Convert struct target_ops to C++
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "observable.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "gdbthread.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "target.h"
28 #include "linux-nat.h"
29 #include <sys/types.h>
30 #include <signal.h>
31 #include <sys/user.h>
32 #include <sys/ioctl.h>
33 #include "gdb_wait.h"
34 #include <fcntl.h>
35 #include <sys/procfs.h>
36 #include "nat/gdb_ptrace.h"
37 #include "inf-ptrace.h"
38
39 /* Prototypes for supply_gregset etc. */
40 #include "gregset.h"
41 #include "ppc-tdep.h"
42 #include "ppc-linux-tdep.h"
43
44 /* Required when using the AUXV. */
45 #include "elf/common.h"
46 #include "auxv.h"
47
48 #include "nat/ppc-linux.h"
49
50 /* Similarly for the hardware watchpoint support. These requests are used
51 when the PowerPC HWDEBUG ptrace interface is not available. */
52 #ifndef PTRACE_GET_DEBUGREG
53 #define PTRACE_GET_DEBUGREG 25
54 #endif
55 #ifndef PTRACE_SET_DEBUGREG
56 #define PTRACE_SET_DEBUGREG 26
57 #endif
58 #ifndef PTRACE_GETSIGINFO
59 #define PTRACE_GETSIGINFO 0x4202
60 #endif
61
62 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
63 available. It exposes the debug facilities of PowerPC processors, as well
64 as additional features of BookE processors, such as ranged breakpoints and
65 watchpoints and hardware-accelerated condition evaluation. */
66 #ifndef PPC_PTRACE_GETHWDBGINFO
67
68 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
69 ptrace interface is not present in ptrace.h, so we'll have to pretty much
70 include it all here so that the code at least compiles on older systems. */
71 #define PPC_PTRACE_GETHWDBGINFO 0x89
72 #define PPC_PTRACE_SETHWDEBUG 0x88
73 #define PPC_PTRACE_DELHWDEBUG 0x87
74
75 struct ppc_debug_info
76 {
77 uint32_t version; /* Only version 1 exists to date. */
78 uint32_t num_instruction_bps;
79 uint32_t num_data_bps;
80 uint32_t num_condition_regs;
81 uint32_t data_bp_alignment;
82 uint32_t sizeof_condition; /* size of the DVC register. */
83 uint64_t features;
84 };
85
86 /* Features will have bits indicating whether there is support for: */
87 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
88 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
89 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
90 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
91
92 struct ppc_hw_breakpoint
93 {
94 uint32_t version; /* currently, version must be 1 */
95 uint32_t trigger_type; /* only some combinations allowed */
96 uint32_t addr_mode; /* address match mode */
97 uint32_t condition_mode; /* break/watchpoint condition flags */
98 uint64_t addr; /* break/watchpoint address */
99 uint64_t addr2; /* range end or mask */
100 uint64_t condition_value; /* contents of the DVC register */
101 };
102
103 /* Trigger type. */
104 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
105 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
106 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
107 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
108
109 /* Address mode. */
110 #define PPC_BREAKPOINT_MODE_EXACT 0x0
111 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
112 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
113 #define PPC_BREAKPOINT_MODE_MASK 0x3
114
115 /* Condition mode. */
116 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
117 #define PPC_BREAKPOINT_CONDITION_AND 0x1
118 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
119 #define PPC_BREAKPOINT_CONDITION_OR 0x2
120 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
121 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
122 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
123 #define PPC_BREAKPOINT_CONDITION_BE(n) \
124 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
125 #endif /* PPC_PTRACE_GETHWDBGINFO */
126
127 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
128 watchpoint (up to 512 bytes). */
129 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
130 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
131 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
132
133 /* Similarly for the general-purpose (gp0 -- gp31)
134 and floating-point registers (fp0 -- fp31). */
135 #ifndef PTRACE_GETREGS
136 #define PTRACE_GETREGS 12
137 #endif
138 #ifndef PTRACE_SETREGS
139 #define PTRACE_SETREGS 13
140 #endif
141 #ifndef PTRACE_GETFPREGS
142 #define PTRACE_GETFPREGS 14
143 #endif
144 #ifndef PTRACE_SETFPREGS
145 #define PTRACE_SETFPREGS 15
146 #endif
147
148 /* This oddity is because the Linux kernel defines elf_vrregset_t as
149 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
150 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
151 the vrsave as an extra 4 bytes at the end. I opted for creating a
152 flat array of chars, so that it is easier to manipulate for gdb.
153
154 There are 32 vector registers 16 bytes longs, plus a VSCR register
155 which is only 4 bytes long, but is fetched as a 16 bytes
156 quantity. Up to here we have the elf_vrregset_t structure.
157 Appended to this there is space for the VRSAVE register: 4 bytes.
158 Even though this vrsave register is not included in the regset
159 typedef, it is handled by the ptrace requests.
160
161 Note that GNU/Linux doesn't support little endian PPC hardware,
162 therefore the offset at which the real value of the VSCR register
163 is located will be always 12 bytes.
164
165 The layout is like this (where x is the actual value of the vscr reg): */
166
167 /* *INDENT-OFF* */
168 /*
169 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
170 <-------> <-------><-------><->
171 VR0 VR31 VSCR VRSAVE
172 */
173 /* *INDENT-ON* */
174
175 #define SIZEOF_VRREGS 33*16+4
176
177 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
178
179 /* This is the layout of the POWER7 VSX registers and the way they overlap
180 with the existing FPR and VMX registers.
181
182 VSR doubleword 0 VSR doubleword 1
183 ----------------------------------------------------------------
184 VSR[0] | FPR[0] | |
185 ----------------------------------------------------------------
186 VSR[1] | FPR[1] | |
187 ----------------------------------------------------------------
188 | ... | |
189 | ... | |
190 ----------------------------------------------------------------
191 VSR[30] | FPR[30] | |
192 ----------------------------------------------------------------
193 VSR[31] | FPR[31] | |
194 ----------------------------------------------------------------
195 VSR[32] | VR[0] |
196 ----------------------------------------------------------------
197 VSR[33] | VR[1] |
198 ----------------------------------------------------------------
199 | ... |
200 | ... |
201 ----------------------------------------------------------------
202 VSR[62] | VR[30] |
203 ----------------------------------------------------------------
204 VSR[63] | VR[31] |
205 ----------------------------------------------------------------
206
207 VSX has 64 128bit registers. The first 32 registers overlap with
208 the FP registers (doubleword 0) and hence extend them with additional
209 64 bits (doubleword 1). The other 32 regs overlap with the VMX
210 registers. */
211 #define SIZEOF_VSXREGS 32*8
212
213 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
214
215 /* On PPC processors that support the Signal Processing Extension
216 (SPE) APU, the general-purpose registers are 64 bits long.
217 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
218 ptrace calls only access the lower half of each register, to allow
219 them to behave the same way they do on non-SPE systems. There's a
220 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
221 read and write the top halves of all the general-purpose registers
222 at once, along with some SPE-specific registers.
223
224 GDB itself continues to claim the general-purpose registers are 32
225 bits long. It has unnamed raw registers that hold the upper halves
226 of the gprs, and the full 64-bit SIMD views of the registers,
227 'ev0' -- 'ev31', are pseudo-registers that splice the top and
228 bottom halves together.
