5051cbfa82e441764c15ede5f05bc2655da6a4ae
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "regcache.h"
32 #include "value.h"
33 #include "osabi.h"
34 #include "regset.h"
35 #include "solib-svr4.h"
36 #include "ppc-tdep.h"
37 #include "ppc-linux-tdep.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "tramp-frame.h"
41
42 #include "features/rs6000/powerpc-32l.c"
43 #include "features/rs6000/powerpc-altivec32l.c"
44 #include "features/rs6000/powerpc-64l.c"
45 #include "features/rs6000/powerpc-altivec64l.c"
46 #include "features/rs6000/powerpc-e500l.c"
47
48
49 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
50 in much the same fashion as memory_remove_breakpoint in mem-break.c,
51 but is careful not to write back the previous contents if the code
52 in question has changed in between inserting the breakpoint and
53 removing it.
54
55 Here is the problem that we're trying to solve...
56
57 Once upon a time, before introducing this function to remove
58 breakpoints from the inferior, setting a breakpoint on a shared
59 library function prior to running the program would not work
60 properly. In order to understand the problem, it is first
61 necessary to understand a little bit about dynamic linking on
62 this platform.
63
64 A call to a shared library function is accomplished via a bl
65 (branch-and-link) instruction whose branch target is an entry
66 in the procedure linkage table (PLT). The PLT in the object
67 file is uninitialized. To gdb, prior to running the program, the
68 entries in the PLT are all zeros.
69
70 Once the program starts running, the shared libraries are loaded
71 and the procedure linkage table is initialized, but the entries in
72 the table are not (necessarily) resolved. Once a function is
73 actually called, the code in the PLT is hit and the function is
74 resolved. In order to better illustrate this, an example is in
75 order; the following example is from the gdb testsuite.
76
77 We start the program shmain.
78
79 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
80 [...]
81
82 We place two breakpoints, one on shr1 and the other on main.
83
84 (gdb) b shr1
85 Breakpoint 1 at 0x100409d4
86 (gdb) b main
87 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
88
89 Examine the instruction (and the immediatly following instruction)
90 upon which the breakpoint was placed. Note that the PLT entry
91 for shr1 contains zeros.
92
93 (gdb) x/2i 0x100409d4
94 0x100409d4 <shr1>: .long 0x0
95 0x100409d8 <shr1+4>: .long 0x0
96
97 Now run 'til main.
98
99 (gdb) r
100 Starting program: gdb.base/shmain
101 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
102
103 Breakpoint 2, main ()
104 at gdb.base/shmain.c:44
105 44 g = 1;
106
107 Examine the PLT again. Note that the loading of the shared
108 library has initialized the PLT to code which loads a constant
109 (which I think is an index into the GOT) into r11 and then
110 branchs a short distance to the code which actually does the
111 resolving.
112
113 (gdb) x/2i 0x100409d4
114 0x100409d4 <shr1>: li r11,4
115 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
116 (gdb) c
117 Continuing.
118
119 Breakpoint 1, shr1 (x=1)
120 at gdb.base/shr1.c:19
121 19 l = 1;
122
123 Now we've hit the breakpoint at shr1. (The breakpoint was
124 reset from the PLT entry to the actual shr1 function after the
125 shared library was loaded.) Note that the PLT entry has been
126 resolved to contain a branch that takes us directly to shr1.
127 (The real one, not the PLT entry.)
128
129 (gdb) x/2i 0x100409d4
130 0x100409d4 <shr1>: b 0xffaf76c <shr1>
131 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
132
133 The thing to note here is that the PLT entry for shr1 has been
134 changed twice.
135
136 Now the problem should be obvious. GDB places a breakpoint (a
137 trap instruction) on the zero value of the PLT entry for shr1.
138 Later on, after the shared library had been loaded and the PLT
139 initialized, GDB gets a signal indicating this fact and attempts
140 (as it always does when it stops) to remove all the breakpoints.
141
142 The breakpoint removal was causing the former contents (a zero
143 word) to be written back to the now initialized PLT entry thus
144 destroying a portion of the initialization that had occurred only a
145 short time ago. When execution continued, the zero word would be
146 executed as an instruction an an illegal instruction trap was
147 generated instead. (0 is not a legal instruction.)
148
149 The fix for this problem was fairly straightforward. The function
150 memory_remove_breakpoint from mem-break.c was copied to this file,
151 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
152 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
153 function.
