PowerPC remove 512 bytes region limit if 2nd DAWR is avaliable.
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "gdbthread.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "regset.h"
27 #include "target.h"
28 #include "linux-nat.h"
29 #include <sys/types.h>
30 #include <signal.h>
31 #include <sys/user.h>
32 #include <sys/ioctl.h>
33 #include <sys/uio.h>
34 #include "gdbsupport/gdb_wait.h"
35 #include <fcntl.h>
36 #include <sys/procfs.h>
37 #include "nat/gdb_ptrace.h"
38 #include "nat/linux-ptrace.h"
39 #include "inf-ptrace.h"
40 #include <algorithm>
41 #include <unordered_map>
42 #include <list>
43
44 /* Prototypes for supply_gregset etc. */
45 #include "gregset.h"
46 #include "ppc-tdep.h"
47 #include "ppc-linux-tdep.h"
48
49 /* Required when using the AUXV. */
50 #include "elf/common.h"
51 #include "auxv.h"
52
53 #include "arch/ppc-linux-common.h"
54 #include "arch/ppc-linux-tdesc.h"
55 #include "nat/ppc-linux.h"
56 #include "linux-tdep.h"
57
58 /* Similarly for the hardware watchpoint support. These requests are used
59 when the PowerPC HWDEBUG ptrace interface is not available. */
60 #ifndef PTRACE_GET_DEBUGREG
61 #define PTRACE_GET_DEBUGREG 25
62 #endif
63 #ifndef PTRACE_SET_DEBUGREG
64 #define PTRACE_SET_DEBUGREG 26
65 #endif
66 #ifndef PTRACE_GETSIGINFO
67 #define PTRACE_GETSIGINFO 0x4202
68 #endif
69
70 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
71 available. It exposes the debug facilities of PowerPC processors, as well
72 as additional features of BookE processors, such as ranged breakpoints and
73 watchpoints and hardware-accelerated condition evaluation. */
74 #ifndef PPC_PTRACE_GETHWDBGINFO
75
76 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
77 ptrace interface is not present in ptrace.h, so we'll have to pretty much
78 include it all here so that the code at least compiles on older systems. */
79 #define PPC_PTRACE_GETHWDBGINFO 0x89
80 #define PPC_PTRACE_SETHWDEBUG 0x88
81 #define PPC_PTRACE_DELHWDEBUG 0x87
82
83 struct ppc_debug_info
84 {
85 uint32_t version; /* Only version 1 exists to date. */
86 uint32_t num_instruction_bps;
87 uint32_t num_data_bps;
88 uint32_t num_condition_regs;
89 uint32_t data_bp_alignment;
90 uint32_t sizeof_condition; /* size of the DVC register. */
91 uint64_t features;
92 };
93
94 /* Features will have bits indicating whether there is support for: */
95 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
96 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
97 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
98 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
99
100 struct ppc_hw_breakpoint
101 {
102 uint32_t version; /* currently, version must be 1 */
103 uint32_t trigger_type; /* only some combinations allowed */
104 uint32_t addr_mode; /* address match mode */
105 uint32_t condition_mode; /* break/watchpoint condition flags */
106 uint64_t addr; /* break/watchpoint address */
107 uint64_t addr2; /* range end or mask */
108 uint64_t condition_value; /* contents of the DVC register */
109 };
110
111 /* Trigger type. */
112 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
113 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
114 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
115 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
116
117 /* Address mode. */
118 #define PPC_BREAKPOINT_MODE_EXACT 0x0
119 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
120 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
121 #define PPC_BREAKPOINT_MODE_MASK 0x3
122
123 /* Condition mode. */
124 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
125 #define PPC_BREAKPOINT_CONDITION_AND 0x1
126 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
127 #define PPC_BREAKPOINT_CONDITION_OR 0x2
128 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
129 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
130 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
131 #define PPC_BREAKPOINT_CONDITION_BE(n) \
132 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
133 #endif /* PPC_PTRACE_GETHWDBGINFO */
134
135 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
136 watchpoint (up to 512 bytes). */
137 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
138 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
139 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
140
141 /* Feature defined on Linux kernel v5.1: Second watchpoint support. */
142 #ifndef PPC_DEBUG_FEATURE_DATA_BP_ARCH_31
143 #define PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 0x20
144 #endif /* PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 */
145
146 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
147 available. */
148 #define PPC_DEBUG_CURRENT_VERSION 1
149
150 /* Similarly for the general-purpose (gp0 -- gp31)
151 and floating-point registers (fp0 -- fp31). */
152 #ifndef PTRACE_GETREGS
153 #define PTRACE_GETREGS 12
154 #endif
155 #ifndef PTRACE_SETREGS
156 #define PTRACE_SETREGS 13
157 #endif
158 #ifndef PTRACE_GETFPREGS
159 #define PTRACE_GETFPREGS 14
160 #endif
161 #ifndef PTRACE_SETFPREGS
162 #define PTRACE_SETFPREGS 15
163 #endif
164
165 /* This oddity is because the Linux kernel defines elf_vrregset_t as
166 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
167 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
168 the vrsave as an extra 4 bytes at the end. I opted for creating a
169 flat array of chars, so that it is easier to manipulate for gdb.
170
171 There are 32 vector registers 16 bytes longs, plus a VSCR register
172 which is only 4 bytes long, but is fetched as a 16 bytes
173 quantity. Up to here we have the elf_vrregset_t structure.
174 Appended to this there is space for the VRSAVE register: 4 bytes.
175 Even though this vrsave register is not included in the regset
176 typedef, it is handled by the ptrace requests.
177
178 The layout is like this (where x is the actual value of the vscr reg): */
179
180 /* *INDENT-OFF* */
181 /*
182 Big-Endian:
183 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
184 <-------> <-------><-------><->
185 VR0 VR31 VSCR VRSAVE
186 Little-Endian:
187 |.|.|.|.|.....|.|.|.|.||X|.|.|.||.|
188 <-------> <-------><-------><->
189 VR0 VR31 VSCR VRSAVE
190 */
191 /* *INDENT-ON* */
192
193 typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET];
194
195 /* This is the layout of the POWER7 VSX registers and the way they overlap
196 with the existing FPR and VMX registers.
197
198 VSR doubleword 0 VSR doubleword 1
199 ----------------------------------------------------------------
200 VSR[0] | FPR[0] | |
201 ----------------------------------------------------------------
202 VSR[1] | FPR[1] | |
203 ----------------------------------------------------------------
204 | ... | |
205 | ... | |
206 ----------------------------------------------------------------
207 VSR[30] | FPR[30] | |
208 ----------------------------------------------------------------
209 VSR[31] | FPR[31] | |
210 ----------------------------------------------------------------
211 VSR[32] | VR[0] |
212 ----------------------------------------------------------------
213 VSR[33] | VR[1] |
214 ----------------------------------------------------------------
215 | ... |
216 | ... |
217 ----------------------------------------------------------------
218 VSR[62] | VR[30] |
219 ----------------------------------------------------------------
220 VSR[63] | VR[31] |
221 ----------------------------------------------------------------
222
223 VSX has 64 128bit registers. The first 32 registers overlap with
224 the FP registers (doubleword 0) and hence extend them with additional
225 64 bits (doubleword 1). The other 32 regs overlap with the VMX
226 registers. */
227 typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET];
228
229 /* On PPC processors that support the Signal Processing Extension
230 (SPE) APU, the general-purpose registers are 64 bits long.
231 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
232 ptrace calls only access the lower half of each register, to allow
233 them to behave the same way they do on non-SPE systems. There's a
234 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
235 read and write the top halves of all the general-purpose registers
236 at once, along with some SPE-specific registers.
237
238 GDB itself continues to claim the general-purpose registers are 32
239 bits long. It has unnamed raw registers that hold the upper halves
240 of the gprs, and the full 64-bit SIMD views of the registers,
241 'ev0' -- 'ev31', are pseudo-registers that splice the top and
242 bottom halves together.
243
244 This is the structure filled in by PTRACE_GETEVRREGS and written to
245 the inferior's registers by PTRACE_SETEVRREGS. */
246 struct gdb_evrregset_t
247 {
248 unsigned long evr[32];
249 unsigned long long acc;
250 unsigned long spefscr;
251 };
252
253 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
254 PTRACE_SETVSXREGS requests, for reading and writing the VSX
255 POWER7 registers 0 through 31. Zero if we've tried one of them and
256 gotten an error. Note that VSX registers 32 through 63 overlap
257 with VR registers 0 through 31. */
258 int have_ptrace_getsetvsxregs = 1;
259
260 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
261 PTRACE_SETVRREGS requests, for reading and writing the Altivec
262 registers. Zero if we've tried one of them and gotten an
263 error. */
264 int have_ptrace_getvrregs = 1;
265
266 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
267 PTRACE_SETEVRREGS requests, for reading and writing the SPE
268 registers. Zero if we've tried one of them and gotten an
269 error. */
270 int have_ptrace_getsetevrregs = 1;
271
272 /* Non-zero if our kernel may support the PTRACE_GETREGS and
273 PTRACE_SETREGS requests, for reading and writing the
274 general-purpose registers. Zero if we've tried one of
275 them and gotten an error. */
276 int have_ptrace_getsetregs = 1;
277
278 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
279 PTRACE_SETFPREGS requests, for reading and writing the
280 floating-pointers registers. Zero if we've tried one of
281 them and gotten an error. */
282 int have_ptrace_getsetfpregs = 1;
283
284 /* Private arch info associated with each thread lwp_info object, used
285 for debug register handling. */
286
287 struct arch_lwp_info
288 {
289 /* When true, indicates that the debug registers installed in the
290 thread no longer correspond to the watchpoints and breakpoints
291 requested by GDB. */
292 bool debug_regs_stale;
293
294 /* We need a back-reference to the PTID of the thread so that we can
295 cleanup the debug register state of the thread in
296 low_delete_thread. */
297 ptid_t lwp_ptid;
298 };
299
300 /* Class used to detect which set of ptrace requests that
301 ppc_linux_nat_target will use to install and remove hardware
302 breakpoints and watchpoints.
303
304 The interface is only detected once, testing the ptrace calls. The
305 result can indicate that no interface is available.
306
307 The Linux kernel provides two different sets of ptrace requests to
308 handle hardware watchpoints and breakpoints for Power:
309
310 - PPC_PTRACE_GETHWDBGINFO, PPC_PTRACE_SETHWDEBUG, and
311 PPC_PTRACE_DELHWDEBUG.
312
313 Or
314
315 - PTRACE_SET_DEBUGREG and PTRACE_GET_DEBUGREG
316
317 The first set is the more flexible one and allows setting watchpoints
318 with a variable watched region length and, for BookE processors,
319 multiple types of debug registers (e.g. hardware breakpoints and
320 hardware-assisted conditions for watchpoints). The second one only
321 allows setting one debug register, a watchpoint, so we only use it if
322 the first one is not available. */
323
324 class ppc_linux_dreg_interface
325 {
326 public:
327
328 ppc_linux_dreg_interface ()
329 : m_interface (), m_hwdebug_info ()
330 {
331 };
332
333 DISABLE_COPY_AND_ASSIGN (ppc_linux_dreg_interface);
334
335 /* One and only one of these three functions returns true, indicating
336 whether the corresponding interface is the one we detected. The
337 interface must already have been detected as a precontidion. */
338
339 bool hwdebug_p ()
340 {
341 gdb_assert (detected_p ());
342 return *m_interface == HWDEBUG;
343 }
344
345 bool debugreg_p ()
346 {
347 gdb_assert (detected_p ());
348 return *m_interface == DEBUGREG;
349 }
350
351 bool unavailable_p ()
352 {
353 gdb_assert (detected_p ());
354 return *m_interface == UNAVAILABLE;
355 }
356
357 /* Returns the debug register capabilities of the target. Should only
358 be called if the interface is HWDEBUG. */
359 const struct ppc_debug_info &hwdebug_info ()
360 {
361 gdb_assert (hwdebug_p ());
362
363 return m_hwdebug_info;
364 }
365
366 /* Returns true if the interface has already been detected. This is
367 useful for cases when we know there is no work to be done if the
368 interface hasn't been detected yet. */
369 bool detected_p ()
370 {
371 return m_interface.has_value ();
372 }
373
374 /* Detect the available interface, if any, if it hasn't been detected
375 before, using PTID for the necessary ptrace calls. */
376
377 void detect (const ptid_t &ptid)
378 {
379 if (m_interface.has_value ())
380 return;
381
382 gdb_assert (ptid.lwp_p ());
383
384 bool no_features = false;
385
386 if (ptrace (PPC_PTRACE_GETHWDBGINFO, ptid.lwp (), 0, &m_hwdebug_info)
387 >= 0)
388 {
389 /* If there are no advertised features, we don't use the
390 HWDEBUG interface and try the DEBUGREG interface instead.
391 It shouldn't be necessary to do this, however, when the
392 kernel is configured without CONFIG_HW_BREAKPOINTS (selected
393 by CONFIG_PERF_EVENTS), there is a bug that causes
394 watchpoints installed with the HWDEBUG interface not to
395 trigger. When this is the case, features will be zero,
396 which we use as an indicator to fall back to the DEBUGREG
397 interface. */
398 if (m_hwdebug_info.features != 0)
399 {
400 m_interface.emplace (HWDEBUG);
401 return;
402 }
403 else
404 no_features = true;
405 }
406
407 /* EIO indicates that the request is invalid, so we try DEBUGREG
408 next. Technically, it can also indicate other failures, but we
409 can't differentiate those.
410
411 Other errors could happen for various reasons. We could get an
412 ESRCH if the traced thread was killed by a signal. Trying to
413 detect the interface with another thread in the future would be
414 complicated, as callers would have to handle an "unknown
415 interface" case. It's also unclear if raising an exception
416 here would be safe.
