*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "osabi.h"
35
36 #include "solib-svr4.h"
37 #include "ppc-tdep.h"
38
39 /* The following instructions are used in the signal trampoline code
40 on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and
41 0x7777 but now uses the sigreturn syscalls. We check for both. */
42 #define INSTR_LI_R0_0x6666 0x38006666
43 #define INSTR_LI_R0_0x7777 0x38007777
44 #define INSTR_LI_R0_NR_sigreturn 0x38000077
45 #define INSTR_LI_R0_NR_rt_sigreturn 0x380000AC
46
47 #define INSTR_SC 0x44000002
48
49 /* Since the *-tdep.c files are platform independent (i.e, they may be
50 used to build cross platform debuggers), we can't include system
51 headers. Therefore, details concerning the sigcontext structure
52 must be painstakingly rerecorded. What's worse, if these details
53 ever change in the header files, they'll have to be changed here
54 as well. */
55
56 /* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
57 #define PPC_LINUX_SIGNAL_FRAMESIZE 64
58
59 /* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
60 #define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
61
62 /* From <asm/sigcontext.h>,
63 offsetof(struct sigcontext_struct, handler) == 0x14 */
64 #define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
65
66 /* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
67 #define PPC_LINUX_PT_R0 0
68 #define PPC_LINUX_PT_R1 1
69 #define PPC_LINUX_PT_R2 2
70 #define PPC_LINUX_PT_R3 3
71 #define PPC_LINUX_PT_R4 4
72 #define PPC_LINUX_PT_R5 5
73 #define PPC_LINUX_PT_R6 6
74 #define PPC_LINUX_PT_R7 7
75 #define PPC_LINUX_PT_R8 8
76 #define PPC_LINUX_PT_R9 9
77 #define PPC_LINUX_PT_R10 10
78 #define PPC_LINUX_PT_R11 11
79 #define PPC_LINUX_PT_R12 12
80 #define PPC_LINUX_PT_R13 13
81 #define PPC_LINUX_PT_R14 14
82 #define PPC_LINUX_PT_R15 15
83 #define PPC_LINUX_PT_R16 16
84 #define PPC_LINUX_PT_R17 17
85 #define PPC_LINUX_PT_R18 18
86 #define PPC_LINUX_PT_R19 19
87 #define PPC_LINUX_PT_R20 20
88 #define PPC_LINUX_PT_R21 21
89 #define PPC_LINUX_PT_R22 22
90 #define PPC_LINUX_PT_R23 23
91 #define PPC_LINUX_PT_R24 24
92 #define PPC_LINUX_PT_R25 25
93 #define PPC_LINUX_PT_R26 26
94 #define PPC_LINUX_PT_R27 27
95 #define PPC_LINUX_PT_R28 28
96 #define PPC_LINUX_PT_R29 29
97 #define PPC_LINUX_PT_R30 30
98 #define PPC_LINUX_PT_R31 31
99 #define PPC_LINUX_PT_NIP 32
100 #define PPC_LINUX_PT_MSR 33
101 #define PPC_LINUX_PT_CTR 35
102 #define PPC_LINUX_PT_LNK 36
103 #define PPC_LINUX_PT_XER 37
104 #define PPC_LINUX_PT_CCR 38
105 #define PPC_LINUX_PT_MQ 39
106 #define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */
107 #define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
108 #define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
109
110 static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
111
112 /* Determine if pc is in a signal trampoline...
113
114 Ha! That's not what this does at all. wait_for_inferior in
115 infrun.c calls PC_IN_SIGTRAMP in order to detect entry into a
116 signal trampoline just after delivery of a signal. But on
117 GNU/Linux, signal trampolines are used for the return path only.
118 The kernel sets things up so that the signal handler is called
119 directly.
120
121 If we use in_sigtramp2() in place of in_sigtramp() (see below)
122 we'll (often) end up with stop_pc in the trampoline and prev_pc in
123 the (now exited) handler. The code there will cause a temporary
124 breakpoint to be set on prev_pc which is not very likely to get hit
125 again.
126
127 If this is confusing, think of it this way... the code in
128 wait_for_inferior() needs to be able to detect entry into a signal
129 trampoline just after a signal is delivered, not after the handler
130 has been run.
131
132 So, we define in_sigtramp() below to return 1 if the following is
133 true:
134
135 1) The previous frame is a real signal trampoline.
136
137 - and -
138
139 2) pc is at the first or second instruction of the corresponding
140 handler.
141
142 Why the second instruction? It seems that wait_for_inferior()
143 never sees the first instruction when single stepping. When a
144 signal is delivered while stepping, the next instruction that
145 would've been stepped over isn't, instead a signal is delivered and
146 the first instruction of the handler is stepped over instead. That
147 puts us on the second instruction. (I added the test for the
148 first instruction long after the fact, just in case the observed
149 behavior is ever fixed.)