154
155 The differences between ppc_linux_memory_remove_breakpoint () and
156 memory_remove_breakpoint () are minor. All that the former does
157 that the latter does not is check to make sure that the breakpoint
158 location actually contains a breakpoint (trap instruction) prior
159 to attempting to write back the old contents. If it does contain
160 a trap instruction, we allow the old contents to be written back.
161 Otherwise, we silently do nothing.
162
163 The big question is whether memory_remove_breakpoint () should be
164 changed to have the same functionality. The downside is that more
165 traffic is generated for remote targets since we'll have an extra
166 fetch of a memory word each time a breakpoint is removed.
167
168 For the time being, we'll leave this self-modifying-code-friendly
169 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
170 else in the event that some other platform has similar needs with
171 regard to removing breakpoints in some potentially self modifying
172 code. */
173 int
174 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
175 struct bp_target_info *bp_tgt)
176 {
177 CORE_ADDR addr = bp_tgt->placed_address;
178 const unsigned char *bp;
179 int val;
180 int bplen;
181 gdb_byte old_contents[BREAKPOINT_MAX];
182 struct cleanup *cleanup;
183
184 /* Determine appropriate breakpoint contents and size for this address. */
185 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
186 if (bp == NULL)
187 error (_("Software breakpoints not implemented for this target."));
188
189 /* Make sure we see the memory breakpoints. */
190 cleanup = make_show_memory_breakpoints_cleanup (1);
191 val = target_read_memory (addr, old_contents, bplen);
192
193 /* If our breakpoint is no longer at the address, this means that the
194 program modified the code on us, so it is wrong to put back the
195 old value */
196 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
197 val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
198
199 do_cleanups (cleanup);
200 return val;
201 }
202
203 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
204 than the 32 bit SYSV R4 ABI structure return convention - all
205 structures, no matter their size, are put in memory. Vectors,
206 which were added later, do get returned in a register though. */
207
208 static enum return_value_convention
209 ppc_linux_return_value (struct gdbarch *gdbarch, struct type *func_type,
210 struct type *valtype, struct regcache *regcache,
211 gdb_byte *readbuf, const gdb_byte *writebuf)
212 {
213 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
214 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
215 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
216 && TYPE_VECTOR (valtype)))
217 return RETURN_VALUE_STRUCT_CONVENTION;
218 else
219 return ppc_sysv_abi_return_value (gdbarch, func_type, valtype, regcache,
220 readbuf, writebuf);
221 }
222
223 /* Macros for matching instructions. Note that, since all the
224 operands are masked off before they're or-ed into the instruction,
225 you can use -1 to make masks. */
226
227 #define insn_d(opcd, rts, ra, d) \
228 ((((opcd) & 0x3f) << 26) \
229 | (((rts) & 0x1f) << 21) \
230 | (((ra) & 0x1f) << 16) \
231 | ((d) & 0xffff))
232
233 #define insn_ds(opcd, rts, ra, d, xo) \
234 ((((opcd) & 0x3f) << 26) \
235 | (((rts) & 0x1f) << 21) \
236 | (((ra) & 0x1f) << 16) \
237 | ((d) & 0xfffc) \
238 | ((xo) & 0x3))
239
240 #define insn_xfx(opcd, rts, spr, xo) \
241 ((((opcd) & 0x3f) << 26) \
242 | (((rts) & 0x1f) << 21) \
243 | (((spr) & 0x1f) << 16) \
244 | (((spr) & 0x3e0) << 6) \
245 | (((xo) & 0x3ff) << 1))
246
247 /* Read a PPC instruction from memory. PPC instructions are always
248 big-endian, no matter what endianness the program is running in, so
249 we can't use read_memory_integer or one of its friends here. */
250 static unsigned int
251 read_insn (CORE_ADDR pc)
252 {
253 unsigned char buf[4];
254
255 read_memory (pc, buf, 4);
256 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
257 }
258
259
260 /* An instruction to match. */
261 struct insn_pattern
262 {
263 unsigned int mask; /* mask the insn with this... */
264 unsigned int data; /* ...and see if it matches this. */
265 int optional; /* If non-zero, this insn may be absent. */
266 };
267
268 /* Return non-zero if the instructions at PC match the series
269 described in PATTERN, or zero otherwise. PATTERN is an array of
270 'struct insn_pattern' objects, terminated by an entry whose mask is
271 zero.
