2007-09-04 Michael Snyder <msnyder@access-company.com>
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "language.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "breakpoint.h"
34 #include "demangle.h"
35 #include "valprint.h"
36 #include "annotate.h"
37 #include "symfile.h" /* for overlay functions */
38 #include "objfiles.h" /* ditto */
39 #include "completer.h" /* for completion functions */
40 #include "ui-out.h"
41 #include "gdb_assert.h"
42 #include "block.h"
43 #include "disasm.h"
44
45 #ifdef TUI
46 #include "tui/tui.h" /* For tui_active et.al. */
47 #endif
48
49 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
50 extern int addressprint; /* Whether to print hex addresses in HLL " */
51
52 struct format_data
53 {
54 int count;
55 char format;
56 char size;
57 };
58
59 /* Last specified output format. */
60
61 static char last_format = 'x';
62
63 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
64
65 static char last_size = 'w';
66
67 /* Default address to examine next. */
68
69 static CORE_ADDR next_address;
70
71 /* Number of delay instructions following current disassembled insn. */
72
73 static int branch_delay_insns;
74
75 /* Last address examined. */
76
77 static CORE_ADDR last_examine_address;
78
79 /* Contents of last address examined.
80 This is not valid past the end of the `x' command! */
81
82 static struct value *last_examine_value;
83
84 /* Largest offset between a symbolic value and an address, that will be
85 printed as `0x1234 <symbol+offset>'. */
86
87 static unsigned int max_symbolic_offset = UINT_MAX;
88 static void
89 show_max_symbolic_offset (struct ui_file *file, int from_tty,
90 struct cmd_list_element *c, const char *value)
91 {
92 fprintf_filtered (file, _("\
93 The largest offset that will be printed in <symbol+1234> form is %s.\n"),
94 value);
95 }
96
97 /* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99 static int print_symbol_filename = 0;
100 static void
101 show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file, _("\
105 Printing of source filename and line number with <symbol> is %s.\n"),
106 value);
107 }
108
109 /* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get an error or a signal within it.
111 -1 when not doing one. */
112
113 int current_display_number;
114
115 /* Flag to low-level print routines that this value is being printed
116 in an epoch window. We'd like to pass this as a parameter, but
117 every routine would need to take it. Perhaps we can encapsulate
118 this in the I/O stream once we have GNU stdio. */
119
120 int inspect_it = 0;
121
122 struct display
123 {
124 /* Chain link to next auto-display item. */
125 struct display *next;
126 /* Expression to be evaluated and displayed. */
127 struct expression *exp;
128 /* Item number of this auto-display item. */
129 int number;
130 /* Display format specified. */
131 struct format_data format;
132 /* Innermost block required by this expression when evaluated */
133 struct block *block;
134 /* Status of this display (enabled or disabled) */
135 int enabled_p;
136 };
137
138 /* Chain of expressions whose values should be displayed
139 automatically each time the program stops. */
140
141 static struct display *display_chain;
142
143 static int display_number;
144
145 /* Prototypes for exported functions. */
146
147 void output_command (char *, int);
148
149 void _initialize_printcmd (void);
150
151 /* Prototypes for local functions. */
152
153 static void do_one_display (struct display *);
154 \f
155
156 /* Decode a format specification. *STRING_PTR should point to it.
157 OFORMAT and OSIZE are used as defaults for the format and size
158 if none are given in the format specification.
159 If OSIZE is zero, then the size field of the returned value
160 should be set only if a size is explicitly specified by the
161 user.
162 The structure returned describes all the data
163 found in the specification. In addition, *STRING_PTR is advanced
164 past the specification and past all whitespace following it. */
165
166 static struct format_data
167 decode_format (char **string_ptr, int oformat, int osize)
168 {
169 struct format_data val;
170 char *p = *string_ptr;
171
172 val.format = '?';
173 val.size = '?';
174 val.count = 1;
175
176 if (*p >= '0' && *p <= '9')
177 val.count = atoi (p);
178 while (*p >= '0' && *p <= '9')
179 p++;
180
181 /* Now process size or format letters that follow. */
182
183 while (1)
184 {
185 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
186 val.size = *p++;
187 else if (*p >= 'a' && *p <= 'z')
188 val.format = *p++;
189 else
190 break;
191 }
192
193 while (*p == ' ' || *p == '\t')
194 p++;
195 *string_ptr = p;
196
197 /* Set defaults for format and size if not specified. */
198 if (val.format == '?')
199 {
200 if (val.size == '?')
201 {
202 /* Neither has been specified. */
203 val.format = oformat;
204 val.size = osize;
205 }
206 else
207 /* If a size is specified, any format makes a reasonable
208 default except 'i'. */
209 val.format = oformat == 'i' ? 'x' : oformat;
210 }
211 else if (val.size == '?')
212 switch (val.format)
213 {
214 case 'a':
215 case 's':
216 /* Pick the appropriate size for an address. */
217 if (gdbarch_ptr_bit (current_gdbarch) == 64)
218 val.size = osize ? 'g' : osize;
219 else if (gdbarch_ptr_bit (current_gdbarch) == 32)
220 val.size = osize ? 'w' : osize;
221 else if (gdbarch_ptr_bit (current_gdbarch) == 16)
222 val.size = osize ? 'h' : osize;
223 else
224 /* Bad value for gdbarch_ptr_bit. */
225 internal_error (__FILE__, __LINE__,
226 _("failed internal consistency check"));
227 break;
228 case 'f':
229 /* Floating point has to be word or giantword. */
230 if (osize == 'w' || osize == 'g')
231 val.size = osize;
232 else
233 /* Default it to giantword if the last used size is not
234 appropriate. */
235 val.size = osize ? 'g' : osize;
236 break;
237 case 'c':
238 /* Characters default to one byte. */
239 val.size = osize ? 'b' : osize;
240 break;
241 default:
242 /* The default is the size most recently specified. */
243 val.size = osize;
244 }
245
246 return val;
247 }
248 \f
249 /* Print value VAL on stream according to FORMAT, a letter or 0.
250 Do not end with a newline.
251 0 means print VAL according to its own type.
252 SIZE is the letter for the size of datum being printed.
253 This is used to pad hex numbers so they line up. */
254
255 static void
256 print_formatted (struct value *val, int format, int size,
257 struct ui_file *stream)
258 {
259 struct type *type = check_typedef (value_type (val));
260 int len = TYPE_LENGTH (type);
261
262 if (VALUE_LVAL (val) == lval_memory)
263 next_address = VALUE_ADDRESS (val) + len;
264
265 switch (format)
266 {
267 case 's':
268 /* FIXME: Need to handle wchar_t's here... */
269 next_address = VALUE_ADDRESS (val)
270 + val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
271 break;
272
273 case 'i':
274 /* The old comment says
275 "Force output out, print_insn not using _filtered".
276 I'm not completely sure what that means, I suspect most print_insn
277 now do use _filtered, so I guess it's obsolete.
278 --Yes, it does filter now, and so this is obsolete. -JB */
279
280 /* We often wrap here if there are long symbolic names. */
281 wrap_here (" ");
282 next_address = (VALUE_ADDRESS (val)
283 + gdb_print_insn (VALUE_ADDRESS (val), stream,
284 &branch_delay_insns));
285 break;
286
287 default:
288 if (format == 0
289 || TYPE_CODE (type) == TYPE_CODE_ARRAY
290 || TYPE_CODE (type) == TYPE_CODE_STRING
291 || TYPE_CODE (type) == TYPE_CODE_STRUCT
292 || TYPE_CODE (type) == TYPE_CODE_UNION
293 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
294 /* If format is 0, use the 'natural' format for that type of
295 value. If the type is non-scalar, we have to use language
296 rules to print it as a series of scalars. */
297 value_print (val, stream, format, Val_pretty_default);
298 else
299 /* User specified format, so don't look to the the type to
300 tell us what to do. */
301 print_scalar_formatted (value_contents (val), type,
302 format, size, stream);
303 }
304 }
305
306 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
307 according to letters FORMAT and SIZE on STREAM.
