Normalize on PATH_MAX instead of MAXPATHLEN throughout.
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "observer.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "target.h"
30 #include "linux-nat.h"
31
32 #include <stdint.h>
33 #include <sys/types.h>
34 #include <signal.h>
35 #include <sys/user.h>
36 #include <sys/ioctl.h>
37 #include "gdb_wait.h"
38 #include <fcntl.h>
39 #include <sys/procfs.h>
40 #include <sys/ptrace.h>
41
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44 #include "ppc-tdep.h"
45 #include "ppc-linux-tdep.h"
46
47 /* Required when using the AUXV. */
48 #include "elf/common.h"
49 #include "auxv.h"
50
51 /* This sometimes isn't defined. */
52 #ifndef PT_ORIG_R3
53 #define PT_ORIG_R3 34
54 #endif
55 #ifndef PT_TRAP
56 #define PT_TRAP 40
57 #endif
58
59 /* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
60 If they aren't, we can provide them ourselves (their values are fixed
61 because they are part of the kernel ABI). They are used in the AT_HWCAP
62 entry of the AUXV. */
63 #ifndef PPC_FEATURE_CELL
64 #define PPC_FEATURE_CELL 0x00010000
65 #endif
66 #ifndef PPC_FEATURE_BOOKE
67 #define PPC_FEATURE_BOOKE 0x00008000
68 #endif
69 #ifndef PPC_FEATURE_HAS_DFP
70 #define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
71 #endif
72
73 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
74 configure time check. Some older glibc's (for instance 2.2.1)
75 don't have a specific powerpc version of ptrace.h, and fall back on
76 a generic one. In such cases, sys/ptrace.h defines
77 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
78 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
79 PTRACE_SETVRREGS to be. This also makes a configury check pretty
80 much useless. */
81
82 /* These definitions should really come from the glibc header files,
83 but Glibc doesn't know about the vrregs yet. */
84 #ifndef PTRACE_GETVRREGS
85 #define PTRACE_GETVRREGS 18
86 #define PTRACE_SETVRREGS 19
87 #endif
88
89 /* PTRACE requests for POWER7 VSX registers. */
90 #ifndef PTRACE_GETVSXREGS
91 #define PTRACE_GETVSXREGS 27
92 #define PTRACE_SETVSXREGS 28
93 #endif
94
95 /* Similarly for the ptrace requests for getting / setting the SPE
96 registers (ev0 -- ev31, acc, and spefscr). See the description of
97 gdb_evrregset_t for details. */
98 #ifndef PTRACE_GETEVRREGS
99 #define PTRACE_GETEVRREGS 20
100 #define PTRACE_SETEVRREGS 21
101 #endif
102
103 /* Similarly for the hardware watchpoint support. These requests are used
104 when the BookE kernel interface is not available. */
105 #ifndef PTRACE_GET_DEBUGREG
106 #define PTRACE_GET_DEBUGREG 25
107 #endif
108 #ifndef PTRACE_SET_DEBUGREG
109 #define PTRACE_SET_DEBUGREG 26
110 #endif
111 #ifndef PTRACE_GETSIGINFO
112 #define PTRACE_GETSIGINFO 0x4202
113 #endif
114
115 /* These requests are used when the BookE kernel interface is available.
116 It exposes the additional debug features of BookE processors, such as
117 ranged breakpoints and watchpoints and hardware-accelerated condition
118 evaluation. */
119 #ifndef PPC_PTRACE_GETHWDBGINFO
120
121 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE
122 interface is not present in ptrace.h, so we'll have to pretty much include
123 it all here so that the code at least compiles on older systems. */
124 #define PPC_PTRACE_GETHWDBGINFO 0x89
125 #define PPC_PTRACE_SETHWDEBUG 0x88
126 #define PPC_PTRACE_DELHWDEBUG 0x87
127
128 struct ppc_debug_info
129 {
130 uint32_t version; /* Only version 1 exists to date. */
131 uint32_t num_instruction_bps;
132 uint32_t num_data_bps;
133 uint32_t num_condition_regs;
134 uint32_t data_bp_alignment;
135 uint32_t sizeof_condition; /* size of the DVC register. */
136 uint64_t features;
137 };
138
139 /* Features will have bits indicating whether there is support for: */
140 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
141 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
142 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
143 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
144
145 struct ppc_hw_breakpoint
146 {
147 uint32_t version; /* currently, version must be 1 */
148 uint32_t trigger_type; /* only some combinations allowed */
149 uint32_t addr_mode; /* address match mode */
150 uint32_t condition_mode; /* break/watchpoint condition flags */
151 uint64_t addr; /* break/watchpoint address */
152 uint64_t addr2; /* range end or mask */
153 uint64_t condition_value; /* contents of the DVC register */
154 };
155
156 /* Trigger type. */
157 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
158 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
159 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
160 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
161
162 /* Address mode. */
163 #define PPC_BREAKPOINT_MODE_EXACT 0x0
164 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
165 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
166 #define PPC_BREAKPOINT_MODE_MASK 0x3
167
168 /* Condition mode. */
169 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
170 #define PPC_BREAKPOINT_CONDITION_AND 0x1
171 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
172 #define PPC_BREAKPOINT_CONDITION_OR 0x2
173 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
174 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
175 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
176 #define PPC_BREAKPOINT_CONDITION_BE(n) \
177 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
178 #endif /* PPC_PTRACE_GETHWDBGINFO */
179
180
181
182 /* Similarly for the general-purpose (gp0 -- gp31)
183 and floating-point registers (fp0 -- fp31). */
184 #ifndef PTRACE_GETREGS
185 #define PTRACE_GETREGS 12
186 #endif
187 #ifndef PTRACE_SETREGS
188 #define PTRACE_SETREGS 13
189 #endif
190 #ifndef PTRACE_GETFPREGS
191 #define PTRACE_GETFPREGS 14
192 #endif
193 #ifndef PTRACE_SETFPREGS
194 #define PTRACE_SETFPREGS 15
195 #endif
196
197 /* This oddity is because the Linux kernel defines elf_vrregset_t as
198 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
199 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
200 the vrsave as an extra 4 bytes at the end. I opted for creating a
201 flat array of chars, so that it is easier to manipulate for gdb.
202
203 There are 32 vector registers 16 bytes longs, plus a VSCR register
204 which is only 4 bytes long, but is fetched as a 16 bytes
205 quantity. Up to here we have the elf_vrregset_t structure.
206 Appended to this there is space for the VRSAVE register: 4 bytes.
207 Even though this vrsave register is not included in the regset
208 typedef, it is handled by the ptrace requests.
209
210 Note that GNU/Linux doesn't support little endian PPC hardware,
211 therefore the offset at which the real value of the VSCR register
212 is located will be always 12 bytes.
213
214 The layout is like this (where x is the actual value of the vscr reg): */
215
216 /* *INDENT-OFF* */
217 /*
218 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
219 <-------> <-------><-------><->
220 VR0 VR31 VSCR VRSAVE
221 */
222 /* *INDENT-ON* */
223
224 #define SIZEOF_VRREGS 33*16+4
225
226 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
227
228 /* This is the layout of the POWER7 VSX registers and the way they overlap
229 with the existing FPR and VMX registers.
230
231 VSR doubleword 0 VSR doubleword 1
232 ----------------------------------------------------------------
233 VSR[0] | FPR[0] | |
234 ----------------------------------------------------------------
235 VSR[1] | FPR[1] | |
236 ----------------------------------------------------------------
237 | ... | |
238 | ... | |
239 ----------------------------------------------------------------
240 VSR[30] | FPR[30] | |
241 ----------------------------------------------------------------
242 VSR[31] | FPR[31] | |
243 ----------------------------------------------------------------
244 VSR[32] | VR[0] |
245 ----------------------------------------------------------------
246 VSR[33] | VR[1] |
247 ----------------------------------------------------------------
248 | ... |
249 | ... |
250 ----------------------------------------------------------------
251 VSR[62] | VR[30] |
252 ----------------------------------------------------------------
253 VSR[63] | VR[31] |
254 ----------------------------------------------------------------
255
256 VSX has 64 128bit registers. The first 32 registers overlap with
257 the FP registers (doubleword 0) and hence extend them with additional
258 64 bits (doubleword 1). The other 32 regs overlap with the VMX
259 registers. */
260 #define SIZEOF_VSXREGS 32*8
261
262 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
263
264 /* On PPC processors that support the Signal Processing Extension
265 (SPE) APU, the general-purpose registers are 64 bits long.
266 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
267 ptrace calls only access the lower half of each register, to allow
268 them to behave the same way they do on non-SPE systems. There's a
269 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
270 read and write the top halves of all the general-purpose registers
271 at once, along with some SPE-specific registers.
272
273 GDB itself continues to claim the general-purpose registers are 32
274 bits long. It has unnamed raw registers that hold the upper halves
275 of the gprs, and the full 64-bit SIMD views of the registers,
276 'ev0' -- 'ev31', are pseudo-registers that splice the top and
277 bottom halves together.