229
230 This is the structure filled in by PTRACE_GETEVRREGS and written to
231 the inferior's registers by PTRACE_SETEVRREGS. */
232 struct gdb_evrregset_t
233 {
234 unsigned long evr[32];
235 unsigned long long acc;
236 unsigned long spefscr;
237 };
238
239 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
240 PTRACE_SETVSXREGS requests, for reading and writing the VSX
241 POWER7 registers 0 through 31. Zero if we've tried one of them and
242 gotten an error. Note that VSX registers 32 through 63 overlap
243 with VR registers 0 through 31. */
244 int have_ptrace_getsetvsxregs = 1;
245
246 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
247 PTRACE_SETVRREGS requests, for reading and writing the Altivec
248 registers. Zero if we've tried one of them and gotten an
249 error. */
250 int have_ptrace_getvrregs = 1;
251
252 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
253 PTRACE_SETEVRREGS requests, for reading and writing the SPE
254 registers. Zero if we've tried one of them and gotten an
255 error. */
256 int have_ptrace_getsetevrregs = 1;
257
258 /* Non-zero if our kernel may support the PTRACE_GETREGS and
259 PTRACE_SETREGS requests, for reading and writing the
260 general-purpose registers. Zero if we've tried one of
261 them and gotten an error. */
262 int have_ptrace_getsetregs = 1;
263
264 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
265 PTRACE_SETFPREGS requests, for reading and writing the
266 floating-pointers registers. Zero if we've tried one of
267 them and gotten an error. */
268 int have_ptrace_getsetfpregs = 1;
269
270 struct ppc_linux_nat_target final : public linux_nat_target
271 {
272 /* Add our register access methods. */
273 void fetch_registers (struct regcache *, int) override;
274 void store_registers (struct regcache *, int) override;
275
276 /* Add our breakpoint/watchpoint methods. */
277 int can_use_hw_breakpoint (enum bptype, int, int) override;
278
279 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
280 override;
281
282 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
283 override;
284
285 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
286
287 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
288 struct expression *) override;
289
290 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
291 struct expression *) override;
292
293 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
294 override;
295
296 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
297 override;
298
299 int stopped_by_watchpoint () override;
300
301 int stopped_data_address (CORE_ADDR *) override;
302
303 int watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
304
305 int can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
306 override;
307
308 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
309
310 int ranged_break_num_registers () override;
311
312 const struct target_desc *read_description () override;
313
314 int auxv_parse (gdb_byte **readptr,
315 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
316 override;
317 };
318
319 static ppc_linux_nat_target the_ppc_linux_nat_target;
320
321 /* *INDENT-OFF* */
322 /* registers layout, as presented by the ptrace interface:
323 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
324 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
325 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
326 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
327 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
328 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
329 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
330 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
331 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
332 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
333 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
334 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
335 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
336 /* *INDENT_ON * */
337
338 static int
339 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
340 {
341 int u_addr = -1;
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
344 interface, and not the wordsize of the program's ABI. */
345 int wordsize = sizeof (long);
346
347 /* General purpose registers occupy 1 slot each in the buffer. */
348 if (regno >= tdep->ppc_gp0_regnum
349 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
350 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
351
352 /* Floating point regs: eight bytes each in both 32- and 64-bit
353 ptrace interfaces. Thus, two slots each in 32-bit interface, one
354 slot each in 64-bit interface. */
355 if (tdep->ppc_fp0_regnum >= 0
356 && regno >= tdep->ppc_fp0_regnum
357 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
358 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
359
360 /* UISA special purpose registers: 1 slot each. */
361 if (regno == gdbarch_pc_regnum (gdbarch))
362 u_addr = PT_NIP * wordsize;
363 if (regno == tdep->ppc_lr_regnum)
364 u_addr = PT_LNK * wordsize;
365 if (regno == tdep->ppc_cr_regnum)
366 u_addr = PT_CCR * wordsize;
367 if (regno == tdep->ppc_xer_regnum)
368 u_addr = PT_XER * wordsize;
369 if (regno == tdep->ppc_ctr_regnum)
370 u_addr = PT_CTR * wordsize;
371 #ifdef PT_MQ
372 if (regno == tdep->ppc_mq_regnum)
373 u_addr = PT_MQ * wordsize;
374 #endif
375 if (regno == tdep->ppc_ps_regnum)
376 u_addr = PT_MSR * wordsize;
377 if (regno == PPC_ORIG_R3_REGNUM)
378 u_addr = PT_ORIG_R3 * wordsize;
379 if (regno == PPC_TRAP_REGNUM)
380 u_addr = PT_TRAP * wordsize;
381 if (tdep->ppc_fpscr_regnum >= 0
382 && regno == tdep->ppc_fpscr_regnum)
383 {
384 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
385 kernel headers incorrectly contained the 32-bit definition of
386 PT_FPSCR. For the 32-bit definition, floating-point
387 registers occupy two 32-bit "slots", and the FPSCR lives in
388 the second half of such a slot-pair (hence +1). For 64-bit,
389 the FPSCR instead occupies the full 64-bit 2-word-slot and
390 hence no adjustment is necessary. Hack around this. */
391 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
392 u_addr = (48 + 32) * wordsize;
393 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
394 slot and not just its second word. The PT_FPSCR supplied when
395 GDB is compiled as a 32-bit app doesn't reflect this. */
396 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
397 && PT_FPSCR == (48 + 2*32 + 1))
398 u_addr = (48 + 2*32) * wordsize;
399 else
400 u_addr = PT_FPSCR * wordsize;
401 }
402 return u_addr;
403 }
404
405 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
406 registers set mechanism, as opposed to the interface for all the
407 other registers, that stores/fetches each register individually. */
408 static void
409 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
410 {
411 int ret;
412 gdb_vsxregset_t regs;
413 struct gdbarch *gdbarch = regcache->arch ();
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
416
417 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
418 if (ret < 0)
419 {
420 if (errno == EIO)
421 {
422 have_ptrace_getsetvsxregs = 0;
423 return;
424 }
425 perror_with_name (_("Unable to fetch VSX register"));
426 }
427
428 regcache_raw_supply (regcache, regno,
429 regs + (regno - tdep->ppc_vsr0_upper_regnum)
430 * vsxregsize);
431 }
432
433 /* The Linux kernel ptrace interface for AltiVec registers uses the
434 registers set mechanism, as opposed to the interface for all the
435 other registers, that stores/fetches each register individually. */
436 static void
437 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
438 {
439 int ret;
440 int offset = 0;
441 gdb_vrregset_t regs;
442 struct gdbarch *gdbarch = regcache->arch ();
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
445
446 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
447 if (ret < 0)
448 {
449 if (errno == EIO)
450 {
451 have_ptrace_getvrregs = 0;
452 return;
453 }
454 perror_with_name (_("Unable to fetch AltiVec register"));
455 }
456
457 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
458 long on the hardware. We deal only with the lower 4 bytes of the
459 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
460 there is no need to define an offset for it. */
461 if (regno == (tdep->ppc_vrsave_regnum - 1))
462 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
463
464 regcache_raw_supply (regcache, regno,
465 regs + (regno
466 - tdep->ppc_vr0_regnum) * vrregsize + offset);
467 }
468
469 /* Fetch the top 32 bits of TID's general-purpose registers and the
470 SPE-specific registers, and place the results in EVRREGSET. If we
471 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
472 zeros.
473
474 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
475 PTRACE_SETEVRREGS requests are supported is isolated here, and in
476 set_spe_registers. */
477 static void
478 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
479 {
480 if (have_ptrace_getsetevrregs)
481 {
482 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
483 return;
484 else
485 {
486 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
487 we just return zeros. */
488 if (errno == EIO)
489 have_ptrace_getsetevrregs = 0;
490 else
491 /* Anything else needs to be reported. */
492 perror_with_name (_("Unable to fetch SPE registers"));
493 }
494 }
495
496 memset (evrregset, 0, sizeof (*evrregset));
497 }
498
499 /* Supply values from TID for SPE-specific raw registers: the upper
500 halves of the GPRs, the accumulator, and the spefscr. REGNO must
501 be the number of an upper half register, acc, spefscr, or -1 to
502 supply the values of all registers. */
503 static void
504 fetch_spe_register (struct regcache *regcache, int tid, int regno)
505 {
506 struct gdbarch *gdbarch = regcache->arch ();
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508 struct gdb_evrregset_t evrregs;
509
510 gdb_assert (sizeof (evrregs.evr[0])
511 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
512 gdb_assert (sizeof (evrregs.acc)
513 == register_size (gdbarch, tdep->ppc_acc_regnum));
514 gdb_assert (sizeof (evrregs.spefscr)
515 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
516
517 get_spe_registers (tid, &evrregs);
518
519 if (regno == -1)
520 {
521 int i;
522
523 for (i = 0; i < ppc_num_gprs; i++)
524 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
525 &evrregs.evr[i]);
526 }
527 else if (tdep->ppc_ev0_upper_regnum <= regno
528 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
529 regcache_raw_supply (regcache, regno,
530 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
531
532 if (regno == -1
533 || regno == tdep->ppc_acc_regnum)
534 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
535
536 if (regno == -1
537 || regno == tdep->ppc_spefscr_regnum)
538 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
539 &evrregs.spefscr);
540 }
541
542 static void
543 fetch_register (struct regcache *regcache, int tid, int regno)
544 {
545 struct gdbarch *gdbarch = regcache->arch ();
546 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
547 /* This isn't really an address. But ptrace thinks of it as one. */
548 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
549 int bytes_transferred;
550 unsigned int offset; /* Offset of registers within the u area. */
551 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
552
553 if (altivec_register_p (gdbarch, regno))
554 {
555 /* If this is the first time through, or if it is not the first
556 time through, and we have comfirmed that there is kernel
557 support for such a ptrace request, then go and fetch the
558 register. */
559 if (have_ptrace_getvrregs)
560 {
561 fetch_altivec_register (regcache, tid, regno);
562 return;
563 }
564 /* If we have discovered that there is no ptrace support for