308 FORMAT may not be zero. Formats s and i are not supported at this level.
309
310 This is how the elements of an array or structure are printed
311 with a format. */
312
313 void
314 print_scalar_formatted (const void *valaddr, struct type *type,
315 int format, int size, struct ui_file *stream)
316 {
317 LONGEST val_long = 0;
318 unsigned int len = TYPE_LENGTH (type);
319
320 if (len > sizeof(LONGEST) &&
321 (TYPE_CODE (type) == TYPE_CODE_INT
322 || TYPE_CODE (type) == TYPE_CODE_ENUM))
323 {
324 switch (format)
325 {
326 case 'o':
327 print_octal_chars (stream, valaddr, len);
328 return;
329 case 'u':
330 case 'd':
331 print_decimal_chars (stream, valaddr, len);
332 return;
333 case 't':
334 print_binary_chars (stream, valaddr, len);
335 return;
336 case 'x':
337 print_hex_chars (stream, valaddr, len);
338 return;
339 case 'c':
340 print_char_chars (stream, valaddr, len);
341 return;
342 default:
343 break;
344 };
345 }
346
347 if (format != 'f')
348 val_long = unpack_long (type, valaddr);
349
350 /* If the value is a pointer, and pointers and addresses are not the
351 same, then at this point, the value's length (in target bytes) is
352 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
353 if (TYPE_CODE (type) == TYPE_CODE_PTR)
354 len = gdbarch_addr_bit (current_gdbarch) / TARGET_CHAR_BIT;
355
356 /* If we are printing it as unsigned, truncate it in case it is actually
357 a negative signed value (e.g. "print/u (short)-1" should print 65535
358 (if shorts are 16 bits) instead of 4294967295). */
359 if (format != 'd')
360 {
361 if (len < sizeof (LONGEST))
362 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
363 }
364
365 switch (format)
366 {
367 case 'x':
368 if (!size)
369 {
370 /* No size specified, like in print. Print varying # of digits. */
371 print_longest (stream, 'x', 1, val_long);
372 }
373 else
374 switch (size)
375 {
376 case 'b':
377 case 'h':
378 case 'w':
379 case 'g':
380 print_longest (stream, size, 1, val_long);
381 break;
382 default:
383 error (_("Undefined output size \"%c\"."), size);
384 }
385 break;
386
387 case 'd':
388 print_longest (stream, 'd', 1, val_long);
389 break;
390
391 case 'u':
392 print_longest (stream, 'u', 0, val_long);
393 break;
394
395 case 'o':
396 if (val_long)
397 print_longest (stream, 'o', 1, val_long);
398 else
399 fprintf_filtered (stream, "0");
400 break;
401
402 case 'a':
403 {
404 CORE_ADDR addr = unpack_pointer (type, valaddr);
405 print_address (addr, stream);
406 }
407 break;
408
409 case 'c':
410 value_print (value_from_longest (builtin_type_true_char, val_long),
411 stream, 0, Val_pretty_default);
412 break;
413
414 case 'f':
415 if (len == TYPE_LENGTH (builtin_type_float))
416 type = builtin_type_float;
417 else if (len == TYPE_LENGTH (builtin_type_double))
418 type = builtin_type_double;
419 else if (len == TYPE_LENGTH (builtin_type_long_double))
420 type = builtin_type_long_double;
421 print_floating (valaddr, type, stream);
422 break;
423
424 case 0:
425 internal_error (__FILE__, __LINE__,
426 _("failed internal consistency check"));
427
428 case 't':
429 /* Binary; 't' stands for "two". */
430 {
431 char bits[8 * (sizeof val_long) + 1];
432 char buf[8 * (sizeof val_long) + 32];
433 char *cp = bits;
434 int width;
435
436 if (!size)
437 width = 8 * (sizeof val_long);
438 else
439 switch (size)
440 {
441 case 'b':
442 width = 8;
443 break;
444 case 'h':
445 width = 16;
446 break;
447 case 'w':
448 width = 32;
449 break;
450 case 'g':
451 width = 64;
452 break;
453 default:
454 error (_("Undefined output size \"%c\"."), size);
455 }
456
457 bits[width] = '\0';
458 while (width-- > 0)
459 {
460 bits[width] = (val_long & 1) ? '1' : '0';
461 val_long >>= 1;
462 }
463 if (!size)
464 {
465 while (*cp && *cp == '0')
466 cp++;
467 if (*cp == '\0')
468 cp--;
469 }
470 strcpy (buf, cp);
471 fputs_filtered (buf, stream);
472 }
473 break;
474
475 default:
476 error (_("Undefined output format \"%c\"."), format);
477 }
478 }
479
480 /* Specify default address for `x' command.
481 The `info lines' command uses this. */
482
483 void
484 set_next_address (CORE_ADDR addr)
485 {
486 next_address = addr;
487
488 /* Make address available to the user as $_. */
489 set_internalvar (lookup_internalvar ("_"),
490 value_from_pointer (lookup_pointer_type (builtin_type_void),
491 addr));
492 }
493
494 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
495 after LEADIN. Print nothing if no symbolic name is found nearby.
496 Optionally also print source file and line number, if available.
497 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
498 or to interpret it as a possible C++ name and convert it back to source
499 form. However note that DO_DEMANGLE can be overridden by the specific
500 settings of the demangle and asm_demangle variables. */
501
502 void
503 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream,
504 int do_demangle, char *leadin)
505 {
506 char *name = NULL;
507 char *filename = NULL;
508 int unmapped = 0;
509 int offset = 0;
510 int line = 0;
511
512 /* Throw away both name and filename. */
513 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
514 make_cleanup (free_current_contents, &filename);
515
516 if (build_address_symbolic (addr, do_demangle, &name, &offset,
517 &filename, &line, &unmapped))
518 {
519 do_cleanups (cleanup_chain);
520 return;
521 }
522
523 fputs_filtered (leadin, stream);
524 if (unmapped)
525 fputs_filtered ("<*", stream);
526 else
527 fputs_filtered ("<", stream);
528 fputs_filtered (name, stream);
529 if (offset != 0)
530 fprintf_filtered (stream, "+%u", (unsigned int) offset);
531
532 /* Append source filename and line number if desired. Give specific
533 line # of this addr, if we have it; else line # of the nearest symbol. */
534 if (print_symbol_filename && filename != NULL)
535 {
536 if (line != -1)
537 fprintf_filtered (stream, " at %s:%d", filename, line);
538 else
539 fprintf_filtered (stream, " in %s", filename);
540 }
541 if (unmapped)
542 fputs_filtered ("*>", stream);
543 else
544 fputs_filtered (">", stream);
545
546 do_cleanups (cleanup_chain);
547 }
548
549 /* Given an address ADDR return all the elements needed to print the
550 address in a symbolic form. NAME can be mangled or not depending
551 on DO_DEMANGLE (and also on the asm_demangle global variable,
552 manipulated via ''set print asm-demangle''). Return 0 in case of
553 success, when all the info in the OUT paramters is valid. Return 1
554 otherwise. */
555 int
556 build_address_symbolic (CORE_ADDR addr, /* IN */
557 int do_demangle, /* IN */
558 char **name, /* OUT */
559 int *offset, /* OUT */
560 char **filename, /* OUT */
561 int *line, /* OUT */
562 int *unmapped) /* OUT */
563 {
564 struct minimal_symbol *msymbol;
565 struct symbol *symbol;
566 CORE_ADDR name_location = 0;
567 asection *section = 0;
568 char *name_temp = "";
569
570 /* Let's say it is unmapped. */
571 *unmapped = 0;
572
573 /* Determine if the address is in an overlay, and whether it is
574 mapped. */
575 if (overlay_debugging)
576 {
577 section = find_pc_overlay (addr);
578 if (pc_in_unmapped_range (addr, section))
579 {
580 *unmapped = 1;
581 addr = overlay_mapped_address (addr, section);
582 }
583 }
584
585 /* First try to find the address in the symbol table, then
586 in the minsyms. Take the closest one. */
587
588 /* This is defective in the sense that it only finds text symbols. So
589 really this is kind of pointless--we should make sure that the
590 minimal symbols have everything we need (by changing that we could
591 save some memory, but for many debug format--ELF/DWARF or
592 anything/stabs--it would be inconvenient to eliminate those minimal
593 symbols anyway). */
594 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
595 symbol = find_pc_sect_function (addr, section);
596
597 if (symbol)
598 {
599 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
600 if (do_demangle || asm_demangle)
601 name_temp = SYMBOL_PRINT_NAME (symbol);
602 else
603 name_temp = DEPRECATED_SYMBOL_NAME (symbol);
604 }
605
606 if (msymbol != NULL)
607 {
608 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
609 {
610 /* The msymbol is closer to the address than the symbol;
611 use the msymbol instead. */
612 symbol = 0;
613 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
614 if (do_demangle || asm_demangle)
615 name_temp = SYMBOL_PRINT_NAME (msymbol);
616 else
617 name_temp = DEPRECATED_SYMBOL_NAME (msymbol);
618 }
619 }
620 if (symbol == NULL && msymbol == NULL)
621 return 1;
622
623 /* If the nearest symbol is too far away, don't print anything symbolic. */
624
625 /* For when CORE_ADDR is larger than unsigned int, we do math in
626 CORE_ADDR. But when we detect unsigned wraparound in the
627 CORE_ADDR math, we ignore this test and print the offset,
628 because addr+max_symbolic_offset has wrapped through the end
629 of the address space back to the beginning, giving bogus comparison. */
630 if (addr > name_location + max_symbolic_offset
631 && name_location + max_symbolic_offset > name_location)
632 return 1;
633
634 *offset = addr - name_location;
635
636 *name = xstrdup (name_temp);
637
638 if (print_symbol_filename)
639 {
640 struct symtab_and_line sal;
641
642 sal = find_pc_sect_line (addr, section, 0);
643
644 if (sal.symtab)
645 {
646 *filename = xstrdup (sal.symtab->filename);
647 *line = sal.line;
648 }
649 }
650 return 0;
651 }
652
653 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
654 print_longest. */
655 void
656 deprecated_print_address_numeric (CORE_ADDR addr, int use_local,
657 struct ui_file *stream)
658 {
659 if (use_local)
660 fputs_filtered (paddress (addr), stream);
661 else
662 {
663 int addr_bit = gdbarch_addr_bit (current_gdbarch);
664
665 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
666 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
667 print_longest (stream, 'x', 0, (ULONGEST) addr);
668 }
669 }
670
671 /* Print address ADDR symbolically on STREAM.
