7362c4bbe19b8a3d16c7d1620e3e2b11fe6c21ac
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "regcache.h"
30 #include "value.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "solib-svr4.h"
34 #include "solib-spu.h"
35 #include "solib.h"
36 #include "solist.h"
37 #include "ppc-tdep.h"
38 #include "ppc64-tdep.h"
39 #include "ppc-linux-tdep.h"
40 #include "arch/ppc-linux-common.h"
41 #include "arch/ppc-linux-tdesc.h"
42 #include "glibc-tdep.h"
43 #include "trad-frame.h"
44 #include "frame-unwind.h"
45 #include "tramp-frame.h"
46 #include "observable.h"
47 #include "auxv.h"
48 #include "elf/common.h"
49 #include "elf/ppc64.h"
50 #include "arch-utils.h"
51 #include "spu-tdep.h"
52 #include "xml-syscall.h"
53 #include "linux-tdep.h"
54 #include "linux-record.h"
55 #include "record-full.h"
56 #include "infrun.h"
57
58 #include "stap-probe.h"
59 #include "ax.h"
60 #include "ax-gdb.h"
61 #include "cli/cli-utils.h"
62 #include "parser-defs.h"
63 #include "user-regs.h"
64 #include <ctype.h>
65 #include "elf-bfd.h"
66
67 #include "features/rs6000/powerpc-32l.c"
68 #include "features/rs6000/powerpc-altivec32l.c"
69 #include "features/rs6000/powerpc-cell32l.c"
70 #include "features/rs6000/powerpc-vsx32l.c"
71 #include "features/rs6000/powerpc-isa205-32l.c"
72 #include "features/rs6000/powerpc-isa205-altivec32l.c"
73 #include "features/rs6000/powerpc-isa205-vsx32l.c"
74 #include "features/rs6000/powerpc-64l.c"
75 #include "features/rs6000/powerpc-altivec64l.c"
76 #include "features/rs6000/powerpc-cell64l.c"
77 #include "features/rs6000/powerpc-vsx64l.c"
78 #include "features/rs6000/powerpc-isa205-64l.c"
79 #include "features/rs6000/powerpc-isa205-altivec64l.c"
80 #include "features/rs6000/powerpc-isa205-vsx64l.c"
81 #include "features/rs6000/powerpc-e500l.c"
82
83 /* Shared library operations for PowerPC-Linux. */
84 static struct target_so_ops powerpc_so_ops;
85
86 /* The syscall's XML filename for PPC and PPC64. */
87 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
88 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
89
90 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
91 in much the same fashion as memory_remove_breakpoint in mem-break.c,
92 but is careful not to write back the previous contents if the code
93 in question has changed in between inserting the breakpoint and
94 removing it.
95
96 Here is the problem that we're trying to solve...
97
98 Once upon a time, before introducing this function to remove
99 breakpoints from the inferior, setting a breakpoint on a shared
100 library function prior to running the program would not work
101 properly. In order to understand the problem, it is first
102 necessary to understand a little bit about dynamic linking on
103 this platform.
104
105 A call to a shared library function is accomplished via a bl
106 (branch-and-link) instruction whose branch target is an entry
107 in the procedure linkage table (PLT). The PLT in the object
108 file is uninitialized. To gdb, prior to running the program, the
109 entries in the PLT are all zeros.
110
111 Once the program starts running, the shared libraries are loaded
112 and the procedure linkage table is initialized, but the entries in
113 the table are not (necessarily) resolved. Once a function is
114 actually called, the code in the PLT is hit and the function is
115 resolved. In order to better illustrate this, an example is in
116 order; the following example is from the gdb testsuite.
117
118 We start the program shmain.
119
120 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
121 [...]
122
123 We place two breakpoints, one on shr1 and the other on main.
124
125 (gdb) b shr1
126 Breakpoint 1 at 0x100409d4
127 (gdb) b main
128 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
129
130 Examine the instruction (and the immediatly following instruction)
131 upon which the breakpoint was placed. Note that the PLT entry
132 for shr1 contains zeros.
133
134 (gdb) x/2i 0x100409d4
135 0x100409d4 <shr1>: .long 0x0
136 0x100409d8 <shr1+4>: .long 0x0
137
138 Now run 'til main.
139
140 (gdb) r
141 Starting program: gdb.base/shmain
142 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
143
144 Breakpoint 2, main ()
145 at gdb.base/shmain.c:44
146 44 g = 1;
147
148 Examine the PLT again. Note that the loading of the shared
149 library has initialized the PLT to code which loads a constant
150 (which I think is an index into the GOT) into r11 and then
151 branchs a short distance to the code which actually does the
152 resolving.
153
154 (gdb) x/2i 0x100409d4
155 0x100409d4 <shr1>: li r11,4
156 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
157 (gdb) c
158 Continuing.
159
160 Breakpoint 1, shr1 (x=1)
161 at gdb.base/shr1.c:19
162 19 l = 1;
163
164 Now we've hit the breakpoint at shr1. (The breakpoint was
165 reset from the PLT entry to the actual shr1 function after the
166 shared library was loaded.) Note that the PLT entry has been
167 resolved to contain a branch that takes us directly to shr1.
168 (The real one, not the PLT entry.)
169
170 (gdb) x/2i 0x100409d4
171 0x100409d4 <shr1>: b 0xffaf76c <shr1>
172 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
173
174 The thing to note here is that the PLT entry for shr1 has been
175 changed twice.
176
177 Now the problem should be obvious. GDB places a breakpoint (a
178 trap instruction) on the zero value of the PLT entry for shr1.
179 Later on, after the shared library had been loaded and the PLT
180 initialized, GDB gets a signal indicating this fact and attempts
181 (as it always does when it stops) to remove all the breakpoints.
182
183 The breakpoint removal was causing the former contents (a zero
184 word) to be written back to the now initialized PLT entry thus
185 destroying a portion of the initialization that had occurred only a
186 short time ago. When execution continued, the zero word would be
187 executed as an instruction an illegal instruction trap was
188 generated instead. (0 is not a legal instruction.)
189
190 The fix for this problem was fairly straightforward. The function
191 memory_remove_breakpoint from mem-break.c was copied to this file,
192 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
193 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
194 function.
195
196 The differences between ppc_linux_memory_remove_breakpoint () and
197 memory_remove_breakpoint () are minor. All that the former does
198 that the latter does not is check to make sure that the breakpoint
199 location actually contains a breakpoint (trap instruction) prior
200 to attempting to write back the old contents. If it does contain
201 a trap instruction, we allow the old contents to be written back.
202 Otherwise, we silently do nothing.
203
204 The big question is whether memory_remove_breakpoint () should be
205 changed to have the same functionality. The downside is that more
206 traffic is generated for remote targets since we'll have an extra
207 fetch of a memory word each time a breakpoint is removed.
208
209 For the time being, we'll leave this self-modifying-code-friendly
210 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
211 else in the event that some other platform has similar needs with
212 regard to removing breakpoints in some potentially self modifying
213 code. */
214 static int
215 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
216 struct bp_target_info *bp_tgt)
217 {
218 CORE_ADDR addr = bp_tgt->reqstd_address;
219 const unsigned char *bp;
220 int val;
221 int bplen;
222 gdb_byte old_contents[BREAKPOINT_MAX];
223
224 /* Determine appropriate breakpoint contents and size for this address. */
225 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
226
227 /* Make sure we see the memory breakpoints. */
228 scoped_restore restore_memory
229 = make_scoped_restore_show_memory_breakpoints (1);
230 val = target_read_memory (addr, old_contents, bplen);
231
232 /* If our breakpoint is no longer at the address, this means that the
233 program modified the code on us, so it is wrong to put back the
234 old value. */
235 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
236 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
237
238 return val;
239 }
240
241 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
242 than the 32 bit SYSV R4 ABI structure return convention - all
243 structures, no matter their size, are put in memory. Vectors,
244 which were added later, do get returned in a register though. */
245
246 static enum return_value_convention
247 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
248 struct type *valtype, struct regcache *regcache,
249 gdb_byte *readbuf, const gdb_byte *writebuf)
250 {
251 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
252 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
253 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
254 && TYPE_VECTOR (valtype)))
255 return RETURN_VALUE_STRUCT_CONVENTION;
256 else
257 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
258 readbuf, writebuf);
259 }
260
261 /* PLT stub in an executable. */
262 static const struct ppc_insn_pattern powerpc32_plt_stub[] =
263 {
264 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
265 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
266 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
267 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
268 { 0, 0, 0 }
269 };
270
271 /* PLT stubs in a shared library or PIE.
