Remove paren_depth global
[deliverable/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "target-float.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67 \f
68 /* Global variables declared in parser-defs.h (and commented there). */
69 innermost_block_tracker innermost_block;
70 int arglist_len;
71 static struct type_stack type_stack;
72 const char *lexptr;
73 const char *prev_lexptr;
74 int comma_terminates;
75
76 /* True if parsing an expression to attempt completion. */
77 int parse_completion;
78
79 /* The index of the last struct expression directly before a '.' or
80 '->'. This is set when parsing and is only used when completing a
81 field name. It is -1 if no dereference operation was found. */
82 static int expout_last_struct = -1;
83
84 /* If we are completing a tagged type name, this will be nonzero. */
85 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
86
87 /* The token for tagged type name completion. */
88 static gdb::unique_xmalloc_ptr<char> expout_completion_name;
89
90 \f
91 static unsigned int expressiondebug = 0;
92 static void
93 show_expressiondebug (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95 {
96 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
97 }
98
99
100 /* Non-zero if an expression parser should set yydebug. */
101 int parser_debug;
102
103 static void
104 show_parserdebug (struct ui_file *file, int from_tty,
105 struct cmd_list_element *c, const char *value)
106 {
107 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
108 }
109
110
111 static int prefixify_subexp (struct expression *, struct expression *, int,
112 int);
113
114 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
115 const struct block *, int,
116 int, int *,
117 innermost_block_tracker_types);
118
119 static void increase_expout_size (struct expr_builder *ps, size_t lenelt);
120
121
122 /* Documented at it's declaration. */
123
124 void
125 innermost_block_tracker::update (const struct block *b,
126 innermost_block_tracker_types t)
127 {
128 if ((m_types & t) != 0
129 && (m_innermost_block == NULL
130 || contained_in (b, m_innermost_block)))
131 m_innermost_block = b;
132 }
133
134 /* Data structure for saving values of arglist_len for function calls whose
135 arguments contain other function calls. */
136
137 static std::vector<int> *funcall_chain;
138
139 /* Begin counting arguments for a function call,
140 saving the data about any containing call. */
141
142 void
143 start_arglist (void)
144 {
145 funcall_chain->push_back (arglist_len);
146 arglist_len = 0;
147 }
148
149 /* Return the number of arguments in a function call just terminated,
150 and restore the data for the containing function call. */
151
152 int
153 end_arglist (void)
154 {
155 int val = arglist_len;
156 arglist_len = funcall_chain->back ();
157 funcall_chain->pop_back ();
158 return val;
159 }
160
161 \f
162
163 /* See definition in parser-defs.h. */
164
165 expr_builder::expr_builder (const struct language_defn *lang,
166 struct gdbarch *gdbarch)
167 : expout_size (10),
168 expout (XNEWVAR (expression,
169 (sizeof (expression)
170 + EXP_ELEM_TO_BYTES (expout_size)))),
171 expout_ptr (0)
172 {
173 expout->language_defn = lang;
174 expout->gdbarch = gdbarch;
175 }
176
177 expression_up
178 expr_builder::release ()
179 {
180 /* Record the actual number of expression elements, and then
181 reallocate the expression memory so that we free up any
182 excess elements. */
183
184 expout->nelts = expout_ptr;
185 expout.reset (XRESIZEVAR (expression, expout.release (),
186 (sizeof (expression)
187 + EXP_ELEM_TO_BYTES (expout_ptr))));
188
189 return std::move (expout);
190 }
191
192 /* This page contains the functions for adding data to the struct expression
193 being constructed. */
194
195 /* Add one element to the end of the expression. */
196
197 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
198 a register through here. */
199
200 static void
201 write_exp_elt (struct expr_builder *ps, const union exp_element *expelt)
202 {
203 if (ps->expout_ptr >= ps->expout_size)
204 {
205 ps->expout_size *= 2;
206 ps->expout.reset (XRESIZEVAR (expression, ps->expout.release (),
207 (sizeof (expression)
208 + EXP_ELEM_TO_BYTES (ps->expout_size))));
209 }
210 ps->expout->elts[ps->expout_ptr++] = *expelt;
211 }
212
213 void
214 write_exp_elt_opcode (struct expr_builder *ps, enum exp_opcode expelt)
215 {
216 union exp_element tmp;
217
218 memset (&tmp, 0, sizeof (union exp_element));
219 tmp.opcode = expelt;
220 write_exp_elt (ps, &tmp);
221 }
222
223 void
224 write_exp_elt_sym (struct expr_builder *ps, struct symbol *expelt)
225 {
226 union exp_element tmp;
227
228 memset (&tmp, 0, sizeof (union exp_element));
229 tmp.symbol = expelt;
230 write_exp_elt (ps, &tmp);
231 }
232
233 void
234 write_exp_elt_msym (struct expr_builder *ps, minimal_symbol *expelt)
235 {
236 union exp_element tmp;
237
238 memset (&tmp, 0, sizeof (union exp_element));
239 tmp.msymbol = expelt;
240 write_exp_elt (ps, &tmp);
241 }
242
243 void
244 write_exp_elt_block (struct expr_builder *ps, const struct block *b)
245 {
246 union exp_element tmp;
247
248 memset (&tmp, 0, sizeof (union exp_element));
249 tmp.block = b;
250 write_exp_elt (ps, &tmp);
251 }
252
253 void
254 write_exp_elt_objfile (struct expr_builder *ps, struct objfile *objfile)
255 {
256 union exp_element tmp;
257
258 memset (&tmp, 0, sizeof (union exp_element));
259 tmp.objfile = objfile;
260 write_exp_elt (ps, &tmp);
261 }
262
263 void
264 write_exp_elt_longcst (struct expr_builder *ps, LONGEST expelt)
265 {
266 union exp_element tmp;
267
268 memset (&tmp, 0, sizeof (union exp_element));
269 tmp.longconst = expelt;
270 write_exp_elt (ps, &tmp);
271 }
272
273 void
274 write_exp_elt_floatcst (struct expr_builder *ps, const gdb_byte expelt[16])
275 {
276 union exp_element tmp;
277 int index;
278
279 for (index = 0; index < 16; index++)
280 tmp.floatconst[index] = expelt[index];
281
282 write_exp_elt (ps, &tmp);
283 }
284
285 void
286 write_exp_elt_type (struct expr_builder *ps, struct type *expelt)
287 {
288 union exp_element tmp;
289
290 memset (&tmp, 0, sizeof (union exp_element));
291 tmp.type = expelt;
292 write_exp_elt (ps, &tmp);
293 }
294
295 void
296 write_exp_elt_intern (struct expr_builder *ps, struct internalvar *expelt)
297 {
298 union exp_element tmp;
299
300 memset (&tmp, 0, sizeof (union exp_element));
301 tmp.internalvar = expelt;
302 write_exp_elt (ps, &tmp);
303 }
304
305 /* Add a string constant to the end of the expression.
