1127 int subexp;
1128
1129 lexptr = *stringptr;
1130 prev_lexptr = NULL;
1131
1132 paren_depth = 0;
1133 type_stack.depth = 0;
1134 expout_last_struct = -1;
1135
1136 comma_terminates = comma;
1137
1138 if (lexptr == 0 || *lexptr == 0)
1139 error_no_arg (_("expression to compute"));
1140
1141 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1142 funcall_chain = 0;
1143
1144 expression_context_block = block;
1145
1146 /* If no context specified, try using the current frame, if any. */
1147 if (!expression_context_block)
1148 expression_context_block = get_selected_block (&expression_context_pc);
1149 else if (pc == 0)
1150 expression_context_pc = BLOCK_START (expression_context_block);
1151 else
1152 expression_context_pc = pc;
1153
1154 /* Fall back to using the current source static context, if any. */
1155
1156 if (!expression_context_block)
1157 {
1158 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1159 if (cursal.symtab)
1160 expression_context_block
1161 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1162 if (expression_context_block)
1163 expression_context_pc = BLOCK_START (expression_context_block);
1164 }
1165
1166 if (language_mode == language_mode_auto && block != NULL)
1167 {
1168 /* Find the language associated to the given context block.
1169 Default to the current language if it can not be determined.
1170
1171 Note that using the language corresponding to the current frame
1172 can sometimes give unexpected results. For instance, this
1173 routine is often called several times during the inferior
1174 startup phase to re-parse breakpoint expressions after
1175 a new shared library has been loaded. The language associated
1176 to the current frame at this moment is not relevant for
1177 the breakpoint. Using it would therefore be silly, so it seems
1178 better to rely on the current language rather than relying on
1179 the current frame language to parse the expression. That's why
1180 we do the following language detection only if the context block
1181 has been specifically provided. */
1182 struct symbol *func = block_linkage_function (block);
1183
1184 if (func != NULL)
1185 lang = language_def (SYMBOL_LANGUAGE (func));
1186 if (lang == NULL || lang->la_language == language_unknown)
1187 lang = current_language;
1188 }
1189 else
1190 lang = current_language;
1191
1192 initialize_expout (10, lang, get_current_arch ());
1193
1194 TRY_CATCH (except, RETURN_MASK_ALL)
1195 {
1196 if (lang->la_parser ())
1197 lang->la_error (NULL);
1198 }
1199 if (except.reason < 0)
1200 {
1201 if (! in_parse_field)
1202 {
1203 xfree (expout);
1204 throw_exception (except);
1205 }
1206 }
1207
1208 discard_cleanups (old_chain);
1209
1210 reallocate_expout ();
1211
1212 /* Convert expression from postfix form as generated by yacc
1213 parser, to a prefix form. */
1214
1215 if (expressiondebug)
1216 dump_raw_expression (expout, gdb_stdlog,
1217 "before conversion to prefix form");
1218
1219 subexp = prefixify_expression (expout);
1220 if (out_subexp)
1221 *out_subexp = subexp;
1222
1223 lang->la_post_parser (&expout, void_context_p);
1224
1225 if (expressiondebug)
1226 dump_prefix_expression (expout, gdb_stdlog);
1227
1228 *stringptr = lexptr;
1229 return expout;
1230 }
1231
1232 /* Parse STRING as an expression, and complain if this fails
1233 to use up all of the contents of STRING. */
1234
1235 struct expression *
1236 parse_expression (char *string)
1237 {
1238 struct expression *exp;
1239
1240 exp = parse_exp_1 (&string, 0, 0, 0);
1241 if (*string)
1242 error (_("Junk after end of expression."));
1243 return exp;
1244 }
1245
1246 /* Parse STRING as an expression. If parsing ends in the middle of a
1247 field reference, return the type of the left-hand-side of the
1248 reference; furthermore, if the parsing ends in the field name,
1249 return the field name in *NAME. If the parsing ends in the middle
1250 of a field reference, but the reference is somehow invalid, throw
1251 an exception. In all other cases, return NULL. Returned non-NULL
1252 *NAME must be freed by the caller. */
1253
1254 struct type *
1255 parse_field_expression (char *string, char **name)
1256 {
1257 struct expression *exp = NULL;
1258 struct value *val;
1259 int subexp;
1260 volatile struct gdb_exception except;
1261
1262 TRY_CATCH (except, RETURN_MASK_ERROR)
1263 {
1264 in_parse_field = 1;
1265 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1266 }
1267 in_parse_field = 0;
1268 if (except.reason < 0 || ! exp)
1269 return NULL;
1270 if (expout_last_struct == -1)
1271 {
1272 xfree (exp);
1273 return NULL;
1274 }
1275
1276 *name = extract_field_op (exp, &subexp);
1277 if (!*name)
1278 {
1279 xfree (exp);
1280 return NULL;
1281 }
1282
1283 /* This might throw an exception. If so, we want to let it
1284 propagate. */
1285 val = evaluate_subexpression_type (exp, subexp);
1286 /* (*NAME) is a part of the EXP memory block freed below. */
1287 *name = xstrdup (*name);
1288 xfree (exp);
1289
1290 return value_type (val);
1291 }
1292
1293 /* A post-parser that does nothing. */
1294
1295 void
1296 null_post_parser (struct expression **exp, int void_context_p)
1297 {
1298 }
1299
1300 /* Parse floating point value P of length LEN.