272
273 When the match is successful, fill INSN[i] with what PATTERN[i]
274 matched. If PATTERN[i] is optional, and the instruction wasn't
275 present, set INSN[i] to 0 (which is not a valid PPC instruction).
276 INSN should have as many elements as PATTERN. Note that, if
277 PATTERN contains optional instructions which aren't present in
278 memory, then INSN will have holes, so INSN[i] isn't necessarily the
279 i'th instruction in memory. */
280 static int
281 insns_match_pattern (CORE_ADDR pc,
282 struct insn_pattern *pattern,
283 unsigned int *insn)
284 {
285 int i;
286
287 for (i = 0; pattern[i].mask; i++)
288 {
289 insn[i] = read_insn (pc);
290 if ((insn[i] & pattern[i].mask) == pattern[i].data)
291 pc += 4;
292 else if (pattern[i].optional)
293 insn[i] = 0;
294 else
295 return 0;
296 }
297
298 return 1;
299 }
300
301
302 /* Return the 'd' field of the d-form instruction INSN, properly
303 sign-extended. */
304 static CORE_ADDR
305 insn_d_field (unsigned int insn)
306 {
307 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
308 }
309
310
311 /* Return the 'ds' field of the ds-form instruction INSN, with the two
312 zero bits concatenated at the right, and properly
313 sign-extended. */
314 static CORE_ADDR
315 insn_ds_field (unsigned int insn)
316 {
317 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
318 }
319
320
321 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
322 descriptor, return the descriptor's entry point. */
323 static CORE_ADDR
324 ppc64_desc_entry_point (CORE_ADDR desc)
325 {
326 /* The first word of the descriptor is the entry point. */
327 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
328 }
329
330
331 /* Pattern for the standard linkage function. These are built by
332 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
333 zero. */
334 static struct insn_pattern ppc64_standard_linkage1[] =
335 {
336 /* addis r12, r2, <any> */
337 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
338
339 /* std r2, 40(r1) */
340 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
341
342 /* ld r11, <any>(r12) */
343 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
344
345 /* addis r12, r12, 1 <optional> */
346 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
347
348 /* ld r2, <any>(r12) */
349 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
350
351 /* addis r12, r12, 1 <optional> */
352 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
353
354 /* mtctr r11 */
355 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
356
357 /* ld r11, <any>(r12) */
358 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
359
360 /* bctr */
361 { -1, 0x4e800420, 0 },
362
363 { 0, 0, 0 }
364 };
365 #define PPC64_STANDARD_LINKAGE1_LEN \
366 (sizeof (ppc64_standard_linkage1) / sizeof (ppc64_standard_linkage1[0]))
367
368 static struct insn_pattern ppc64_standard_linkage2[] =
369 {
370 /* addis r12, r2, <any> */
371 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
372
373 /* std r2, 40(r1) */
374 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
375
376 /* ld r11, <any>(r12) */
377 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
378
379 /* addi r12, r12, <any> <optional> */
380 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
381
382 /* mtctr r11 */
383 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
384
385 /* ld r2, <any>(r12) */
386 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
387
388 /* ld r11, <any>(r12) */
389 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
390
391 /* bctr */
392 { -1, 0x4e800420, 0 },
393
394 { 0, 0, 0 }
395 };
396 #define PPC64_STANDARD_LINKAGE2_LEN \
397 (sizeof (ppc64_standard_linkage2) / sizeof (ppc64_standard_linkage2[0]))
398
399 static struct insn_pattern ppc64_standard_linkage3[] =
400 {
401 /* std r2, 40(r1) */
402 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
403
404 /* ld r11, <any>(r2) */
405 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
406
407 /* addi r2, r2, <any> <optional> */
408 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
409
410 /* mtctr r11 */
411 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
412
413 /* ld r11, <any>(r2) */
414 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
415
416 /* ld r2, <any>(r2) */
417 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
418
419 /* bctr */
420 { -1, 0x4e800420, 0 },
421
422 { 0, 0, 0 }
423 };
424 #define PPC64_STANDARD_LINKAGE3_LEN \
425 (sizeof (ppc64_standard_linkage3) / sizeof (ppc64_standard_linkage3[0]))
426
427
428 /* When the dynamic linker is doing lazy symbol resolution, the first
429 call to a function in another object will go like this:
430
431 - The user's function calls the linkage function:
432
433 100007c4: 4b ff fc d5 bl 10000498
434 100007c8: e8 41 00 28 ld r2,40(r1)
435