306
307 String constants are stored by first writing an expression element
308 that contains the length of the string, then stuffing the string
309 constant itself into however many expression elements are needed
310 to hold it, and then writing another expression element that contains
311 the length of the string. I.e. an expression element at each end of
312 the string records the string length, so you can skip over the
313 expression elements containing the actual string bytes from either
314 end of the string. Note that this also allows gdb to handle
315 strings with embedded null bytes, as is required for some languages.
316
317 Don't be fooled by the fact that the string is null byte terminated,
318 this is strictly for the convenience of debugging gdb itself.
319 Gdb does not depend up the string being null terminated, since the
320 actual length is recorded in expression elements at each end of the
321 string. The null byte is taken into consideration when computing how
322 many expression elements are required to hold the string constant, of
323 course. */
324
325
326 void
327 write_exp_string (struct expr_builder *ps, struct stoken str)
328 {
329 int len = str.length;
330 size_t lenelt;
331 char *strdata;
332
333 /* Compute the number of expression elements required to hold the string
334 (including a null byte terminator), along with one expression element
335 at each end to record the actual string length (not including the
336 null byte terminator). */
337
338 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
339
340 increase_expout_size (ps, lenelt);
341
342 /* Write the leading length expression element (which advances the current
343 expression element index), then write the string constant followed by a
344 terminating null byte, and then write the trailing length expression
345 element. */
346
347 write_exp_elt_longcst (ps, (LONGEST) len);
348 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
349 memcpy (strdata, str.ptr, len);
350 *(strdata + len) = '\0';
351 ps->expout_ptr += lenelt - 2;
352 write_exp_elt_longcst (ps, (LONGEST) len);
353 }
354
355 /* Add a vector of string constants to the end of the expression.
356
357 This adds an OP_STRING operation, but encodes the contents
358 differently from write_exp_string. The language is expected to
359 handle evaluation of this expression itself.
360
361 After the usual OP_STRING header, TYPE is written into the
362 expression as a long constant. The interpretation of this field is
363 up to the language evaluator.
364
365 Next, each string in VEC is written. The length is written as a
366 long constant, followed by the contents of the string. */
367
368 void
369 write_exp_string_vector (struct expr_builder *ps, int type,
370 struct stoken_vector *vec)
371 {
372 int i, len;
373 size_t n_slots;
374
375 /* Compute the size. We compute the size in number of slots to
376 avoid issues with string padding. */
377 n_slots = 0;
378 for (i = 0; i < vec->len; ++i)
379 {
380 /* One slot for the length of this element, plus the number of
381 slots needed for this string. */
382 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
383 }
384
385 /* One more slot for the type of the string. */
386 ++n_slots;
387
388 /* Now compute a phony string length. */
389 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
390
391 n_slots += 4;
392 increase_expout_size (ps, n_slots);
393
394 write_exp_elt_opcode (ps, OP_STRING);
395 write_exp_elt_longcst (ps, len);
396 write_exp_elt_longcst (ps, type);
397
398 for (i = 0; i < vec->len; ++i)
399 {
400 write_exp_elt_longcst (ps, vec->tokens[i].length);
401 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
402 vec->tokens[i].length);
403 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
404 }
405
406 write_exp_elt_longcst (ps, len);
407 write_exp_elt_opcode (ps, OP_STRING);
408 }
409
410 /* Add a bitstring constant to the end of the expression.
411
412 Bitstring constants are stored by first writing an expression element
413 that contains the length of the bitstring (in bits), then stuffing the
414 bitstring constant itself into however many expression elements are
415 needed to hold it, and then writing another expression element that
416 contains the length of the bitstring. I.e. an expression element at
417 each end of the bitstring records the bitstring length, so you can skip
418 over the expression elements containing the actual bitstring bytes from
419 either end of the bitstring. */
420
421 void
422 write_exp_bitstring (struct expr_builder *ps, struct stoken str)
423 {
424 int bits = str.length; /* length in bits */
425 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
426 size_t lenelt;
427 char *strdata;
428
429 /* Compute the number of expression elements required to hold the bitstring,
430 along with one expression element at each end to record the actual
431 bitstring length in bits. */
432
433 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
434
435 increase_expout_size (ps, lenelt);
436
437 /* Write the leading length expression element (which advances the current
438 expression element index), then write the bitstring constant, and then
439 write the trailing length expression element. */
440
441 write_exp_elt_longcst (ps, (LONGEST) bits);
442 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
443 memcpy (strdata, str.ptr, len);
444 ps->expout_ptr += lenelt - 2;
445 write_exp_elt_longcst (ps, (LONGEST) bits);
446 }
447
448 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
449 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
450 address. */
451
452 type *
453 find_minsym_type_and_address (minimal_symbol *msymbol,
454 struct objfile *objfile,
455 CORE_ADDR *address_p)
456 {
457 bound_minimal_symbol bound_msym = {msymbol, objfile};
458 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
459 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
460
461 bool is_tls = (section != NULL
462 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
463
464 /* The minimal symbol might point to a function descriptor;
465 resolve it to the actual code address instead. */
466 CORE_ADDR addr;
467 if (is_tls)
468 {
469 /* Addresses of TLS symbols are really offsets into a
470 per-objfile/per-thread storage block. */
471 addr = MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym);
472 }
473 else if (msymbol_is_function (objfile, msymbol, &addr))
474 {
475 if (addr != BMSYMBOL_VALUE_ADDRESS (bound_msym))
476 {
477 /* This means we resolved a function descriptor, and we now
478 have an address for a code/text symbol instead of a data
479 symbol. */
480 if (MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
481 type = mst_text_gnu_ifunc;
482 else
483 type = mst_text;
484 section = NULL;
485 }
486 }
487 else
488 addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
489
490 if (overlay_debugging)
491 addr = symbol_overlayed_address (addr, section);
492
493 if (is_tls)
494 {
495 /* Skip translation if caller does not need the address. */
496 if (address_p != NULL)
497 *address_p = target_translate_tls_address (objfile, addr);
498 return objfile_type (objfile)->nodebug_tls_symbol;
499 }
500
501 if (address_p != NULL)
502 *address_p = addr;
503
504 switch (type)
505 {
506 case mst_text:
507 case mst_file_text:
508 case mst_solib_trampoline:
509 return objfile_type (objfile)->nodebug_text_symbol;
510
511 case mst_text_gnu_ifunc:
512 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
513
514 case mst_data:
515 case mst_file_data:
516 case mst_bss:
517 case mst_file_bss:
518 return objfile_type (objfile)->nodebug_data_symbol;
519
520 case mst_slot_got_plt:
521 return objfile_type (objfile)->nodebug_got_plt_symbol;
522
523 default:
524 return objfile_type (objfile)->nodebug_unknown_symbol;
525 }
526 }
527
528 /* Add the appropriate elements for a minimal symbol to the end of
529 the expression. */
530
531 void
532 write_exp_msymbol (struct expr_builder *ps,
533 struct bound_minimal_symbol bound_msym)
534 {
535 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
536 write_exp_elt_objfile (ps, bound_msym.objfile);
537 write_exp_elt_msym (ps, bound_msym.minsym);
538 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
539 }
540
541 /* Mark the current index as the starting location of a structure
542 expression. This is used when completing on field names. */
543
544 void
545 mark_struct_expression (struct expr_builder *ps)
546 {
547 gdb_assert (parse_completion
548 && expout_tag_completion_type == TYPE_CODE_UNDEF);
549 expout_last_struct = ps->expout_ptr;
550 }
551
552 /* Indicate that the current parser invocation is completing a tag.