278
279 This is the structure filled in by PTRACE_GETEVRREGS and written to
280 the inferior's registers by PTRACE_SETEVRREGS. */
281 struct gdb_evrregset_t
282 {
283 unsigned long evr[32];
284 unsigned long long acc;
285 unsigned long spefscr;
286 };
287
288 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
289 PTRACE_SETVSXREGS requests, for reading and writing the VSX
290 POWER7 registers 0 through 31. Zero if we've tried one of them and
291 gotten an error. Note that VSX registers 32 through 63 overlap
292 with VR registers 0 through 31. */
293 int have_ptrace_getsetvsxregs = 1;
294
295 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
296 PTRACE_SETVRREGS requests, for reading and writing the Altivec
297 registers. Zero if we've tried one of them and gotten an
298 error. */
299 int have_ptrace_getvrregs = 1;
300
301 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
302 PTRACE_SETEVRREGS requests, for reading and writing the SPE
303 registers. Zero if we've tried one of them and gotten an
304 error. */
305 int have_ptrace_getsetevrregs = 1;
306
307 /* Non-zero if our kernel may support the PTRACE_GETREGS and
308 PTRACE_SETREGS requests, for reading and writing the
309 general-purpose registers. Zero if we've tried one of
310 them and gotten an error. */
311 int have_ptrace_getsetregs = 1;
312
313 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
314 PTRACE_SETFPREGS requests, for reading and writing the
315 floating-pointers registers. Zero if we've tried one of
316 them and gotten an error. */
317 int have_ptrace_getsetfpregs = 1;
318
319 /* *INDENT-OFF* */
320 /* registers layout, as presented by the ptrace interface:
321 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
322 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
323 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
324 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
325 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
326 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
327 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
328 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
329 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
330 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
331 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
332 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
333 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
334 /* *INDENT_ON * */
335
336 static int
337 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
338 {
339 int u_addr = -1;
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
342 interface, and not the wordsize of the program's ABI. */
343 int wordsize = sizeof (long);
344
345 /* General purpose registers occupy 1 slot each in the buffer. */
346 if (regno >= tdep->ppc_gp0_regnum
347 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
348 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
349
350 /* Floating point regs: eight bytes each in both 32- and 64-bit
351 ptrace interfaces. Thus, two slots each in 32-bit interface, one
352 slot each in 64-bit interface. */
353 if (tdep->ppc_fp0_regnum >= 0
354 && regno >= tdep->ppc_fp0_regnum
355 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
356 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
357
358 /* UISA special purpose registers: 1 slot each. */
359 if (regno == gdbarch_pc_regnum (gdbarch))
360 u_addr = PT_NIP * wordsize;
361 if (regno == tdep->ppc_lr_regnum)
362 u_addr = PT_LNK * wordsize;
363 if (regno == tdep->ppc_cr_regnum)
364 u_addr = PT_CCR * wordsize;
365 if (regno == tdep->ppc_xer_regnum)
366 u_addr = PT_XER * wordsize;
367 if (regno == tdep->ppc_ctr_regnum)
368 u_addr = PT_CTR * wordsize;
369 #ifdef PT_MQ
370 if (regno == tdep->ppc_mq_regnum)
371 u_addr = PT_MQ * wordsize;
372 #endif
373 if (regno == tdep->ppc_ps_regnum)
374 u_addr = PT_MSR * wordsize;
375 if (regno == PPC_ORIG_R3_REGNUM)
376 u_addr = PT_ORIG_R3 * wordsize;
377 if (regno == PPC_TRAP_REGNUM)
378 u_addr = PT_TRAP * wordsize;
379 if (tdep->ppc_fpscr_regnum >= 0
380 && regno == tdep->ppc_fpscr_regnum)
381 {
382 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
383 kernel headers incorrectly contained the 32-bit definition of
384 PT_FPSCR. For the 32-bit definition, floating-point
385 registers occupy two 32-bit "slots", and the FPSCR lives in
386 the second half of such a slot-pair (hence +1). For 64-bit,
387 the FPSCR instead occupies the full 64-bit 2-word-slot and
388 hence no adjustment is necessary. Hack around this. */
389 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
390 u_addr = (48 + 32) * wordsize;
391 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
392 slot and not just its second word. The PT_FPSCR supplied when
393 GDB is compiled as a 32-bit app doesn't reflect this. */
394 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
395 && PT_FPSCR == (48 + 2*32 + 1))
396 u_addr = (48 + 2*32) * wordsize;
397 else
398 u_addr = PT_FPSCR * wordsize;
399 }
400 return u_addr;
401 }
402
403 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
404 registers set mechanism, as opposed to the interface for all the
405 other registers, that stores/fetches each register individually. */
406 static void
407 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
408 {
409 int ret;
410 gdb_vsxregset_t regs;
411 struct gdbarch *gdbarch = get_regcache_arch (regcache);
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
414
415 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
416 if (ret < 0)
417 {
418 if (errno == EIO)
419 {
420 have_ptrace_getsetvsxregs = 0;
421 return;
422 }
423 perror_with_name (_("Unable to fetch VSX register"));
424 }
425
426 regcache_raw_supply (regcache, regno,
427 regs + (regno - tdep->ppc_vsr0_upper_regnum)
428 * vsxregsize);
429 }
430
431 /* The Linux kernel ptrace interface for AltiVec registers uses the
432 registers set mechanism, as opposed to the interface for all the
433 other registers, that stores/fetches each register individually. */
434 static void
435 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
436 {
437 int ret;
438 int offset = 0;
439 gdb_vrregset_t regs;
440 struct gdbarch *gdbarch = get_regcache_arch (regcache);
441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
442 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
443
444 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
445 if (ret < 0)
446 {
447 if (errno == EIO)
448 {
449 have_ptrace_getvrregs = 0;
450 return;
451 }
452 perror_with_name (_("Unable to fetch AltiVec register"));
453 }
454
455 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
456 long on the hardware. We deal only with the lower 4 bytes of the
457 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
458 there is no need to define an offset for it. */
459 if (regno == (tdep->ppc_vrsave_regnum - 1))
460 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
461
462 regcache_raw_supply (regcache, regno,
463 regs + (regno
464 - tdep->ppc_vr0_regnum) * vrregsize + offset);
465 }
466
467 /* Fetch the top 32 bits of TID's general-purpose registers and the
468 SPE-specific registers, and place the results in EVRREGSET. If we
469 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
470 zeros.
471
472 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
473 PTRACE_SETEVRREGS requests are supported is isolated here, and in
474 set_spe_registers. */
475 static void
476 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
477 {
478 if (have_ptrace_getsetevrregs)
479 {
480 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
481 return;
482 else
483 {
484 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
485 we just return zeros. */
486 if (errno == EIO)
487 have_ptrace_getsetevrregs = 0;
488 else
489 /* Anything else needs to be reported. */
490 perror_with_name (_("Unable to fetch SPE registers"));
491 }
492 }
493
494 memset (evrregset, 0, sizeof (*evrregset));
495 }
496
497 /* Supply values from TID for SPE-specific raw registers: the upper
498 halves of the GPRs, the accumulator, and the spefscr. REGNO must
499 be the number of an upper half register, acc, spefscr, or -1 to
500 supply the values of all registers. */
501 static void
502 fetch_spe_register (struct regcache *regcache, int tid, int regno)
503 {
504 struct gdbarch *gdbarch = get_regcache_arch (regcache);
505 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
506 struct gdb_evrregset_t evrregs;
507
508 gdb_assert (sizeof (evrregs.evr[0])
509 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
510 gdb_assert (sizeof (evrregs.acc)
511 == register_size (gdbarch, tdep->ppc_acc_regnum));
512 gdb_assert (sizeof (evrregs.spefscr)
513 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
514
515 get_spe_registers (tid, &evrregs);
516
517 if (regno == -1)
518 {
519 int i;
520
521 for (i = 0; i < ppc_num_gprs; i++)
522 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
523 &evrregs.evr[i]);
524 }
525 else if (tdep->ppc_ev0_upper_regnum <= regno
526 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
527 regcache_raw_supply (regcache, regno,
528 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
529
530 if (regno == -1
531 || regno == tdep->ppc_acc_regnum)
532 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
533
534 if (regno == -1
535 || regno == tdep->ppc_spefscr_regnum)
536 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
537 &evrregs.spefscr);
538 }
539
540 static void
541 fetch_register (struct regcache *regcache, int tid, int regno)
542 {
543 struct gdbarch *gdbarch = get_regcache_arch (regcache);
544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
545 /* This isn't really an address. But ptrace thinks of it as one. */
546 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
547 int bytes_transferred;
548 unsigned int offset; /* Offset of registers within the u area. */
549 gdb_byte buf[MAX_REGISTER_SIZE];
550
551 if (altivec_register_p (gdbarch, regno))
552 {
553 /* If this is the first time through, or if it is not the first
554 time through, and we have comfirmed that there is kernel
555 support for such a ptrace request, then go and fetch the
556 register. */
557 if (have_ptrace_getvrregs)
558 {
559 fetch_altivec_register (regcache, tid, regno);
560 return;
561 }
562 /* If we have discovered that there is no ptrace support for
563 AltiVec registers, fall through and return zeroes, because
564 regaddr will be -1 in this case. */
565 }
566 if (vsx_register_p (gdbarch, regno))
567 {
568 if (have_ptrace_getsetvsxregs)
569 {
570 fetch_vsx_register (regcache, tid, regno);
571 return;
572 }
573 }
574 else if (spe_register_p (gdbarch, regno))
575 {
576 fetch_spe_register (regcache, tid, regno);
577 return;
578 }
579
580 if (regaddr == -1)
581 {
582 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
583 regcache_raw_supply (regcache, regno, buf);
584 return;
585 }
586
587 /* Read the raw register using sizeof(long) sized chunks. On a
588 32-bit platform, 64-bit floating-point registers will require two
589 transfers. */
590 for (bytes_transferred = 0;
591 bytes_transferred < register_size (gdbarch, regno);
592 bytes_transferred += sizeof (long))
593 {
594 long l;
595
596 errno = 0;