565 AltiVec registers, fall through and return zeroes, because
566 regaddr will be -1 in this case. */
567 }
568 if (vsx_register_p (gdbarch, regno))
569 {
570 if (have_ptrace_getsetvsxregs)
571 {
572 fetch_vsx_register (regcache, tid, regno);
573 return;
574 }
575 }
576 else if (spe_register_p (gdbarch, regno))
577 {
578 fetch_spe_register (regcache, tid, regno);
579 return;
580 }
581
582 if (regaddr == -1)
583 {
584 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
585 regcache_raw_supply (regcache, regno, buf);
586 return;
587 }
588
589 /* Read the raw register using sizeof(long) sized chunks. On a
590 32-bit platform, 64-bit floating-point registers will require two
591 transfers. */
592 for (bytes_transferred = 0;
593 bytes_transferred < register_size (gdbarch, regno);
594 bytes_transferred += sizeof (long))
595 {
596 long l;
597
598 errno = 0;
599 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
600 regaddr += sizeof (long);
601 if (errno != 0)
602 {
603 char message[128];
604 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
605 gdbarch_register_name (gdbarch, regno), regno);
606 perror_with_name (message);
607 }
608 memcpy (&buf[bytes_transferred], &l, sizeof (l));
609 }
610
611 /* Now supply the register. Keep in mind that the regcache's idea
612 of the register's size may not be a multiple of sizeof
613 (long). */
614 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
615 {
616 /* Little-endian values are always found at the left end of the
617 bytes transferred. */
618 regcache_raw_supply (regcache, regno, buf);
619 }
620 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
621 {
622 /* Big-endian values are found at the right end of the bytes
623 transferred. */
624 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
625 regcache_raw_supply (regcache, regno, buf + padding);
626 }
627 else
628 internal_error (__FILE__, __LINE__,
629 _("fetch_register: unexpected byte order: %d"),
630 gdbarch_byte_order (gdbarch));
631 }
632
633 static void
634 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
635 {
636 int i;
637 struct gdbarch *gdbarch = regcache->arch ();
638 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
639 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
640
641 for (i = 0; i < ppc_num_vshrs; i++)
642 {
643 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
644 *vsxregsetp + i * vsxregsize);
645 }
646 }
647
648 static void
649 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
650 {
651 int i;
652 struct gdbarch *gdbarch = regcache->arch ();
653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
654 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
655 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
656 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
657
658 for (i = 0; i < num_of_vrregs; i++)
659 {
660 /* The last 2 registers of this set are only 32 bit long, not
661 128. However an offset is necessary only for VSCR because it
662 occupies a whole vector, while VRSAVE occupies a full 4 bytes
663 slot. */
664 if (i == (num_of_vrregs - 2))
665 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
666 *vrregsetp + i * vrregsize + offset);
667 else
668 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
669 *vrregsetp + i * vrregsize);
670 }
671 }
672
673 static void
674 fetch_vsx_registers (struct regcache *regcache, int tid)
675 {
676 int ret;
677 gdb_vsxregset_t regs;
678
679 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
680 if (ret < 0)
681 {
682 if (errno == EIO)
683 {
684 have_ptrace_getsetvsxregs = 0;
685 return;
686 }
687 perror_with_name (_("Unable to fetch VSX registers"));
688 }
689 supply_vsxregset (regcache, &regs);
690 }
691
692 static void
693 fetch_altivec_registers (struct regcache *regcache, int tid)
694 {
695 int ret;
696 gdb_vrregset_t regs;
697
698 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
699 if (ret < 0)
700 {
701 if (errno == EIO)
702 {
703 have_ptrace_getvrregs = 0;
704 return;
705 }
706 perror_with_name (_("Unable to fetch AltiVec registers"));
707 }
708 supply_vrregset (regcache, &regs);
709 }
710
711 /* This function actually issues the request to ptrace, telling
712 it to get all general-purpose registers and put them into the
713 specified regset.
714
715 If the ptrace request does not exist, this function returns 0
716 and properly sets the have_ptrace_* flag. If the request fails,
717 this function calls perror_with_name. Otherwise, if the request
718 succeeds, then the regcache gets filled and 1 is returned. */
719 static int
720 fetch_all_gp_regs (struct regcache *regcache, int tid)
721 {
722 struct gdbarch *gdbarch = regcache->arch ();
723 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
724 gdb_gregset_t gregset;
725
726 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
727 {
728 if (errno == EIO)
729 {
730 have_ptrace_getsetregs = 0;
731 return 0;
732 }
733 perror_with_name (_("Couldn't get general-purpose registers."));
734 }
735
736 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
737
738 return 1;
739 }
740
741 /* This is a wrapper for the fetch_all_gp_regs function. It is
742 responsible for verifying if this target has the ptrace request
743 that can be used to fetch all general-purpose registers at one
744 shot. If it doesn't, then we should fetch them using the
745 old-fashioned way, which is to iterate over the registers and
746 request them one by one. */
747 static void
748 fetch_gp_regs (struct regcache *regcache, int tid)
749 {
750 struct gdbarch *gdbarch = regcache->arch ();
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 int i;
753
754 if (have_ptrace_getsetregs)
755 if (fetch_all_gp_regs (regcache, tid))
756 return;
757
758 /* If we've hit this point, it doesn't really matter which
759 architecture we are using. We just need to read the
760 registers in the "old-fashioned way". */
761 for (i = 0; i < ppc_num_gprs; i++)
762 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
763 }
764
765 /* This function actually issues the request to ptrace, telling
766 it to get all floating-point registers and put them into the
767 specified regset.
768
769 If the ptrace request does not exist, this function returns 0
770 and properly sets the have_ptrace_* flag. If the request fails,
771 this function calls perror_with_name. Otherwise, if the request
772 succeeds, then the regcache gets filled and 1 is returned. */
773 static int
774 fetch_all_fp_regs (struct regcache *regcache, int tid)
775 {
776 gdb_fpregset_t fpregs;
777
778 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
779 {
780 if (errno == EIO)
781 {
782 have_ptrace_getsetfpregs = 0;
783 return 0;
784 }
785 perror_with_name (_("Couldn't get floating-point registers."));
786 }
787
788 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
789
790 return 1;
791 }
792
793 /* This is a wrapper for the fetch_all_fp_regs function. It is
794 responsible for verifying if this target has the ptrace request
795 that can be used to fetch all floating-point registers at one
796 shot. If it doesn't, then we should fetch them using the
797 old-fashioned way, which is to iterate over the registers and
798 request them one by one. */
799 static void
800 fetch_fp_regs (struct regcache *regcache, int tid)
801 {
802 struct gdbarch *gdbarch = regcache->arch ();
803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
804 int i;
805
806 if (have_ptrace_getsetfpregs)
807 if (fetch_all_fp_regs (regcache, tid))
808 return;
809
810 /* If we've hit this point, it doesn't really matter which
811 architecture we are using. We just need to read the
812 registers in the "old-fashioned way". */
813 for (i = 0; i < ppc_num_fprs; i++)
814 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
815 }
816
817 static void
818 fetch_ppc_registers (struct regcache *regcache, int tid)
819 {
820 int i;
821 struct gdbarch *gdbarch = regcache->arch ();
822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
823
824 fetch_gp_regs (regcache, tid);
825 if (tdep->ppc_fp0_regnum >= 0)
826 fetch_fp_regs (regcache, tid);
827 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
828 if (tdep->ppc_ps_regnum != -1)
829 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
830 if (tdep->ppc_cr_regnum != -1)
831 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
832 if (tdep->ppc_lr_regnum != -1)
833 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
834 if (tdep->ppc_ctr_regnum != -1)
835 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
836 if (tdep->ppc_xer_regnum != -1)
837 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
838 if (tdep->ppc_mq_regnum != -1)
839 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
840 if (ppc_linux_trap_reg_p (gdbarch))
841 {
842 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
843 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
844 }
845 if (tdep->ppc_fpscr_regnum != -1)
846 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
847 if (have_ptrace_getvrregs)
848 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
849 fetch_altivec_registers (regcache, tid);
850 if (have_ptrace_getsetvsxregs)
851 if (tdep->ppc_vsr0_upper_regnum != -1)
852 fetch_vsx_registers (regcache, tid);
853 if (tdep->ppc_ev0_upper_regnum >= 0)
854 fetch_spe_register (regcache, tid, -1);
855 }
856
857 /* Fetch registers from the child process. Fetch all registers if
858 regno == -1, otherwise fetch all general registers or all floating
859 point registers depending upon the value of regno. */
860 void
861 ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
862 {
863 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
864
865 if (regno == -1)
866 fetch_ppc_registers (regcache, tid);
867 else
868 fetch_register (regcache, tid, regno);
869 }
870
871 /* Store one VSX register. */
872 static void
873 store_vsx_register (const struct regcache *regcache, int tid, int regno)
874 {
875 int ret;
876 gdb_vsxregset_t regs;
877 struct gdbarch *gdbarch = regcache->arch ();
878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
879 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
880
881 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
882 if (ret < 0)
883 {
884 if (errno == EIO)
885 {
886 have_ptrace_getsetvsxregs = 0;
887 return;
888 }
889 perror_with_name (_("Unable to fetch VSX register"));
890 }
891
892 regcache_raw_collect (regcache, regno, regs +
893 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
894
895 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
896 if (ret < 0)
897 perror_with_name (_("Unable to store VSX register"));
898 }
899
900 /* Store one register. */
901 static void
902 store_altivec_register (const struct regcache *regcache, int tid, int regno)
903 {
904 int ret;
905 int offset = 0;
906 gdb_vrregset_t regs;
907 struct gdbarch *gdbarch = regcache->arch ();
908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
909 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
910
911 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
912 if (ret < 0)
913 {
914 if (errno == EIO)
915 {
916 have_ptrace_getvrregs = 0;
917 return;
918 }
919 perror_with_name (_("Unable to fetch AltiVec register"));
920 }
921
922 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
923 long on the hardware. */
924 if (regno == (tdep->ppc_vrsave_regnum - 1))
925 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
926
927 regcache_raw_collect (regcache, regno,
928 regs + (regno
929 - tdep->ppc_vr0_regnum) * vrregsize + offset);
930
931 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
932 if (ret < 0)
933 perror_with_name (_("Unable to store AltiVec register"));
934 }
935
936 /* Assuming TID referrs to an SPE process, set the top halves of TID's
937 general-purpose registers and its SPE-specific registers to the
938 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
939 nothing.
