[PowerPC] Fix indentation in arch/ppc-linux-common.c
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "regcache.h"
30 #include "value.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "solib-svr4.h"
34 #include "solib-spu.h"
35 #include "solib.h"
36 #include "solist.h"
37 #include "ppc-tdep.h"
38 #include "ppc64-tdep.h"
39 #include "ppc-linux-tdep.h"
40 #include "arch/ppc-linux-common.h"
41 #include "arch/ppc-linux-tdesc.h"
42 #include "glibc-tdep.h"
43 #include "trad-frame.h"
44 #include "frame-unwind.h"
45 #include "tramp-frame.h"
46 #include "observable.h"
47 #include "auxv.h"
48 #include "elf/common.h"
49 #include "elf/ppc64.h"
50 #include "arch-utils.h"
51 #include "spu-tdep.h"
52 #include "xml-syscall.h"
53 #include "linux-tdep.h"
54 #include "linux-record.h"
55 #include "record-full.h"
56 #include "infrun.h"
57
58 #include "stap-probe.h"
59 #include "ax.h"
60 #include "ax-gdb.h"
61 #include "cli/cli-utils.h"
62 #include "parser-defs.h"
63 #include "user-regs.h"
64 #include <ctype.h>
65 #include "elf-bfd.h"
66
67 #include "features/rs6000/powerpc-32l.c"
68 #include "features/rs6000/powerpc-altivec32l.c"
69 #include "features/rs6000/powerpc-cell32l.c"
70 #include "features/rs6000/powerpc-vsx32l.c"
71 #include "features/rs6000/powerpc-isa205-32l.c"
72 #include "features/rs6000/powerpc-isa205-altivec32l.c"
73 #include "features/rs6000/powerpc-isa205-vsx32l.c"
74 #include "features/rs6000/powerpc-64l.c"
75 #include "features/rs6000/powerpc-altivec64l.c"
76 #include "features/rs6000/powerpc-cell64l.c"
77 #include "features/rs6000/powerpc-vsx64l.c"
78 #include "features/rs6000/powerpc-isa205-64l.c"
79 #include "features/rs6000/powerpc-isa205-altivec64l.c"
80 #include "features/rs6000/powerpc-isa205-vsx64l.c"
81 #include "features/rs6000/powerpc-e500l.c"
82
83 /* Shared library operations for PowerPC-Linux. */
84 static struct target_so_ops powerpc_so_ops;
85
86 /* The syscall's XML filename for PPC and PPC64. */
87 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
88 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
89
90 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
91 in much the same fashion as memory_remove_breakpoint in mem-break.c,
92 but is careful not to write back the previous contents if the code
93 in question has changed in between inserting the breakpoint and
94 removing it.
95
96 Here is the problem that we're trying to solve...
97
98 Once upon a time, before introducing this function to remove
99 breakpoints from the inferior, setting a breakpoint on a shared
100 library function prior to running the program would not work
101 properly. In order to understand the problem, it is first
102 necessary to understand a little bit about dynamic linking on
103 this platform.
104
105 A call to a shared library function is accomplished via a bl
106 (branch-and-link) instruction whose branch target is an entry
107 in the procedure linkage table (PLT). The PLT in the object
108 file is uninitialized. To gdb, prior to running the program, the
109 entries in the PLT are all zeros.
110
111 Once the program starts running, the shared libraries are loaded
112 and the procedure linkage table is initialized, but the entries in
113 the table are not (necessarily) resolved. Once a function is
114 actually called, the code in the PLT is hit and the function is
115 resolved. In order to better illustrate this, an example is in
116 order; the following example is from the gdb testsuite.
117
118 We start the program shmain.
119
120 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
121 [...]
122
123 We place two breakpoints, one on shr1 and the other on main.
124
125 (gdb) b shr1
126 Breakpoint 1 at 0x100409d4
127 (gdb) b main
128 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
129
130 Examine the instruction (and the immediatly following instruction)
131 upon which the breakpoint was placed. Note that the PLT entry
132 for shr1 contains zeros.
133
134 (gdb) x/2i 0x100409d4
135 0x100409d4 <shr1>: .long 0x0
136 0x100409d8 <shr1+4>: .long 0x0
137
138 Now run 'til main.
139
140 (gdb) r
141 Starting program: gdb.base/shmain
142 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
143
144 Breakpoint 2, main ()
145 at gdb.base/shmain.c:44
146 44 g = 1;
147
148 Examine the PLT again. Note that the loading of the shared
149 library has initialized the PLT to code which loads a constant
150 (which I think is an index into the GOT) into r11 and then
151 branchs a short distance to the code which actually does the
152 resolving.
153
154 (gdb) x/2i 0x100409d4
155 0x100409d4 <shr1>: li r11,4
156 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
157 (gdb) c
158 Continuing.
159
160 Breakpoint 1, shr1 (x=1)
161 at gdb.base/shr1.c:19
162 19 l = 1;
163
164 Now we've hit the breakpoint at shr1. (The breakpoint was
165 reset from the PLT entry to the actual shr1 function after the
166 shared library was loaded.) Note that the PLT entry has been
167 resolved to contain a branch that takes us directly to shr1.
168 (The real one, not the PLT entry.)
169
170 (gdb) x/2i 0x100409d4
171 0x100409d4 <shr1>: b 0xffaf76c <shr1>
172 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
173
174 The thing to note here is that the PLT entry for shr1 has been
175 changed twice.
176
177 Now the problem should be obvious. GDB places a breakpoint (a
178 trap instruction) on the zero value of the PLT entry for shr1.
179 Later on, after the shared library had been loaded and the PLT
180 initialized, GDB gets a signal indicating this fact and attempts
181 (as it always does when it stops) to remove all the breakpoints.
182
183 The breakpoint removal was causing the former contents (a zero
184 word) to be written back to the now initialized PLT entry thus
185 destroying a portion of the initialization that had occurred only a
186 short time ago. When execution continued, the zero word would be
187 executed as an instruction an illegal instruction trap was
188 generated instead. (0 is not a legal instruction.)
189
190 The fix for this problem was fairly straightforward. The function
191 memory_remove_breakpoint from mem-break.c was copied to this file,
192 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
193 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
194 function.
195
196 The differences between ppc_linux_memory_remove_breakpoint () and
197 memory_remove_breakpoint () are minor. All that the former does
198 that the latter does not is check to make sure that the breakpoint
199 location actually contains a breakpoint (trap instruction) prior
200 to attempting to write back the old contents. If it does contain
201 a trap instruction, we allow the old contents to be written back.
202 Otherwise, we silently do nothing.
203
204 The big question is whether memory_remove_breakpoint () should be
205 changed to have the same functionality. The downside is that more
206 traffic is generated for remote targets since we'll have an extra
207 fetch of a memory word each time a breakpoint is removed.
208
209 For the time being, we'll leave this self-modifying-code-friendly
210 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
211 else in the event that some other platform has similar needs with
212 regard to removing breakpoints in some potentially self modifying
213 code. */
214 static int
215 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
216 struct bp_target_info *bp_tgt)
217 {
218 CORE_ADDR addr = bp_tgt->reqstd_address;
219 const unsigned char *bp;
220 int val;
221 int bplen;
222 gdb_byte old_contents[BREAKPOINT_MAX];
223
224 /* Determine appropriate breakpoint contents and size for this address. */
225 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
226
227 /* Make sure we see the memory breakpoints. */
228 scoped_restore restore_memory
229 = make_scoped_restore_show_memory_breakpoints (1);
230 val = target_read_memory (addr, old_contents, bplen);
231
232 /* If our breakpoint is no longer at the address, this means that the
233 program modified the code on us, so it is wrong to put back the
234 old value. */
235 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
236 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
237
238 return val;
239 }
240
241 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
242 than the 32 bit SYSV R4 ABI structure return convention - all
243 structures, no matter their size, are put in memory. Vectors,
244 which were added later, do get returned in a register though. */
245
246 static enum return_value_convention
247 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
248 struct type *valtype, struct regcache *regcache,
249 gdb_byte *readbuf, const gdb_byte *writebuf)
250 {
251 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
252 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
253 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
254 && TYPE_VECTOR (valtype)))
255 return RETURN_VALUE_STRUCT_CONVENTION;
256 else
257 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
258 readbuf, writebuf);
259 }
260
261 /* PLT stub in an executable. */
262 static const struct ppc_insn_pattern powerpc32_plt_stub[] =
263 {
264 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
265 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
266 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
267 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
268 { 0, 0, 0 }
269 };
270
271 /* PLT stubs in a shared library or PIE.