436 - The linkage function loads the entry point (and other stuff) from
437 the function descriptor in the PLT, and jumps to it:
438
439 10000498: 3d 82 00 00 addis r12,r2,0
440 1000049c: f8 41 00 28 std r2,40(r1)
441 100004a0: e9 6c 80 98 ld r11,-32616(r12)
442 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
443 100004a8: 7d 69 03 a6 mtctr r11
444 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
445 100004b0: 4e 80 04 20 bctr
446
447 - But since this is the first time that PLT entry has been used, it
448 sends control to its glink entry. That loads the number of the
449 PLT entry and jumps to the common glink0 code:
450
451 10000c98: 38 00 00 00 li r0,0
452 10000c9c: 4b ff ff dc b 10000c78
453
454 - The common glink0 code then transfers control to the dynamic
455 linker's fixup code:
456
457 10000c78: e8 41 00 28 ld r2,40(r1)
458 10000c7c: 3d 82 00 00 addis r12,r2,0
459 10000c80: e9 6c 80 80 ld r11,-32640(r12)
460 10000c84: e8 4c 80 88 ld r2,-32632(r12)
461 10000c88: 7d 69 03 a6 mtctr r11
462 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
463 10000c90: 4e 80 04 20 bctr
464
465 Eventually, this code will figure out how to skip all of this,
466 including the dynamic linker. At the moment, we just get through
467 the linkage function. */
468
469 /* If the current thread is about to execute a series of instructions
470 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
471 from that pattern match, return the code address to which the
472 standard linkage function will send them. (This doesn't deal with
473 dynamic linker lazy symbol resolution stubs.) */
474 static CORE_ADDR
475 ppc64_standard_linkage1_target (struct frame_info *frame,
476 CORE_ADDR pc, unsigned int *insn)
477 {
478 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
479
480 /* The address of the function descriptor this linkage function
481 references. */
482 CORE_ADDR desc
483 = ((CORE_ADDR) get_frame_register_unsigned (frame,
484 tdep->ppc_gp0_regnum + 2)
485 + (insn_d_field (insn[0]) << 16)
486 + insn_ds_field (insn[2]));
487
488 /* The first word of the descriptor is the entry point. Return that. */
489 return ppc64_desc_entry_point (desc);
490 }
491
492 static struct core_regset_section ppc_linux_regset_sections[] =
493 {
494 { ".reg", 268 },
495 { ".reg2", 264 },
496 { ".reg-ppc-vmx", 544 },
497 { NULL, 0}
498 };
499
500 static CORE_ADDR
501 ppc64_standard_linkage2_target (struct frame_info *frame,
502 CORE_ADDR pc, unsigned int *insn)
503 {
504 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
505
506 /* The address of the function descriptor this linkage function
507 references. */
508 CORE_ADDR desc
509 = ((CORE_ADDR) get_frame_register_unsigned (frame,
510 tdep->ppc_gp0_regnum + 2)
511 + (insn_d_field (insn[0]) << 16)
512 + insn_ds_field (insn[2]));
513
514 /* The first word of the descriptor is the entry point. Return that. */
515 return ppc64_desc_entry_point (desc);
516 }
517
518 static CORE_ADDR
519 ppc64_standard_linkage3_target (struct frame_info *frame,
520 CORE_ADDR pc, unsigned int *insn)
521 {
522 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
523
524 /* The address of the function descriptor this linkage function
525 references. */
526 CORE_ADDR desc
527 = ((CORE_ADDR) get_frame_register_unsigned (frame,
528 tdep->ppc_gp0_regnum + 2)
529 + insn_ds_field (insn[1]));
530
531 /* The first word of the descriptor is the entry point. Return that. */
532 return ppc64_desc_entry_point (desc);
533 }
534
535
536 /* Given that we've begun executing a call trampoline at PC, return
537 the entry point of the function the trampoline will go to. */
538 static CORE_ADDR
539 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
540 {
541 unsigned int ppc64_standard_linkage1_insn[PPC64_STANDARD_LINKAGE1_LEN];
542 unsigned int ppc64_standard_linkage2_insn[PPC64_STANDARD_LINKAGE2_LEN];
543 unsigned int ppc64_standard_linkage3_insn[PPC64_STANDARD_LINKAGE3_LEN];
544 CORE_ADDR target;
545
546 if (insns_match_pattern (pc, ppc64_standard_linkage1,
547 ppc64_standard_linkage1_insn))
548 pc = ppc64_standard_linkage1_target (frame, pc,
549 ppc64_standard_linkage1_insn);
550 else if (insns_match_pattern (pc, ppc64_standard_linkage2,
551 ppc64_standard_linkage2_insn))
552 pc = ppc64_standard_linkage2_target (frame, pc,
553 ppc64_standard_linkage2_insn);
554 else if (insns_match_pattern (pc, ppc64_standard_linkage3,
555 ppc64_standard_linkage3_insn))
556 pc = ppc64_standard_linkage3_target (frame, pc,
557 ppc64_standard_linkage3_insn);
558 else
559 return 0;
560
561 /* The PLT descriptor will either point to the already resolved target
562 address, or else to a glink stub. As the latter carry synthetic @plt
563 symbols, find_solib_trampoline_target should be able to resolve them. */
564 target = find_solib_trampoline_target (frame, pc);
565 return target? target : pc;