597 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
598 regaddr += sizeof (long);
599 if (errno != 0)
600 {
601 char message[128];
602 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
603 gdbarch_register_name (gdbarch, regno), regno);
604 perror_with_name (message);
605 }
606 memcpy (&buf[bytes_transferred], &l, sizeof (l));
607 }
608
609 /* Now supply the register. Keep in mind that the regcache's idea
610 of the register's size may not be a multiple of sizeof
611 (long). */
612 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
613 {
614 /* Little-endian values are always found at the left end of the
615 bytes transferred. */
616 regcache_raw_supply (regcache, regno, buf);
617 }
618 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
619 {
620 /* Big-endian values are found at the right end of the bytes
621 transferred. */
622 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
623 regcache_raw_supply (regcache, regno, buf + padding);
624 }
625 else
626 internal_error (__FILE__, __LINE__,
627 _("fetch_register: unexpected byte order: %d"),
628 gdbarch_byte_order (gdbarch));
629 }
630
631 static void
632 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
633 {
634 int i;
635 struct gdbarch *gdbarch = get_regcache_arch (regcache);
636 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
637 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
638
639 for (i = 0; i < ppc_num_vshrs; i++)
640 {
641 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
642 *vsxregsetp + i * vsxregsize);
643 }
644 }
645
646 static void
647 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
648 {
649 int i;
650 struct gdbarch *gdbarch = get_regcache_arch (regcache);
651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
652 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
653 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
654 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
655
656 for (i = 0; i < num_of_vrregs; i++)
657 {
658 /* The last 2 registers of this set are only 32 bit long, not
659 128. However an offset is necessary only for VSCR because it
660 occupies a whole vector, while VRSAVE occupies a full 4 bytes
661 slot. */
662 if (i == (num_of_vrregs - 2))
663 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
664 *vrregsetp + i * vrregsize + offset);
665 else
666 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
667 *vrregsetp + i * vrregsize);
668 }
669 }
670
671 static void
672 fetch_vsx_registers (struct regcache *regcache, int tid)
673 {
674 int ret;
675 gdb_vsxregset_t regs;
676
677 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
678 if (ret < 0)
679 {
680 if (errno == EIO)
681 {
682 have_ptrace_getsetvsxregs = 0;
683 return;
684 }
685 perror_with_name (_("Unable to fetch VSX registers"));
686 }
687 supply_vsxregset (regcache, &regs);
688 }
689
690 static void
691 fetch_altivec_registers (struct regcache *regcache, int tid)
692 {
693 int ret;
694 gdb_vrregset_t regs;
695
696 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
697 if (ret < 0)
698 {
699 if (errno == EIO)
700 {
701 have_ptrace_getvrregs = 0;
702 return;
703 }
704 perror_with_name (_("Unable to fetch AltiVec registers"));
705 }
706 supply_vrregset (regcache, &regs);
707 }
708
709 /* This function actually issues the request to ptrace, telling
710 it to get all general-purpose registers and put them into the
711 specified regset.
712
713 If the ptrace request does not exist, this function returns 0
714 and properly sets the have_ptrace_* flag. If the request fails,
715 this function calls perror_with_name. Otherwise, if the request
716 succeeds, then the regcache gets filled and 1 is returned. */
717 static int
718 fetch_all_gp_regs (struct regcache *regcache, int tid)
719 {
720 struct gdbarch *gdbarch = get_regcache_arch (regcache);
721 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
722 gdb_gregset_t gregset;
723
724 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
725 {
726 if (errno == EIO)
727 {
728 have_ptrace_getsetregs = 0;
729 return 0;
730 }
731 perror_with_name (_("Couldn't get general-purpose registers."));
732 }
733
734 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
735
736 return 1;
737 }
738
739 /* This is a wrapper for the fetch_all_gp_regs function. It is
740 responsible for verifying if this target has the ptrace request
741 that can be used to fetch all general-purpose registers at one
742 shot. If it doesn't, then we should fetch them using the
743 old-fashioned way, which is to iterate over the registers and
744 request them one by one. */
745 static void
746 fetch_gp_regs (struct regcache *regcache, int tid)
747 {
748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
749 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
750 int i;
751
752 if (have_ptrace_getsetregs)
753 if (fetch_all_gp_regs (regcache, tid))
754 return;
755
756 /* If we've hit this point, it doesn't really matter which
757 architecture we are using. We just need to read the
758 registers in the "old-fashioned way". */
759 for (i = 0; i < ppc_num_gprs; i++)
760 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
761 }
762
763 /* This function actually issues the request to ptrace, telling
764 it to get all floating-point registers and put them into the
765 specified regset.
766
767 If the ptrace request does not exist, this function returns 0
768 and properly sets the have_ptrace_* flag. If the request fails,
769 this function calls perror_with_name. Otherwise, if the request
770 succeeds, then the regcache gets filled and 1 is returned. */
771 static int
772 fetch_all_fp_regs (struct regcache *regcache, int tid)
773 {
774 gdb_fpregset_t fpregs;
775
776 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
777 {
778 if (errno == EIO)
779 {
780 have_ptrace_getsetfpregs = 0;
781 return 0;
782 }
783 perror_with_name (_("Couldn't get floating-point registers."));
784 }
785
786 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
787
788 return 1;
789 }
790
791 /* This is a wrapper for the fetch_all_fp_regs function. It is
792 responsible for verifying if this target has the ptrace request
793 that can be used to fetch all floating-point registers at one
794 shot. If it doesn't, then we should fetch them using the
795 old-fashioned way, which is to iterate over the registers and
796 request them one by one. */
797 static void
798 fetch_fp_regs (struct regcache *regcache, int tid)
799 {
800 struct gdbarch *gdbarch = get_regcache_arch (regcache);
801 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
802 int i;
803
804 if (have_ptrace_getsetfpregs)
805 if (fetch_all_fp_regs (regcache, tid))
806 return;
807
808 /* If we've hit this point, it doesn't really matter which
809 architecture we are using. We just need to read the
810 registers in the "old-fashioned way". */
811 for (i = 0; i < ppc_num_fprs; i++)
812 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
813 }
814
815 static void
816 fetch_ppc_registers (struct regcache *regcache, int tid)
817 {
818 int i;
819 struct gdbarch *gdbarch = get_regcache_arch (regcache);
820 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
821
822 fetch_gp_regs (regcache, tid);
823 if (tdep->ppc_fp0_regnum >= 0)
824 fetch_fp_regs (regcache, tid);
825 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
826 if (tdep->ppc_ps_regnum != -1)
827 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
828 if (tdep->ppc_cr_regnum != -1)
829 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
830 if (tdep->ppc_lr_regnum != -1)
831 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
832 if (tdep->ppc_ctr_regnum != -1)
833 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
834 if (tdep->ppc_xer_regnum != -1)
835 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
836 if (tdep->ppc_mq_regnum != -1)
837 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
838 if (ppc_linux_trap_reg_p (gdbarch))
839 {
840 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
841 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
842 }
843 if (tdep->ppc_fpscr_regnum != -1)
844 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
845 if (have_ptrace_getvrregs)
846 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
847 fetch_altivec_registers (regcache, tid);
848 if (have_ptrace_getsetvsxregs)
849 if (tdep->ppc_vsr0_upper_regnum != -1)
850 fetch_vsx_registers (regcache, tid);
851 if (tdep->ppc_ev0_upper_regnum >= 0)
852 fetch_spe_register (regcache, tid, -1);
853 }
854
855 /* Fetch registers from the child process. Fetch all registers if
856 regno == -1, otherwise fetch all general registers or all floating
857 point registers depending upon the value of regno. */
858 static void
859 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
860 struct regcache *regcache, int regno)
861 {
862 /* Overload thread id onto process id. */
863 int tid = TIDGET (inferior_ptid);
864
865 /* No thread id, just use process id. */
866 if (tid == 0)
867 tid = PIDGET (inferior_ptid);
868
869 if (regno == -1)
870 fetch_ppc_registers (regcache, tid);
871 else
872 fetch_register (regcache, tid, regno);
873 }
874
875 /* Store one VSX register. */
876 static void
877 store_vsx_register (const struct regcache *regcache, int tid, int regno)
878 {
879 int ret;
880 gdb_vsxregset_t regs;
881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
882 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
883 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
884
885 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
886 if (ret < 0)
887 {
888 if (errno == EIO)
889 {
890 have_ptrace_getsetvsxregs = 0;
891 return;
892 }
893 perror_with_name (_("Unable to fetch VSX register"));
894 }
895
896 regcache_raw_collect (regcache, regno, regs +
897 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
898
899 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
900 if (ret < 0)
901 perror_with_name (_("Unable to store VSX register"));
902 }
903
904 /* Store one register. */
905 static void
906 store_altivec_register (const struct regcache *regcache, int tid, int regno)
907 {
908 int ret;
909 int offset = 0;
910 gdb_vrregset_t regs;
911 struct gdbarch *gdbarch = get_regcache_arch (regcache);
912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
913 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
914
915 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
916 if (ret < 0)
917 {
918 if (errno == EIO)
919 {
920 have_ptrace_getvrregs = 0;
921 return;
922 }
923 perror_with_name (_("Unable to fetch AltiVec register"));
924 }
925
926 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
927 long on the hardware. */
928 if (regno == (tdep->ppc_vrsave_regnum - 1))
929 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
930
931 regcache_raw_collect (regcache, regno,
932 regs + (regno
933 - tdep->ppc_vr0_regnum) * vrregsize + offset);
934
935 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
936 if (ret < 0)
937 perror_with_name (_("Unable to store AltiVec register"));
938 }
939
940 /* Assuming TID referrs to an SPE process, set the top halves of TID's
941 general-purpose registers and its SPE-specific registers to the
942 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
943 nothing.
