* arch-utils.h: Update copyright.
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "solib-svr4.h"
36 #include "ppc-tdep.h"
37
38 /* The following two instructions are used in the signal trampoline
39 code on GNU/Linux PPC. */
40 #define INSTR_LI_R0_0x7777 0x38007777
41 #define INSTR_SC 0x44000002
42
43 /* Since the *-tdep.c files are platform independent (i.e, they may be
44 used to build cross platform debuggers), we can't include system
45 headers. Therefore, details concerning the sigcontext structure
46 must be painstakingly rerecorded. What's worse, if these details
47 ever change in the header files, they'll have to be changed here
48 as well. */
49
50 /* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
51 #define PPC_LINUX_SIGNAL_FRAMESIZE 64
52
53 /* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
54 #define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
55
56 /* From <asm/sigcontext.h>,
57 offsetof(struct sigcontext_struct, handler) == 0x14 */
58 #define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
59
60 /* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
61 #define PPC_LINUX_PT_R0 0
62 #define PPC_LINUX_PT_R1 1
63 #define PPC_LINUX_PT_R2 2
64 #define PPC_LINUX_PT_R3 3
65 #define PPC_LINUX_PT_R4 4
66 #define PPC_LINUX_PT_R5 5
67 #define PPC_LINUX_PT_R6 6
68 #define PPC_LINUX_PT_R7 7
69 #define PPC_LINUX_PT_R8 8
70 #define PPC_LINUX_PT_R9 9
71 #define PPC_LINUX_PT_R10 10
72 #define PPC_LINUX_PT_R11 11
73 #define PPC_LINUX_PT_R12 12
74 #define PPC_LINUX_PT_R13 13
75 #define PPC_LINUX_PT_R14 14
76 #define PPC_LINUX_PT_R15 15
77 #define PPC_LINUX_PT_R16 16
78 #define PPC_LINUX_PT_R17 17
79 #define PPC_LINUX_PT_R18 18
80 #define PPC_LINUX_PT_R19 19
81 #define PPC_LINUX_PT_R20 20
82 #define PPC_LINUX_PT_R21 21
83 #define PPC_LINUX_PT_R22 22
84 #define PPC_LINUX_PT_R23 23
85 #define PPC_LINUX_PT_R24 24
86 #define PPC_LINUX_PT_R25 25
87 #define PPC_LINUX_PT_R26 26
88 #define PPC_LINUX_PT_R27 27
89 #define PPC_LINUX_PT_R28 28
90 #define PPC_LINUX_PT_R29 29
91 #define PPC_LINUX_PT_R30 30
92 #define PPC_LINUX_PT_R31 31
93 #define PPC_LINUX_PT_NIP 32
94 #define PPC_LINUX_PT_MSR 33
95 #define PPC_LINUX_PT_CTR 35
96 #define PPC_LINUX_PT_LNK 36
97 #define PPC_LINUX_PT_XER 37
98 #define PPC_LINUX_PT_CCR 38
99 #define PPC_LINUX_PT_MQ 39
100 #define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */
101 #define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
102 #define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
103
104 static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
105
106 /* Determine if pc is in a signal trampoline...
107
108 Ha! That's not what this does at all. wait_for_inferior in
109 infrun.c calls PC_IN_SIGTRAMP in order to detect entry into a
110 signal trampoline just after delivery of a signal. But on
111 GNU/Linux, signal trampolines are used for the return path only.
112 The kernel sets things up so that the signal handler is called
113 directly.
114
115 If we use in_sigtramp2() in place of in_sigtramp() (see below)
116 we'll (often) end up with stop_pc in the trampoline and prev_pc in
117 the (now exited) handler. The code there will cause a temporary
118 breakpoint to be set on prev_pc which is not very likely to get hit
119 again.
120
121 If this is confusing, think of it this way... the code in
122 wait_for_inferior() needs to be able to detect entry into a signal
123 trampoline just after a signal is delivered, not after the handler
124 has been run.