566 }
567
568
569 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
570 GNU/Linux.
571
572 Usually a function pointer's representation is simply the address
573 of the function. On GNU/Linux on the PowerPC however, a function
574 pointer may be a pointer to a function descriptor.
575
576 For PPC64, a function descriptor is a TOC entry, in a data section,
577 which contains three words: the first word is the address of the
578 function, the second word is the TOC pointer (r2), and the third word
579 is the static chain value.
580
581 Throughout GDB it is currently assumed that a function pointer contains
582 the address of the function, which is not easy to fix. In addition, the
583 conversion of a function address to a function pointer would
584 require allocation of a TOC entry in the inferior's memory space,
585 with all its drawbacks. To be able to call C++ virtual methods in
586 the inferior (which are called via function pointers),
587 find_function_addr uses this function to get the function address
588 from a function pointer.
589
590 If ADDR points at what is clearly a function descriptor, transform
591 it into the address of the corresponding function, if needed. Be
592 conservative, otherwise GDB will do the transformation on any
593 random addresses such as occur when there is no symbol table. */
594
595 static CORE_ADDR
596 ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
597 CORE_ADDR addr,
598 struct target_ops *targ)
599 {
600 struct section_table *s = target_section_by_addr (targ, addr);
601
602 /* Check if ADDR points to a function descriptor. */
603 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
604 return get_target_memory_unsigned (targ, addr, 8);
605
606 return addr;
607 }
608
609 /* Wrappers to handle Linux-only registers. */
610
611 static void
612 ppc_linux_supply_gregset (const struct regset *regset,
613 struct regcache *regcache,
614 int regnum, const void *gregs, size_t len)
615 {
616 const struct ppc_reg_offsets *offsets = regset->descr;
617
618 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
619
620 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
621 {
622 /* "orig_r3" is stored 2 slots after "pc". */
623 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
624 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
625 offsets->pc_offset + 2 * offsets->gpr_size,
626 offsets->gpr_size);
627
628 /* "trap" is stored 8 slots after "pc". */
629 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
630 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
631 offsets->pc_offset + 8 * offsets->gpr_size,
632 offsets->gpr_size);
633 }
634 }
635
636 static void
637 ppc_linux_collect_gregset (const struct regset *regset,
638 const struct regcache *regcache,
639 int regnum, void *gregs, size_t len)
640 {
641 const struct ppc_reg_offsets *offsets = regset->descr;
642
643 /* Clear areas in the linux gregset not written elsewhere. */
644 if (regnum == -1)
645 memset (gregs, 0, len);
646
647 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
648
649 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
650 {
651 /* "orig_r3" is stored 2 slots after "pc". */
652 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
653 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
654 offsets->pc_offset + 2 * offsets->gpr_size,
655 offsets->gpr_size);
656
657 /* "trap" is stored 8 slots after "pc". */
658 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
659 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
660 offsets->pc_offset + 8 * offsets->gpr_size,
661 offsets->gpr_size);
662 }
663 }
664
665 /* Regset descriptions. */
666 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
667 {
668 /* General-purpose registers. */
669 /* .r0_offset = */ 0,
670 /* .gpr_size = */ 4,
671 /* .xr_size = */ 4,
672 /* .pc_offset = */ 128,
673 /* .ps_offset = */ 132,
674 /* .cr_offset = */ 152,
675 /* .lr_offset = */ 144,
676 /* .ctr_offset = */ 140,
677 /* .xer_offset = */ 148,
