Include gdb_assert.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "observer.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "target.h"
29 #include "linux-nat.h"
30
31 #include <stdint.h>
32 #include <sys/types.h>
33 #include <signal.h>
34 #include <sys/user.h>
35 #include <sys/ioctl.h>
36 #include "gdb_wait.h"
37 #include <fcntl.h>
38 #include <sys/procfs.h>
39 #include <sys/ptrace.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43 #include "ppc-tdep.h"
44 #include "ppc-linux-tdep.h"
45
46 /* Required when using the AUXV. */
47 #include "elf/common.h"
48 #include "auxv.h"
49
50 /* This sometimes isn't defined. */
51 #ifndef PT_ORIG_R3
52 #define PT_ORIG_R3 34
53 #endif
54 #ifndef PT_TRAP
55 #define PT_TRAP 40
56 #endif
57
58 /* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
59 If they aren't, we can provide them ourselves (their values are fixed
60 because they are part of the kernel ABI). They are used in the AT_HWCAP
61 entry of the AUXV. */
62 #ifndef PPC_FEATURE_CELL
63 #define PPC_FEATURE_CELL 0x00010000
64 #endif
65 #ifndef PPC_FEATURE_BOOKE
66 #define PPC_FEATURE_BOOKE 0x00008000
67 #endif
68 #ifndef PPC_FEATURE_HAS_DFP
69 #define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
70 #endif
71
72 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
73 configure time check. Some older glibc's (for instance 2.2.1)
74 don't have a specific powerpc version of ptrace.h, and fall back on
75 a generic one. In such cases, sys/ptrace.h defines
76 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
77 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
78 PTRACE_SETVRREGS to be. This also makes a configury check pretty
79 much useless. */
80
81 /* These definitions should really come from the glibc header files,
82 but Glibc doesn't know about the vrregs yet. */
83 #ifndef PTRACE_GETVRREGS
84 #define PTRACE_GETVRREGS 18
85 #define PTRACE_SETVRREGS 19
86 #endif
87
88 /* PTRACE requests for POWER7 VSX registers. */
89 #ifndef PTRACE_GETVSXREGS
90 #define PTRACE_GETVSXREGS 27
91 #define PTRACE_SETVSXREGS 28
92 #endif
93
94 /* Similarly for the ptrace requests for getting / setting the SPE
95 registers (ev0 -- ev31, acc, and spefscr). See the description of
96 gdb_evrregset_t for details. */
97 #ifndef PTRACE_GETEVRREGS
98 #define PTRACE_GETEVRREGS 20
99 #define PTRACE_SETEVRREGS 21
100 #endif
101
102 /* Similarly for the hardware watchpoint support. These requests are used
103 when the PowerPC HWDEBUG ptrace interface is not available. */
104 #ifndef PTRACE_GET_DEBUGREG
105 #define PTRACE_GET_DEBUGREG 25
106 #endif
107 #ifndef PTRACE_SET_DEBUGREG
108 #define PTRACE_SET_DEBUGREG 26
109 #endif
110 #ifndef PTRACE_GETSIGINFO
111 #define PTRACE_GETSIGINFO 0x4202
112 #endif
113
114 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
115 available. It exposes the debug facilities of PowerPC processors, as well
116 as additional features of BookE processors, such as ranged breakpoints and
117 watchpoints and hardware-accelerated condition evaluation. */
118 #ifndef PPC_PTRACE_GETHWDBGINFO
119
120 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
121 ptrace interface is not present in ptrace.h, so we'll have to pretty much
122 include it all here so that the code at least compiles on older systems. */
123 #define PPC_PTRACE_GETHWDBGINFO 0x89
124 #define PPC_PTRACE_SETHWDEBUG 0x88
125 #define PPC_PTRACE_DELHWDEBUG 0x87
126
127 struct ppc_debug_info
128 {
129 uint32_t version; /* Only version 1 exists to date. */
130 uint32_t num_instruction_bps;
131 uint32_t num_data_bps;
132 uint32_t num_condition_regs;
133 uint32_t data_bp_alignment;
134 uint32_t sizeof_condition; /* size of the DVC register. */
135 uint64_t features;
136 };
137
138 /* Features will have bits indicating whether there is support for: */
139 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
140 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
141 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
142 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
143
144 struct ppc_hw_breakpoint
145 {
146 uint32_t version; /* currently, version must be 1 */
147 uint32_t trigger_type; /* only some combinations allowed */
148 uint32_t addr_mode; /* address match mode */
149 uint32_t condition_mode; /* break/watchpoint condition flags */
150 uint64_t addr; /* break/watchpoint address */
151 uint64_t addr2; /* range end or mask */
152 uint64_t condition_value; /* contents of the DVC register */
153 };
154
155 /* Trigger type. */
156 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
157 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
158 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
159 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
160
161 /* Address mode. */
162 #define PPC_BREAKPOINT_MODE_EXACT 0x0
163 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
164 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
165 #define PPC_BREAKPOINT_MODE_MASK 0x3
166
167 /* Condition mode. */
168 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
169 #define PPC_BREAKPOINT_CONDITION_AND 0x1
170 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
171 #define PPC_BREAKPOINT_CONDITION_OR 0x2
172 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
173 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
174 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
175 #define PPC_BREAKPOINT_CONDITION_BE(n) \
176 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
177 #endif /* PPC_PTRACE_GETHWDBGINFO */
178
179 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
180 watchpoint (up to 512 bytes). */
181 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
182 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
183 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
184
185 /* Similarly for the general-purpose (gp0 -- gp31)
186 and floating-point registers (fp0 -- fp31). */
187 #ifndef PTRACE_GETREGS
188 #define PTRACE_GETREGS 12
189 #endif
190 #ifndef PTRACE_SETREGS
191 #define PTRACE_SETREGS 13
192 #endif
193 #ifndef PTRACE_GETFPREGS
194 #define PTRACE_GETFPREGS 14
195 #endif
196 #ifndef PTRACE_SETFPREGS
197 #define PTRACE_SETFPREGS 15
198 #endif
199
200 /* This oddity is because the Linux kernel defines elf_vrregset_t as
201 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
202 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
203 the vrsave as an extra 4 bytes at the end. I opted for creating a
204 flat array of chars, so that it is easier to manipulate for gdb.
205
206 There are 32 vector registers 16 bytes longs, plus a VSCR register
207 which is only 4 bytes long, but is fetched as a 16 bytes
208 quantity. Up to here we have the elf_vrregset_t structure.
209 Appended to this there is space for the VRSAVE register: 4 bytes.
210 Even though this vrsave register is not included in the regset
211 typedef, it is handled by the ptrace requests.
212
213 Note that GNU/Linux doesn't support little endian PPC hardware,
214 therefore the offset at which the real value of the VSCR register
215 is located will be always 12 bytes.
216
217 The layout is like this (where x is the actual value of the vscr reg): */
218
219 /* *INDENT-OFF* */
220 /*
221 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
222 <-------> <-------><-------><->
223 VR0 VR31 VSCR VRSAVE
224 */
225 /* *INDENT-ON* */
226
227 #define SIZEOF_VRREGS 33*16+4
228
229 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
230
231 /* This is the layout of the POWER7 VSX registers and the way they overlap
232 with the existing FPR and VMX registers.
233
234 VSR doubleword 0 VSR doubleword 1
235 ----------------------------------------------------------------
236 VSR[0] | FPR[0] | |
237 ----------------------------------------------------------------
238 VSR[1] | FPR[1] | |
239 ----------------------------------------------------------------
240 | ... | |
241 | ... | |
242 ----------------------------------------------------------------
243 VSR[30] | FPR[30] | |
244 ----------------------------------------------------------------
245 VSR[31] | FPR[31] | |
246 ----------------------------------------------------------------
247 VSR[32] | VR[0] |
248 ----------------------------------------------------------------
249 VSR[33] | VR[1] |
250 ----------------------------------------------------------------
251 | ... |
252 | ... |
253 ----------------------------------------------------------------
254 VSR[62] | VR[30] |
255 ----------------------------------------------------------------
256 VSR[63] | VR[31] |
257 ----------------------------------------------------------------
258
259 VSX has 64 128bit registers. The first 32 registers overlap with
260 the FP registers (doubleword 0) and hence extend them with additional
261 64 bits (doubleword 1). The other 32 regs overlap with the VMX
262 registers. */
263 #define SIZEOF_VSXREGS 32*8
264
265 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
266
267 /* On PPC processors that support the Signal Processing Extension
268 (SPE) APU, the general-purpose registers are 64 bits long.
269 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
270 ptrace calls only access the lower half of each register, to allow
271 them to behave the same way they do on non-SPE systems. There's a
272 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
273 read and write the top halves of all the general-purpose registers
274 at once, along with some SPE-specific registers.
275
276 GDB itself continues to claim the general-purpose registers are 32
277 bits long. It has unnamed raw registers that hold the upper halves
278 of the gprs, and the full 64-bit SIMD views of the registers,
279 'ev0' -- 'ev31', are pseudo-registers that splice the top and
280 bottom halves together.