125
126 So, we define in_sigtramp() below to return 1 if the following is
127 true:
128
129 1) The previous frame is a real signal trampoline.
130
131 - and -
132
133 2) pc is at the first or second instruction of the corresponding
134 handler.
135
136 Why the second instruction? It seems that wait_for_inferior()
137 never sees the first instruction when single stepping. When a
138 signal is delivered while stepping, the next instruction that
139 would've been stepped over isn't, instead a signal is delivered and
140 the first instruction of the handler is stepped over instead. That
141 puts us on the second instruction. (I added the test for the
142 first instruction long after the fact, just in case the observed
143 behavior is ever fixed.)
144
145 PC_IN_SIGTRAMP is called from blockframe.c as well in order to set
146 the signal_handler_caller flag. Because of our strange definition
147 of in_sigtramp below, we can't rely on signal_handler_caller
148 getting set correctly from within blockframe.c. This is why we
149 take pains to set it in init_extra_frame_info(). */
150
151 int
152 ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
153 {
154 CORE_ADDR lr;
155 CORE_ADDR sp;
156 CORE_ADDR tramp_sp;
157 char buf[4];
158 CORE_ADDR handler;
159
160 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
161 if (!ppc_linux_at_sigtramp_return_path (lr))
162 return 0;
163
164 sp = read_register (SP_REGNUM);
165
166 if (target_read_memory (sp, buf, sizeof (buf)) != 0)
167 return 0;
168
169 tramp_sp = extract_unsigned_integer (buf, 4);
170
171 if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
172 sizeof (buf)) != 0)
173 return 0;
174
175 handler = extract_unsigned_integer (buf, 4);
176
177 return (pc == handler || pc == handler + 4);
178 }
179
180 /*
181 * The signal handler trampoline is on the stack and consists of exactly
182 * two instructions. The easiest and most accurate way of determining
183 * whether the pc is in one of these trampolines is by inspecting the
184 * instructions. It'd be faster though if we could find a way to do this
185 * via some simple address comparisons.
186 */
187 static int
188 ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
189 {
190 char buf[12];
191 unsigned long pcinsn;
192 if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
193 return 0;
194
195 /* extract the instruction at the pc */
196 pcinsn = extract_unsigned_integer (buf + 4, 4);
197
198 return (
199 (pcinsn == INSTR_LI_R0_0x7777
200 && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
201 ||
202 (pcinsn == INSTR_SC
203 && extract_unsigned_integer (buf, 4) == INSTR_LI_R0_0x7777));
204 }
205
206 CORE_ADDR
207 ppc_linux_skip_trampoline_code (CORE_ADDR pc)
208 {
209 char buf[4];
210 struct obj_section *sect;
211 struct objfile *objfile;
212 unsigned long insn;
213 CORE_ADDR plt_start = 0;
214 CORE_ADDR symtab = 0;
215 CORE_ADDR strtab = 0;
216 int num_slots = -1;
217 int reloc_index = -1;
218 CORE_ADDR plt_table;
219 CORE_ADDR reloc;
220 CORE_ADDR sym;
221 long symidx;
222 char symname[1024];
223 struct minimal_symbol *msymbol;
224
225 /* Find the section pc is in; return if not in .plt */
226 sect = find_pc_section (pc);
227 if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
228 return 0;
229
230 objfile = sect->objfile;
231
232 /* Pick up the instruction at pc. It had better be of the
233 form
234 li r11, IDX
235
236 where IDX is an index into the plt_table. */
237