678 /* .mq_offset = */ 156,
679
680 /* Floating-point registers. */
681 /* .f0_offset = */ 0,
682 /* .fpscr_offset = */ 256,
683 /* .fpscr_size = */ 8,
684
685 /* AltiVec registers. */
686 /* .vr0_offset = */ 0,
687 /* .vscr_offset = */ 512 + 12,
688 /* .vrsave_offset = */ 528
689 };
690
691 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
692 {
693 /* General-purpose registers. */
694 /* .r0_offset = */ 0,
695 /* .gpr_size = */ 8,
696 /* .xr_size = */ 8,
697 /* .pc_offset = */ 256,
698 /* .ps_offset = */ 264,
699 /* .cr_offset = */ 304,
700 /* .lr_offset = */ 288,
701 /* .ctr_offset = */ 280,
702 /* .xer_offset = */ 296,
703 /* .mq_offset = */ 312,
704
705 /* Floating-point registers. */
706 /* .f0_offset = */ 0,
707 /* .fpscr_offset = */ 256,
708 /* .fpscr_size = */ 8,
709
710 /* AltiVec registers. */
711 /* .vr0_offset = */ 0,
712 /* .vscr_offset = */ 512 + 12,
713 /* .vrsave_offset = */ 528
714 };
715
716 static const struct regset ppc32_linux_gregset = {
717 &ppc32_linux_reg_offsets,
718 ppc_linux_supply_gregset,
719 ppc_linux_collect_gregset,
720 NULL
721 };
722
723 static const struct regset ppc64_linux_gregset = {
724 &ppc64_linux_reg_offsets,
725 ppc_linux_supply_gregset,
726 ppc_linux_collect_gregset,
727 NULL
728 };
729
730 static const struct regset ppc32_linux_fpregset = {
731 &ppc32_linux_reg_offsets,
732 ppc_supply_fpregset,
733 ppc_collect_fpregset,
734 NULL
735 };
736
737 static const struct regset ppc32_linux_vrregset = {
738 &ppc32_linux_reg_offsets,
739 ppc_supply_vrregset,
740 ppc_collect_vrregset,
741 NULL
742 };
743
744 const struct regset *
745 ppc_linux_gregset (int wordsize)
746 {
747 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
748 }
749
750 const struct regset *
751 ppc_linux_fpregset (void)
752 {
753 return &ppc32_linux_fpregset;
754 }
755
756 static const struct regset *
757 ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
758 const char *sect_name, size_t sect_size)
759 {
760 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
761 if (strcmp (sect_name, ".reg") == 0)
762 {
763 if (tdep->wordsize == 4)
764 return &ppc32_linux_gregset;
765 else
766 return &ppc64_linux_gregset;
767 }
768 if (strcmp (sect_name, ".reg2") == 0)
769 return &ppc32_linux_fpregset;
770 if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
771 return &ppc32_linux_vrregset;
772 return NULL;
773 }
774
775 static void
776 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
777 struct trad_frame_cache *this_cache,
778 CORE_ADDR func, LONGEST offset,
779 int bias)
780 {
781 CORE_ADDR base;
782 CORE_ADDR regs;
783 CORE_ADDR gpregs;
784 CORE_ADDR fpregs;
785 int i;
786 struct gdbarch *gdbarch = get_frame_arch (this_frame);
787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
788
789 base = get_frame_register_unsigned (this_frame,
790 gdbarch_sp_regnum (gdbarch));
791 if (bias > 0 && get_frame_pc (this_frame) != func)
792 /* See below, some signal trampolines increment the stack as their
793 first instruction, need to compensate for that. */
794 base -= bias;
795
796 /* Find the address of the register buffer pointer. */
797 regs = base + offset;
798 /* Use that to find the address of the corresponding register
799 buffers. */
800 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
801 fpregs = gpregs + 48 * tdep->wordsize;
802
803 /* General purpose. */
804 for (i = 0; i < 32; i++)
805 {
806 int regnum = i + tdep->ppc_gp0_regnum;
807 trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
808 }
809 trad_frame_set_reg_addr (this_cache,
810 gdbarch_pc_regnum (gdbarch),
811 gpregs + 32 * tdep->wordsize);
812 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
813 gpregs + 35 * tdep->wordsize);
814 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
815 gpregs + 36 * tdep->wordsize);
816 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
817 gpregs + 37 * tdep->wordsize);
818 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
819 gpregs + 38 * tdep->wordsize);
820