417
418 Other errors, such as ENODEV, could be more permanent and cause
419 a failure for any thread.
420
421 For simplicity, with all errors other than EIO, we set the
422 interface to UNAVAILABLE and don't try DEBUGREG. If DEBUGREG
423 fails too, we'll also set the interface to UNAVAILABLE. It's
424 unlikely that trying the DEBUGREG interface with this same thread
425 would work, for errors other than EIO. This means that these
426 errors will cause hardware watchpoints and breakpoints to become
427 unavailable throughout a GDB session. */
428
429 if (no_features || errno == EIO)
430 {
431 unsigned long wp;
432
433 if (ptrace (PTRACE_GET_DEBUGREG, ptid.lwp (), 0, &wp) >= 0)
434 {
435 m_interface.emplace (DEBUGREG);
436 return;
437 }
438 }
439
440 if (errno != EIO)
441 warning (_("Error when detecting the debug register interface. "
442 "Debug registers will be unavailable."));
443
444 m_interface.emplace (UNAVAILABLE);
445 return;
446 }
447
448 private:
449
450 /* HWDEBUG represents the set of calls PPC_PTRACE_GETHWDBGINFO,
451 PPC_PTRACE_SETHWDEBUG and PPC_PTRACE_DELHWDEBUG.
452
453 DEBUGREG represents the set of calls PTRACE_SET_DEBUGREG and
454 PTRACE_GET_DEBUGREG.
455
456 UNAVAILABLE can indicate that the kernel doesn't support any of the
457 two sets of requests or that there was an error when we tried to
458 detect wich interface is available. */
459
460 enum debug_reg_interface
461 {
462 UNAVAILABLE,
463 HWDEBUG,
464 DEBUGREG
465 };
466
467 /* The interface option. Initialized if has_value () returns true. */
468 gdb::optional<enum debug_reg_interface> m_interface;
469
470 /* The info returned by the kernel with PPC_PTRACE_GETHWDBGINFO. Only
471 valid if we determined that the interface is HWDEBUG. */
472 struct ppc_debug_info m_hwdebug_info;
473 };
474
475 /* Per-process information. This includes the hardware watchpoints and
476 breakpoints that GDB requested to this target. */
477
478 struct ppc_linux_process_info
479 {
480 /* The list of hardware watchpoints and breakpoints that GDB requested
481 for this process.
482
483 Only used when the interface is HWDEBUG. */
484 std::list<struct ppc_hw_breakpoint> requested_hw_bps;
485
486 /* The watchpoint value that GDB requested for this process.
487
488 Only used when the interface is DEBUGREG. */
489 gdb::optional<long> requested_wp_val;
490 };
491
492 struct ppc_linux_nat_target final : public linux_nat_target
493 {
494 /* Add our register access methods. */
495 void fetch_registers (struct regcache *, int) override;
496 void store_registers (struct regcache *, int) override;
497
498 /* Add our breakpoint/watchpoint methods. */
499 int can_use_hw_breakpoint (enum bptype, int, int) override;
500
501 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
502 override;
503
504 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
505 override;
506
507 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
508
509 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
510 struct expression *) override;
511
512 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
513 struct expression *) override;
514
515 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
516 override;
517
518 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
519 override;
520
521 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
522
523 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
524 override;
525
526 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
527
528 int ranged_break_num_registers () override;
529
530 const struct target_desc *read_description () override;
531
532 int auxv_parse (gdb_byte **readptr,
533 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
534 override;
535
536 /* Override linux_nat_target low methods. */
537 bool low_stopped_by_watchpoint () override;
538
539 bool low_stopped_data_address (CORE_ADDR *) override;
540
541 void low_new_thread (struct lwp_info *lp) override;
542
543 void low_delete_thread (arch_lwp_info *) override;
544
545 void low_new_fork (struct lwp_info *, pid_t) override;
546
547 void low_new_clone (struct lwp_info *, pid_t) override;
548
549 void low_forget_process (pid_t pid) override;
550
551 void low_prepare_to_resume (struct lwp_info *) override;
552
553 private:
554
555 void copy_thread_dreg_state (const ptid_t &parent_ptid,
556 const ptid_t &child_ptid);
557
558 void mark_thread_stale (struct lwp_info *lp);
559
560 void mark_debug_registers_changed (pid_t pid);
561
562 void register_hw_breakpoint (pid_t pid,
563 const struct ppc_hw_breakpoint &bp);
564
565 void clear_hw_breakpoint (pid_t pid,
566 const struct ppc_hw_breakpoint &a);
567
568 void register_wp (pid_t pid, long wp_value);
569
570 void clear_wp (pid_t pid);
571
572 bool can_use_watchpoint_cond_accel (void);
573
574 void calculate_dvc (CORE_ADDR addr, int len,
575 CORE_ADDR data_value,
576 uint32_t *condition_mode,
577 uint64_t *condition_value);
578
579 int check_condition (CORE_ADDR watch_addr,
580 struct expression *cond,
581 CORE_ADDR *data_value, int *len);
582
583 int num_memory_accesses (const std::vector<value_ref_ptr> &chain);
584
585 int get_trigger_type (enum target_hw_bp_type type);
586
587 void create_watchpoint_request (struct ppc_hw_breakpoint *p,
588 CORE_ADDR addr,
589 int len,
590 enum target_hw_bp_type type,
591 struct expression *cond,
592 int insert);
593
594 bool hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
595 const struct ppc_hw_breakpoint &b);
596
597 void init_arch_lwp_info (struct lwp_info *lp);
598
599 arch_lwp_info *get_arch_lwp_info (struct lwp_info *lp);
600
601 /* The ptrace interface we'll use to install hardware watchpoints and
602 breakpoints (debug registers). */
603 ppc_linux_dreg_interface m_dreg_interface;
604
605 /* A map from pids to structs containing info specific to each
606 process. */
607 std::unordered_map<pid_t, ppc_linux_process_info> m_process_info;
608
609 /* Callable object to hash ptids by their lwp number. */
610 struct ptid_hash
611 {
612 std::size_t operator() (const ptid_t &ptid) const
613 {
614 return std::hash<long>{} (ptid.lwp ());
615 }
616 };
617
618 /* A map from ptid_t objects to a list of pairs of slots and hardware
619 breakpoint objects. This keeps track of which hardware breakpoints
620 and watchpoints were last installed in each slot of each thread.
621
622 Only used when the interface is HWDEBUG. */
623 std::unordered_map <ptid_t,
624 std::list<std::pair<long, ppc_hw_breakpoint>>,
625 ptid_hash> m_installed_hw_bps;
626 };
627
628 static ppc_linux_nat_target the_ppc_linux_nat_target;
629
630 /* *INDENT-OFF* */
631 /* registers layout, as presented by the ptrace interface:
632 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
633 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
634 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
635 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
636 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
637 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
638 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
639 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
640 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
641 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
642 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
643 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
644 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
645 /* *INDENT_ON * */
646
647 static int
648 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
649 {
650 int u_addr = -1;
651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
652 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
653 interface, and not the wordsize of the program's ABI. */
654 int wordsize = sizeof (long);
655
656 /* General purpose registers occupy 1 slot each in the buffer. */
657 if (regno >= tdep->ppc_gp0_regnum
658 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
659 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
660
661 /* Floating point regs: eight bytes each in both 32- and 64-bit
662 ptrace interfaces. Thus, two slots each in 32-bit interface, one
663 slot each in 64-bit interface. */
664 if (tdep->ppc_fp0_regnum >= 0
665 && regno >= tdep->ppc_fp0_regnum
666 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
667 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
668
669 /* UISA special purpose registers: 1 slot each. */
670 if (regno == gdbarch_pc_regnum (gdbarch))
671 u_addr = PT_NIP * wordsize;
672 if (regno == tdep->ppc_lr_regnum)
673 u_addr = PT_LNK * wordsize;
674 if (regno == tdep->ppc_cr_regnum)
675 u_addr = PT_CCR * wordsize;
676 if (regno == tdep->ppc_xer_regnum)
677 u_addr = PT_XER * wordsize;
678 if (regno == tdep->ppc_ctr_regnum)
679 u_addr = PT_CTR * wordsize;
680 #ifdef PT_MQ
681 if (regno == tdep->ppc_mq_regnum)
682 u_addr = PT_MQ * wordsize;
683 #endif
684 if (regno == tdep->ppc_ps_regnum)
685 u_addr = PT_MSR * wordsize;
686 if (regno == PPC_ORIG_R3_REGNUM)
687 u_addr = PT_ORIG_R3 * wordsize;
688 if (regno == PPC_TRAP_REGNUM)
689 u_addr = PT_TRAP * wordsize;
690 if (tdep->ppc_fpscr_regnum >= 0
691 && regno == tdep->ppc_fpscr_regnum)
692 {
693 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
694 kernel headers incorrectly contained the 32-bit definition of
695 PT_FPSCR. For the 32-bit definition, floating-point
696 registers occupy two 32-bit "slots", and the FPSCR lives in
697 the second half of such a slot-pair (hence +1). For 64-bit,
698 the FPSCR instead occupies the full 64-bit 2-word-slot and
699 hence no adjustment is necessary. Hack around this. */
700 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
701 u_addr = (48 + 32) * wordsize;
702 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
703 slot and not just its second word. The PT_FPSCR supplied when
704 GDB is compiled as a 32-bit app doesn't reflect this. */
705 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
706 && PT_FPSCR == (48 + 2*32 + 1))
707 u_addr = (48 + 2*32) * wordsize;
708 else
709 u_addr = PT_FPSCR * wordsize;
710 }
711 return u_addr;
712 }
713
714 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
715 registers set mechanism, as opposed to the interface for all the
716 other registers, that stores/fetches each register individually. */
717 static void
718 fetch_vsx_registers (struct regcache *regcache, int tid, int regno)
719 {
720 int ret;
721 gdb_vsxregset_t regs;
722 const struct regset *vsxregset = ppc_linux_vsxregset ();
723
724 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
725 if (ret < 0)
726 {
727 if (errno == EIO)
728 {
729 have_ptrace_getsetvsxregs = 0;
730 return;
731 }
732 perror_with_name (_("Unable to fetch VSX registers"));
733 }
734
735 vsxregset->supply_regset (vsxregset, regcache, regno, &regs,
736 PPC_LINUX_SIZEOF_VSXREGSET);
737 }
738
739 /* The Linux kernel ptrace interface for AltiVec registers uses the
740 registers set mechanism, as opposed to the interface for all the
741 other registers, that stores/fetches each register individually. */
742 static void
743 fetch_altivec_registers (struct regcache *regcache, int tid,
744 int regno)
745 {
746 int ret;
747 gdb_vrregset_t regs;
748 struct gdbarch *gdbarch = regcache->arch ();
749 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
750
751 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
752 if (ret < 0)
753 {
754 if (errno == EIO)
755 {
756 have_ptrace_getvrregs = 0;
757 return;
758 }
759 perror_with_name (_("Unable to fetch AltiVec registers"));
760 }
761
762 vrregset->supply_regset (vrregset, regcache, regno, &regs,
763 PPC_LINUX_SIZEOF_VRREGSET);
764 }
765
766 /* Fetch the top 32 bits of TID's general-purpose registers and the
767 SPE-specific registers, and place the results in EVRREGSET. If we
768 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
769 zeros.