281
282 This is the structure filled in by PTRACE_GETEVRREGS and written to
283 the inferior's registers by PTRACE_SETEVRREGS. */
284 struct gdb_evrregset_t
285 {
286 unsigned long evr[32];
287 unsigned long long acc;
288 unsigned long spefscr;
289 };
290
291 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
292 PTRACE_SETVSXREGS requests, for reading and writing the VSX
293 POWER7 registers 0 through 31. Zero if we've tried one of them and
294 gotten an error. Note that VSX registers 32 through 63 overlap
295 with VR registers 0 through 31. */
296 int have_ptrace_getsetvsxregs = 1;
297
298 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
299 PTRACE_SETVRREGS requests, for reading and writing the Altivec
300 registers. Zero if we've tried one of them and gotten an
301 error. */
302 int have_ptrace_getvrregs = 1;
303
304 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
305 PTRACE_SETEVRREGS requests, for reading and writing the SPE
306 registers. Zero if we've tried one of them and gotten an
307 error. */
308 int have_ptrace_getsetevrregs = 1;
309
310 /* Non-zero if our kernel may support the PTRACE_GETREGS and
311 PTRACE_SETREGS requests, for reading and writing the
312 general-purpose registers. Zero if we've tried one of
313 them and gotten an error. */
314 int have_ptrace_getsetregs = 1;
315
316 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
317 PTRACE_SETFPREGS requests, for reading and writing the
318 floating-pointers registers. Zero if we've tried one of
319 them and gotten an error. */
320 int have_ptrace_getsetfpregs = 1;
321
322 /* *INDENT-OFF* */
323 /* registers layout, as presented by the ptrace interface:
324 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
325 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
326 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
327 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
328 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
329 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
330 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
331 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
332 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
333 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
334 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
335 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
336 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
337 /* *INDENT_ON * */
338
339 static int
340 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
341 {
342 int u_addr = -1;
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
345 interface, and not the wordsize of the program's ABI. */
346 int wordsize = sizeof (long);
347
348 /* General purpose registers occupy 1 slot each in the buffer. */
349 if (regno >= tdep->ppc_gp0_regnum
350 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
351 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
352
353 /* Floating point regs: eight bytes each in both 32- and 64-bit
354 ptrace interfaces. Thus, two slots each in 32-bit interface, one
355 slot each in 64-bit interface. */
356 if (tdep->ppc_fp0_regnum >= 0
357 && regno >= tdep->ppc_fp0_regnum
358 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
359 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
360
361 /* UISA special purpose registers: 1 slot each. */
362 if (regno == gdbarch_pc_regnum (gdbarch))
363 u_addr = PT_NIP * wordsize;
364 if (regno == tdep->ppc_lr_regnum)
365 u_addr = PT_LNK * wordsize;
366 if (regno == tdep->ppc_cr_regnum)
367 u_addr = PT_CCR * wordsize;
368 if (regno == tdep->ppc_xer_regnum)
369 u_addr = PT_XER * wordsize;
370 if (regno == tdep->ppc_ctr_regnum)
371 u_addr = PT_CTR * wordsize;
372 #ifdef PT_MQ
373 if (regno == tdep->ppc_mq_regnum)
374 u_addr = PT_MQ * wordsize;
375 #endif
376 if (regno == tdep->ppc_ps_regnum)
377 u_addr = PT_MSR * wordsize;
378 if (regno == PPC_ORIG_R3_REGNUM)
379 u_addr = PT_ORIG_R3 * wordsize;
380 if (regno == PPC_TRAP_REGNUM)
381 u_addr = PT_TRAP * wordsize;
382 if (tdep->ppc_fpscr_regnum >= 0
383 && regno == tdep->ppc_fpscr_regnum)
384 {
385 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
386 kernel headers incorrectly contained the 32-bit definition of
387 PT_FPSCR. For the 32-bit definition, floating-point
388 registers occupy two 32-bit "slots", and the FPSCR lives in
389 the second half of such a slot-pair (hence +1). For 64-bit,
390 the FPSCR instead occupies the full 64-bit 2-word-slot and
391 hence no adjustment is necessary. Hack around this. */
392 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
393 u_addr = (48 + 32) * wordsize;
394 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
395 slot and not just its second word. The PT_FPSCR supplied when
396 GDB is compiled as a 32-bit app doesn't reflect this. */
397 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
398 && PT_FPSCR == (48 + 2*32 + 1))
399 u_addr = (48 + 2*32) * wordsize;
400 else
401 u_addr = PT_FPSCR * wordsize;
402 }
403 return u_addr;
404 }
405
406 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
407 registers set mechanism, as opposed to the interface for all the
408 other registers, that stores/fetches each register individually. */
409 static void
410 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
411 {
412 int ret;
413 gdb_vsxregset_t regs;
414 struct gdbarch *gdbarch = get_regcache_arch (regcache);
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
417
418 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
419 if (ret < 0)
420 {
421 if (errno == EIO)
422 {
423 have_ptrace_getsetvsxregs = 0;
424 return;
425 }
426 perror_with_name (_("Unable to fetch VSX register"));
427 }
428
429 regcache_raw_supply (regcache, regno,
430 regs + (regno - tdep->ppc_vsr0_upper_regnum)
431 * vsxregsize);
432 }
433
434 /* The Linux kernel ptrace interface for AltiVec registers uses the
435 registers set mechanism, as opposed to the interface for all the
436 other registers, that stores/fetches each register individually. */
437 static void
438 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
439 {
440 int ret;
441 int offset = 0;
442 gdb_vrregset_t regs;
443 struct gdbarch *gdbarch = get_regcache_arch (regcache);
444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
445 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
446
447 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
448 if (ret < 0)
449 {
450 if (errno == EIO)
451 {
452 have_ptrace_getvrregs = 0;
453 return;
454 }
455 perror_with_name (_("Unable to fetch AltiVec register"));
456 }
457
458 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
459 long on the hardware. We deal only with the lower 4 bytes of the
460 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
461 there is no need to define an offset for it. */
462 if (regno == (tdep->ppc_vrsave_regnum - 1))
463 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
464
465 regcache_raw_supply (regcache, regno,
466 regs + (regno
467 - tdep->ppc_vr0_regnum) * vrregsize + offset);
468 }
469
470 /* Fetch the top 32 bits of TID's general-purpose registers and the
471 SPE-specific registers, and place the results in EVRREGSET. If we
472 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
473 zeros.
474
475 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
476 PTRACE_SETEVRREGS requests are supported is isolated here, and in
477 set_spe_registers. */
478 static void
479 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
480 {
481 if (have_ptrace_getsetevrregs)
482 {
483 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
484 return;
485 else
486 {
487 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
488 we just return zeros. */
489 if (errno == EIO)
490 have_ptrace_getsetevrregs = 0;
491 else
492 /* Anything else needs to be reported. */
493 perror_with_name (_("Unable to fetch SPE registers"));
494 }
495 }
496
497 memset (evrregset, 0, sizeof (*evrregset));
498 }
499
500 /* Supply values from TID for SPE-specific raw registers: the upper
501 halves of the GPRs, the accumulator, and the spefscr. REGNO must
502 be the number of an upper half register, acc, spefscr, or -1 to
503 supply the values of all registers. */
504 static void
505 fetch_spe_register (struct regcache *regcache, int tid, int regno)
506 {
507 struct gdbarch *gdbarch = get_regcache_arch (regcache);
508 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
509 struct gdb_evrregset_t evrregs;
510
511 gdb_assert (sizeof (evrregs.evr[0])
512 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
513 gdb_assert (sizeof (evrregs.acc)
514 == register_size (gdbarch, tdep->ppc_acc_regnum));
515 gdb_assert (sizeof (evrregs.spefscr)
516 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
517
518 get_spe_registers (tid, &evrregs);
519
520 if (regno == -1)
521 {
522 int i;
523
524 for (i = 0; i < ppc_num_gprs; i++)
525 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
526 &evrregs.evr[i]);
527 }
528 else if (tdep->ppc_ev0_upper_regnum <= regno
529 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
530 regcache_raw_supply (regcache, regno,
531 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
532
533 if (regno == -1
534 || regno == tdep->ppc_acc_regnum)
535 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
536
537 if (regno == -1
538 || regno == tdep->ppc_spefscr_regnum)
539 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
540 &evrregs.spefscr);
541 }
542
543 static void
544 fetch_register (struct regcache *regcache, int tid, int regno)
545 {
546 struct gdbarch *gdbarch = get_regcache_arch (regcache);
547 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
548 /* This isn't really an address. But ptrace thinks of it as one. */
549 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
550 int bytes_transferred;
551 unsigned int offset; /* Offset of registers within the u area. */
552 gdb_byte buf[MAX_REGISTER_SIZE];
553
554 if (altivec_register_p (gdbarch, regno))
555 {
556 /* If this is the first time through, or if it is not the first
557 time through, and we have comfirmed that there is kernel
558 support for such a ptrace request, then go and fetch the
559 register. */
560 if (have_ptrace_getvrregs)
561 {
562 fetch_altivec_register (regcache, tid, regno);
563 return;
564 }
565 /* If we have discovered that there is no ptrace support for
566 AltiVec registers, fall through and return zeroes, because
567 regaddr will be -1 in this case. */
568 }
569 if (vsx_register_p (gdbarch, regno))
570 {
571 if (have_ptrace_getsetvsxregs)
572 {
573 fetch_vsx_register (regcache, tid, regno);
574 return;
575 }
576 }
577 else if (spe_register_p (gdbarch, regno))
578 {
579 fetch_spe_register (regcache, tid, regno);
580 return;
581 }
582
583 if (regaddr == -1)
584 {
585 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
586 regcache_raw_supply (regcache, regno, buf);
587 return;
588 }
589
590 /* Read the raw register using sizeof(long) sized chunks. On a
591 32-bit platform, 64-bit floating-point registers will require two
592 transfers. */
593 for (bytes_transferred = 0;
594 bytes_transferred < register_size (gdbarch, regno);
595 bytes_transferred += sizeof (long))
596 {
597 long l;
598