821 if (ppc_linux_trap_reg_p (gdbarch))
822 {
823 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
824 gpregs + 34 * tdep->wordsize);
825 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
826 gpregs + 40 * tdep->wordsize);
827 }
828
829 if (ppc_floating_point_unit_p (gdbarch))
830 {
831 /* Floating point registers. */
832 for (i = 0; i < 32; i++)
833 {
834 int regnum = i + gdbarch_fp0_regnum (gdbarch);
835 trad_frame_set_reg_addr (this_cache, regnum,
836 fpregs + i * tdep->wordsize);
837 }
838 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
839 fpregs + 32 * tdep->wordsize);
840 }
841 trad_frame_set_id (this_cache, frame_id_build (base, func));
842 }
843
844 static void
845 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
846 struct frame_info *this_frame,
847 struct trad_frame_cache *this_cache,
848 CORE_ADDR func)
849 {
850 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
851 0xd0 /* Offset to ucontext_t. */
852 + 0x30 /* Offset to .reg. */,
853 0);
854 }
855
856 static void
857 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
858 struct frame_info *this_frame,
859 struct trad_frame_cache *this_cache,
860 CORE_ADDR func)
861 {
862 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
863 0x80 /* Offset to ucontext_t. */
864 + 0xe0 /* Offset to .reg. */,
865 128);
866 }
867
868 static void
869 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
870 struct frame_info *this_frame,
871 struct trad_frame_cache *this_cache,
872 CORE_ADDR func)
873 {
874 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
875 0x40 /* Offset to ucontext_t. */
876 + 0x1c /* Offset to .reg. */,
877 0);
878 }
879
880 static void
881 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
882 struct frame_info *this_frame,
883 struct trad_frame_cache *this_cache,
884 CORE_ADDR func)
885 {
886 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
887 0x80 /* Offset to struct sigcontext. */
888 + 0x38 /* Offset to .reg. */,
889 128);
890 }
891
892 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
893 SIGTRAMP_FRAME,
894 4,
895 {
896 { 0x380000ac, -1 }, /* li r0, 172 */
897 { 0x44000002, -1 }, /* sc */
898 { TRAMP_SENTINEL_INSN },
899 },
900 ppc32_linux_sigaction_cache_init
901 };
902 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
903 SIGTRAMP_FRAME,
904 4,
905 {
906 { 0x38210080, -1 }, /* addi r1,r1,128 */
907 { 0x380000ac, -1 }, /* li r0, 172 */
908 { 0x44000002, -1 }, /* sc */
909 { TRAMP_SENTINEL_INSN },
910 },
911 ppc64_linux_sigaction_cache_init
912 };
913 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
914 SIGTRAMP_FRAME,
915 4,
916 {
917 { 0x38000077, -1 }, /* li r0,119 */
918 { 0x44000002, -1 }, /* sc */
919 { TRAMP_SENTINEL_INSN },
920 },
921 ppc32_linux_sighandler_cache_init
922 };
923 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
924 SIGTRAMP_FRAME,
925 4,
926 {
927 { 0x38210080, -1 }, /* addi r1,r1,128 */
928 { 0x38000077, -1 }, /* li r0,119 */
929 { 0x44000002, -1 }, /* sc */
930 { TRAMP_SENTINEL_INSN },
931 },
932 ppc64_linux_sighandler_cache_init
933 };
934
935
936 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
937 int
938 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
939 {
940 /* If we do not have a target description with registers, then
941 the special registers will not be included in the register set. */
942 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
943 return 0;
944
945 /* If we do, then it is safe to check the size. */
946 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
947 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
948 }
949
950 static void
951 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
952 {
953 struct gdbarch *gdbarch = get_regcache_arch (regcache);
954
955 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
956
957 /* Set special TRAP register to -1 to prevent the kernel from
958 messing with the PC we just installed, if we happen to be
959 within an interrupted system call that the kernel wants to
960 restart.