770
771 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
772 PTRACE_SETEVRREGS requests are supported is isolated here, and in
773 set_spe_registers. */
774 static void
775 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
776 {
777 if (have_ptrace_getsetevrregs)
778 {
779 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
780 return;
781 else
782 {
783 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
784 we just return zeros. */
785 if (errno == EIO)
786 have_ptrace_getsetevrregs = 0;
787 else
788 /* Anything else needs to be reported. */
789 perror_with_name (_("Unable to fetch SPE registers"));
790 }
791 }
792
793 memset (evrregset, 0, sizeof (*evrregset));
794 }
795
796 /* Supply values from TID for SPE-specific raw registers: the upper
797 halves of the GPRs, the accumulator, and the spefscr. REGNO must
798 be the number of an upper half register, acc, spefscr, or -1 to
799 supply the values of all registers. */
800 static void
801 fetch_spe_register (struct regcache *regcache, int tid, int regno)
802 {
803 struct gdbarch *gdbarch = regcache->arch ();
804 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
805 struct gdb_evrregset_t evrregs;
806
807 gdb_assert (sizeof (evrregs.evr[0])
808 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
809 gdb_assert (sizeof (evrregs.acc)
810 == register_size (gdbarch, tdep->ppc_acc_regnum));
811 gdb_assert (sizeof (evrregs.spefscr)
812 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
813
814 get_spe_registers (tid, &evrregs);
815
816 if (regno == -1)
817 {
818 int i;
819
820 for (i = 0; i < ppc_num_gprs; i++)
821 regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]);
822 }
823 else if (tdep->ppc_ev0_upper_regnum <= regno
824 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
825 regcache->raw_supply (regno,
826 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
827
828 if (regno == -1
829 || regno == tdep->ppc_acc_regnum)
830 regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc);
831
832 if (regno == -1
833 || regno == tdep->ppc_spefscr_regnum)
834 regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
835 }
836
837 /* Use ptrace to fetch all registers from the register set with note
838 type REGSET_ID, size REGSIZE, and layout described by REGSET, from
839 process/thread TID and supply their values to REGCACHE. If ptrace
840 returns ENODATA to indicate the regset is unavailable, mark the
841 registers as unavailable in REGCACHE. */
842
843 static void
844 fetch_regset (struct regcache *regcache, int tid,
845 int regset_id, int regsetsize, const struct regset *regset)
846 {
847 void *buf = alloca (regsetsize);
848 struct iovec iov;
849
850 iov.iov_base = buf;
851 iov.iov_len = regsetsize;
852
853 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
854 {
855 if (errno == ENODATA)
856 regset->supply_regset (regset, regcache, -1, NULL, regsetsize);
857 else
858 perror_with_name (_("Couldn't get register set"));
859 }
860 else
861 regset->supply_regset (regset, regcache, -1, buf, regsetsize);
862 }
863
864 /* Use ptrace to store register REGNUM of the regset with note type
865 REGSET_ID, size REGSETSIZE, and layout described by REGSET, from
866 REGCACHE back to process/thread TID. If REGNUM is -1 all registers
867 in the set are collected and stored. */
868
869 static void
870 store_regset (const struct regcache *regcache, int tid, int regnum,
871 int regset_id, int regsetsize, const struct regset *regset)
872 {
873 void *buf = alloca (regsetsize);
874 struct iovec iov;
875
876 iov.iov_base = buf;
877 iov.iov_len = regsetsize;
878
879 /* Make sure that the buffer that will be stored has up to date values
880 for the registers that won't be collected. */
881 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
882 perror_with_name (_("Couldn't get register set"));
883
884 regset->collect_regset (regset, regcache, regnum, buf, regsetsize);
885
886 if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0)
887 perror_with_name (_("Couldn't set register set"));
888 }
889
890 /* Check whether the kernel provides a register set with number
891 REGSET_ID of size REGSETSIZE for process/thread TID. */
892
893 static bool
894 check_regset (int tid, int regset_id, int regsetsize)
895 {
896 void *buf = alloca (regsetsize);
897 struct iovec iov;
898
899 iov.iov_base = buf;
900 iov.iov_len = regsetsize;
901
902 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0
903 || errno == ENODATA)
904 return true;
905 else
906 return false;
907 }
908
909 static void
910 fetch_register (struct regcache *regcache, int tid, int regno)
911 {
912 struct gdbarch *gdbarch = regcache->arch ();
913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
914 /* This isn't really an address. But ptrace thinks of it as one. */
915 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
916 int bytes_transferred;
917 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
918
919 if (altivec_register_p (gdbarch, regno))
920 {
921 /* If this is the first time through, or if it is not the first
922 time through, and we have confirmed that there is kernel
923 support for such a ptrace request, then go and fetch the
924 register. */
925 if (have_ptrace_getvrregs)
926 {
927 fetch_altivec_registers (regcache, tid, regno);
928 return;
929 }
930 /* If we have discovered that there is no ptrace support for
931 AltiVec registers, fall through and return zeroes, because
932 regaddr will be -1 in this case. */
933 }
934 else if (vsx_register_p (gdbarch, regno))
935 {
936 if (have_ptrace_getsetvsxregs)
937 {
938 fetch_vsx_registers (regcache, tid, regno);
939 return;
940 }
941 }
942 else if (spe_register_p (gdbarch, regno))
943 {
944 fetch_spe_register (regcache, tid, regno);
945 return;
946 }
947 else if (regno == PPC_DSCR_REGNUM)
948 {
949 gdb_assert (tdep->ppc_dscr_regnum != -1);
950
951 fetch_regset (regcache, tid, NT_PPC_DSCR,
952 PPC_LINUX_SIZEOF_DSCRREGSET,
953 &ppc32_linux_dscrregset);
954 return;
955 }
956 else if (regno == PPC_PPR_REGNUM)
957 {
958 gdb_assert (tdep->ppc_ppr_regnum != -1);
959
960 fetch_regset (regcache, tid, NT_PPC_PPR,
961 PPC_LINUX_SIZEOF_PPRREGSET,
962 &ppc32_linux_pprregset);
963 return;
964 }
965 else if (regno == PPC_TAR_REGNUM)
966 {
967 gdb_assert (tdep->ppc_tar_regnum != -1);
968
969 fetch_regset (regcache, tid, NT_PPC_TAR,
970 PPC_LINUX_SIZEOF_TARREGSET,
971 &ppc32_linux_tarregset);
972 return;
973 }
974 else if (PPC_IS_EBB_REGNUM (regno))
975 {
976 gdb_assert (tdep->have_ebb);
977
978 fetch_regset (regcache, tid, NT_PPC_EBB,
979 PPC_LINUX_SIZEOF_EBBREGSET,
980 &ppc32_linux_ebbregset);
981 return;
982 }
983 else if (PPC_IS_PMU_REGNUM (regno))
984 {
985 gdb_assert (tdep->ppc_mmcr0_regnum != -1);
986
987 fetch_regset (regcache, tid, NT_PPC_PMU,
988 PPC_LINUX_SIZEOF_PMUREGSET,
989 &ppc32_linux_pmuregset);
990 return;
991 }
992 else if (PPC_IS_TMSPR_REGNUM (regno))
993 {
994 gdb_assert (tdep->have_htm_spr);
995
996 fetch_regset (regcache, tid, NT_PPC_TM_SPR,
997 PPC_LINUX_SIZEOF_TM_SPRREGSET,
998 &ppc32_linux_tm_sprregset);
999 return;
1000 }
1001 else if (PPC_IS_CKPTGP_REGNUM (regno))
1002 {
1003 gdb_assert (tdep->have_htm_core);
1004
1005 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1006 fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
1007 (tdep->wordsize == 4?
1008 PPC32_LINUX_SIZEOF_CGPRREGSET
1009 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1010 cgprregset);
1011 return;
1012 }
1013 else if (PPC_IS_CKPTFP_REGNUM (regno))
1014 {
1015 gdb_assert (tdep->have_htm_fpu);
1016
1017 fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
1018 PPC_LINUX_SIZEOF_CFPRREGSET,
1019 &ppc32_linux_cfprregset);
1020 return;
1021 }
1022 else if (PPC_IS_CKPTVMX_REGNUM (regno))
1023 {
1024 gdb_assert (tdep->have_htm_altivec);
1025
1026 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1027 fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
1028 PPC_LINUX_SIZEOF_CVMXREGSET,
1029 cvmxregset);
1030 return;
1031 }
1032 else if (PPC_IS_CKPTVSX_REGNUM (regno))
1033 {
1034 gdb_assert (tdep->have_htm_vsx);
1035
1036 fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
1037 PPC_LINUX_SIZEOF_CVSXREGSET,
1038 &ppc32_linux_cvsxregset);
1039 return;
1040 }
1041 else if (regno == PPC_CPPR_REGNUM)
1042 {
1043 gdb_assert (tdep->ppc_cppr_regnum != -1);
1044
1045 fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
1046 PPC_LINUX_SIZEOF_CPPRREGSET,
1047 &ppc32_linux_cpprregset);
1048 return;
1049 }
1050 else if (regno == PPC_CDSCR_REGNUM)
1051 {
1052 gdb_assert (tdep->ppc_cdscr_regnum != -1);
1053
1054 fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
1055 PPC_LINUX_SIZEOF_CDSCRREGSET,
1056 &ppc32_linux_cdscrregset);
1057 return;
1058 }
1059 else if (regno == PPC_CTAR_REGNUM)
1060 {
1061 gdb_assert (tdep->ppc_ctar_regnum != -1);
1062
1063 fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
1064 PPC_LINUX_SIZEOF_CTARREGSET,
1065 &ppc32_linux_ctarregset);
1066 return;
1067 }
1068
1069 if (regaddr == -1)
1070 {
1071 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
1072 regcache->raw_supply (regno, buf);
1073 return;
1074 }
1075
1076 /* Read the raw register using sizeof(long) sized chunks. On a
1077 32-bit platform, 64-bit floating-point registers will require two
1078 transfers. */
1079 for (bytes_transferred = 0;
1080 bytes_transferred < register_size (gdbarch, regno);
1081 bytes_transferred += sizeof (long))
1082 {
1083 long l;
1084
1085 errno = 0;
1086 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
1087 regaddr += sizeof (long);
1088 if (errno != 0)
1089 {
1090 char message[128];
1091 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
1092 gdbarch_register_name (gdbarch, regno), regno);
1093 perror_with_name (message);
1094 }
1095 memcpy (&buf[bytes_transferred], &l, sizeof (l));
1096 }
1097
1098 /* Now supply the register. Keep in mind that the regcache's idea
1099 of the register's size may not be a multiple of sizeof
1100 (long). */
1101 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1102 {
1103 /* Little-endian values are always found at the left end of the
1104 bytes transferred. */
1105 regcache->raw_supply (regno, buf);
1106 }
1107 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1108 {
1109 /* Big-endian values are found at the right end of the bytes
1110 transferred. */
1111 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
1112 regcache->raw_supply (regno, buf + padding);
1113 }
1114 else
1115 internal_error (__FILE__, __LINE__,
1116 _("fetch_register: unexpected byte order: %d"),
1117 gdbarch_byte_order (gdbarch));
1118 }
1119
1120 /* This function actually issues the request to ptrace, telling
1121 it to get all general-purpose registers and put them into the
1122 specified regset.
1123
1124 If the ptrace request does not exist, this function returns 0
1125 and properly sets the have_ptrace_* flag. If the request fails,
1126 this function calls perror_with_name. Otherwise, if the request
1127 succeeds, then the regcache gets filled and 1 is returned. */
1128 static int
1129 fetch_all_gp_regs (struct regcache *regcache, int tid)
1130 {
1131 gdb_gregset_t gregset;
1132
1133 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1134 {
1135 if (errno == EIO)
1136 {
1137 have_ptrace_getsetregs = 0;
1138 return 0;
1139 }
1140 perror_with_name (_("Couldn't get general-purpose registers."));
1141 }
1142
1143 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
1144
1145 return 1;
1146 }
1147
1148 /* This is a wrapper for the fetch_all_gp_regs function. It is
1149 responsible for verifying if this target has the ptrace request
1150 that can be used to fetch all general-purpose registers at one
1151 shot. If it doesn't, then we should fetch them using the
1152 old-fashioned way, which is to iterate over the registers and
1153 request them one by one. */
1154 static void
1155 fetch_gp_regs (struct regcache *regcache, int tid)
1156 {
1157 struct gdbarch *gdbarch = regcache->arch ();
1158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1159 int i;
1160
1161 if (have_ptrace_getsetregs)
1162 if (fetch_all_gp_regs (regcache, tid))
1163 return;
1164
1165 /* If we've hit this point, it doesn't really matter which
1166 architecture we are using. We just need to read the
1167 registers in the "old-fashioned way". */
1168 for (i = 0; i < ppc_num_gprs; i++)
1169 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1170 }
1171
1172 /* This function actually issues the request to ptrace, telling
1173 it to get all floating-point registers and put them into the
1174 specified regset.
1175
1176 If the ptrace request does not exist, this function returns 0
1177 and properly sets the have_ptrace_* flag. If the request fails,
1178 this function calls perror_with_name. Otherwise, if the request
1179 succeeds, then the regcache gets filled and 1 is returned. */
1180 static int
1181 fetch_all_fp_regs (struct regcache *regcache, int tid)
1182 {
1183 gdb_fpregset_t fpregs;
1184
1185 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1186 {
1187 if (errno == EIO)
1188 {
1189 have_ptrace_getsetfpregs = 0;
1190 return 0;
1191 }
1192 perror_with_name (_("Couldn't get floating-point registers."));
1193 }
1194
1195 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
1196
1197 return 1;
1198 }
1199
1200 /* This is a wrapper for the fetch_all_fp_regs function. It is
1201 responsible for verifying if this target has the ptrace request
1202 that can be used to fetch all floating-point registers at one
1203 shot. If it doesn't, then we should fetch them using the
1204 old-fashioned way, which is to iterate over the registers and
1205 request them one by one. */
1206 static void
1207 fetch_fp_regs (struct regcache *regcache, int tid)
1208 {
1209 struct gdbarch *gdbarch = regcache->arch ();
1210 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1211 int i;
1212
1213 if (have_ptrace_getsetfpregs)
1214 if (fetch_all_fp_regs (regcache, tid))
1215 return;
1216
1217 /* If we've hit this point, it doesn't really matter which
1218 architecture we are using. We just need to read the
1219 registers in the "old-fashioned way". */
1220 for (i = 0; i < ppc_num_fprs; i++)
1221 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1222 }
1223
1224 static void
1225 fetch_ppc_registers (struct regcache *regcache, int tid)
1226 {
1227 struct gdbarch *gdbarch = regcache->arch ();
1228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1229
1230 fetch_gp_regs (regcache, tid);
1231 if (tdep->ppc_fp0_regnum >= 0)
1232 fetch_fp_regs (regcache, tid);
1233 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1234 if (tdep->ppc_ps_regnum != -1)
1235 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
1236 if (tdep->ppc_cr_regnum != -1)
1237 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
1238 if (tdep->ppc_lr_regnum != -1)
1239 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
1240 if (tdep->ppc_ctr_regnum != -1)
1241 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
1242 if (tdep->ppc_xer_regnum != -1)
1243 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
1244 if (tdep->ppc_mq_regnum != -1)
1245 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
1246 if (ppc_linux_trap_reg_p (gdbarch))
1247 {
1248 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1249 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
1250 }
1251 if (tdep->ppc_fpscr_regnum != -1)
1252 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
1253 if (have_ptrace_getvrregs)
1254 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1255 fetch_altivec_registers (regcache, tid, -1);
1256 if (have_ptrace_getsetvsxregs)
1257 if (tdep->ppc_vsr0_upper_regnum != -1)
1258 fetch_vsx_registers (regcache, tid, -1);
1259 if (tdep->ppc_ev0_upper_regnum >= 0)
1260 fetch_spe_register (regcache, tid, -1);
1261 if (tdep->ppc_ppr_regnum != -1)
1262 fetch_regset (regcache, tid, NT_PPC_PPR,
1263 PPC_LINUX_SIZEOF_PPRREGSET,
1264 &ppc32_linux_pprregset);
1265 if (tdep->ppc_dscr_regnum != -1)
1266 fetch_regset (regcache, tid, NT_PPC_DSCR,
1267 PPC_LINUX_SIZEOF_DSCRREGSET,
1268 &ppc32_linux_dscrregset);
1269 if (tdep->ppc_tar_regnum != -1)
1270 fetch_regset (regcache, tid, NT_PPC_TAR,
1271 PPC_LINUX_SIZEOF_TARREGSET,
1272 &ppc32_linux_tarregset);
1273 if (tdep->have_ebb)
1274 fetch_regset (regcache, tid, NT_PPC_EBB,
1275 PPC_LINUX_SIZEOF_EBBREGSET,
1276 &ppc32_linux_ebbregset);
1277 if (tdep->ppc_mmcr0_regnum != -1)
1278 fetch_regset (regcache, tid, NT_PPC_PMU,
1279 PPC_LINUX_SIZEOF_PMUREGSET,
1280 &ppc32_linux_pmuregset);
1281 if (tdep->have_htm_spr)
1282 fetch_regset (regcache, tid, NT_PPC_TM_SPR,
1283 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1284 &ppc32_linux_tm_sprregset);
1285 if (tdep->have_htm_core)
1286 {
1287 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1288 fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
1289 (tdep->wordsize == 4?