272 The first variant is used when the PLT entry is within +/-32k of
273 the GOT pointer (r30). */
274 static const struct ppc_insn_pattern powerpc32_plt_stub_so_1[] =
275 {
276 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
277 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
278 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
279 { 0, 0, 0 }
280 };
281
282 /* The second variant is used when the PLT entry is more than +/-32k
283 from the GOT pointer (r30). */
284 static const struct ppc_insn_pattern powerpc32_plt_stub_so_2[] =
285 {
286 { 0xffff0000, 0x3d7e0000, 0 }, /* addis r11, r30, xxxx */
287 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
288 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
289 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
290 { 0, 0, 0 }
291 };
292
293 /* The max number of insns we check using ppc_insns_match_pattern. */
294 #define POWERPC32_PLT_CHECK_LEN (ARRAY_SIZE (powerpc32_plt_stub) - 1)
295
296 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
297 section. For secure PLT, stub is in .text and we need to check
298 instruction patterns. */
299
300 static int
301 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
302 {
303 struct bound_minimal_symbol sym;
304
305 /* Check whether PC is in the dynamic linker. This also checks
306 whether it is in the .plt section, used by non-PIC executables. */
307 if (svr4_in_dynsym_resolve_code (pc))
308 return 1;
309
310 /* Check if we are in the resolver. */
311 sym = lookup_minimal_symbol_by_pc (pc);
312 if (sym.minsym != NULL
313 && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
314 || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
315 "__glink_PLTresolve") == 0))
316 return 1;
317
318 return 0;
319 }
320
321 /* Follow PLT stub to actual routine.
322
323 When the execution direction is EXEC_REVERSE, scan backward to
324 check whether we are in the middle of a PLT stub. Currently,
325 we only look-behind at most 4 instructions (the max length of a PLT
326 stub sequence. */
327
328 static CORE_ADDR
329 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
330 {
331 unsigned int insnbuf[POWERPC32_PLT_CHECK_LEN];
332 struct gdbarch *gdbarch = get_frame_arch (frame);
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
335 CORE_ADDR target = 0;
336 int scan_limit, i;
337
338 scan_limit = 1;
339 /* When reverse-debugging, scan backward to check whether we are
340 in the middle of trampoline code. */
341 if (execution_direction == EXEC_REVERSE)
342 scan_limit = 4; /* At most 4 instructions. */
343
344 for (i = 0; i < scan_limit; i++)
345 {
346 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
347 {
348 /* Calculate PLT entry address from
349 lis r11, xxxx
350 lwz r11, xxxx(r11). */
351 target = ((ppc_insn_d_field (insnbuf[0]) << 16)
352 + ppc_insn_d_field (insnbuf[1]));
353 }
354 else if (i < ARRAY_SIZE (powerpc32_plt_stub_so_1) - 1
355 && ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_1,
356 insnbuf))
357 {
358 /* Calculate PLT entry address from
359 lwz r11, xxxx(r30). */
360 target = (ppc_insn_d_field (insnbuf[0])
361 + get_frame_register_unsigned (frame,
362 tdep->ppc_gp0_regnum + 30));
363 }
364 else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_2,
365 insnbuf))
366 {
367 /* Calculate PLT entry address from
368 addis r11, r30, xxxx
369 lwz r11, xxxx(r11). */
370 target = ((ppc_insn_d_field (insnbuf[0]) << 16)
371 + ppc_insn_d_field (insnbuf[1])
372 + get_frame_register_unsigned (frame,
373 tdep->ppc_gp0_regnum + 30));
374 }
375 else
376 {
377 /* Scan backward one more instruction if it doesn't match. */
378 pc -= 4;
379 continue;
380 }
381
382 target = read_memory_unsigned_integer (target, 4, byte_order);
383 return target;
384 }
385
386 return 0;
387 }
388
389 /* Wrappers to handle Linux-only registers. */
390
391 static void
392 ppc_linux_supply_gregset (const struct regset *regset,
393 struct regcache *regcache,
394 int regnum, const void *gregs, size_t len)
395 {
396 const struct ppc_reg_offsets *offsets
397 = (const struct ppc_reg_offsets *) regset->regmap;
398
399 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
400
401 if (ppc_linux_trap_reg_p (regcache->arch ()))
402 {
403 /* "orig_r3" is stored 2 slots after "pc". */
404 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
405 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
406 offsets->pc_offset + 2 * offsets->gpr_size,
407 offsets->gpr_size);
408
409 /* "trap" is stored 8 slots after "pc". */
410 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
411 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
412 offsets->pc_offset + 8 * offsets->gpr_size,
413 offsets->gpr_size);
414 }
415 }
416
417 static void
418 ppc_linux_collect_gregset (const struct regset *regset,
419 const struct regcache *regcache,
420 int regnum, void *gregs, size_t len)
421 {
422 const struct ppc_reg_offsets *offsets
423 = (const struct ppc_reg_offsets *) regset->regmap;
424
425 /* Clear areas in the linux gregset not written elsewhere. */
426 if (regnum == -1)
427 memset (gregs, 0, len);
428
429 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
430
431 if (ppc_linux_trap_reg_p (regcache->arch ()))
432 {
433 /* "orig_r3" is stored 2 slots after "pc". */
434 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
435 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
436 offsets->pc_offset + 2 * offsets->gpr_size,
437 offsets->gpr_size);
438
439 /* "trap" is stored 8 slots after "pc". */
440 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
441 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
442 offsets->pc_offset + 8 * offsets->gpr_size,
443 offsets->gpr_size);
444 }
445 }
446
447 static void
448 ppc_linux_collect_vrregset (const struct regset *regset,
449 const struct regcache *regcache,
450 int regnum, void *buf, size_t len)
451 {
452 gdb_byte *vrregs = (gdb_byte *) buf;
453
454 /* Zero-pad the unused bytes in the fields for vscr and vrsave
455 in case they get displayed somewhere (e.g. in core files). */
456 if (regnum == PPC_VSCR_REGNUM || regnum == -1)
457 memset (&vrregs[32 * 16], 0, 16);
458
459 if (regnum == PPC_VRSAVE_REGNUM || regnum == -1)
460 memset (&vrregs[33 * 16], 0, 16);
461
462 regcache_collect_regset (regset, regcache, regnum, buf, len);
463 }
464
465 /* Regset descriptions. */
466 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
467 {
468 /* General-purpose registers. */
469 /* .r0_offset = */ 0,
470 /* .gpr_size = */ 4,
471 /* .xr_size = */ 4,
472 /* .pc_offset = */ 128,
473 /* .ps_offset = */ 132,
474 /* .cr_offset = */ 152,
475 /* .lr_offset = */ 144,
476 /* .ctr_offset = */ 140,
477 /* .xer_offset = */ 148,
478 /* .mq_offset = */ 156,
479
480 /* Floating-point registers. */
481 /* .f0_offset = */ 0,
482 /* .fpscr_offset = */ 256,
483 /* .fpscr_size = */ 8
484 };
485
486 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
487 {
488 /* General-purpose registers. */
489 /* .r0_offset = */ 0,
490 /* .gpr_size = */ 8,
491 /* .xr_size = */ 8,
492 /* .pc_offset = */ 256,
493 /* .ps_offset = */ 264,
494 /* .cr_offset = */ 304,
495 /* .lr_offset = */ 288,
496 /* .ctr_offset = */ 280,
497 /* .xer_offset = */ 296,
498 /* .mq_offset = */ 312,
499
500 /* Floating-point registers. */
501 /* .f0_offset = */ 0,
502 /* .fpscr_offset = */ 256,
503 /* .fpscr_size = */ 8
504 };
505
506 static const struct regset ppc32_linux_gregset = {
507 &ppc32_linux_reg_offsets,
508 ppc_linux_supply_gregset,
509 ppc_linux_collect_gregset
510 };
511
512 static const struct regset ppc64_linux_gregset = {
513 &ppc64_linux_reg_offsets,
514 ppc_linux_supply_gregset,
515 ppc_linux_collect_gregset
516 };
517
518 static const struct regset ppc32_linux_fpregset = {
519 &ppc32_linux_reg_offsets,
520 ppc_supply_fpregset,
521 ppc_collect_fpregset
522 };
523
524 static const struct regcache_map_entry ppc32_le_linux_vrregmap[] =
525 {
526 { 32, PPC_VR0_REGNUM, 16 },
527 { 1, PPC_VSCR_REGNUM, 4 },
528 { 1, REGCACHE_MAP_SKIP, 12 },
529 { 1, PPC_VRSAVE_REGNUM, 4 },
530 { 1, REGCACHE_MAP_SKIP, 12 },
531 { 0 }
532 };