553 TAG is the type code of the tag, and PTR and LENGTH represent the
554 start of the tag name. */
555
556 void
557 mark_completion_tag (enum type_code tag, const char *ptr, int length)
558 {
559 gdb_assert (parse_completion
560 && expout_tag_completion_type == TYPE_CODE_UNDEF
561 && expout_completion_name == NULL
562 && expout_last_struct == -1);
563 gdb_assert (tag == TYPE_CODE_UNION
564 || tag == TYPE_CODE_STRUCT
565 || tag == TYPE_CODE_ENUM);
566 expout_tag_completion_type = tag;
567 expout_completion_name.reset (xstrndup (ptr, length));
568 }
569
570 \f
571 /* Recognize tokens that start with '$'. These include:
572
573 $regname A native register name or a "standard
574 register name".
575
576 $variable A convenience variable with a name chosen
577 by the user.
578
579 $digits Value history with index <digits>, starting
580 from the first value which has index 1.
581
582 $$digits Value history with index <digits> relative
583 to the last value. I.e. $$0 is the last
584 value, $$1 is the one previous to that, $$2
585 is the one previous to $$1, etc.
586
587 $ | $0 | $$0 The last value in the value history.
588
589 $$ An abbreviation for the second to the last
590 value in the value history, I.e. $$1 */
591
592 void
593 write_dollar_variable (struct parser_state *ps, struct stoken str)
594 {
595 struct block_symbol sym;
596 struct bound_minimal_symbol msym;
597 struct internalvar *isym = NULL;
598
599 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
600 and $$digits (equivalent to $<-digits> if you could type that). */
601
602 int negate = 0;
603 int i = 1;
604 /* Double dollar means negate the number and add -1 as well.
605 Thus $$ alone means -1. */
606 if (str.length >= 2 && str.ptr[1] == '$')
607 {
608 negate = 1;
609 i = 2;
610 }
611 if (i == str.length)
612 {
613 /* Just dollars (one or two). */
614 i = -negate;
615 goto handle_last;
616 }
617 /* Is the rest of the token digits? */
618 for (; i < str.length; i++)
619 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
620 break;
621 if (i == str.length)
622 {
623 i = atoi (str.ptr + 1 + negate);
624 if (negate)
625 i = -i;
626 goto handle_last;
627 }
628
629 /* Handle tokens that refer to machine registers:
630 $ followed by a register name. */
631 i = user_reg_map_name_to_regnum (ps->gdbarch (),
632 str.ptr + 1, str.length - 1);
633 if (i >= 0)
634 goto handle_register;
635
636 /* Any names starting with $ are probably debugger internal variables. */
637
638 isym = lookup_only_internalvar (copy_name (str) + 1);
639 if (isym)
640 {
641 write_exp_elt_opcode (ps, OP_INTERNALVAR);
642 write_exp_elt_intern (ps, isym);
643 write_exp_elt_opcode (ps, OP_INTERNALVAR);
644 return;
645 }
646
647 /* On some systems, such as HP-UX and hppa-linux, certain system routines
648 have names beginning with $ or $$. Check for those, first. */
649
650 sym = lookup_symbol (copy_name (str), NULL, VAR_DOMAIN, NULL);
651 if (sym.symbol)
652 {
653 write_exp_elt_opcode (ps, OP_VAR_VALUE);
654 write_exp_elt_block (ps, sym.block);
655 write_exp_elt_sym (ps, sym.symbol);
656 write_exp_elt_opcode (ps, OP_VAR_VALUE);
657 return;
658 }
659 msym = lookup_bound_minimal_symbol (copy_name (str));
660 if (msym.minsym)
661 {
662 write_exp_msymbol (ps, msym);
663 return;
664 }
665
666 /* Any other names are assumed to be debugger internal variables. */
667
668 write_exp_elt_opcode (ps, OP_INTERNALVAR);
669 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
670 write_exp_elt_opcode (ps, OP_INTERNALVAR);
671 return;
672 handle_last:
673 write_exp_elt_opcode (ps, OP_LAST);
674 write_exp_elt_longcst (ps, (LONGEST) i);
675 write_exp_elt_opcode (ps, OP_LAST);
676 return;
677 handle_register:
678 write_exp_elt_opcode (ps, OP_REGISTER);
679 str.length--;
680 str.ptr++;
681 write_exp_string (ps, str);
682 write_exp_elt_opcode (ps, OP_REGISTER);
683 innermost_block.update (ps->expression_context_block,
684 INNERMOST_BLOCK_FOR_REGISTERS);
685 return;
686 }
687
688
689 const char *
690 find_template_name_end (const char *p)
691 {
692 int depth = 1;
693 int just_seen_right = 0;
694 int just_seen_colon = 0;
695 int just_seen_space = 0;
696
697 if (!p || (*p != '<'))
698 return 0;
699
700 while (*++p)
701 {
702 switch (*p)
703 {
704 case '\'':
705 case '\"':
706 case '{':
707 case '}':
708 /* In future, may want to allow these?? */
709 return 0;
710 case '<':
711 depth++; /* start nested template */
712 if (just_seen_colon || just_seen_right || just_seen_space)
713 return 0; /* but not after : or :: or > or space */
714 break;
715 case '>':
716 if (just_seen_colon || just_seen_right)
717 return 0; /* end a (nested?) template */
718 just_seen_right = 1; /* but not after : or :: */
719 if (--depth == 0) /* also disallow >>, insist on > > */
720 return ++p; /* if outermost ended, return */
721 break;
722 case ':':
723 if (just_seen_space || (just_seen_colon > 1))
724 return 0; /* nested class spec coming up */
725 just_seen_colon++; /* we allow :: but not :::: */
726 break;
727 case ' ':
728 break;
729 default:
730 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
731 (*p >= 'A' && *p <= 'Z') ||
732 (*p >= '0' && *p <= '9') ||
733 (*p == '_') || (*p == ',') || /* commas for template args */
734 (*p == '&') || (*p == '*') || /* pointer and ref types */
735 (*p == '(') || (*p == ')') || /* function types */
736 (*p == '[') || (*p == ']'))) /* array types */
737 return 0;
738 }
739 if (*p != ' ')
740 just_seen_space = 0;
741 if (*p != ':')
742 just_seen_colon = 0;
743 if (*p != '>')
744 just_seen_right = 0;
745 }
746 return 0;
747 }
748 \f
749
750 /* Return a null-terminated temporary copy of the name of a string token.