672 First print it as a number. Then perhaps print
673 <SYMBOL + OFFSET> after the number. */
674
675 void
676 print_address (CORE_ADDR addr, struct ui_file *stream)
677 {
678 deprecated_print_address_numeric (addr, 1, stream);
679 print_address_symbolic (addr, stream, asm_demangle, " ");
680 }
681
682 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
683 controls whether to print the symbolic name "raw" or demangled.
684 Global setting "addressprint" controls whether to print hex address
685 or not. */
686
687 void
688 print_address_demangle (CORE_ADDR addr, struct ui_file *stream,
689 int do_demangle)
690 {
691 if (addr == 0)
692 {
693 fprintf_filtered (stream, "0");
694 }
695 else if (addressprint)
696 {
697 deprecated_print_address_numeric (addr, 1, stream);
698 print_address_symbolic (addr, stream, do_demangle, " ");
699 }
700 else
701 {
702 print_address_symbolic (addr, stream, do_demangle, "");
703 }
704 }
705 \f
706
707 /* These are the types that $__ will get after an examine command of one
708 of these sizes. */
709
710 static struct type *examine_i_type;
711
712 static struct type *examine_b_type;
713 static struct type *examine_h_type;
714 static struct type *examine_w_type;
715 static struct type *examine_g_type;
716
717 /* Examine data at address ADDR in format FMT.
718 Fetch it from memory and print on gdb_stdout. */
719
720 static void
721 do_examine (struct format_data fmt, CORE_ADDR addr)
722 {
723 char format = 0;
724 char size;
725 int count = 1;
726 struct type *val_type = NULL;
727 int i;
728 int maxelts;
729
730 format = fmt.format;
731 size = fmt.size;
732 count = fmt.count;
733 next_address = addr;
734
735 /* String or instruction format implies fetch single bytes
736 regardless of the specified size. */
737 if (format == 's' || format == 'i')
738 size = 'b';
739
740 if (format == 'i')
741 val_type = examine_i_type;
742 else if (size == 'b')
743 val_type = examine_b_type;
744 else if (size == 'h')
745 val_type = examine_h_type;
746 else if (size == 'w')
747 val_type = examine_w_type;
748 else if (size == 'g')
749 val_type = examine_g_type;
750
751 maxelts = 8;
752 if (size == 'w')
753 maxelts = 4;
754 if (size == 'g')
755 maxelts = 2;
756 if (format == 's' || format == 'i')
757 maxelts = 1;
758
759 /* Print as many objects as specified in COUNT, at most maxelts per line,
760 with the address of the next one at the start of each line. */
761
762 while (count > 0)
763 {
764 QUIT;
765 print_address (next_address, gdb_stdout);
766 printf_filtered (":");
767 for (i = maxelts;
768 i > 0 && count > 0;
769 i--, count--)
770 {
771 printf_filtered ("\t");
772 /* Note that print_formatted sets next_address for the next
773 object. */
774 last_examine_address = next_address;
775
776 if (last_examine_value)
777 value_free (last_examine_value);
778
779 /* The value to be displayed is not fetched greedily.
780 Instead, to avoid the possibility of a fetched value not
781 being used, its retrieval is delayed until the print code
782 uses it. When examining an instruction stream, the
783 disassembler will perform its own memory fetch using just
784 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
785 the disassembler be modified so that LAST_EXAMINE_VALUE
786 is left with the byte sequence from the last complete
787 instruction fetched from memory? */
788 last_examine_value = value_at_lazy (val_type, next_address);
789
790 if (last_examine_value)
791 release_value (last_examine_value);
792
793 print_formatted (last_examine_value, format, size, gdb_stdout);
794
795 /* Display any branch delay slots following the final insn. */
796 if (format == 'i' && count == 1)
797 count += branch_delay_insns;
798 }
799 printf_filtered ("\n");
800 gdb_flush (gdb_stdout);
801 }
802 }
803 \f
804 static void
805 validate_format (struct format_data fmt, char *cmdname)
806 {
807 if (fmt.size != 0)
808 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
809 if (fmt.count != 1)
810 error (_("Item count other than 1 is meaningless in \"%s\" command."),
811 cmdname);
812 if (fmt.format == 'i' || fmt.format == 's')
813 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
814 fmt.format, cmdname);
815 }
816
817 /* Evaluate string EXP as an expression in the current language and
818 print the resulting value. EXP may contain a format specifier as the
819 first argument ("/x myvar" for example, to print myvar in hex). */
820
821 static void
822 print_command_1 (char *exp, int inspect, int voidprint)
823 {
824 struct expression *expr;
825 struct cleanup *old_chain = 0;
826 char format = 0;
827 struct value *val;
828 struct format_data fmt;
829 int cleanup = 0;
830
831 /* Pass inspect flag to the rest of the print routines in a global
832 (sigh). */
833 inspect_it = inspect;
834
835 if (exp && *exp == '/')
836 {
837 exp++;
838 fmt = decode_format (&exp, last_format, 0);
839 validate_format (fmt, "print");
840 last_format = format = fmt.format;
841 }
842 else
843 {
844 fmt.count = 1;
845 fmt.format = 0;
846 fmt.size = 0;
847 }
848
849 if (exp && *exp)
850 {
851 struct type *type;
852 expr = parse_expression (exp);
853 old_chain = make_cleanup (free_current_contents, &expr);
854 cleanup = 1;
855 val = evaluate_expression (expr);
856 }
857 else
858 val = access_value_history (0);
859
860 if (voidprint || (val && value_type (val) &&
861 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
862 {
863 int histindex = record_latest_value (val);
864
865 if (histindex >= 0)
866 annotate_value_history_begin (histindex, value_type (val));
867 else
868 annotate_value_begin (value_type (val));
869
870 if (inspect)
871 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"",
872 exp, histindex);
873 else if (histindex >= 0)
874 printf_filtered ("$%d = ", histindex);
875
876 if (histindex >= 0)
877 annotate_value_history_value ();
878
879 print_formatted (val, format, fmt.size, gdb_stdout);
880 printf_filtered ("\n");
881
882 if (histindex >= 0)
883 annotate_value_history_end ();
884 else
885 annotate_value_end ();
886
887 if (inspect)
888 printf_unfiltered ("\") )\030");
889 }
890
891 if (cleanup)
892 do_cleanups (old_chain);
893 inspect_it = 0; /* Reset print routines to normal. */
894 }
895
896 static void
897 print_command (char *exp, int from_tty)
898 {
899 print_command_1 (exp, 0, 1);
900 }
901
902 /* Same as print, except in epoch, it gets its own window. */
903 static void
904 inspect_command (char *exp, int from_tty)
905 {
906 extern int epoch_interface;
907
908 print_command_1 (exp, epoch_interface, 1);
909 }
910
911 /* Same as print, except it doesn't print void results. */
912 static void
913 call_command (char *exp, int from_tty)
914 {
915 print_command_1 (exp, 0, 0);
916 }
917
918 void
919 output_command (char *exp, int from_tty)
920 {
921 struct expression *expr;
922 struct cleanup *old_chain;
923 char format = 0;
924 struct value *val;
925 struct format_data fmt;
926
927 fmt.size = 0;
928
929 if (exp && *exp == '/')
930 {
931 exp++;
932 fmt = decode_format (&exp, 0, 0);
933 validate_format (fmt, "output");
934 format = fmt.format;
935 }
936
937 expr = parse_expression (exp);
938 old_chain = make_cleanup (free_current_contents, &expr);
939
940 val = evaluate_expression (expr);
941
942 annotate_value_begin (value_type (val));
943
944 print_formatted (val, format, fmt.size, gdb_stdout);
945