150
151 PC_IN_SIGTRAMP is called from blockframe.c as well in order to set
152 the frame's type (if a SIGTRAMP_FRAME). Because of our strange
153 definition of in_sigtramp below, we can't rely on the frame's type
154 getting set correctly from within blockframe.c. This is why we
155 take pains to set it in init_extra_frame_info().
156
157 NOTE: cagney/2002-11-10: I suspect the real problem here is that
158 the get_prev_frame() only initializes the frame's type after the
159 call to INIT_FRAME_INFO. get_prev_frame() should be fixed, this
160 code shouldn't be working its way around a bug :-(. */
161
162 int
163 ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
164 {
165 CORE_ADDR lr;
166 CORE_ADDR sp;
167 CORE_ADDR tramp_sp;
168 char buf[4];
169 CORE_ADDR handler;
170
171 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
172 if (!ppc_linux_at_sigtramp_return_path (lr))
173 return 0;
174
175 sp = read_register (SP_REGNUM);
176
177 if (target_read_memory (sp, buf, sizeof (buf)) != 0)
178 return 0;
179
180 tramp_sp = extract_unsigned_integer (buf, 4);
181
182 if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
183 sizeof (buf)) != 0)
184 return 0;
185
186 handler = extract_unsigned_integer (buf, 4);
187
188 return (pc == handler || pc == handler + 4);
189 }
190
191 static int
192 insn_is_sigreturn (unsigned long pcinsn)
193 {
194 switch(pcinsn)
195 {
196 case INSTR_LI_R0_0x6666:
197 case INSTR_LI_R0_0x7777:
198 case INSTR_LI_R0_NR_sigreturn:
199 case INSTR_LI_R0_NR_rt_sigreturn:
200 return 1;
201 default:
202 return 0;
203 }
204 }
205
206 /*
207 * The signal handler trampoline is on the stack and consists of exactly
208 * two instructions. The easiest and most accurate way of determining
209 * whether the pc is in one of these trampolines is by inspecting the
210 * instructions. It'd be faster though if we could find a way to do this
211 * via some simple address comparisons.
212 */
213 static int
214 ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
215 {
216 char buf[12];
217 unsigned long pcinsn;
218 if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
219 return 0;
220
221 /* extract the instruction at the pc */
222 pcinsn = extract_unsigned_integer (buf + 4, 4);
223
224 return (
225 (insn_is_sigreturn (pcinsn)
226 && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
227 ||
228 (pcinsn == INSTR_SC
229 && insn_is_sigreturn (extract_unsigned_integer (buf, 4))));
230 }
231
232 static CORE_ADDR
233 ppc_linux_skip_trampoline_code (CORE_ADDR pc)
234 {
235 char buf[4];
236 struct obj_section *sect;
237 struct objfile *objfile;
238 unsigned long insn;
239 CORE_ADDR plt_start = 0;
240 CORE_ADDR symtab = 0;
241 CORE_ADDR strtab = 0;
242 int num_slots = -1;
243 int reloc_index = -1;
244 CORE_ADDR plt_table;
245 CORE_ADDR reloc;
246 CORE_ADDR sym;
247 long symidx;
248 char symname[1024];
249 struct minimal_symbol *msymbol;
250
251 /* Find the section pc is in; return if not in .plt */
252 sect = find_pc_section (pc);
253 if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
254 return 0;
255
256 objfile = sect->objfile;
257
258 /* Pick up the instruction at pc. It had better be of the
259 form
260 li r11, IDX
261
262 where IDX is an index into the plt_table. */
263
264 if (target_read_memory (pc, buf, 4) != 0)
265 return 0;
266 insn = extract_unsigned_integer (buf, 4);
267
268 if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
269 return 0;
270
271 reloc_index = (insn << 16) >> 16;
272
273 /* Find the objfile that pc is in and obtain the information
274 necessary for finding the symbol name. */
275 for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
276 {
277 const char *secname = sect->the_bfd_section->name;
278 if (strcmp (secname, ".plt") == 0)
279 plt_start = sect->addr;
280 else if (strcmp (secname, ".rela.plt") == 0)
281 num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
282 else if (strcmp (secname, ".dynsym") == 0)
283 symtab = sect->addr;
284 else if (strcmp (secname, ".dynstr") == 0)
285 strtab = sect->addr;
286 }
287
288 /* Make sure we have all the information we need. */
289 if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
290 return 0;
291
292 /* Compute the value of the plt table */
293 plt_table = plt_start + 72 + 8 * num_slots;
294
295 /* Get address of the relocation entry (Elf32_Rela) */
296 if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
297 return 0;
298 reloc = extract_unsigned_integer (buf, 4);
299
300 sect = find_pc_section (reloc);
301 if (!sect)
302 return 0;
303
304 if (strcmp (sect->the_bfd_section->name, ".text") == 0)
305 return reloc;
306
307 /* Now get the r_info field which is the relocation type and symbol
308 index. */
309 if (target_read_memory (reloc + 4, buf, 4) != 0)
310 return 0;
311 symidx = extract_unsigned_integer (buf, 4);
312
313 /* Shift out the relocation type leaving just the symbol index */
314 /* symidx = ELF32_R_SYM(symidx); */