272 The first variant is used when the PLT entry is within +/-32k of
273 the GOT pointer (r30). */
274 static const struct ppc_insn_pattern powerpc32_plt_stub_so_1[] =
275 {
276 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
277 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
278 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
279 { 0, 0, 0 }
280 };
281
282 /* The second variant is used when the PLT entry is more than +/-32k
283 from the GOT pointer (r30). */
284 static const struct ppc_insn_pattern powerpc32_plt_stub_so_2[] =
285 {
286 { 0xffff0000, 0x3d7e0000, 0 }, /* addis r11, r30, xxxx */
287 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
288 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
289 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
290 { 0, 0, 0 }
291 };
292
293 /* The max number of insns we check using ppc_insns_match_pattern. */
294 #define POWERPC32_PLT_CHECK_LEN (ARRAY_SIZE (powerpc32_plt_stub) - 1)
295
296 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
297 section. For secure PLT, stub is in .text and we need to check
298 instruction patterns. */
299
300 static int
301 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
302 {
303 struct bound_minimal_symbol sym;
304
305 /* Check whether PC is in the dynamic linker. This also checks
306 whether it is in the .plt section, used by non-PIC executables. */
307 if (svr4_in_dynsym_resolve_code (pc))
308 return 1;
309
310 /* Check if we are in the resolver. */
311 sym = lookup_minimal_symbol_by_pc (pc);
312 if (sym.minsym != NULL
313 && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
314 || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
315 "__glink_PLTresolve") == 0))
316 return 1;
317
318 return 0;
319 }
320
321 /* Follow PLT stub to actual routine.
322
323 When the execution direction is EXEC_REVERSE, scan backward to
324 check whether we are in the middle of a PLT stub. Currently,
325 we only look-behind at most 4 instructions (the max length of a PLT
326 stub sequence. */
327
328 static CORE_ADDR
329 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
330 {
331 unsigned int insnbuf[POWERPC32_PLT_CHECK_LEN];
332 struct gdbarch *gdbarch = get_frame_arch (frame);
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
335 CORE_ADDR target = 0;
336 int scan_limit, i;
337
338 scan_limit = 1;
339 /* When reverse-debugging, scan backward to check whether we are
340 in the middle of trampoline code. */
341 if (execution_direction == EXEC_REVERSE)
342 scan_limit = 4; /* At most 4 instructions. */
343
344 for (i = 0; i < scan_limit; i++)
345 {
346 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
347 {
348 /* Calculate PLT entry address from
349 lis r11, xxxx
350 lwz r11, xxxx(r11). */
351 target = ((ppc_insn_d_field (insnbuf[0]) << 16)
352 + ppc_insn_d_field (insnbuf[1]));
353 }
354 else if (i < ARRAY_SIZE (powerpc32_plt_stub_so_1) - 1
355 && ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_1,
356 insnbuf))
357 {
358 /* Calculate PLT entry address from
359 lwz r11, xxxx(r30). */
360 target = (ppc_insn_d_field (insnbuf[0])
361 + get_frame_register_unsigned (frame,
362 tdep->ppc_gp0_regnum + 30));
363 }
364 else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_2,
365 insnbuf))
366 {
367 /* Calculate PLT entry address from
368 addis r11, r30, xxxx
369 lwz r11, xxxx(r11). */
370 target = ((ppc_insn_d_field (insnbuf[0]) << 16)
371 + ppc_insn_d_field (insnbuf[1])
372 + get_frame_register_unsigned (frame,
373 tdep->ppc_gp0_regnum + 30));
374 }
375 else
376 {
377 /* Scan backward one more instruction if it doesn't match. */
378 pc -= 4;
379 continue;
380 }
381
382 target = read_memory_unsigned_integer (target, 4, byte_order);
383 return target;
384 }
385
386 return 0;
387 }
388
389 /* Wrappers to handle Linux-only registers. */
390
391 static void
392 ppc_linux_supply_gregset (const struct regset *regset,
393 struct regcache *regcache,
394 int regnum, const void *gregs, size_t len)
395 {
396 const struct ppc_reg_offsets *offsets
397 = (const struct ppc_reg_offsets *) regset->regmap;
398
399 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
400
401 if (ppc_linux_trap_reg_p (regcache->arch ()))
402 {
403 /* "orig_r3" is stored 2 slots after "pc". */
404 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
405 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
406 offsets->pc_offset + 2 * offsets->gpr_size,
407 offsets->gpr_size);
408
409 /* "trap" is stored 8 slots after "pc". */
410 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
411 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
412 offsets->pc_offset + 8 * offsets->gpr_size,
413 offsets->gpr_size);
414 }
415 }
416
417 static void
418 ppc_linux_collect_gregset (const struct regset *regset,
419 const struct regcache *regcache,
420 int regnum, void *gregs, size_t len)
421 {
422 const struct ppc_reg_offsets *offsets
423 = (const struct ppc_reg_offsets *) regset->regmap;
424
425 /* Clear areas in the linux gregset not written elsewhere. */
426 if (regnum == -1)
427 memset (gregs, 0, len);
428
429 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
430
431 if (ppc_linux_trap_reg_p (regcache->arch ()))
432 {
433 /* "orig_r3" is stored 2 slots after "pc". */
434 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
435 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
436 offsets->pc_offset + 2 * offsets->gpr_size,
437 offsets->gpr_size);
438
439 /* "trap" is stored 8 slots after "pc". */
440 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
441 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
442 offsets->pc_offset + 8 * offsets->gpr_size,
443 offsets->gpr_size);
444 }
445 }
446
447 /* Regset descriptions. */
448 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
449 {
450 /* General-purpose registers. */
451 /* .r0_offset = */ 0,
452 /* .gpr_size = */ 4,
453 /* .xr_size = */ 4,
454 /* .pc_offset = */ 128,
455 /* .ps_offset = */ 132,
456 /* .cr_offset = */ 152,
457 /* .lr_offset = */ 144,
458 /* .ctr_offset = */ 140,
459 /* .xer_offset = */ 148,
460 /* .mq_offset = */ 156,
461
462 /* Floating-point registers. */
463 /* .f0_offset = */ 0,
464 /* .fpscr_offset = */ 256,
465 /* .fpscr_size = */ 8
466 };
467
468 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
469 {
470 /* General-purpose registers. */
471 /* .r0_offset = */ 0,
472 /* .gpr_size = */ 8,
473 /* .xr_size = */ 8,
474 /* .pc_offset = */ 256,
475 /* .ps_offset = */ 264,
476 /* .cr_offset = */ 304,
477 /* .lr_offset = */ 288,
478 /* .ctr_offset = */ 280,
479 /* .xer_offset = */ 296,
480 /* .mq_offset = */ 312,
481
482 /* Floating-point registers. */
483 /* .f0_offset = */ 0,
484 /* .fpscr_offset = */ 256,
485 /* .fpscr_size = */ 8
486 };
487
488 static const struct regset ppc32_linux_gregset = {
489 &ppc32_linux_reg_offsets,
490 ppc_linux_supply_gregset,
491 ppc_linux_collect_gregset
492 };
493
494 static const struct regset ppc64_linux_gregset = {
495 &ppc64_linux_reg_offsets,
496 ppc_linux_supply_gregset,
497 ppc_linux_collect_gregset
498 };
499
500 static const struct regset ppc32_linux_fpregset = {
501 &ppc32_linux_reg_offsets,
502 ppc_supply_fpregset,
503 ppc_collect_fpregset
504 };
505
506 static const struct regcache_map_entry ppc32_le_linux_vrregmap[] =
507 {
508 { 32, PPC_VR0_REGNUM, 16 },
509 { 1, PPC_VSCR_REGNUM, 4 },
510 { 1, REGCACHE_MAP_SKIP, 12 },
511 { 1, PPC_VRSAVE_REGNUM, 4 },
512 { 1, REGCACHE_MAP_SKIP, 12 },
513 { 0 }
514 };
515
516 static const struct regcache_map_entry ppc32_be_linux_vrregmap[] =
517 {
518 { 32, PPC_VR0_REGNUM, 16 },
519 { 1, REGCACHE_MAP_SKIP, 12},
520 { 1, PPC_VSCR_REGNUM, 4 },
521 { 1, PPC_VRSAVE_REGNUM, 4 },
522 { 1, REGCACHE_MAP_SKIP, 12 },
523 { 0 }
524 };
525
526 static const struct regset ppc32_le_linux_vrregset = {
527 ppc32_le_linux_vrregmap,
528 regcache_supply_regset,
529 regcache_collect_regset
530 };
531
532 static const struct regset ppc32_be_linux_vrregset = {
533 ppc32_be_linux_vrregmap,
534 regcache_supply_regset,