944
945 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
946 PTRACE_SETEVRREGS requests are supported is isolated here, and in
947 get_spe_registers. */
948 static void
949 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
950 {
951 if (have_ptrace_getsetevrregs)
952 {
953 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
954 return;
955 else
956 {
957 /* EIO means that the PTRACE_SETEVRREGS request isn't
958 supported; we fail silently, and don't try the call
959 again. */
960 if (errno == EIO)
961 have_ptrace_getsetevrregs = 0;
962 else
963 /* Anything else needs to be reported. */
964 perror_with_name (_("Unable to set SPE registers"));
965 }
966 }
967 }
968
969 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
970 If REGNO is -1, write the values of all the SPE-specific
971 registers. */
972 static void
973 store_spe_register (const struct regcache *regcache, int tid, int regno)
974 {
975 struct gdbarch *gdbarch = get_regcache_arch (regcache);
976 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
977 struct gdb_evrregset_t evrregs;
978
979 gdb_assert (sizeof (evrregs.evr[0])
980 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
981 gdb_assert (sizeof (evrregs.acc)
982 == register_size (gdbarch, tdep->ppc_acc_regnum));
983 gdb_assert (sizeof (evrregs.spefscr)
984 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
985
986 if (regno == -1)
987 /* Since we're going to write out every register, the code below
988 should store to every field of evrregs; if that doesn't happen,
989 make it obvious by initializing it with suspicious values. */
990 memset (&evrregs, 42, sizeof (evrregs));
991 else
992 /* We can only read and write the entire EVR register set at a
993 time, so to write just a single register, we do a
994 read-modify-write maneuver. */
995 get_spe_registers (tid, &evrregs);
996
997 if (regno == -1)
998 {
999 int i;
1000
1001 for (i = 0; i < ppc_num_gprs; i++)
1002 regcache_raw_collect (regcache,
1003 tdep->ppc_ev0_upper_regnum + i,
1004 &evrregs.evr[i]);
1005 }
1006 else if (tdep->ppc_ev0_upper_regnum <= regno
1007 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1008 regcache_raw_collect (regcache, regno,
1009 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1010
1011 if (regno == -1
1012 || regno == tdep->ppc_acc_regnum)
1013 regcache_raw_collect (regcache,
1014 tdep->ppc_acc_regnum,
1015 &evrregs.acc);
1016
1017 if (regno == -1
1018 || regno == tdep->ppc_spefscr_regnum)
1019 regcache_raw_collect (regcache,
1020 tdep->ppc_spefscr_regnum,
1021 &evrregs.spefscr);
1022
1023 /* Write back the modified register set. */
1024 set_spe_registers (tid, &evrregs);
1025 }
1026
1027 static void
1028 store_register (const struct regcache *regcache, int tid, int regno)
1029 {
1030 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1031 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1032 /* This isn't really an address. But ptrace thinks of it as one. */
1033 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1034 int i;
1035 size_t bytes_to_transfer;
1036 gdb_byte buf[MAX_REGISTER_SIZE];
1037
1038 if (altivec_register_p (gdbarch, regno))
1039 {
1040 store_altivec_register (regcache, tid, regno);
1041 return;
1042 }
1043 if (vsx_register_p (gdbarch, regno))
1044 {
1045 store_vsx_register (regcache, tid, regno);
1046 return;
1047 }
1048 else if (spe_register_p (gdbarch, regno))
1049 {
1050 store_spe_register (regcache, tid, regno);
1051 return;
1052 }
1053
1054 if (regaddr == -1)
1055 return;
1056
1057 /* First collect the register. Keep in mind that the regcache's
1058 idea of the register's size may not be a multiple of sizeof
1059 (long). */
1060 memset (buf, 0, sizeof buf);
1061 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1062 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1063 {
1064 /* Little-endian values always sit at the left end of the buffer. */
1065 regcache_raw_collect (regcache, regno, buf);
1066 }
1067 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1068 {
1069 /* Big-endian values sit at the right end of the buffer. */
1070 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1071 regcache_raw_collect (regcache, regno, buf + padding);
1072 }
1073
1074 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1075 {
1076 long l;
1077
1078 memcpy (&l, &buf[i], sizeof (l));
1079 errno = 0;
1080 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1081 regaddr += sizeof (long);
1082
1083 if (errno == EIO
1084 && (regno == tdep->ppc_fpscr_regnum
1085 || regno == PPC_ORIG_R3_REGNUM
1086 || regno == PPC_TRAP_REGNUM))
1087 {
1088 /* Some older kernel versions don't allow fpscr, orig_r3
1089 or trap to be written. */
1090 continue;
1091 }
1092
1093 if (errno != 0)
1094 {
1095 char message[128];
1096 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1097 gdbarch_register_name (gdbarch, regno), regno);
1098 perror_with_name (message);
1099 }
1100 }
1101 }
1102
1103 static void
1104 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1105 {
1106 int i;
1107 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1109 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1110
1111 for (i = 0; i < ppc_num_vshrs; i++)
1112 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1113 *vsxregsetp + i * vsxregsize);
1114 }
1115
1116 static void
1117 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1118 {
1119 int i;
1120 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1122 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1123 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1124 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1125
1126 for (i = 0; i < num_of_vrregs; i++)
1127 {
1128 /* The last 2 registers of this set are only 32 bit long, not
1129 128, but only VSCR is fetched as a 16 bytes quantity. */
1130 if (i == (num_of_vrregs - 2))
1131 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1132 *vrregsetp + i * vrregsize + offset);
1133 else
1134 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1135 *vrregsetp + i * vrregsize);
1136 }
1137 }
1138
1139 static void
1140 store_vsx_registers (const struct regcache *regcache, int tid)
1141 {
1142 int ret;
1143 gdb_vsxregset_t regs;
1144
1145 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1146 if (ret < 0)
1147 {
1148 if (errno == EIO)
1149 {
1150 have_ptrace_getsetvsxregs = 0;
1151 return;
1152 }
1153 perror_with_name (_("Couldn't get VSX registers"));
1154 }
1155
1156 fill_vsxregset (regcache, &regs);
1157
1158 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1159 perror_with_name (_("Couldn't write VSX registers"));
1160 }
1161
1162 static void
1163 store_altivec_registers (const struct regcache *regcache, int tid)
1164 {
1165 int ret;
1166 gdb_vrregset_t regs;
1167
1168 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1169 if (ret < 0)
1170 {
1171 if (errno == EIO)
1172 {
1173 have_ptrace_getvrregs = 0;
1174 return;
1175 }
1176 perror_with_name (_("Couldn't get AltiVec registers"));
1177 }
1178
1179 fill_vrregset (regcache, &regs);
1180
1181 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1182 perror_with_name (_("Couldn't write AltiVec registers"));
1183 }
1184
1185 /* This function actually issues the request to ptrace, telling
1186 it to store all general-purpose registers present in the specified
1187 regset.
1188
1189 If the ptrace request does not exist, this function returns 0
1190 and properly sets the have_ptrace_* flag. If the request fails,
1191 this function calls perror_with_name. Otherwise, if the request
1192 succeeds, then the regcache is stored and 1 is returned. */
1193 static int
1194 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1195 {
1196 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1198 gdb_gregset_t gregset;
1199
1200 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1201 {
1202 if (errno == EIO)
1203 {
1204 have_ptrace_getsetregs = 0;
1205 return 0;
1206 }
1207 perror_with_name (_("Couldn't get general-purpose registers."));
1208 }
1209
1210 fill_gregset (regcache, &gregset, regno);
1211
1212 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1213 {
1214 if (errno == EIO)
1215 {
1216 have_ptrace_getsetregs = 0;
1217 return 0;
1218 }
1219 perror_with_name (_("Couldn't set general-purpose registers."));
1220 }
1221
1222 return 1;
1223 }
1224
1225 /* This is a wrapper for the store_all_gp_regs function. It is
1226 responsible for verifying if this target has the ptrace request
1227 that can be used to store all general-purpose registers at one
1228 shot. If it doesn't, then we should store them using the
1229 old-fashioned way, which is to iterate over the registers and
1230 store them one by one. */
1231 static void
1232 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1233 {
1234 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1236 int i;
1237
1238 if (have_ptrace_getsetregs)
1239 if (store_all_gp_regs (regcache, tid, regno))
1240 return;
1241
1242 /* If we hit this point, it doesn't really matter which
1243 architecture we are using. We just need to store the
1244 registers in the "old-fashioned way". */
1245 for (i = 0; i < ppc_num_gprs; i++)
1246 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1247 }
1248
1249 /* This function actually issues the request to ptrace, telling
1250 it to store all floating-point registers present in the specified
1251 regset.