599 errno = 0;
600 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
601 regaddr += sizeof (long);
602 if (errno != 0)
603 {
604 char message[128];
605 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
606 gdbarch_register_name (gdbarch, regno), regno);
607 perror_with_name (message);
608 }
609 memcpy (&buf[bytes_transferred], &l, sizeof (l));
610 }
611
612 /* Now supply the register. Keep in mind that the regcache's idea
613 of the register's size may not be a multiple of sizeof
614 (long). */
615 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
616 {
617 /* Little-endian values are always found at the left end of the
618 bytes transferred. */
619 regcache_raw_supply (regcache, regno, buf);
620 }
621 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
622 {
623 /* Big-endian values are found at the right end of the bytes
624 transferred. */
625 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
626 regcache_raw_supply (regcache, regno, buf + padding);
627 }
628 else
629 internal_error (__FILE__, __LINE__,
630 _("fetch_register: unexpected byte order: %d"),
631 gdbarch_byte_order (gdbarch));
632 }
633
634 static void
635 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
636 {
637 int i;
638 struct gdbarch *gdbarch = get_regcache_arch (regcache);
639 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
640 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
641
642 for (i = 0; i < ppc_num_vshrs; i++)
643 {
644 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
645 *vsxregsetp + i * vsxregsize);
646 }
647 }
648
649 static void
650 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
651 {
652 int i;
653 struct gdbarch *gdbarch = get_regcache_arch (regcache);
654 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
655 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
656 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
657 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
658
659 for (i = 0; i < num_of_vrregs; i++)
660 {
661 /* The last 2 registers of this set are only 32 bit long, not
662 128. However an offset is necessary only for VSCR because it
663 occupies a whole vector, while VRSAVE occupies a full 4 bytes
664 slot. */
665 if (i == (num_of_vrregs - 2))
666 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
667 *vrregsetp + i * vrregsize + offset);
668 else
669 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
670 *vrregsetp + i * vrregsize);
671 }
672 }
673
674 static void
675 fetch_vsx_registers (struct regcache *regcache, int tid)
676 {
677 int ret;
678 gdb_vsxregset_t regs;
679
680 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
681 if (ret < 0)
682 {
683 if (errno == EIO)
684 {
685 have_ptrace_getsetvsxregs = 0;
686 return;
687 }
688 perror_with_name (_("Unable to fetch VSX registers"));
689 }
690 supply_vsxregset (regcache, &regs);
691 }
692
693 static void
694 fetch_altivec_registers (struct regcache *regcache, int tid)
695 {
696 int ret;
697 gdb_vrregset_t regs;
698
699 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
700 if (ret < 0)
701 {
702 if (errno == EIO)
703 {
704 have_ptrace_getvrregs = 0;
705 return;
706 }
707 perror_with_name (_("Unable to fetch AltiVec registers"));
708 }
709 supply_vrregset (regcache, &regs);
710 }
711
712 /* This function actually issues the request to ptrace, telling
713 it to get all general-purpose registers and put them into the
714 specified regset.
715
716 If the ptrace request does not exist, this function returns 0
717 and properly sets the have_ptrace_* flag. If the request fails,
718 this function calls perror_with_name. Otherwise, if the request
719 succeeds, then the regcache gets filled and 1 is returned. */
720 static int
721 fetch_all_gp_regs (struct regcache *regcache, int tid)
722 {
723 struct gdbarch *gdbarch = get_regcache_arch (regcache);
724 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
725 gdb_gregset_t gregset;
726
727 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
728 {
729 if (errno == EIO)
730 {
731 have_ptrace_getsetregs = 0;
732 return 0;
733 }
734 perror_with_name (_("Couldn't get general-purpose registers."));
735 }
736
737 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
738
739 return 1;
740 }
741
742 /* This is a wrapper for the fetch_all_gp_regs function. It is
743 responsible for verifying if this target has the ptrace request
744 that can be used to fetch all general-purpose registers at one
745 shot. If it doesn't, then we should fetch them using the
746 old-fashioned way, which is to iterate over the registers and
747 request them one by one. */
748 static void
749 fetch_gp_regs (struct regcache *regcache, int tid)
750 {
751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
753 int i;
754
755 if (have_ptrace_getsetregs)
756 if (fetch_all_gp_regs (regcache, tid))
757 return;
758
759 /* If we've hit this point, it doesn't really matter which
760 architecture we are using. We just need to read the
761 registers in the "old-fashioned way". */
762 for (i = 0; i < ppc_num_gprs; i++)
763 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
764 }
765
766 /* This function actually issues the request to ptrace, telling
767 it to get all floating-point registers and put them into the
768 specified regset.
769
770 If the ptrace request does not exist, this function returns 0
771 and properly sets the have_ptrace_* flag. If the request fails,
772 this function calls perror_with_name. Otherwise, if the request
773 succeeds, then the regcache gets filled and 1 is returned. */
774 static int
775 fetch_all_fp_regs (struct regcache *regcache, int tid)
776 {
777 gdb_fpregset_t fpregs;
778
779 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
780 {
781 if (errno == EIO)
782 {
783 have_ptrace_getsetfpregs = 0;
784 return 0;
785 }
786 perror_with_name (_("Couldn't get floating-point registers."));
787 }
788
789 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
790
791 return 1;
792 }
793
794 /* This is a wrapper for the fetch_all_fp_regs function. It is
795 responsible for verifying if this target has the ptrace request
796 that can be used to fetch all floating-point registers at one
797 shot. If it doesn't, then we should fetch them using the
798 old-fashioned way, which is to iterate over the registers and
799 request them one by one. */
800 static void
801 fetch_fp_regs (struct regcache *regcache, int tid)
802 {
803 struct gdbarch *gdbarch = get_regcache_arch (regcache);
804 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
805 int i;
806
807 if (have_ptrace_getsetfpregs)
808 if (fetch_all_fp_regs (regcache, tid))
809 return;
810
811 /* If we've hit this point, it doesn't really matter which
812 architecture we are using. We just need to read the
813 registers in the "old-fashioned way". */
814 for (i = 0; i < ppc_num_fprs; i++)
815 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
816 }
817
818 static void
819 fetch_ppc_registers (struct regcache *regcache, int tid)
820 {
821 int i;
822 struct gdbarch *gdbarch = get_regcache_arch (regcache);
823 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
824
825 fetch_gp_regs (regcache, tid);
826 if (tdep->ppc_fp0_regnum >= 0)
827 fetch_fp_regs (regcache, tid);
828 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
829 if (tdep->ppc_ps_regnum != -1)
830 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
831 if (tdep->ppc_cr_regnum != -1)
832 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
833 if (tdep->ppc_lr_regnum != -1)
834 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
835 if (tdep->ppc_ctr_regnum != -1)
836 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
837 if (tdep->ppc_xer_regnum != -1)
838 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
839 if (tdep->ppc_mq_regnum != -1)
840 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
841 if (ppc_linux_trap_reg_p (gdbarch))
842 {
843 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
844 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
845 }
846 if (tdep->ppc_fpscr_regnum != -1)
847 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
848 if (have_ptrace_getvrregs)
849 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
850 fetch_altivec_registers (regcache, tid);
851 if (have_ptrace_getsetvsxregs)
852 if (tdep->ppc_vsr0_upper_regnum != -1)
853 fetch_vsx_registers (regcache, tid);
854 if (tdep->ppc_ev0_upper_regnum >= 0)
855 fetch_spe_register (regcache, tid, -1);
856 }
857
858 /* Fetch registers from the child process. Fetch all registers if
859 regno == -1, otherwise fetch all general registers or all floating
860 point registers depending upon the value of regno. */
861 static void
862 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
863 struct regcache *regcache, int regno)
864 {
865 /* Overload thread id onto process id. */
866 int tid = ptid_get_lwp (inferior_ptid);
867
868 /* No thread id, just use process id. */
869 if (tid == 0)
870 tid = ptid_get_pid (inferior_ptid);
871
872 if (regno == -1)
873 fetch_ppc_registers (regcache, tid);
874 else
875 fetch_register (regcache, tid, regno);
876 }
877
878 /* Store one VSX register. */
879 static void
880 store_vsx_register (const struct regcache *regcache, int tid, int regno)
881 {
882 int ret;
883 gdb_vsxregset_t regs;
884 struct gdbarch *gdbarch = get_regcache_arch (regcache);
885 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
886 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
887
888 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
889 if (ret < 0)
890 {
891 if (errno == EIO)
892 {
893 have_ptrace_getsetvsxregs = 0;
894 return;
895 }
896 perror_with_name (_("Unable to fetch VSX register"));
897 }
898
899 regcache_raw_collect (regcache, regno, regs +
900 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
901
902 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
903 if (ret < 0)
904 perror_with_name (_("Unable to store VSX register"));
905 }
906
907 /* Store one register. */
908 static void
909 store_altivec_register (const struct regcache *regcache, int tid, int regno)
910 {
911 int ret;
912 int offset = 0;
913 gdb_vrregset_t regs;
914 struct gdbarch *gdbarch = get_regcache_arch (regcache);
915 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
916 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
917
918 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
919 if (ret < 0)
920 {
921 if (errno == EIO)
922 {
923 have_ptrace_getvrregs = 0;
924 return;
925 }
926 perror_with_name (_("Unable to fetch AltiVec register"));
927 }
928
929 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
930 long on the hardware. */
931 if (regno == (tdep->ppc_vrsave_regnum - 1))
932 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
933
934 regcache_raw_collect (regcache, regno,
935 regs + (regno
936 - tdep->ppc_vr0_regnum) * vrregsize + offset);
937
938 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
939 if (ret < 0)
940 perror_with_name (_("Unable to store AltiVec register"));
941 }
942
943 /* Assuming TID referrs to an SPE process, set the top halves of TID's
944 general-purpose registers and its SPE-specific registers to the
945 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
946 nothing.