535 regcache_collect_regset
536 };
537
538 static const struct regcache_map_entry ppc32_linux_vsxregmap[] =
539 {
540 { 32, PPC_VSR0_UPPER_REGNUM, 8 },
541 { 0 }
542 };
543
544 static const struct regset ppc32_linux_vsxregset = {
545 ppc32_linux_vsxregmap,
546 regcache_supply_regset,
547 regcache_collect_regset
548 };
549
550 const struct regset *
551 ppc_linux_gregset (int wordsize)
552 {
553 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
554 }
555
556 const struct regset *
557 ppc_linux_fpregset (void)
558 {
559 return &ppc32_linux_fpregset;
560 }
561
562 const struct regset *
563 ppc_linux_vrregset (struct gdbarch *gdbarch)
564 {
565 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
566 return &ppc32_be_linux_vrregset;
567 else
568 return &ppc32_le_linux_vrregset;
569 }
570
571 const struct regset *
572 ppc_linux_vsxregset (void)
573 {
574 return &ppc32_linux_vsxregset;
575 }
576
577 /* Iterate over supported core file register note sections. */
578
579 static void
580 ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
581 iterate_over_regset_sections_cb *cb,
582 void *cb_data,
583 const struct regcache *regcache)
584 {
585 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
586 int have_altivec = tdep->ppc_vr0_regnum != -1;
587 int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
588
589 if (tdep->wordsize == 4)
590 cb (".reg", 48 * 4, 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
591 else
592 cb (".reg", 48 * 8, 48 * 8, &ppc64_linux_gregset, NULL, cb_data);
593
594 cb (".reg2", 264, 264, &ppc32_linux_fpregset, NULL, cb_data);
595
596 if (have_altivec)
597 {
598 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
599 cb (".reg-ppc-vmx", PPC_LINUX_SIZEOF_VRREGSET, PPC_LINUX_SIZEOF_VRREGSET,
600 vrregset, "ppc Altivec", cb_data);
601 }
602
603 if (have_vsx)
604 cb (".reg-ppc-vsx", PPC_LINUX_SIZEOF_VSXREGSET, PPC_LINUX_SIZEOF_VSXREGSET,
605 &ppc32_linux_vsxregset, "POWER7 VSX", cb_data);
606 }
607
608 static void
609 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
610 struct trad_frame_cache *this_cache,
611 CORE_ADDR func, LONGEST offset,
612 int bias)
613 {
614 CORE_ADDR base;
615 CORE_ADDR regs;
616 CORE_ADDR gpregs;
617 CORE_ADDR fpregs;
618 int i;
619 struct gdbarch *gdbarch = get_frame_arch (this_frame);
620 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
622
623 base = get_frame_register_unsigned (this_frame,
624 gdbarch_sp_regnum (gdbarch));
625 if (bias > 0 && get_frame_pc (this_frame) != func)
626 /* See below, some signal trampolines increment the stack as their
627 first instruction, need to compensate for that. */
628 base -= bias;
629
630 /* Find the address of the register buffer pointer. */
631 regs = base + offset;
632 /* Use that to find the address of the corresponding register
633 buffers. */
634 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
635 fpregs = gpregs + 48 * tdep->wordsize;
636
637 /* General purpose. */
638 for (i = 0; i < 32; i++)
639 {
640 int regnum = i + tdep->ppc_gp0_regnum;
641 trad_frame_set_reg_addr (this_cache,
642 regnum, gpregs + i * tdep->wordsize);
643 }
644 trad_frame_set_reg_addr (this_cache,
645 gdbarch_pc_regnum (gdbarch),
646 gpregs + 32 * tdep->wordsize);
647 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
648 gpregs + 35 * tdep->wordsize);
649 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
650 gpregs + 36 * tdep->wordsize);
651 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
652 gpregs + 37 * tdep->wordsize);
653 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
654 gpregs + 38 * tdep->wordsize);
655
656 if (ppc_linux_trap_reg_p (gdbarch))
657 {
658 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
659 gpregs + 34 * tdep->wordsize);
660 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
661 gpregs + 40 * tdep->wordsize);
662 }
663
664 if (ppc_floating_point_unit_p (gdbarch))
665 {
666 /* Floating point registers. */
667 for (i = 0; i < 32; i++)
668 {
669 int regnum = i + gdbarch_fp0_regnum (gdbarch);
670 trad_frame_set_reg_addr (this_cache, regnum,
671 fpregs + i * tdep->wordsize);
672 }
673 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
674 fpregs + 32 * tdep->wordsize);
675 }
676 trad_frame_set_id (this_cache, frame_id_build (base, func));
677 }
678
679 static void
680 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
681 struct frame_info *this_frame,
682 struct trad_frame_cache *this_cache,
683 CORE_ADDR func)
684 {
685 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
686 0xd0 /* Offset to ucontext_t. */
687 + 0x30 /* Offset to .reg. */,
688 0);
689 }
690
691 static void
692 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
693 struct frame_info *this_frame,
694 struct trad_frame_cache *this_cache,
695 CORE_ADDR func)
696 {
697 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
698 0x80 /* Offset to ucontext_t. */
699 + 0xe0 /* Offset to .reg. */,
700 128);
701 }
702
703 static void
704 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
705 struct frame_info *this_frame,
706 struct trad_frame_cache *this_cache,
707 CORE_ADDR func)
708 {
709 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
710 0x40 /* Offset to ucontext_t. */
711 + 0x1c /* Offset to .reg. */,
712 0);
713 }
714
715 static void
716 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
717 struct frame_info *this_frame,
718 struct trad_frame_cache *this_cache,
719 CORE_ADDR func)
720 {
721 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
722 0x80 /* Offset to struct sigcontext. */
723 + 0x38 /* Offset to .reg. */,
724 128);
725 }
726
727 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
728 SIGTRAMP_FRAME,
729 4,
730 {
731 { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */
732 { 0x44000002, ULONGEST_MAX }, /* sc */
733 { TRAMP_SENTINEL_INSN },
734 },
735 ppc32_linux_sigaction_cache_init
736 };
737 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
738 SIGTRAMP_FRAME,
739 4,
740 {
741 { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */
742 { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */
743 { 0x44000002, ULONGEST_MAX }, /* sc */
744 { TRAMP_SENTINEL_INSN },
745 },
746 ppc64_linux_sigaction_cache_init
747 };
748 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
749 SIGTRAMP_FRAME,
750 4,
751 {
752 { 0x38000077, ULONGEST_MAX }, /* li r0,119 */
753 { 0x44000002, ULONGEST_MAX }, /* sc */
754 { TRAMP_SENTINEL_INSN },
755 },
756 ppc32_linux_sighandler_cache_init
757 };
758 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
759 SIGTRAMP_FRAME,
760 4,
761 {
762 { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */
763 { 0x38000077, ULONGEST_MAX }, /* li r0,119 */
764 { 0x44000002, ULONGEST_MAX }, /* sc */
765 { TRAMP_SENTINEL_INSN },
766 },
767 ppc64_linux_sighandler_cache_init
768 };
769
770 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
771 int
772 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
773 {
774 /* If we do not have a target description with registers, then
775 the special registers will not be included in the register set. */
776 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
777 return 0;
778
779 /* If we do, then it is safe to check the size. */
780 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
781 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
782 }
783
784 /* Return the current system call's number present in the
785 r0 register. When the function fails, it returns -1. */
786 static LONGEST
787 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
788 thread_info *thread)
789 {
790 struct regcache *regcache = get_thread_regcache (thread);
791 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
792 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
793
794 /* Make sure we're in a 32- or 64-bit machine */
795 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
796
797 /* The content of a register */
798 gdb::byte_vector buf (tdep->wordsize);
799
800 /* Getting the system call number from the register.