1301 Return 0 (false) if invalid, 1 (true) if valid.
1302 The successfully parsed number is stored in D.
1303 *SUFFIX points to the suffix of the number in P.
1304
1305 NOTE: This accepts the floating point syntax that sscanf accepts. */
1306
1307 int
1308 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1309 {
1310 char *copy;
1311 int n, num;
1312
1313 copy = xmalloc (len + 1);
1314 memcpy (copy, p, len);
1315 copy[len] = 0;
1316
1317 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1318 xfree (copy);
1319
1320 /* The sscanf man page suggests not making any assumptions on the effect
1321 of %n on the result, so we don't.
1322 That is why we simply test num == 0. */
1323 if (num == 0)
1324 return 0;
1325
1326 *suffix = p + n;
1327 return 1;
1328 }
1329
1330 /* Parse floating point value P of length LEN, using the C syntax for floats.
1331 Return 0 (false) if invalid, 1 (true) if valid.
1332 The successfully parsed number is stored in *D.
1333 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1334
1335 int
1336 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1337 DOUBLEST *d, struct type **t)
1338 {
1339 const char *suffix;
1340 int suffix_len;
1341 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1342
1343 if (! parse_float (p, len, d, &suffix))
1344 return 0;
1345
1346 suffix_len = p + len - suffix;
1347
1348 if (suffix_len == 0)
1349 *t = builtin_types->builtin_double;
1350 else if (suffix_len == 1)
1351 {
1352 /* Handle suffixes: 'f' for float, 'l' for long double. */
1353 if (tolower (*suffix) == 'f')
1354 *t = builtin_types->builtin_float;
1355 else if (tolower (*suffix) == 'l')
1356 *t = builtin_types->builtin_long_double;
1357 else
1358 return 0;
1359 }
1360 else
1361 return 0;
1362
1363 return 1;
1364 }
1365 \f
1366 /* Stuff for maintaining a stack of types. Currently just used by C, but
1367 probably useful for any language which declares its types "backwards". */
1368
1369 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1370
1371 static void
1372 type_stack_reserve (struct type_stack *stack, int howmuch)
1373 {
1374 if (stack->depth + howmuch >= stack->size)
1375 {
1376 stack->size *= 2;
1377 if (stack->size < howmuch)
1378 stack->size = howmuch;
1379 stack->elements = xrealloc (stack->elements,
1380 stack->size * sizeof (union type_stack_elt));
1381 }
1382 }
1383
1384 /* Ensure that there is a single open slot in the global type stack. */
1385
1386 static void
1387 check_type_stack_depth (void)
1388 {
1389 type_stack_reserve (&type_stack, 1);
1390 }
1391
1392 /* A helper function for insert_type and insert_type_address_space.