947
948 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
949 PTRACE_SETEVRREGS requests are supported is isolated here, and in
950 get_spe_registers. */
951 static void
952 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
953 {
954 if (have_ptrace_getsetevrregs)
955 {
956 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
957 return;
958 else
959 {
960 /* EIO means that the PTRACE_SETEVRREGS request isn't
961 supported; we fail silently, and don't try the call
962 again. */
963 if (errno == EIO)
964 have_ptrace_getsetevrregs = 0;
965 else
966 /* Anything else needs to be reported. */
967 perror_with_name (_("Unable to set SPE registers"));
968 }
969 }
970 }
971
972 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
973 If REGNO is -1, write the values of all the SPE-specific
974 registers. */
975 static void
976 store_spe_register (const struct regcache *regcache, int tid, int regno)
977 {
978 struct gdbarch *gdbarch = get_regcache_arch (regcache);
979 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
980 struct gdb_evrregset_t evrregs;
981
982 gdb_assert (sizeof (evrregs.evr[0])
983 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
984 gdb_assert (sizeof (evrregs.acc)
985 == register_size (gdbarch, tdep->ppc_acc_regnum));
986 gdb_assert (sizeof (evrregs.spefscr)
987 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
988
989 if (regno == -1)
990 /* Since we're going to write out every register, the code below
991 should store to every field of evrregs; if that doesn't happen,
992 make it obvious by initializing it with suspicious values. */
993 memset (&evrregs, 42, sizeof (evrregs));
994 else
995 /* We can only read and write the entire EVR register set at a
996 time, so to write just a single register, we do a
997 read-modify-write maneuver. */
998 get_spe_registers (tid, &evrregs);
999
1000 if (regno == -1)
1001 {
1002 int i;
1003
1004 for (i = 0; i < ppc_num_gprs; i++)
1005 regcache_raw_collect (regcache,
1006 tdep->ppc_ev0_upper_regnum + i,
1007 &evrregs.evr[i]);
1008 }
1009 else if (tdep->ppc_ev0_upper_regnum <= regno
1010 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1011 regcache_raw_collect (regcache, regno,
1012 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1013
1014 if (regno == -1
1015 || regno == tdep->ppc_acc_regnum)
1016 regcache_raw_collect (regcache,
1017 tdep->ppc_acc_regnum,
1018 &evrregs.acc);
1019
1020 if (regno == -1
1021 || regno == tdep->ppc_spefscr_regnum)
1022 regcache_raw_collect (regcache,
1023 tdep->ppc_spefscr_regnum,
1024 &evrregs.spefscr);
1025
1026 /* Write back the modified register set. */
1027 set_spe_registers (tid, &evrregs);
1028 }
1029
1030 static void
1031 store_register (const struct regcache *regcache, int tid, int regno)
1032 {
1033 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1035 /* This isn't really an address. But ptrace thinks of it as one. */
1036 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1037 int i;
1038 size_t bytes_to_transfer;
1039 gdb_byte buf[MAX_REGISTER_SIZE];
1040
1041 if (altivec_register_p (gdbarch, regno))
1042 {
1043 store_altivec_register (regcache, tid, regno);
1044 return;
1045 }
1046 if (vsx_register_p (gdbarch, regno))
1047 {
1048 store_vsx_register (regcache, tid, regno);
1049 return;
1050 }
1051 else if (spe_register_p (gdbarch, regno))
1052 {
1053 store_spe_register (regcache, tid, regno);
1054 return;
1055 }
1056
1057 if (regaddr == -1)
1058 return;
1059
1060 /* First collect the register. Keep in mind that the regcache's
1061 idea of the register's size may not be a multiple of sizeof
1062 (long). */
1063 memset (buf, 0, sizeof buf);
1064 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1065 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1066 {
1067 /* Little-endian values always sit at the left end of the buffer. */
1068 regcache_raw_collect (regcache, regno, buf);
1069 }
1070 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1071 {
1072 /* Big-endian values sit at the right end of the buffer. */
1073 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1074 regcache_raw_collect (regcache, regno, buf + padding);
1075 }
1076
1077 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1078 {
1079 long l;
1080
1081 memcpy (&l, &buf[i], sizeof (l));
1082 errno = 0;
1083 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1084 regaddr += sizeof (long);
1085
1086 if (errno == EIO
1087 && (regno == tdep->ppc_fpscr_regnum
1088 || regno == PPC_ORIG_R3_REGNUM
1089 || regno == PPC_TRAP_REGNUM))
1090 {
1091 /* Some older kernel versions don't allow fpscr, orig_r3
1092 or trap to be written. */
1093 continue;
1094 }
1095
1096 if (errno != 0)
1097 {
1098 char message[128];
1099 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1100 gdbarch_register_name (gdbarch, regno), regno);
1101 perror_with_name (message);
1102 }
1103 }
1104 }
1105
1106 static void
1107 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1108 {
1109 int i;
1110 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1111 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1112 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1113
1114 for (i = 0; i < ppc_num_vshrs; i++)
1115 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1116 *vsxregsetp + i * vsxregsize);
1117 }
1118
1119 static void
1120 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1121 {
1122 int i;
1123 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1125 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1126 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1127 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1128
1129 for (i = 0; i < num_of_vrregs; i++)
1130 {
1131 /* The last 2 registers of this set are only 32 bit long, not
1132 128, but only VSCR is fetched as a 16 bytes quantity. */
1133 if (i == (num_of_vrregs - 2))
1134 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1135 *vrregsetp + i * vrregsize + offset);
1136 else
1137 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1138 *vrregsetp + i * vrregsize);
1139 }
1140 }
1141
1142 static void
1143 store_vsx_registers (const struct regcache *regcache, int tid)
1144 {
1145 int ret;
1146 gdb_vsxregset_t regs;
1147
1148 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1149 if (ret < 0)
1150 {
1151 if (errno == EIO)
1152 {
1153 have_ptrace_getsetvsxregs = 0;
1154 return;
1155 }
1156 perror_with_name (_("Couldn't get VSX registers"));
1157 }
1158
1159 fill_vsxregset (regcache, &regs);
1160
1161 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1162 perror_with_name (_("Couldn't write VSX registers"));
1163 }
1164
1165 static void
1166 store_altivec_registers (const struct regcache *regcache, int tid)
1167 {
1168 int ret;
1169 gdb_vrregset_t regs;
1170
1171 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1172 if (ret < 0)
1173 {
1174 if (errno == EIO)
1175 {
1176 have_ptrace_getvrregs = 0;
1177 return;
1178 }
1179 perror_with_name (_("Couldn't get AltiVec registers"));
1180 }
1181
1182 fill_vrregset (regcache, &regs);
1183
1184 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1185 perror_with_name (_("Couldn't write AltiVec registers"));
1186 }
1187
1188 /* This function actually issues the request to ptrace, telling
1189 it to store all general-purpose registers present in the specified
1190 regset.
1191
1192 If the ptrace request does not exist, this function returns 0
1193 and properly sets the have_ptrace_* flag. If the request fails,
1194 this function calls perror_with_name. Otherwise, if the request
1195 succeeds, then the regcache is stored and 1 is returned. */
1196 static int
1197 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1198 {
1199 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1201 gdb_gregset_t gregset;
1202
1203 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1204 {
1205 if (errno == EIO)
1206 {
1207 have_ptrace_getsetregs = 0;
1208 return 0;
1209 }
1210 perror_with_name (_("Couldn't get general-purpose registers."));
1211 }
1212
1213 fill_gregset (regcache, &gregset, regno);
1214
1215 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1216 {
1217 if (errno == EIO)
1218 {
1219 have_ptrace_getsetregs = 0;
1220 return 0;
1221 }
1222 perror_with_name (_("Couldn't set general-purpose registers."));
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* This is a wrapper for the store_all_gp_regs function. It is
1229 responsible for verifying if this target has the ptrace request
1230 that can be used to store all general-purpose registers at one
1231 shot. If it doesn't, then we should store them using the
1232 old-fashioned way, which is to iterate over the registers and
1233 store them one by one. */
1234 static void
1235 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1236 {
1237 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1239 int i;
1240
1241 if (have_ptrace_getsetregs)
1242 if (store_all_gp_regs (regcache, tid, regno))
1243 return;
1244
1245 /* If we hit this point, it doesn't really matter which
1246 architecture we are using. We just need to store the
1247 registers in the "old-fashioned way". */
1248 for (i = 0; i < ppc_num_gprs; i++)
1249 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1250 }
1251
1252 /* This function actually issues the request to ptrace, telling
1253 it to store all floating-point registers present in the specified
1254 regset.