801 When dealing with PowerPC architecture, this information
802 is stored at 0th register. */
803 regcache->cooked_read (tdep->ppc_gp0_regnum, buf.data ());
804
805 return extract_signed_integer (buf.data (), tdep->wordsize, byte_order);
806 }
807
808 /* PPC process record-replay */
809
810 static struct linux_record_tdep ppc_linux_record_tdep;
811 static struct linux_record_tdep ppc64_linux_record_tdep;
812
813 /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
814 syscall ids into a canonical set of syscall ids used by process
815 record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
816 Return -1 if this system call is not supported by process record.
817 Otherwise, return the syscall number for preocess reocrd of given
818 SYSCALL. */
819
820 static enum gdb_syscall
821 ppc_canonicalize_syscall (int syscall)
822 {
823 int result = -1;
824
825 if (syscall <= 165)
826 result = syscall;
827 else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */
828 result = syscall + 1;
829 else if (syscall >= 192 && syscall <= 197) /* mmap2 */
830 result = syscall;
831 else if (syscall == 208) /* tkill */
832 result = gdb_sys_tkill;
833 else if (syscall >= 207 && syscall <= 220) /* gettid */
834 result = syscall + 224 - 207;
835 else if (syscall >= 234 && syscall <= 239) /* exit_group */
836 result = syscall + 252 - 234;
837 else if (syscall >= 240 && syscall <= 248) /* timer_create */
838 result = syscall += 259 - 240;
839 else if (syscall >= 250 && syscall <= 251) /* tgkill */
840 result = syscall + 270 - 250;
841 else if (syscall == 336)
842 result = gdb_sys_recv;
843 else if (syscall == 337)
844 result = gdb_sys_recvfrom;
845 else if (syscall == 342)
846 result = gdb_sys_recvmsg;
847
848 return (enum gdb_syscall) result;
849 }
850
851 /* Record registers which might be clobbered during system call.
852 Return 0 if successful. */
853
854 static int
855 ppc_linux_syscall_record (struct regcache *regcache)
856 {
857 struct gdbarch *gdbarch = regcache->arch ();
858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
859 ULONGEST scnum;
860 enum gdb_syscall syscall_gdb;
861 int ret;
862
863 regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
864 syscall_gdb = ppc_canonicalize_syscall (scnum);
865
866 if (syscall_gdb < 0)
867 {
868 printf_unfiltered (_("Process record and replay target doesn't "
869 "support syscall number %d\n"), (int) scnum);
870 return 0;
871 }
872
873 if (syscall_gdb == gdb_sys_sigreturn
874 || syscall_gdb == gdb_sys_rt_sigreturn)
875 {
876 int i, j;
877 int regsets[] = { tdep->ppc_gp0_regnum,
878 tdep->ppc_fp0_regnum,
879 tdep->ppc_vr0_regnum,
880 tdep->ppc_vsr0_upper_regnum };
881
882 for (j = 0; j < 4; j++)
883 {
884 if (regsets[j] == -1)
885 continue;
886 for (i = 0; i < 32; i++)
887 {
888 if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
889 return -1;
890 }
891 }
892
893 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
894 return -1;
895 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
896 return -1;
897 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
898 return -1;
899 if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
900 return -1;
901
902 return 0;
903 }
904
905 if (tdep->wordsize == 8)
906 ret = record_linux_system_call (syscall_gdb, regcache,
907 &ppc64_linux_record_tdep);
908 else
909 ret = record_linux_system_call (syscall_gdb, regcache,
910 &ppc_linux_record_tdep);
911
912 if (ret != 0)
913 return ret;
914
915 /* Record registers clobbered during syscall. */
916 for (int i = 3; i <= 12; i++)
917 {
918 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
919 return -1;
920 }
921 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
922 return -1;
923 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
924 return -1;
925 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
926 return -1;
927 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
928 return -1;
929
930 return 0;
931 }
932
933 /* Record registers which might be clobbered during signal handling.
934 Return 0 if successful. */
935
936 static int
937 ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
938 enum gdb_signal signal)
939 {
940 /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
941 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
942 arch/powerpc/include/asm/ptrace.h
943 for details. */
944 const int SIGNAL_FRAMESIZE = 128;
945 const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
946 ULONGEST sp;
947 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
948 int i;
949
950 for (i = 3; i <= 12; i++)
951 {
952 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
953 return -1;
954 }
955
956 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
957 return -1;
958 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
959 return -1;
960 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
961 return -1;
962 if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
963 return -1;
964 if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
965 return -1;
966
967 /* Record the change in the stack.
968 frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */
969 regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
970 sp -= SIGNAL_FRAMESIZE;
971 sp -= sizeof_rt_sigframe;
972
973 if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
974 return -1;
975
976 if (record_full_arch_list_add_end ())
977 return -1;
978
979 return 0;
980 }
981
982 static void
983 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
984 {
985 struct gdbarch *gdbarch = regcache->arch ();
986
987 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
988
989 /* Set special TRAP register to -1 to prevent the kernel from
990 messing with the PC we just installed, if we happen to be
991 within an interrupted system call that the kernel wants to
992 restart.
993
994 Note that after we return from the dummy call, the TRAP and
995 ORIG_R3 registers will be automatically restored, and the
996 kernel continues to restart the system call at this point. */
997 if (ppc_linux_trap_reg_p (gdbarch))
998 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
999 }
1000
1001 static int
1002 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
1003 {
1004 return startswith (bfd_section_name (abfd, asect), "SPU/");
1005 }
1006
1007 static const struct target_desc *
1008 ppc_linux_core_read_description (struct gdbarch *gdbarch,
1009 struct target_ops *target,
1010 bfd *abfd)
1011 {
1012 struct ppc_linux_features features = ppc_linux_no_features;
1013 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
1014 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
1015 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
1016 asection *section = bfd_get_section_by_name (abfd, ".reg");
1017
1018 if (! section)
1019 return NULL;
1020
1021 switch (bfd_section_size (abfd, section))
1022 {
1023 case 48 * 4:
1024 features.wordsize = 4;
1025 break;
1026 case 48 * 8:
1027 features.wordsize = 8;
1028 break;
1029 default:
1030 return NULL;
1031 }
1032
1033 if (cell)
1034 features.cell = true;
1035
1036 if (altivec)
1037 features.altivec = true;
1038
1039 if (vsx)
1040 features.vsx = true;
1041
1042 CORE_ADDR hwcap;
1043
1044 if (target_auxv_search (target, AT_HWCAP, &hwcap) != 1)
1045 hwcap = 0;
1046
1047 features.isa205 = ppc_linux_has_isa205 (hwcap);
1048
1049 return ppc_linux_match_description (features);
1050 }
1051
1052
1053 /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
1054 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1055
1056 static void
1057 ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1058 {
1059 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
1060
1061 /* If the symbol is marked as having a local entry point, set a target
1062 flag in the msymbol. We currently only support local entry point
1063 offsets of 8 bytes, which is the only entry point offset ever used
1064 by current compilers. If/when other offsets are ever used, we will
1065 have to use additional target flag bits to store them. */
1066 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
1067 {
1068 default:
1069 break;
1070 case 8:
1071 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
1072 break;
1073 }
1074 }
1075
1076 /* Implementation of `gdbarch_skip_entrypoint', as defined in
1077 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1078
1079 static CORE_ADDR
1080 ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
1081 {
1082 struct bound_minimal_symbol fun;
1083 int local_entry_offset = 0;
1084
1085 fun = lookup_minimal_symbol_by_pc (pc);
1086 if (fun.minsym == NULL)
1087 return pc;
1088
1089 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
1090 offset values are encoded. */
1091 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
1092 local_entry_offset = 8;
1093
1094 if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
1095 && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
1096 return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
1097
1098 return pc;
1099 }
1100
1101 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1102 gdbarch.h. */
1103
1104 static int
1105 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1106 {
1107 return (*s == 'i' /* Literal number. */
1108 || (isdigit (*s) && s[1] == '('
1109 && isdigit (s[2])) /* Displacement. */
1110 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
1111 || isdigit (*s)); /* Register value. */
1112 }
1113
1114 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
1115 gdbarch.h. */
1116
1117 static int
1118 ppc_stap_parse_special_token (struct gdbarch *gdbarch,
1119 struct stap_parse_info *p)
1120 {
1121 if (isdigit (*p->arg))
1122 {
1123 /* This temporary pointer is needed because we have to do a lookahead.