533
534 static const struct regcache_map_entry ppc32_be_linux_vrregmap[] =
535 {
536 { 32, PPC_VR0_REGNUM, 16 },
537 { 1, REGCACHE_MAP_SKIP, 12},
538 { 1, PPC_VSCR_REGNUM, 4 },
539 { 1, PPC_VRSAVE_REGNUM, 4 },
540 { 1, REGCACHE_MAP_SKIP, 12 },
541 { 0 }
542 };
543
544 static const struct regset ppc32_le_linux_vrregset = {
545 ppc32_le_linux_vrregmap,
546 regcache_supply_regset,
547 ppc_linux_collect_vrregset
548 };
549
550 static const struct regset ppc32_be_linux_vrregset = {
551 ppc32_be_linux_vrregmap,
552 regcache_supply_regset,
553 ppc_linux_collect_vrregset
554 };
555
556 static const struct regset ppc32_linux_vsxregset = {
557 &ppc32_linux_reg_offsets,
558 ppc_supply_vsxregset,
559 ppc_collect_vsxregset
560 };
561
562 const struct regset *
563 ppc_linux_gregset (int wordsize)
564 {
565 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
566 }
567
568 const struct regset *
569 ppc_linux_fpregset (void)
570 {
571 return &ppc32_linux_fpregset;
572 }
573
574 const struct regset *
575 ppc_linux_vrregset (struct gdbarch *gdbarch)
576 {
577 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
578 return &ppc32_be_linux_vrregset;
579 else
580 return &ppc32_le_linux_vrregset;
581 }
582
583 /* Iterate over supported core file register note sections. */
584
585 static void
586 ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
587 iterate_over_regset_sections_cb *cb,
588 void *cb_data,
589 const struct regcache *regcache)
590 {
591 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
592 int have_altivec = tdep->ppc_vr0_regnum != -1;
593 int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
594
595 if (tdep->wordsize == 4)
596 cb (".reg", 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
597 else
598 cb (".reg", 48 * 8, &ppc64_linux_gregset, NULL, cb_data);
599
600 cb (".reg2", 264, &ppc32_linux_fpregset, NULL, cb_data);
601
602 if (have_altivec)
603 {
604 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
605 cb (".reg-ppc-vmx", PPC_LINUX_SIZEOF_VRREGSET, vrregset,
606 "ppc Altivec", cb_data);
607 }
608
609 if (have_vsx)
610 cb (".reg-ppc-vsx", PPC_LINUX_SIZEOF_VSXREGSET,
611 &ppc32_linux_vsxregset, "POWER7 VSX", cb_data);
612 }
613
614 static void
615 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
616 struct trad_frame_cache *this_cache,
617 CORE_ADDR func, LONGEST offset,
618 int bias)
619 {
620 CORE_ADDR base;
621 CORE_ADDR regs;
622 CORE_ADDR gpregs;
623 CORE_ADDR fpregs;
624 int i;
625 struct gdbarch *gdbarch = get_frame_arch (this_frame);
626 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
628
629 base = get_frame_register_unsigned (this_frame,
630 gdbarch_sp_regnum (gdbarch));
631 if (bias > 0 && get_frame_pc (this_frame) != func)
632 /* See below, some signal trampolines increment the stack as their
633 first instruction, need to compensate for that. */
634 base -= bias;
635
636 /* Find the address of the register buffer pointer. */
637 regs = base + offset;
638 /* Use that to find the address of the corresponding register
639 buffers. */
640 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
641 fpregs = gpregs + 48 * tdep->wordsize;
642
643 /* General purpose. */
644 for (i = 0; i < 32; i++)
645 {
646 int regnum = i + tdep->ppc_gp0_regnum;
647 trad_frame_set_reg_addr (this_cache,
648 regnum, gpregs + i * tdep->wordsize);
649 }
650 trad_frame_set_reg_addr (this_cache,
651 gdbarch_pc_regnum (gdbarch),
652 gpregs + 32 * tdep->wordsize);
653 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
654 gpregs + 35 * tdep->wordsize);
655 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
656 gpregs + 36 * tdep->wordsize);
657 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
658 gpregs + 37 * tdep->wordsize);
659 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
660 gpregs + 38 * tdep->wordsize);
661
662 if (ppc_linux_trap_reg_p (gdbarch))
663 {
664 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
665 gpregs + 34 * tdep->wordsize);
666 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
667 gpregs + 40 * tdep->wordsize);
668 }
669
670 if (ppc_floating_point_unit_p (gdbarch))
671 {
672 /* Floating point registers. */
673 for (i = 0; i < 32; i++)
674 {
675 int regnum = i + gdbarch_fp0_regnum (gdbarch);
676 trad_frame_set_reg_addr (this_cache, regnum,
677 fpregs + i * tdep->wordsize);
678 }
679 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
680 fpregs + 32 * tdep->wordsize);
681 }
682 trad_frame_set_id (this_cache, frame_id_build (base, func));
683 }
684
685 static void
686 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
687 struct frame_info *this_frame,
688 struct trad_frame_cache *this_cache,
689 CORE_ADDR func)
690 {
691 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
692 0xd0 /* Offset to ucontext_t. */
693 + 0x30 /* Offset to .reg. */,
694 0);
695 }
696
697 static void
698 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
699 struct frame_info *this_frame,
700 struct trad_frame_cache *this_cache,
701 CORE_ADDR func)
702 {
703 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
704 0x80 /* Offset to ucontext_t. */
705 + 0xe0 /* Offset to .reg. */,
706 128);
707 }
708
709 static void
710 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
711 struct frame_info *this_frame,
712 struct trad_frame_cache *this_cache,
713 CORE_ADDR func)
714 {
715 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
716 0x40 /* Offset to ucontext_t. */
717 + 0x1c /* Offset to .reg. */,
718 0);
719 }
720
721 static void
722 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
723 struct frame_info *this_frame,
724 struct trad_frame_cache *this_cache,
725 CORE_ADDR func)
726 {
727 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
728 0x80 /* Offset to struct sigcontext. */
729 + 0x38 /* Offset to .reg. */,
730 128);
731 }
732
733 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
734 SIGTRAMP_FRAME,
735 4,
736 {
737 { 0x380000ac, -1 }, /* li r0, 172 */
738 { 0x44000002, -1 }, /* sc */
739 { TRAMP_SENTINEL_INSN },
740 },
741 ppc32_linux_sigaction_cache_init
742 };
743 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
744 SIGTRAMP_FRAME,
745 4,
746 {
747 { 0x38210080, -1 }, /* addi r1,r1,128 */
748 { 0x380000ac, -1 }, /* li r0, 172 */
749 { 0x44000002, -1 }, /* sc */
750 { TRAMP_SENTINEL_INSN },
751 },
752 ppc64_linux_sigaction_cache_init
753 };
754 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
755 SIGTRAMP_FRAME,
756 4,
757 {
758 { 0x38000077, -1 }, /* li r0,119 */
759 { 0x44000002, -1 }, /* sc */
760 { TRAMP_SENTINEL_INSN },
761 },
762 ppc32_linux_sighandler_cache_init
763 };
764 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
765 SIGTRAMP_FRAME,
766 4,
767 {
768 { 0x38210080, -1 }, /* addi r1,r1,128 */
769 { 0x38000077, -1 }, /* li r0,119 */
770 { 0x44000002, -1 }, /* sc */
771 { TRAMP_SENTINEL_INSN },
772 },
773 ppc64_linux_sighandler_cache_init
774 };
775
776 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
777 int
778 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
779 {
780 /* If we do not have a target description with registers, then
781 the special registers will not be included in the register set. */
782 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
783 return 0;
784
785 /* If we do, then it is safe to check the size. */
786 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
787 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
788 }
789
790 /* Return the current system call's number present in the
791 r0 register. When the function fails, it returns -1. */
792 static LONGEST
793 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
794 ptid_t ptid)
795 {
796 struct regcache *regcache = get_thread_regcache (ptid);
797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
798 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
799
800 /* Make sure we're in a 32- or 64-bit machine */
801 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
802
803 /* The content of a register */
804 gdb::byte_vector buf (tdep->wordsize);
805
806 /* Getting the system call number from the register.