1255
1256 If the ptrace request does not exist, this function returns 0
1257 and properly sets the have_ptrace_* flag. If the request fails,
1258 this function calls perror_with_name. Otherwise, if the request
1259 succeeds, then the regcache is stored and 1 is returned. */
1260 static int
1261 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1262 {
1263 gdb_fpregset_t fpregs;
1264
1265 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1266 {
1267 if (errno == EIO)
1268 {
1269 have_ptrace_getsetfpregs = 0;
1270 return 0;
1271 }
1272 perror_with_name (_("Couldn't get floating-point registers."));
1273 }
1274
1275 fill_fpregset (regcache, &fpregs, regno);
1276
1277 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1278 {
1279 if (errno == EIO)
1280 {
1281 have_ptrace_getsetfpregs = 0;
1282 return 0;
1283 }
1284 perror_with_name (_("Couldn't set floating-point registers."));
1285 }
1286
1287 return 1;
1288 }
1289
1290 /* This is a wrapper for the store_all_fp_regs function. It is
1291 responsible for verifying if this target has the ptrace request
1292 that can be used to store all floating-point registers at one
1293 shot. If it doesn't, then we should store them using the
1294 old-fashioned way, which is to iterate over the registers and
1295 store them one by one. */
1296 static void
1297 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1298 {
1299 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1301 int i;
1302
1303 if (have_ptrace_getsetfpregs)
1304 if (store_all_fp_regs (regcache, tid, regno))
1305 return;
1306
1307 /* If we hit this point, it doesn't really matter which
1308 architecture we are using. We just need to store the
1309 registers in the "old-fashioned way". */
1310 for (i = 0; i < ppc_num_fprs; i++)
1311 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1312 }
1313
1314 static void
1315 store_ppc_registers (const struct regcache *regcache, int tid)
1316 {
1317 int i;
1318 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1320
1321 store_gp_regs (regcache, tid, -1);
1322 if (tdep->ppc_fp0_regnum >= 0)
1323 store_fp_regs (regcache, tid, -1);
1324 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1325 if (tdep->ppc_ps_regnum != -1)
1326 store_register (regcache, tid, tdep->ppc_ps_regnum);
1327 if (tdep->ppc_cr_regnum != -1)
1328 store_register (regcache, tid, tdep->ppc_cr_regnum);
1329 if (tdep->ppc_lr_regnum != -1)
1330 store_register (regcache, tid, tdep->ppc_lr_regnum);
1331 if (tdep->ppc_ctr_regnum != -1)
1332 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1333 if (tdep->ppc_xer_regnum != -1)
1334 store_register (regcache, tid, tdep->ppc_xer_regnum);
1335 if (tdep->ppc_mq_regnum != -1)
1336 store_register (regcache, tid, tdep->ppc_mq_regnum);
1337 if (tdep->ppc_fpscr_regnum != -1)
1338 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1339 if (ppc_linux_trap_reg_p (gdbarch))
1340 {
1341 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1342 store_register (regcache, tid, PPC_TRAP_REGNUM);
1343 }
1344 if (have_ptrace_getvrregs)
1345 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1346 store_altivec_registers (regcache, tid);
1347 if (have_ptrace_getsetvsxregs)
1348 if (tdep->ppc_vsr0_upper_regnum != -1)
1349 store_vsx_registers (regcache, tid);
1350 if (tdep->ppc_ev0_upper_regnum >= 0)
1351 store_spe_register (regcache, tid, -1);
1352 }
1353
1354 /* Fetch the AT_HWCAP entry from the aux vector. */
1355 static unsigned long
1356 ppc_linux_get_hwcap (void)
1357 {
1358 CORE_ADDR field;
1359
1360 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1361 return (unsigned long) field;
1362
1363 return 0;
1364 }
1365
1366 /* The cached DABR value, to install in new threads.
1367 This variable is used when the PowerPC HWDEBUG ptrace
1368 interface is not available. */
1369 static long saved_dabr_value;
1370
1371 /* Global structure that will store information about the available
1372 features provided by the PowerPC HWDEBUG ptrace interface. */
1373 static struct ppc_debug_info hwdebug_info;
1374
1375 /* Global variable that holds the maximum number of slots that the
1376 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1377 is available. */
1378 static size_t max_slots_number = 0;
1379
1380 struct hw_break_tuple
1381 {
1382 long slot;
1383 struct ppc_hw_breakpoint *hw_break;
1384 };
1385
1386 /* This is an internal VEC created to store information about *points inserted
1387 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1388 available. */
1389 typedef struct thread_points
1390 {
1391 /* The TID to which this *point relates. */
1392 int tid;
1393 /* Information about the *point, such as its address, type, etc.
1394
1395 Each element inside this vector corresponds to a hardware
1396 breakpoint or watchpoint in the thread represented by TID. The maximum
1397 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1398 the tuple is NULL, then the position in the vector is free. */
1399 struct hw_break_tuple *hw_breaks;
1400 } *thread_points_p;
1401 DEF_VEC_P (thread_points_p);
1402
1403 VEC(thread_points_p) *ppc_threads = NULL;
1404
1405 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1406 available. */
1407 #define PPC_DEBUG_CURRENT_VERSION 1
1408
1409 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1410 static int
1411 have_ptrace_hwdebug_interface (void)
1412 {
1413 static int have_ptrace_hwdebug_interface = -1;
1414
1415 if (have_ptrace_hwdebug_interface == -1)
1416 {
1417 int tid;
1418
1419 tid = ptid_get_lwp (inferior_ptid);
1420 if (tid == 0)
1421 tid = ptid_get_pid (inferior_ptid);
1422
1423 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1424 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1425 {
1426 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1427 provides any supported feature. */
1428 if (hwdebug_info.features != 0)
1429 {
1430 have_ptrace_hwdebug_interface = 1;
1431 max_slots_number = hwdebug_info.num_instruction_bps
1432 + hwdebug_info.num_data_bps
1433 + hwdebug_info.num_condition_regs;
1434 return have_ptrace_hwdebug_interface;
1435 }
1436 }
1437 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1438 have_ptrace_hwdebug_interface = 0;
1439 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1440 }
1441
1442 return have_ptrace_hwdebug_interface;
1443 }
1444
1445 static int
1446 ppc_linux_can_use_hw_breakpoint (struct target_ops *self,
1447 int type, int cnt, int ot)
1448 {
1449 int total_hw_wp, total_hw_bp;
1450
1451 if (have_ptrace_hwdebug_interface ())
1452 {
1453 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1454 available hardware watchpoints and breakpoints is stored at the
1455 hwdebug_info struct. */
1456 total_hw_bp = hwdebug_info.num_instruction_bps;
1457 total_hw_wp = hwdebug_info.num_data_bps;
1458 }
1459 else
1460 {
1461 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1462 consider having 1 hardware watchpoint and no hardware breakpoints. */
1463 total_hw_bp = 0;
1464 total_hw_wp = 1;
1465 }
1466
1467 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1468 || type == bp_access_watchpoint || type == bp_watchpoint)
1469 {
1470 if (cnt + ot > total_hw_wp)
1471 return -1;
1472 }
1473 else if (type == bp_hardware_breakpoint)
1474 {
1475 if (total_hw_bp == 0)
1476 {
1477 /* No hardware breakpoint support. */
1478 return 0;
1479 }
1480 if (cnt > total_hw_bp)
1481 return -1;
1482 }
1483
1484 if (!have_ptrace_hwdebug_interface ())
1485 {
1486 int tid;
1487 ptid_t ptid = inferior_ptid;
1488
1489 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1490 and whether the target has DABR. If either answer is no, the
1491 ptrace call will return -1. Fail in that case. */
1492 tid = ptid_get_lwp (ptid);
1493 if (tid == 0)
1494 tid = ptid_get_pid (ptid);
1495
1496 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1497 return 0;
1498 }
1499
1500 return 1;
1501 }
1502
1503 static int
1504 ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1505 CORE_ADDR addr, int len)
1506 {
1507 /* Handle sub-8-byte quantities. */
1508 if (len <= 0)
1509 return 0;
1510
1511 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1512 restrictions for watchpoints in the processors. In that case, we use that
1513 information to determine the hardcoded watchable region for
1514 watchpoints. */
1515 if (have_ptrace_hwdebug_interface ())
1516 {
1517 int region_size;
1518 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1519 watchpoints and can watch any access within an arbitrary memory
1520 region. This is useful to watch arrays and structs, for instance. It
1521 takes two hardware watchpoints though. */
1522 if (len > 1
1523 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1524 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1525 return 2;
1526 /* Check if the processor provides DAWR interface. */
1527 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1528 /* DAWR interface allows to watch up to 512 byte wide ranges which
1529 can't cross a 512 byte boundary. */
1530 region_size = 512;
1531 else
1532 region_size = hwdebug_info.data_bp_alignment;
1533 /* Server processors provide one hardware watchpoint and addr+len should
1534 fall in the watchable region provided by the ptrace interface. */
1535 if (region_size
1536 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1537 return 0;
1538 }
1539 /* addr+len must fall in the 8 byte watchable region for DABR-based
1540 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1541 ptrace interface, DAC-based processors (i.e., embedded processors) will
1542 use addresses aligned to 4-bytes due to the way the read/write flags are
1543 passed in the old ptrace interface. */
1544 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1545 && (addr + len) > (addr & ~3) + 4)
1546 || (addr + len) > (addr & ~7) + 8)
1547 return 0;
1548
1549 return 1;
1550 }
1551
1552 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1553 static int
1554 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1555 {
1556 return (a->trigger_type == b->trigger_type
1557 && a->addr_mode == b->addr_mode
1558 && a->condition_mode == b->condition_mode
1559 && a->addr == b->addr
1560 && a->addr2 == b->addr2
1561 && a->condition_value == b->condition_value);
1562 }
1563
1564 /* This function can be used to retrieve a thread_points by the TID of the
1565 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1566 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1567 provided TID will be created and returned. */