315 symidx = symidx >> 8;
316
317 /* compute the address of the symbol */
318 sym = symtab + symidx * 4;
319
320 /* Fetch the string table index */
321 if (target_read_memory (sym, buf, 4) != 0)
322 return 0;
323 symidx = extract_unsigned_integer (buf, 4);
324
325 /* Fetch the string; we don't know how long it is. Is it possible
326 that the following will fail because we're trying to fetch too
327 much? */
328 if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
329 return 0;
330
331 /* This might not work right if we have multiple symbols with the
332 same name; the only way to really get it right is to perform
333 the same sort of lookup as the dynamic linker. */
334 msymbol = lookup_minimal_symbol_text (symname, NULL);
335 if (!msymbol)
336 return 0;
337
338 return SYMBOL_VALUE_ADDRESS (msymbol);
339 }
340
341 /* The rs6000 version of FRAME_SAVED_PC will almost work for us. The
342 signal handler details are different, so we'll handle those here
343 and call the rs6000 version to do the rest. */
344 CORE_ADDR
345 ppc_linux_frame_saved_pc (struct frame_info *fi)
346 {
347 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
348 {
349 CORE_ADDR regs_addr =
350 read_memory_integer (get_frame_base (fi)
351 + PPC_LINUX_REGS_PTR_OFFSET, 4);
352 /* return the NIP in the regs array */
353 return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_NIP, 4);
354 }
355 else if (get_next_frame (fi)
356 && (get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
357 {
358 CORE_ADDR regs_addr =
359 read_memory_integer (get_frame_base (get_next_frame (fi))
360 + PPC_LINUX_REGS_PTR_OFFSET, 4);
361 /* return LNK in the regs array */
362 return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_LNK, 4);
363 }
364 else
365 return rs6000_frame_saved_pc (fi);
366 }
367
368 void
369 ppc_linux_init_extra_frame_info (int fromleaf, struct frame_info *fi)
370 {
371 rs6000_init_extra_frame_info (fromleaf, fi);
372
373 if (get_next_frame (fi) != 0)
374 {
375 /* We're called from get_prev_frame_info; check to see if
376 this is a signal frame by looking to see if the pc points
377 at trampoline code */
378 if (ppc_linux_at_sigtramp_return_path (get_frame_pc (fi)))
379 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
380 else
381 /* FIXME: cagney/2002-11-10: Is this double bogus? What
382 happens if the frame has previously been marked as a dummy? */
383 deprecated_set_frame_type (fi, NORMAL_FRAME);
384 }
385 }
386
387 int
388 ppc_linux_frameless_function_invocation (struct frame_info *fi)
389 {
390 /* We'll find the wrong thing if we let
391 rs6000_frameless_function_invocation () search for a signal trampoline */
392 if (ppc_linux_at_sigtramp_return_path (get_frame_pc (fi)))
393 return 0;
394 else
395 return rs6000_frameless_function_invocation (fi);
396 }
397
398 void
399 ppc_linux_frame_init_saved_regs (struct frame_info *fi)
400 {
401 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
402 {
403 CORE_ADDR regs_addr;
404 int i;
405 if (deprecated_get_frame_saved_regs (fi))
406 return;
407
408 frame_saved_regs_zalloc (fi);
409
410 regs_addr =
411 read_memory_integer (get_frame_base (fi)
412 + PPC_LINUX_REGS_PTR_OFFSET, 4);
413 deprecated_get_frame_saved_regs (fi)[PC_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_NIP;
414 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_ps_regnum] =
415 regs_addr + 4 * PPC_LINUX_PT_MSR;
416 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_cr_regnum] =
417 regs_addr + 4 * PPC_LINUX_PT_CCR;
418 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_lr_regnum] =
419 regs_addr + 4 * PPC_LINUX_PT_LNK;
420 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum] =
421 regs_addr + 4 * PPC_LINUX_PT_CTR;
422 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_xer_regnum] =
423 regs_addr + 4 * PPC_LINUX_PT_XER;
424 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_mq_regnum] =
425 regs_addr + 4 * PPC_LINUX_PT_MQ;
426 for (i = 0; i < 32; i++)
427 deprecated_get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + i] =
428 regs_addr + 4 * PPC_LINUX_PT_R0 + 4 * i;
429 for (i = 0; i < 32; i++)
430 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = regs_addr + 4 * PPC_LINUX_PT_FPR0 + 8 * i;
431 }
432 else
433 rs6000_frame_init_saved_regs (fi);
434 }
435
436 CORE_ADDR
437 ppc_linux_frame_chain (struct frame_info *thisframe)
438 {
439 /* Kernel properly constructs the frame chain for the handler */
440 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
441 return read_memory_integer (get_frame_base (thisframe), 4);
442 else
443 return rs6000_frame_chain (thisframe);
444 }
445
446 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
447 in much the same fashion as memory_remove_breakpoint in mem-break.c,
448 but is careful not to write back the previous contents if the code
449 in question has changed in between inserting the breakpoint and
450 removing it.