961
962 Note that after we return from the dummy call, the TRAP and
963 ORIG_R3 registers will be automatically restored, and the
964 kernel continues to restart the system call at this point. */
965 if (ppc_linux_trap_reg_p (gdbarch))
966 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
967 }
968
969 static const struct target_desc *
970 ppc_linux_core_read_description (struct gdbarch *gdbarch,
971 struct target_ops *target,
972 bfd *abfd)
973 {
974 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
975 asection *section = bfd_get_section_by_name (abfd, ".reg");
976 if (! section)
977 return NULL;
978
979 switch (bfd_section_size (abfd, section))
980 {
981 case 48 * 4:
982 return altivec? tdesc_powerpc_altivec32l : tdesc_powerpc_32l;
983
984 case 48 * 8:
985 return altivec? tdesc_powerpc_altivec64l : tdesc_powerpc_64l;
986
987 default:
988 return NULL;
989 }
990 }
991
992 static void
993 ppc_linux_init_abi (struct gdbarch_info info,
994 struct gdbarch *gdbarch)
995 {
996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
997 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
998
999 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1000 128-bit, they are IBM long double, not IEEE quad long double as
1001 in the System V ABI PowerPC Processor Supplement. We can safely
1002 let them default to 128-bit, since the debug info will give the
1003 size of type actually used in each case. */
1004 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1005 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1006
1007 /* Handle inferior calls during interrupted system calls. */
1008 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1009
1010 if (tdep->wordsize == 4)
1011 {
1012 /* Until November 2001, gcc did not comply with the 32 bit SysV
1013 R4 ABI requirement that structures less than or equal to 8
1014 bytes should be returned in registers. Instead GCC was using
1015 the the AIX/PowerOpen ABI - everything returned in memory
1016 (well ignoring vectors that is). When this was corrected, it
1017 wasn't fixed for GNU/Linux native platform. Use the
1018 PowerOpen struct convention. */
1019 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1020
1021 set_gdbarch_memory_remove_breakpoint (gdbarch,
1022 ppc_linux_memory_remove_breakpoint);
1023
1024 /* Shared library handling. */
1025 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1026 set_solib_svr4_fetch_link_map_offsets
1027 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1028
1029 /* Trampolines. */
1030 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
1031 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
1032 }
1033
1034 if (tdep->wordsize == 8)
1035 {
1036 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1037 function descriptors). */
1038 set_gdbarch_convert_from_func_ptr_addr
1039 (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1040
1041 /* Shared library handling. */
1042 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1043 set_solib_svr4_fetch_link_map_offsets
1044 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1045
1046 /* Trampolines. */
1047 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
1048 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
1049 }
1050 set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
1051 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1052
1053 /* Supported register sections. */
1054 set_gdbarch_core_regset_sections (gdbarch, ppc_linux_regset_sections);
1055
1056 /* Enable TLS support. */
1057 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1058 svr4_fetch_objfile_link_map);
1059
1060 if (tdesc_data)
1061 {
1062 const struct tdesc_feature *feature;
1063
1064 /* If we have target-described registers, then we can safely
1065 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1066 (whether they are described or not). */
1067 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1068 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1069
1070 /* If they are present, then assign them to the reserved number. */
1071 feature = tdesc_find_feature (info.target_desc,
1072 "org.gnu.gdb.power.linux");
1073 if (feature != NULL)
1074 {
1075 tdesc_numbered_register (feature, tdesc_data,
1076 PPC_ORIG_R3_REGNUM, "orig_r3");
1077 tdesc_numbered_register (feature, tdesc_data,
1078 PPC_TRAP_REGNUM, "trap");
1079 }
1080 }
1081 }
1082
1083 void
1084 _initialize_ppc_linux_tdep (void)
1085 {
1086 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1087 64-bit PowerPC, and the older rs6k. */
1088 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1089 ppc_linux_init_abi);
1090 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1091 ppc_linux_init_abi);
1092 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1093 ppc_linux_init_abi);
1094
1095 /* Initialize the Linux target descriptions. */
1096 initialize_tdesc_powerpc_32l ();
1097 initialize_tdesc_powerpc_altivec32l ();
1098 initialize_tdesc_powerpc_64l ();
1099 initialize_tdesc_powerpc_altivec64l ();
1100 initialize_tdesc_powerpc_e500l ();
1101 }
This page took 0.080596 seconds and 4 git commands to generate.