940
941 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
942 PTRACE_SETEVRREGS requests are supported is isolated here, and in
943 get_spe_registers. */
944 static void
945 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
946 {
947 if (have_ptrace_getsetevrregs)
948 {
949 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
950 return;
951 else
952 {
953 /* EIO means that the PTRACE_SETEVRREGS request isn't
954 supported; we fail silently, and don't try the call
955 again. */
956 if (errno == EIO)
957 have_ptrace_getsetevrregs = 0;
958 else
959 /* Anything else needs to be reported. */
960 perror_with_name (_("Unable to set SPE registers"));
961 }
962 }
963 }
964
965 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
966 If REGNO is -1, write the values of all the SPE-specific
967 registers. */
968 static void
969 store_spe_register (const struct regcache *regcache, int tid, int regno)
970 {
971 struct gdbarch *gdbarch = regcache->arch ();
972 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
973 struct gdb_evrregset_t evrregs;
974
975 gdb_assert (sizeof (evrregs.evr[0])
976 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
977 gdb_assert (sizeof (evrregs.acc)
978 == register_size (gdbarch, tdep->ppc_acc_regnum));
979 gdb_assert (sizeof (evrregs.spefscr)
980 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
981
982 if (regno == -1)
983 /* Since we're going to write out every register, the code below
984 should store to every field of evrregs; if that doesn't happen,
985 make it obvious by initializing it with suspicious values. */
986 memset (&evrregs, 42, sizeof (evrregs));
987 else
988 /* We can only read and write the entire EVR register set at a
989 time, so to write just a single register, we do a
990 read-modify-write maneuver. */
991 get_spe_registers (tid, &evrregs);
992
993 if (regno == -1)
994 {
995 int i;
996
997 for (i = 0; i < ppc_num_gprs; i++)
998 regcache_raw_collect (regcache,
999 tdep->ppc_ev0_upper_regnum + i,
1000 &evrregs.evr[i]);
1001 }
1002 else if (tdep->ppc_ev0_upper_regnum <= regno
1003 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1004 regcache_raw_collect (regcache, regno,
1005 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1006
1007 if (regno == -1
1008 || regno == tdep->ppc_acc_regnum)
1009 regcache_raw_collect (regcache,
1010 tdep->ppc_acc_regnum,
1011 &evrregs.acc);
1012
1013 if (regno == -1
1014 || regno == tdep->ppc_spefscr_regnum)
1015 regcache_raw_collect (regcache,
1016 tdep->ppc_spefscr_regnum,
1017 &evrregs.spefscr);
1018
1019 /* Write back the modified register set. */
1020 set_spe_registers (tid, &evrregs);
1021 }
1022
1023 static void
1024 store_register (const struct regcache *regcache, int tid, int regno)
1025 {
1026 struct gdbarch *gdbarch = regcache->arch ();
1027 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1028 /* This isn't really an address. But ptrace thinks of it as one. */
1029 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1030 int i;
1031 size_t bytes_to_transfer;
1032 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
1033
1034 if (altivec_register_p (gdbarch, regno))
1035 {
1036 store_altivec_register (regcache, tid, regno);
1037 return;
1038 }
1039 if (vsx_register_p (gdbarch, regno))
1040 {
1041 store_vsx_register (regcache, tid, regno);
1042 return;
1043 }
1044 else if (spe_register_p (gdbarch, regno))
1045 {
1046 store_spe_register (regcache, tid, regno);
1047 return;
1048 }
1049
1050 if (regaddr == -1)
1051 return;
1052
1053 /* First collect the register. Keep in mind that the regcache's
1054 idea of the register's size may not be a multiple of sizeof
1055 (long). */
1056 memset (buf, 0, sizeof buf);
1057 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1058 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1059 {
1060 /* Little-endian values always sit at the left end of the buffer. */
1061 regcache_raw_collect (regcache, regno, buf);
1062 }
1063 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1064 {
1065 /* Big-endian values sit at the right end of the buffer. */
1066 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1067 regcache_raw_collect (regcache, regno, buf + padding);
1068 }
1069
1070 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1071 {
1072 long l;
1073
1074 memcpy (&l, &buf[i], sizeof (l));
1075 errno = 0;
1076 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1077 regaddr += sizeof (long);
1078
1079 if (errno == EIO
1080 && (regno == tdep->ppc_fpscr_regnum
1081 || regno == PPC_ORIG_R3_REGNUM
1082 || regno == PPC_TRAP_REGNUM))
1083 {
1084 /* Some older kernel versions don't allow fpscr, orig_r3
1085 or trap to be written. */
1086 continue;
1087 }
1088
1089 if (errno != 0)
1090 {
1091 char message[128];
1092 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1093 gdbarch_register_name (gdbarch, regno), regno);
1094 perror_with_name (message);
1095 }
1096 }
1097 }
1098
1099 static void
1100 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1101 {
1102 int i;
1103 struct gdbarch *gdbarch = regcache->arch ();
1104 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1105 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1106
1107 for (i = 0; i < ppc_num_vshrs; i++)
1108 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1109 *vsxregsetp + i * vsxregsize);
1110 }
1111
1112 static void
1113 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1114 {
1115 int i;
1116 struct gdbarch *gdbarch = regcache->arch ();
1117 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1118 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1119 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1120 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1121
1122 for (i = 0; i < num_of_vrregs; i++)
1123 {
1124 /* The last 2 registers of this set are only 32 bit long, not
1125 128, but only VSCR is fetched as a 16 bytes quantity. */
1126 if (i == (num_of_vrregs - 2))
1127 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1128 *vrregsetp + i * vrregsize + offset);
1129 else
1130 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1131 *vrregsetp + i * vrregsize);
1132 }
1133 }
1134
1135 static void
1136 store_vsx_registers (const struct regcache *regcache, int tid)
1137 {
1138 int ret;
1139 gdb_vsxregset_t regs;
1140
1141 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1142 if (ret < 0)
1143 {
1144 if (errno == EIO)
1145 {
1146 have_ptrace_getsetvsxregs = 0;
1147 return;
1148 }
1149 perror_with_name (_("Couldn't get VSX registers"));
1150 }
1151
1152 fill_vsxregset (regcache, &regs);
1153
1154 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1155 perror_with_name (_("Couldn't write VSX registers"));
1156 }
1157
1158 static void
1159 store_altivec_registers (const struct regcache *regcache, int tid)
1160 {
1161 int ret;
1162 gdb_vrregset_t regs;
1163
1164 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1165 if (ret < 0)
1166 {
1167 if (errno == EIO)
1168 {
1169 have_ptrace_getvrregs = 0;
1170 return;
1171 }
1172 perror_with_name (_("Couldn't get AltiVec registers"));
1173 }
1174
1175 fill_vrregset (regcache, &regs);
1176
1177 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
1178 perror_with_name (_("Couldn't write AltiVec registers"));
1179 }
1180
1181 /* This function actually issues the request to ptrace, telling
1182 it to store all general-purpose registers present in the specified
1183 regset.
1184
1185 If the ptrace request does not exist, this function returns 0
1186 and properly sets the have_ptrace_* flag. If the request fails,
1187 this function calls perror_with_name. Otherwise, if the request
1188 succeeds, then the regcache is stored and 1 is returned. */
1189 static int
1190 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1191 {
1192 struct gdbarch *gdbarch = regcache->arch ();
1193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1194 gdb_gregset_t gregset;
1195
1196 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1197 {
1198 if (errno == EIO)
1199 {
1200 have_ptrace_getsetregs = 0;
1201 return 0;
1202 }
1203 perror_with_name (_("Couldn't get general-purpose registers."));
1204 }
1205
1206 fill_gregset (regcache, &gregset, regno);
1207
1208 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1209 {
1210 if (errno == EIO)
1211 {
1212 have_ptrace_getsetregs = 0;
1213 return 0;
1214 }
1215 perror_with_name (_("Couldn't set general-purpose registers."));
1216 }
1217
1218 return 1;
1219 }
1220
1221 /* This is a wrapper for the store_all_gp_regs function. It is
1222 responsible for verifying if this target has the ptrace request
1223 that can be used to store all general-purpose registers at one
1224 shot. If it doesn't, then we should store them using the
1225 old-fashioned way, which is to iterate over the registers and
1226 store them one by one. */
1227 static void
1228 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1229 {
1230 struct gdbarch *gdbarch = regcache->arch ();
1231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1232 int i;
1233
1234 if (have_ptrace_getsetregs)
1235 if (store_all_gp_regs (regcache, tid, regno))
1236 return;
1237
1238 /* If we hit this point, it doesn't really matter which
1239 architecture we are using. We just need to store the
1240 registers in the "old-fashioned way". */
1241 for (i = 0; i < ppc_num_gprs; i++)
1242 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1243 }
1244
1245 /* This function actually issues the request to ptrace, telling
1246 it to store all floating-point registers present in the specified
1247 regset.