1290 PPC32_LINUX_SIZEOF_CGPRREGSET
1291 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1292 cgprregset);
1293 }
1294 if (tdep->have_htm_fpu)
1295 fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
1296 PPC_LINUX_SIZEOF_CFPRREGSET,
1297 &ppc32_linux_cfprregset);
1298 if (tdep->have_htm_altivec)
1299 {
1300 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1301 fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
1302 PPC_LINUX_SIZEOF_CVMXREGSET,
1303 cvmxregset);
1304 }
1305 if (tdep->have_htm_vsx)
1306 fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
1307 PPC_LINUX_SIZEOF_CVSXREGSET,
1308 &ppc32_linux_cvsxregset);
1309 if (tdep->ppc_cppr_regnum != -1)
1310 fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
1311 PPC_LINUX_SIZEOF_CPPRREGSET,
1312 &ppc32_linux_cpprregset);
1313 if (tdep->ppc_cdscr_regnum != -1)
1314 fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
1315 PPC_LINUX_SIZEOF_CDSCRREGSET,
1316 &ppc32_linux_cdscrregset);
1317 if (tdep->ppc_ctar_regnum != -1)
1318 fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
1319 PPC_LINUX_SIZEOF_CTARREGSET,
1320 &ppc32_linux_ctarregset);
1321 }
1322
1323 /* Fetch registers from the child process. Fetch all registers if
1324 regno == -1, otherwise fetch all general registers or all floating
1325 point registers depending upon the value of regno. */
1326 void
1327 ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
1328 {
1329 pid_t tid = get_ptrace_pid (regcache->ptid ());
1330
1331 if (regno == -1)
1332 fetch_ppc_registers (regcache, tid);
1333 else
1334 fetch_register (regcache, tid, regno);
1335 }
1336
1337 static void
1338 store_vsx_registers (const struct regcache *regcache, int tid, int regno)
1339 {
1340 int ret;
1341 gdb_vsxregset_t regs;
1342 const struct regset *vsxregset = ppc_linux_vsxregset ();
1343
1344 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1345 if (ret < 0)
1346 {
1347 if (errno == EIO)
1348 {
1349 have_ptrace_getsetvsxregs = 0;
1350 return;
1351 }
1352 perror_with_name (_("Unable to fetch VSX registers"));
1353 }
1354
1355 vsxregset->collect_regset (vsxregset, regcache, regno, &regs,
1356 PPC_LINUX_SIZEOF_VSXREGSET);
1357
1358 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
1359 if (ret < 0)
1360 perror_with_name (_("Unable to store VSX registers"));
1361 }
1362
1363 static void
1364 store_altivec_registers (const struct regcache *regcache, int tid,
1365 int regno)
1366 {
1367 int ret;
1368 gdb_vrregset_t regs;
1369 struct gdbarch *gdbarch = regcache->arch ();
1370 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
1371
1372 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1373 if (ret < 0)
1374 {
1375 if (errno == EIO)
1376 {
1377 have_ptrace_getvrregs = 0;
1378 return;
1379 }
1380 perror_with_name (_("Unable to fetch AltiVec registers"));
1381 }
1382
1383 vrregset->collect_regset (vrregset, regcache, regno, &regs,
1384 PPC_LINUX_SIZEOF_VRREGSET);
1385
1386 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
1387 if (ret < 0)
1388 perror_with_name (_("Unable to store AltiVec registers"));
1389 }
1390
1391 /* Assuming TID refers to an SPE process, set the top halves of TID's
1392 general-purpose registers and its SPE-specific registers to the
1393 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
1394 nothing.
1395
1396 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
1397 PTRACE_SETEVRREGS requests are supported is isolated here, and in
1398 get_spe_registers. */
1399 static void
1400 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
1401 {
1402 if (have_ptrace_getsetevrregs)
1403 {
1404 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
1405 return;
1406 else
1407 {
1408 /* EIO means that the PTRACE_SETEVRREGS request isn't
1409 supported; we fail silently, and don't try the call
1410 again. */
1411 if (errno == EIO)
1412 have_ptrace_getsetevrregs = 0;
1413 else
1414 /* Anything else needs to be reported. */
1415 perror_with_name (_("Unable to set SPE registers"));
1416 }
1417 }
1418 }
1419
1420 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
1421 If REGNO is -1, write the values of all the SPE-specific
1422 registers. */
1423 static void
1424 store_spe_register (const struct regcache *regcache, int tid, int regno)
1425 {
1426 struct gdbarch *gdbarch = regcache->arch ();
1427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1428 struct gdb_evrregset_t evrregs;
1429
1430 gdb_assert (sizeof (evrregs.evr[0])
1431 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
1432 gdb_assert (sizeof (evrregs.acc)
1433 == register_size (gdbarch, tdep->ppc_acc_regnum));
1434 gdb_assert (sizeof (evrregs.spefscr)
1435 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
1436
1437 if (regno == -1)
1438 /* Since we're going to write out every register, the code below
1439 should store to every field of evrregs; if that doesn't happen,
1440 make it obvious by initializing it with suspicious values. */
1441 memset (&evrregs, 42, sizeof (evrregs));
1442 else
1443 /* We can only read and write the entire EVR register set at a
1444 time, so to write just a single register, we do a
1445 read-modify-write maneuver. */
1446 get_spe_registers (tid, &evrregs);
1447
1448 if (regno == -1)
1449 {
1450 int i;
1451
1452 for (i = 0; i < ppc_num_gprs; i++)
1453 regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i,
1454 &evrregs.evr[i]);
1455 }
1456 else if (tdep->ppc_ev0_upper_regnum <= regno
1457 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1458 regcache->raw_collect (regno,
1459 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1460
1461 if (regno == -1
1462 || regno == tdep->ppc_acc_regnum)
1463 regcache->raw_collect (tdep->ppc_acc_regnum,
1464 &evrregs.acc);
1465
1466 if (regno == -1
1467 || regno == tdep->ppc_spefscr_regnum)
1468 regcache->raw_collect (tdep->ppc_spefscr_regnum,
1469 &evrregs.spefscr);
1470
1471 /* Write back the modified register set. */
1472 set_spe_registers (tid, &evrregs);
1473 }
1474
1475 static void
1476 store_register (const struct regcache *regcache, int tid, int regno)
1477 {
1478 struct gdbarch *gdbarch = regcache->arch ();
1479 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1480 /* This isn't really an address. But ptrace thinks of it as one. */
1481 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1482 int i;
1483 size_t bytes_to_transfer;
1484 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
1485
1486 if (altivec_register_p (gdbarch, regno))
1487 {
1488 store_altivec_registers (regcache, tid, regno);
1489 return;
1490 }
1491 else if (vsx_register_p (gdbarch, regno))
1492 {
1493 store_vsx_registers (regcache, tid, regno);
1494 return;
1495 }
1496 else if (spe_register_p (gdbarch, regno))
1497 {
1498 store_spe_register (regcache, tid, regno);
1499 return;
1500 }
1501 else if (regno == PPC_DSCR_REGNUM)
1502 {
1503 gdb_assert (tdep->ppc_dscr_regnum != -1);
1504
1505 store_regset (regcache, tid, regno, NT_PPC_DSCR,
1506 PPC_LINUX_SIZEOF_DSCRREGSET,
1507 &ppc32_linux_dscrregset);
1508 return;
1509 }
1510 else if (regno == PPC_PPR_REGNUM)
1511 {
1512 gdb_assert (tdep->ppc_ppr_regnum != -1);
1513
1514 store_regset (regcache, tid, regno, NT_PPC_PPR,
1515 PPC_LINUX_SIZEOF_PPRREGSET,
1516 &ppc32_linux_pprregset);
1517 return;
1518 }
1519 else if (regno == PPC_TAR_REGNUM)
1520 {
1521 gdb_assert (tdep->ppc_tar_regnum != -1);
1522
1523 store_regset (regcache, tid, regno, NT_PPC_TAR,
1524 PPC_LINUX_SIZEOF_TARREGSET,
1525 &ppc32_linux_tarregset);
1526 return;
1527 }
1528 else if (PPC_IS_EBB_REGNUM (regno))
1529 {
1530 gdb_assert (tdep->have_ebb);
1531
1532 store_regset (regcache, tid, regno, NT_PPC_EBB,
1533 PPC_LINUX_SIZEOF_EBBREGSET,
1534 &ppc32_linux_ebbregset);
1535 return;
1536 }
1537 else if (PPC_IS_PMU_REGNUM (regno))
1538 {
1539 gdb_assert (tdep->ppc_mmcr0_regnum != -1);
1540
1541 store_regset (regcache, tid, regno, NT_PPC_PMU,
1542 PPC_LINUX_SIZEOF_PMUREGSET,
1543 &ppc32_linux_pmuregset);
1544 return;
1545 }
1546 else if (PPC_IS_TMSPR_REGNUM (regno))
1547 {
1548 gdb_assert (tdep->have_htm_spr);
1549
1550 store_regset (regcache, tid, regno, NT_PPC_TM_SPR,
1551 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1552 &ppc32_linux_tm_sprregset);
1553 return;
1554 }
1555 else if (PPC_IS_CKPTGP_REGNUM (regno))
1556 {
1557 gdb_assert (tdep->have_htm_core);
1558
1559 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1560 store_regset (regcache, tid, regno, NT_PPC_TM_CGPR,
1561 (tdep->wordsize == 4?
1562 PPC32_LINUX_SIZEOF_CGPRREGSET
1563 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1564 cgprregset);
1565 return;
1566 }
1567 else if (PPC_IS_CKPTFP_REGNUM (regno))
1568 {
1569 gdb_assert (tdep->have_htm_fpu);
1570
1571 store_regset (regcache, tid, regno, NT_PPC_TM_CFPR,
1572 PPC_LINUX_SIZEOF_CFPRREGSET,
1573 &ppc32_linux_cfprregset);
1574 return;
1575 }
1576 else if (PPC_IS_CKPTVMX_REGNUM (regno))
1577 {
1578 gdb_assert (tdep->have_htm_altivec);
1579
1580 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1581 store_regset (regcache, tid, regno, NT_PPC_TM_CVMX,
1582 PPC_LINUX_SIZEOF_CVMXREGSET,
1583 cvmxregset);
1584 return;
1585 }
1586 else if (PPC_IS_CKPTVSX_REGNUM (regno))
1587 {
1588 gdb_assert (tdep->have_htm_vsx);
1589
1590 store_regset (regcache, tid, regno, NT_PPC_TM_CVSX,
1591 PPC_LINUX_SIZEOF_CVSXREGSET,
1592 &ppc32_linux_cvsxregset);
1593 return;
1594 }
1595 else if (regno == PPC_CPPR_REGNUM)
1596 {
1597 gdb_assert (tdep->ppc_cppr_regnum != -1);
1598
1599 store_regset (regcache, tid, regno, NT_PPC_TM_CPPR,
1600 PPC_LINUX_SIZEOF_CPPRREGSET,
1601 &ppc32_linux_cpprregset);
1602 return;
1603 }
1604 else if (regno == PPC_CDSCR_REGNUM)
1605 {
1606 gdb_assert (tdep->ppc_cdscr_regnum != -1);
1607
1608 store_regset (regcache, tid, regno, NT_PPC_TM_CDSCR,
1609 PPC_LINUX_SIZEOF_CDSCRREGSET,
1610 &ppc32_linux_cdscrregset);
1611 return;
1612 }
1613 else if (regno == PPC_CTAR_REGNUM)
1614 {
1615 gdb_assert (tdep->ppc_ctar_regnum != -1);
1616
1617 store_regset (regcache, tid, regno, NT_PPC_TM_CTAR,
1618 PPC_LINUX_SIZEOF_CTARREGSET,
1619 &ppc32_linux_ctarregset);
1620 return;
1621 }
1622
1623 if (regaddr == -1)
1624 return;
1625
1626 /* First collect the register. Keep in mind that the regcache's
1627 idea of the register's size may not be a multiple of sizeof
1628 (long). */
1629 memset (buf, 0, sizeof buf);
1630 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1631 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1632 {
1633 /* Little-endian values always sit at the left end of the buffer. */
1634 regcache->raw_collect (regno, buf);
1635 }
1636 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1637 {
1638 /* Big-endian values sit at the right end of the buffer. */
1639 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1640 regcache->raw_collect (regno, buf + padding);
1641 }
1642
1643 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1644 {
1645 long l;
1646
1647 memcpy (&l, &buf[i], sizeof (l));
1648 errno = 0;
1649 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1650 regaddr += sizeof (long);
1651
1652 if (errno == EIO
1653 && (regno == tdep->ppc_fpscr_regnum
1654 || regno == PPC_ORIG_R3_REGNUM
1655 || regno == PPC_TRAP_REGNUM))
1656 {
1657 /* Some older kernel versions don't allow fpscr, orig_r3
1658 or trap to be written. */
1659 continue;
1660 }
1661
1662 if (errno != 0)
1663 {
1664 char message[128];
1665 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1666 gdbarch_register_name (gdbarch, regno), regno);
1667 perror_with_name (message);
1668 }
1669 }
1670 }
1671
1672 /* This function actually issues the request to ptrace, telling
1673 it to store all general-purpose registers present in the specified
1674 regset.