751
752 Tokens that refer to names do so with explicit pointer and length,
753 so they can share the storage that lexptr is parsing.
754 When it is necessary to pass a name to a function that expects
755 a null-terminated string, the substring is copied out
756 into a separate block of storage.
757
758 N.B. A single buffer is reused on each call. */
759
760 char *
761 copy_name (struct stoken token)
762 {
763 /* A temporary buffer for identifiers, so we can null-terminate them.
764 We allocate this with xrealloc. parse_exp_1 used to allocate with
765 alloca, using the size of the whole expression as a conservative
766 estimate of the space needed. However, macro expansion can
767 introduce names longer than the original expression; there's no
768 practical way to know beforehand how large that might be. */
769 static char *namecopy;
770 static size_t namecopy_size;
771
772 /* Make sure there's enough space for the token. */
773 if (namecopy_size < token.length + 1)
774 {
775 namecopy_size = token.length + 1;
776 namecopy = (char *) xrealloc (namecopy, token.length + 1);
777 }
778
779 memcpy (namecopy, token.ptr, token.length);
780 namecopy[token.length] = 0;
781
782 return namecopy;
783 }
784 \f
785
786 /* See comments on parser-defs.h. */
787
788 int
789 prefixify_expression (struct expression *expr)
790 {
791 gdb_assert (expr->nelts > 0);
792 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
793 struct expression *temp;
794 int inpos = expr->nelts, outpos = 0;
795
796 temp = (struct expression *) alloca (len);
797
798 /* Copy the original expression into temp. */
799 memcpy (temp, expr, len);
800
801 return prefixify_subexp (temp, expr, inpos, outpos);
802 }
803
804 /* Return the number of exp_elements in the postfix subexpression
805 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
806
807 static int
808 length_of_subexp (struct expression *expr, int endpos)
809 {
810 int oplen, args;
811
812 operator_length (expr, endpos, &oplen, &args);
813
814 while (args > 0)
815 {
816 oplen += length_of_subexp (expr, endpos - oplen);
817 args--;
818 }
819
820 return oplen;
821 }
822
823 /* Sets *OPLENP to the length of the operator whose (last) index is
824 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
825 operator takes. */
826
827 void
828 operator_length (const struct expression *expr, int endpos, int *oplenp,
829 int *argsp)
830 {
831 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
832 oplenp, argsp);
833 }
834
835 /* Default value for operator_length in exp_descriptor vectors. */
836
837 void
838 operator_length_standard (const struct expression *expr, int endpos,
839 int *oplenp, int *argsp)
840 {
841 int oplen = 1;
842 int args = 0;
843 enum range_type range_type;
844 int i;
845
846 if (endpos < 1)
847 error (_("?error in operator_length_standard"));
848
849 i = (int) expr->elts[endpos - 1].opcode;
850
851 switch (i)
852 {
853 /* C++ */
854 case OP_SCOPE:
855 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
856 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
857 break;
858
859 case OP_LONG:
860 case OP_FLOAT:
861 case OP_VAR_VALUE:
862 case OP_VAR_MSYM_VALUE:
863 oplen = 4;
864 break;
865
866 case OP_FUNC_STATIC_VAR:
867 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
868 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
869 args = 1;
870 break;
871
872 case OP_TYPE:
873 case OP_BOOL:
874 case OP_LAST:
875 case OP_INTERNALVAR:
876 case OP_VAR_ENTRY_VALUE:
877 oplen = 3;
878 break;
879
880 case OP_COMPLEX:
881 oplen = 3;
882 args = 2;
883 break;
884
885 case OP_FUNCALL:
886 case OP_F77_UNDETERMINED_ARGLIST:
887 oplen = 3;
888 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
889 break;
890
891 case TYPE_INSTANCE:
892 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
893 args = 1;
894 break;
895
896 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
897 oplen = 4;
898 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
899 break;
900
901 case UNOP_MAX:
902 case UNOP_MIN:
903 oplen = 3;
904 break;
905
906 case UNOP_CAST_TYPE:
907 case UNOP_DYNAMIC_CAST:
908 case UNOP_REINTERPRET_CAST:
909 case UNOP_MEMVAL_TYPE:
910 oplen = 1;
911 args = 2;
912 break;
913
914 case BINOP_VAL:
915 case UNOP_CAST:
916 case UNOP_MEMVAL:
917 oplen = 3;
918 args = 1;
919 break;
920
921 case UNOP_ABS:
922 case UNOP_CAP:
923 case UNOP_CHR:
924 case UNOP_FLOAT:
925 case UNOP_HIGH:
926 case UNOP_KIND:
927 case UNOP_ODD:
928 case UNOP_ORD:
929 case UNOP_TRUNC:
930 case OP_TYPEOF:
931 case OP_DECLTYPE:
932 case OP_TYPEID:
933 oplen = 1;
934 args = 1;
935 break;
936
937 case OP_ADL_FUNC:
938 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
939 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
940 oplen++;
941 oplen++;
942 break;
943
944 case STRUCTOP_STRUCT:
945 case STRUCTOP_PTR:
946 args = 1;
947 /* fall through */
948 case OP_REGISTER:
949 case OP_M2_STRING:
950 case OP_STRING:
951 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
952 NSString constant. */
953 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
954 case OP_NAME:
955 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
956 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
957 break;
958
959 case OP_ARRAY:
960 oplen = 4;
961 args = longest_to_int (expr->elts[endpos - 2].longconst);
962 args -= longest_to_int (expr->elts[endpos - 3].longconst);
963 args += 1;
964 break;
965
966 case TERNOP_COND:
967 case TERNOP_SLICE:
968 args = 3;
969 break;
970
971 /* Modula-2 */
972 case MULTI_SUBSCRIPT:
973 oplen = 3;
974 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
975 break;
976
977 case BINOP_ASSIGN_MODIFY:
978 oplen = 3;
979 args = 2;
980 break;
981
982 /* C++ */
983 case OP_THIS:
984 oplen = 2;
985 break;
986
987 case OP_RANGE:
988 oplen = 3;
989 range_type = (enum range_type)
990 longest_to_int (expr->elts[endpos - 2].longconst);
991
992 switch (range_type)
993 {
994 case LOW_BOUND_DEFAULT:
995 case LOW_BOUND_DEFAULT_EXCLUSIVE:
996 case HIGH_BOUND_DEFAULT:
997 args = 1;
998 break;
999 case BOTH_BOUND_DEFAULT:
1000 args = 0;
1001 break;
1002 case NONE_BOUND_DEFAULT:
1003 case NONE_BOUND_DEFAULT_EXCLUSIVE:
1004 args = 2;
1005 break;
1006 }
1007
1008 break;
1009
1010 default:
1011 args = 1 + (i < (int) BINOP_END);
1012 }
1013
1014 *oplenp = oplen;
1015 *argsp = args;
1016 }
1017
1018 /* Copy the subexpression ending just before index INEND in INEXPR
1019 into OUTEXPR, starting at index OUTBEG.