807 When dealing with PowerPC architecture, this information
808 is stored at 0th register. */
809 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf.data ());
810
811 return extract_signed_integer (buf.data (), tdep->wordsize, byte_order);
812 }
813
814 /* PPC process record-replay */
815
816 static struct linux_record_tdep ppc_linux_record_tdep;
817 static struct linux_record_tdep ppc64_linux_record_tdep;
818
819 /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
820 syscall ids into a canonical set of syscall ids used by process
821 record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
822 Return -1 if this system call is not supported by process record.
823 Otherwise, return the syscall number for preocess reocrd of given
824 SYSCALL. */
825
826 static enum gdb_syscall
827 ppc_canonicalize_syscall (int syscall)
828 {
829 int result = -1;
830
831 if (syscall <= 165)
832 result = syscall;
833 else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */
834 result = syscall + 1;
835 else if (syscall >= 192 && syscall <= 197) /* mmap2 */
836 result = syscall;
837 else if (syscall == 208) /* tkill */
838 result = gdb_sys_tkill;
839 else if (syscall >= 207 && syscall <= 220) /* gettid */
840 result = syscall + 224 - 207;
841 else if (syscall >= 234 && syscall <= 239) /* exit_group */
842 result = syscall + 252 - 234;
843 else if (syscall >= 240 && syscall <= 248) /* timer_create */
844 result = syscall += 259 - 240;
845 else if (syscall >= 250 && syscall <= 251) /* tgkill */
846 result = syscall + 270 - 250;
847 else if (syscall == 336)
848 result = gdb_sys_recv;
849 else if (syscall == 337)
850 result = gdb_sys_recvfrom;
851 else if (syscall == 342)
852 result = gdb_sys_recvmsg;
853
854 return (enum gdb_syscall) result;
855 }
856
857 /* Record registers which might be clobbered during system call.
858 Return 0 if successful. */
859
860 static int
861 ppc_linux_syscall_record (struct regcache *regcache)
862 {
863 struct gdbarch *gdbarch = regcache->arch ();
864 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
865 ULONGEST scnum;
866 enum gdb_syscall syscall_gdb;
867 int ret;
868 int i;
869
870 regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
871 syscall_gdb = ppc_canonicalize_syscall (scnum);
872
873 if (syscall_gdb < 0)
874 {
875 printf_unfiltered (_("Process record and replay target doesn't "
876 "support syscall number %d\n"), (int) scnum);
877 return 0;
878 }
879
880 if (syscall_gdb == gdb_sys_sigreturn
881 || syscall_gdb == gdb_sys_rt_sigreturn)
882 {
883 int i, j;
884 int regsets[] = { tdep->ppc_gp0_regnum,
885 tdep->ppc_fp0_regnum,
886 tdep->ppc_vr0_regnum,
887 tdep->ppc_vsr0_upper_regnum };
888
889 for (j = 0; j < 4; j++)
890 {
891 if (regsets[j] == -1)
892 continue;
893 for (i = 0; i < 32; i++)
894 {
895 if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
896 return -1;
897 }
898 }
899
900 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
901 return -1;
902 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
903 return -1;
904 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
905 return -1;
906 if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
907 return -1;
908
909 return 0;
910 }
911
912 if (tdep->wordsize == 8)
913 ret = record_linux_system_call (syscall_gdb, regcache,
914 &ppc64_linux_record_tdep);
915 else
916 ret = record_linux_system_call (syscall_gdb, regcache,
917 &ppc_linux_record_tdep);
918
919 if (ret != 0)
920 return ret;
921
922 /* Record registers clobbered during syscall. */
923 for (i = 3; i <= 12; i++)
924 {
925 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
926 return -1;
927 }
928 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
929 return -1;
930 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
931 return -1;
932 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
933 return -1;
934 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
935 return -1;
936
937 return 0;
938 }
939
940 /* Record registers which might be clobbered during signal handling.
941 Return 0 if successful. */
942
943 static int
944 ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
945 enum gdb_signal signal)
946 {
947 /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
948 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
949 arch/powerpc/include/asm/ptrace.h
950 for details. */
951 const int SIGNAL_FRAMESIZE = 128;
952 const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
953 ULONGEST sp;
954 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
955 int i;
956
957 for (i = 3; i <= 12; i++)
958 {
959 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
960 return -1;
961 }
962
963 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
964 return -1;
965 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
966 return -1;
967 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
968 return -1;
969 if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
970 return -1;
971 if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
972 return -1;
973
974 /* Record the change in the stack.
975 frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */
976 regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
977 sp -= SIGNAL_FRAMESIZE;
978 sp -= sizeof_rt_sigframe;
979
980 if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
981 return -1;
982
983 if (record_full_arch_list_add_end ())
984 return -1;
985
986 return 0;
987 }
988
989 static void
990 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
991 {
992 struct gdbarch *gdbarch = regcache->arch ();
993
994 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
995
996 /* Set special TRAP register to -1 to prevent the kernel from
997 messing with the PC we just installed, if we happen to be
998 within an interrupted system call that the kernel wants to
999 restart.