1252
1253 If the ptrace request does not exist, this function returns 0
1254 and properly sets the have_ptrace_* flag. If the request fails,
1255 this function calls perror_with_name. Otherwise, if the request
1256 succeeds, then the regcache is stored and 1 is returned. */
1257 static int
1258 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1259 {
1260 gdb_fpregset_t fpregs;
1261
1262 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1263 {
1264 if (errno == EIO)
1265 {
1266 have_ptrace_getsetfpregs = 0;
1267 return 0;
1268 }
1269 perror_with_name (_("Couldn't get floating-point registers."));
1270 }
1271
1272 fill_fpregset (regcache, &fpregs, regno);
1273
1274 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1275 {
1276 if (errno == EIO)
1277 {
1278 have_ptrace_getsetfpregs = 0;
1279 return 0;
1280 }
1281 perror_with_name (_("Couldn't set floating-point registers."));
1282 }
1283
1284 return 1;
1285 }
1286
1287 /* This is a wrapper for the store_all_fp_regs function. It is
1288 responsible for verifying if this target has the ptrace request
1289 that can be used to store all floating-point registers at one
1290 shot. If it doesn't, then we should store them using the
1291 old-fashioned way, which is to iterate over the registers and
1292 store them one by one. */
1293 static void
1294 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1295 {
1296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1298 int i;
1299
1300 if (have_ptrace_getsetfpregs)
1301 if (store_all_fp_regs (regcache, tid, regno))
1302 return;
1303
1304 /* If we hit this point, it doesn't really matter which
1305 architecture we are using. We just need to store the
1306 registers in the "old-fashioned way". */
1307 for (i = 0; i < ppc_num_fprs; i++)
1308 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1309 }
1310
1311 static void
1312 store_ppc_registers (const struct regcache *regcache, int tid)
1313 {
1314 int i;
1315 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1317
1318 store_gp_regs (regcache, tid, -1);
1319 if (tdep->ppc_fp0_regnum >= 0)
1320 store_fp_regs (regcache, tid, -1);
1321 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1322 if (tdep->ppc_ps_regnum != -1)
1323 store_register (regcache, tid, tdep->ppc_ps_regnum);
1324 if (tdep->ppc_cr_regnum != -1)
1325 store_register (regcache, tid, tdep->ppc_cr_regnum);
1326 if (tdep->ppc_lr_regnum != -1)
1327 store_register (regcache, tid, tdep->ppc_lr_regnum);
1328 if (tdep->ppc_ctr_regnum != -1)
1329 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1330 if (tdep->ppc_xer_regnum != -1)
1331 store_register (regcache, tid, tdep->ppc_xer_regnum);
1332 if (tdep->ppc_mq_regnum != -1)
1333 store_register (regcache, tid, tdep->ppc_mq_regnum);
1334 if (tdep->ppc_fpscr_regnum != -1)
1335 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1336 if (ppc_linux_trap_reg_p (gdbarch))
1337 {
1338 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1339 store_register (regcache, tid, PPC_TRAP_REGNUM);
1340 }
1341 if (have_ptrace_getvrregs)
1342 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1343 store_altivec_registers (regcache, tid);
1344 if (have_ptrace_getsetvsxregs)
1345 if (tdep->ppc_vsr0_upper_regnum != -1)
1346 store_vsx_registers (regcache, tid);
1347 if (tdep->ppc_ev0_upper_regnum >= 0)
1348 store_spe_register (regcache, tid, -1);
1349 }
1350
1351 /* Fetch the AT_HWCAP entry from the aux vector. */
1352 static unsigned long
1353 ppc_linux_get_hwcap (void)
1354 {
1355 CORE_ADDR field;
1356
1357 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1358 return (unsigned long) field;
1359
1360 return 0;
1361 }
1362
1363 /* The cached DABR value, to install in new threads.
1364 This variable is used when we are dealing with non-BookE
1365 processors. */
1366 static long saved_dabr_value;
1367
1368 /* Global structure that will store information about the available
1369 features on this BookE processor. */
1370 static struct ppc_debug_info booke_debug_info;
1371
1372 /* Global variable that holds the maximum number of slots that the
1373 kernel will use. This is only used when the processor is BookE. */
1374 static size_t max_slots_number = 0;
1375
1376 struct hw_break_tuple
1377 {
1378 long slot;
1379 struct ppc_hw_breakpoint *hw_break;
1380 };
1381
1382 /* This is an internal VEC created to store information about *points inserted
1383 for each thread. This is used for BookE processors. */
1384 typedef struct thread_points
1385 {
1386 /* The TID to which this *point relates. */
1387 int tid;
1388 /* Information about the *point, such as its address, type, etc.
1389
1390 Each element inside this vector corresponds to a hardware
1391 breakpoint or watchpoint in the thread represented by TID. The maximum
1392 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1393 the tuple is NULL, then the position in the vector is free. */
1394 struct hw_break_tuple *hw_breaks;
1395 } *thread_points_p;
1396 DEF_VEC_P (thread_points_p);
1397
1398 VEC(thread_points_p) *ppc_threads = NULL;
1399
1400 /* The version of the kernel interface that we will use if the processor is
1401 BookE. */
1402 #define PPC_DEBUG_CURRENT_VERSION 1
1403
1404 /* Returns non-zero if we support the ptrace interface which enables
1405 booke debugging resources. */
1406 static int
1407 have_ptrace_booke_interface (void)
1408 {
1409 static int have_ptrace_booke_interface = -1;
1410
1411 if (have_ptrace_booke_interface == -1)
1412 {
1413 int tid;
1414
1415 tid = TIDGET (inferior_ptid);
1416 if (tid == 0)
1417 tid = PIDGET (inferior_ptid);
1418
1419 /* Check for kernel support for BOOKE debug registers. */
1420 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0)
1421 {
1422 /* Check whether ptrace BOOKE interface is functional and
1423 provides any supported feature. */
1424 if (booke_debug_info.features != 0)
1425 {
1426 have_ptrace_booke_interface = 1;
1427 max_slots_number = booke_debug_info.num_instruction_bps
1428 + booke_debug_info.num_data_bps
1429 + booke_debug_info.num_condition_regs;
1430 return have_ptrace_booke_interface;
1431 }
1432 }
1433 /* Old school interface and no BOOKE debug registers support. */
1434 have_ptrace_booke_interface = 0;
1435 memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info));
1436 }
1437
1438 return have_ptrace_booke_interface;
1439 }
1440
1441 static int
1442 ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
1443 {
1444 int total_hw_wp, total_hw_bp;
1445
1446 if (have_ptrace_booke_interface ())
1447 {
1448 /* For PPC BookE processors, the number of available hardware
1449 watchpoints and breakpoints is stored at the booke_debug_info
1450 struct. */
1451 total_hw_bp = booke_debug_info.num_instruction_bps;
1452 total_hw_wp = booke_debug_info.num_data_bps;
1453 }
1454 else
1455 {
1456 /* For PPC server processors, we accept 1 hardware watchpoint and 0
1457 hardware breakpoints. */
1458 total_hw_bp = 0;
1459 total_hw_wp = 1;
1460 }
1461
1462 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1463 || type == bp_access_watchpoint || type == bp_watchpoint)
1464 {
1465 if (cnt + ot > total_hw_wp)
1466 return -1;
1467 }
1468 else if (type == bp_hardware_breakpoint)
1469 {
1470 if (cnt > total_hw_bp)
1471 return -1;
1472 }
1473
1474 if (!have_ptrace_booke_interface ())
1475 {
1476 int tid;
1477 ptid_t ptid = inferior_ptid;
1478
1479 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1480 and whether the target has DABR. If either answer is no, the
1481 ptrace call will return -1. Fail in that case. */
1482 tid = TIDGET (ptid);
1483 if (tid == 0)
1484 tid = PIDGET (ptid);
1485
1486 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1487 return 0;
1488 }
1489
1490 return 1;
1491 }
1492
1493 static int
1494 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1495 {
1496 /* Handle sub-8-byte quantities. */
1497 if (len <= 0)
1498 return 0;
1499
1500 /* The new BookE ptrace interface tells if there are alignment restrictions
1501 for watchpoints in the processors. In that case, we use that information
1502 to determine the hardcoded watchable region for watchpoints. */
1503 if (have_ptrace_booke_interface ())
1504 {
1505 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1506 watchpoints and can watch any access within an arbitrary memory
1507 region. This is useful to watch arrays and structs, for instance. It
1508 takes two hardware watchpoints though. */
1509 if (len > 1
1510 && booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1511 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1512 return 2;
1513 /* Server processors provide one hardware watchpoint and addr+len should
1514 fall in the watchable region provided by the ptrace interface. */
1515 if (booke_debug_info.data_bp_alignment
1516 && (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1))
1517 + booke_debug_info.data_bp_alignment))
1518 return 0;
1519 }
1520 /* addr+len must fall in the 8 byte watchable region for DABR-based
1521 processors (i.e., server processors). Without the new BookE ptrace
1522 interface, DAC-based processors (i.e., embedded processors) will use
1523 addresses aligned to 4-bytes due to the way the read/write flags are
1524 passed in the old ptrace interface. */
1525 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1526 && (addr + len) > (addr & ~3) + 4)
1527 || (addr + len) > (addr & ~7) + 8)
1528 return 0;
1529
1530 return 1;
1531 }
1532
1533 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1534 static int
1535 booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1536 {
1537 return (a->trigger_type == b->trigger_type
1538 && a->addr_mode == b->addr_mode
1539 && a->condition_mode == b->condition_mode
1540 && a->addr == b->addr
1541 && a->addr2 == b->addr2
1542 && a->condition_value == b->condition_value);
1543 }
1544
1545 /* This function can be used to retrieve a thread_points by the TID of the
1546 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1547 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1548 provided TID will be created and returned. */
1549 static struct thread_points *
1550 booke_find_thread_points_by_tid (int tid, int alloc_new)
1551 {
1552 int i;