946 annotate_value_end ();
947
948 wrap_here ("");
949 gdb_flush (gdb_stdout);
950
951 do_cleanups (old_chain);
952 }
953
954 static void
955 set_command (char *exp, int from_tty)
956 {
957 struct expression *expr = parse_expression (exp);
958 struct cleanup *old_chain =
959 make_cleanup (free_current_contents, &expr);
960 evaluate_expression (expr);
961 do_cleanups (old_chain);
962 }
963
964 static void
965 sym_info (char *arg, int from_tty)
966 {
967 struct minimal_symbol *msymbol;
968 struct objfile *objfile;
969 struct obj_section *osect;
970 asection *sect;
971 CORE_ADDR addr, sect_addr;
972 int matches = 0;
973 unsigned int offset;
974
975 if (!arg)
976 error_no_arg (_("address"));
977
978 addr = parse_and_eval_address (arg);
979 ALL_OBJSECTIONS (objfile, osect)
980 {
981 /* Only process each object file once, even if there's a separate
982 debug file. */
983 if (objfile->separate_debug_objfile_backlink)
984 continue;
985
986 sect = osect->the_bfd_section;
987 sect_addr = overlay_mapped_address (addr, sect);
988
989 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
990 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
991 {
992 matches = 1;
993 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
994 if (offset)
995 printf_filtered ("%s + %u in ",
996 SYMBOL_PRINT_NAME (msymbol), offset);
997 else
998 printf_filtered ("%s in ",
999 SYMBOL_PRINT_NAME (msymbol));
1000 if (pc_in_unmapped_range (addr, sect))
1001 printf_filtered (_("load address range of "));
1002 if (section_is_overlay (sect))
1003 printf_filtered (_("%s overlay "),
1004 section_is_mapped (sect) ? "mapped" : "unmapped");
1005 printf_filtered (_("section %s"), sect->name);
1006 printf_filtered ("\n");
1007 }
1008 }
1009 if (matches == 0)
1010 printf_filtered (_("No symbol matches %s.\n"), arg);
1011 }
1012
1013 static void
1014 address_info (char *exp, int from_tty)
1015 {
1016 struct symbol *sym;
1017 struct minimal_symbol *msymbol;
1018 long val;
1019 long basereg;
1020 asection *section;
1021 CORE_ADDR load_addr;
1022 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1023 if exp is a field of `this'. */
1024
1025 if (exp == 0)
1026 error (_("Argument required."));
1027
1028 sym = lookup_symbol (exp, get_selected_block (0), VAR_DOMAIN,
1029 &is_a_field_of_this, (struct symtab **) NULL);
1030 if (sym == NULL)
1031 {
1032 if (is_a_field_of_this)
1033 {
1034 printf_filtered ("Symbol \"");
1035 fprintf_symbol_filtered (gdb_stdout, exp,
1036 current_language->la_language, DMGL_ANSI);
1037 printf_filtered ("\" is a field of the local class variable ");
1038 if (current_language->la_language == language_objc)
1039 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1040 else
1041 printf_filtered ("`this'\n");
1042 return;
1043 }
1044
1045 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1046
1047 if (msymbol != NULL)
1048 {
1049 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1050
1051 printf_filtered ("Symbol \"");
1052 fprintf_symbol_filtered (gdb_stdout, exp,
1053 current_language->la_language, DMGL_ANSI);
1054 printf_filtered ("\" is at ");
1055 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1056 printf_filtered (" in a file compiled without debugging");
1057 section = SYMBOL_BFD_SECTION (msymbol);
1058 if (section_is_overlay (section))
1059 {
1060 load_addr = overlay_unmapped_address (load_addr, section);
1061 printf_filtered (",\n -- loaded at ");
1062 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1063 printf_filtered (" in overlay section %s", section->name);
1064 }
1065 printf_filtered (".\n");
1066 }
1067 else
1068 error (_("No symbol \"%s\" in current context."), exp);
1069 return;
1070 }
1071
1072 printf_filtered ("Symbol \"");
1073 fprintf_symbol_filtered (gdb_stdout, DEPRECATED_SYMBOL_NAME (sym),
1074 current_language->la_language, DMGL_ANSI);
1075 printf_filtered ("\" is ");
1076 val = SYMBOL_VALUE (sym);
1077 basereg = SYMBOL_BASEREG (sym);
1078 section = SYMBOL_BFD_SECTION (sym);
1079
1080 switch (SYMBOL_CLASS (sym))
1081 {
1082 case LOC_CONST:
1083 case LOC_CONST_BYTES:
1084 printf_filtered ("constant");
1085 break;
1086
1087 case LOC_LABEL:
1088 printf_filtered ("a label at address ");
1089 deprecated_print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1090 1, gdb_stdout);
1091 if (section_is_overlay (section))
1092 {
1093 load_addr = overlay_unmapped_address (load_addr, section);
1094 printf_filtered (",\n -- loaded at ");
1095 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1096 printf_filtered (" in overlay section %s", section->name);
1097 }
1098 break;
1099
1100 case LOC_COMPUTED:
1101 case LOC_COMPUTED_ARG:
1102 /* FIXME: cagney/2004-01-26: It should be possible to
1103 unconditionally call the SYMBOL_OPS method when available.
1104 Unfortunately DWARF 2 stores the frame-base (instead of the
1105 function) location in a function's symbol. Oops! For the
1106 moment enable this when/where applicable. */
1107 SYMBOL_OPS (sym)->describe_location (sym, gdb_stdout);
1108 break;
1109
1110 case LOC_REGISTER:
1111 printf_filtered (_("a variable in register %s"),
1112 gdbarch_register_name (current_gdbarch, val));
1113 break;
1114
1115 case LOC_STATIC:
1116 printf_filtered (_("static storage at address "));
1117 deprecated_print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1118 1, gdb_stdout);
1119 if (section_is_overlay (section))
1120 {
1121 load_addr = overlay_unmapped_address (load_addr, section);
1122 printf_filtered (_(",\n -- loaded at "));
1123 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1124 printf_filtered (_(" in overlay section %s"), section->name);
1125 }
1126 break;
1127
1128 case LOC_INDIRECT:
1129 printf_filtered (_("external global (indirect addressing), at address *("));
1130 deprecated_print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1131 1, gdb_stdout);
1132 printf_filtered (")");
1133 if (section_is_overlay (section))
1134 {
1135 load_addr = overlay_unmapped_address (load_addr, section);
1136 printf_filtered (_(",\n -- loaded at "));
1137 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1138 printf_filtered (_(" in overlay section %s"), section->name);
1139 }
1140 break;
1141
1142 case LOC_REGPARM:
1143 printf_filtered (_("an argument in register %s"),
1144 gdbarch_register_name (current_gdbarch, val));
1145 break;
1146
1147 case LOC_REGPARM_ADDR:
1148 printf_filtered (_("address of an argument in register %s"),
1149 gdbarch_register_name (current_gdbarch, val));
1150 break;
1151
1152 case LOC_ARG:
1153 printf_filtered (_("an argument at offset %ld"), val);
1154 break;
1155
1156 case LOC_LOCAL_ARG:
1157 printf_filtered (_("an argument at frame offset %ld"), val);
1158 break;
1159
1160 case LOC_LOCAL:
1161 printf_filtered (_("a local variable at frame offset %ld"), val);
1162 break;
1163
1164 case LOC_REF_ARG:
1165 printf_filtered (_("a reference argument at offset %ld"), val);
1166 break;
1167
1168 case LOC_BASEREG:
1169 printf_filtered (_("a variable at offset %ld from register %s"),
1170 val, gdbarch_register_name (current_gdbarch, basereg));
1171 break;
1172
1173 case LOC_BASEREG_ARG:
1174 printf_filtered (_("an argument at offset %ld from register %s"),
1175 val, gdbarch_register_name (current_gdbarch, basereg));
1176 break;
1177
1178 case LOC_TYPEDEF:
1179 printf_filtered (_("a typedef"));
1180 break;