1000
1001 Note that after we return from the dummy call, the TRAP and
1002 ORIG_R3 registers will be automatically restored, and the
1003 kernel continues to restart the system call at this point. */
1004 if (ppc_linux_trap_reg_p (gdbarch))
1005 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
1006 }
1007
1008 static int
1009 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
1010 {
1011 return startswith (bfd_section_name (abfd, asect), "SPU/");
1012 }
1013
1014 static const struct target_desc *
1015 ppc_linux_core_read_description (struct gdbarch *gdbarch,
1016 struct target_ops *target,
1017 bfd *abfd)
1018 {
1019 struct ppc_linux_features features = ppc_linux_no_features;
1020 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
1021 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
1022 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
1023 asection *section = bfd_get_section_by_name (abfd, ".reg");
1024
1025 if (! section)
1026 return NULL;
1027
1028 switch (bfd_section_size (abfd, section))
1029 {
1030 case 48 * 4:
1031 features.wordsize = 4;
1032 break;
1033 case 48 * 8:
1034 features.wordsize = 8;
1035 break;
1036 default:
1037 return NULL;
1038 }
1039
1040 if (cell)
1041 features.cell = true;
1042
1043 if (altivec)
1044 features.altivec = true;
1045
1046 if (vsx)
1047 features.vsx = true;
1048
1049 return ppc_linux_match_description (features);
1050 }
1051
1052
1053 /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
1054 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1055
1056 static void
1057 ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1058 {
1059 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
1060
1061 /* If the symbol is marked as having a local entry point, set a target
1062 flag in the msymbol. We currently only support local entry point
1063 offsets of 8 bytes, which is the only entry point offset ever used
1064 by current compilers. If/when other offsets are ever used, we will
1065 have to use additional target flag bits to store them. */
1066 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
1067 {
1068 default:
1069 break;
1070 case 8:
1071 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
1072 break;
1073 }
1074 }
1075
1076 /* Implementation of `gdbarch_skip_entrypoint', as defined in
1077 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1078
1079 static CORE_ADDR
1080 ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
1081 {
1082 struct bound_minimal_symbol fun;
1083 int local_entry_offset = 0;
1084
1085 fun = lookup_minimal_symbol_by_pc (pc);
1086 if (fun.minsym == NULL)
1087 return pc;
1088
1089 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
1090 offset values are encoded. */
1091 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
1092 local_entry_offset = 8;
1093
1094 if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
1095 && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
1096 return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
1097
1098 return pc;
1099 }
1100
1101 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1102 gdbarch.h. */
1103
1104 static int
1105 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1106 {
1107 return (*s == 'i' /* Literal number. */
1108 || (isdigit (*s) && s[1] == '('
1109 && isdigit (s[2])) /* Displacement. */
1110 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
1111 || isdigit (*s)); /* Register value. */
1112 }
1113
1114 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
1115 gdbarch.h. */
1116
1117 static int
1118 ppc_stap_parse_special_token (struct gdbarch *gdbarch,
1119 struct stap_parse_info *p)
1120 {
1121 if (isdigit (*p->arg))
1122 {
1123 /* This temporary pointer is needed because we have to do a lookahead.
1124 We could be dealing with a register displacement, and in such case
1125 we would not need to do anything. */
1126 const char *s = p->arg;
1127 char *regname;
1128 int len;
1129 struct stoken str;
1130
1131 while (isdigit (*s))
1132 ++s;
1133
1134 if (*s == '(')
1135 {
1136 /* It is a register displacement indeed. Returning 0 means we are
1137 deferring the treatment of this case to the generic parser. */
1138 return 0;
1139 }
1140
1141 len = s - p->arg;
1142 regname = (char *) alloca (len + 2);
1143 regname[0] = 'r';
1144
1145 strncpy (regname + 1, p->arg, len);
1146 ++len;
1147 regname[len] = '\0';
1148
1149 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1150 error (_("Invalid register name `%s' on expression `%s'."),
1151 regname, p->saved_arg);
1152
1153 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1154 str.ptr = regname;
1155 str.length = len;
1156 write_exp_string (&p->pstate, str);
1157 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1158
1159 p->arg = s;
1160 }
1161 else
1162 {
1163 /* All the other tokens should be handled correctly by the generic
1164 parser. */
1165 return 0;
1166 }
1167
1168 return 1;
1169 }
1170
1171 /* Cell/B.E. active SPE context tracking support. */
1172
1173 static struct objfile *spe_context_objfile = NULL;
1174 static CORE_ADDR spe_context_lm_addr = 0;
1175 static CORE_ADDR spe_context_offset = 0;
1176
1177 static ptid_t spe_context_cache_ptid;
1178 static CORE_ADDR spe_context_cache_address;
1179
1180 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1181 to track whether we've loaded a version of libspe2 (as static or dynamic
1182 library) that provides the __spe_current_active_context variable. */
1183 static void
1184 ppc_linux_spe_context_lookup (struct objfile *objfile)
1185 {
1186 struct bound_minimal_symbol sym;
1187
1188 if (!objfile)
1189 {
1190 spe_context_objfile = NULL;
1191 spe_context_lm_addr = 0;
1192 spe_context_offset = 0;
1193 spe_context_cache_ptid = minus_one_ptid;
1194 spe_context_cache_address = 0;
1195 return;
1196 }
1197
1198 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1199 if (sym.minsym)
1200 {
1201 spe_context_objfile = objfile;
1202 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1203 spe_context_offset = MSYMBOL_VALUE_RAW_ADDRESS (sym.minsym);
1204 spe_context_cache_ptid = minus_one_ptid;
1205 spe_context_cache_address = 0;
1206 return;
1207 }
1208 }
1209
1210 static void
1211 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1212 {
1213 struct objfile *objfile;
1214
1215 ppc_linux_spe_context_lookup (NULL);
1216 ALL_OBJFILES (objfile)
1217 ppc_linux_spe_context_lookup (objfile);
1218 }
1219
1220 static void
1221 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1222 {
1223 if (strstr (so->so_original_name, "/libspe") != NULL)
1224 {
1225 solib_read_symbols (so, 0);
1226 ppc_linux_spe_context_lookup (so->objfile);
1227 }
1228 }
1229
1230 static void
1231 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1232 {
1233 if (so->objfile == spe_context_objfile)
1234 ppc_linux_spe_context_lookup (NULL);
1235 }
1236
1237 /* Retrieve contents of the N'th element in the current thread's
1238 linked SPE context list into ID and NPC. Return the address of
1239 said context element, or 0 if not found. */
1240 static CORE_ADDR
1241 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1242 int n, int *id, unsigned int *npc)
1243 {
1244 CORE_ADDR spe_context = 0;
1245 gdb_byte buf[16];
1246 int i;
1247
1248 /* Quick exit if we have not found __spe_current_active_context. */
1249 if (!spe_context_objfile)
1250 return 0;
1251
1252 /* Look up cached address of thread-local variable. */
1253 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1254 {
1255 struct target_ops *target = target_stack;
1256
1257 TRY
1258 {
1259 /* We do not call target_translate_tls_address here, because
1260 svr4_fetch_objfile_link_map may invalidate the frame chain,
1261 which must not do while inside a frame sniffer.