1124 We could be dealing with a register displacement, and in such case
1125 we would not need to do anything. */
1126 const char *s = p->arg;
1127 char *regname;
1128 int len;
1129 struct stoken str;
1130
1131 while (isdigit (*s))
1132 ++s;
1133
1134 if (*s == '(')
1135 {
1136 /* It is a register displacement indeed. Returning 0 means we are
1137 deferring the treatment of this case to the generic parser. */
1138 return 0;
1139 }
1140
1141 len = s - p->arg;
1142 regname = (char *) alloca (len + 2);
1143 regname[0] = 'r';
1144
1145 strncpy (regname + 1, p->arg, len);
1146 ++len;
1147 regname[len] = '\0';
1148
1149 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1150 error (_("Invalid register name `%s' on expression `%s'."),
1151 regname, p->saved_arg);
1152
1153 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1154 str.ptr = regname;
1155 str.length = len;
1156 write_exp_string (&p->pstate, str);
1157 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1158
1159 p->arg = s;
1160 }
1161 else
1162 {
1163 /* All the other tokens should be handled correctly by the generic
1164 parser. */
1165 return 0;
1166 }
1167
1168 return 1;
1169 }
1170
1171 /* Cell/B.E. active SPE context tracking support. */
1172
1173 static struct objfile *spe_context_objfile = NULL;
1174 static CORE_ADDR spe_context_lm_addr = 0;
1175 static CORE_ADDR spe_context_offset = 0;
1176
1177 static ptid_t spe_context_cache_ptid;
1178 static CORE_ADDR spe_context_cache_address;
1179
1180 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1181 to track whether we've loaded a version of libspe2 (as static or dynamic
1182 library) that provides the __spe_current_active_context variable. */
1183 static void
1184 ppc_linux_spe_context_lookup (struct objfile *objfile)
1185 {
1186 struct bound_minimal_symbol sym;
1187
1188 if (!objfile)
1189 {
1190 spe_context_objfile = NULL;
1191 spe_context_lm_addr = 0;
1192 spe_context_offset = 0;
1193 spe_context_cache_ptid = minus_one_ptid;
1194 spe_context_cache_address = 0;
1195 return;
1196 }
1197
1198 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1199 if (sym.minsym)
1200 {
1201 spe_context_objfile = objfile;
1202 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1203 spe_context_offset = MSYMBOL_VALUE_RAW_ADDRESS (sym.minsym);
1204 spe_context_cache_ptid = minus_one_ptid;
1205 spe_context_cache_address = 0;
1206 return;
1207 }
1208 }
1209
1210 static void
1211 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1212 {
1213 struct objfile *objfile;
1214
1215 ppc_linux_spe_context_lookup (NULL);
1216 ALL_OBJFILES (objfile)
1217 ppc_linux_spe_context_lookup (objfile);
1218 }
1219
1220 static void
1221 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1222 {
1223 if (strstr (so->so_original_name, "/libspe") != NULL)
1224 {
1225 solib_read_symbols (so, 0);
1226 ppc_linux_spe_context_lookup (so->objfile);
1227 }
1228 }
1229
1230 static void
1231 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1232 {
1233 if (so->objfile == spe_context_objfile)
1234 ppc_linux_spe_context_lookup (NULL);
1235 }
1236
1237 /* Retrieve contents of the N'th element in the current thread's
1238 linked SPE context list into ID and NPC. Return the address of
1239 said context element, or 0 if not found. */
1240 static CORE_ADDR
1241 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1242 int n, int *id, unsigned int *npc)
1243 {
1244 CORE_ADDR spe_context = 0;
1245 gdb_byte buf[16];
1246 int i;
1247
1248 /* Quick exit if we have not found __spe_current_active_context. */
1249 if (!spe_context_objfile)
1250 return 0;
1251
1252 /* Look up cached address of thread-local variable. */
1253 if (spe_context_cache_ptid != inferior_ptid)
1254 {
1255 struct target_ops *target = current_top_target ();
1256
1257 TRY
1258 {
1259 /* We do not call target_translate_tls_address here, because
1260 svr4_fetch_objfile_link_map may invalidate the frame chain,
1261 which must not do while inside a frame sniffer.