1181
1182 case LOC_BLOCK:
1183 printf_filtered (_("a function at address "));
1184 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1185 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1186 if (section_is_overlay (section))
1187 {
1188 load_addr = overlay_unmapped_address (load_addr, section);
1189 printf_filtered (_(",\n -- loaded at "));
1190 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1191 printf_filtered (_(" in overlay section %s"), section->name);
1192 }
1193 break;
1194
1195 case LOC_UNRESOLVED:
1196 {
1197 struct minimal_symbol *msym;
1198
1199 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, NULL);
1200 if (msym == NULL)
1201 printf_filtered ("unresolved");
1202 else
1203 {
1204 section = SYMBOL_BFD_SECTION (msym);
1205 printf_filtered (_("static storage at address "));
1206 load_addr = SYMBOL_VALUE_ADDRESS (msym);
1207 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1208 if (section_is_overlay (section))
1209 {
1210 load_addr = overlay_unmapped_address (load_addr, section);
1211 printf_filtered (_(",\n -- loaded at "));
1212 deprecated_print_address_numeric (load_addr, 1, gdb_stdout);
1213 printf_filtered (_(" in overlay section %s"), section->name);
1214 }
1215 }
1216 }
1217 break;
1218
1219 case LOC_HP_THREAD_LOCAL_STATIC:
1220 printf_filtered (_("\
1221 a thread-local variable at offset %ld from the thread base register %s"),
1222 val, gdbarch_register_name (current_gdbarch, basereg));
1223 break;
1224
1225 case LOC_OPTIMIZED_OUT:
1226 printf_filtered (_("optimized out"));
1227 break;
1228
1229 default:
1230 printf_filtered (_("of unknown (botched) type"));
1231 break;
1232 }
1233 printf_filtered (".\n");
1234 }
1235 \f
1236
1237 static void
1238 x_command (char *exp, int from_tty)
1239 {
1240 struct expression *expr;
1241 struct format_data fmt;
1242 struct cleanup *old_chain;
1243 struct value *val;
1244
1245 fmt.format = last_format;
1246 fmt.size = last_size;
1247 fmt.count = 1;
1248
1249 if (exp && *exp == '/')
1250 {
1251 exp++;
1252 fmt = decode_format (&exp, last_format, last_size);
1253 }
1254
1255 /* If we have an expression, evaluate it and use it as the address. */
1256
1257 if (exp != 0 && *exp != 0)
1258 {
1259 expr = parse_expression (exp);
1260 /* Cause expression not to be there any more if this command is
1261 repeated with Newline. But don't clobber a user-defined
1262 command's definition. */
1263 if (from_tty)
1264 *exp = 0;
1265 old_chain = make_cleanup (free_current_contents, &expr);
1266 val = evaluate_expression (expr);
1267 if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF)
1268 val = value_ind (val);
1269 /* In rvalue contexts, such as this, functions are coerced into
1270 pointers to functions. This makes "x/i main" work. */
1271 if (/* last_format == 'i' && */
1272 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1273 && VALUE_LVAL (val) == lval_memory)
1274 next_address = VALUE_ADDRESS (val);
1275 else
1276 next_address = value_as_address (val);
1277 do_cleanups (old_chain);
1278 }
1279
1280 do_examine (fmt, next_address);
1281
1282 /* If the examine succeeds, we remember its size and format for next
1283 time. */
1284 last_size = fmt.size;
1285 last_format = fmt.format;
1286
1287 /* Set a couple of internal variables if appropriate. */
1288 if (last_examine_value)
1289 {
1290 /* Make last address examined available to the user as $_. Use
1291 the correct pointer type. */
1292 struct type *pointer_type
1293 = lookup_pointer_type (value_type (last_examine_value));
1294 set_internalvar (lookup_internalvar ("_"),
1295 value_from_pointer (pointer_type,
1296 last_examine_address));
1297
1298 /* Make contents of last address examined available to the user
1299 as $__. If the last value has not been fetched from memory
1300 then don't fetch it now; instead mark it by voiding the $__
1301 variable. */
1302 if (value_lazy (last_examine_value))
1303 set_internalvar (lookup_internalvar ("__"),
1304 allocate_value (builtin_type_void));
1305 else
1306 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1307 }
1308 }
1309 \f
1310
1311 /* Add an expression to the auto-display chain.
1312 Specify the expression. */
1313
1314 static void
1315 display_command (char *exp, int from_tty)
1316 {
1317 struct format_data fmt;
1318 struct expression *expr;
1319 struct display *new;
1320 int display_it = 1;
1321
1322 #if defined(TUI)
1323 /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1324 `tui_version'. */
1325 if (tui_active && exp != NULL && *exp == '$')
1326 display_it = (tui_set_layout_for_display_command (exp) == TUI_FAILURE);
1327 #endif
1328
1329 if (display_it)
1330 {
1331 if (exp == 0)
1332 {
1333 do_displays ();
1334 return;
1335 }
1336
1337 if (*exp == '/')
1338 {
1339 exp++;
1340 fmt = decode_format (&exp, 0, 0);
1341 if (fmt.size && fmt.format == 0)
1342 fmt.format = 'x';
1343 if (fmt.format == 'i' || fmt.format == 's')
1344 fmt.size = 'b';
1345 }
1346 else
1347 {
1348 fmt.format = 0;
1349 fmt.size = 0;
1350 fmt.count = 0;
1351 }
1352
1353 innermost_block = 0;
1354 expr = parse_expression (exp);
1355
1356 new = (struct display *) xmalloc (sizeof (struct display));
1357
1358 new->exp = expr;
1359 new->block = innermost_block;
1360 new->next = display_chain;
1361 new->number = ++display_number;
1362 new->format = fmt;
1363 new->enabled_p = 1;
1364 display_chain = new;
1365
1366 if (from_tty && target_has_execution)
1367 do_one_display (new);
1368
1369 dont_repeat ();
1370 }
1371 }
1372
1373 static void
1374 free_display (struct display *d)
1375 {
1376 xfree (d->exp);
1377 xfree (d);
1378 }
1379
1380 /* Clear out the display_chain. Done when new symtabs are loaded,
1381 since this invalidates the types stored in many expressions. */
1382
1383 void
1384 clear_displays (void)
1385 {
1386 struct display *d;
1387
1388 while ((d = display_chain) != NULL)
1389 {
1390 xfree (d->exp);
1391 display_chain = d->next;
1392 xfree (d);
1393 }
1394 }
1395
1396 /* Delete the auto-display number NUM. */
1397
1398 static void
1399 delete_display (int num)
1400 {
1401 struct display *d1, *d;
1402
1403 if (!display_chain)
1404 error (_("No display number %d."), num);
1405
1406 if (display_chain->number == num)
1407 {
1408 d1 = display_chain;
1409 display_chain = d1->next;
1410 free_display (d1);
1411 }
1412 else
1413 for (d = display_chain;; d = d->next)
1414 {
1415 if (d->next == 0)
1416 error (_("No display number %d."), num);
1417 if (d->next->number == num)
1418 {
1419 d1 = d->next;
1420 d->next = d1->next;
1421 free_display (d1);
1422 break;
1423 }
1424 }
1425 }
1426
1427 /* Delete some values from the auto-display chain.
1428 Specify the element numbers. */
1429
1430 static void
1431 undisplay_command (char *args, int from_tty)
1432 {
1433 char *p = args;
1434 char *p1;
1435 int num;
1436
1437 if (args == 0)
1438 {
1439 if (query ("Delete all auto-display expressions? "))
1440 clear_displays ();
1441 dont_repeat ();
1442 return;
1443 }
1444
1445 while (*p)
1446 {
1447 p1 = p;
1448 while (*p1 >= '0' && *p1 <= '9')
1449 p1++;
1450 if (*p1 && *p1 != ' ' && *p1 != '\t')
1451 error (_("Arguments must be display numbers."));
1452
1453 num = atoi (p);
1454
1455 delete_display (num);
1456
1457 p = p1;
1458 while (*p == ' ' || *p == '\t')
1459 p++;
1460 }
1461 dont_repeat ();
1462 }
1463
1464 /* Display a single auto-display.