1262
1263 Instead, we have cached the lm_addr value, and use that to
1264 directly call the target's to_get_thread_local_address. */
1265 spe_context_cache_address
1266 = target->get_thread_local_address (inferior_ptid,
1267 spe_context_lm_addr,
1268 spe_context_offset);
1269 spe_context_cache_ptid = inferior_ptid;
1270 }
1271
1272 CATCH (ex, RETURN_MASK_ERROR)
1273 {
1274 return 0;
1275 }
1276 END_CATCH
1277 }
1278
1279 /* Read variable value. */
1280 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1281 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1282
1283 /* Cyle through to N'th linked list element. */
1284 for (i = 0; i < n && spe_context; i++)
1285 if (target_read_memory (spe_context + align_up (12, wordsize),
1286 buf, wordsize) == 0)
1287 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1288 else
1289 spe_context = 0;
1290
1291 /* Read current context. */
1292 if (spe_context
1293 && target_read_memory (spe_context, buf, 12) != 0)
1294 spe_context = 0;
1295
1296 /* Extract data elements. */
1297 if (spe_context)
1298 {
1299 if (id)
1300 *id = extract_signed_integer (buf, 4, byte_order);
1301 if (npc)
1302 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1303 }
1304
1305 return spe_context;
1306 }
1307
1308
1309 /* Cell/B.E. cross-architecture unwinder support. */
1310
1311 struct ppu2spu_cache
1312 {
1313 struct frame_id frame_id;
1314 readonly_detached_regcache *regcache;
1315 };
1316
1317 static struct gdbarch *
1318 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1319 {
1320 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1321 return cache->regcache->arch ();
1322 }
1323
1324 static void
1325 ppu2spu_this_id (struct frame_info *this_frame,
1326 void **this_cache, struct frame_id *this_id)
1327 {
1328 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1329 *this_id = cache->frame_id;
1330 }
1331
1332 static struct value *
1333 ppu2spu_prev_register (struct frame_info *this_frame,
1334 void **this_cache, int regnum)
1335 {
1336 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1337 struct gdbarch *gdbarch = cache->regcache->arch ();
1338 gdb_byte *buf;
1339
1340 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1341
1342 cache->regcache->cooked_read (regnum, buf);
1343 return frame_unwind_got_bytes (this_frame, regnum, buf);
1344 }
1345
1346 struct ppu2spu_data
1347 {
1348 struct gdbarch *gdbarch;
1349 int id;
1350 unsigned int npc;
1351 gdb_byte gprs[128*16];
1352 };
1353
1354 static enum register_status
1355 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1356 {
1357 struct ppu2spu_data *data = (struct ppu2spu_data *) src;
1358 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1359
1360 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1361 memcpy (buf, data->gprs + 16*regnum, 16);
1362 else if (regnum == SPU_ID_REGNUM)
1363 store_unsigned_integer (buf, 4, byte_order, data->id);
1364 else if (regnum == SPU_PC_REGNUM)
1365 store_unsigned_integer (buf, 4, byte_order, data->npc);
1366 else
1367 return REG_UNAVAILABLE;
1368
1369 return REG_VALID;
1370 }
1371
1372 static int
1373 ppu2spu_sniffer (const struct frame_unwind *self,
1374 struct frame_info *this_frame, void **this_prologue_cache)
1375 {
1376 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1378 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1379 struct ppu2spu_data data;
1380 struct frame_info *fi;
1381 CORE_ADDR base, func, backchain, spe_context;
1382 gdb_byte buf[8];
1383 int n = 0;
1384
1385 /* Count the number of SPU contexts already in the frame chain. */
1386 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1387 if (get_frame_type (fi) == ARCH_FRAME
1388 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1389 n++;
1390
1391 base = get_frame_sp (this_frame);
1392 func = get_frame_pc (this_frame);
1393 if (target_read_memory (base, buf, tdep->wordsize))
1394 return 0;
1395 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1396
1397 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1398 n, &data.id, &data.npc);
1399 if (spe_context && base <= spe_context && spe_context < backchain)
1400 {
1401 char annex[32];
1402
1403 /* Find gdbarch for SPU. */
1404 struct gdbarch_info info;
1405 gdbarch_info_init (&info);
1406 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1407 info.byte_order = BFD_ENDIAN_BIG;
1408 info.osabi = GDB_OSABI_LINUX;
1409 info.id = &data.id;
1410 data.gdbarch = gdbarch_find_by_info (info);
1411 if (!data.gdbarch)
1412 return 0;
1413
1414 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1415 if (target_read (target_stack, TARGET_OBJECT_SPU, annex,
1416 data.gprs, 0, sizeof data.gprs)
1417 == sizeof data.gprs)
1418 {
1419 struct ppu2spu_cache *cache
1420 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1421 std::unique_ptr<readonly_detached_regcache> regcache
1422 (new readonly_detached_regcache (data.gdbarch,
1423 ppu2spu_unwind_register,
1424 &data));
1425
1426 cache->frame_id = frame_id_build (base, func);
1427 cache->regcache = regcache.release ();
1428 *this_prologue_cache = cache;
1429 return 1;
1430 }
1431 }
1432
1433 return 0;
1434 }
1435
1436 static void
1437 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1438 {
1439 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) this_cache;
1440 delete cache->regcache;
1441 }
1442
1443 static const struct frame_unwind ppu2spu_unwind = {
1444 ARCH_FRAME,
1445 default_frame_unwind_stop_reason,
1446 ppu2spu_this_id,
1447 ppu2spu_prev_register,
1448 NULL,
1449 ppu2spu_sniffer,
1450 ppu2spu_dealloc_cache,
1451 ppu2spu_prev_arch,
1452 };
1453
1454 /* Initialize linux_record_tdep if not initialized yet.
1455 WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
1456 Sizes of data structures are initialized accordingly. */
1457
1458 static void
1459 ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
1460 int wordsize)
1461 {
1462 /* Simply return if it had been initialized. */
1463 if (record_tdep->size_pointer != 0)
1464 return;
1465
1466 /* These values are the size of the type that will be used in a system
1467 call. They are obtained from Linux Kernel source. */
1468
1469 if (wordsize == 8)
1470 {
1471 record_tdep->size_pointer = 8;
1472 record_tdep->size__old_kernel_stat = 32;
1473 record_tdep->size_tms = 32;
1474 record_tdep->size_loff_t = 8;
1475 record_tdep->size_flock = 32;
1476 record_tdep->size_oldold_utsname = 45;
1477 record_tdep->size_ustat = 32;
1478 record_tdep->size_old_sigaction = 32;
1479 record_tdep->size_old_sigset_t = 8;
1480 record_tdep->size_rlimit = 16;
1481 record_tdep->size_rusage = 144;
1482 record_tdep->size_timeval = 16;
1483 record_tdep->size_timezone = 8;
1484 record_tdep->size_old_gid_t = 4;
1485 record_tdep->size_old_uid_t = 4;
1486 record_tdep->size_fd_set = 128;
1487 record_tdep->size_old_dirent = 280;
1488 record_tdep->size_statfs = 120;
1489 record_tdep->size_statfs64 = 120;
1490 record_tdep->size_sockaddr = 16;
1491 record_tdep->size_int = 4;
1492 record_tdep->size_long = 8;
1493 record_tdep->size_ulong = 8;
1494 record_tdep->size_msghdr = 56;
1495 record_tdep->size_itimerval = 32;
1496 record_tdep->size_stat = 144;
1497 record_tdep->size_old_utsname = 325;
1498 record_tdep->size_sysinfo = 112;
1499 record_tdep->size_msqid_ds = 120;
1500 record_tdep->size_shmid_ds = 112;
1501 record_tdep->size_new_utsname = 390;
1502 record_tdep->size_timex = 208;
1503 record_tdep->size_mem_dqinfo = 24;
1504 record_tdep->size_if_dqblk = 72;
1505 record_tdep->size_fs_quota_stat = 80;