1553 struct thread_points *t;
1554
1555 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1556 if (t->tid == tid)
1557 return t;
1558
1559 t = NULL;
1560
1561 /* Do we need to allocate a new point_item
1562 if the wanted one does not exist? */
1563 if (alloc_new)
1564 {
1565 t = xmalloc (sizeof (struct thread_points));
1566 t->hw_breaks
1567 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
1568 t->tid = tid;
1569 VEC_safe_push (thread_points_p, ppc_threads, t);
1570 }
1571
1572 return t;
1573 }
1574
1575 /* This function is a generic wrapper that is responsible for inserting a
1576 *point (i.e., calling `ptrace' in order to issue the request to the
1577 kernel) and registering it internally in GDB. */
1578 static void
1579 booke_insert_point (struct ppc_hw_breakpoint *b, int tid)
1580 {
1581 int i;
1582 long slot;
1583 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1584 struct hw_break_tuple *hw_breaks;
1585 struct cleanup *c = make_cleanup (xfree, p);
1586 struct thread_points *t;
1587 struct hw_break_tuple *tuple;
1588
1589 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1590
1591 errno = 0;
1592 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1593 if (slot < 0)
1594 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1595
1596 /* Everything went fine, so we have to register this *point. */
1597 t = booke_find_thread_points_by_tid (tid, 1);
1598 gdb_assert (t != NULL);
1599 hw_breaks = t->hw_breaks;
1600
1601 /* Find a free element in the hw_breaks vector. */
1602 for (i = 0; i < max_slots_number; i++)
1603 if (hw_breaks[i].hw_break == NULL)
1604 {
1605 hw_breaks[i].slot = slot;
1606 hw_breaks[i].hw_break = p;
1607 break;
1608 }
1609
1610 gdb_assert (i != max_slots_number);
1611
1612 discard_cleanups (c);
1613 }
1614
1615 /* This function is a generic wrapper that is responsible for removing a
1616 *point (i.e., calling `ptrace' in order to issue the request to the
1617 kernel), and unregistering it internally at GDB. */
1618 static void
1619 booke_remove_point (struct ppc_hw_breakpoint *b, int tid)
1620 {
1621 int i;
1622 struct hw_break_tuple *hw_breaks;
1623 struct thread_points *t;
1624
1625 t = booke_find_thread_points_by_tid (tid, 0);
1626 gdb_assert (t != NULL);
1627 hw_breaks = t->hw_breaks;
1628
1629 for (i = 0; i < max_slots_number; i++)
1630 if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b))
1631 break;
1632
1633 gdb_assert (i != max_slots_number);
1634
1635 /* We have to ignore ENOENT errors because the kernel implements hardware
1636 breakpoints/watchpoints as "one-shot", that is, they are automatically
1637 deleted when hit. */
1638 errno = 0;
1639 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1640 if (errno != ENOENT)
1641 perror_with_name (_("Unexpected error deleting "
1642 "breakpoint or watchpoint"));
1643
1644 xfree (hw_breaks[i].hw_break);
1645 hw_breaks[i].hw_break = NULL;
1646 }
1647
1648 /* Return the number of registers needed for a ranged breakpoint. */
1649
1650 static int
1651 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1652 {
1653 return ((have_ptrace_booke_interface ()
1654 && booke_debug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1655 2 : -1);
1656 }
1657
1658 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1659 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1660
1661 static int
1662 ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1663 struct bp_target_info *bp_tgt)
1664 {
1665 struct lwp_info *lp;
1666 struct ppc_hw_breakpoint p;
1667
1668 if (!have_ptrace_booke_interface ())
1669 return -1;
1670
1671 p.version = PPC_DEBUG_CURRENT_VERSION;
1672 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1673 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1674 p.addr = (uint64_t) bp_tgt->placed_address;
1675 p.condition_value = 0;
1676
1677 if (bp_tgt->length)
1678 {
1679 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1680
1681 /* The breakpoint will trigger if the address of the instruction is
1682 within the defined range, as follows: p.addr <= address < p.addr2. */
1683 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1684 }
1685 else
1686 {
1687 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1688 p.addr2 = 0;
1689 }
1690
1691 ALL_LWPS (lp)
1692 booke_insert_point (&p, TIDGET (lp->ptid));
1693
1694 return 0;
1695 }
1696
1697 static int
1698 ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1699 struct bp_target_info *bp_tgt)
1700 {
1701 struct lwp_info *lp;
1702 struct ppc_hw_breakpoint p;
1703
1704 if (!have_ptrace_booke_interface ())
1705 return -1;
1706
1707 p.version = PPC_DEBUG_CURRENT_VERSION;
1708 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1709 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1710 p.addr = (uint64_t) bp_tgt->placed_address;
1711 p.condition_value = 0;
1712
1713 if (bp_tgt->length)
1714 {
1715 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1716
1717 /* The breakpoint will trigger if the address of the instruction is within
1718 the defined range, as follows: p.addr <= address < p.addr2. */
1719 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1720 }
1721 else
1722 {
1723 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1724 p.addr2 = 0;
1725 }
1726
1727 ALL_LWPS (lp)
1728 booke_remove_point (&p, TIDGET (lp->ptid));
1729
1730 return 0;
1731 }
1732
1733 static int
1734 get_trigger_type (int rw)
1735 {
1736 int t;
1737
1738 if (rw == hw_read)
1739 t = PPC_BREAKPOINT_TRIGGER_READ;
1740 else if (rw == hw_write)
1741 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1742 else
1743 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1744
1745 return t;
1746 }
1747
1748 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1749 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1750 or hw_access for an access watchpoint. Returns 0 on success and throws
1751 an error on failure. */
1752
1753 static int
1754 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1755 CORE_ADDR mask, int rw)
1756 {
1757 struct lwp_info *lp;
1758 struct ppc_hw_breakpoint p;
1759
1760 gdb_assert (have_ptrace_booke_interface ());
1761
1762 p.version = PPC_DEBUG_CURRENT_VERSION;
1763 p.trigger_type = get_trigger_type (rw);
1764 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1765 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1766 p.addr = addr;
1767 p.addr2 = mask;
1768 p.condition_value = 0;
1769
1770 ALL_LWPS (lp)
1771 booke_insert_point (&p, TIDGET (lp->ptid));
1772
1773 return 0;
1774 }
1775
1776 /* Remove a masked watchpoint at ADDR with the mask MASK.
1777 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1778 or hw_access for an access watchpoint. Returns 0 on success and throws
1779 an error on failure. */
1780
1781 static int
1782 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1783 CORE_ADDR mask, int rw)
1784 {
1785 struct lwp_info *lp;
1786 struct ppc_hw_breakpoint p;
1787
1788 gdb_assert (have_ptrace_booke_interface ());
1789
1790 p.version = PPC_DEBUG_CURRENT_VERSION;
1791 p.trigger_type = get_trigger_type (rw);
1792 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1793 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1794 p.addr = addr;
1795 p.addr2 = mask;
1796 p.condition_value = 0;
1797
1798 ALL_LWPS (lp)
1799 booke_remove_point (&p, TIDGET (lp->ptid));
1800
1801 return 0;
1802 }
1803
1804 /* Check whether we have at least one free DVC register. */
1805 static int
1806 can_use_watchpoint_cond_accel (void)
1807 {
1808 struct thread_points *p;
1809 int tid = TIDGET (inferior_ptid);
1810 int cnt = booke_debug_info.num_condition_regs, i;
1811 CORE_ADDR tmp_value;
1812
1813 if (!have_ptrace_booke_interface () || cnt == 0)
1814 return 0;
1815
1816 p = booke_find_thread_points_by_tid (tid, 0);
1817
1818 if (p)
1819 {
1820 for (i = 0; i < max_slots_number; i++)
1821 if (p->hw_breaks[i].hw_break != NULL
1822 && (p->hw_breaks[i].hw_break->condition_mode
1823 != PPC_BREAKPOINT_CONDITION_NONE))
1824 cnt--;
1825
1826 /* There are no available slots now. */
1827 if (cnt <= 0)
1828 return 0;
1829 }
1830
1831 return 1;
1832 }
1833
1834 /* Calculate the enable bits and the contents of the Data Value Compare
1835 debug register present in BookE processors.
1836
1837 ADDR is the address to be watched, LEN is the length of watched data
1838 and DATA_VALUE is the value which will trigger the watchpoint.
1839 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1840 CONDITION_VALUE will hold the value which should be put in the
1841 DVC register. */
1842 static void
1843 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1844 uint32_t *condition_mode, uint64_t *condition_value)
1845 {
1846 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1847 rightmost_enabled_byte;
1848 CORE_ADDR addr_end_data, addr_end_dvc;
1849
1850 /* The DVC register compares bytes within fixed-length windows which
1851 are word-aligned, with length equal to that of the DVC register.
1852 We need to calculate where our watch region is relative to that
1853 window and enable comparison of the bytes which fall within it. */
1854
1855 align_offset = addr % booke_debug_info.sizeof_condition;
1856 addr_end_data = addr + len;
1857 addr_end_dvc = (addr - align_offset
1858 + booke_debug_info.sizeof_condition);
1859 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1860 addr_end_data - addr_end_dvc : 0;
1861 num_byte_enable = len - num_bytes_off_dvc;
1862 /* Here, bytes are numbered from right to left. */
1863 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1864 addr_end_dvc - addr_end_data : 0;
1865
1866 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1867 for (i = 0; i < num_byte_enable; i++)
1868 *condition_mode
1869 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1870
1871 /* Now we need to match the position within the DVC of the comparison
1872 value with where the watch region is relative to the window
1873 (i.e., the ALIGN_OFFSET). */
1874
1875 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1876 << rightmost_enabled_byte * 8);
1877 }
1878
1879 /* Return the number of memory locations that need to be accessed to
1880 evaluate the expression which generated the given value chain.