1248
1249 If the ptrace request does not exist, this function returns 0
1250 and properly sets the have_ptrace_* flag. If the request fails,
1251 this function calls perror_with_name. Otherwise, if the request
1252 succeeds, then the regcache is stored and 1 is returned. */
1253 static int
1254 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1255 {
1256 gdb_fpregset_t fpregs;
1257
1258 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1259 {
1260 if (errno == EIO)
1261 {
1262 have_ptrace_getsetfpregs = 0;
1263 return 0;
1264 }
1265 perror_with_name (_("Couldn't get floating-point registers."));
1266 }
1267
1268 fill_fpregset (regcache, &fpregs, regno);
1269
1270 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1271 {
1272 if (errno == EIO)
1273 {
1274 have_ptrace_getsetfpregs = 0;
1275 return 0;
1276 }
1277 perror_with_name (_("Couldn't set floating-point registers."));
1278 }
1279
1280 return 1;
1281 }
1282
1283 /* This is a wrapper for the store_all_fp_regs function. It is
1284 responsible for verifying if this target has the ptrace request
1285 that can be used to store all floating-point registers at one
1286 shot. If it doesn't, then we should store them using the
1287 old-fashioned way, which is to iterate over the registers and
1288 store them one by one. */
1289 static void
1290 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1291 {
1292 struct gdbarch *gdbarch = regcache->arch ();
1293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1294 int i;
1295
1296 if (have_ptrace_getsetfpregs)
1297 if (store_all_fp_regs (regcache, tid, regno))
1298 return;
1299
1300 /* If we hit this point, it doesn't really matter which
1301 architecture we are using. We just need to store the
1302 registers in the "old-fashioned way". */
1303 for (i = 0; i < ppc_num_fprs; i++)
1304 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1305 }
1306
1307 static void
1308 store_ppc_registers (const struct regcache *regcache, int tid)
1309 {
1310 int i;
1311 struct gdbarch *gdbarch = regcache->arch ();
1312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1313
1314 store_gp_regs (regcache, tid, -1);
1315 if (tdep->ppc_fp0_regnum >= 0)
1316 store_fp_regs (regcache, tid, -1);
1317 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1318 if (tdep->ppc_ps_regnum != -1)
1319 store_register (regcache, tid, tdep->ppc_ps_regnum);
1320 if (tdep->ppc_cr_regnum != -1)
1321 store_register (regcache, tid, tdep->ppc_cr_regnum);
1322 if (tdep->ppc_lr_regnum != -1)
1323 store_register (regcache, tid, tdep->ppc_lr_regnum);
1324 if (tdep->ppc_ctr_regnum != -1)
1325 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1326 if (tdep->ppc_xer_regnum != -1)
1327 store_register (regcache, tid, tdep->ppc_xer_regnum);
1328 if (tdep->ppc_mq_regnum != -1)
1329 store_register (regcache, tid, tdep->ppc_mq_regnum);
1330 if (tdep->ppc_fpscr_regnum != -1)
1331 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1332 if (ppc_linux_trap_reg_p (gdbarch))
1333 {
1334 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1335 store_register (regcache, tid, PPC_TRAP_REGNUM);
1336 }
1337 if (have_ptrace_getvrregs)
1338 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1339 store_altivec_registers (regcache, tid);
1340 if (have_ptrace_getsetvsxregs)
1341 if (tdep->ppc_vsr0_upper_regnum != -1)
1342 store_vsx_registers (regcache, tid);
1343 if (tdep->ppc_ev0_upper_regnum >= 0)
1344 store_spe_register (regcache, tid, -1);
1345 }
1346
1347 /* Fetch the AT_HWCAP entry from the aux vector. */
1348 static unsigned long
1349 ppc_linux_get_hwcap (void)
1350 {
1351 CORE_ADDR field;
1352
1353 if (target_auxv_search (target_stack, AT_HWCAP, &field))
1354 return (unsigned long) field;
1355
1356 return 0;
1357 }
1358
1359 /* The cached DABR value, to install in new threads.
1360 This variable is used when the PowerPC HWDEBUG ptrace
1361 interface is not available. */
1362 static long saved_dabr_value;
1363
1364 /* Global structure that will store information about the available
1365 features provided by the PowerPC HWDEBUG ptrace interface. */
1366 static struct ppc_debug_info hwdebug_info;
1367
1368 /* Global variable that holds the maximum number of slots that the
1369 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1370 is available. */
1371 static size_t max_slots_number = 0;
1372
1373 struct hw_break_tuple
1374 {
1375 long slot;
1376 struct ppc_hw_breakpoint *hw_break;
1377 };
1378
1379 /* This is an internal VEC created to store information about *points inserted
1380 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1381 available. */
1382 typedef struct thread_points
1383 {
1384 /* The TID to which this *point relates. */
1385 int tid;
1386 /* Information about the *point, such as its address, type, etc.
1387
1388 Each element inside this vector corresponds to a hardware
1389 breakpoint or watchpoint in the thread represented by TID. The maximum
1390 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1391 the tuple is NULL, then the position in the vector is free. */
1392 struct hw_break_tuple *hw_breaks;
1393 } *thread_points_p;
1394 DEF_VEC_P (thread_points_p);
1395
1396 VEC(thread_points_p) *ppc_threads = NULL;
1397
1398 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1399 available. */
1400 #define PPC_DEBUG_CURRENT_VERSION 1
1401
1402 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1403 static int
1404 have_ptrace_hwdebug_interface (void)
1405 {
1406 static int have_ptrace_hwdebug_interface = -1;
1407
1408 if (have_ptrace_hwdebug_interface == -1)
1409 {
1410 int tid;
1411
1412 tid = ptid_get_lwp (inferior_ptid);
1413 if (tid == 0)
1414 tid = ptid_get_pid (inferior_ptid);
1415
1416 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1417 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1418 {
1419 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1420 provides any supported feature. */
1421 if (hwdebug_info.features != 0)
1422 {
1423 have_ptrace_hwdebug_interface = 1;
1424 max_slots_number = hwdebug_info.num_instruction_bps
1425 + hwdebug_info.num_data_bps
1426 + hwdebug_info.num_condition_regs;
1427 return have_ptrace_hwdebug_interface;
1428 }
1429 }
1430 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1431 have_ptrace_hwdebug_interface = 0;
1432 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1433 }
1434
1435 return have_ptrace_hwdebug_interface;
1436 }
1437
1438 int
1439 ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
1440 {
1441 int total_hw_wp, total_hw_bp;
1442
1443 if (have_ptrace_hwdebug_interface ())
1444 {
1445 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1446 available hardware watchpoints and breakpoints is stored at the
1447 hwdebug_info struct. */
1448 total_hw_bp = hwdebug_info.num_instruction_bps;
1449 total_hw_wp = hwdebug_info.num_data_bps;
1450 }
1451 else
1452 {
1453 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1454 consider having 1 hardware watchpoint and no hardware breakpoints. */
1455 total_hw_bp = 0;
1456 total_hw_wp = 1;
1457 }
1458
1459 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1460 || type == bp_access_watchpoint || type == bp_watchpoint)
1461 {
1462 if (cnt + ot > total_hw_wp)
1463 return -1;
1464 }
1465 else if (type == bp_hardware_breakpoint)
1466 {
1467 if (total_hw_bp == 0)
1468 {
1469 /* No hardware breakpoint support. */
1470 return 0;
1471 }
1472 if (cnt > total_hw_bp)
1473 return -1;
1474 }
1475
1476 if (!have_ptrace_hwdebug_interface ())
1477 {
1478 int tid;
1479 ptid_t ptid = inferior_ptid;
1480
1481 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1482 and whether the target has DABR. If either answer is no, the
1483 ptrace call will return -1. Fail in that case. */
1484 tid = ptid_get_lwp (ptid);
1485 if (tid == 0)
1486 tid = ptid_get_pid (ptid);
1487
1488 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1489 return 0;
1490 }
1491
1492 return 1;
1493 }
1494
1495 int
1496 ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1497 {
1498 /* Handle sub-8-byte quantities. */
1499 if (len <= 0)
1500 return 0;
1501
1502 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1503 restrictions for watchpoints in the processors. In that case, we use that
1504 information to determine the hardcoded watchable region for
1505 watchpoints. */
1506 if (have_ptrace_hwdebug_interface ())
1507 {
1508 int region_size;
1509 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1510 watchpoints and can watch any access within an arbitrary memory
1511 region. This is useful to watch arrays and structs, for instance. It
1512 takes two hardware watchpoints though. */
1513 if (len > 1
1514 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1515 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1516 return 2;
1517 /* Check if the processor provides DAWR interface. */
1518 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1519 /* DAWR interface allows to watch up to 512 byte wide ranges which
1520 can't cross a 512 byte boundary. */
1521 region_size = 512;
1522 else
1523 region_size = hwdebug_info.data_bp_alignment;
1524 /* Server processors provide one hardware watchpoint and addr+len should
1525 fall in the watchable region provided by the ptrace interface. */
1526 if (region_size
1527 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1528 return 0;
1529 }
1530 /* addr+len must fall in the 8 byte watchable region for DABR-based
1531 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1532 ptrace interface, DAC-based processors (i.e., embedded processors) will
1533 use addresses aligned to 4-bytes due to the way the read/write flags are
1534 passed in the old ptrace interface. */