1675
1676 If the ptrace request does not exist, this function returns 0
1677 and properly sets the have_ptrace_* flag. If the request fails,
1678 this function calls perror_with_name. Otherwise, if the request
1679 succeeds, then the regcache is stored and 1 is returned. */
1680 static int
1681 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1682 {
1683 gdb_gregset_t gregset;
1684
1685 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1686 {
1687 if (errno == EIO)
1688 {
1689 have_ptrace_getsetregs = 0;
1690 return 0;
1691 }
1692 perror_with_name (_("Couldn't get general-purpose registers."));
1693 }
1694
1695 fill_gregset (regcache, &gregset, regno);
1696
1697 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1698 {
1699 if (errno == EIO)
1700 {
1701 have_ptrace_getsetregs = 0;
1702 return 0;
1703 }
1704 perror_with_name (_("Couldn't set general-purpose registers."));
1705 }
1706
1707 return 1;
1708 }
1709
1710 /* This is a wrapper for the store_all_gp_regs function. It is
1711 responsible for verifying if this target has the ptrace request
1712 that can be used to store all general-purpose registers at one
1713 shot. If it doesn't, then we should store them using the
1714 old-fashioned way, which is to iterate over the registers and
1715 store them one by one. */
1716 static void
1717 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1718 {
1719 struct gdbarch *gdbarch = regcache->arch ();
1720 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1721 int i;
1722
1723 if (have_ptrace_getsetregs)
1724 if (store_all_gp_regs (regcache, tid, regno))
1725 return;
1726
1727 /* If we hit this point, it doesn't really matter which
1728 architecture we are using. We just need to store the
1729 registers in the "old-fashioned way". */
1730 for (i = 0; i < ppc_num_gprs; i++)
1731 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1732 }
1733
1734 /* This function actually issues the request to ptrace, telling
1735 it to store all floating-point registers present in the specified
1736 regset.
1737
1738 If the ptrace request does not exist, this function returns 0
1739 and properly sets the have_ptrace_* flag. If the request fails,
1740 this function calls perror_with_name. Otherwise, if the request
1741 succeeds, then the regcache is stored and 1 is returned. */
1742 static int
1743 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1744 {
1745 gdb_fpregset_t fpregs;
1746
1747 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1748 {
1749 if (errno == EIO)
1750 {
1751 have_ptrace_getsetfpregs = 0;
1752 return 0;
1753 }
1754 perror_with_name (_("Couldn't get floating-point registers."));
1755 }
1756
1757 fill_fpregset (regcache, &fpregs, regno);
1758
1759 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1760 {
1761 if (errno == EIO)
1762 {
1763 have_ptrace_getsetfpregs = 0;
1764 return 0;
1765 }
1766 perror_with_name (_("Couldn't set floating-point registers."));
1767 }
1768
1769 return 1;
1770 }
1771
1772 /* This is a wrapper for the store_all_fp_regs function. It is
1773 responsible for verifying if this target has the ptrace request
1774 that can be used to store all floating-point registers at one
1775 shot. If it doesn't, then we should store them using the
1776 old-fashioned way, which is to iterate over the registers and
1777 store them one by one. */
1778 static void
1779 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1780 {
1781 struct gdbarch *gdbarch = regcache->arch ();
1782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1783 int i;
1784
1785 if (have_ptrace_getsetfpregs)
1786 if (store_all_fp_regs (regcache, tid, regno))
1787 return;
1788
1789 /* If we hit this point, it doesn't really matter which
1790 architecture we are using. We just need to store the
1791 registers in the "old-fashioned way". */
1792 for (i = 0; i < ppc_num_fprs; i++)
1793 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1794 }
1795
1796 static void
1797 store_ppc_registers (const struct regcache *regcache, int tid)
1798 {
1799 struct gdbarch *gdbarch = regcache->arch ();
1800 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1801
1802 store_gp_regs (regcache, tid, -1);
1803 if (tdep->ppc_fp0_regnum >= 0)
1804 store_fp_regs (regcache, tid, -1);
1805 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1806 if (tdep->ppc_ps_regnum != -1)
1807 store_register (regcache, tid, tdep->ppc_ps_regnum);
1808 if (tdep->ppc_cr_regnum != -1)
1809 store_register (regcache, tid, tdep->ppc_cr_regnum);
1810 if (tdep->ppc_lr_regnum != -1)
1811 store_register (regcache, tid, tdep->ppc_lr_regnum);
1812 if (tdep->ppc_ctr_regnum != -1)
1813 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1814 if (tdep->ppc_xer_regnum != -1)
1815 store_register (regcache, tid, tdep->ppc_xer_regnum);
1816 if (tdep->ppc_mq_regnum != -1)
1817 store_register (regcache, tid, tdep->ppc_mq_regnum);
1818 if (tdep->ppc_fpscr_regnum != -1)
1819 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1820 if (ppc_linux_trap_reg_p (gdbarch))
1821 {
1822 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1823 store_register (regcache, tid, PPC_TRAP_REGNUM);
1824 }
1825 if (have_ptrace_getvrregs)
1826 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1827 store_altivec_registers (regcache, tid, -1);
1828 if (have_ptrace_getsetvsxregs)
1829 if (tdep->ppc_vsr0_upper_regnum != -1)
1830 store_vsx_registers (regcache, tid, -1);
1831 if (tdep->ppc_ev0_upper_regnum >= 0)
1832 store_spe_register (regcache, tid, -1);
1833 if (tdep->ppc_ppr_regnum != -1)
1834 store_regset (regcache, tid, -1, NT_PPC_PPR,
1835 PPC_LINUX_SIZEOF_PPRREGSET,
1836 &ppc32_linux_pprregset);
1837 if (tdep->ppc_dscr_regnum != -1)
1838 store_regset (regcache, tid, -1, NT_PPC_DSCR,
1839 PPC_LINUX_SIZEOF_DSCRREGSET,
1840 &ppc32_linux_dscrregset);
1841 if (tdep->ppc_tar_regnum != -1)
1842 store_regset (regcache, tid, -1, NT_PPC_TAR,
1843 PPC_LINUX_SIZEOF_TARREGSET,
1844 &ppc32_linux_tarregset);
1845
1846 if (tdep->ppc_mmcr0_regnum != -1)
1847 store_regset (regcache, tid, -1, NT_PPC_PMU,
1848 PPC_LINUX_SIZEOF_PMUREGSET,
1849 &ppc32_linux_pmuregset);
1850
1851 if (tdep->have_htm_spr)
1852 store_regset (regcache, tid, -1, NT_PPC_TM_SPR,
1853 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1854 &ppc32_linux_tm_sprregset);
1855
1856 /* Because the EBB and checkpointed HTM registers can be
1857 unavailable, attempts to store them here would cause this
1858 function to fail most of the time, so we ignore them. */
1859 }
1860
1861 void
1862 ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
1863 {
1864 pid_t tid = get_ptrace_pid (regcache->ptid ());
1865
1866 if (regno >= 0)
1867 store_register (regcache, tid, regno);
1868 else
1869 store_ppc_registers (regcache, tid);
1870 }
1871
1872 /* Functions for transferring registers between a gregset_t or fpregset_t
1873 (see sys/ucontext.h) and gdb's regcache. The word size is that used
1874 by the ptrace interface, not the current program's ABI. Eg. if a
1875 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
1876 read or write 64-bit gregsets. This is to suit the host libthread_db. */
1877
1878 void
1879 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
1880 {
1881 const struct regset *regset = ppc_linux_gregset (sizeof (long));
1882
1883 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
1884 }
1885
1886 void
1887 fill_gregset (const struct regcache *regcache,
1888 gdb_gregset_t *gregsetp, int regno)
1889 {
1890 const struct regset *regset = ppc_linux_gregset (sizeof (long));
1891
1892 if (regno == -1)
1893 memset (gregsetp, 0, sizeof (*gregsetp));
1894 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
1895 }
1896
1897 void
1898 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
1899 {
1900 const struct regset *regset = ppc_linux_fpregset ();
1901
1902 ppc_supply_fpregset (regset, regcache, -1,
1903 fpregsetp, sizeof (*fpregsetp));
1904 }
1905
1906 void
1907 fill_fpregset (const struct regcache *regcache,
1908 gdb_fpregset_t *fpregsetp, int regno)
1909 {
1910 const struct regset *regset = ppc_linux_fpregset ();
1911
1912 ppc_collect_fpregset (regset, regcache, regno,
1913 fpregsetp, sizeof (*fpregsetp));
1914 }
1915
1916 int
1917 ppc_linux_nat_target::auxv_parse (gdb_byte **readptr,
1918 gdb_byte *endptr, CORE_ADDR *typep,
1919 CORE_ADDR *valp)
1920 {
1921 int tid = inferior_ptid.lwp ();
1922 if (tid == 0)
1923 tid = inferior_ptid.pid ();
1924
1925 int sizeof_auxv_field = ppc_linux_target_wordsize (tid);
1926
1927 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1928 gdb_byte *ptr = *readptr;
1929
1930 if (endptr == ptr)
1931 return 0;
1932
1933 if (endptr - ptr < sizeof_auxv_field * 2)
1934 return -1;
1935
1936 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
1937 ptr += sizeof_auxv_field;
1938 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
1939 ptr += sizeof_auxv_field;
1940
1941 *readptr = ptr;
1942 return 1;
1943 }
1944
1945 const struct target_desc *
1946 ppc_linux_nat_target::read_description ()
1947 {
1948 int tid = inferior_ptid.lwp ();
1949 if (tid == 0)
1950 tid = inferior_ptid.pid ();
1951
1952 if (have_ptrace_getsetevrregs)
1953 {
1954 struct gdb_evrregset_t evrregset;
1955
1956 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
1957 return tdesc_powerpc_e500l;
1958
1959 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
1960 Anything else needs to be reported. */
1961 else if (errno != EIO)
1962 perror_with_name (_("Unable to fetch SPE registers"));
1963 }
1964
1965 struct ppc_linux_features features = ppc_linux_no_features;
1966
1967 features.wordsize = ppc_linux_target_wordsize (tid);
1968
1969 CORE_ADDR hwcap = linux_get_hwcap (current_top_target ());
1970 CORE_ADDR hwcap2 = linux_get_hwcap2 (current_top_target ());
1971
1972 if (have_ptrace_getsetvsxregs
1973 && (hwcap & PPC_FEATURE_HAS_VSX))
1974 {
1975 gdb_vsxregset_t vsxregset;
1976
1977 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
1978 features.vsx = true;
1979
1980 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
1981 Anything else needs to be reported. */
1982 else if (errno != EIO)
1983 perror_with_name (_("Unable to fetch VSX registers"));
1984 }
1985
1986 if (have_ptrace_getvrregs
1987 && (hwcap & PPC_FEATURE_HAS_ALTIVEC))
1988 {
1989 gdb_vrregset_t vrregset;
1990
1991 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
1992 features.altivec = true;
1993
1994 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
1995 Anything else needs to be reported. */
1996 else if (errno != EIO)
1997 perror_with_name (_("Unable to fetch AltiVec registers"));
1998 }
1999
2000 features.isa205 = ppc_linux_has_isa205 (hwcap);
2001
2002 if ((hwcap2 & PPC_FEATURE2_DSCR)
2003 && check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET)
2004 && check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET))
2005 {
2006 features.ppr_dscr = true;
2007 if ((hwcap2 & PPC_FEATURE2_ARCH_2_07)
2008 && (hwcap2 & PPC_FEATURE2_TAR)
2009 && (hwcap2 & PPC_FEATURE2_EBB)
2010 && check_regset (tid, NT_PPC_TAR, PPC_LINUX_SIZEOF_TARREGSET)
2011 && check_regset (tid, NT_PPC_EBB, PPC_LINUX_SIZEOF_EBBREGSET)
2012 && check_regset (tid, NT_PPC_PMU, PPC_LINUX_SIZEOF_PMUREGSET))
2013 {
2014 features.isa207 = true;
2015 if ((hwcap2 & PPC_FEATURE2_HTM)
2016 && check_regset (tid, NT_PPC_TM_SPR,
2017 PPC_LINUX_SIZEOF_TM_SPRREGSET))
2018 features.htm = true;
2019 }
2020 }
2021
2022 return ppc_linux_match_description (features);
2023 }
2024
2025 /* Routines for installing hardware watchpoints and breakpoints. When
2026 GDB requests a hardware watchpoint or breakpoint to be installed, we
2027 register the request for the pid of inferior_ptid in a map with one
2028 entry per process. We then issue a stop request to all the threads of
2029 this process, and mark a per-thread flag indicating that their debug
2030 registers should be updated. Right before they are next resumed, we
2031 remove all previously installed debug registers and install all the
2032 ones GDB requested. We then update a map with one entry per thread
2033 that keeps track of what debug registers were last installed in each
2034 thread.