238 if (target_read_memory (pc, buf, 4) != 0)
239 return 0;
240 insn = extract_unsigned_integer (buf, 4);
241
242 if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
243 return 0;
244
245 reloc_index = (insn << 16) >> 16;
246
247 /* Find the objfile that pc is in and obtain the information
248 necessary for finding the symbol name. */
249 for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
250 {
251 const char *secname = sect->the_bfd_section->name;
252 if (strcmp (secname, ".plt") == 0)
253 plt_start = sect->addr;
254 else if (strcmp (secname, ".rela.plt") == 0)
255 num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
256 else if (strcmp (secname, ".dynsym") == 0)
257 symtab = sect->addr;
258 else if (strcmp (secname, ".dynstr") == 0)
259 strtab = sect->addr;
260 }
261
262 /* Make sure we have all the information we need. */
263 if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
264 return 0;
265
266 /* Compute the value of the plt table */
267 plt_table = plt_start + 72 + 8 * num_slots;
268
269 /* Get address of the relocation entry (Elf32_Rela) */
270 if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
271 return 0;
272 reloc = extract_address (buf, 4);
273
274 sect = find_pc_section (reloc);
275 if (!sect)
276 return 0;
277
278 if (strcmp (sect->the_bfd_section->name, ".text") == 0)
279 return reloc;
280
281 /* Now get the r_info field which is the relocation type and symbol
282 index. */
283 if (target_read_memory (reloc + 4, buf, 4) != 0)
284 return 0;
285 symidx = extract_unsigned_integer (buf, 4);
286
287 /* Shift out the relocation type leaving just the symbol index */
288 /* symidx = ELF32_R_SYM(symidx); */
289 symidx = symidx >> 8;
290
291 /* compute the address of the symbol */
292 sym = symtab + symidx * 4;
293
294 /* Fetch the string table index */
295 if (target_read_memory (sym, buf, 4) != 0)
296 return 0;
297 symidx = extract_unsigned_integer (buf, 4);
298
299 /* Fetch the string; we don't know how long it is. Is it possible
300 that the following will fail because we're trying to fetch too
301 much? */
302 if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
303 return 0;
304
305 /* This might not work right if we have multiple symbols with the
306 same name; the only way to really get it right is to perform
307 the same sort of lookup as the dynamic linker. */
308 msymbol = lookup_minimal_symbol_text (symname, NULL, NULL);
309 if (!msymbol)
310 return 0;
311
312 return SYMBOL_VALUE_ADDRESS (msymbol);
313 }
314
315 /* The rs6000 version of FRAME_SAVED_PC will almost work for us. The
316 signal handler details are different, so we'll handle those here
317 and call the rs6000 version to do the rest. */
318 CORE_ADDR
319 ppc_linux_frame_saved_pc (struct frame_info *fi)
320 {
321 if (fi->signal_handler_caller)
322 {
323 CORE_ADDR regs_addr =
324 read_memory_integer (fi->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
325 /* return the NIP in the regs array */
326 return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_NIP, 4);
327 }
328 else if (fi->next && fi->next->signal_handler_caller)
329 {
330 CORE_ADDR regs_addr =
331 read_memory_integer (fi->next->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
332 /* return LNK in the regs array */
333 return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_LNK, 4);
334 }
335 else
336 return rs6000_frame_saved_pc (fi);
337 }
338
339 void
340 ppc_linux_init_extra_frame_info (int fromleaf, struct frame_info *fi)