1535 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1536 && (addr + len) > (addr & ~3) + 4)
1537 || (addr + len) > (addr & ~7) + 8)
1538 return 0;
1539
1540 return 1;
1541 }
1542
1543 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1544 static int
1545 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1546 {
1547 return (a->trigger_type == b->trigger_type
1548 && a->addr_mode == b->addr_mode
1549 && a->condition_mode == b->condition_mode
1550 && a->addr == b->addr
1551 && a->addr2 == b->addr2
1552 && a->condition_value == b->condition_value);
1553 }
1554
1555 /* This function can be used to retrieve a thread_points by the TID of the
1556 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1557 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1558 provided TID will be created and returned. */
1559 static struct thread_points *
1560 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1561 {
1562 int i;
1563 struct thread_points *t;
1564
1565 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1566 if (t->tid == tid)
1567 return t;
1568
1569 t = NULL;
1570
1571 /* Do we need to allocate a new point_item
1572 if the wanted one does not exist? */
1573 if (alloc_new)
1574 {
1575 t = XNEW (struct thread_points);
1576 t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
1577 t->tid = tid;
1578 VEC_safe_push (thread_points_p, ppc_threads, t);
1579 }
1580
1581 return t;
1582 }
1583
1584 /* This function is a generic wrapper that is responsible for inserting a
1585 *point (i.e., calling `ptrace' in order to issue the request to the
1586 kernel) and registering it internally in GDB. */
1587 static void
1588 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1589 {
1590 int i;
1591 long slot;
1592 gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b));
1593 struct hw_break_tuple *hw_breaks;
1594 struct thread_points *t;
1595 struct hw_break_tuple *tuple;
1596
1597 errno = 0;
1598 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ());
1599 if (slot < 0)
1600 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1601
1602 /* Everything went fine, so we have to register this *point. */
1603 t = hwdebug_find_thread_points_by_tid (tid, 1);
1604 gdb_assert (t != NULL);
1605 hw_breaks = t->hw_breaks;
1606
1607 /* Find a free element in the hw_breaks vector. */
1608 for (i = 0; i < max_slots_number; i++)
1609 if (hw_breaks[i].hw_break == NULL)
1610 {
1611 hw_breaks[i].slot = slot;
1612 hw_breaks[i].hw_break = p.release ();
1613 break;
1614 }
1615
1616 gdb_assert (i != max_slots_number);
1617 }
1618
1619 /* This function is a generic wrapper that is responsible for removing a
1620 *point (i.e., calling `ptrace' in order to issue the request to the
1621 kernel), and unregistering it internally at GDB. */
1622 static void
1623 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1624 {
1625 int i;
1626 struct hw_break_tuple *hw_breaks;
1627 struct thread_points *t;
1628
1629 t = hwdebug_find_thread_points_by_tid (tid, 0);
1630 gdb_assert (t != NULL);
1631 hw_breaks = t->hw_breaks;
1632
1633 for (i = 0; i < max_slots_number; i++)
1634 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1635 break;
1636
1637 gdb_assert (i != max_slots_number);
1638
1639 /* We have to ignore ENOENT errors because the kernel implements hardware
1640 breakpoints/watchpoints as "one-shot", that is, they are automatically
1641 deleted when hit. */
1642 errno = 0;
1643 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1644 if (errno != ENOENT)
1645 perror_with_name (_("Unexpected error deleting "
1646 "breakpoint or watchpoint"));
1647
1648 xfree (hw_breaks[i].hw_break);
1649 hw_breaks[i].hw_break = NULL;
1650 }
1651
1652 /* Return the number of registers needed for a ranged breakpoint. */
1653
1654 int
1655 ppc_linux_nat_target::ranged_break_num_registers ()
1656 {
1657 return ((have_ptrace_hwdebug_interface ()
1658 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1659 2 : -1);
1660 }
1661
1662 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1663 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1664
1665 int
1666 ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1667 struct bp_target_info *bp_tgt)
1668 {
1669 struct lwp_info *lp;
1670 struct ppc_hw_breakpoint p;
1671
1672 if (!have_ptrace_hwdebug_interface ())
1673 return -1;
1674
1675 p.version = PPC_DEBUG_CURRENT_VERSION;
1676 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1677 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1678 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
1679 p.condition_value = 0;
1680
1681 if (bp_tgt->length)
1682 {
1683 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1684
1685 /* The breakpoint will trigger if the address of the instruction is
1686 within the defined range, as follows: p.addr <= address < p.addr2. */
1687 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1688 }
1689 else
1690 {
1691 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1692 p.addr2 = 0;
1693 }
1694
1695 ALL_LWPS (lp)
1696 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1697
1698 return 0;
1699 }
1700
1701 int
1702 ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1703 struct bp_target_info *bp_tgt)
1704 {
1705 struct lwp_info *lp;
1706 struct ppc_hw_breakpoint p;
1707
1708 if (!have_ptrace_hwdebug_interface ())
1709 return -1;
1710
1711 p.version = PPC_DEBUG_CURRENT_VERSION;
1712 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1713 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1714 p.addr = (uint64_t) bp_tgt->placed_address;
1715 p.condition_value = 0;
1716
1717 if (bp_tgt->length)
1718 {
1719 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1720
1721 /* The breakpoint will trigger if the address of the instruction is within
1722 the defined range, as follows: p.addr <= address < p.addr2. */
1723 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1724 }
1725 else
1726 {
1727 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1728 p.addr2 = 0;
1729 }
1730
1731 ALL_LWPS (lp)
1732 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1733
1734 return 0;
1735 }
1736
1737 static int
1738 get_trigger_type (enum target_hw_bp_type type)
1739 {
1740 int t;
1741
1742 if (type == hw_read)
1743 t = PPC_BREAKPOINT_TRIGGER_READ;
1744 else if (type == hw_write)
1745 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1746 else
1747 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1748
1749 return t;
1750 }
1751
1752 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1753 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1754 or hw_access for an access watchpoint. Returns 0 on success and throws
1755 an error on failure. */
1756
1757 int
1758 ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1759 target_hw_bp_type rw)
1760 {
1761 struct lwp_info *lp;
1762 struct ppc_hw_breakpoint p;
1763
1764 gdb_assert (have_ptrace_hwdebug_interface ());
1765
1766 p.version = PPC_DEBUG_CURRENT_VERSION;
1767 p.trigger_type = get_trigger_type (rw);
1768 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1769 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1770 p.addr = addr;
1771 p.addr2 = mask;
1772 p.condition_value = 0;
1773
1774 ALL_LWPS (lp)
1775 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1776
1777 return 0;
1778 }
1779
1780 /* Remove a masked watchpoint at ADDR with the mask MASK.
1781 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1782 or hw_access for an access watchpoint. Returns 0 on success and throws
1783 an error on failure. */
1784
1785 int
1786 ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1787 target_hw_bp_type rw)
1788 {
1789 struct lwp_info *lp;
1790 struct ppc_hw_breakpoint p;
1791
1792 gdb_assert (have_ptrace_hwdebug_interface ());
1793
1794 p.version = PPC_DEBUG_CURRENT_VERSION;
1795 p.trigger_type = get_trigger_type (rw);
1796 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1797 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1798 p.addr = addr;
1799 p.addr2 = mask;
1800 p.condition_value = 0;
1801
1802 ALL_LWPS (lp)
1803 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1804
1805 return 0;
1806 }
1807
1808 /* Check whether we have at least one free DVC register. */
1809 static int
1810 can_use_watchpoint_cond_accel (void)
1811 {
1812 struct thread_points *p;
1813 int tid = ptid_get_lwp (inferior_ptid);
1814 int cnt = hwdebug_info.num_condition_regs, i;
1815 CORE_ADDR tmp_value;
1816
1817 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1818 return 0;
1819
1820 p = hwdebug_find_thread_points_by_tid (tid, 0);
1821
1822 if (p)
1823 {
1824 for (i = 0; i < max_slots_number; i++)
1825 if (p->hw_breaks[i].hw_break != NULL
1826 && (p->hw_breaks[i].hw_break->condition_mode
1827 != PPC_BREAKPOINT_CONDITION_NONE))
1828 cnt--;
1829
1830 /* There are no available slots now. */
1831 if (cnt <= 0)
1832 return 0;
1833 }
1834
1835 return 1;
1836 }
1837
1838 /* Calculate the enable bits and the contents of the Data Value Compare
1839 debug register present in BookE processors.
1840
1841 ADDR is the address to be watched, LEN is the length of watched data
1842 and DATA_VALUE is the value which will trigger the watchpoint.
1843 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1844 CONDITION_VALUE will hold the value which should be put in the
1845 DVC register. */
1846 static void
1847 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1848 uint32_t *condition_mode, uint64_t *condition_value)
1849 {
1850 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1851 rightmost_enabled_byte;
1852 CORE_ADDR addr_end_data, addr_end_dvc;
1853
1854 /* The DVC register compares bytes within fixed-length windows which
1855 are word-aligned, with length equal to that of the DVC register.