2035
2036 We use this second map to remove installed registers before installing
2037 the ones requested by GDB, and to copy the debug register state after
2038 a thread clones or forks, since depending on the kernel configuration,
2039 debug registers can be inherited. */
2040
2041 /* Check if we support and have enough resources to install a hardware
2042 watchpoint or breakpoint. See the description in target.h. */
2043
2044 int
2045 ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt,
2046 int ot)
2047 {
2048 int total_hw_wp, total_hw_bp;
2049
2050 m_dreg_interface.detect (inferior_ptid);
2051
2052 if (m_dreg_interface.unavailable_p ())
2053 return 0;
2054
2055 if (m_dreg_interface.hwdebug_p ())
2056 {
2057 /* When PowerPC HWDEBUG ptrace interface is available, the number of
2058 available hardware watchpoints and breakpoints is stored at the
2059 hwdebug_info struct. */
2060 total_hw_bp = m_dreg_interface.hwdebug_info ().num_instruction_bps;
2061 total_hw_wp = m_dreg_interface.hwdebug_info ().num_data_bps;
2062 }
2063 else
2064 {
2065 gdb_assert (m_dreg_interface.debugreg_p ());
2066
2067 /* With the DEBUGREG ptrace interface, we should consider having 1
2068 hardware watchpoint and no hardware breakpoints. */
2069 total_hw_bp = 0;
2070 total_hw_wp = 1;
2071 }
2072
2073 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
2074 || type == bp_access_watchpoint || type == bp_watchpoint)
2075 {
2076 if (total_hw_wp == 0)
2077 return 0;
2078 else if (cnt + ot > total_hw_wp)
2079 return -1;
2080 else
2081 return 1;
2082 }
2083 else if (type == bp_hardware_breakpoint)
2084 {
2085 if (total_hw_bp == 0)
2086 return 0;
2087 else if (cnt > total_hw_bp)
2088 return -1;
2089 else
2090 return 1;
2091 }
2092
2093 return 0;
2094 }
2095
2096 /* Returns 1 if we can watch LEN bytes at address ADDR, 0 otherwise. */
2097
2098 int
2099 ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2100 {
2101 /* Handle sub-8-byte quantities. */
2102 if (len <= 0)
2103 return 0;
2104
2105 m_dreg_interface.detect (inferior_ptid);
2106
2107 if (m_dreg_interface.unavailable_p ())
2108 return 0;
2109
2110 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
2111 restrictions for watchpoints in the processors. In that case, we use that
2112 information to determine the hardcoded watchable region for
2113 watchpoints. */
2114 if (m_dreg_interface.hwdebug_p ())
2115 {
2116 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
2117 .hwdebug_info ());
2118 int region_size = hwdebug_info.data_bp_alignment;
2119 int region_align = region_size;
2120
2121 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
2122 watchpoints and can watch any access within an arbitrary memory
2123 region. This is useful to watch arrays and structs, for instance. It
2124 takes two hardware watchpoints though. */
2125 if (len > 1
2126 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
2127 && linux_get_hwcap (current_top_target ()) & PPC_FEATURE_BOOKE)
2128 return 2;
2129 /* Check if the processor provides DAWR interface. */
2130 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
2131 {
2132 /* DAWR interface allows to watch up to 512 byte wide ranges. */
2133 region_size = 512;
2134 /* DAWR interface allows to watch up to 512 byte wide ranges which
2135 can't cross a 512 byte bondary on machines that doesn't have a
2136 second DAWR (P9 or less). */
2137 if (!(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_ARCH_31))
2138 region_align = 512;
2139 }
2140 /* Server processors provide one hardware watchpoint and addr+len should
2141 fall in the watchable region provided by the ptrace interface. */
2142 if (region_align
2143 && (addr + len > (addr & ~(region_align - 1)) + region_size))
2144 return 0;
2145 }
2146 /* addr+len must fall in the 8 byte watchable region for DABR-based
2147 processors (i.e., server processors). Without the new PowerPC HWDEBUG
2148 ptrace interface, DAC-based processors (i.e., embedded processors) will
2149 use addresses aligned to 4-bytes due to the way the read/write flags are
2150 passed in the old ptrace interface. */
2151 else
2152 {
2153 gdb_assert (m_dreg_interface.debugreg_p ());
2154
2155 if (((linux_get_hwcap (current_top_target ()) & PPC_FEATURE_BOOKE)
2156 && (addr + len) > (addr & ~3) + 4)
2157 || (addr + len) > (addr & ~7) + 8)
2158 return 0;
2159 }
2160
2161 return 1;
2162 }
2163
2164 /* This function compares two ppc_hw_breakpoint structs
2165 field-by-field. */
2166
2167 bool
2168 ppc_linux_nat_target::hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
2169 const struct ppc_hw_breakpoint &b)
2170 {
2171 return (a.trigger_type == b.trigger_type
2172 && a.addr_mode == b.addr_mode
2173 && a.condition_mode == b.condition_mode
2174 && a.addr == b.addr
2175 && a.addr2 == b.addr2
2176 && a.condition_value == b.condition_value);
2177 }
2178
2179 /* Return the number of registers needed for a ranged breakpoint. */
2180
2181 int
2182 ppc_linux_nat_target::ranged_break_num_registers ()
2183 {
2184 m_dreg_interface.detect (inferior_ptid);
2185
2186 return ((m_dreg_interface.hwdebug_p ()
2187 && (m_dreg_interface.hwdebug_info ().features
2188 & PPC_DEBUG_FEATURE_INSN_BP_RANGE))?
2189 2 : -1);
2190 }
2191
2192 /* Register the hardware breakpoint described by BP_TGT, to be inserted
2193 when the threads of inferior_ptid are resumed. Returns 0 for success,
2194 or -1 if the HWDEBUG interface that we need for hardware breakpoints
2195 is not available. */
2196
2197 int
2198 ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
2199 struct bp_target_info *bp_tgt)
2200 {
2201 struct ppc_hw_breakpoint p;
2202
2203 m_dreg_interface.detect (inferior_ptid);
2204
2205 if (!m_dreg_interface.hwdebug_p ())
2206 return -1;
2207
2208 p.version = PPC_DEBUG_CURRENT_VERSION;
2209 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
2210 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2211 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
2212 p.condition_value = 0;
2213
2214 if (bp_tgt->length)
2215 {
2216 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2217
2218 /* The breakpoint will trigger if the address of the instruction is
2219 within the defined range, as follows: p.addr <= address < p.addr2. */
2220 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
2221 }
2222 else
2223 {
2224 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2225 p.addr2 = 0;
2226 }
2227
2228 register_hw_breakpoint (inferior_ptid.pid (), p);
2229
2230 return 0;
2231 }
2232
2233 /* Clear a registration for the hardware breakpoint given by type BP_TGT.
2234 It will be removed from the threads of inferior_ptid when they are
2235 next resumed. Returns 0 for success, or -1 if the HWDEBUG interface
2236 that we need for hardware breakpoints is not available. */
2237
2238 int
2239 ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
2240 struct bp_target_info *bp_tgt)
2241 {
2242 struct ppc_hw_breakpoint p;
2243
2244 m_dreg_interface.detect (inferior_ptid);
2245
2246 if (!m_dreg_interface.hwdebug_p ())
2247 return -1;
2248
2249 p.version = PPC_DEBUG_CURRENT_VERSION;
2250 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
2251 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2252 p.addr = (uint64_t) bp_tgt->placed_address;
2253 p.condition_value = 0;
2254
2255 if (bp_tgt->length)
2256 {
2257 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2258
2259 /* The breakpoint will trigger if the address of the instruction is within
2260 the defined range, as follows: p.addr <= address < p.addr2. */
2261 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
2262 }
2263 else
2264 {
2265 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2266 p.addr2 = 0;
2267 }
2268
2269 clear_hw_breakpoint (inferior_ptid.pid (), p);
2270
2271 return 0;
2272 }
2273
2274 /* Return the trigger value to set in a ppc_hw_breakpoint object for a
2275 given hardware watchpoint TYPE. We assume type is not hw_execute. */
2276
2277 int
2278 ppc_linux_nat_target::get_trigger_type (enum target_hw_bp_type type)
2279 {
2280 int t;
2281
2282 if (type == hw_read)
2283 t = PPC_BREAKPOINT_TRIGGER_READ;
2284 else if (type == hw_write)
2285 t = PPC_BREAKPOINT_TRIGGER_WRITE;
2286 else
2287 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
2288
2289 return t;
2290 }
2291
2292 /* Register a new masked watchpoint at ADDR using the mask MASK, to be
2293 inserted when the threads of inferior_ptid are resumed. RW may be
2294 hw_read for a read watchpoint, hw_write for a write watchpoint or
2295 hw_access for an access watchpoint. */
2296
2297 int
2298 ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
2299 target_hw_bp_type rw)
2300 {
2301 struct ppc_hw_breakpoint p;
2302
2303 gdb_assert (m_dreg_interface.hwdebug_p ());
2304
2305 p.version = PPC_DEBUG_CURRENT_VERSION;
2306 p.trigger_type = get_trigger_type (rw);
2307 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
2308 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2309 p.addr = addr;
2310 p.addr2 = mask;
2311 p.condition_value = 0;
2312
2313 register_hw_breakpoint (inferior_ptid.pid (), p);
2314
2315 return 0;
2316 }
2317
2318 /* Clear a registration for a masked watchpoint at ADDR with the mask
2319 MASK. It will be removed from the threads of inferior_ptid when they
2320 are next resumed. RW may be hw_read for a read watchpoint, hw_write
2321 for a write watchpoint or hw_access for an access watchpoint. */
2322
2323 int
2324 ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
2325 target_hw_bp_type rw)
2326 {
2327 struct ppc_hw_breakpoint p;
2328
2329 gdb_assert (m_dreg_interface.hwdebug_p ());
2330
2331 p.version = PPC_DEBUG_CURRENT_VERSION;
2332 p.trigger_type = get_trigger_type (rw);
2333 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
2334 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2335 p.addr = addr;
2336 p.addr2 = mask;
2337 p.condition_value = 0;
2338
2339 clear_hw_breakpoint (inferior_ptid.pid (), p);
2340
2341 return 0;
2342 }
2343
2344 /* Check whether we have at least one free DVC register for the threads
2345 of the pid of inferior_ptid. */
2346
2347 bool
2348 ppc_linux_nat_target::can_use_watchpoint_cond_accel (void)
2349 {
2350 m_dreg_interface.detect (inferior_ptid);
2351
2352 if (!m_dreg_interface.hwdebug_p ())
2353 return false;
2354
2355 int cnt = m_dreg_interface.hwdebug_info ().num_condition_regs;
2356
2357 if (cnt == 0)
2358 return false;
2359
2360 auto process_it = m_process_info.find (inferior_ptid.pid ());
2361
2362 /* No breakpoints or watchpoints have been requested for this process,
2363 we have at least one free DVC register. */
2364 if (process_it == m_process_info.end ())
2365 return true;
2366
2367 for (const ppc_hw_breakpoint &bp : process_it->second.requested_hw_bps)
2368 if (bp.condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2369 cnt--;
2370
2371 if (cnt <= 0)
2372 return false;
2373
2374 return true;
2375 }
2376
2377 /* Calculate the enable bits and the contents of the Data Value Compare
2378 debug register present in BookE processors.
2379
2380 ADDR is the address to be watched, LEN is the length of watched data
2381 and DATA_VALUE is the value which will trigger the watchpoint.
2382 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
2383 CONDITION_VALUE will hold the value which should be put in the
2384 DVC register. */
2385
2386 void
2387 ppc_linux_nat_target::calculate_dvc (CORE_ADDR addr, int len,
2388 CORE_ADDR data_value,
2389 uint32_t *condition_mode,
2390 uint64_t *condition_value)
2391 {
2392 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface.
2393 hwdebug_info ());
2394
2395 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
2396 rightmost_enabled_byte;
2397 CORE_ADDR addr_end_data, addr_end_dvc;
2398
2399 /* The DVC register compares bytes within fixed-length windows which
2400 are word-aligned, with length equal to that of the DVC register.
2401 We need to calculate where our watch region is relative to that
2402 window and enable comparison of the bytes which fall within it. */
2403
2404 align_offset = addr % hwdebug_info.sizeof_condition;
2405 addr_end_data = addr + len;
2406 addr_end_dvc = (addr - align_offset
2407 + hwdebug_info.sizeof_condition);
2408 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
2409 addr_end_data - addr_end_dvc : 0;
2410 num_byte_enable = len - num_bytes_off_dvc;
2411 /* Here, bytes are numbered from right to left. */
2412 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
2413 addr_end_dvc - addr_end_data : 0;
2414
2415 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
2416 for (i = 0; i < num_byte_enable; i++)
2417 *condition_mode
2418 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
2419
2420 /* Now we need to match the position within the DVC of the comparison
2421 value with where the watch region is relative to the window
2422 (i.e., the ALIGN_OFFSET). */
2423
2424 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
2425 << rightmost_enabled_byte * 8);
2426 }
2427
2428 /* Return the number of memory locations that need to be accessed to
2429 evaluate the expression which generated the given value chain.
2430 Returns -1 if there's any register access involved, or if there are
2431 other kinds of values which are not acceptable in a condition
2432 expression (e.g., lval_computed or lval_internalvar). */
2433
2434 int
2435 ppc_linux_nat_target::num_memory_accesses (const std::vector<value_ref_ptr>
2436 &chain)
2437 {
2438 int found_memory_cnt = 0;
2439
2440 /* The idea here is that evaluating an expression generates a series
2441 of values, one holding the value of every subexpression. (The
2442 expression a*b+c has five subexpressions: a, b, a*b, c, and
2443 a*b+c.) GDB's values hold almost enough information to establish
2444 the criteria given above --- they identify memory lvalues,
2445 register lvalues, computed values, etcetera. So we can evaluate
2446 the expression, and then scan the chain of values that leaves
2447 behind to determine the memory locations involved in the evaluation
2448 of an expression.