451
452 Here is the problem that we're trying to solve...
453
454 Once upon a time, before introducing this function to remove
455 breakpoints from the inferior, setting a breakpoint on a shared
456 library function prior to running the program would not work
457 properly. In order to understand the problem, it is first
458 necessary to understand a little bit about dynamic linking on
459 this platform.
460
461 A call to a shared library function is accomplished via a bl
462 (branch-and-link) instruction whose branch target is an entry
463 in the procedure linkage table (PLT). The PLT in the object
464 file is uninitialized. To gdb, prior to running the program, the
465 entries in the PLT are all zeros.
466
467 Once the program starts running, the shared libraries are loaded
468 and the procedure linkage table is initialized, but the entries in
469 the table are not (necessarily) resolved. Once a function is
470 actually called, the code in the PLT is hit and the function is
471 resolved. In order to better illustrate this, an example is in
472 order; the following example is from the gdb testsuite.
473
474 We start the program shmain.
475
476 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
477 [...]
478
479 We place two breakpoints, one on shr1 and the other on main.
480
481 (gdb) b shr1
482 Breakpoint 1 at 0x100409d4
483 (gdb) b main
484 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
485
486 Examine the instruction (and the immediatly following instruction)
487 upon which the breakpoint was placed. Note that the PLT entry
488 for shr1 contains zeros.
489
490 (gdb) x/2i 0x100409d4
491 0x100409d4 <shr1>: .long 0x0
492 0x100409d8 <shr1+4>: .long 0x0
493
494 Now run 'til main.
495
496 (gdb) r
497 Starting program: gdb.base/shmain
498 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
499
500 Breakpoint 2, main ()
501 at gdb.base/shmain.c:44
502 44 g = 1;
503
504 Examine the PLT again. Note that the loading of the shared
505 library has initialized the PLT to code which loads a constant
506 (which I think is an index into the GOT) into r11 and then
507 branchs a short distance to the code which actually does the
508 resolving.
509
510 (gdb) x/2i 0x100409d4
511 0x100409d4 <shr1>: li r11,4
512 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
513 (gdb) c
514 Continuing.
515
516 Breakpoint 1, shr1 (x=1)
517 at gdb.base/shr1.c:19
518 19 l = 1;
519
520 Now we've hit the breakpoint at shr1. (The breakpoint was
521 reset from the PLT entry to the actual shr1 function after the
522 shared library was loaded.) Note that the PLT entry has been
523 resolved to contain a branch that takes us directly to shr1.
524 (The real one, not the PLT entry.)
525
526 (gdb) x/2i 0x100409d4
527 0x100409d4 <shr1>: b 0xffaf76c <shr1>
528 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
529
530 The thing to note here is that the PLT entry for shr1 has been
531 changed twice.
532
533 Now the problem should be obvious. GDB places a breakpoint (a
534 trap instruction) on the zero value of the PLT entry for shr1.
535 Later on, after the shared library had been loaded and the PLT
536 initialized, GDB gets a signal indicating this fact and attempts
537 (as it always does when it stops) to remove all the breakpoints.
538
539 The breakpoint removal was causing the former contents (a zero
540 word) to be written back to the now initialized PLT entry thus
541 destroying a portion of the initialization that had occurred only a
542 short time ago. When execution continued, the zero word would be
543 executed as an instruction an an illegal instruction trap was
544 generated instead. (0 is not a legal instruction.)
545
546 The fix for this problem was fairly straightforward. The function
547 memory_remove_breakpoint from mem-break.c was copied to this file,
548 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
549 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
550 function.
551
552 The differences between ppc_linux_memory_remove_breakpoint () and
553 memory_remove_breakpoint () are minor. All that the former does
554 that the latter does not is check to make sure that the breakpoint
555 location actually contains a breakpoint (trap instruction) prior
556 to attempting to write back the old contents. If it does contain
557 a trap instruction, we allow the old contents to be written back.