1568 static struct thread_points *
1569 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1570 {
1571 int i;
1572 struct thread_points *t;
1573
1574 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1575 if (t->tid == tid)
1576 return t;
1577
1578 t = NULL;
1579
1580 /* Do we need to allocate a new point_item
1581 if the wanted one does not exist? */
1582 if (alloc_new)
1583 {
1584 t = xmalloc (sizeof (struct thread_points));
1585 t->hw_breaks
1586 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
1587 t->tid = tid;
1588 VEC_safe_push (thread_points_p, ppc_threads, t);
1589 }
1590
1591 return t;
1592 }
1593
1594 /* This function is a generic wrapper that is responsible for inserting a
1595 *point (i.e., calling `ptrace' in order to issue the request to the
1596 kernel) and registering it internally in GDB. */
1597 static void
1598 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1599 {
1600 int i;
1601 long slot;
1602 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1603 struct hw_break_tuple *hw_breaks;
1604 struct cleanup *c = make_cleanup (xfree, p);
1605 struct thread_points *t;
1606 struct hw_break_tuple *tuple;
1607
1608 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1609
1610 errno = 0;
1611 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1612 if (slot < 0)
1613 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1614
1615 /* Everything went fine, so we have to register this *point. */
1616 t = hwdebug_find_thread_points_by_tid (tid, 1);
1617 gdb_assert (t != NULL);
1618 hw_breaks = t->hw_breaks;
1619
1620 /* Find a free element in the hw_breaks vector. */
1621 for (i = 0; i < max_slots_number; i++)
1622 if (hw_breaks[i].hw_break == NULL)
1623 {
1624 hw_breaks[i].slot = slot;
1625 hw_breaks[i].hw_break = p;
1626 break;
1627 }
1628
1629 gdb_assert (i != max_slots_number);
1630
1631 discard_cleanups (c);
1632 }
1633
1634 /* This function is a generic wrapper that is responsible for removing a
1635 *point (i.e., calling `ptrace' in order to issue the request to the
1636 kernel), and unregistering it internally at GDB. */
1637 static void
1638 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1639 {
1640 int i;
1641 struct hw_break_tuple *hw_breaks;
1642 struct thread_points *t;
1643
1644 t = hwdebug_find_thread_points_by_tid (tid, 0);
1645 gdb_assert (t != NULL);
1646 hw_breaks = t->hw_breaks;
1647
1648 for (i = 0; i < max_slots_number; i++)
1649 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1650 break;
1651
1652 gdb_assert (i != max_slots_number);
1653
1654 /* We have to ignore ENOENT errors because the kernel implements hardware
1655 breakpoints/watchpoints as "one-shot", that is, they are automatically
1656 deleted when hit. */
1657 errno = 0;
1658 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1659 if (errno != ENOENT)
1660 perror_with_name (_("Unexpected error deleting "
1661 "breakpoint or watchpoint"));
1662
1663 xfree (hw_breaks[i].hw_break);
1664 hw_breaks[i].hw_break = NULL;
1665 }
1666
1667 /* Return the number of registers needed for a ranged breakpoint. */
1668
1669 static int
1670 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1671 {
1672 return ((have_ptrace_hwdebug_interface ()
1673 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1674 2 : -1);
1675 }
1676
1677 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1678 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1679
1680 static int
1681 ppc_linux_insert_hw_breakpoint (struct target_ops *self,
1682 struct gdbarch *gdbarch,
1683 struct bp_target_info *bp_tgt)
1684 {
1685 struct lwp_info *lp;
1686 struct ppc_hw_breakpoint p;
1687
1688 if (!have_ptrace_hwdebug_interface ())
1689 return -1;
1690
1691 p.version = PPC_DEBUG_CURRENT_VERSION;
1692 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1693 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1694 p.addr = (uint64_t) bp_tgt->placed_address;
1695 p.condition_value = 0;
1696
1697 if (bp_tgt->length)
1698 {
1699 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1700
1701 /* The breakpoint will trigger if the address of the instruction is
1702 within the defined range, as follows: p.addr <= address < p.addr2. */
1703 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1704 }
1705 else
1706 {
1707 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1708 p.addr2 = 0;
1709 }
1710
1711 ALL_LWPS (lp)
1712 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1713
1714 return 0;
1715 }
1716
1717 static int
1718 ppc_linux_remove_hw_breakpoint (struct target_ops *self,
1719 struct gdbarch *gdbarch,
1720 struct bp_target_info *bp_tgt)
1721 {
1722 struct lwp_info *lp;
1723 struct ppc_hw_breakpoint p;
1724
1725 if (!have_ptrace_hwdebug_interface ())
1726 return -1;
1727
1728 p.version = PPC_DEBUG_CURRENT_VERSION;
1729 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1730 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1731 p.addr = (uint64_t) bp_tgt->placed_address;
1732 p.condition_value = 0;
1733
1734 if (bp_tgt->length)
1735 {
1736 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1737
1738 /* The breakpoint will trigger if the address of the instruction is within
1739 the defined range, as follows: p.addr <= address < p.addr2. */
1740 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1741 }
1742 else
1743 {
1744 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1745 p.addr2 = 0;
1746 }
1747
1748 ALL_LWPS (lp)
1749 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1750
1751 return 0;
1752 }
1753
1754 static int
1755 get_trigger_type (int rw)
1756 {
1757 int t;
1758
1759 if (rw == hw_read)
1760 t = PPC_BREAKPOINT_TRIGGER_READ;
1761 else if (rw == hw_write)
1762 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1763 else
1764 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1765
1766 return t;
1767 }
1768
1769 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1770 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1771 or hw_access for an access watchpoint. Returns 0 on success and throws
1772 an error on failure. */
1773
1774 static int
1775 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1776 CORE_ADDR mask, int rw)
1777 {
1778 struct lwp_info *lp;
1779 struct ppc_hw_breakpoint p;
1780
1781 gdb_assert (have_ptrace_hwdebug_interface ());
1782
1783 p.version = PPC_DEBUG_CURRENT_VERSION;
1784 p.trigger_type = get_trigger_type (rw);
1785 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1786 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1787 p.addr = addr;
1788 p.addr2 = mask;
1789 p.condition_value = 0;
1790
1791 ALL_LWPS (lp)
1792 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1793
1794 return 0;
1795 }
1796
1797 /* Remove a masked watchpoint at ADDR with the mask MASK.
1798 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1799 or hw_access for an access watchpoint. Returns 0 on success and throws
1800 an error on failure. */
1801
1802 static int
1803 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1804 CORE_ADDR mask, int rw)
1805 {
1806 struct lwp_info *lp;
1807 struct ppc_hw_breakpoint p;
1808
1809 gdb_assert (have_ptrace_hwdebug_interface ());
1810
1811 p.version = PPC_DEBUG_CURRENT_VERSION;
1812 p.trigger_type = get_trigger_type (rw);
1813 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1814 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1815 p.addr = addr;
1816 p.addr2 = mask;
1817 p.condition_value = 0;
1818
1819 ALL_LWPS (lp)
1820 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1821
1822 return 0;
1823 }
1824
1825 /* Check whether we have at least one free DVC register. */
1826 static int
1827 can_use_watchpoint_cond_accel (void)
1828 {
1829 struct thread_points *p;
1830 int tid = ptid_get_lwp (inferior_ptid);
1831 int cnt = hwdebug_info.num_condition_regs, i;
1832 CORE_ADDR tmp_value;
1833
1834 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1835 return 0;
1836
1837 p = hwdebug_find_thread_points_by_tid (tid, 0);
1838
1839 if (p)
1840 {
1841 for (i = 0; i < max_slots_number; i++)
1842 if (p->hw_breaks[i].hw_break != NULL
1843 && (p->hw_breaks[i].hw_break->condition_mode
1844 != PPC_BREAKPOINT_CONDITION_NONE))
1845 cnt--;
1846
1847 /* There are no available slots now. */
1848 if (cnt <= 0)
1849 return 0;
1850 }
1851
1852 return 1;
1853 }
1854
1855 /* Calculate the enable bits and the contents of the Data Value Compare
1856 debug register present in BookE processors.
1857
1858 ADDR is the address to be watched, LEN is the length of watched data
1859 and DATA_VALUE is the value which will trigger the watchpoint.
1860 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1861 CONDITION_VALUE will hold the value which should be put in the
1862 DVC register. */
1863 static void
1864 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1865 uint32_t *condition_mode, uint64_t *condition_value)
1866 {
1867 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1868 rightmost_enabled_byte;
1869 CORE_ADDR addr_end_data, addr_end_dvc;
1870
1871 /* The DVC register compares bytes within fixed-length windows which
1872 are word-aligned, with length equal to that of the DVC register.
1873 We need to calculate where our watch region is relative to that
1874 window and enable comparison of the bytes which fall within it. */
1875
1876 align_offset = addr % hwdebug_info.sizeof_condition;
1877 addr_end_data = addr + len;
1878 addr_end_dvc = (addr - align_offset
1879 + hwdebug_info.sizeof_condition);
1880 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1881 addr_end_data - addr_end_dvc : 0;
1882 num_byte_enable = len - num_bytes_off_dvc;
1883 /* Here, bytes are numbered from right to left. */
1884 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1885 addr_end_dvc - addr_end_data : 0;
1886
1887 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1888 for (i = 0; i < num_byte_enable; i++)
1889 *condition_mode
1890 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1891
1892 /* Now we need to match the position within the DVC of the comparison
1893 value with where the watch region is relative to the window
1894 (i.e., the ALIGN_OFFSET). */
1895
1896 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1897 << rightmost_enabled_byte * 8);
1898 }
1899
1900 /* Return the number of memory locations that need to be accessed to
1901 evaluate the expression which generated the given value chain.