1020 In the process, convert it from suffix to prefix form.
1021 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1022 Otherwise, it returns the index of the subexpression which is the
1023 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1024
1025 static int
1026 prefixify_subexp (struct expression *inexpr,
1027 struct expression *outexpr, int inend, int outbeg)
1028 {
1029 int oplen;
1030 int args;
1031 int i;
1032 int *arglens;
1033 int result = -1;
1034
1035 operator_length (inexpr, inend, &oplen, &args);
1036
1037 /* Copy the final operator itself, from the end of the input
1038 to the beginning of the output. */
1039 inend -= oplen;
1040 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1041 EXP_ELEM_TO_BYTES (oplen));
1042 outbeg += oplen;
1043
1044 if (expout_last_struct == inend)
1045 result = outbeg - oplen;
1046
1047 /* Find the lengths of the arg subexpressions. */
1048 arglens = (int *) alloca (args * sizeof (int));
1049 for (i = args - 1; i >= 0; i--)
1050 {
1051 oplen = length_of_subexp (inexpr, inend);
1052 arglens[i] = oplen;
1053 inend -= oplen;
1054 }
1055
1056 /* Now copy each subexpression, preserving the order of
1057 the subexpressions, but prefixifying each one.
1058 In this loop, inend starts at the beginning of
1059 the expression this level is working on
1060 and marches forward over the arguments.
1061 outbeg does similarly in the output. */
1062 for (i = 0; i < args; i++)
1063 {
1064 int r;
1065
1066 oplen = arglens[i];
1067 inend += oplen;
1068 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1069 if (r != -1)
1070 {
1071 /* Return immediately. We probably have only parsed a
1072 partial expression, so we don't want to try to reverse
1073 the other operands. */
1074 return r;
1075 }
1076 outbeg += oplen;
1077 }
1078
1079 return result;
1080 }
1081 \f
1082 /* Read an expression from the string *STRINGPTR points to,
1083 parse it, and return a pointer to a struct expression that we malloc.
1084 Use block BLOCK as the lexical context for variable names;
1085 if BLOCK is zero, use the block of the selected stack frame.
1086 Meanwhile, advance *STRINGPTR to point after the expression,
1087 at the first nonwhite character that is not part of the expression
1088 (possibly a null character).
1089
1090 If COMMA is nonzero, stop if a comma is reached. */
1091
1092 expression_up
1093 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1094 int comma, innermost_block_tracker_types tracker_types)
1095 {
1096 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL,
1097 tracker_types);
1098 }
1099
1100 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1101 no value is expected from the expression.
1102 OUT_SUBEXP is set when attempting to complete a field name; in this
1103 case it is set to the index of the subexpression on the
1104 left-hand-side of the struct op. If not doing such completion, it
1105 is left untouched. */
1106
1107 static expression_up
1108 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1109 const struct block *block,
1110 int comma, int void_context_p, int *out_subexp,
1111 innermost_block_tracker_types tracker_types)
1112 {
1113 const struct language_defn *lang = NULL;
1114 int subexp;
1115
1116 lexptr = *stringptr;
1117 prev_lexptr = NULL;
1118
1119 type_stack.elements.clear ();
1120 expout_last_struct = -1;
1121 expout_tag_completion_type = TYPE_CODE_UNDEF;
1122 expout_completion_name.reset ();
1123 innermost_block.reset (tracker_types);
1124
1125 comma_terminates = comma;
1126
1127 if (lexptr == 0 || *lexptr == 0)
1128 error_no_arg (_("expression to compute"));
1129
1130 std::vector<int> funcalls;
1131 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1132 &funcalls);
1133
1134 const struct block *expression_context_block = block;
1135 CORE_ADDR expression_context_pc = 0;
1136
1137 /* If no context specified, try using the current frame, if any. */
1138 if (!expression_context_block)
1139 expression_context_block = get_selected_block (&expression_context_pc);
1140 else if (pc == 0)
1141 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1142 else
1143 expression_context_pc = pc;
1144
1145 /* Fall back to using the current source static context, if any. */
1146
1147 if (!expression_context_block)
1148 {
1149 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1150 if (cursal.symtab)
1151 expression_context_block
1152 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1153 STATIC_BLOCK);
1154 if (expression_context_block)
1155 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1156 }
1157
1158 if (language_mode == language_mode_auto && block != NULL)
1159 {
1160 /* Find the language associated to the given context block.