1506 record_tdep->size_timespec = 16;
1507 record_tdep->size_pollfd = 8;
1508 record_tdep->size_NFS_FHSIZE = 32;
1509 record_tdep->size_knfsd_fh = 132;
1510 record_tdep->size_TASK_COMM_LEN = 16;
1511 record_tdep->size_sigaction = 32;
1512 record_tdep->size_sigset_t = 8;
1513 record_tdep->size_siginfo_t = 128;
1514 record_tdep->size_cap_user_data_t = 8;
1515 record_tdep->size_stack_t = 24;
1516 record_tdep->size_off_t = 8;
1517 record_tdep->size_stat64 = 104;
1518 record_tdep->size_gid_t = 4;
1519 record_tdep->size_uid_t = 4;
1520 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1521 record_tdep->size_flock64 = 32;
1522 record_tdep->size_io_event = 32;
1523 record_tdep->size_iocb = 64;
1524 record_tdep->size_epoll_event = 16;
1525 record_tdep->size_itimerspec = 32;
1526 record_tdep->size_mq_attr = 64;
1527 record_tdep->size_termios = 44;
1528 record_tdep->size_pid_t = 4;
1529 record_tdep->size_winsize = 8;
1530 record_tdep->size_serial_struct = 72;
1531 record_tdep->size_serial_icounter_struct = 80;
1532 record_tdep->size_size_t = 8;
1533 record_tdep->size_iovec = 16;
1534 record_tdep->size_time_t = 8;
1535 }
1536 else if (wordsize == 4)
1537 {
1538 record_tdep->size_pointer = 4;
1539 record_tdep->size__old_kernel_stat = 32;
1540 record_tdep->size_tms = 16;
1541 record_tdep->size_loff_t = 8;
1542 record_tdep->size_flock = 16;
1543 record_tdep->size_oldold_utsname = 45;
1544 record_tdep->size_ustat = 20;
1545 record_tdep->size_old_sigaction = 16;
1546 record_tdep->size_old_sigset_t = 4;
1547 record_tdep->size_rlimit = 8;
1548 record_tdep->size_rusage = 72;
1549 record_tdep->size_timeval = 8;
1550 record_tdep->size_timezone = 8;
1551 record_tdep->size_old_gid_t = 4;
1552 record_tdep->size_old_uid_t = 4;
1553 record_tdep->size_fd_set = 128;
1554 record_tdep->size_old_dirent = 268;
1555 record_tdep->size_statfs = 64;
1556 record_tdep->size_statfs64 = 88;
1557 record_tdep->size_sockaddr = 16;
1558 record_tdep->size_int = 4;
1559 record_tdep->size_long = 4;
1560 record_tdep->size_ulong = 4;
1561 record_tdep->size_msghdr = 28;
1562 record_tdep->size_itimerval = 16;
1563 record_tdep->size_stat = 88;
1564 record_tdep->size_old_utsname = 325;
1565 record_tdep->size_sysinfo = 64;
1566 record_tdep->size_msqid_ds = 68;
1567 record_tdep->size_shmid_ds = 60;
1568 record_tdep->size_new_utsname = 390;
1569 record_tdep->size_timex = 128;
1570 record_tdep->size_mem_dqinfo = 24;
1571 record_tdep->size_if_dqblk = 72;
1572 record_tdep->size_fs_quota_stat = 80;
1573 record_tdep->size_timespec = 8;
1574 record_tdep->size_pollfd = 8;
1575 record_tdep->size_NFS_FHSIZE = 32;
1576 record_tdep->size_knfsd_fh = 132;
1577 record_tdep->size_TASK_COMM_LEN = 16;
1578 record_tdep->size_sigaction = 20;
1579 record_tdep->size_sigset_t = 8;
1580 record_tdep->size_siginfo_t = 128;
1581 record_tdep->size_cap_user_data_t = 4;
1582 record_tdep->size_stack_t = 12;
1583 record_tdep->size_off_t = 4;
1584 record_tdep->size_stat64 = 104;
1585 record_tdep->size_gid_t = 4;
1586 record_tdep->size_uid_t = 4;
1587 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1588 record_tdep->size_flock64 = 32;
1589 record_tdep->size_io_event = 32;
1590 record_tdep->size_iocb = 64;
1591 record_tdep->size_epoll_event = 16;
1592 record_tdep->size_itimerspec = 16;
1593 record_tdep->size_mq_attr = 32;
1594 record_tdep->size_termios = 44;
1595 record_tdep->size_pid_t = 4;
1596 record_tdep->size_winsize = 8;
1597 record_tdep->size_serial_struct = 60;
1598 record_tdep->size_serial_icounter_struct = 80;
1599 record_tdep->size_size_t = 4;
1600 record_tdep->size_iovec = 8;
1601 record_tdep->size_time_t = 4;
1602 }
1603 else
1604 internal_error (__FILE__, __LINE__, _("unexpected wordsize"));
1605
1606 /* These values are the second argument of system call "sys_fcntl"
1607 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1608 record_tdep->fcntl_F_GETLK = 5;
1609 record_tdep->fcntl_F_GETLK64 = 12;
1610 record_tdep->fcntl_F_SETLK64 = 13;
1611 record_tdep->fcntl_F_SETLKW64 = 14;
1612
1613 record_tdep->arg1 = PPC_R0_REGNUM + 3;
1614 record_tdep->arg2 = PPC_R0_REGNUM + 4;
1615 record_tdep->arg3 = PPC_R0_REGNUM + 5;
1616 record_tdep->arg4 = PPC_R0_REGNUM + 6;
1617 record_tdep->arg5 = PPC_R0_REGNUM + 7;
1618 record_tdep->arg6 = PPC_R0_REGNUM + 8;
1619
1620 /* These values are the second argument of system call "sys_ioctl".
1621 They are obtained from Linux Kernel source.
1622 See arch/powerpc/include/uapi/asm/ioctls.h. */
1623 record_tdep->ioctl_TCGETS = 0x403c7413;
1624 record_tdep->ioctl_TCSETS = 0x803c7414;
1625 record_tdep->ioctl_TCSETSW = 0x803c7415;
1626 record_tdep->ioctl_TCSETSF = 0x803c7416;
1627 record_tdep->ioctl_TCGETA = 0x40147417;
1628 record_tdep->ioctl_TCSETA = 0x80147418;
1629 record_tdep->ioctl_TCSETAW = 0x80147419;
1630 record_tdep->ioctl_TCSETAF = 0x8014741c;
1631 record_tdep->ioctl_TCSBRK = 0x2000741d;
1632 record_tdep->ioctl_TCXONC = 0x2000741e;
1633 record_tdep->ioctl_TCFLSH = 0x2000741f;
1634 record_tdep->ioctl_TIOCEXCL = 0x540c;
1635 record_tdep->ioctl_TIOCNXCL = 0x540d;
1636 record_tdep->ioctl_TIOCSCTTY = 0x540e;
1637 record_tdep->ioctl_TIOCGPGRP = 0x40047477;
1638 record_tdep->ioctl_TIOCSPGRP = 0x80047476;
1639 record_tdep->ioctl_TIOCOUTQ = 0x40047473;
1640 record_tdep->ioctl_TIOCSTI = 0x5412;
1641 record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
1642 record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
1643 record_tdep->ioctl_TIOCMGET = 0x5415;
1644 record_tdep->ioctl_TIOCMBIS = 0x5416;
1645 record_tdep->ioctl_TIOCMBIC = 0x5417;
1646 record_tdep->ioctl_TIOCMSET = 0x5418;
1647 record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
1648 record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
1649 record_tdep->ioctl_FIONREAD = 0x4004667f;
1650 record_tdep->ioctl_TIOCINQ = 0x4004667f;
1651 record_tdep->ioctl_TIOCLINUX = 0x541c;
1652 record_tdep->ioctl_TIOCCONS = 0x541d;
1653 record_tdep->ioctl_TIOCGSERIAL = 0x541e;
1654 record_tdep->ioctl_TIOCSSERIAL = 0x541f;
1655 record_tdep->ioctl_TIOCPKT = 0x5420;
1656 record_tdep->ioctl_FIONBIO = 0x8004667e;
1657 record_tdep->ioctl_TIOCNOTTY = 0x5422;
1658 record_tdep->ioctl_TIOCSETD = 0x5423;
1659 record_tdep->ioctl_TIOCGETD = 0x5424;
1660 record_tdep->ioctl_TCSBRKP = 0x5425;
1661 record_tdep->ioctl_TIOCSBRK = 0x5427;
1662 record_tdep->ioctl_TIOCCBRK = 0x5428;
1663 record_tdep->ioctl_TIOCGSID = 0x5429;
1664 record_tdep->ioctl_TIOCGPTN = 0x40045430;
1665 record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
1666 record_tdep->ioctl_FIONCLEX = 0x20006602;
1667 record_tdep->ioctl_FIOCLEX = 0x20006601;
1668 record_tdep->ioctl_FIOASYNC = 0x8004667d;
1669 record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
1670 record_tdep->ioctl_TIOCSERGWILD = 0x5454;
1671 record_tdep->ioctl_TIOCSERSWILD = 0x5455;
1672 record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
1673 record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
1674 record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
1675 record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
1676 record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
1677 record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
1678 record_tdep->ioctl_TIOCMIWAIT = 0x545c;
1679 record_tdep->ioctl_TIOCGICOUNT = 0x545d;
1680 record_tdep->ioctl_FIOQSIZE = 0x40086680;
1681 }
1682
1683 /* Return a floating-point format for a floating-point variable of
1684 length LEN in bits. If non-NULL, NAME is the name of its type.