341 {
342 rs6000_init_extra_frame_info (fromleaf, fi);
343
344 if (fi->next != 0)
345 {
346 /* We're called from get_prev_frame_info; check to see if
347 this is a signal frame by looking to see if the pc points
348 at trampoline code */
349 if (ppc_linux_at_sigtramp_return_path (fi->pc))
350 fi->signal_handler_caller = 1;
351 else
352 fi->signal_handler_caller = 0;
353 }
354 }
355
356 int
357 ppc_linux_frameless_function_invocation (struct frame_info *fi)
358 {
359 /* We'll find the wrong thing if we let
360 rs6000_frameless_function_invocation () search for a signal trampoline */
361 if (ppc_linux_at_sigtramp_return_path (fi->pc))
362 return 0;
363 else
364 return rs6000_frameless_function_invocation (fi);
365 }
366
367 void
368 ppc_linux_frame_init_saved_regs (struct frame_info *fi)
369 {
370 if (fi->signal_handler_caller)
371 {
372 CORE_ADDR regs_addr;
373 int i;
374 if (fi->saved_regs)
375 return;
376
377 frame_saved_regs_zalloc (fi);
378
379 regs_addr =
380 read_memory_integer (fi->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
381 fi->saved_regs[PC_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_NIP;
382 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_ps_regnum] =
383 regs_addr + 4 * PPC_LINUX_PT_MSR;
384 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_cr_regnum] =
385 regs_addr + 4 * PPC_LINUX_PT_CCR;
386 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_lr_regnum] =
387 regs_addr + 4 * PPC_LINUX_PT_LNK;
388 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum] =
389 regs_addr + 4 * PPC_LINUX_PT_CTR;
390 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_xer_regnum] =
391 regs_addr + 4 * PPC_LINUX_PT_XER;
392 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_mq_regnum] =
393 regs_addr + 4 * PPC_LINUX_PT_MQ;
394 for (i = 0; i < 32; i++)
395 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + i] =
396 regs_addr + 4 * PPC_LINUX_PT_R0 + 4 * i;
397 for (i = 0; i < 32; i++)
398 fi->saved_regs[FP0_REGNUM + i] = regs_addr + 4 * PPC_LINUX_PT_FPR0 + 8 * i;
399 }
400 else
401 rs6000_frame_init_saved_regs (fi);
402 }
403
404 CORE_ADDR
405 ppc_linux_frame_chain (struct frame_info *thisframe)
406 {
407 /* Kernel properly constructs the frame chain for the handler */
408 if (thisframe->signal_handler_caller)
409 return read_memory_integer ((thisframe)->frame, 4);
410 else
411 return rs6000_frame_chain (thisframe);
412 }
413
414 /* FIXME: Move the following to rs6000-tdep.c (or some other file where
415 it may be used generically by ports which use either the SysV ABI or
416 the EABI */
417
418 /* Structures 8 bytes or less long are returned in the r3 & r4
419 registers, according to the SYSV ABI. */
420 int
421 ppc_sysv_abi_use_struct_convention (int gcc_p, struct type *value_type)
422 {
423 return (TYPE_LENGTH (value_type) > 8);
424 }
425
426 /* round2 rounds x up to the nearest multiple of s assuming that s is a
427 power of 2 */
428
429 #undef round2
430 #define round2(x,s) ((((long) (x) - 1) & ~(long)((s)-1)) + (s))
431
432 /* Pass the arguments in either registers, or in the stack. Using the
433 ppc sysv ABI, the first eight words of the argument list (that might
434 be less than eight parameters if some parameters occupy more than one
435 word) are passed in r3..r10 registers. float and double parameters are
436 passed in fpr's, in addition to that. Rest of the parameters if any
437 are passed in user stack.