558 Otherwise, we silently do nothing.
559
560 The big question is whether memory_remove_breakpoint () should be
561 changed to have the same functionality. The downside is that more
562 traffic is generated for remote targets since we'll have an extra
563 fetch of a memory word each time a breakpoint is removed.
564
565 For the time being, we'll leave this self-modifying-code-friendly
566 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
567 else in the event that some other platform has similar needs with
568 regard to removing breakpoints in some potentially self modifying
569 code. */
570 int
571 ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
572 {
573 const unsigned char *bp;
574 int val;
575 int bplen;
576 char old_contents[BREAKPOINT_MAX];
577
578 /* Determine appropriate breakpoint contents and size for this address. */
579 bp = BREAKPOINT_FROM_PC (&addr, &bplen);
580 if (bp == NULL)
581 error ("Software breakpoints not implemented for this target.");
582
583 val = target_read_memory (addr, old_contents, bplen);
584
585 /* If our breakpoint is no longer at the address, this means that the
586 program modified the code on us, so it is wrong to put back the
587 old value */
588 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
589 val = target_write_memory (addr, contents_cache, bplen);
590
591 return val;
592 }
593
594 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
595 than the 32 bit SYSV R4 ABI structure return convention - all
596 structures, no matter their size, are put in memory. Vectors,
597 which were added later, do get returned in a register though. */
598
599 static enum return_value_convention
600 ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype,
601 struct regcache *regcache, const void *inval, void *outval)
602 {
603 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
604 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
605 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
606 && TYPE_VECTOR (valtype)))
607 return RETURN_VALUE_STRUCT_CONVENTION;
608 else
609 return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, inval, outval);
610 }
611
612 /* Fetch (and possibly build) an appropriate link_map_offsets
613 structure for GNU/Linux PPC targets using the struct offsets
614 defined in link.h (but without actual reference to that file).
615
616 This makes it possible to access GNU/Linux PPC shared libraries
617 from a GDB that was not built on an GNU/Linux PPC host (for cross
618 debugging). */
619
620 struct link_map_offsets *
621 ppc_linux_svr4_fetch_link_map_offsets (void)
622 {
623 static struct link_map_offsets lmo;
624 static struct link_map_offsets *lmp = NULL;
625
626 if (lmp == NULL)
627 {
628 lmp = &lmo;
629
630 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
631 this is all we need. */
632 lmo.r_map_offset = 4;
633 lmo.r_map_size = 4;
634
635 lmo.link_map_size = 20; /* The actual size is 560 bytes, but
636 this is all we need. */
637 lmo.l_addr_offset = 0;
638 lmo.l_addr_size = 4;
639
640 lmo.l_name_offset = 4;
641 lmo.l_name_size = 4;
642
643 lmo.l_next_offset = 12;
644 lmo.l_next_size = 4;
645
646 lmo.l_prev_offset = 16;
647 lmo.l_prev_size = 4;
648 }
649
650 return lmp;
651 }
652
653
654 /* Macros for matching instructions. Note that, since all the
655 operands are masked off before they're or-ed into the instruction,
656 you can use -1 to make masks. */
657
658 #define insn_d(opcd, rts, ra, d) \
659 ((((opcd) & 0x3f) << 26) \
660 | (((rts) & 0x1f) << 21) \
661 | (((ra) & 0x1f) << 16) \
662 | ((d) & 0xffff))
663
664 #define insn_ds(opcd, rts, ra, d, xo) \
665 ((((opcd) & 0x3f) << 26) \
666 | (((rts) & 0x1f) << 21) \
667 | (((ra) & 0x1f) << 16) \
668 | ((d) & 0xfffc) \
669 | ((xo) & 0x3))
670
671 #define insn_xfx(opcd, rts, spr, xo) \
672 ((((opcd) & 0x3f) << 26) \
673 | (((rts) & 0x1f) << 21) \
674 | (((spr) & 0x1f) << 16) \
675 | (((spr) & 0x3e0) << 6) \
676 | (((xo) & 0x3ff) << 1))
677
678 /* Read a PPC instruction from memory. PPC instructions are always
679 big-endian, no matter what endianness the program is running in, so
680 we can't use read_memory_integer or one of its friends here. */
681 static unsigned int
682 read_insn (CORE_ADDR pc)
683 {
684 unsigned char buf[4];
685
686 read_memory (pc, buf, 4);
687 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
688 }
689
690
691 /* An instruction to match. */
692 struct insn_pattern
693 {
694 unsigned int mask; /* mask the insn with this... */
695 unsigned int data; /* ...and see if it matches this. */
696 int optional; /* If non-zero, this insn may be absent. */
697 };
698
699 /* Return non-zero if the instructions at PC match the series
700 described in PATTERN, or zero otherwise. PATTERN is an array of
701 'struct insn_pattern' objects, terminated by an entry whose mask is
702 zero.