1881 Returns -1 if there's any register access involved, or if there are
1882 other kinds of values which are not acceptable in a condition
1883 expression (e.g., lval_computed or lval_internalvar). */
1884 static int
1885 num_memory_accesses (struct value *v)
1886 {
1887 int found_memory_cnt = 0;
1888 struct value *head = v;
1889
1890 /* The idea here is that evaluating an expression generates a series
1891 of values, one holding the value of every subexpression. (The
1892 expression a*b+c has five subexpressions: a, b, a*b, c, and
1893 a*b+c.) GDB's values hold almost enough information to establish
1894 the criteria given above --- they identify memory lvalues,
1895 register lvalues, computed values, etcetera. So we can evaluate
1896 the expression, and then scan the chain of values that leaves
1897 behind to determine the memory locations involved in the evaluation
1898 of an expression.
1899
1900 However, I don't think that the values returned by inferior
1901 function calls are special in any way. So this function may not
1902 notice that an expression contains an inferior function call.
1903 FIXME. */
1904
1905 for (; v; v = value_next (v))
1906 {
1907 /* Constants and values from the history are fine. */
1908 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1909 continue;
1910 else if (VALUE_LVAL (v) == lval_memory)
1911 {
1912 /* A lazy memory lvalue is one that GDB never needed to fetch;
1913 we either just used its address (e.g., `a' in `a.b') or
1914 we never needed it at all (e.g., `a' in `a,b'). */
1915 if (!value_lazy (v))
1916 found_memory_cnt++;
1917 }
1918 /* Other kinds of values are not fine. */
1919 else
1920 return -1;
1921 }
1922
1923 return found_memory_cnt;
1924 }
1925
1926 /* Verifies whether the expression COND can be implemented using the
1927 DVC (Data Value Compare) register in BookE processors. The expression
1928 must test the watch value for equality with a constant expression.
1929 If the function returns 1, DATA_VALUE will contain the constant against
1930 which the watch value should be compared and LEN will contain the size
1931 of the constant. */
1932 static int
1933 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1934 CORE_ADDR *data_value, int *len)
1935 {
1936 int pc = 1, num_accesses_left, num_accesses_right;
1937 struct value *left_val, *right_val, *left_chain, *right_chain;
1938
1939 if (cond->elts[0].opcode != BINOP_EQUAL)
1940 return 0;
1941
1942 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
1943 num_accesses_left = num_memory_accesses (left_chain);
1944
1945 if (left_val == NULL || num_accesses_left < 0)
1946 {
1947 free_value_chain (left_chain);
1948
1949 return 0;
1950 }
1951
1952 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
1953 num_accesses_right = num_memory_accesses (right_chain);
1954
1955 if (right_val == NULL || num_accesses_right < 0)
1956 {
1957 free_value_chain (left_chain);
1958 free_value_chain (right_chain);
1959
1960 return 0;
1961 }
1962
1963 if (num_accesses_left == 1 && num_accesses_right == 0
1964 && VALUE_LVAL (left_val) == lval_memory
1965 && value_address (left_val) == watch_addr)
1966 {
1967 *data_value = value_as_long (right_val);
1968
1969 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1970 the same type as the memory region referenced by LEFT_VAL. */
1971 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1972 }
1973 else if (num_accesses_left == 0 && num_accesses_right == 1
1974 && VALUE_LVAL (right_val) == lval_memory
1975 && value_address (right_val) == watch_addr)
1976 {
1977 *data_value = value_as_long (left_val);
1978
1979 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1980 the same type as the memory region referenced by RIGHT_VAL. */
1981 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1982 }
1983 else
1984 {
1985 free_value_chain (left_chain);
1986 free_value_chain (right_chain);
1987
1988 return 0;
1989 }
1990
1991 free_value_chain (left_chain);
1992 free_value_chain (right_chain);
1993
1994 return 1;
1995 }
1996
1997 /* Return non-zero if the target is capable of using hardware to evaluate
1998 the condition expression, thus only triggering the watchpoint when it is
1999 true. */
2000 static int
2001 ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
2002 struct expression *cond)
2003 {
2004 CORE_ADDR data_value;
2005
2006 return (have_ptrace_booke_interface ()
2007 && booke_debug_info.num_condition_regs > 0
2008 && check_condition (addr, cond, &data_value, &len));
2009 }
2010
2011 /* Set up P with the parameters necessary to request a watchpoint covering
2012 LEN bytes starting at ADDR and if possible with condition expression COND
2013 evaluated by hardware. INSERT tells if we are creating a request for
2014 inserting or removing the watchpoint. */
2015
2016 static void
2017 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2018 int len, int rw, struct expression *cond,
2019 int insert)
2020 {
2021 if (len == 1
2022 || !(booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2023 {
2024 int use_condition;
2025 CORE_ADDR data_value;
2026
2027 use_condition = (insert? can_use_watchpoint_cond_accel ()
2028 : booke_debug_info.num_condition_regs > 0);
2029 if (cond && use_condition && check_condition (addr, cond,
2030 &data_value, &len))
2031 calculate_dvc (addr, len, data_value, &p->condition_mode,
2032 &p->condition_value);
2033 else
2034 {
2035 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2036 p->condition_value = 0;
2037 }
2038
2039 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2040 p->addr2 = 0;
2041 }
2042 else
2043 {
2044 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2045 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2046 p->condition_value = 0;
2047
2048 /* The watchpoint will trigger if the address of the memory access is
2049 within the defined range, as follows: p->addr <= address < p->addr2.
2050
2051 Note that the above sentence just documents how ptrace interprets
2052 its arguments; the watchpoint is set to watch the range defined by
2053 the user _inclusively_, as specified by the user interface. */
2054 p->addr2 = (uint64_t) addr + len;
2055 }
2056
2057 p->version = PPC_DEBUG_CURRENT_VERSION;
2058 p->trigger_type = get_trigger_type (rw);
2059 p->addr = (uint64_t) addr;
2060 }
2061
2062 static int
2063 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
2064 struct expression *cond)
2065 {
2066 struct lwp_info *lp;
2067 int ret = -1;
2068
2069 if (have_ptrace_booke_interface ())
2070 {
2071 struct ppc_hw_breakpoint p;
2072
2073 create_watchpoint_request (&p, addr, len, rw, cond, 1);
2074
2075 ALL_LWPS (lp)
2076 booke_insert_point (&p, TIDGET (lp->ptid));
2077
2078 ret = 0;
2079 }
2080 else
2081 {
2082 long dabr_value;
2083 long read_mode, write_mode;
2084
2085 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2086 {
2087 /* PowerPC 440 requires only the read/write flags to be passed
2088 to the kernel. */
2089 read_mode = 1;
2090 write_mode = 2;
2091 }
2092 else
2093 {
2094 /* PowerPC 970 and other DABR-based processors are required to pass
2095 the Breakpoint Translation bit together with the flags. */
2096 read_mode = 5;
2097 write_mode = 6;
2098 }
2099
2100 dabr_value = addr & ~(read_mode | write_mode);
2101 switch (rw)
2102 {
2103 case hw_read:
2104 /* Set read and translate bits. */
2105 dabr_value |= read_mode;
2106 break;
2107 case hw_write:
2108 /* Set write and translate bits. */
2109 dabr_value |= write_mode;
2110 break;
2111 case hw_access:
2112 /* Set read, write and translate bits. */
2113 dabr_value |= read_mode | write_mode;
2114 break;
2115 }
2116
2117 saved_dabr_value = dabr_value;
2118
2119 ALL_LWPS (lp)
2120 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
2121 saved_dabr_value) < 0)
2122 return -1;
2123
2124 ret = 0;
2125 }
2126
2127 return ret;
2128 }
2129
2130 static int
2131 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
2132 struct expression *cond)
2133 {
2134 struct lwp_info *lp;
2135 int ret = -1;
2136
2137 if (have_ptrace_booke_interface ())
2138 {
2139 struct ppc_hw_breakpoint p;
2140
2141 create_watchpoint_request (&p, addr, len, rw, cond, 0);
2142
2143 ALL_LWPS (lp)
2144 booke_remove_point (&p, TIDGET (lp->ptid));
2145
2146 ret = 0;
2147 }
2148 else
2149 {
2150 saved_dabr_value = 0;
2151 ALL_LWPS (lp)
2152 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
2153 saved_dabr_value) < 0)
2154 return -1;
2155
2156 ret = 0;
2157 }
2158
2159 return ret;
2160 }
2161
2162 static void
2163 ppc_linux_new_thread (struct lwp_info *lp)
2164 {
2165 int tid = TIDGET (lp->ptid);
2166
2167 if (have_ptrace_booke_interface ())
2168 {
2169 int i;
2170 struct thread_points *p;
2171 struct hw_break_tuple *hw_breaks;
2172
2173 if (VEC_empty (thread_points_p, ppc_threads))
2174 return;
2175
2176 /* Get a list of breakpoints from any thread. */
2177 p = VEC_last (thread_points_p, ppc_threads);
2178 hw_breaks = p->hw_breaks;
2179
2180 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2181 for (i = 0; i < max_slots_number; i++)
2182 if (hw_breaks[i].hw_break)
2183 {
2184 /* Older kernels did not make new threads inherit their parent
2185 thread's debug state, so we always clear the slot and replicate
2186 the debug state ourselves, ensuring compatibility with all
2187 kernels. */
2188
2189 /* The ppc debug resource accounting is done through "slots".