438
439 If the function is returning a structure, then the return address is passed
440 in r3, then the first 7 words of the parametes can be passed in registers,
441 starting from r4. */
442
443 CORE_ADDR
444 ppc_sysv_abi_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
445 int struct_return, CORE_ADDR struct_addr)
446 {
447 int argno;
448 int greg, freg;
449 int argstkspace;
450 int structstkspace;
451 int argoffset;
452 int structoffset;
453 struct value *arg;
454 struct type *type;
455 int len;
456 char old_sp_buf[4];
457 CORE_ADDR saved_sp;
458
459 greg = struct_return ? 4 : 3;
460 freg = 1;
461 argstkspace = 0;
462 structstkspace = 0;
463
464 /* Figure out how much new stack space is required for arguments
465 which don't fit in registers. Unlike the PowerOpen ABI, the
466 SysV ABI doesn't reserve any extra space for parameters which
467 are put in registers. */
468 for (argno = 0; argno < nargs; argno++)
469 {
470 arg = args[argno];
471 type = check_typedef (VALUE_TYPE (arg));
472 len = TYPE_LENGTH (type);
473
474 if (TYPE_CODE (type) == TYPE_CODE_FLT)
475 {
476 if (freg <= 8)
477 freg++;
478 else
479 {
480 /* SysV ABI converts floats to doubles when placed in
481 memory and requires 8 byte alignment */
482 if (argstkspace & 0x4)
483 argstkspace += 4;
484 argstkspace += 8;
485 }
486 }
487 else if (TYPE_CODE (type) == TYPE_CODE_INT && len == 8) /* long long */
488 {
489 if (greg > 9)
490 {
491 greg = 11;
492 if (argstkspace & 0x4)
493 argstkspace += 4;
494 argstkspace += 8;
495 }
496 else
497 {
498 if ((greg & 1) == 0)
499 greg++;
500 greg += 2;
501 }
502 }
503 else
504 {
505 if (len > 4
506 || TYPE_CODE (type) == TYPE_CODE_STRUCT
507 || TYPE_CODE (type) == TYPE_CODE_UNION)
508 {
509 /* Rounding to the nearest multiple of 8 may not be necessary,
510 but it is safe. Particularly since we don't know the
511 field types of the structure */
512 structstkspace += round2 (len, 8);
513 }
514 if (greg <= 10)
515 greg++;
516 else
517 argstkspace += 4;
518 }
519 }
520
521 /* Get current SP location */
522 saved_sp = read_sp ();
523
524 sp -= argstkspace + structstkspace;
525
526 /* Allocate space for backchain and callee's saved lr */
527 sp -= 8;
528
529 /* Make sure that we maintain 16 byte alignment */
530 sp &= ~0x0f;
531
532 /* Update %sp before proceeding any further */
533 write_register (SP_REGNUM, sp);
534
535 /* write the backchain */
536 store_address (old_sp_buf, 4, saved_sp);
537 write_memory (sp, old_sp_buf, 4);
538
539 argoffset = 8;
540 structoffset = argoffset + argstkspace;
541 freg = 1;
542 greg = 3;
543 /* Fill in r3 with the return structure, if any */
544 if (struct_return)
545 {
546 char val_buf[4];
547 store_address (val_buf, 4, struct_addr);
548 memcpy (&registers[REGISTER_BYTE (greg)], val_buf, 4);
549 greg++;
550 }
551 /* Now fill in the registers and stack... */
552 for (argno = 0; argno < nargs; argno++)
553 {
554 arg = args[argno];
555 type = check_typedef (VALUE_TYPE (arg));
556 len = TYPE_LENGTH (type);
557
558 if (TYPE_CODE (type) == TYPE_CODE_FLT)
559 {
560 if (freg <= 8)
561 {
562 if (len > 8)
563 printf_unfiltered (
564 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
565 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + freg)],
566 VALUE_CONTENTS (arg), len);
567 freg++;
568 }
569 else
570 {
571 /* SysV ABI converts floats to doubles when placed in
572 memory and requires 8 byte alignment */
573 /* FIXME: Convert floats to doubles */
574 if (argoffset & 0x4)
575 argoffset += 4;
576 write_memory (sp + argoffset, (char *) VALUE_CONTENTS (arg), len);
577 argoffset += 8;
578 }
579 }
580 else if (TYPE_CODE (type) == TYPE_CODE_INT && len == 8) /* long long */
581 {
582 if (greg > 9)
583 {
584 greg = 11;
585 if (argoffset & 0x4)
586 argoffset += 4;
587 write_memory (sp + argoffset, (char *) VALUE_CONTENTS (arg), len);
588 argoffset += 8;
589 }
590 else
591 {
592 if ((greg & 1) == 0)