1393 This does work of expanding the type stack and inserting the new
1394 element, ELEMENT, into the stack at location SLOT. */
1395
1396 static void
1397 insert_into_type_stack (int slot, union type_stack_elt element)
1398 {
1399 check_type_stack_depth ();
1400
1401 if (slot < type_stack.depth)
1402 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1403 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1404 type_stack.elements[slot] = element;
1405 ++type_stack.depth;
1406 }
1407
1408 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1409 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1410 a qualifier, it is inserted at slot 1 (just above a previous
1411 tp_pointer) if there is anything on the stack, or simply pushed if
1412 the stack is empty. Other values for TP are invalid. */
1413
1414 void
1415 insert_type (enum type_pieces tp)
1416 {
1417 union type_stack_elt element;
1418 int slot;
1419
1420 gdb_assert (tp == tp_pointer || tp == tp_reference
1421 || tp == tp_const || tp == tp_volatile);
1422
1423 /* If there is anything on the stack (we know it will be a
1424 tp_pointer), insert the qualifier above it. Otherwise, simply
1425 push this on the top of the stack. */
1426 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1427 slot = 1;
1428 else
1429 slot = 0;
1430
1431 element.piece = tp;
1432 insert_into_type_stack (slot, element);
1433 }
1434
1435 void
1436 push_type (enum type_pieces tp)
1437 {
1438 check_type_stack_depth ();
1439 type_stack.elements[type_stack.depth++].piece = tp;
1440 }
1441
1442 void
1443 push_type_int (int n)
1444 {
1445 check_type_stack_depth ();
1446 type_stack.elements[type_stack.depth++].int_val = n;
1447 }
1448
1449 /* Insert a tp_space_identifier and the corresponding address space
1450 value into the stack. STRING is the name of an address space, as
1451 recognized by address_space_name_to_int. If the stack is empty,
1452 the new elements are simply pushed. If the stack is not empty,
1453 this function assumes that the first item on the stack is a
1454 tp_pointer, and the new values are inserted above the first
1455 item. */
1456
1457 void
1458 insert_type_address_space (char *string)
1459 {
1460 union type_stack_elt element;
1461 int slot;
1462
1463 /* If there is anything on the stack (we know it will be a
1464 tp_pointer), insert the address space qualifier above it.
1465 Otherwise, simply push this on the top of the stack. */
1466 if (type_stack.depth)
1467 slot = 1;
1468 else
1469 slot = 0;
1470
1471 element.piece = tp_space_identifier;
1472 insert_into_type_stack (slot, element);
1473 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1474 insert_into_type_stack (slot, element);
1475 }
1476
1477 enum type_pieces
1478 pop_type (void)
1479 {
1480 if (type_stack.depth)
1481 return type_stack.elements[--type_stack.depth].piece;
1482 return tp_end;
1483 }
1484
1485 int
1486 pop_type_int (void)
1487 {
1488 if (type_stack.depth)
1489 return type_stack.elements[--type_stack.depth].int_val;
1490 /* "Can't happen". */
1491 return 0;
1492 }
1493
1494 /* Pop a type list element from the global type stack. */
1495
1496 static VEC (type_ptr) *
1497 pop_typelist (void)
1498 {
1499 gdb_assert (type_stack.depth);
1500 return type_stack.elements[--type_stack.depth].typelist_val;
1501 }
1502
1503 /* Pop a type_stack element from the global type stack. */
1504
1505 static struct type_stack *
1506 pop_type_stack (void)
1507 {
1508 gdb_assert (type_stack.depth);
1509 return type_stack.elements[--type_stack.depth].stack_val;
1510 }
1511
1512 /* Append the elements of the type stack FROM to the type stack TO.
1513 Always returns TO. */
1514
1515 struct type_stack *
1516 append_type_stack (struct type_stack *to, struct type_stack *from)
1517 {
1518 type_stack_reserve (to, from->depth);
1519
1520 memcpy (&to->elements[to->depth], &from->elements[0],
1521 from->depth * sizeof (union type_stack_elt));
1522 to->depth += from->depth;
1523
1524 return to;
1525 }
1526
1527 /* Push the type stack STACK as an element on the global type stack. */
1528
1529 void
1530 push_type_stack (struct type_stack *stack)
1531 {
1532 check_type_stack_depth ();
1533 type_stack.elements[type_stack.depth++].stack_val = stack;
1534 push_type (tp_type_stack);
1535 }
1536
1537 /* Copy the global type stack into a newly allocated type stack and
1538 return it. The global stack is cleared. The returned type stack
1539 must be freed with type_stack_cleanup. */
1540
1541 struct type_stack *
1542 get_type_stack (void)
1543 {
1544 struct type_stack *result = XNEW (struct type_stack);
1545
1546 *result = type_stack;
1547 type_stack.depth = 0;
1548 type_stack.size = 0;
1549 type_stack.elements = NULL;
1550
1551 return result;
1552 }
1553
1554 /* A cleanup function that destroys a single type stack. */
1555
1556 void
1557 type_stack_cleanup (void *arg)
1558 {
1559 struct type_stack *stack = arg;
1560
1561 xfree (stack->elements);
1562 xfree (stack);
1563 }
1564
1565 /* Push a function type with arguments onto the global type stack.