1856 We need to calculate where our watch region is relative to that
1857 window and enable comparison of the bytes which fall within it. */
1858
1859 align_offset = addr % hwdebug_info.sizeof_condition;
1860 addr_end_data = addr + len;
1861 addr_end_dvc = (addr - align_offset
1862 + hwdebug_info.sizeof_condition);
1863 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1864 addr_end_data - addr_end_dvc : 0;
1865 num_byte_enable = len - num_bytes_off_dvc;
1866 /* Here, bytes are numbered from right to left. */
1867 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1868 addr_end_dvc - addr_end_data : 0;
1869
1870 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1871 for (i = 0; i < num_byte_enable; i++)
1872 *condition_mode
1873 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1874
1875 /* Now we need to match the position within the DVC of the comparison
1876 value with where the watch region is relative to the window
1877 (i.e., the ALIGN_OFFSET). */
1878
1879 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1880 << rightmost_enabled_byte * 8);
1881 }
1882
1883 /* Return the number of memory locations that need to be accessed to
1884 evaluate the expression which generated the given value chain.
1885 Returns -1 if there's any register access involved, or if there are
1886 other kinds of values which are not acceptable in a condition
1887 expression (e.g., lval_computed or lval_internalvar). */
1888 static int
1889 num_memory_accesses (const std::vector<value_ref_ptr> &chain)
1890 {
1891 int found_memory_cnt = 0;
1892
1893 /* The idea here is that evaluating an expression generates a series
1894 of values, one holding the value of every subexpression. (The
1895 expression a*b+c has five subexpressions: a, b, a*b, c, and
1896 a*b+c.) GDB's values hold almost enough information to establish
1897 the criteria given above --- they identify memory lvalues,
1898 register lvalues, computed values, etcetera. So we can evaluate
1899 the expression, and then scan the chain of values that leaves
1900 behind to determine the memory locations involved in the evaluation
1901 of an expression.
1902
1903 However, I don't think that the values returned by inferior
1904 function calls are special in any way. So this function may not
1905 notice that an expression contains an inferior function call.
1906 FIXME. */
1907
1908 for (const value_ref_ptr &iter : chain)
1909 {
1910 struct value *v = iter.get ();
1911
1912 /* Constants and values from the history are fine. */
1913 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1914 continue;
1915 else if (VALUE_LVAL (v) == lval_memory)
1916 {
1917 /* A lazy memory lvalue is one that GDB never needed to fetch;
1918 we either just used its address (e.g., `a' in `a.b') or
1919 we never needed it at all (e.g., `a' in `a,b'). */
1920 if (!value_lazy (v))
1921 found_memory_cnt++;
1922 }
1923 /* Other kinds of values are not fine. */
1924 else
1925 return -1;
1926 }
1927
1928 return found_memory_cnt;
1929 }
1930
1931 /* Verifies whether the expression COND can be implemented using the
1932 DVC (Data Value Compare) register in BookE processors. The expression
1933 must test the watch value for equality with a constant expression.
1934 If the function returns 1, DATA_VALUE will contain the constant against
1935 which the watch value should be compared and LEN will contain the size
1936 of the constant. */
1937 static int
1938 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1939 CORE_ADDR *data_value, int *len)
1940 {
1941 int pc = 1, num_accesses_left, num_accesses_right;
1942 struct value *left_val, *right_val;
1943 std::vector<value_ref_ptr> left_chain, right_chain;
1944
1945 if (cond->elts[0].opcode != BINOP_EQUAL)
1946 return 0;
1947
1948 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1949 num_accesses_left = num_memory_accesses (left_chain);
1950
1951 if (left_val == NULL || num_accesses_left < 0)
1952 return 0;
1953
1954 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1955 num_accesses_right = num_memory_accesses (right_chain);
1956
1957 if (right_val == NULL || num_accesses_right < 0)
1958 return 0;
1959
1960 if (num_accesses_left == 1 && num_accesses_right == 0
1961 && VALUE_LVAL (left_val) == lval_memory
1962 && value_address (left_val) == watch_addr)
1963 {
1964 *data_value = value_as_long (right_val);
1965
1966 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1967 the same type as the memory region referenced by LEFT_VAL. */
1968 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1969 }
1970 else if (num_accesses_left == 0 && num_accesses_right == 1
1971 && VALUE_LVAL (right_val) == lval_memory
1972 && value_address (right_val) == watch_addr)
1973 {
1974 *data_value = value_as_long (left_val);
1975
1976 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1977 the same type as the memory region referenced by RIGHT_VAL. */
1978 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1979 }
1980 else
1981 return 0;
1982
1983 return 1;
1984 }
1985
1986 /* Return non-zero if the target is capable of using hardware to evaluate
1987 the condition expression, thus only triggering the watchpoint when it is
1988 true. */
1989 int
1990 ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, int len,
1991 int rw,
1992 struct expression *cond)
1993 {
1994 CORE_ADDR data_value;
1995
1996 return (have_ptrace_hwdebug_interface ()
1997 && hwdebug_info.num_condition_regs > 0
1998 && check_condition (addr, cond, &data_value, &len));
1999 }
2000
2001 /* Set up P with the parameters necessary to request a watchpoint covering
2002 LEN bytes starting at ADDR and if possible with condition expression COND
2003 evaluated by hardware. INSERT tells if we are creating a request for
2004 inserting or removing the watchpoint. */
2005
2006 static void
2007 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2008 int len, enum target_hw_bp_type type,
2009 struct expression *cond, int insert)
2010 {
2011 if (len == 1
2012 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2013 {
2014 int use_condition;
2015 CORE_ADDR data_value;
2016
2017 use_condition = (insert? can_use_watchpoint_cond_accel ()
2018 : hwdebug_info.num_condition_regs > 0);
2019 if (cond && use_condition && check_condition (addr, cond,
2020 &data_value, &len))
2021 calculate_dvc (addr, len, data_value, &p->condition_mode,
2022 &p->condition_value);
2023 else
2024 {
2025 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2026 p->condition_value = 0;
2027 }
2028
2029 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2030 p->addr2 = 0;
2031 }
2032 else
2033 {
2034 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2035 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2036 p->condition_value = 0;
2037
2038 /* The watchpoint will trigger if the address of the memory access is
2039 within the defined range, as follows: p->addr <= address < p->addr2.
2040
2041 Note that the above sentence just documents how ptrace interprets
2042 its arguments; the watchpoint is set to watch the range defined by
2043 the user _inclusively_, as specified by the user interface. */
2044 p->addr2 = (uint64_t) addr + len;
2045 }
2046
2047 p->version = PPC_DEBUG_CURRENT_VERSION;
2048 p->trigger_type = get_trigger_type (type);
2049 p->addr = (uint64_t) addr;
2050 }
2051
2052 int
2053 ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
2054 enum target_hw_bp_type type,
2055 struct expression *cond)
2056 {
2057 struct lwp_info *lp;
2058 int ret = -1;
2059
2060 if (have_ptrace_hwdebug_interface ())
2061 {
2062 struct ppc_hw_breakpoint p;
2063
2064 create_watchpoint_request (&p, addr, len, type, cond, 1);
2065
2066 ALL_LWPS (lp)
2067 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
2068
2069 ret = 0;
2070 }
2071 else
2072 {
2073 long dabr_value;
2074 long read_mode, write_mode;
2075
2076 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2077 {
2078 /* PowerPC 440 requires only the read/write flags to be passed
2079 to the kernel. */
2080 read_mode = 1;
2081 write_mode = 2;
2082 }
2083 else
2084 {
2085 /* PowerPC 970 and other DABR-based processors are required to pass
2086 the Breakpoint Translation bit together with the flags. */
2087 read_mode = 5;
2088 write_mode = 6;
2089 }
2090
2091 dabr_value = addr & ~(read_mode | write_mode);
2092 switch (type)
2093 {
2094 case hw_read:
2095 /* Set read and translate bits. */
2096 dabr_value |= read_mode;
2097 break;
2098 case hw_write:
2099 /* Set write and translate bits. */
2100 dabr_value |= write_mode;
2101 break;
2102 case hw_access:
2103 /* Set read, write and translate bits. */
2104 dabr_value |= read_mode | write_mode;
2105 break;
2106 }
2107
2108 saved_dabr_value = dabr_value;
2109
2110 ALL_LWPS (lp)
2111 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2112 saved_dabr_value) < 0)
2113 return -1;
2114
2115 ret = 0;
2116 }
2117
2118 return ret;
2119 }
2120
2121 int
2122 ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
2123 enum target_hw_bp_type type,
2124 struct expression *cond)
2125 {
2126 struct lwp_info *lp;
2127 int ret = -1;
2128
2129 if (have_ptrace_hwdebug_interface ())
2130 {
2131 struct ppc_hw_breakpoint p;
2132
2133 create_watchpoint_request (&p, addr, len, type, cond, 0);
2134
2135 ALL_LWPS (lp)
2136 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
2137
2138 ret = 0;
2139 }
2140 else
2141 {
2142 saved_dabr_value = 0;
2143 ALL_LWPS (lp)
2144 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2145 saved_dabr_value) < 0)
2146 return -1;
2147
2148 ret = 0;
2149 }
2150
2151 return ret;
2152 }
2153
2154 static void
2155 ppc_linux_new_thread (struct lwp_info *lp)
2156 {
2157 int tid = ptid_get_lwp (lp->ptid);
2158
2159 if (have_ptrace_hwdebug_interface ())
2160 {
2161 int i;
2162 struct thread_points *p;
2163 struct hw_break_tuple *hw_breaks;
2164
2165 if (VEC_empty (thread_points_p, ppc_threads))
2166 return;
2167
2168 /* Get a list of breakpoints from any thread. */
2169 p = VEC_last (thread_points_p, ppc_threads);
2170 hw_breaks = p->hw_breaks;
2171
2172 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2173 for (i = 0; i < max_slots_number; i++)
2174 if (hw_breaks[i].hw_break)
2175 {
2176 /* Older kernels did not make new threads inherit their parent
2177 thread's debug state, so we always clear the slot and replicate
2178 the debug state ourselves, ensuring compatibility with all
2179 kernels. */
2180
2181 /* The ppc debug resource accounting is done through "slots".