593 greg++;
594
595 memcpy (&registers[REGISTER_BYTE (greg)],
596 VALUE_CONTENTS (arg), 4);
597 memcpy (&registers[REGISTER_BYTE (greg + 1)],
598 VALUE_CONTENTS (arg) + 4, 4);
599 greg += 2;
600 }
601 }
602 else
603 {
604 char val_buf[4];
605 if (len > 4
606 || TYPE_CODE (type) == TYPE_CODE_STRUCT
607 || TYPE_CODE (type) == TYPE_CODE_UNION)
608 {
609 write_memory (sp + structoffset, VALUE_CONTENTS (arg), len);
610 store_address (val_buf, 4, sp + structoffset);
611 structoffset += round2 (len, 8);
612 }
613 else
614 {
615 memset (val_buf, 0, 4);
616 memcpy (val_buf, VALUE_CONTENTS (arg), len);
617 }
618 if (greg <= 10)
619 {
620 *(int *) &registers[REGISTER_BYTE (greg)] = 0;
621 memcpy (&registers[REGISTER_BYTE (greg)], val_buf, 4);
622 greg++;
623 }
624 else
625 {
626 write_memory (sp + argoffset, val_buf, 4);
627 argoffset += 4;
628 }
629 }
630 }
631
632 target_store_registers (-1);
633 return sp;
634 }
635
636 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
637 in much the same fashion as memory_remove_breakpoint in mem-break.c,
638 but is careful not to write back the previous contents if the code
639 in question has changed in between inserting the breakpoint and
640 removing it.
641
642 Here is the problem that we're trying to solve...
643
644 Once upon a time, before introducing this function to remove
645 breakpoints from the inferior, setting a breakpoint on a shared
646 library function prior to running the program would not work
647 properly. In order to understand the problem, it is first
648 necessary to understand a little bit about dynamic linking on
649 this platform.
650
651 A call to a shared library function is accomplished via a bl
652 (branch-and-link) instruction whose branch target is an entry
653 in the procedure linkage table (PLT). The PLT in the object
654 file is uninitialized. To gdb, prior to running the program, the
655 entries in the PLT are all zeros.
656
657 Once the program starts running, the shared libraries are loaded
658 and the procedure linkage table is initialized, but the entries in
659 the table are not (necessarily) resolved. Once a function is
660 actually called, the code in the PLT is hit and the function is
661 resolved. In order to better illustrate this, an example is in
662 order; the following example is from the gdb testsuite.
663
664 We start the program shmain.
665
666 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
667 [...]
668
669 We place two breakpoints, one on shr1 and the other on main.
670
671 (gdb) b shr1
672 Breakpoint 1 at 0x100409d4
673 (gdb) b main
674 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
675
676 Examine the instruction (and the immediatly following instruction)
677 upon which the breakpoint was placed. Note that the PLT entry
678 for shr1 contains zeros.
679
680 (gdb) x/2i 0x100409d4
681 0x100409d4 <shr1>: .long 0x0
682 0x100409d8 <shr1+4>: .long 0x0
683
684 Now run 'til main.
685
686 (gdb) r
687 Starting program: gdb.base/shmain
688 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
689
690 Breakpoint 2, main ()
691 at gdb.base/shmain.c:44
692 44 g = 1;
693
694 Examine the PLT again. Note that the loading of the shared
695 library has initialized the PLT to code which loads a constant
696 (which I think is an index into the GOT) into r11 and then
697 branchs a short distance to the code which actually does the
698 resolving.
699
700 (gdb) x/2i 0x100409d4
701 0x100409d4 <shr1>: li r11,4
702 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
703 (gdb) c
704 Continuing.
705
706 Breakpoint 1, shr1 (x=1)
707 at gdb.base/shr1.c:19
708 19 l = 1;
709
710 Now we've hit the breakpoint at shr1. (The breakpoint was
711 reset from the PLT entry to the actual shr1 function after the
712 shared library was loaded.) Note that the PLT entry has been
713 resolved to contain a branch that takes us directly to shr1.