1902 Returns -1 if there's any register access involved, or if there are
1903 other kinds of values which are not acceptable in a condition
1904 expression (e.g., lval_computed or lval_internalvar). */
1905 static int
1906 num_memory_accesses (struct value *v)
1907 {
1908 int found_memory_cnt = 0;
1909 struct value *head = v;
1910
1911 /* The idea here is that evaluating an expression generates a series
1912 of values, one holding the value of every subexpression. (The
1913 expression a*b+c has five subexpressions: a, b, a*b, c, and
1914 a*b+c.) GDB's values hold almost enough information to establish
1915 the criteria given above --- they identify memory lvalues,
1916 register lvalues, computed values, etcetera. So we can evaluate
1917 the expression, and then scan the chain of values that leaves
1918 behind to determine the memory locations involved in the evaluation
1919 of an expression.
1920
1921 However, I don't think that the values returned by inferior
1922 function calls are special in any way. So this function may not
1923 notice that an expression contains an inferior function call.
1924 FIXME. */
1925
1926 for (; v; v = value_next (v))
1927 {
1928 /* Constants and values from the history are fine. */
1929 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1930 continue;
1931 else if (VALUE_LVAL (v) == lval_memory)
1932 {
1933 /* A lazy memory lvalue is one that GDB never needed to fetch;
1934 we either just used its address (e.g., `a' in `a.b') or
1935 we never needed it at all (e.g., `a' in `a,b'). */
1936 if (!value_lazy (v))
1937 found_memory_cnt++;
1938 }
1939 /* Other kinds of values are not fine. */
1940 else
1941 return -1;
1942 }
1943
1944 return found_memory_cnt;
1945 }
1946
1947 /* Verifies whether the expression COND can be implemented using the
1948 DVC (Data Value Compare) register in BookE processors. The expression
1949 must test the watch value for equality with a constant expression.
1950 If the function returns 1, DATA_VALUE will contain the constant against
1951 which the watch value should be compared and LEN will contain the size
1952 of the constant. */
1953 static int
1954 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1955 CORE_ADDR *data_value, int *len)
1956 {
1957 int pc = 1, num_accesses_left, num_accesses_right;
1958 struct value *left_val, *right_val, *left_chain, *right_chain;
1959
1960 if (cond->elts[0].opcode != BINOP_EQUAL)
1961 return 0;
1962
1963 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1964 num_accesses_left = num_memory_accesses (left_chain);
1965
1966 if (left_val == NULL || num_accesses_left < 0)
1967 {
1968 free_value_chain (left_chain);
1969
1970 return 0;
1971 }
1972
1973 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1974 num_accesses_right = num_memory_accesses (right_chain);
1975
1976 if (right_val == NULL || num_accesses_right < 0)
1977 {
1978 free_value_chain (left_chain);
1979 free_value_chain (right_chain);
1980
1981 return 0;
1982 }
1983
1984 if (num_accesses_left == 1 && num_accesses_right == 0
1985 && VALUE_LVAL (left_val) == lval_memory
1986 && value_address (left_val) == watch_addr)
1987 {
1988 *data_value = value_as_long (right_val);
1989
1990 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1991 the same type as the memory region referenced by LEFT_VAL. */
1992 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1993 }
1994 else if (num_accesses_left == 0 && num_accesses_right == 1
1995 && VALUE_LVAL (right_val) == lval_memory
1996 && value_address (right_val) == watch_addr)
1997 {
1998 *data_value = value_as_long (left_val);
1999
2000 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
2001 the same type as the memory region referenced by RIGHT_VAL. */
2002 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
2003 }
2004 else
2005 {
2006 free_value_chain (left_chain);
2007 free_value_chain (right_chain);
2008
2009 return 0;
2010 }
2011
2012 free_value_chain (left_chain);
2013 free_value_chain (right_chain);
2014
2015 return 1;
2016 }
2017
2018 /* Return non-zero if the target is capable of using hardware to evaluate
2019 the condition expression, thus only triggering the watchpoint when it is
2020 true. */
2021 static int
2022 ppc_linux_can_accel_watchpoint_condition (struct target_ops *self,
2023 CORE_ADDR addr, int len, int rw,
2024 struct expression *cond)
2025 {
2026 CORE_ADDR data_value;
2027
2028 return (have_ptrace_hwdebug_interface ()
2029 && hwdebug_info.num_condition_regs > 0
2030 && check_condition (addr, cond, &data_value, &len));
2031 }
2032
2033 /* Set up P with the parameters necessary to request a watchpoint covering
2034 LEN bytes starting at ADDR and if possible with condition expression COND
2035 evaluated by hardware. INSERT tells if we are creating a request for
2036 inserting or removing the watchpoint. */
2037
2038 static void
2039 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2040 int len, int rw, struct expression *cond,
2041 int insert)
2042 {
2043 if (len == 1
2044 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2045 {
2046 int use_condition;
2047 CORE_ADDR data_value;
2048
2049 use_condition = (insert? can_use_watchpoint_cond_accel ()
2050 : hwdebug_info.num_condition_regs > 0);
2051 if (cond && use_condition && check_condition (addr, cond,
2052 &data_value, &len))
2053 calculate_dvc (addr, len, data_value, &p->condition_mode,
2054 &p->condition_value);
2055 else
2056 {
2057 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2058 p->condition_value = 0;
2059 }
2060
2061 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2062 p->addr2 = 0;
2063 }
2064 else
2065 {
2066 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2067 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2068 p->condition_value = 0;
2069
2070 /* The watchpoint will trigger if the address of the memory access is
2071 within the defined range, as follows: p->addr <= address < p->addr2.
2072
2073 Note that the above sentence just documents how ptrace interprets
2074 its arguments; the watchpoint is set to watch the range defined by
2075 the user _inclusively_, as specified by the user interface. */
2076 p->addr2 = (uint64_t) addr + len;
2077 }
2078
2079 p->version = PPC_DEBUG_CURRENT_VERSION;
2080 p->trigger_type = get_trigger_type (rw);
2081 p->addr = (uint64_t) addr;
2082 }
2083
2084 static int
2085 ppc_linux_insert_watchpoint (struct target_ops *self,
2086 CORE_ADDR addr, int len, int rw,
2087 struct expression *cond)
2088 {
2089 struct lwp_info *lp;
2090 int ret = -1;
2091
2092 if (have_ptrace_hwdebug_interface ())
2093 {
2094 struct ppc_hw_breakpoint p;
2095
2096 create_watchpoint_request (&p, addr, len, rw, cond, 1);
2097
2098 ALL_LWPS (lp)
2099 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
2100
2101 ret = 0;
2102 }
2103 else
2104 {
2105 long dabr_value;
2106 long read_mode, write_mode;
2107
2108 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2109 {
2110 /* PowerPC 440 requires only the read/write flags to be passed
2111 to the kernel. */
2112 read_mode = 1;
2113 write_mode = 2;
2114 }
2115 else
2116 {
2117 /* PowerPC 970 and other DABR-based processors are required to pass
2118 the Breakpoint Translation bit together with the flags. */
2119 read_mode = 5;
2120 write_mode = 6;
2121 }
2122
2123 dabr_value = addr & ~(read_mode | write_mode);
2124 switch (rw)
2125 {
2126 case hw_read:
2127 /* Set read and translate bits. */
2128 dabr_value |= read_mode;
2129 break;
2130 case hw_write:
2131 /* Set write and translate bits. */
2132 dabr_value |= write_mode;
2133 break;
2134 case hw_access:
2135 /* Set read, write and translate bits. */
2136 dabr_value |= read_mode | write_mode;
2137 break;
2138 }
2139
2140 saved_dabr_value = dabr_value;
2141
2142 ALL_LWPS (lp)
2143 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2144 saved_dabr_value) < 0)
2145 return -1;
2146
2147 ret = 0;
2148 }
2149
2150 return ret;
2151 }
2152
2153 static int
2154 ppc_linux_remove_watchpoint (struct target_ops *self,
2155 CORE_ADDR addr, int len, int rw,
2156 struct expression *cond)
2157 {
2158 struct lwp_info *lp;
2159 int ret = -1;
2160
2161 if (have_ptrace_hwdebug_interface ())
2162 {
2163 struct ppc_hw_breakpoint p;
2164
2165 create_watchpoint_request (&p, addr, len, rw, cond, 0);
2166
2167 ALL_LWPS (lp)
2168 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
2169
2170 ret = 0;
2171 }
2172 else
2173 {
2174 saved_dabr_value = 0;
2175 ALL_LWPS (lp)
2176 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2177 saved_dabr_value) < 0)
2178 return -1;
2179
2180 ret = 0;
2181 }
2182
2183 return ret;
2184 }
2185
2186 static void
2187 ppc_linux_new_thread (struct lwp_info *lp)
2188 {
2189 int tid = ptid_get_lwp (lp->ptid);
2190
2191 if (have_ptrace_hwdebug_interface ())
2192 {
2193 int i;
2194 struct thread_points *p;
2195 struct hw_break_tuple *hw_breaks;
2196
2197 if (VEC_empty (thread_points_p, ppc_threads))
2198 return;
2199
2200 /* Get a list of breakpoints from any thread. */
2201 p = VEC_last (thread_points_p, ppc_threads);
2202 hw_breaks = p->hw_breaks;
2203
2204 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2205 for (i = 0; i < max_slots_number; i++)
2206 if (hw_breaks[i].hw_break)
2207 {
2208 /* Older kernels did not make new threads inherit their parent
2209 thread's debug state, so we always clear the slot and replicate
2210 the debug state ourselves, ensuring compatibility with all
2211 kernels. */
2212
2213 /* The ppc debug resource accounting is done through "slots".