1465 Do nothing if the display cannot be printed in the current context,
1466 or if the display is disabled. */
1467
1468 static void
1469 do_one_display (struct display *d)
1470 {
1471 int within_current_scope;
1472
1473 if (d->enabled_p == 0)
1474 return;
1475
1476 if (d->block)
1477 within_current_scope = contained_in (get_selected_block (0), d->block);
1478 else
1479 within_current_scope = 1;
1480 if (!within_current_scope)
1481 return;
1482
1483 current_display_number = d->number;
1484
1485 annotate_display_begin ();
1486 printf_filtered ("%d", d->number);
1487 annotate_display_number_end ();
1488 printf_filtered (": ");
1489 if (d->format.size)
1490 {
1491 CORE_ADDR addr;
1492 struct value *val;
1493
1494 annotate_display_format ();
1495
1496 printf_filtered ("x/");
1497 if (d->format.count != 1)
1498 printf_filtered ("%d", d->format.count);
1499 printf_filtered ("%c", d->format.format);
1500 if (d->format.format != 'i' && d->format.format != 's')
1501 printf_filtered ("%c", d->format.size);
1502 printf_filtered (" ");
1503
1504 annotate_display_expression ();
1505
1506 print_expression (d->exp, gdb_stdout);
1507 annotate_display_expression_end ();
1508
1509 if (d->format.count != 1 || d->format.format == 'i')
1510 printf_filtered ("\n");
1511 else
1512 printf_filtered (" ");
1513
1514 val = evaluate_expression (d->exp);
1515 addr = value_as_address (val);
1516 if (d->format.format == 'i')
1517 addr = gdbarch_addr_bits_remove (current_gdbarch, addr);
1518
1519 annotate_display_value ();
1520
1521 do_examine (d->format, addr);
1522 }
1523 else
1524 {
1525 annotate_display_format ();
1526
1527 if (d->format.format)
1528 printf_filtered ("/%c ", d->format.format);
1529
1530 annotate_display_expression ();
1531
1532 print_expression (d->exp, gdb_stdout);
1533 annotate_display_expression_end ();
1534
1535 printf_filtered (" = ");
1536
1537 annotate_display_expression ();
1538
1539 print_formatted (evaluate_expression (d->exp),
1540 d->format.format, d->format.size, gdb_stdout);
1541 printf_filtered ("\n");
1542 }
1543
1544 annotate_display_end ();
1545
1546 gdb_flush (gdb_stdout);
1547 current_display_number = -1;
1548 }
1549
1550 /* Display all of the values on the auto-display chain which can be
1551 evaluated in the current scope. */
1552
1553 void
1554 do_displays (void)
1555 {
1556 struct display *d;
1557
1558 for (d = display_chain; d; d = d->next)
1559 do_one_display (d);
1560 }
1561
1562 /* Delete the auto-display which we were in the process of displaying.
1563 This is done when there is an error or a signal. */
1564
1565 void
1566 disable_display (int num)
1567 {
1568 struct display *d;
1569
1570 for (d = display_chain; d; d = d->next)
1571 if (d->number == num)
1572 {
1573 d->enabled_p = 0;
1574 return;
1575 }
1576 printf_unfiltered (_("No display number %d.\n"), num);
1577 }
1578
1579 void
1580 disable_current_display (void)
1581 {
1582 if (current_display_number >= 0)
1583 {
1584 disable_display (current_display_number);
1585 fprintf_unfiltered (gdb_stderr, _("\
1586 Disabling display %d to avoid infinite recursion.\n"),
1587 current_display_number);
1588 }
1589 current_display_number = -1;
1590 }
1591
1592 static void
1593 display_info (char *ignore, int from_tty)
1594 {
1595 struct display *d;
1596
1597 if (!display_chain)
1598 printf_unfiltered (_("There are no auto-display expressions now.\n"));
1599 else
1600 printf_filtered (_("Auto-display expressions now in effect:\n\
1601 Num Enb Expression\n"));
1602
1603 for (d = display_chain; d; d = d->next)
1604 {
1605 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1606 if (d->format.size)
1607 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1608 d->format.format);
1609 else if (d->format.format)
1610 printf_filtered ("/%c ", d->format.format);
1611 print_expression (d->exp, gdb_stdout);
1612 if (d->block && !contained_in (get_selected_block (0), d->block))
1613 printf_filtered (_(" (cannot be evaluated in the current context)"));
1614 printf_filtered ("\n");
1615 gdb_flush (gdb_stdout);
1616 }
1617 }
1618
1619 static void
1620 enable_display (char *args, int from_tty)
1621 {
1622 char *p = args;
1623 char *p1;
1624 int num;
1625 struct display *d;
1626
1627 if (p == 0)
1628 {
1629 for (d = display_chain; d; d = d->next)
1630 d->enabled_p = 1;
1631 }
1632 else
1633 while (*p)
1634 {
1635 p1 = p;
1636 while (*p1 >= '0' && *p1 <= '9')
1637 p1++;
1638 if (*p1 && *p1 != ' ' && *p1 != '\t')
1639 error (_("Arguments must be display numbers."));
1640
1641 num = atoi (p);
1642
1643 for (d = display_chain; d; d = d->next)
1644 if (d->number == num)
1645 {
1646 d->enabled_p = 1;
1647 goto win;
1648 }
1649 printf_unfiltered (_("No display number %d.\n"), num);
1650 win:
1651 p = p1;
1652 while (*p == ' ' || *p == '\t')
1653 p++;
1654 }
1655 }
1656
1657 static void
1658 disable_display_command (char *args, int from_tty)
1659 {
1660 char *p = args;
1661 char *p1;
1662 struct display *d;
1663
1664 if (p == 0)
1665 {
1666 for (d = display_chain; d; d = d->next)
1667 d->enabled_p = 0;
1668 }
1669 else
1670 while (*p)
1671 {
1672 p1 = p;
1673 while (*p1 >= '0' && *p1 <= '9')
1674 p1++;
1675 if (*p1 && *p1 != ' ' && *p1 != '\t')
1676 error (_("Arguments must be display numbers."));
1677
1678 disable_display (atoi (p));
1679
1680 p = p1;
1681 while (*p == ' ' || *p == '\t')
1682 p++;
1683 }
1684 }
1685 \f
1686
1687 /* Print the value in stack frame FRAME of a variable specified by a
1688 struct symbol. */
1689
1690 void
1691 print_variable_value (struct symbol *var, struct frame_info *frame,
1692 struct ui_file *stream)
1693 {
1694 struct value *val = read_var_value (var, frame);
1695
1696 value_print (val, stream, 0, Val_pretty_default);
1697 }
1698
1699 static void
1700 printf_command (char *arg, int from_tty)
1701 {
1702 char *f = NULL;
1703 char *s = arg;
1704 char *string = NULL;
1705 struct value **val_args;
1706 char *substrings;
1707 char *current_substring;
1708 int nargs = 0;
1709 int allocated_args = 20;
1710 struct cleanup *old_cleanups;
1711
1712 val_args = xmalloc (allocated_args * sizeof (struct value *));
1713 old_cleanups = make_cleanup (free_current_contents, &val_args);
1714
1715 if (s == 0)
1716 error_no_arg (_("format-control string and values to print"));
1717
1718 /* Skip white space before format string */
1719 while (*s == ' ' || *s == '\t')
1720 s++;
1721
1722 /* A format string should follow, enveloped in double quotes. */
1723 if (*s++ != '"')
1724 error (_("Bad format string, missing '\"'."));
1725
1726 /* Parse the format-control string and copy it into the string STRING,
1727 processing some kinds of escape sequence. */
1728
1729 f = string = (char *) alloca (strlen (s) + 1);
1730
1731 while (*s != '"')
1732 {
1733 int c = *s++;
1734 switch (c)
1735 {
1736 case '\0':
1737 error (_("Bad format string, non-terminated '\"'."));
1738
1739 case '\\':
1740 switch (c = *s++)
1741 {
1742 case '\\':
1743 *f++ = '\\';
1744 break;
1745 case 'a':
1746 *f++ = '\a';
1747 break;
1748 case 'b':
1749 *f++ = '\b';
1750 break;
1751 case 'f':
1752 *f++ = '\f';
1753 break;
1754 case 'n':
1755 *f++ = '\n';
1756 break;
1757 case 'r':
1758 *f++ = '\r';
1759 break;
1760 case 't':
1761 *f++ = '\t';
1762 break;
1763 case 'v':
1764 *f++ = '\v';
1765 break;
1766 case '"':
1767 *f++ = '"';
1768 break;
1769 default:
1770 /* ??? TODO: handle other escape sequences */
1771 error (_("Unrecognized escape character \\%c in format string."),
1772 c);
1773 }
1774 break;
1775
1776 default:
1777 *f++ = c;
1778 }
1779 }
1780
1781 /* Skip over " and following space and comma. */
1782 s++;
1783 *f++ = '\0';
1784 while (*s == ' ' || *s == '\t')
1785 s++;
1786
1787 if (*s != ',' && *s != 0)
1788 error (_("Invalid argument syntax"));
1789
1790 if (*s == ',')
1791 s++;
1792 while (*s == ' ' || *s == '\t')
1793 s++;
1794
1795 /* Need extra space for the '\0's. Doubling the size is sufficient. */
1796 substrings = alloca (strlen (string) * 2);
1797 current_substring = substrings;
1798
1799 {
1800 /* Now scan the string for %-specs and see what kinds of args they want.