703
704 When the match is successful, fill INSN[i] with what PATTERN[i]
705 matched. If PATTERN[i] is optional, and the instruction wasn't
706 present, set INSN[i] to 0 (which is not a valid PPC instruction).
707 INSN should have as many elements as PATTERN. Note that, if
708 PATTERN contains optional instructions which aren't present in
709 memory, then INSN will have holes, so INSN[i] isn't necessarily the
710 i'th instruction in memory. */
711 static int
712 insns_match_pattern (CORE_ADDR pc,
713 struct insn_pattern *pattern,
714 unsigned int *insn)
715 {
716 int i;
717
718 for (i = 0; pattern[i].mask; i++)
719 {
720 insn[i] = read_insn (pc);
721 if ((insn[i] & pattern[i].mask) == pattern[i].data)
722 pc += 4;
723 else if (pattern[i].optional)
724 insn[i] = 0;
725 else
726 return 0;
727 }
728
729 return 1;
730 }
731
732
733 /* Return the 'd' field of the d-form instruction INSN, properly
734 sign-extended. */
735 static CORE_ADDR
736 insn_d_field (unsigned int insn)
737 {
738 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
739 }
740
741
742 /* Return the 'ds' field of the ds-form instruction INSN, with the two
743 zero bits concatenated at the right, and properly
744 sign-extended. */
745 static CORE_ADDR
746 insn_ds_field (unsigned int insn)
747 {
748 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
749 }
750
751
752 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
753 descriptor, return the descriptor's entry point. */
754 static CORE_ADDR
755 ppc64_desc_entry_point (CORE_ADDR desc)
756 {
757 /* The first word of the descriptor is the entry point. */
758 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
759 }
760
761
762 /* Pattern for the standard linkage function. These are built by
763 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
764 zero. */
765 static struct insn_pattern ppc64_standard_linkage[] =
766 {
767 /* addis r12, r2, <any> */
768 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
769
770 /* std r2, 40(r1) */
771 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
772
773 /* ld r11, <any>(r12) */
774 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
775
776 /* addis r12, r12, 1 <optional> */
777 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
778
779 /* ld r2, <any>(r12) */
780 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
781
782 /* addis r12, r12, 1 <optional> */
783 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
784
785 /* mtctr r11 */
786 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
787 0 },
788
789 /* ld r11, <any>(r12) */
790 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
791
792 /* bctr */
793 { -1, 0x4e800420, 0 },
794
795 { 0, 0, 0 }
796 };
797 #define PPC64_STANDARD_LINKAGE_LEN \
798 (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
799
800
801 /* Recognize a 64-bit PowerPC GNU/Linux linkage function --- what GDB
802 calls a "solib trampoline". */
803 static int
804 ppc64_in_solib_call_trampoline (CORE_ADDR pc, char *name)
805 {
806 /* Detecting solib call trampolines on PPC64 GNU/Linux is a pain.
807
808 It's not specifically solib call trampolines that are the issue.
809 Any call from one function to another function that uses a
810 different TOC requires a trampoline, to save the caller's TOC
811 pointer and then load the callee's TOC. An executable or shared
812 library may have more than one TOC, so even intra-object calls
813 may require a trampoline. Since executable and shared libraries
814 will all have their own distinct TOCs, every inter-object call is
815 also an inter-TOC call, and requires a trampoline --- so "solib
816 call trampolines" are just a special case.
817
818 The 64-bit PowerPC GNU/Linux ABI calls these call trampolines
819 "linkage functions". Since they need to be near the functions
820 that call them, they all appear in .text, not in any special
821 section. The .plt section just contains an array of function
822 descriptors, from which the linkage functions load the callee's
823 entry point, TOC value, and environment pointer. So
824 in_plt_section is useless. The linkage functions don't have any
825 special linker symbols to name them, either.