1685 If no suitable type is found, return NULL. */
1686
1687 const struct floatformat **
1688 ppc_floatformat_for_type (struct gdbarch *gdbarch,
1689 const char *name, int len)
1690 {
1691 if (len == 128 && name)
1692 {
1693 if (strcmp (name, "__float128") == 0
1694 || strcmp (name, "_Float128") == 0
1695 || strcmp (name, "_Float64x") == 0
1696 || strcmp (name, "complex _Float128") == 0
1697 || strcmp (name, "complex _Float64x") == 0)
1698 return floatformats_ia64_quad;
1699
1700 if (strcmp (name, "__ibm128") == 0)
1701 return floatformats_ibm_long_double;
1702 }
1703
1704 return default_floatformat_for_type (gdbarch, name, len);
1705 }
1706
1707 static void
1708 ppc_linux_init_abi (struct gdbarch_info info,
1709 struct gdbarch *gdbarch)
1710 {
1711 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1712 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
1713 static const char *const stap_integer_prefixes[] = { "i", NULL };
1714 static const char *const stap_register_indirection_prefixes[] = { "(",
1715 NULL };
1716 static const char *const stap_register_indirection_suffixes[] = { ")",
1717 NULL };
1718
1719 linux_init_abi (info, gdbarch);
1720
1721 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1722 128-bit, they can be either IBM long double or IEEE quad long double.
1723 The 64-bit long double case will be detected automatically using
1724 the size specified in debug info. We use a .gnu.attribute flag
1725 to distinguish between the IBM long double and IEEE quad cases. */
1726 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1727 if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128)
1728 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1729 else
1730 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1731
1732 /* Support for floating-point data type variants. */
1733 set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type);
1734
1735 /* Handle inferior calls during interrupted system calls. */
1736 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1737
1738 /* Get the syscall number from the arch's register. */
1739 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1740
1741 /* SystemTap functions. */
1742 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1743 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1744 stap_register_indirection_prefixes);
1745 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1746 stap_register_indirection_suffixes);
1747 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1748 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
1749 set_gdbarch_stap_parse_special_token (gdbarch,
1750 ppc_stap_parse_special_token);
1751
1752 if (tdep->wordsize == 4)
1753 {
1754 /* Until November 2001, gcc did not comply with the 32 bit SysV
1755 R4 ABI requirement that structures less than or equal to 8
1756 bytes should be returned in registers. Instead GCC was using
1757 the AIX/PowerOpen ABI - everything returned in memory
1758 (well ignoring vectors that is). When this was corrected, it
1759 wasn't fixed for GNU/Linux native platform. Use the
1760 PowerOpen struct convention. */
1761 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1762
1763 set_gdbarch_memory_remove_breakpoint (gdbarch,
1764 ppc_linux_memory_remove_breakpoint);
1765
1766 /* Shared library handling. */
1767 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
1768 set_solib_svr4_fetch_link_map_offsets
1769 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1770
1771 /* Setting the correct XML syscall filename. */
1772 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);
1773
1774 /* Trampolines. */
1775 tramp_frame_prepend_unwinder (gdbarch,
1776 &ppc32_linux_sigaction_tramp_frame);
1777 tramp_frame_prepend_unwinder (gdbarch,
1778 &ppc32_linux_sighandler_tramp_frame);
1779
1780 /* BFD target for core files. */
1781 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1782 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1783 else
1784 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1785
1786 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
1787 {
1788 powerpc_so_ops = svr4_so_ops;
1789 /* Override dynamic resolve function. */
1790 powerpc_so_ops.in_dynsym_resolve_code =
1791 powerpc_linux_in_dynsym_resolve_code;
1792 }
1793 set_solib_ops (gdbarch, &powerpc_so_ops);
1794
1795 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1796 }
1797
1798 if (tdep->wordsize == 8)
1799 {
1800 if (tdep->elf_abi == POWERPC_ELF_V1)
1801 {
1802 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1803 function descriptors). */
1804 set_gdbarch_convert_from_func_ptr_addr
1805 (gdbarch, ppc64_convert_from_func_ptr_addr);
1806
1807 set_gdbarch_elf_make_msymbol_special
1808 (gdbarch, ppc64_elf_make_msymbol_special);
1809 }
1810 else
1811 {
1812 set_gdbarch_elf_make_msymbol_special
1813 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
1814
1815 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
1816 }
1817
1818 /* Shared library handling. */
1819 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1820 set_solib_svr4_fetch_link_map_offsets
1821 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1822
1823 /* Setting the correct XML syscall filename. */
1824 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);
1825
1826 /* Trampolines. */
1827 tramp_frame_prepend_unwinder (gdbarch,
1828 &ppc64_linux_sigaction_tramp_frame);
1829 tramp_frame_prepend_unwinder (gdbarch,
1830 &ppc64_linux_sighandler_tramp_frame);
1831
1832 /* BFD target for core files. */
1833 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1834 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1835 else
1836 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1837 }
1838
1839 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1840 set_gdbarch_iterate_over_regset_sections (gdbarch,
1841 ppc_linux_iterate_over_regset_sections);
1842
1843 /* Enable TLS support. */
1844 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1845 svr4_fetch_objfile_link_map);
1846
1847 if (tdesc_data)
1848 {
1849 const struct tdesc_feature *feature;
1850
1851 /* If we have target-described registers, then we can safely
1852 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1853 (whether they are described or not). */
1854 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1855 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1856
1857 /* If they are present, then assign them to the reserved number. */
1858 feature = tdesc_find_feature (info.target_desc,
1859 "org.gnu.gdb.power.linux");
1860 if (feature != NULL)
1861 {
1862 tdesc_numbered_register (feature, tdesc_data,
1863 PPC_ORIG_R3_REGNUM, "orig_r3");
1864 tdesc_numbered_register (feature, tdesc_data,
1865 PPC_TRAP_REGNUM, "trap");
1866 }
1867 }
1868
1869 /* Enable Cell/B.E. if supported by the target. */
1870 if (tdesc_compatible_p (info.target_desc,
1871 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1872 {
1873 /* Cell/B.E. multi-architecture support. */
1874 set_spu_solib_ops (gdbarch);
1875
1876 /* Cell/B.E. cross-architecture unwinder support. */
1877 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1878
1879 /* We need to support more than "addr_bit" significant address bits
1880 in order to support SPUADDR_ADDR encoded values. */
1881 set_gdbarch_significant_addr_bit (gdbarch, 64);
1882 }
1883
1884 set_gdbarch_displaced_step_location (gdbarch,
1885 linux_displaced_step_location);
1886
1887 /* Support reverse debugging. */
1888 set_gdbarch_process_record (gdbarch, ppc_process_record);
1889 set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
1890 tdep->ppc_syscall_record = ppc_linux_syscall_record;
1891
1892 ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
1893 ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
1894 }
1895
1896 void
1897 _initialize_ppc_linux_tdep (void)
1898 {
1899 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1900 64-bit PowerPC, and the older rs6k. */
1901 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1902 ppc_linux_init_abi);
1903 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1904 ppc_linux_init_abi);
1905 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1906 ppc_linux_init_abi);
1907
1908 /* Attach to observers to track __spe_current_active_context. */
1909 gdb::observers::inferior_created.attach (ppc_linux_spe_context_inferior_created);
1910 gdb::observers::solib_loaded.attach (ppc_linux_spe_context_solib_loaded);
1911 gdb::observers::solib_unloaded.attach (ppc_linux_spe_context_solib_unloaded);
1912
1913 /* Initialize the Linux target descriptions. */
1914 initialize_tdesc_powerpc_32l ();
1915 initialize_tdesc_powerpc_altivec32l ();
1916 initialize_tdesc_powerpc_cell32l ();
1917 initialize_tdesc_powerpc_vsx32l ();
1918 initialize_tdesc_powerpc_isa205_32l ();
1919 initialize_tdesc_powerpc_isa205_altivec32l ();
1920 initialize_tdesc_powerpc_isa205_vsx32l ();
1921 initialize_tdesc_powerpc_64l ();
1922 initialize_tdesc_powerpc_altivec64l ();
1923 initialize_tdesc_powerpc_cell64l ();
1924 initialize_tdesc_powerpc_vsx64l ();
1925 initialize_tdesc_powerpc_isa205_64l ();
1926 initialize_tdesc_powerpc_isa205_altivec64l ();
1927 initialize_tdesc_powerpc_isa205_vsx64l ();
1928 initialize_tdesc_powerpc_e500l ();
1929 }
This page took 0.068347 seconds and 4 git commands to generate.