1262
1263 Instead, we have cached the lm_addr value, and use that to
1264 directly call the target's to_get_thread_local_address. */
1265 spe_context_cache_address
1266 = target->get_thread_local_address (inferior_ptid,
1267 spe_context_lm_addr,
1268 spe_context_offset);
1269 spe_context_cache_ptid = inferior_ptid;
1270 }
1271
1272 CATCH (ex, RETURN_MASK_ERROR)
1273 {
1274 return 0;
1275 }
1276 END_CATCH
1277 }
1278
1279 /* Read variable value. */
1280 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1281 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1282
1283 /* Cyle through to N'th linked list element. */
1284 for (i = 0; i < n && spe_context; i++)
1285 if (target_read_memory (spe_context + align_up (12, wordsize),
1286 buf, wordsize) == 0)
1287 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1288 else
1289 spe_context = 0;
1290
1291 /* Read current context. */
1292 if (spe_context
1293 && target_read_memory (spe_context, buf, 12) != 0)
1294 spe_context = 0;
1295
1296 /* Extract data elements. */
1297 if (spe_context)
1298 {
1299 if (id)
1300 *id = extract_signed_integer (buf, 4, byte_order);
1301 if (npc)
1302 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1303 }
1304
1305 return spe_context;
1306 }
1307
1308
1309 /* Cell/B.E. cross-architecture unwinder support. */
1310
1311 struct ppu2spu_cache
1312 {
1313 struct frame_id frame_id;
1314 readonly_detached_regcache *regcache;
1315 };
1316
1317 static struct gdbarch *
1318 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1319 {
1320 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1321 return cache->regcache->arch ();
1322 }
1323
1324 static void
1325 ppu2spu_this_id (struct frame_info *this_frame,
1326 void **this_cache, struct frame_id *this_id)
1327 {
1328 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1329 *this_id = cache->frame_id;
1330 }
1331
1332 static struct value *
1333 ppu2spu_prev_register (struct frame_info *this_frame,
1334 void **this_cache, int regnum)
1335 {
1336 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1337 struct gdbarch *gdbarch = cache->regcache->arch ();
1338 gdb_byte *buf;
1339
1340 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1341
1342 cache->regcache->cooked_read (regnum, buf);
1343 return frame_unwind_got_bytes (this_frame, regnum, buf);
1344 }
1345
1346 struct ppu2spu_data
1347 {
1348 struct gdbarch *gdbarch;
1349 int id;
1350 unsigned int npc;
1351 gdb_byte gprs[128*16];
1352 };
1353
1354 static enum register_status
1355 ppu2spu_unwind_register (ppu2spu_data *data, int regnum, gdb_byte *buf)
1356 {
1357 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1358
1359 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1360 memcpy (buf, data->gprs + 16*regnum, 16);
1361 else if (regnum == SPU_ID_REGNUM)
1362 store_unsigned_integer (buf, 4, byte_order, data->id);
1363 else if (regnum == SPU_PC_REGNUM)
1364 store_unsigned_integer (buf, 4, byte_order, data->npc);
1365 else
1366 return REG_UNAVAILABLE;
1367
1368 return REG_VALID;
1369 }
1370
1371 static int
1372 ppu2spu_sniffer (const struct frame_unwind *self,
1373 struct frame_info *this_frame, void **this_prologue_cache)
1374 {
1375 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1376 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1377 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1378 struct ppu2spu_data data;
1379 struct frame_info *fi;
1380 CORE_ADDR base, func, backchain, spe_context;
1381 gdb_byte buf[8];
1382 int n = 0;
1383
1384 /* Count the number of SPU contexts already in the frame chain. */
1385 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1386 if (get_frame_type (fi) == ARCH_FRAME
1387 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1388 n++;
1389
1390 base = get_frame_sp (this_frame);
1391 func = get_frame_pc (this_frame);
1392 if (target_read_memory (base, buf, tdep->wordsize))
1393 return 0;
1394 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1395
1396 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1397 n, &data.id, &data.npc);
1398 if (spe_context && base <= spe_context && spe_context < backchain)
1399 {
1400 char annex[32];
1401
1402 /* Find gdbarch for SPU. */
1403 struct gdbarch_info info;
1404 gdbarch_info_init (&info);
1405 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1406 info.byte_order = BFD_ENDIAN_BIG;
1407 info.osabi = GDB_OSABI_LINUX;
1408 info.id = &data.id;
1409 data.gdbarch = gdbarch_find_by_info (info);
1410 if (!data.gdbarch)
1411 return 0;
1412
1413 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1414 if (target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
1415 data.gprs, 0, sizeof data.gprs)
1416 == sizeof data.gprs)
1417 {
1418 auto cooked_read = [&data] (int regnum, gdb_byte *out_buf)
1419 {
1420 return ppu2spu_unwind_register (&data, regnum, out_buf);
1421 };
1422 struct ppu2spu_cache *cache
1423 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1424 std::unique_ptr<readonly_detached_regcache> regcache
1425 (new readonly_detached_regcache (data.gdbarch, cooked_read));
1426
1427 cache->frame_id = frame_id_build (base, func);
1428 cache->regcache = regcache.release ();
1429 *this_prologue_cache = cache;
1430 return 1;
1431 }
1432 }
1433
1434 return 0;
1435 }
1436
1437 static void
1438 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1439 {
1440 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) this_cache;
1441 delete cache->regcache;
1442 }
1443
1444 static const struct frame_unwind ppu2spu_unwind = {
1445 ARCH_FRAME,
1446 default_frame_unwind_stop_reason,
1447 ppu2spu_this_id,
1448 ppu2spu_prev_register,
1449 NULL,
1450 ppu2spu_sniffer,
1451 ppu2spu_dealloc_cache,
1452 ppu2spu_prev_arch,
1453 };
1454
1455 /* Initialize linux_record_tdep if not initialized yet.
1456 WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
1457 Sizes of data structures are initialized accordingly. */
1458
1459 static void
1460 ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
1461 int wordsize)
1462 {
1463 /* Simply return if it had been initialized. */
1464 if (record_tdep->size_pointer != 0)
1465 return;
1466
1467 /* These values are the size of the type that will be used in a system
1468 call. They are obtained from Linux Kernel source. */
1469
1470 if (wordsize == 8)
1471 {
1472 record_tdep->size_pointer = 8;
1473 record_tdep->size__old_kernel_stat = 32;
1474 record_tdep->size_tms = 32;
1475 record_tdep->size_loff_t = 8;
1476 record_tdep->size_flock = 32;
1477 record_tdep->size_oldold_utsname = 45;
1478 record_tdep->size_ustat = 32;
1479 record_tdep->size_old_sigaction = 32;
1480 record_tdep->size_old_sigset_t = 8;
1481 record_tdep->size_rlimit = 16;
1482 record_tdep->size_rusage = 144;
1483 record_tdep->size_timeval = 16;
1484 record_tdep->size_timezone = 8;
1485 record_tdep->size_old_gid_t = 4;
1486 record_tdep->size_old_uid_t = 4;
1487 record_tdep->size_fd_set = 128;
1488 record_tdep->size_old_dirent = 280;
1489 record_tdep->size_statfs = 120;
1490 record_tdep->size_statfs64 = 120;
1491 record_tdep->size_sockaddr = 16;
1492 record_tdep->size_int = 4;
1493 record_tdep->size_long = 8;
1494 record_tdep->size_ulong = 8;
1495 record_tdep->size_msghdr = 56;
1496 record_tdep->size_itimerval = 32;
1497 record_tdep->size_stat = 144;
1498 record_tdep->size_old_utsname = 325;
1499 record_tdep->size_sysinfo = 112;
1500 record_tdep->size_msqid_ds = 120;
1501 record_tdep->size_shmid_ds = 112;
1502 record_tdep->size_new_utsname = 390;
1503 record_tdep->size_timex = 208;
1504 record_tdep->size_mem_dqinfo = 24;