1161 Default to the current language if it can not be determined.
1162
1163 Note that using the language corresponding to the current frame
1164 can sometimes give unexpected results. For instance, this
1165 routine is often called several times during the inferior
1166 startup phase to re-parse breakpoint expressions after
1167 a new shared library has been loaded. The language associated
1168 to the current frame at this moment is not relevant for
1169 the breakpoint. Using it would therefore be silly, so it seems
1170 better to rely on the current language rather than relying on
1171 the current frame language to parse the expression. That's why
1172 we do the following language detection only if the context block
1173 has been specifically provided. */
1174 struct symbol *func = block_linkage_function (block);
1175
1176 if (func != NULL)
1177 lang = language_def (SYMBOL_LANGUAGE (func));
1178 if (lang == NULL || lang->la_language == language_unknown)
1179 lang = current_language;
1180 }
1181 else
1182 lang = current_language;
1183
1184 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1185 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1186 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1187 to the value matching SELECTED_FRAME as set by get_current_arch. */
1188
1189 parser_state ps (lang, get_current_arch (), expression_context_block,
1190 expression_context_pc);
1191
1192 scoped_restore_current_language lang_saver;
1193 set_language (lang->la_language);
1194
1195 TRY
1196 {
1197 lang->la_parser (&ps);
1198 }
1199 CATCH (except, RETURN_MASK_ALL)
1200 {
1201 /* If parsing for completion, allow this to succeed; but if no
1202 expression elements have been written, then there's nothing
1203 to do, so fail. */
1204 if (! parse_completion || ps.expout_ptr == 0)
1205 throw_exception (except);
1206 }
1207 END_CATCH
1208
1209 /* We have to operate on an "expression *", due to la_post_parser,
1210 which explains this funny-looking double release. */
1211 expression_up result = ps.release ();
1212
1213 /* Convert expression from postfix form as generated by yacc
1214 parser, to a prefix form. */
1215
1216 if (expressiondebug)
1217 dump_raw_expression (result.get (), gdb_stdlog,
1218 "before conversion to prefix form");
1219
1220 subexp = prefixify_expression (result.get ());
1221 if (out_subexp)
1222 *out_subexp = subexp;
1223
1224 lang->la_post_parser (&result, void_context_p);
1225
1226 if (expressiondebug)
1227 dump_prefix_expression (result.get (), gdb_stdlog);
1228
1229 *stringptr = lexptr;
1230 return result;
1231 }
1232
1233 /* Parse STRING as an expression, and complain if this fails
1234 to use up all of the contents of STRING. */
1235
1236 expression_up
1237 parse_expression (const char *string)
1238 {
1239 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1240 if (*string)
1241 error (_("Junk after end of expression."));
1242 return exp;
1243 }
1244
1245 /* Same as parse_expression, but using the given language (LANG)
1246 to parse the expression. */
1247
1248 expression_up
1249 parse_expression_with_language (const char *string, enum language lang)
1250 {
1251 gdb::optional<scoped_restore_current_language> lang_saver;
1252 if (current_language->la_language != lang)
1253 {
1254 lang_saver.emplace ();
1255 set_language (lang);
1256 }
1257
1258 return parse_expression (string);
1259 }
1260
1261 /* Parse STRING as an expression. If parsing ends in the middle of a
1262 field reference, return the type of the left-hand-side of the
1263 reference; furthermore, if the parsing ends in the field name,
1264 return the field name in *NAME. If the parsing ends in the middle
1265 of a field reference, but the reference is somehow invalid, throw
1266 an exception. In all other cases, return NULL. */
1267
1268 struct type *
1269 parse_expression_for_completion (const char *string,
1270 gdb::unique_xmalloc_ptr<char> *name,
1271 enum type_code *code)
1272 {
1273 expression_up exp;
1274 struct value *val;
1275 int subexp;
1276
1277 TRY
1278 {
1279 parse_completion = 1;
1280 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp,
1281 INNERMOST_BLOCK_FOR_SYMBOLS);
1282 }
1283 CATCH (except, RETURN_MASK_ERROR)
1284 {
1285 /* Nothing, EXP remains NULL. */
1286 }
1287 END_CATCH
1288
1289 parse_completion = 0;
1290 if (exp == NULL)
1291 return NULL;
1292
1293 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1294 {
1295 *code = expout_tag_completion_type;
1296 *name = std::move (expout_completion_name);
1297 return NULL;
1298 }
1299
1300 if (expout_last_struct == -1)
1301 return NULL;
1302
1303 const char *fieldname = extract_field_op (exp.get (), &subexp);
1304 if (fieldname == NULL)
1305 {
1306 name->reset ();
1307 return NULL;
1308 }
1309
1310 name->reset (xstrdup (fieldname));
1311 /* This might throw an exception. If so, we want to let it
1312 propagate. */
1313 val = evaluate_subexpression_type (exp.get (), subexp);
1314
1315 return value_type (val);
1316 }
1317
1318 /* A post-parser that does nothing. */
1319
1320 void
1321 null_post_parser (expression_up *exp, int void_context_p)
1322 {
1323 }
1324
1325 /* Parse floating point value P of length LEN.
1326 Return false if invalid, true if valid.
1327 The successfully parsed number is stored in DATA in
1328 target format for floating-point type TYPE.
1329
1330 NOTE: This accepts the floating point syntax that sscanf accepts. */
1331
1332 bool
1333 parse_float (const char *p, int len,
1334 const struct type *type, gdb_byte *data)
1335 {
1336 return target_float_from_string (data, type, std::string (p, len));
1337 }
1338 \f
1339 /* Stuff for maintaining a stack of types. Currently just used by C, but
1340 probably useful for any language which declares its types "backwards". */
1341
1342 /* A helper function for insert_type and insert_type_address_space.
1343 This does work of expanding the type stack and inserting the new
1344 element, ELEMENT, into the stack at location SLOT. */
1345
1346 static void
1347 insert_into_type_stack (int slot, union type_stack_elt element)
1348 {
1349 gdb_assert (slot <= type_stack.elements.size ());
1350 type_stack.elements.insert (type_stack.elements.begin () + slot, element);
1351 }
1352
1353 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1354 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1355 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1356 previous tp_pointer) if there is anything on the stack, or simply pushed
1357 if the stack is empty. Other values for TP are invalid. */
1358
1359 void
1360 insert_type (enum type_pieces tp)
1361 {
1362 union type_stack_elt element;
1363 int slot;
1364
1365 gdb_assert (tp == tp_pointer || tp == tp_reference
1366 || tp == tp_rvalue_reference || tp == tp_const
1367 || tp == tp_volatile);
1368
1369 /* If there is anything on the stack (we know it will be a
1370 tp_pointer), insert the qualifier above it. Otherwise, simply
1371 push this on the top of the stack. */
1372 if (!type_stack.elements.empty () && (tp == tp_const || tp == tp_volatile))
1373 slot = 1;
1374 else
1375 slot = 0;
1376
1377 element.piece = tp;
1378 insert_into_type_stack (slot, element);
1379 }
1380
1381 void
1382 push_type (enum type_pieces tp)
1383 {
1384 type_stack_elt elt;
1385 elt.piece = tp;
1386 type_stack.elements.push_back (elt);
1387 }
1388
1389 void
1390 push_type_int (int n)
1391 {
1392 type_stack_elt elt;
1393 elt.int_val = n;
1394 type_stack.elements.push_back (elt);
1395 }
1396
1397 /* Insert a tp_space_identifier and the corresponding address space
1398 value into the stack. STRING is the name of an address space, as
1399 recognized by address_space_name_to_int. If the stack is empty,
1400 the new elements are simply pushed. If the stack is not empty,
1401 this function assumes that the first item on the stack is a
1402 tp_pointer, and the new values are inserted above the first
1403 item. */
1404
1405 void
1406 insert_type_address_space (struct expr_builder *pstate, char *string)
1407 {
1408 union type_stack_elt element;
1409 int slot;
1410
1411 /* If there is anything on the stack (we know it will be a
1412 tp_pointer), insert the address space qualifier above it.