2449
2450 However, I don't think that the values returned by inferior
2451 function calls are special in any way. So this function may not
2452 notice that an expression contains an inferior function call.
2453 FIXME. */
2454
2455 for (const value_ref_ptr &iter : chain)
2456 {
2457 struct value *v = iter.get ();
2458
2459 /* Constants and values from the history are fine. */
2460 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
2461 continue;
2462 else if (VALUE_LVAL (v) == lval_memory)
2463 {
2464 /* A lazy memory lvalue is one that GDB never needed to fetch;
2465 we either just used its address (e.g., `a' in `a.b') or
2466 we never needed it at all (e.g., `a' in `a,b'). */
2467 if (!value_lazy (v))
2468 found_memory_cnt++;
2469 }
2470 /* Other kinds of values are not fine. */
2471 else
2472 return -1;
2473 }
2474
2475 return found_memory_cnt;
2476 }
2477
2478 /* Verifies whether the expression COND can be implemented using the
2479 DVC (Data Value Compare) register in BookE processors. The expression
2480 must test the watch value for equality with a constant expression.
2481 If the function returns 1, DATA_VALUE will contain the constant against
2482 which the watch value should be compared and LEN will contain the size
2483 of the constant. */
2484
2485 int
2486 ppc_linux_nat_target::check_condition (CORE_ADDR watch_addr,
2487 struct expression *cond,
2488 CORE_ADDR *data_value, int *len)
2489 {
2490 int pc = 1, num_accesses_left, num_accesses_right;
2491 struct value *left_val, *right_val;
2492 std::vector<value_ref_ptr> left_chain, right_chain;
2493
2494 if (cond->elts[0].opcode != BINOP_EQUAL)
2495 return 0;
2496
2497 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, false);
2498 num_accesses_left = num_memory_accesses (left_chain);
2499
2500 if (left_val == NULL || num_accesses_left < 0)
2501 return 0;
2502
2503 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, false);
2504 num_accesses_right = num_memory_accesses (right_chain);
2505
2506 if (right_val == NULL || num_accesses_right < 0)
2507 return 0;
2508
2509 if (num_accesses_left == 1 && num_accesses_right == 0
2510 && VALUE_LVAL (left_val) == lval_memory
2511 && value_address (left_val) == watch_addr)
2512 {
2513 *data_value = value_as_long (right_val);
2514
2515 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
2516 the same type as the memory region referenced by LEFT_VAL. */
2517 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
2518 }
2519 else if (num_accesses_left == 0 && num_accesses_right == 1
2520 && VALUE_LVAL (right_val) == lval_memory
2521 && value_address (right_val) == watch_addr)
2522 {
2523 *data_value = value_as_long (left_val);
2524
2525 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
2526 the same type as the memory region referenced by RIGHT_VAL. */
2527 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
2528 }
2529 else
2530 return 0;
2531
2532 return 1;
2533 }
2534
2535 /* Return true if the target is capable of using hardware to evaluate the
2536 condition expression, thus only triggering the watchpoint when it is
2537 true. */
2538
2539 bool
2540 ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr,
2541 int len, int rw,
2542 struct expression *cond)
2543 {
2544 CORE_ADDR data_value;
2545
2546 m_dreg_interface.detect (inferior_ptid);
2547
2548 return (m_dreg_interface.hwdebug_p ()
2549 && (m_dreg_interface.hwdebug_info ().num_condition_regs > 0)
2550 && check_condition (addr, cond, &data_value, &len));
2551 }
2552
2553 /* Set up P with the parameters necessary to request a watchpoint covering
2554 LEN bytes starting at ADDR and if possible with condition expression COND
2555 evaluated by hardware. INSERT tells if we are creating a request for
2556 inserting or removing the watchpoint. */
2557
2558 void
2559 ppc_linux_nat_target::create_watchpoint_request (struct ppc_hw_breakpoint *p,
2560 CORE_ADDR addr, int len,
2561 enum target_hw_bp_type type,
2562 struct expression *cond,
2563 int insert)
2564 {
2565 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
2566 .hwdebug_info ());
2567
2568 if (len == 1
2569 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2570 {
2571 int use_condition;
2572 CORE_ADDR data_value;
2573
2574 use_condition = (insert? can_use_watchpoint_cond_accel ()
2575 : hwdebug_info.num_condition_regs > 0);
2576 if (cond && use_condition && check_condition (addr, cond,
2577 &data_value, &len))
2578 calculate_dvc (addr, len, data_value, &p->condition_mode,
2579 &p->condition_value);
2580 else
2581 {
2582 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2583 p->condition_value = 0;
2584 }
2585
2586 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2587 p->addr2 = 0;
2588 }
2589 else
2590 {
2591 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2592 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2593 p->condition_value = 0;
2594
2595 /* The watchpoint will trigger if the address of the memory access is
2596 within the defined range, as follows: p->addr <= address < p->addr2.
2597
2598 Note that the above sentence just documents how ptrace interprets
2599 its arguments; the watchpoint is set to watch the range defined by
2600 the user _inclusively_, as specified by the user interface. */
2601 p->addr2 = (uint64_t) addr + len;
2602 }
2603
2604 p->version = PPC_DEBUG_CURRENT_VERSION;
2605 p->trigger_type = get_trigger_type (type);
2606 p->addr = (uint64_t) addr;
2607 }
2608
2609 /* Register a watchpoint, to be inserted when the threads of the group of
2610 inferior_ptid are next resumed. Returns 0 on success, and -1 if there
2611 is no ptrace interface available to install the watchpoint. */
2612
2613 int
2614 ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
2615 enum target_hw_bp_type type,
2616 struct expression *cond)
2617 {
2618 m_dreg_interface.detect (inferior_ptid);
2619
2620 if (m_dreg_interface.unavailable_p ())
2621 return -1;
2622
2623 if (m_dreg_interface.hwdebug_p ())
2624 {
2625 struct ppc_hw_breakpoint p;
2626
2627 create_watchpoint_request (&p, addr, len, type, cond, 1);
2628
2629 register_hw_breakpoint (inferior_ptid.pid (), p);
2630 }
2631 else
2632 {
2633 gdb_assert (m_dreg_interface.debugreg_p ());
2634
2635 long wp_value;
2636 long read_mode, write_mode;
2637
2638 if (linux_get_hwcap (current_top_target ()) & PPC_FEATURE_BOOKE)
2639 {
2640 /* PowerPC 440 requires only the read/write flags to be passed
2641 to the kernel. */
2642 read_mode = 1;
2643 write_mode = 2;
2644 }
2645 else
2646 {
2647 /* PowerPC 970 and other DABR-based processors are required to pass
2648 the Breakpoint Translation bit together with the flags. */
2649 read_mode = 5;
2650 write_mode = 6;
2651 }
2652
2653 wp_value = addr & ~(read_mode | write_mode);
2654 switch (type)
2655 {
2656 case hw_read:
2657 /* Set read and translate bits. */
2658 wp_value |= read_mode;
2659 break;
2660 case hw_write:
2661 /* Set write and translate bits. */
2662 wp_value |= write_mode;
2663 break;
2664 case hw_access:
2665 /* Set read, write and translate bits. */
2666 wp_value |= read_mode | write_mode;
2667 break;
2668 }
2669
2670 register_wp (inferior_ptid.pid (), wp_value);
2671 }
2672
2673 return 0;
2674 }
2675
2676 /* Clear a registration for a hardware watchpoint. It will be removed
2677 from the threads of the group of inferior_ptid when they are next
2678 resumed. */
2679
2680 int
2681 ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
2682 enum target_hw_bp_type type,
2683 struct expression *cond)
2684 {
2685 gdb_assert (!m_dreg_interface.unavailable_p ());
2686
2687 if (m_dreg_interface.hwdebug_p ())
2688 {
2689 struct ppc_hw_breakpoint p;
2690
2691 create_watchpoint_request (&p, addr, len, type, cond, 0);
2692
2693 clear_hw_breakpoint (inferior_ptid.pid (), p);
2694 }
2695 else
2696 {
2697 gdb_assert (m_dreg_interface.debugreg_p ());
2698
2699 clear_wp (inferior_ptid.pid ());
2700 }
2701
2702 return 0;
2703 }
2704
2705 /* Clean up the per-process info associated with PID. When using the
2706 HWDEBUG interface, we also erase the per-thread state of installed
2707 debug registers for all the threads that belong to the group of PID.
2708
2709 Usually the thread state is cleaned up by low_delete_thread. We also
2710 do it here because low_new_thread is not called for the initial LWP,
2711 so low_delete_thread won't be able to clean up this state. */
2712
2713 void
2714 ppc_linux_nat_target::low_forget_process (pid_t pid)
2715 {
2716 if ((!m_dreg_interface.detected_p ())
2717 || (m_dreg_interface.unavailable_p ()))
2718 return;
2719
2720 ptid_t pid_ptid (pid, 0, 0);
2721
2722 m_process_info.erase (pid);
2723
2724 if (m_dreg_interface.hwdebug_p ())
2725 {
2726 for (auto it = m_installed_hw_bps.begin ();
2727 it != m_installed_hw_bps.end ();)
2728 {
2729 if (it->first.matches (pid_ptid))
2730 it = m_installed_hw_bps.erase (it);
2731 else
2732 it++;
2733 }
2734 }
2735 }
2736
2737 /* Copy the per-process state associated with the pid of PARENT to the
2738 sate of CHILD_PID. GDB expects that a forked process will have the
2739 same hardware breakpoints and watchpoints as the parent.
2740
2741 If we're using the HWDEBUG interface, also copy the thread debug
2742 register state for the ptid of PARENT to the state for CHILD_PID.
2743
2744 Like for clone events, we assume the kernel will copy the debug
2745 registers from the parent thread to the child. The
2746 low_prepare_to_resume function is made to work even if it doesn't.
2747
2748 We copy the thread state here and not in low_new_thread since we don't
2749 have the pid of the parent in low_new_thread. Even if we did,
2750 low_new_thread might not be called immediately after the fork event is
2751 detected. For instance, with the checkpointing system (see
2752 linux-fork.c), the thread won't be added until GDB decides to switch
2753 to a new checkpointed process. At that point, the debug register
2754 state of the parent thread is unlikely to correspond to the state it
2755 had at the point when it forked. */
2756
2757 void
2758 ppc_linux_nat_target::low_new_fork (struct lwp_info *parent,
2759 pid_t child_pid)
2760 {
2761 if ((!m_dreg_interface.detected_p ())
2762 || (m_dreg_interface.unavailable_p ()))
2763 return;
2764
2765 auto process_it = m_process_info.find (parent->ptid.pid ());
2766
2767 if (process_it != m_process_info.end ())
2768 m_process_info[child_pid] = m_process_info[parent->ptid.pid ()];
2769
2770 if (m_dreg_interface.hwdebug_p ())
2771 {
2772 ptid_t child_ptid (child_pid, child_pid, 0);
2773
2774 copy_thread_dreg_state (parent->ptid, child_ptid);
2775 }
2776 }
2777
2778 /* Copy the thread debug register state from the PARENT thread to the the
2779 state for CHILD_LWP, if we're using the HWDEBUG interface. We assume
2780 the kernel copies the debug registers from one thread to another after
2781 a clone event. The low_prepare_to_resume function is made to work
2782 even if it doesn't. */
2783
2784 void
2785 ppc_linux_nat_target::low_new_clone (struct lwp_info *parent,
2786 pid_t child_lwp)
2787 {
2788 if ((!m_dreg_interface.detected_p ())
2789 || (m_dreg_interface.unavailable_p ()))
2790 return;
2791
2792 if (m_dreg_interface.hwdebug_p ())
2793 {
2794 ptid_t child_ptid (parent->ptid.pid (), child_lwp, 0);
2795
2796 copy_thread_dreg_state (parent->ptid, child_ptid);
2797 }
2798 }
2799
2800 /* Initialize the arch-specific thread state for LP so that it contains
2801 the ptid for lp, so that we can use it in low_delete_thread. Mark the
2802 new thread LP as stale so that we update its debug registers before
2803 resuming it. This is not called for the initial thread. */
2804
2805 void
2806 ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
2807 {
2808 init_arch_lwp_info (lp);
2809
2810 mark_thread_stale (lp);
2811 }
2812
2813 /* Delete the per-thread debug register stale flag. */
2814
2815 void
2816 ppc_linux_nat_target::low_delete_thread (struct arch_lwp_info
2817 *lp_arch_info)
2818 {
2819 if (lp_arch_info != NULL)
2820 {
2821 if (m_dreg_interface.detected_p ()
2822 && m_dreg_interface.hwdebug_p ())
2823 m_installed_hw_bps.erase (lp_arch_info->lwp_ptid);
2824
2825 xfree (lp_arch_info);
2826 }
2827 }
2828
2829 /* Install or delete debug registers in thread LP so that it matches what
2830 GDB requested before it is resumed. */
2831
2832 void
2833 ppc_linux_nat_target::low_prepare_to_resume (struct lwp_info *lp)
2834 {
2835 if ((!m_dreg_interface.detected_p ())
2836 || (m_dreg_interface.unavailable_p ()))
2837 return;
2838
2839 /* We have to re-install or clear the debug registers if we set the
2840 stale flag.