826
827 The only way I can see to recognize them is to actually look at
828 their code. They're generated by ppc_build_one_stub and some
829 other functions in bfd/elf64-ppc.c, so that should show us all
830 the instruction sequences we need to recognize. */
831 unsigned int insn[PPC64_STANDARD_LINKAGE_LEN];
832
833 return insns_match_pattern (pc, ppc64_standard_linkage, insn);
834 }
835
836
837 /* When the dynamic linker is doing lazy symbol resolution, the first
838 call to a function in another object will go like this:
839
840 - The user's function calls the linkage function:
841
842 100007c4: 4b ff fc d5 bl 10000498
843 100007c8: e8 41 00 28 ld r2,40(r1)
844
845 - The linkage function loads the entry point (and other stuff) from
846 the function descriptor in the PLT, and jumps to it:
847
848 10000498: 3d 82 00 00 addis r12,r2,0
849 1000049c: f8 41 00 28 std r2,40(r1)
850 100004a0: e9 6c 80 98 ld r11,-32616(r12)
851 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
852 100004a8: 7d 69 03 a6 mtctr r11
853 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
854 100004b0: 4e 80 04 20 bctr
855
856 - But since this is the first time that PLT entry has been used, it
857 sends control to its glink entry. That loads the number of the
858 PLT entry and jumps to the common glink0 code:
859
860 10000c98: 38 00 00 00 li r0,0
861 10000c9c: 4b ff ff dc b 10000c78
862
863 - The common glink0 code then transfers control to the dynamic
864 linker's fixup code:
865
866 10000c78: e8 41 00 28 ld r2,40(r1)
867 10000c7c: 3d 82 00 00 addis r12,r2,0
868 10000c80: e9 6c 80 80 ld r11,-32640(r12)
869 10000c84: e8 4c 80 88 ld r2,-32632(r12)
870 10000c88: 7d 69 03 a6 mtctr r11
871 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
872 10000c90: 4e 80 04 20 bctr
873
874 Eventually, this code will figure out how to skip all of this,
875 including the dynamic linker. At the moment, we just get through
876 the linkage function. */
877
878 /* If the current thread is about to execute a series of instructions
879 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
880 from that pattern match, return the code address to which the
881 standard linkage function will send them. (This doesn't deal with
882 dynamic linker lazy symbol resolution stubs.) */
883 static CORE_ADDR
884 ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn)
885 {
886 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
887
888 /* The address of the function descriptor this linkage function
889 references. */
890 CORE_ADDR desc
891 = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2)
892 + (insn_d_field (insn[0]) << 16)
893 + insn_ds_field (insn[2]));
894
895 /* The first word of the descriptor is the entry point. Return that. */
896 return ppc64_desc_entry_point (desc);
897 }
898
899
900 /* Given that we've begun executing a call trampoline at PC, return
901 the entry point of the function the trampoline will go to. */
902 static CORE_ADDR
903 ppc64_skip_trampoline_code (CORE_ADDR pc)
904 {
905 unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
906
907 if (insns_match_pattern (pc, ppc64_standard_linkage,
908 ppc64_standard_linkage_insn))
909 return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn);
910 else
911 return 0;
912 }
913
914
915 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64
916 GNU/Linux.
917
918 Usually a function pointer's representation is simply the address
919 of the function. On GNU/Linux on the 64-bit PowerPC however, a
920 function pointer is represented by a pointer to a TOC entry. This
921 TOC entry contains three words, the first word is the address of
922 the function, the second word is the TOC pointer (r2), and the
923 third word is the static chain value. Throughout GDB it is
924 currently assumed that a function pointer contains the address of
925 the function, which is not easy to fix. In addition, the
926 conversion of a function address to a function pointer would
927 require allocation of a TOC entry in the inferior's memory space,
928 with all its drawbacks. To be able to call C++ virtual methods in
929 the inferior (which are called via function pointers),
930 find_function_addr uses this function to get the function address
931 from a function pointer. */
932
933 /* If ADDR points at what is clearly a function descriptor, transform
934 it into the address of the corresponding function. Be
935 conservative, otherwize GDB will do the transformation on any
936 random addresses such as occures when there is no symbol table. */
937
938 static CORE_ADDR
939 ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
940 CORE_ADDR addr,
941 struct target_ops *targ)
942 {
943 struct section_table *s = target_section_by_addr (targ, addr);
944
945 /* Check if ADDR points to a function descriptor. */
946 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
947 return get_target_memory_unsigned (targ, addr, 8);
948
949 return addr;
950 }
951
952
953 enum {
954 ELF_NGREG = 48,
955 ELF_NFPREG = 33,
956 ELF_NVRREG = 33
957 };
958
959 enum {
960 ELF_GREGSET_SIZE = (ELF_NGREG * 4),
961 ELF_FPREGSET_SIZE = (ELF_NFPREG * 8)
962 };
963
964 void
965 ppc_linux_supply_gregset (char *buf)
966 {
967 int regi;
968 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
969
970 for (regi = 0; regi < 32; regi++)
971 supply_register (regi, buf + 4 * regi);
972
973 supply_register (PC_REGNUM, buf + 4 * PPC_LINUX_PT_NIP);
974 supply_register (tdep->ppc_lr_regnum, buf + 4 * PPC_LINUX_PT_LNK);
975 supply_register (tdep->ppc_cr_regnum, buf + 4 * PPC_LINUX_PT_CCR);
976 supply_register (tdep->ppc_xer_regnum, buf + 4 * PPC_LINUX_PT_XER);
977 supply_register (tdep->ppc_ctr_regnum, buf + 4 * PPC_LINUX_PT_CTR);
978 if (tdep->ppc_mq_regnum != -1)
979 supply_register (tdep->ppc_mq_regnum, buf + 4 * PPC_LINUX_PT_MQ);
980 supply_register (tdep->ppc_ps_regnum, buf + 4 * PPC_LINUX_PT_MSR);
981 }
982
983 void
984 ppc_linux_supply_fpregset (char *buf)
985 {
986 int regi;
987 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
988
989 for (regi = 0; regi < 32; regi++)
990 supply_register (FP0_REGNUM + regi, buf + 8 * regi);
991
992 /* The FPSCR is stored in the low order word of the last doubleword in the
993 fpregset. */
994 supply_register (tdep->ppc_fpscr_regnum, buf + 8 * 32 + 4);