1413 Otherwise, simply push this on the top of the stack. */
1414 if (!type_stack.elements.empty ())
1415 slot = 1;
1416 else
1417 slot = 0;
1418
1419 element.piece = tp_space_identifier;
1420 insert_into_type_stack (slot, element);
1421 element.int_val = address_space_name_to_int (pstate->gdbarch (),
1422 string);
1423 insert_into_type_stack (slot, element);
1424 }
1425
1426 enum type_pieces
1427 pop_type (void)
1428 {
1429 if (!type_stack.elements.empty ())
1430 {
1431 type_stack_elt elt = type_stack.elements.back ();
1432 type_stack.elements.pop_back ();
1433 return elt.piece;
1434 }
1435 return tp_end;
1436 }
1437
1438 int
1439 pop_type_int (void)
1440 {
1441 if (!type_stack.elements.empty ())
1442 {
1443 type_stack_elt elt = type_stack.elements.back ();
1444 type_stack.elements.pop_back ();
1445 return elt.int_val;
1446 }
1447 /* "Can't happen". */
1448 return 0;
1449 }
1450
1451 /* Pop a type list element from the global type stack. */
1452
1453 static std::vector<struct type *> *
1454 pop_typelist (void)
1455 {
1456 gdb_assert (!type_stack.elements.empty ());
1457 type_stack_elt elt = type_stack.elements.back ();
1458 type_stack.elements.pop_back ();
1459 return elt.typelist_val;
1460 }
1461
1462 /* Pop a type_stack element from the global type stack. */
1463
1464 static struct type_stack *
1465 pop_type_stack (void)
1466 {
1467 gdb_assert (!type_stack.elements.empty ());
1468 type_stack_elt elt = type_stack.elements.back ();
1469 type_stack.elements.pop_back ();
1470 return elt.stack_val;
1471 }
1472
1473 /* Append the elements of the type stack FROM to the type stack TO.
1474 Always returns TO. */
1475
1476 struct type_stack *
1477 append_type_stack (struct type_stack *to, struct type_stack *from)
1478 {
1479 to->elements.insert (to->elements.end (), from->elements.begin (),
1480 from->elements.end ());
1481 return to;
1482 }
1483
1484 /* Push the type stack STACK as an element on the global type stack. */
1485
1486 void
1487 push_type_stack (struct type_stack *stack)
1488 {
1489 type_stack_elt elt;
1490 elt.stack_val = stack;
1491 type_stack.elements.push_back (elt);
1492 push_type (tp_type_stack);
1493 }
1494
1495 /* Copy the global type stack into a newly allocated type stack and
1496 return it. The global stack is cleared. The returned type stack
1497 must be freed with delete. */
1498
1499 struct type_stack *
1500 get_type_stack (void)
1501 {
1502 struct type_stack *result = new struct type_stack (std::move (type_stack));
1503 type_stack.elements.clear ();
1504 return result;
1505 }
1506
1507 /* Push a function type with arguments onto the global type stack.
1508 LIST holds the argument types. If the final item in LIST is NULL,
1509 then the function will be varargs. */
1510
1511 void
1512 push_typelist (std::vector<struct type *> *list)
1513 {
1514 type_stack_elt elt;
1515 elt.typelist_val = list;
1516 type_stack.elements.push_back (elt);
1517 push_type (tp_function_with_arguments);
1518 }
1519
1520 /* Pop the type stack and return a type_instance_flags that
1521 corresponds the const/volatile qualifiers on the stack. This is
1522 called by the C++ parser when parsing methods types, and as such no
1523 other kind of type in the type stack is expected. */
1524
1525 type_instance_flags
1526 follow_type_instance_flags ()
1527 {
1528 type_instance_flags flags = 0;
1529
1530 for (;;)
1531 switch (pop_type ())
1532 {
1533 case tp_end:
1534 return flags;
1535 case tp_const:
1536 flags |= TYPE_INSTANCE_FLAG_CONST;
1537 break;
1538 case tp_volatile:
1539 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1540 break;
1541 default:
1542 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1543 }
1544 }
1545
1546
1547 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1548 as modified by all the stuff on the stack. */
1549 struct type *
1550 follow_types (struct type *follow_type)
1551 {
1552 int done = 0;
1553 int make_const = 0;
1554 int make_volatile = 0;
1555 int make_addr_space = 0;
1556 int array_size;
1557
1558 while (!done)
1559 switch (pop_type ())
1560 {
1561 case tp_end:
1562 done = 1;
1563 if (make_const)
1564 follow_type = make_cv_type (make_const,
1565 TYPE_VOLATILE (follow_type),
1566 follow_type, 0);
1567 if (make_volatile)
1568 follow_type = make_cv_type (TYPE_CONST (follow_type),
1569 make_volatile,
1570 follow_type, 0);
1571 if (make_addr_space)
1572 follow_type = make_type_with_address_space (follow_type,
1573 make_addr_space);
1574 make_const = make_volatile = 0;
1575 make_addr_space = 0;
1576 break;
1577 case tp_const:
1578 make_const = 1;
1579 break;
1580 case tp_volatile:
1581 make_volatile = 1;
1582 break;
1583 case tp_space_identifier:
1584 make_addr_space = pop_type_int ();
1585 break;
1586 case tp_pointer:
1587 follow_type = lookup_pointer_type (follow_type);
1588 if (make_const)
1589 follow_type = make_cv_type (make_const,
1590 TYPE_VOLATILE (follow_type),
1591 follow_type, 0);
1592 if (make_volatile)
1593 follow_type = make_cv_type (TYPE_CONST (follow_type),
1594 make_volatile,
1595 follow_type, 0);
1596 if (make_addr_space)
1597 follow_type = make_type_with_address_space (follow_type,
1598 make_addr_space);
1599 make_const = make_volatile = 0;
1600 make_addr_space = 0;
1601 break;
1602 case tp_reference:
1603 follow_type = lookup_lvalue_reference_type (follow_type);
1604 goto process_reference;
1605 case tp_rvalue_reference:
1606 follow_type = lookup_rvalue_reference_type (follow_type);
1607 process_reference:
1608 if (make_const)
1609 follow_type = make_cv_type (make_const,
1610 TYPE_VOLATILE (follow_type),
1611 follow_type, 0);
1612 if (make_volatile)
1613 follow_type = make_cv_type (TYPE_CONST (follow_type),
1614 make_volatile,
1615 follow_type, 0);
1616 if (make_addr_space)
1617 follow_type = make_type_with_address_space (follow_type,
1618 make_addr_space);
1619 make_const = make_volatile = 0;
1620 make_addr_space = 0;
1621 break;
1622 case tp_array:
1623 array_size = pop_type_int ();
1624 /* FIXME-type-allocation: need a way to free this type when we are
1625 done with it. */
1626 follow_type =
1627 lookup_array_range_type (follow_type,
1628 0, array_size >= 0 ? array_size - 1 : 0);
1629 if (array_size < 0)
1630 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1631 = PROP_UNDEFINED;
1632 break;
1633 case tp_function:
1634 /* FIXME-type-allocation: need a way to free this type when we are
1635 done with it. */
1636 follow_type = lookup_function_type (follow_type);
1637 break;
1638
1639 case tp_function_with_arguments:
1640 {
1641 std::vector<struct type *> *args = pop_typelist ();
1642
1643 follow_type
1644 = lookup_function_type_with_arguments (follow_type,
1645 args->size (),
1646 args->data ());
1647 }
1648 break;
1649
1650 case tp_type_stack:
1651 {
1652 struct type_stack *stack = pop_type_stack ();
1653 /* Sort of ugly, but not really much worse than the
1654 alternatives. */
1655 struct type_stack save = type_stack;
1656
1657 type_stack = *stack;
1658 follow_type = follow_types (follow_type);
1659 gdb_assert (type_stack.elements.empty ());
1660
1661 type_stack = save;
1662 }
1663 break;
1664 default:
1665 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1666 }
1667 return follow_type;
1668 }
1669 \f
1670 /* This function avoids direct calls to fprintf
1671 in the parser generated debug code. */
1672 void
1673 parser_fprintf (FILE *x, const char *y, ...)