714 (The real one, not the PLT entry.)
715
716 (gdb) x/2i 0x100409d4
717 0x100409d4 <shr1>: b 0xffaf76c <shr1>
718 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
719
720 The thing to note here is that the PLT entry for shr1 has been
721 changed twice.
722
723 Now the problem should be obvious. GDB places a breakpoint (a
724 trap instruction) on the zero value of the PLT entry for shr1.
725 Later on, after the shared library had been loaded and the PLT
726 initialized, GDB gets a signal indicating this fact and attempts
727 (as it always does when it stops) to remove all the breakpoints.
728
729 The breakpoint removal was causing the former contents (a zero
730 word) to be written back to the now initialized PLT entry thus
731 destroying a portion of the initialization that had occurred only a
732 short time ago. When execution continued, the zero word would be
733 executed as an instruction an an illegal instruction trap was
734 generated instead. (0 is not a legal instruction.)
735
736 The fix for this problem was fairly straightforward. The function
737 memory_remove_breakpoint from mem-break.c was copied to this file,
738 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
739 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
740 function.
741
742 The differences between ppc_linux_memory_remove_breakpoint () and
743 memory_remove_breakpoint () are minor. All that the former does
744 that the latter does not is check to make sure that the breakpoint
745 location actually contains a breakpoint (trap instruction) prior
746 to attempting to write back the old contents. If it does contain
747 a trap instruction, we allow the old contents to be written back.
748 Otherwise, we silently do nothing.
749
750 The big question is whether memory_remove_breakpoint () should be
751 changed to have the same functionality. The downside is that more
752 traffic is generated for remote targets since we'll have an extra
753 fetch of a memory word each time a breakpoint is removed.
754
755 For the time being, we'll leave this self-modifying-code-friendly
756 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
757 else in the event that some other platform has similar needs with
758 regard to removing breakpoints in some potentially self modifying
759 code. */
760 int
761 ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
762 {
763 const unsigned char *bp;
764 int val;
765 int bplen;
766 char old_contents[BREAKPOINT_MAX];
767
768 /* Determine appropriate breakpoint contents and size for this address. */
769 bp = BREAKPOINT_FROM_PC (&addr, &bplen);
770 if (bp == NULL)
771 error ("Software breakpoints not implemented for this target.");
772
773 val = target_read_memory (addr, old_contents, bplen);
774
775 /* If our breakpoint is no longer at the address, this means that the
776 program modified the code on us, so it is wrong to put back the
777 old value */
778 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
779 val = target_write_memory (addr, contents_cache, bplen);
780
781 return val;
782 }
783
784 /* Fetch (and possibly build) an appropriate link_map_offsets
785 structure for GNU/Linux PPC targets using the struct offsets
786 defined in link.h (but without actual reference to that file).
787
788 This makes it possible to access GNU/Linux PPC shared libraries
789 from a GDB that was not built on an GNU/Linux PPC host (for cross
790 debugging). */
791
792 struct link_map_offsets *
793 ppc_linux_svr4_fetch_link_map_offsets (void)
794 {
795 static struct link_map_offsets lmo;
796 static struct link_map_offsets *lmp = NULL;
797
798 if (lmp == NULL)
799 {
800 lmp = &lmo;
801
802 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
803 this is all we need. */
804 lmo.r_map_offset = 4;
805 lmo.r_map_size = 4;
806
807 lmo.link_map_size = 20; /* The actual size is 560 bytes, but
808 this is all we need. */
809 lmo.l_addr_offset = 0;
810 lmo.l_addr_size = 4;
811
812 lmo.l_name_offset = 4;
813 lmo.l_name_size = 4;
814
815 lmo.l_next_offset = 12;
816 lmo.l_next_size = 4;
817
818 lmo.l_prev_offset = 16;
819 lmo.l_prev_size = 4;
820 }
821
822 return lmp;
823 }
This page took 0.046448 seconds and 4 git commands to generate.