2841
2842 In addition, some kernels configurations can disable a hardware
2843 watchpoint after it is hit. Usually, GDB will remove and re-install
2844 a hardware watchpoint when the thread stops if "breakpoint
2845 always-inserted" is off, or to single-step a watchpoint. But so
2846 that we don't rely on this behavior, if we stop due to a hardware
2847 breakpoint or watchpoint, we also refresh our debug registers. */
2848
2849 arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
2850
2851 bool stale_dregs = (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
2852 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
2853 || lp_arch_info->debug_regs_stale);
2854
2855 if (!stale_dregs)
2856 return;
2857
2858 gdb_assert (lp->ptid.lwp_p ());
2859
2860 auto process_it = m_process_info.find (lp->ptid.pid ());
2861
2862 if (m_dreg_interface.hwdebug_p ())
2863 {
2864 /* First, delete any hardware watchpoint or breakpoint installed in
2865 the inferior and update the thread state. */
2866 auto installed_it = m_installed_hw_bps.find (lp->ptid);
2867
2868 if (installed_it != m_installed_hw_bps.end ())
2869 {
2870 auto &bp_list = installed_it->second;
2871
2872 for (auto bp_it = bp_list.begin (); bp_it != bp_list.end ();)
2873 {
2874 /* We ignore ENOENT to account for various possible kernel
2875 behaviors, e.g. the kernel might or might not copy debug
2876 registers across forks and clones, and we always copy
2877 the debug register state when fork and clone events are
2878 detected. */
2879 if (ptrace (PPC_PTRACE_DELHWDEBUG, lp->ptid.lwp (), 0,
2880 bp_it->first) < 0)
2881 if (errno != ENOENT)
2882 perror_with_name (_("Error deleting hardware "
2883 "breakpoint or watchpoint"));
2884
2885 /* We erase the entries one at a time after successfuly
2886 removing the corresponding slot form the thread so that
2887 if we throw an exception above in a future iteration the
2888 map remains consistent. */
2889 bp_it = bp_list.erase (bp_it);
2890 }
2891
2892 gdb_assert (bp_list.empty ());
2893 }
2894
2895 /* Now we install all the requested hardware breakpoints and
2896 watchpoints and update the thread state. */
2897
2898 if (process_it != m_process_info.end ())
2899 {
2900 auto &bp_list = m_installed_hw_bps[lp->ptid];
2901
2902 for (ppc_hw_breakpoint bp
2903 : process_it->second.requested_hw_bps)
2904 {
2905 long slot = ptrace (PPC_PTRACE_SETHWDEBUG, lp->ptid.lwp (),
2906 0, &bp);
2907
2908 if (slot < 0)
2909 perror_with_name (_("Error setting hardware "
2910 "breakpoint or watchpoint"));
2911
2912 /* Keep track of which slots we installed in this
2913 thread. */
2914 bp_list.emplace (bp_list.begin (), slot, bp);
2915 }
2916 }
2917 }
2918 else
2919 {
2920 gdb_assert (m_dreg_interface.debugreg_p ());
2921
2922 /* Passing 0 to PTRACE_SET_DEBUGREG will clear the watchpoint. We
2923 always clear the watchpoint instead of just overwriting it, in
2924 case there is a request for a new watchpoint, because on some
2925 older kernel versions and configurations simply overwriting the
2926 watchpoint after it was hit would not re-enable it. */
2927 if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, 0) < 0)
2928 perror_with_name (_("Error clearing hardware watchpoint"));
2929
2930 /* GDB requested a watchpoint to be installed. */
2931 if (process_it != m_process_info.end ()
2932 && process_it->second.requested_wp_val.has_value ())
2933 {
2934 long wp = *(process_it->second.requested_wp_val);
2935
2936 if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, wp) < 0)
2937 perror_with_name (_("Error setting hardware watchpoint"));
2938 }
2939 }
2940
2941 lp_arch_info->debug_regs_stale = false;
2942 }
2943
2944 /* Return true if INFERIOR_PTID is known to have been stopped by a
2945 hardware watchpoint, false otherwise. If true is returned, write the
2946 address that the kernel reported as causing the SIGTRAP in ADDR_P. */
2947
2948 bool
2949 ppc_linux_nat_target::low_stopped_data_address (CORE_ADDR *addr_p)
2950 {
2951 siginfo_t siginfo;
2952
2953 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2954 return false;
2955
2956 if (siginfo.si_signo != SIGTRAP
2957 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2958 return false;
2959
2960 gdb_assert (!m_dreg_interface.unavailable_p ());
2961
2962 /* Check if this signal corresponds to a hardware breakpoint. We only
2963 need to check this if we're using the HWDEBUG interface, since the
2964 DEBUGREG interface only allows setting one hardware watchpoint. */
2965 if (m_dreg_interface.hwdebug_p ())
2966 {
2967 /* The index (or slot) of the *point is passed in the si_errno
2968 field. Currently, this is only the case if the kernel was
2969 configured with CONFIG_PPC_ADV_DEBUG_REGS. If not, we assume
2970 the kernel will set si_errno to a value that doesn't correspond
2971 to any real slot. */
2972 int slot = siginfo.si_errno;
2973
2974 auto installed_it = m_installed_hw_bps.find (inferior_ptid);
2975
2976 /* We must have installed slots for the thread if it got a
2977 TRAP_HWBKPT signal. */
2978 gdb_assert (installed_it != m_installed_hw_bps.end ());
2979
2980 for (const auto & slot_bp_pair : installed_it->second)
2981 if (slot_bp_pair.first == slot
2982 && (slot_bp_pair.second.trigger_type
2983 == PPC_BREAKPOINT_TRIGGER_EXECUTE))
2984 return false;
2985 }
2986
2987 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2988 return true;
2989 }
2990
2991 /* Return true if INFERIOR_PTID is known to have been stopped by a
2992 hardware watchpoint, false otherwise. */
2993
2994 bool
2995 ppc_linux_nat_target::low_stopped_by_watchpoint ()
2996 {
2997 CORE_ADDR addr;
2998 return low_stopped_data_address (&addr);
2999 }
3000
3001 bool
3002 ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
3003 CORE_ADDR start,
3004 int length)
3005 {
3006 gdb_assert (!m_dreg_interface.unavailable_p ());
3007
3008 int mask;
3009
3010 if (m_dreg_interface.hwdebug_p ()
3011 && linux_get_hwcap (current_top_target ()) & PPC_FEATURE_BOOKE)
3012 return start <= addr && start + length >= addr;
3013 else if (linux_get_hwcap (current_top_target ()) & PPC_FEATURE_BOOKE)
3014 mask = 3;
3015 else
3016 mask = 7;
3017
3018 addr &= ~mask;
3019
3020 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
3021 return start <= addr + mask && start + length - 1 >= addr;
3022 }
3023
3024 /* Return the number of registers needed for a masked hardware watchpoint. */
3025
3026 int
3027 ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr,
3028 CORE_ADDR mask)
3029 {
3030 m_dreg_interface.detect (inferior_ptid);
3031
3032 if (!m_dreg_interface.hwdebug_p ()
3033 || (m_dreg_interface.hwdebug_info ().features
3034 & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
3035 return -1;
3036 else if ((mask & 0xC0000000) != 0xC0000000)
3037 {
3038 warning (_("The given mask covers kernel address space "
3039 "and cannot be used.\n"));
3040
3041 return -2;
3042 }
3043 else
3044 return 2;
3045 }
3046
3047 /* Copy the per-thread debug register state, if any, from thread
3048 PARENT_PTID to thread CHILD_PTID, if the debug register being used is
3049 HWDEBUG. */
3050
3051 void
3052 ppc_linux_nat_target::copy_thread_dreg_state (const ptid_t &parent_ptid,
3053 const ptid_t &child_ptid)
3054 {
3055 gdb_assert (m_dreg_interface.hwdebug_p ());
3056
3057 auto installed_it = m_installed_hw_bps.find (parent_ptid);
3058
3059 if (installed_it != m_installed_hw_bps.end ())
3060 m_installed_hw_bps[child_ptid] = m_installed_hw_bps[parent_ptid];
3061 }
3062
3063 /* Mark the debug register stale flag for the new thread, if we have
3064 already detected which debug register interface we use. */
3065
3066 void
3067 ppc_linux_nat_target::mark_thread_stale (struct lwp_info *lp)
3068 {
3069 if ((!m_dreg_interface.detected_p ())
3070 || (m_dreg_interface.unavailable_p ()))
3071 return;
3072
3073 arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
3074
3075 lp_arch_info->debug_regs_stale = true;
3076 }
3077
3078 /* Mark all the threads of the group of PID as stale with respect to
3079 debug registers and issue a stop request to each such thread that
3080 isn't already stopped. */
3081
3082 void
3083 ppc_linux_nat_target::mark_debug_registers_changed (pid_t pid)
3084 {
3085 /* We do this in two passes to make sure all threads are marked even if
3086 we get an exception when stopping one of them. */
3087
3088 iterate_over_lwps (ptid_t (pid),
3089 [this] (struct lwp_info *lp) -> int {
3090 this->mark_thread_stale (lp);
3091 return 0;
3092 });
3093
3094 iterate_over_lwps (ptid_t (pid),
3095 [] (struct lwp_info *lp) -> int {
3096 if (!lwp_is_stopped (lp))
3097 linux_stop_lwp (lp);
3098 return 0;
3099 });
3100 }
3101
3102 /* Register a hardware breakpoint or watchpoint BP for the pid PID, then
3103 mark the stale flag for all threads of the group of PID, and issue a
3104 stop request for them. The breakpoint or watchpoint will be installed
3105 the next time each thread is resumed. Should only be used if the
3106 debug register interface is HWDEBUG. */
3107
3108 void
3109 ppc_linux_nat_target::register_hw_breakpoint (pid_t pid,
3110 const struct
3111 ppc_hw_breakpoint &bp)
3112 {
3113 gdb_assert (m_dreg_interface.hwdebug_p ());
3114
3115 m_process_info[pid].requested_hw_bps.push_back (bp);
3116
3117 mark_debug_registers_changed (pid);
3118 }
3119
3120 /* Clear a registration for a hardware breakpoint or watchpoint BP for
3121 the pid PID, then mark the stale flag for all threads of the group of
3122 PID, and issue a stop request for them. The breakpoint or watchpoint
3123 will be removed the next time each thread is resumed. Should only be
3124 used if the debug register interface is HWDEBUG. */
3125
3126 void
3127 ppc_linux_nat_target::clear_hw_breakpoint (pid_t pid,
3128 const struct ppc_hw_breakpoint &bp)
3129 {
3130 gdb_assert (m_dreg_interface.hwdebug_p ());
3131
3132 auto process_it = m_process_info.find (pid);
3133
3134 gdb_assert (process_it != m_process_info.end ());
3135
3136 auto bp_it = std::find_if (process_it->second.requested_hw_bps.begin (),
3137 process_it->second.requested_hw_bps.end (),
3138 [&bp, this]
3139 (const struct ppc_hw_breakpoint &curr)
3140 { return hwdebug_point_cmp (bp, curr); }
3141 );
3142
3143 /* If GDB is removing a watchpoint, it must have been inserted. */
3144 gdb_assert (bp_it != process_it->second.requested_hw_bps.end ());
3145
3146 process_it->second.requested_hw_bps.erase (bp_it);
3147
3148 mark_debug_registers_changed (pid);
3149 }
3150
3151 /* Register the hardware watchpoint value WP_VALUE for the pid PID,
3152 then mark the stale flag for all threads of the group of PID, and
3153 issue a stop request for them. The breakpoint or watchpoint will be
3154 installed the next time each thread is resumed. Should only be used
3155 if the debug register interface is DEBUGREG. */
3156
3157 void
3158 ppc_linux_nat_target::register_wp (pid_t pid, long wp_value)
3159 {
3160 gdb_assert (m_dreg_interface.debugreg_p ());
3161
3162 /* Our other functions should have told GDB that we only have one
3163 hardware watchpoint with this interface. */
3164 gdb_assert (!m_process_info[pid].requested_wp_val.has_value ());
3165
3166 m_process_info[pid].requested_wp_val.emplace (wp_value);
3167
3168 mark_debug_registers_changed (pid);
3169 }
3170
3171 /* Clear the hardware watchpoint registration for the pid PID, then mark
3172 the stale flag for all threads of the group of PID, and issue a stop
3173 request for them. The breakpoint or watchpoint will be installed the
3174 next time each thread is resumed. Should only be used if the debug
3175 register interface is DEBUGREG. */
3176
3177 void
3178 ppc_linux_nat_target::clear_wp (pid_t pid)
3179 {
3180 gdb_assert (m_dreg_interface.debugreg_p ());
3181
3182 auto process_it = m_process_info.find (pid);
3183
3184 gdb_assert (process_it != m_process_info.end ());
3185 gdb_assert (process_it->second.requested_wp_val.has_value ());
3186
3187 process_it->second.requested_wp_val.reset ();
3188
3189 mark_debug_registers_changed (pid);
3190 }
3191
3192 /* Initialize the arch-specific thread state for LWP, if it not already
3193 created. */
3194
3195 void
3196 ppc_linux_nat_target::init_arch_lwp_info (struct lwp_info *lp)
3197 {
3198 if (lwp_arch_private_info (lp) == NULL)
3199 {
3200 lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info));
3201 lwp_arch_private_info (lp)->debug_regs_stale = false;
3202 lwp_arch_private_info (lp)->lwp_ptid = lp->ptid;
3203 }
3204 }
3205
3206 /* Get the arch-specific thread state for LWP, creating it if
3207 necessary. */
3208
3209 arch_lwp_info *
3210 ppc_linux_nat_target::get_arch_lwp_info (struct lwp_info *lp)
3211 {
3212 init_arch_lwp_info (lp);
3213
3214 return lwp_arch_private_info (lp);
3215 }
3216
3217 void _initialize_ppc_linux_nat ();
3218 void
3219 _initialize_ppc_linux_nat ()
3220 {
3221 linux_target = &the_ppc_linux_nat_target;
3222
3223 /* Register the target. */
3224 add_inf_child_target (linux_target);
3225 }
This page took 0.104262 seconds and 5 git commands to generate.