1505 record_tdep->size_if_dqblk = 72;
1506 record_tdep->size_fs_quota_stat = 80;
1507 record_tdep->size_timespec = 16;
1508 record_tdep->size_pollfd = 8;
1509 record_tdep->size_NFS_FHSIZE = 32;
1510 record_tdep->size_knfsd_fh = 132;
1511 record_tdep->size_TASK_COMM_LEN = 16;
1512 record_tdep->size_sigaction = 32;
1513 record_tdep->size_sigset_t = 8;
1514 record_tdep->size_siginfo_t = 128;
1515 record_tdep->size_cap_user_data_t = 8;
1516 record_tdep->size_stack_t = 24;
1517 record_tdep->size_off_t = 8;
1518 record_tdep->size_stat64 = 104;
1519 record_tdep->size_gid_t = 4;
1520 record_tdep->size_uid_t = 4;
1521 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1522 record_tdep->size_flock64 = 32;
1523 record_tdep->size_io_event = 32;
1524 record_tdep->size_iocb = 64;
1525 record_tdep->size_epoll_event = 16;
1526 record_tdep->size_itimerspec = 32;
1527 record_tdep->size_mq_attr = 64;
1528 record_tdep->size_termios = 44;
1529 record_tdep->size_pid_t = 4;
1530 record_tdep->size_winsize = 8;
1531 record_tdep->size_serial_struct = 72;
1532 record_tdep->size_serial_icounter_struct = 80;
1533 record_tdep->size_size_t = 8;
1534 record_tdep->size_iovec = 16;
1535 record_tdep->size_time_t = 8;
1536 }
1537 else if (wordsize == 4)
1538 {
1539 record_tdep->size_pointer = 4;
1540 record_tdep->size__old_kernel_stat = 32;
1541 record_tdep->size_tms = 16;
1542 record_tdep->size_loff_t = 8;
1543 record_tdep->size_flock = 16;
1544 record_tdep->size_oldold_utsname = 45;
1545 record_tdep->size_ustat = 20;
1546 record_tdep->size_old_sigaction = 16;
1547 record_tdep->size_old_sigset_t = 4;
1548 record_tdep->size_rlimit = 8;
1549 record_tdep->size_rusage = 72;
1550 record_tdep->size_timeval = 8;
1551 record_tdep->size_timezone = 8;
1552 record_tdep->size_old_gid_t = 4;
1553 record_tdep->size_old_uid_t = 4;
1554 record_tdep->size_fd_set = 128;
1555 record_tdep->size_old_dirent = 268;
1556 record_tdep->size_statfs = 64;
1557 record_tdep->size_statfs64 = 88;
1558 record_tdep->size_sockaddr = 16;
1559 record_tdep->size_int = 4;
1560 record_tdep->size_long = 4;
1561 record_tdep->size_ulong = 4;
1562 record_tdep->size_msghdr = 28;
1563 record_tdep->size_itimerval = 16;
1564 record_tdep->size_stat = 88;
1565 record_tdep->size_old_utsname = 325;
1566 record_tdep->size_sysinfo = 64;
1567 record_tdep->size_msqid_ds = 68;
1568 record_tdep->size_shmid_ds = 60;
1569 record_tdep->size_new_utsname = 390;
1570 record_tdep->size_timex = 128;
1571 record_tdep->size_mem_dqinfo = 24;
1572 record_tdep->size_if_dqblk = 72;
1573 record_tdep->size_fs_quota_stat = 80;
1574 record_tdep->size_timespec = 8;
1575 record_tdep->size_pollfd = 8;
1576 record_tdep->size_NFS_FHSIZE = 32;
1577 record_tdep->size_knfsd_fh = 132;
1578 record_tdep->size_TASK_COMM_LEN = 16;
1579 record_tdep->size_sigaction = 20;
1580 record_tdep->size_sigset_t = 8;
1581 record_tdep->size_siginfo_t = 128;
1582 record_tdep->size_cap_user_data_t = 4;
1583 record_tdep->size_stack_t = 12;
1584 record_tdep->size_off_t = 4;
1585 record_tdep->size_stat64 = 104;
1586 record_tdep->size_gid_t = 4;
1587 record_tdep->size_uid_t = 4;
1588 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1589 record_tdep->size_flock64 = 32;
1590 record_tdep->size_io_event = 32;
1591 record_tdep->size_iocb = 64;
1592 record_tdep->size_epoll_event = 16;
1593 record_tdep->size_itimerspec = 16;
1594 record_tdep->size_mq_attr = 32;
1595 record_tdep->size_termios = 44;
1596 record_tdep->size_pid_t = 4;
1597 record_tdep->size_winsize = 8;
1598 record_tdep->size_serial_struct = 60;
1599 record_tdep->size_serial_icounter_struct = 80;
1600 record_tdep->size_size_t = 4;
1601 record_tdep->size_iovec = 8;
1602 record_tdep->size_time_t = 4;
1603 }
1604 else
1605 internal_error (__FILE__, __LINE__, _("unexpected wordsize"));
1606
1607 /* These values are the second argument of system call "sys_fcntl"
1608 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1609 record_tdep->fcntl_F_GETLK = 5;
1610 record_tdep->fcntl_F_GETLK64 = 12;
1611 record_tdep->fcntl_F_SETLK64 = 13;
1612 record_tdep->fcntl_F_SETLKW64 = 14;
1613
1614 record_tdep->arg1 = PPC_R0_REGNUM + 3;
1615 record_tdep->arg2 = PPC_R0_REGNUM + 4;
1616 record_tdep->arg3 = PPC_R0_REGNUM + 5;
1617 record_tdep->arg4 = PPC_R0_REGNUM + 6;
1618 record_tdep->arg5 = PPC_R0_REGNUM + 7;
1619 record_tdep->arg6 = PPC_R0_REGNUM + 8;
1620
1621 /* These values are the second argument of system call "sys_ioctl".
1622 They are obtained from Linux Kernel source.
1623 See arch/powerpc/include/uapi/asm/ioctls.h. */
1624 record_tdep->ioctl_TCGETS = 0x403c7413;
1625 record_tdep->ioctl_TCSETS = 0x803c7414;
1626 record_tdep->ioctl_TCSETSW = 0x803c7415;
1627 record_tdep->ioctl_TCSETSF = 0x803c7416;
1628 record_tdep->ioctl_TCGETA = 0x40147417;
1629 record_tdep->ioctl_TCSETA = 0x80147418;
1630 record_tdep->ioctl_TCSETAW = 0x80147419;
1631 record_tdep->ioctl_TCSETAF = 0x8014741c;
1632 record_tdep->ioctl_TCSBRK = 0x2000741d;
1633 record_tdep->ioctl_TCXONC = 0x2000741e;
1634 record_tdep->ioctl_TCFLSH = 0x2000741f;
1635 record_tdep->ioctl_TIOCEXCL = 0x540c;
1636 record_tdep->ioctl_TIOCNXCL = 0x540d;
1637 record_tdep->ioctl_TIOCSCTTY = 0x540e;
1638 record_tdep->ioctl_TIOCGPGRP = 0x40047477;
1639 record_tdep->ioctl_TIOCSPGRP = 0x80047476;
1640 record_tdep->ioctl_TIOCOUTQ = 0x40047473;
1641 record_tdep->ioctl_TIOCSTI = 0x5412;
1642 record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
1643 record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
1644 record_tdep->ioctl_TIOCMGET = 0x5415;
1645 record_tdep->ioctl_TIOCMBIS = 0x5416;
1646 record_tdep->ioctl_TIOCMBIC = 0x5417;
1647 record_tdep->ioctl_TIOCMSET = 0x5418;
1648 record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
1649 record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
1650 record_tdep->ioctl_FIONREAD = 0x4004667f;
1651 record_tdep->ioctl_TIOCINQ = 0x4004667f;
1652 record_tdep->ioctl_TIOCLINUX = 0x541c;
1653 record_tdep->ioctl_TIOCCONS = 0x541d;
1654 record_tdep->ioctl_TIOCGSERIAL = 0x541e;
1655 record_tdep->ioctl_TIOCSSERIAL = 0x541f;
1656 record_tdep->ioctl_TIOCPKT = 0x5420;
1657 record_tdep->ioctl_FIONBIO = 0x8004667e;
1658 record_tdep->ioctl_TIOCNOTTY = 0x5422;
1659 record_tdep->ioctl_TIOCSETD = 0x5423;
1660 record_tdep->ioctl_TIOCGETD = 0x5424;
1661 record_tdep->ioctl_TCSBRKP = 0x5425;
1662 record_tdep->ioctl_TIOCSBRK = 0x5427;
1663 record_tdep->ioctl_TIOCCBRK = 0x5428;
1664 record_tdep->ioctl_TIOCGSID = 0x5429;
1665 record_tdep->ioctl_TIOCGPTN = 0x40045430;
1666 record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
1667 record_tdep->ioctl_FIONCLEX = 0x20006602;
1668 record_tdep->ioctl_FIOCLEX = 0x20006601;
1669 record_tdep->ioctl_FIOASYNC = 0x8004667d;
1670 record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
1671 record_tdep->ioctl_TIOCSERGWILD = 0x5454;
1672 record_tdep->ioctl_TIOCSERSWILD = 0x5455;
1673 record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
1674 record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
1675 record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
1676 record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
1677 record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
1678 record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
1679 record_tdep->ioctl_TIOCMIWAIT = 0x545c;
1680 record_tdep->ioctl_TIOCGICOUNT = 0x545d;
1681 record_tdep->ioctl_FIOQSIZE = 0x40086680;
1682 }
1683
1684 /* Return a floating-point format for a floating-point variable of
1685 length LEN in bits. If non-NULL, NAME is the name of its type.