995 }
996
997 /*
998 Use a local version of this function to get the correct types for regsets.
999 */
1000
1001 static void
1002 fetch_core_registers (char *core_reg_sect,
1003 unsigned core_reg_size,
1004 int which,
1005 CORE_ADDR reg_addr)
1006 {
1007 if (which == 0)
1008 {
1009 if (core_reg_size == ELF_GREGSET_SIZE)
1010 ppc_linux_supply_gregset (core_reg_sect);
1011 else
1012 warning ("wrong size gregset struct in core file");
1013 }
1014 else if (which == 2)
1015 {
1016 if (core_reg_size == ELF_FPREGSET_SIZE)
1017 ppc_linux_supply_fpregset (core_reg_sect);
1018 else
1019 warning ("wrong size fpregset struct in core file");
1020 }
1021 }
1022
1023 /* Register that we are able to handle ELF file formats using standard
1024 procfs "regset" structures. */
1025
1026 static struct core_fns ppc_linux_regset_core_fns =
1027 {
1028 bfd_target_elf_flavour, /* core_flavour */
1029 default_check_format, /* check_format */
1030 default_core_sniffer, /* core_sniffer */
1031 fetch_core_registers, /* core_read_registers */
1032 NULL /* next */
1033 };
1034
1035 static void
1036 ppc_linux_init_abi (struct gdbarch_info info,
1037 struct gdbarch *gdbarch)
1038 {
1039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1040
1041 if (tdep->wordsize == 4)
1042 {
1043 /* Until November 2001, gcc did not comply with the 32 bit SysV
1044 R4 ABI requirement that structures less than or equal to 8
1045 bytes should be returned in registers. Instead GCC was using
1046 the the AIX/PowerOpen ABI - everything returned in memory
1047 (well ignoring vectors that is). When this was corrected, it
1048 wasn't fixed for GNU/Linux native platform. Use the
1049 PowerOpen struct convention. */
1050 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1051
1052 /* Note: kevinb/2002-04-12: See note in rs6000_gdbarch_init regarding
1053 *_push_arguments(). The same remarks hold for the methods below. */
1054 set_gdbarch_frameless_function_invocation (gdbarch,
1055 ppc_linux_frameless_function_invocation);
1056 set_gdbarch_deprecated_frame_chain (gdbarch, ppc_linux_frame_chain);
1057 set_gdbarch_deprecated_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
1058
1059 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch,
1060 ppc_linux_frame_init_saved_regs);
1061 set_gdbarch_deprecated_init_extra_frame_info (gdbarch,
1062 ppc_linux_init_extra_frame_info);
1063
1064 set_gdbarch_memory_remove_breakpoint (gdbarch,
1065 ppc_linux_memory_remove_breakpoint);
1066 /* Shared library handling. */
1067 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1068 set_gdbarch_skip_trampoline_code (gdbarch,
1069 ppc_linux_skip_trampoline_code);
1070 set_solib_svr4_fetch_link_map_offsets
1071 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
1072 }
1073
1074 if (tdep->wordsize == 8)
1075 {
1076 /* Handle PPC64 GNU/Linux function pointers (which are really
1077 function descriptors). */
1078 set_gdbarch_convert_from_func_ptr_addr
1079 (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1080
1081 set_gdbarch_in_solib_call_trampoline
1082 (gdbarch, ppc64_in_solib_call_trampoline);
1083 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1084 }
1085 }
1086
1087 void
1088 _initialize_ppc_linux_tdep (void)
1089 {
1090 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1091 64-bit PowerPC, and the older rs6k. */
1092 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1093 ppc_linux_init_abi);
1094 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1095 ppc_linux_init_abi);
1096 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1097 ppc_linux_init_abi);
1098 add_core_fns (&ppc_linux_regset_core_fns);
1099 }
This page took 0.1367 seconds and 4 git commands to generate.