2190 Ask the kernel the deallocate this specific *point's slot. */
2191 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2192
2193 booke_insert_point (hw_breaks[i].hw_break, tid);
2194 }
2195 }
2196 else
2197 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2198 }
2199
2200 static void
2201 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2202 {
2203 int i;
2204 int tid = TIDGET (tp->ptid);
2205 struct hw_break_tuple *hw_breaks;
2206 struct thread_points *t = NULL, *p;
2207
2208 if (!have_ptrace_booke_interface ())
2209 return;
2210
2211 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2212 if (p->tid == tid)
2213 {
2214 t = p;
2215 break;
2216 }
2217
2218 if (t == NULL)
2219 return;
2220
2221 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2222
2223 hw_breaks = t->hw_breaks;
2224
2225 for (i = 0; i < max_slots_number; i++)
2226 if (hw_breaks[i].hw_break)
2227 xfree (hw_breaks[i].hw_break);
2228
2229 xfree (t->hw_breaks);
2230 xfree (t);
2231 }
2232
2233 static int
2234 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2235 {
2236 siginfo_t siginfo;
2237
2238 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2239 return 0;
2240
2241 if (siginfo.si_signo != SIGTRAP
2242 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2243 return 0;
2244
2245 if (have_ptrace_booke_interface ())
2246 {
2247 int i;
2248 struct thread_points *t;
2249 struct hw_break_tuple *hw_breaks;
2250 /* The index (or slot) of the *point is passed in the si_errno field. */
2251 int slot = siginfo.si_errno;
2252
2253 t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
2254
2255 /* Find out if this *point is a hardware breakpoint.
2256 If so, we should return 0. */
2257 if (t)
2258 {
2259 hw_breaks = t->hw_breaks;
2260 for (i = 0; i < max_slots_number; i++)
2261 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2262 && hw_breaks[i].hw_break->trigger_type
2263 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2264 return 0;
2265 }
2266 }
2267
2268 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2269 return 1;
2270 }
2271
2272 static int
2273 ppc_linux_stopped_by_watchpoint (void)
2274 {
2275 CORE_ADDR addr;
2276 return ppc_linux_stopped_data_address (&current_target, &addr);
2277 }
2278
2279 static int
2280 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2281 CORE_ADDR addr,
2282 CORE_ADDR start, int length)
2283 {
2284 int mask;
2285
2286 if (have_ptrace_booke_interface ()
2287 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2288 return start <= addr && start + length >= addr;
2289 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2290 mask = 3;
2291 else
2292 mask = 7;
2293
2294 addr &= ~mask;
2295
2296 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2297 return start <= addr + mask && start + length - 1 >= addr;
2298 }
2299
2300 /* Return the number of registers needed for a masked hardware watchpoint. */
2301
2302 static int
2303 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2304 CORE_ADDR addr, CORE_ADDR mask)
2305 {
2306 if (!have_ptrace_booke_interface ()
2307 || (booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2308 return -1;
2309 else if ((mask & 0xC0000000) != 0xC0000000)
2310 {
2311 warning (_("The given mask covers kernel address space "
2312 "and cannot be used.\n"));
2313
2314 return -2;
2315 }
2316 else
2317 return 2;
2318 }
2319
2320 static void
2321 ppc_linux_store_inferior_registers (struct target_ops *ops,
2322 struct regcache *regcache, int regno)
2323 {
2324 /* Overload thread id onto process id. */
2325 int tid = TIDGET (inferior_ptid);
2326
2327 /* No thread id, just use process id. */
2328 if (tid == 0)
2329 tid = PIDGET (inferior_ptid);
2330
2331 if (regno >= 0)
2332 store_register (regcache, tid, regno);
2333 else
2334 store_ppc_registers (regcache, tid);
2335 }
2336
2337 /* Functions for transferring registers between a gregset_t or fpregset_t
2338 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2339 by the ptrace interface, not the current program's ABI. Eg. if a
2340 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2341 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2342
2343 void
2344 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2345 {
2346 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2347
2348 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2349 }
2350
2351 void
2352 fill_gregset (const struct regcache *regcache,
2353 gdb_gregset_t *gregsetp, int regno)
2354 {
2355 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2356
2357 if (regno == -1)
2358 memset (gregsetp, 0, sizeof (*gregsetp));
2359 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2360 }
2361
2362 void
2363 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2364 {
2365 const struct regset *regset = ppc_linux_fpregset ();
2366
2367 ppc_supply_fpregset (regset, regcache, -1,
2368 fpregsetp, sizeof (*fpregsetp));
2369 }
2370
2371 void
2372 fill_fpregset (const struct regcache *regcache,
2373 gdb_fpregset_t *fpregsetp, int regno)
2374 {
2375 const struct regset *regset = ppc_linux_fpregset ();
2376
2377 ppc_collect_fpregset (regset, regcache, regno,
2378 fpregsetp, sizeof (*fpregsetp));
2379 }
2380
2381 static int
2382 ppc_linux_target_wordsize (void)
2383 {
2384 int wordsize = 4;
2385
2386 /* Check for 64-bit inferior process. This is the case when the host is
2387 64-bit, and in addition the top bit of the MSR register is set. */
2388 #ifdef __powerpc64__
2389 long msr;
2390
2391 int tid = TIDGET (inferior_ptid);
2392 if (tid == 0)
2393 tid = PIDGET (inferior_ptid);
2394
2395 errno = 0;
2396 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2397 if (errno == 0 && msr < 0)
2398 wordsize = 8;
2399 #endif
2400
2401 return wordsize;
2402 }
2403
2404 static int
2405 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2406 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2407 {
2408 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2409 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2410 gdb_byte *ptr = *readptr;
2411
2412 if (endptr == ptr)
2413 return 0;
2414
2415 if (endptr - ptr < sizeof_auxv_field * 2)
2416 return -1;
2417
2418 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2419 ptr += sizeof_auxv_field;
2420 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2421 ptr += sizeof_auxv_field;
2422
2423 *readptr = ptr;
2424 return 1;
2425 }
2426
2427 static const struct target_desc *
2428 ppc_linux_read_description (struct target_ops *ops)
2429 {
2430 int altivec = 0;
2431 int vsx = 0;
2432 int isa205 = 0;
2433 int cell = 0;
2434
2435 int tid = TIDGET (inferior_ptid);
2436 if (tid == 0)
2437 tid = PIDGET (inferior_ptid);
2438
2439 if (have_ptrace_getsetevrregs)
2440 {
2441 struct gdb_evrregset_t evrregset;
2442
2443 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2444 return tdesc_powerpc_e500l;
2445
2446 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2447 Anything else needs to be reported. */
2448 else if (errno != EIO)
2449 perror_with_name (_("Unable to fetch SPE registers"));
2450 }
2451
2452 if (have_ptrace_getsetvsxregs)
2453 {
2454 gdb_vsxregset_t vsxregset;
2455
2456 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2457 vsx = 1;
2458
2459 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2460 Anything else needs to be reported. */
2461 else if (errno != EIO)
2462 perror_with_name (_("Unable to fetch VSX registers"));
2463 }
2464
2465 if (have_ptrace_getvrregs)
2466 {
2467 gdb_vrregset_t vrregset;
2468
2469 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2470 altivec = 1;
2471
2472 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2473 Anything else needs to be reported. */
2474 else if (errno != EIO)
2475 perror_with_name (_("Unable to fetch AltiVec registers"));
2476 }
2477
2478 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2479 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2480 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2481 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2482 half of the register are for Decimal Floating Point, we check if that
2483 feature is available to decide the size of the FPSCR. */
2484 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2485 isa205 = 1;
2486
2487 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2488 cell = 1;
2489
2490 if (ppc_linux_target_wordsize () == 8)
2491 {
2492 if (cell)
2493 return tdesc_powerpc_cell64l;
2494 else if (vsx)
2495 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2496 else if (altivec)
2497 return isa205
2498 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2499
2500 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2501 }
2502
2503 if (cell)
2504 return tdesc_powerpc_cell32l;
2505 else if (vsx)
2506 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2507 else if (altivec)
2508 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2509
2510 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2511 }
2512
2513 void _initialize_ppc_linux_nat (void);
2514
2515 void
2516 _initialize_ppc_linux_nat (void)
2517 {
2518 struct target_ops *t;
2519
2520 /* Fill in the generic GNU/Linux methods. */
2521 t = linux_target ();
2522
2523 /* Add our register access methods. */
2524 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2525 t->to_store_registers = ppc_linux_store_inferior_registers;
2526
2527 /* Add our breakpoint/watchpoint methods. */
2528 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2529 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2530 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2531 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2532 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2533 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2534 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2535 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2536 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2537 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2538 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2539 t->to_can_accel_watchpoint_condition
2540 = ppc_linux_can_accel_watchpoint_condition;
2541 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2542 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2543
2544 t->to_read_description = ppc_linux_read_description;
2545 t->to_auxv_parse = ppc_linux_auxv_parse;
2546
2547 observer_attach_thread_exit (ppc_linux_thread_exit);
2548
2549 /* Register the target. */
2550 linux_nat_add_target (t);
2551 linux_nat_set_new_thread (t, ppc_linux_new_thread);
2552 }
This page took 0.080967 seconds and 5 git commands to generate.