1801 argclass[I] classifies the %-specs so we can give printf_filtered
1802 something of the right size. */
1803
1804 enum argclass
1805 {
1806 int_arg, long_arg, long_long_arg, ptr_arg, string_arg,
1807 double_arg, long_double_arg
1808 };
1809 enum argclass *argclass;
1810 enum argclass this_argclass;
1811 char *last_arg;
1812 int nargs_wanted;
1813 int i;
1814
1815 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
1816 nargs_wanted = 0;
1817 f = string;
1818 last_arg = string;
1819 while (*f)
1820 if (*f++ == '%')
1821 {
1822 int seen_hash = 0, seen_zero = 0, lcount = 0, seen_prec = 0;
1823 int seen_space = 0, seen_plus = 0;
1824 int seen_big_l = 0, seen_h = 0;
1825 int bad = 0;
1826
1827 /* Check the validity of the format specifier, and work
1828 out what argument it expects. We only accept C89
1829 format strings, with the exception of long long (which
1830 we autoconf for). */
1831
1832 /* Skip over "%%". */
1833 if (*f == '%')
1834 {
1835 f++;
1836 continue;
1837 }
1838
1839 /* The first part of a format specifier is a set of flag
1840 characters. */
1841 while (strchr ("0-+ #", *f))
1842 {
1843 if (*f == '#')
1844 seen_hash = 1;
1845 else if (*f == '0')
1846 seen_zero = 1;
1847 else if (*f == ' ')
1848 seen_space = 1;
1849 else if (*f == '+')
1850 seen_plus = 1;
1851 f++;
1852 }
1853
1854 /* The next part of a format specifier is a width. */
1855 while (strchr ("0123456789", *f))
1856 f++;
1857
1858 /* The next part of a format specifier is a precision. */
1859 if (*f == '.')
1860 {
1861 seen_prec = 1;
1862 f++;
1863 while (strchr ("0123456789", *f))
1864 f++;
1865 }
1866
1867 /* The next part of a format specifier is a length modifier. */
1868 if (*f == 'h')
1869 {
1870 seen_h = 1;
1871 f++;
1872 }
1873 else if (*f == 'l')
1874 {
1875 f++;
1876 lcount++;
1877 if (*f == 'l')
1878 {
1879 f++;
1880 lcount++;
1881 }
1882 }
1883 else if (*f == 'L')
1884 {
1885 seen_big_l = 1;
1886 f++;
1887 }
1888
1889 switch (*f)
1890 {
1891 case 'u':
1892 if (seen_hash)
1893 bad = 1;
1894 /* FALLTHROUGH */
1895
1896 case 'o':
1897 case 'x':
1898 case 'X':
1899 if (seen_space || seen_plus)
1900 bad = 1;
1901 /* FALLTHROUGH */
1902
1903 case 'd':
1904 case 'i':
1905 if (lcount == 0)
1906 this_argclass = int_arg;
1907 else if (lcount == 1)
1908 this_argclass = long_arg;
1909 else
1910 this_argclass = long_long_arg;
1911
1912 if (seen_big_l)
1913 bad = 1;
1914 break;
1915
1916 case 'c':
1917 this_argclass = int_arg;
1918 if (lcount || seen_h || seen_big_l)
1919 bad = 1;
1920 if (seen_prec || seen_zero || seen_space || seen_plus)
1921 bad = 1;
1922 break;
1923
1924 case 'p':
1925 this_argclass = ptr_arg;
1926 if (lcount || seen_h || seen_big_l)
1927 bad = 1;
1928 if (seen_prec || seen_zero || seen_space || seen_plus)
1929 bad = 1;
1930 break;
1931
1932 case 's':
1933 this_argclass = string_arg;
1934 if (lcount || seen_h || seen_big_l)
1935 bad = 1;
1936 if (seen_zero || seen_space || seen_plus)
1937 bad = 1;
1938 break;
1939
1940 case 'e':
1941 case 'f':
1942 case 'g':
1943 case 'E':
1944 case 'G':
1945 if (seen_big_l)
1946 this_argclass = long_double_arg;
1947 else
1948 this_argclass = double_arg;
1949
1950 if (lcount || seen_h)
1951 bad = 1;
1952 break;
1953
1954 case '*':
1955 error (_("`*' not supported for precision or width in printf"));
1956
1957 case 'n':
1958 error (_("Format specifier `n' not supported in printf"));
1959
1960 case '\0':
1961 error (_("Incomplete format specifier at end of format string"));
1962
1963 default:
1964 error (_("Unrecognized format specifier '%c' in printf"), *f);
1965 }
1966
1967 if (bad)
1968 error (_("Inappropriate modifiers to format specifier '%c' in printf"),
1969 *f);
1970
1971 f++;
1972 strncpy (current_substring, last_arg, f - last_arg);
1973 current_substring += f - last_arg;
1974 *current_substring++ = '\0';
1975 last_arg = f;
1976 argclass[nargs_wanted++] = this_argclass;
1977 }
1978
1979 /* Now, parse all arguments and evaluate them.
1980 Store the VALUEs in VAL_ARGS. */
1981
1982 while (*s != '\0')
1983 {
1984 char *s1;
1985 if (nargs == allocated_args)
1986 val_args = (struct value **) xrealloc ((char *) val_args,
1987 (allocated_args *= 2)
1988 * sizeof (struct value *));
1989 s1 = s;
1990 val_args[nargs] = parse_to_comma_and_eval (&s1);
1991
1992 /* If format string wants a float, unchecked-convert the value to
1993 floating point of the same size */
1994
1995 if (argclass[nargs] == double_arg)
1996 {
1997 struct type *type = value_type (val_args[nargs]);
1998 if (TYPE_LENGTH (type) == sizeof (float))
1999 deprecated_set_value_type (val_args[nargs], builtin_type_float);
2000 if (TYPE_LENGTH (type) == sizeof (double))
2001 deprecated_set_value_type (val_args[nargs], builtin_type_double);
2002 }
2003 nargs++;
2004 s = s1;
2005 if (*s == ',')
2006 s++;
2007 }
2008
2009 if (nargs != nargs_wanted)
2010 error (_("Wrong number of arguments for specified format-string"));
2011
2012 /* Now actually print them. */
2013 current_substring = substrings;
2014 for (i = 0; i < nargs; i++)
2015 {
2016 switch (argclass[i])
2017 {
2018 case string_arg:
2019 {
2020 gdb_byte *str;
2021 CORE_ADDR tem;
2022 int j;
2023 tem = value_as_address (val_args[i]);
2024
2025 /* This is a %s argument. Find the length of the string. */
2026 for (j = 0;; j++)
2027 {
2028 gdb_byte c;
2029 QUIT;
2030 read_memory (tem + j, &c, 1);
2031 if (c == 0)
2032 break;
2033 }
2034
2035 /* Copy the string contents into a string inside GDB. */
2036 str = (gdb_byte *) alloca (j + 1);
2037 if (j != 0)
2038 read_memory (tem, str, j);
2039 str[j] = 0;
2040
2041 printf_filtered (current_substring, (char *) str);
2042 }
2043 break;
2044 case double_arg:
2045 {
2046 double val = value_as_double (val_args[i]);
2047 printf_filtered (current_substring, val);
2048 break;
2049 }
2050 case long_double_arg:
2051 #ifdef HAVE_LONG_DOUBLE
2052 {
2053 long double val = value_as_double (val_args[i]);
2054 printf_filtered (current_substring, val);
2055 break;
2056 }
2057 #else
2058 error (_("long double not supported in printf"));
2059 #endif
2060 case long_long_arg:
2061 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2062 {
2063 long long val = value_as_long (val_args[i]);
2064 printf_filtered (current_substring, val);
2065 break;
2066 }
2067 #else
2068 error (_("long long not supported in printf"));
2069 #endif
2070 case int_arg:
2071 {
2072 int val = value_as_long (val_args[i]);
2073 printf_filtered (current_substring, val);
2074 break;
2075 }
2076 case long_arg:
2077 {
2078 long val = value_as_long (val_args[i]);
2079 printf_filtered (current_substring, val);
2080 break;
2081 }
2082 case ptr_arg:
2083 {
2084 /* We avoid the host's %p because pointers are too
2085 likely to be the wrong size. The only interesting
2086 modifier for %p is a width; extract that, and then
2087 handle %p as glibc would: %#x or a literal "(nil)". */
2088
2089 char *p, *fmt, *fmt_p;
2090 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2091 long long val = value_as_long (val_args[i]);
2092 #else
2093 long val = value_as_long (val_args[i]);
2094 #endif
2095
2096 fmt = alloca (strlen (current_substring) + 5);
2097
2098 /* Copy up to the leading %. */
2099 p = current_substring;
2100 fmt_p = fmt;
2101 while (*p)
2102 {
2103 int is_percent = (*p == '%');
2104 *fmt_p++ = *p++;
2105 if (is_percent)
2106 {
2107 if (*p == '%')
2108 *fmt_p++ = *p++;
2109 else
2110 break;
2111 }
2112 }
2113
2114 if (val != 0)
2115 *fmt_p++ = '#';
2116
2117 /* Copy any width. */
2118 while (*p >= '0' && *p < '9')
2119 *fmt_p++ = *p++;
2120
2121 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2122 if (val != 0)
2123 {
2124 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2125 *fmt_p++ = 'l';
2126 #endif
2127 *fmt_p++ = 'l';
2128 *fmt_p++ = 'x';
2129 *fmt_p++ = '\0';
2130 printf_filtered (fmt, val);
2131 }
2132 else
2133 {
2134 *fmt_p++ = 's';
2135 *fmt_p++ = '\0';
2136 printf_filtered (fmt, "(nil)");
2137 }
2138
2139 break;
2140 }
2141 default:
2142 internal_error (__FILE__, __LINE__,
2143 _("failed internal consistency check"));
2144 }
2145 /* Skip to the next substring. */
2146 current_substring += strlen (current_substring) + 1;
2147 }
2148 /* Print the portion of the format string after the last argument. */
2149 puts_filtered (last_arg);
2150 }
2151 do_cleanups (old_cleanups);
2152 }
2153
2154 void
2155 _initialize_printcmd (void)
2156 {
2157 struct cmd_list_element *c;
2158
2159 current_display_number = -1;
2160
2161 add_info ("address", address_info,
2162 _("Describe where symbol SYM is stored."));
2163
2164 add_info ("symbol", sym_info, _("\