1566 LIST holds the argument types. If the final item in LIST is NULL,
1567 then the function will be varargs. */
1568
1569 void
1570 push_typelist (VEC (type_ptr) *list)
1571 {
1572 check_type_stack_depth ();
1573 type_stack.elements[type_stack.depth++].typelist_val = list;
1574 push_type (tp_function_with_arguments);
1575 }
1576
1577 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1578 as modified by all the stuff on the stack. */
1579 struct type *
1580 follow_types (struct type *follow_type)
1581 {
1582 int done = 0;
1583 int make_const = 0;
1584 int make_volatile = 0;
1585 int make_addr_space = 0;
1586 int array_size;
1587
1588 while (!done)
1589 switch (pop_type ())
1590 {
1591 case tp_end:
1592 done = 1;
1593 if (make_const)
1594 follow_type = make_cv_type (make_const,
1595 TYPE_VOLATILE (follow_type),
1596 follow_type, 0);
1597 if (make_volatile)
1598 follow_type = make_cv_type (TYPE_CONST (follow_type),
1599 make_volatile,
1600 follow_type, 0);
1601 if (make_addr_space)
1602 follow_type = make_type_with_address_space (follow_type,
1603 make_addr_space);
1604 make_const = make_volatile = 0;
1605 make_addr_space = 0;
1606 break;
1607 case tp_const:
1608 make_const = 1;
1609 break;
1610 case tp_volatile:
1611 make_volatile = 1;
1612 break;
1613 case tp_space_identifier:
1614 make_addr_space = pop_type_int ();
1615 break;
1616 case tp_pointer:
1617 follow_type = lookup_pointer_type (follow_type);
1618 if (make_const)
1619 follow_type = make_cv_type (make_const,
1620 TYPE_VOLATILE (follow_type),
1621 follow_type, 0);
1622 if (make_volatile)
1623 follow_type = make_cv_type (TYPE_CONST (follow_type),
1624 make_volatile,
1625 follow_type, 0);
1626 if (make_addr_space)
1627 follow_type = make_type_with_address_space (follow_type,
1628 make_addr_space);
1629 make_const = make_volatile = 0;
1630 make_addr_space = 0;
1631 break;
1632 case tp_reference:
1633 follow_type = lookup_reference_type (follow_type);
1634 if (make_const)
1635 follow_type = make_cv_type (make_const,
1636 TYPE_VOLATILE (follow_type),
1637 follow_type, 0);
1638 if (make_volatile)
1639 follow_type = make_cv_type (TYPE_CONST (follow_type),
1640 make_volatile,
1641 follow_type, 0);
1642 if (make_addr_space)
1643 follow_type = make_type_with_address_space (follow_type,
1644 make_addr_space);
1645 make_const = make_volatile = 0;
1646 make_addr_space = 0;
1647 break;
1648 case tp_array:
1649 array_size = pop_type_int ();
1650 /* FIXME-type-allocation: need a way to free this type when we are
1651 done with it. */
1652 follow_type =
1653 lookup_array_range_type (follow_type,
1654 0, array_size >= 0 ? array_size - 1 : 0);
1655 if (array_size < 0)
1656 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1657 break;
1658 case tp_function:
1659 /* FIXME-type-allocation: need a way to free this type when we are
1660 done with it. */
1661 follow_type = lookup_function_type (follow_type);
1662 break;
1663
1664 case tp_function_with_arguments:
1665 {
1666 VEC (type_ptr) *args = pop_typelist ();
1667
1668 follow_type
1669 = lookup_function_type_with_arguments (follow_type,
1670 VEC_length (type_ptr, args),
1671 VEC_address (type_ptr,
1672 args));
1673 VEC_free (type_ptr, args);
1674 }
1675 break;
1676
1677 case tp_type_stack:
1678 {
1679 struct type_stack *stack = pop_type_stack ();
1680 /* Sort of ugly, but not really much worse than the
1681 alternatives. */
1682 struct type_stack save = type_stack;
1683
1684 type_stack = *stack;
1685 follow_type = follow_types (follow_type);
1686 gdb_assert (type_stack.depth == 0);
1687
1688 type_stack = save;
1689 }
1690 break;
1691 default:
1692 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1693 }
1694 return follow_type;
1695 }
1696 \f
1697 /* This function avoids direct calls to fprintf
1698 in the parser generated debug code. */
1699 void
1700 parser_fprintf (FILE *x, const char *y, ...)