1686 If no suitable type is found, return NULL. */
1687
1688 const struct floatformat **
1689 ppc_floatformat_for_type (struct gdbarch *gdbarch,
1690 const char *name, int len)
1691 {
1692 if (len == 128 && name)
1693 {
1694 if (strcmp (name, "__float128") == 0
1695 || strcmp (name, "_Float128") == 0
1696 || strcmp (name, "_Float64x") == 0
1697 || strcmp (name, "complex _Float128") == 0
1698 || strcmp (name, "complex _Float64x") == 0)
1699 return floatformats_ia64_quad;
1700
1701 if (strcmp (name, "__ibm128") == 0)
1702 return floatformats_ibm_long_double;
1703 }
1704
1705 return default_floatformat_for_type (gdbarch, name, len);
1706 }
1707
1708 static void
1709 ppc_linux_init_abi (struct gdbarch_info info,
1710 struct gdbarch *gdbarch)
1711 {
1712 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1713 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
1714 static const char *const stap_integer_prefixes[] = { "i", NULL };
1715 static const char *const stap_register_indirection_prefixes[] = { "(",
1716 NULL };
1717 static const char *const stap_register_indirection_suffixes[] = { ")",
1718 NULL };
1719
1720 linux_init_abi (info, gdbarch);
1721
1722 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1723 128-bit, they can be either IBM long double or IEEE quad long double.
1724 The 64-bit long double case will be detected automatically using
1725 the size specified in debug info. We use a .gnu.attribute flag
1726 to distinguish between the IBM long double and IEEE quad cases. */
1727 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1728 if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128)
1729 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1730 else
1731 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1732
1733 /* Support for floating-point data type variants. */
1734 set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type);
1735
1736 /* Handle inferior calls during interrupted system calls. */
1737 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1738
1739 /* Get the syscall number from the arch's register. */
1740 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1741
1742 /* SystemTap functions. */
1743 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1744 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1745 stap_register_indirection_prefixes);
1746 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1747 stap_register_indirection_suffixes);
1748 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1749 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
1750 set_gdbarch_stap_parse_special_token (gdbarch,
1751 ppc_stap_parse_special_token);
1752
1753 if (tdep->wordsize == 4)
1754 {
1755 /* Until November 2001, gcc did not comply with the 32 bit SysV
1756 R4 ABI requirement that structures less than or equal to 8
1757 bytes should be returned in registers. Instead GCC was using
1758 the AIX/PowerOpen ABI - everything returned in memory
1759 (well ignoring vectors that is). When this was corrected, it
1760 wasn't fixed for GNU/Linux native platform. Use the
1761 PowerOpen struct convention. */
1762 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1763
1764 set_gdbarch_memory_remove_breakpoint (gdbarch,
1765 ppc_linux_memory_remove_breakpoint);
1766
1767 /* Shared library handling. */
1768 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
1769 set_solib_svr4_fetch_link_map_offsets
1770 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1771
1772 /* Setting the correct XML syscall filename. */
1773 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);
1774
1775 /* Trampolines. */
1776 tramp_frame_prepend_unwinder (gdbarch,
1777 &ppc32_linux_sigaction_tramp_frame);
1778 tramp_frame_prepend_unwinder (gdbarch,
1779 &ppc32_linux_sighandler_tramp_frame);
1780
1781 /* BFD target for core files. */
1782 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1783 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1784 else
1785 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1786
1787 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
1788 {
1789 powerpc_so_ops = svr4_so_ops;
1790 /* Override dynamic resolve function. */
1791 powerpc_so_ops.in_dynsym_resolve_code =
1792 powerpc_linux_in_dynsym_resolve_code;
1793 }
1794 set_solib_ops (gdbarch, &powerpc_so_ops);
1795
1796 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1797 }
1798
1799 if (tdep->wordsize == 8)
1800 {
1801 if (tdep->elf_abi == POWERPC_ELF_V1)
1802 {
1803 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1804 function descriptors). */
1805 set_gdbarch_convert_from_func_ptr_addr
1806 (gdbarch, ppc64_convert_from_func_ptr_addr);
1807
1808 set_gdbarch_elf_make_msymbol_special
1809 (gdbarch, ppc64_elf_make_msymbol_special);
1810 }
1811 else
1812 {
1813 set_gdbarch_elf_make_msymbol_special
1814 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
1815
1816 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
1817 }
1818
1819 /* Shared library handling. */
1820 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1821 set_solib_svr4_fetch_link_map_offsets
1822 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1823
1824 /* Setting the correct XML syscall filename. */
1825 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);
1826
1827 /* Trampolines. */
1828 tramp_frame_prepend_unwinder (gdbarch,
1829 &ppc64_linux_sigaction_tramp_frame);
1830 tramp_frame_prepend_unwinder (gdbarch,
1831 &ppc64_linux_sighandler_tramp_frame);
1832
1833 /* BFD target for core files. */
1834 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1835 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1836 else
1837 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1838 }
1839
1840 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1841 set_gdbarch_iterate_over_regset_sections (gdbarch,
1842 ppc_linux_iterate_over_regset_sections);
1843
1844 /* Enable TLS support. */
1845 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1846 svr4_fetch_objfile_link_map);
1847
1848 if (tdesc_data)
1849 {
1850 const struct tdesc_feature *feature;
1851
1852 /* If we have target-described registers, then we can safely
1853 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1854 (whether they are described or not). */
1855 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1856 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1857
1858 /* If they are present, then assign them to the reserved number. */
1859 feature = tdesc_find_feature (info.target_desc,
1860 "org.gnu.gdb.power.linux");
1861 if (feature != NULL)
1862 {
1863 tdesc_numbered_register (feature, tdesc_data,
1864 PPC_ORIG_R3_REGNUM, "orig_r3");
1865 tdesc_numbered_register (feature, tdesc_data,
1866 PPC_TRAP_REGNUM, "trap");
1867 }
1868 }
1869
1870 /* Enable Cell/B.E. if supported by the target. */
1871 if (tdesc_compatible_p (info.target_desc,
1872 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1873 {
1874 /* Cell/B.E. multi-architecture support. */
1875 set_spu_solib_ops (gdbarch);
1876
1877 /* Cell/B.E. cross-architecture unwinder support. */
1878 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1879
1880 /* We need to support more than "addr_bit" significant address bits
1881 in order to support SPUADDR_ADDR encoded values. */
1882 set_gdbarch_significant_addr_bit (gdbarch, 64);
1883 }
1884
1885 set_gdbarch_displaced_step_location (gdbarch,
1886 linux_displaced_step_location);
1887
1888 /* Support reverse debugging. */
1889 set_gdbarch_process_record (gdbarch, ppc_process_record);
1890 set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
1891 tdep->ppc_syscall_record = ppc_linux_syscall_record;
1892
1893 ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
1894 ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
1895 }
1896
1897 void
1898 _initialize_ppc_linux_tdep (void)
1899 {
1900 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1901 64-bit PowerPC, and the older rs6k. */
1902 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1903 ppc_linux_init_abi);
1904 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1905 ppc_linux_init_abi);
1906 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1907 ppc_linux_init_abi);
1908
1909 /* Attach to observers to track __spe_current_active_context. */
1910 gdb::observers::inferior_created.attach (ppc_linux_spe_context_inferior_created);
1911 gdb::observers::solib_loaded.attach (ppc_linux_spe_context_solib_loaded);
1912 gdb::observers::solib_unloaded.attach (ppc_linux_spe_context_solib_unloaded);
1913
1914 /* Initialize the Linux target descriptions. */
1915 initialize_tdesc_powerpc_32l ();
1916 initialize_tdesc_powerpc_altivec32l ();
1917 initialize_tdesc_powerpc_cell32l ();
1918 initialize_tdesc_powerpc_vsx32l ();
1919 initialize_tdesc_powerpc_isa205_32l ();
1920 initialize_tdesc_powerpc_isa205_altivec32l ();
1921 initialize_tdesc_powerpc_isa205_vsx32l ();
1922 initialize_tdesc_powerpc_64l ();
1923 initialize_tdesc_powerpc_altivec64l ();
1924 initialize_tdesc_powerpc_cell64l ();
1925 initialize_tdesc_powerpc_vsx64l ();
1926 initialize_tdesc_powerpc_isa205_64l ();
1927 initialize_tdesc_powerpc_isa205_altivec64l ();
1928 initialize_tdesc_powerpc_isa205_vsx64l ();
1929 initialize_tdesc_powerpc_e500l ();
1930 }
This page took 0.088263 seconds and 4 git commands to generate.