2165 Describe what symbol is at location ADDR.\n\
2166 Only for symbols with fixed locations (global or static scope)."));
2167
2168 add_com ("x", class_vars, x_command, _("\
2169 Examine memory: x/FMT ADDRESS.\n\
2170 ADDRESS is an expression for the memory address to examine.\n\
2171 FMT is a repeat count followed by a format letter and a size letter.\n\
2172 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2173 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n\
2174 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2175 The specified number of objects of the specified size are printed\n\
2176 according to the format.\n\n\
2177 Defaults for format and size letters are those previously used.\n\
2178 Default count is 1. Default address is following last thing printed\n\
2179 with this command or \"print\"."));
2180
2181 #if 0
2182 add_com ("whereis", class_vars, whereis_command,
2183 _("Print line number and file of definition of variable."));
2184 #endif
2185
2186 add_info ("display", display_info, _("\
2187 Expressions to display when program stops, with code numbers."));
2188
2189 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2190 Cancel some expressions to be displayed when program stops.\n\
2191 Arguments are the code numbers of the expressions to stop displaying.\n\
2192 No argument means cancel all automatic-display expressions.\n\
2193 \"delete display\" has the same effect as this command.\n\
2194 Do \"info display\" to see current list of code numbers."),
2195 &cmdlist);
2196
2197 add_com ("display", class_vars, display_command, _("\
2198 Print value of expression EXP each time the program stops.\n\
2199 /FMT may be used before EXP as in the \"print\" command.\n\
2200 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2201 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2202 and examining is done as in the \"x\" command.\n\n\
2203 With no argument, display all currently requested auto-display expressions.\n\
2204 Use \"undisplay\" to cancel display requests previously made."));
2205
2206 add_cmd ("display", class_vars, enable_display, _("\
2207 Enable some expressions to be displayed when program stops.\n\
2208 Arguments are the code numbers of the expressions to resume displaying.\n\
2209 No argument means enable all automatic-display expressions.\n\
2210 Do \"info display\" to see current list of code numbers."), &enablelist);
2211
2212 add_cmd ("display", class_vars, disable_display_command, _("\
2213 Disable some expressions to be displayed when program stops.\n\
2214 Arguments are the code numbers of the expressions to stop displaying.\n\
2215 No argument means disable all automatic-display expressions.\n\
2216 Do \"info display\" to see current list of code numbers."), &disablelist);
2217
2218 add_cmd ("display", class_vars, undisplay_command, _("\
2219 Cancel some expressions to be displayed when program stops.\n\
2220 Arguments are the code numbers of the expressions to stop displaying.\n\
2221 No argument means cancel all automatic-display expressions.\n\
2222 Do \"info display\" to see current list of code numbers."), &deletelist);
2223
2224 add_com ("printf", class_vars, printf_command, _("\
2225 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2226 This is useful for formatted output in user-defined commands."));
2227
2228 add_com ("output", class_vars, output_command, _("\
2229 Like \"print\" but don't put in value history and don't print newline.\n\
2230 This is useful in user-defined commands."));
2231
2232 add_prefix_cmd ("set", class_vars, set_command, _("\
2233 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2234 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2235 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2236 with $), a register (a few standard names starting with $), or an actual\n\
2237 variable in the program being debugged. EXP is any valid expression.\n\
2238 Use \"set variable\" for variables with names identical to set subcommands.\n\
2239 \n\
2240 With a subcommand, this command modifies parts of the gdb environment.\n\
2241 You can see these environment settings with the \"show\" command."),
2242 &setlist, "set ", 1, &cmdlist);
2243 if (dbx_commands)
2244 add_com ("assign", class_vars, set_command, _("\
2245 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2246 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2247 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2248 with $), a register (a few standard names starting with $), or an actual\n\
2249 variable in the program being debugged. EXP is any valid expression.\n\
2250 Use \"set variable\" for variables with names identical to set subcommands.\n\
2251 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2252 You can see these environment settings with the \"show\" command."));
2253
2254 /* "call" is the same as "set", but handy for dbx users to call fns. */
2255 c = add_com ("call", class_vars, call_command, _("\
2256 Call a function in the program.\n\
2257 The argument is the function name and arguments, in the notation of the\n\
2258 current working language. The result is printed and saved in the value\n\
2259 history, if it is not void."));
2260 set_cmd_completer (c, location_completer);
2261
2262 add_cmd ("variable", class_vars, set_command, _("\
2263 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2264 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2265 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2266 with $), a register (a few standard names starting with $), or an actual\n\
2267 variable in the program being debugged. EXP is any valid expression.\n\
2268 This may usually be abbreviated to simply \"set\"."),
2269 &setlist);
2270
2271 c = add_com ("print", class_vars, print_command, _("\
2272 Print value of expression EXP.\n\
2273 Variables accessible are those of the lexical environment of the selected\n\
2274 stack frame, plus all those whose scope is global or an entire file.\n\
2275 \n\
2276 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2277 $$NUM refers to NUM'th value back from the last one.\n\
2278 Names starting with $ refer to registers (with the values they would have\n\
2279 if the program were to return to the stack frame now selected, restoring\n\
2280 all registers saved by frames farther in) or else to debugger\n\
2281 \"convenience\" variables (any such name not a known register).\n\
2282 Use assignment expressions to give values to convenience variables.\n\
2283 \n\
2284 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2285 @ is a binary operator for treating consecutive data objects\n\
2286 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2287 element is FOO, whose second element is stored in the space following\n\
2288 where FOO is stored, etc. FOO must be an expression whose value\n\
2289 resides in memory.\n\
2290 \n\
2291 EXP may be preceded with /FMT, where FMT is a format letter\n\
2292 but no count or size letter (see \"x\" command)."));
2293 set_cmd_completer (c, location_completer);
2294 add_com_alias ("p", "print", class_vars, 1);
2295
2296 c = add_com ("inspect", class_vars, inspect_command, _("\
2297 Same as \"print\" command, except that if you are running in the epoch\n\
2298 environment, the value is printed in its own window."));
2299 set_cmd_completer (c, location_completer);
2300
2301 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2302 &max_symbolic_offset, _("\
2303 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2304 Show the largest offset that will be printed in <symbol+1234> form."), NULL,
2305 NULL,
2306 show_max_symbolic_offset,
2307 &setprintlist, &showprintlist);
2308 add_setshow_boolean_cmd ("symbol-filename", no_class,
2309 &print_symbol_filename, _("\
2310 Set printing of source filename and line number with <symbol>."), _("\
2311 Show printing of source filename and line number with <symbol>."), NULL,
2312 NULL,
2313 show_print_symbol_filename,
2314 &setprintlist, &showprintlist);
2315
2316 /* For examine/instruction a single byte quantity is specified as
2317 the data. This avoids problems with value_at_lazy() requiring a
2318 valid data type (and rejecting VOID). */
2319 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2320
2321 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2322 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2323 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2324 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2325
2326 }
This page took 0.077518 seconds and 4 git commands to generate.