1674 {
1675 va_list args;
1676
1677 va_start (args, y);
1678 if (x == stderr)
1679 vfprintf_unfiltered (gdb_stderr, y, args);
1680 else
1681 {
1682 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1683 vfprintf_unfiltered (gdb_stderr, y, args);
1684 }
1685 va_end (args);
1686 }
1687
1688 /* Implementation of the exp_descriptor method operator_check. */
1689
1690 int
1691 operator_check_standard (struct expression *exp, int pos,
1692 int (*objfile_func) (struct objfile *objfile,
1693 void *data),
1694 void *data)
1695 {
1696 const union exp_element *const elts = exp->elts;
1697 struct type *type = NULL;
1698 struct objfile *objfile = NULL;
1699
1700 /* Extended operators should have been already handled by exp_descriptor
1701 iterate method of its specific language. */
1702 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1703
1704 /* Track the callers of write_exp_elt_type for this table. */
1705
1706 switch (elts[pos].opcode)
1707 {
1708 case BINOP_VAL:
1709 case OP_COMPLEX:
1710 case OP_FLOAT:
1711 case OP_LONG:
1712 case OP_SCOPE:
1713 case OP_TYPE:
1714 case UNOP_CAST:
1715 case UNOP_MAX:
1716 case UNOP_MEMVAL:
1717 case UNOP_MIN:
1718 type = elts[pos + 1].type;
1719 break;
1720
1721 case TYPE_INSTANCE:
1722 {
1723 LONGEST arg, nargs = elts[pos + 2].longconst;
1724
1725 for (arg = 0; arg < nargs; arg++)
1726 {
1727 struct type *inst_type = elts[pos + 3 + arg].type;
1728 struct objfile *inst_objfile = TYPE_OBJFILE (inst_type);
1729
1730 if (inst_objfile && (*objfile_func) (inst_objfile, data))
1731 return 1;
1732 }
1733 }
1734 break;
1735
1736 case OP_VAR_VALUE:
1737 {
1738 const struct block *const block = elts[pos + 1].block;
1739 const struct symbol *const symbol = elts[pos + 2].symbol;
1740
1741 /* Check objfile where the variable itself is placed.
1742 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1743 if ((*objfile_func) (symbol_objfile (symbol), data))
1744 return 1;
1745
1746 /* Check objfile where is placed the code touching the variable. */
1747 objfile = lookup_objfile_from_block (block);
1748
1749 type = SYMBOL_TYPE (symbol);
1750 }
1751 break;
1752 case OP_VAR_MSYM_VALUE:
1753 objfile = elts[pos + 1].objfile;
1754 break;
1755 }
1756
1757 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1758
1759 if (type && TYPE_OBJFILE (type)
1760 && (*objfile_func) (TYPE_OBJFILE (type), data))
1761 return 1;
1762 if (objfile && (*objfile_func) (objfile, data))
1763 return 1;
1764
1765 return 0;
1766 }
1767
1768 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1769 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1770 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1771 returns non-zero value then (any other) non-zero value is immediately
1772 returned to the caller. Otherwise zero is returned after iterating
1773 through whole EXP. */
1774
1775 static int
1776 exp_iterate (struct expression *exp,
1777 int (*objfile_func) (struct objfile *objfile, void *data),
1778 void *data)
1779 {
1780 int endpos;
1781
1782 for (endpos = exp->nelts; endpos > 0; )
1783 {
1784 int pos, args, oplen = 0;
1785
1786 operator_length (exp, endpos, &oplen, &args);
1787 gdb_assert (oplen > 0);
1788
1789 pos = endpos - oplen;
1790 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1791 objfile_func, data))
1792 return 1;
1793
1794 endpos = pos;
1795 }
1796
1797 return 0;
1798 }
1799
1800 /* Helper for exp_uses_objfile. */
1801
1802 static int
1803 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1804 {
1805 struct objfile *objfile = (struct objfile *) objfile_voidp;
1806
1807 if (exp_objfile->separate_debug_objfile_backlink)
1808 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1809
1810 return exp_objfile == objfile;
1811 }
1812
1813 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1814 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1815 file. */
1816
1817 int
1818 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1819 {
1820 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1821
1822 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1823 }
1824
1825 /* Reallocate the `expout' pointer inside PS so that it can accommodate
1826 at least LENELT expression elements. This function does nothing if
1827 there is enough room for the elements. */
1828
1829 static void
1830 increase_expout_size (struct expr_builder *ps, size_t lenelt)
1831 {
1832 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1833 {
1834 ps->expout_size = std::max (ps->expout_size * 2,
1835 ps->expout_ptr + lenelt + 10);
1836 ps->expout.reset (XRESIZEVAR (expression,
1837 ps->expout.release (),
1838 (sizeof (struct expression)
1839 + EXP_ELEM_TO_BYTES (ps->expout_size))));
1840 }
1841 }
1842
1843 void
1844 _initialize_parse (void)
1845 {
1846 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1847 &expressiondebug,
1848 _("Set expression debugging."),
1849 _("Show expression debugging."),
1850 _("When non-zero, the internal representation "
1851 "of expressions will be printed."),
1852 NULL,
1853 show_expressiondebug,
1854 &setdebuglist, &showdebuglist);
1855 add_setshow_boolean_cmd ("parser", class_maintenance,
1856 &parser_debug,
1857 _("Set parser debugging."),
1858 _("Show parser debugging."),
1859 _("When non-zero, expression parser "
1860 "tracing will be enabled."),
1861 NULL,
1862 show_parserdebug,
1863 &setdebuglist, &showdebuglist);
1864 }
This page took 0.067189 seconds and 5 git commands to generate.