2214 Ask the kernel the deallocate this specific *point's slot. */
2215 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2216
2217 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2218 }
2219 }
2220 else
2221 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2222 }
2223
2224 static void
2225 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2226 {
2227 int i;
2228 int tid = ptid_get_lwp (tp->ptid);
2229 struct hw_break_tuple *hw_breaks;
2230 struct thread_points *t = NULL, *p;
2231
2232 if (!have_ptrace_hwdebug_interface ())
2233 return;
2234
2235 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2236 if (p->tid == tid)
2237 {
2238 t = p;
2239 break;
2240 }
2241
2242 if (t == NULL)
2243 return;
2244
2245 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2246
2247 hw_breaks = t->hw_breaks;
2248
2249 for (i = 0; i < max_slots_number; i++)
2250 if (hw_breaks[i].hw_break)
2251 xfree (hw_breaks[i].hw_break);
2252
2253 xfree (t->hw_breaks);
2254 xfree (t);
2255 }
2256
2257 static int
2258 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2259 {
2260 siginfo_t siginfo;
2261
2262 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2263 return 0;
2264
2265 if (siginfo.si_signo != SIGTRAP
2266 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2267 return 0;
2268
2269 if (have_ptrace_hwdebug_interface ())
2270 {
2271 int i;
2272 struct thread_points *t;
2273 struct hw_break_tuple *hw_breaks;
2274 /* The index (or slot) of the *point is passed in the si_errno field. */
2275 int slot = siginfo.si_errno;
2276
2277 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2278
2279 /* Find out if this *point is a hardware breakpoint.
2280 If so, we should return 0. */
2281 if (t)
2282 {
2283 hw_breaks = t->hw_breaks;
2284 for (i = 0; i < max_slots_number; i++)
2285 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2286 && hw_breaks[i].hw_break->trigger_type
2287 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2288 return 0;
2289 }
2290 }
2291
2292 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2293 return 1;
2294 }
2295
2296 static int
2297 ppc_linux_stopped_by_watchpoint (struct target_ops *ops)
2298 {
2299 CORE_ADDR addr;
2300 return ppc_linux_stopped_data_address (ops, &addr);
2301 }
2302
2303 static int
2304 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2305 CORE_ADDR addr,
2306 CORE_ADDR start, int length)
2307 {
2308 int mask;
2309
2310 if (have_ptrace_hwdebug_interface ()
2311 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2312 return start <= addr && start + length >= addr;
2313 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2314 mask = 3;
2315 else
2316 mask = 7;
2317
2318 addr &= ~mask;
2319
2320 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2321 return start <= addr + mask && start + length - 1 >= addr;
2322 }
2323
2324 /* Return the number of registers needed for a masked hardware watchpoint. */
2325
2326 static int
2327 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2328 CORE_ADDR addr, CORE_ADDR mask)
2329 {
2330 if (!have_ptrace_hwdebug_interface ()
2331 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2332 return -1;
2333 else if ((mask & 0xC0000000) != 0xC0000000)
2334 {
2335 warning (_("The given mask covers kernel address space "
2336 "and cannot be used.\n"));
2337
2338 return -2;
2339 }
2340 else
2341 return 2;
2342 }
2343
2344 static void
2345 ppc_linux_store_inferior_registers (struct target_ops *ops,
2346 struct regcache *regcache, int regno)
2347 {
2348 /* Overload thread id onto process id. */
2349 int tid = ptid_get_lwp (inferior_ptid);
2350
2351 /* No thread id, just use process id. */
2352 if (tid == 0)
2353 tid = ptid_get_pid (inferior_ptid);
2354
2355 if (regno >= 0)
2356 store_register (regcache, tid, regno);
2357 else
2358 store_ppc_registers (regcache, tid);
2359 }
2360
2361 /* Functions for transferring registers between a gregset_t or fpregset_t
2362 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2363 by the ptrace interface, not the current program's ABI. Eg. if a
2364 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2365 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2366
2367 void
2368 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2369 {
2370 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2371
2372 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2373 }
2374
2375 void
2376 fill_gregset (const struct regcache *regcache,
2377 gdb_gregset_t *gregsetp, int regno)
2378 {
2379 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2380
2381 if (regno == -1)
2382 memset (gregsetp, 0, sizeof (*gregsetp));
2383 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2384 }
2385
2386 void
2387 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2388 {
2389 const struct regset *regset = ppc_linux_fpregset ();
2390
2391 ppc_supply_fpregset (regset, regcache, -1,
2392 fpregsetp, sizeof (*fpregsetp));
2393 }
2394
2395 void
2396 fill_fpregset (const struct regcache *regcache,
2397 gdb_fpregset_t *fpregsetp, int regno)
2398 {
2399 const struct regset *regset = ppc_linux_fpregset ();
2400
2401 ppc_collect_fpregset (regset, regcache, regno,
2402 fpregsetp, sizeof (*fpregsetp));
2403 }
2404
2405 static int
2406 ppc_linux_target_wordsize (void)
2407 {
2408 int wordsize = 4;
2409
2410 /* Check for 64-bit inferior process. This is the case when the host is
2411 64-bit, and in addition the top bit of the MSR register is set. */
2412 #ifdef __powerpc64__
2413 long msr;
2414
2415 int tid = ptid_get_lwp (inferior_ptid);
2416 if (tid == 0)
2417 tid = ptid_get_pid (inferior_ptid);
2418
2419 errno = 0;
2420 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2421 if (errno == 0 && msr < 0)
2422 wordsize = 8;
2423 #endif
2424
2425 return wordsize;
2426 }
2427
2428 static int
2429 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2430 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2431 {
2432 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2433 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2434 gdb_byte *ptr = *readptr;
2435
2436 if (endptr == ptr)
2437 return 0;
2438
2439 if (endptr - ptr < sizeof_auxv_field * 2)
2440 return -1;
2441
2442 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2443 ptr += sizeof_auxv_field;
2444 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2445 ptr += sizeof_auxv_field;
2446
2447 *readptr = ptr;
2448 return 1;
2449 }
2450
2451 static const struct target_desc *
2452 ppc_linux_read_description (struct target_ops *ops)
2453 {
2454 int altivec = 0;
2455 int vsx = 0;
2456 int isa205 = 0;
2457 int cell = 0;
2458
2459 int tid = ptid_get_lwp (inferior_ptid);
2460 if (tid == 0)
2461 tid = ptid_get_pid (inferior_ptid);
2462
2463 if (have_ptrace_getsetevrregs)
2464 {
2465 struct gdb_evrregset_t evrregset;
2466
2467 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2468 return tdesc_powerpc_e500l;
2469
2470 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2471 Anything else needs to be reported. */
2472 else if (errno != EIO)
2473 perror_with_name (_("Unable to fetch SPE registers"));
2474 }
2475
2476 if (have_ptrace_getsetvsxregs)
2477 {
2478 gdb_vsxregset_t vsxregset;
2479
2480 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2481 vsx = 1;
2482
2483 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2484 Anything else needs to be reported. */
2485 else if (errno != EIO)
2486 perror_with_name (_("Unable to fetch VSX registers"));
2487 }
2488
2489 if (have_ptrace_getvrregs)
2490 {
2491 gdb_vrregset_t vrregset;
2492
2493 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2494 altivec = 1;
2495
2496 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2497 Anything else needs to be reported. */
2498 else if (errno != EIO)
2499 perror_with_name (_("Unable to fetch AltiVec registers"));
2500 }
2501
2502 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2503 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2504 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2505 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2506 half of the register are for Decimal Floating Point, we check if that
2507 feature is available to decide the size of the FPSCR. */
2508 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2509 isa205 = 1;
2510
2511 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2512 cell = 1;
2513
2514 if (ppc_linux_target_wordsize () == 8)
2515 {
2516 if (cell)
2517 return tdesc_powerpc_cell64l;
2518 else if (vsx)
2519 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2520 else if (altivec)
2521 return isa205
2522 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2523
2524 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2525 }
2526
2527 if (cell)
2528 return tdesc_powerpc_cell32l;
2529 else if (vsx)
2530 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2531 else if (altivec)
2532 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2533
2534 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2535 }
2536
2537 void _initialize_ppc_linux_nat (void);
2538
2539 void
2540 _initialize_ppc_linux_nat (void)
2541 {
2542 struct target_ops *t;
2543
2544 /* Fill in the generic GNU/Linux methods. */
2545 t = linux_target ();
2546
2547 /* Add our register access methods. */
2548 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2549 t->to_store_registers = ppc_linux_store_inferior_registers;
2550
2551 /* Add our breakpoint/watchpoint methods. */
2552 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2553 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2554 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2555 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2556 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2557 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2558 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2559 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2560 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2561 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2562 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2563 t->to_can_accel_watchpoint_condition
2564 = ppc_linux_can_accel_watchpoint_condition;
2565 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2566 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2567
2568 t->to_read_description = ppc_linux_read_description;
2569 t->to_auxv_parse = ppc_linux_auxv_parse;
2570
2571 observer_attach_thread_exit (ppc_linux_thread_exit);
2572
2573 /* Register the target. */
2574 linux_nat_add_target (t);
2575 linux_nat_set_new_thread (t, ppc_linux_new_thread);
2576 }
This page took 0.086253 seconds and 5 git commands to generate.