2182 Ask the kernel the deallocate this specific *point's slot. */
2183 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2184
2185 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2186 }
2187 }
2188 else
2189 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2190 }
2191
2192 static void
2193 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2194 {
2195 int i;
2196 int tid = ptid_get_lwp (tp->ptid);
2197 struct hw_break_tuple *hw_breaks;
2198 struct thread_points *t = NULL, *p;
2199
2200 if (!have_ptrace_hwdebug_interface ())
2201 return;
2202
2203 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2204 if (p->tid == tid)
2205 {
2206 t = p;
2207 break;
2208 }
2209
2210 if (t == NULL)
2211 return;
2212
2213 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2214
2215 hw_breaks = t->hw_breaks;
2216
2217 for (i = 0; i < max_slots_number; i++)
2218 if (hw_breaks[i].hw_break)
2219 xfree (hw_breaks[i].hw_break);
2220
2221 xfree (t->hw_breaks);
2222 xfree (t);
2223 }
2224
2225 int
2226 ppc_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2227 {
2228 siginfo_t siginfo;
2229
2230 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2231 return 0;
2232
2233 if (siginfo.si_signo != SIGTRAP
2234 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2235 return 0;
2236
2237 if (have_ptrace_hwdebug_interface ())
2238 {
2239 int i;
2240 struct thread_points *t;
2241 struct hw_break_tuple *hw_breaks;
2242 /* The index (or slot) of the *point is passed in the si_errno field. */
2243 int slot = siginfo.si_errno;
2244
2245 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2246
2247 /* Find out if this *point is a hardware breakpoint.
2248 If so, we should return 0. */
2249 if (t)
2250 {
2251 hw_breaks = t->hw_breaks;
2252 for (i = 0; i < max_slots_number; i++)
2253 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2254 && hw_breaks[i].hw_break->trigger_type
2255 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2256 return 0;
2257 }
2258 }
2259
2260 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2261 return 1;
2262 }
2263
2264 int
2265 ppc_linux_nat_target::stopped_by_watchpoint ()
2266 {
2267 CORE_ADDR addr;
2268 return stopped_data_address (&addr);
2269 }
2270
2271 int
2272 ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
2273 CORE_ADDR start,
2274 int length)
2275 {
2276 int mask;
2277
2278 if (have_ptrace_hwdebug_interface ()
2279 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2280 return start <= addr && start + length >= addr;
2281 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2282 mask = 3;
2283 else
2284 mask = 7;
2285
2286 addr &= ~mask;
2287
2288 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2289 return start <= addr + mask && start + length - 1 >= addr;
2290 }
2291
2292 /* Return the number of registers needed for a masked hardware watchpoint. */
2293
2294 int
2295 ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
2296 {
2297 if (!have_ptrace_hwdebug_interface ()
2298 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2299 return -1;
2300 else if ((mask & 0xC0000000) != 0xC0000000)
2301 {
2302 warning (_("The given mask covers kernel address space "
2303 "and cannot be used.\n"));
2304
2305 return -2;
2306 }
2307 else
2308 return 2;
2309 }
2310
2311 void
2312 ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
2313 {
2314 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
2315
2316 if (regno >= 0)
2317 store_register (regcache, tid, regno);
2318 else
2319 store_ppc_registers (regcache, tid);
2320 }
2321
2322 /* Functions for transferring registers between a gregset_t or fpregset_t
2323 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2324 by the ptrace interface, not the current program's ABI. Eg. if a
2325 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2326 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2327
2328 void
2329 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2330 {
2331 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2332
2333 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2334 }
2335
2336 void
2337 fill_gregset (const struct regcache *regcache,
2338 gdb_gregset_t *gregsetp, int regno)
2339 {
2340 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2341
2342 if (regno == -1)
2343 memset (gregsetp, 0, sizeof (*gregsetp));
2344 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2345 }
2346
2347 void
2348 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2349 {
2350 const struct regset *regset = ppc_linux_fpregset ();
2351
2352 ppc_supply_fpregset (regset, regcache, -1,
2353 fpregsetp, sizeof (*fpregsetp));
2354 }
2355
2356 void
2357 fill_fpregset (const struct regcache *regcache,
2358 gdb_fpregset_t *fpregsetp, int regno)
2359 {
2360 const struct regset *regset = ppc_linux_fpregset ();
2361
2362 ppc_collect_fpregset (regset, regcache, regno,
2363 fpregsetp, sizeof (*fpregsetp));
2364 }
2365
2366 static int
2367 ppc_linux_target_wordsize (void)
2368 {
2369 int wordsize = 4;
2370
2371 /* Check for 64-bit inferior process. This is the case when the host is
2372 64-bit, and in addition the top bit of the MSR register is set. */
2373 #ifdef __powerpc64__
2374 long msr;
2375
2376 int tid = ptid_get_lwp (inferior_ptid);
2377 if (tid == 0)
2378 tid = ptid_get_pid (inferior_ptid);
2379
2380 errno = 0;
2381 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2382 if (errno == 0 && ppc64_64bit_inferior_p (msr))
2383 wordsize = 8;
2384 #endif
2385
2386 return wordsize;
2387 }
2388
2389 int
2390 ppc_linux_nat_target::auxv_parse (gdb_byte **readptr,
2391 gdb_byte *endptr, CORE_ADDR *typep,
2392 CORE_ADDR *valp)
2393 {
2394 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2395 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2396 gdb_byte *ptr = *readptr;
2397
2398 if (endptr == ptr)
2399 return 0;
2400
2401 if (endptr - ptr < sizeof_auxv_field * 2)
2402 return -1;
2403
2404 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2405 ptr += sizeof_auxv_field;
2406 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2407 ptr += sizeof_auxv_field;
2408
2409 *readptr = ptr;
2410 return 1;
2411 }
2412
2413 const struct target_desc *
2414 ppc_linux_nat_target::read_description ()
2415 {
2416 int altivec = 0;
2417 int vsx = 0;
2418 int isa205 = 0;
2419 int cell = 0;
2420
2421 int tid = ptid_get_lwp (inferior_ptid);
2422 if (tid == 0)
2423 tid = ptid_get_pid (inferior_ptid);
2424
2425 if (have_ptrace_getsetevrregs)
2426 {
2427 struct gdb_evrregset_t evrregset;
2428
2429 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2430 return tdesc_powerpc_e500l;
2431
2432 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2433 Anything else needs to be reported. */
2434 else if (errno != EIO)
2435 perror_with_name (_("Unable to fetch SPE registers"));
2436 }
2437
2438 if (have_ptrace_getsetvsxregs
2439 && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_VSX))
2440 {
2441 gdb_vsxregset_t vsxregset;
2442
2443 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2444 vsx = 1;
2445
2446 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2447 Anything else needs to be reported. */
2448 else if (errno != EIO)
2449 perror_with_name (_("Unable to fetch VSX registers"));
2450 }
2451
2452 if (have_ptrace_getvrregs
2453 && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_ALTIVEC))
2454 {
2455 gdb_vrregset_t vrregset;
2456
2457 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2458 altivec = 1;
2459
2460 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2461 Anything else needs to be reported. */
2462 else if (errno != EIO)
2463 perror_with_name (_("Unable to fetch AltiVec registers"));
2464 }
2465
2466 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2467 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2468 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2469 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2470 half of the register are for Decimal Floating Point, we check if that
2471 feature is available to decide the size of the FPSCR. */
2472 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2473 isa205 = 1;
2474
2475 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2476 cell = 1;
2477
2478 if (ppc_linux_target_wordsize () == 8)
2479 {
2480 if (cell)
2481 return tdesc_powerpc_cell64l;
2482 else if (vsx)
2483 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2484 else if (altivec)
2485 return isa205
2486 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2487
2488 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2489 }
2490
2491 if (cell)
2492 return tdesc_powerpc_cell32l;
2493 else if (vsx)
2494 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2495 else if (altivec)
2496 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2497
2498 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2499 }
2500
2501 void
2502 _initialize_ppc_linux_nat (void)
2503 {
2504 linux_target = &the_ppc_linux_nat_target;
2505
2506 gdb::observers::thread_exit.attach (ppc_linux_thread_exit);
2507
2508 /* Register the target. */
2509 add_target (linux_target);
2510
2511 linux_nat_set_new_thread (linux_target, ppc_linux_new_thread);
2512 }
This page took 0.08125 seconds and 5 git commands to generate.