1701 {
1702 va_list args;
1703
1704 va_start (args, y);
1705 if (x == stderr)
1706 vfprintf_unfiltered (gdb_stderr, y, args);
1707 else
1708 {
1709 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1710 vfprintf_unfiltered (gdb_stderr, y, args);
1711 }
1712 va_end (args);
1713 }
1714
1715 /* Implementation of the exp_descriptor method operator_check. */
1716
1717 int
1718 operator_check_standard (struct expression *exp, int pos,
1719 int (*objfile_func) (struct objfile *objfile,
1720 void *data),
1721 void *data)
1722 {
1723 const union exp_element *const elts = exp->elts;
1724 struct type *type = NULL;
1725 struct objfile *objfile = NULL;
1726
1727 /* Extended operators should have been already handled by exp_descriptor
1728 iterate method of its specific language. */
1729 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1730
1731 /* Track the callers of write_exp_elt_type for this table. */
1732
1733 switch (elts[pos].opcode)
1734 {
1735 case BINOP_VAL:
1736 case OP_COMPLEX:
1737 case OP_DECFLOAT:
1738 case OP_DOUBLE:
1739 case OP_LONG:
1740 case OP_SCOPE:
1741 case OP_TYPE:
1742 case UNOP_CAST:
1743 case UNOP_MAX:
1744 case UNOP_MEMVAL:
1745 case UNOP_MIN:
1746 type = elts[pos + 1].type;
1747 break;
1748
1749 case TYPE_INSTANCE:
1750 {
1751 LONGEST arg, nargs = elts[pos + 1].longconst;
1752
1753 for (arg = 0; arg < nargs; arg++)
1754 {
1755 struct type *type = elts[pos + 2 + arg].type;
1756 struct objfile *objfile = TYPE_OBJFILE (type);
1757
1758 if (objfile && (*objfile_func) (objfile, data))
1759 return 1;
1760 }
1761 }
1762 break;
1763
1764 case UNOP_MEMVAL_TLS:
1765 objfile = elts[pos + 1].objfile;
1766 type = elts[pos + 2].type;
1767 break;
1768
1769 case OP_VAR_VALUE:
1770 {
1771 const struct block *const block = elts[pos + 1].block;
1772 const struct symbol *const symbol = elts[pos + 2].symbol;
1773
1774 /* Check objfile where the variable itself is placed.
1775 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1776 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1777 return 1;
1778
1779 /* Check objfile where is placed the code touching the variable. */
1780 objfile = lookup_objfile_from_block (block);
1781
1782 type = SYMBOL_TYPE (symbol);
1783 }
1784 break;
1785 }
1786
1787 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1788
1789 if (type && TYPE_OBJFILE (type)
1790 && (*objfile_func) (TYPE_OBJFILE (type), data))
1791 return 1;
1792 if (objfile && (*objfile_func) (objfile, data))
1793 return 1;
1794
1795 return 0;
1796 }
1797
1798 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1799 The functions are never called with NULL OBJFILE. Functions get passed an
1800 arbitrary caller supplied DATA pointer. If any of the functions returns
1801 non-zero value then (any other) non-zero value is immediately returned to
1802 the caller. Otherwise zero is returned after iterating through whole EXP.
1803 */
1804
1805 static int
1806 exp_iterate (struct expression *exp,
1807 int (*objfile_func) (struct objfile *objfile, void *data),
1808 void *data)
1809 {
1810 int endpos;
1811
1812 for (endpos = exp->nelts; endpos > 0; )
1813 {
1814 int pos, args, oplen = 0;
1815
1816 operator_length (exp, endpos, &oplen, &args);
1817 gdb_assert (oplen > 0);
1818
1819 pos = endpos - oplen;
1820 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1821 objfile_func, data))
1822 return 1;
1823
1824 endpos = pos;
1825 }
1826
1827 return 0;
1828 }
1829
1830 /* Helper for exp_uses_objfile. */
1831
1832 static int
1833 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1834 {
1835 struct objfile *objfile = objfile_voidp;
1836
1837 if (exp_objfile->separate_debug_objfile_backlink)
1838 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1839
1840 return exp_objfile == objfile;
1841 }
1842
1843 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1844 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1845 file. */
1846
1847 int
1848 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1849 {
1850 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1851
1852 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1853 }
1854
1855 void
1856 _initialize_parse (void)
1857 {
1858 type_stack.size = 0;
1859 type_stack.depth = 0;
1860 type_stack.elements = NULL;
1861
1862 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1863 &expressiondebug,
1864 _("Set expression debugging."),
1865 _("Show expression debugging."),
1866 _("When non-zero, the internal representation "
1867 "of expressions will be printed."),
1868 NULL,
1869 show_expressiondebug,
1870 &setdebuglist, &showdebuglist);
1871 add_setshow_boolean_cmd ("parser", class_maintenance,
1872 &parser_debug,
1873 _("Set parser debugging."),
1874 _("Show parser debugging."),
1875 _("When non-zero, expression parser "
1876 "tracing will be enabled."),
1877 NULL,
1878 show_parserdebug,
1879 &setdebuglist, &showdebuglist);
1880 }
This page took 0.077999 seconds and 4 git commands to generate.