10ae4d8cd95a20ac4e67abd9799901e359ea08f1
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <varargs.h>
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "language.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "breakpoint.h"
34 #include "demangle.h"
35 #include "valprint.h"
36
37 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
38 extern int addressprint; /* Whether to print hex addresses in HLL " */
39
40 struct format_data
41 {
42 int count;
43 char format;
44 char size;
45 };
46
47 /* Last specified output format. */
48
49 static char last_format = 'x';
50
51 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
52
53 static char last_size = 'w';
54
55 /* Default address to examine next. */
56
57 static CORE_ADDR next_address;
58
59 /* Last address examined. */
60
61 static CORE_ADDR last_examine_address;
62
63 /* Contents of last address examined.
64 This is not valid past the end of the `x' command! */
65
66 static value_ptr last_examine_value;
67
68 /* Largest offset between a symbolic value and an address, that will be
69 printed as `0x1234 <symbol+offset>'. */
70
71 static unsigned int max_symbolic_offset = UINT_MAX;
72
73 /* Append the source filename and linenumber of the symbol when
74 printing a symbolic value as `<symbol at filename:linenum>' if set. */
75 static int print_symbol_filename = 0;
76
77 /* Number of auto-display expression currently being displayed.
78 So that we can disable it if we get an error or a signal within it.
79 -1 when not doing one. */
80
81 int current_display_number;
82
83 /* Flag to low-level print routines that this value is being printed
84 in an epoch window. We'd like to pass this as a parameter, but
85 every routine would need to take it. Perhaps we can encapsulate
86 this in the I/O stream once we have GNU stdio. */
87
88 int inspect_it = 0;
89
90 struct display
91 {
92 /* Chain link to next auto-display item. */
93 struct display *next;
94 /* Expression to be evaluated and displayed. */
95 struct expression *exp;
96 /* Item number of this auto-display item. */
97 int number;
98 /* Display format specified. */
99 struct format_data format;
100 /* Innermost block required by this expression when evaluated */
101 struct block *block;
102 /* Status of this display (enabled or disabled) */
103 enum enable status;
104 };
105
106 /* Chain of expressions whose values should be displayed
107 automatically each time the program stops. */
108
109 static struct display *display_chain;
110
111 static int display_number;
112
113 /* Prototypes for local functions */
114
115 static void
116 delete_display PARAMS ((int));
117
118 static void
119 enable_display PARAMS ((char *, int));
120
121 static void
122 disable_display_command PARAMS ((char *, int));
123
124 static void
125 disassemble_command PARAMS ((char *, int));
126
127 static void
128 printf_command PARAMS ((char *, int));
129
130 static void
131 print_frame_nameless_args PARAMS ((struct frame_info *, long, int, int,
132 GDB_FILE *));
133
134 static void
135 display_info PARAMS ((char *, int));
136
137 static void
138 do_one_display PARAMS ((struct display *));
139
140 static void
141 undisplay_command PARAMS ((char *, int));
142
143 static void
144 free_display PARAMS ((struct display *));
145
146 static void
147 display_command PARAMS ((char *, int));
148
149 static void
150 x_command PARAMS ((char *, int));
151
152 static void
153 address_info PARAMS ((char *, int));
154
155 static void
156 set_command PARAMS ((char *, int));
157
158 static void
159 output_command PARAMS ((char *, int));
160
161 static void
162 call_command PARAMS ((char *, int));
163
164 static void
165 inspect_command PARAMS ((char *, int));
166
167 static void
168 print_command PARAMS ((char *, int));
169
170 static void
171 print_command_1 PARAMS ((char *, int, int));
172
173 static void
174 validate_format PARAMS ((struct format_data, char *));
175
176 static void
177 do_examine PARAMS ((struct format_data, CORE_ADDR));
178
179 static void
180 print_formatted PARAMS ((value_ptr, int, int));
181
182 static struct format_data
183 decode_format PARAMS ((char **, int, int));
184
185 \f
186 /* Decode a format specification. *STRING_PTR should point to it.
187 OFORMAT and OSIZE are used as defaults for the format and size
188 if none are given in the format specification.
189 If OSIZE is zero, then the size field of the returned value
190 should be set only if a size is explicitly specified by the
191 user.
192 The structure returned describes all the data
193 found in the specification. In addition, *STRING_PTR is advanced
194 past the specification and past all whitespace following it. */
195
196 static struct format_data
197 decode_format (string_ptr, oformat, osize)
198 char **string_ptr;
199 int oformat;
200 int osize;
201 {
202 struct format_data val;
203 register char *p = *string_ptr;
204
205 val.format = '?';
206 val.size = '?';
207 val.count = 1;
208
209 if (*p >= '0' && *p <= '9')
210 val.count = atoi (p);
211 while (*p >= '0' && *p <= '9') p++;
212
213 /* Now process size or format letters that follow. */
214
215 while (1)
216 {
217 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
218 val.size = *p++;
219 else if (*p >= 'a' && *p <= 'z')
220 val.format = *p++;
221 else
222 break;
223 }
224
225 while (*p == ' ' || *p == '\t') p++;
226 *string_ptr = p;
227
228 /* Set defaults for format and size if not specified. */
229 if (val.format == '?')
230 {
231 if (val.size == '?')
232 {
233 /* Neither has been specified. */
234 val.format = oformat;
235 val.size = osize;
236 }
237 else
238 /* If a size is specified, any format makes a reasonable
239 default except 'i'. */
240 val.format = oformat == 'i' ? 'x' : oformat;
241 }
242 else if (val.size == '?')
243 switch (val.format)
244 {
245 case 'a':
246 case 's':
247 /* Pick the appropriate size for an address. */
248 #if TARGET_PTR_BIT == 64
249 val.size = osize ? 'g' : osize;
250 break;
251 #else /* Not 64 */
252 #if TARGET_PTR_BIT == 32
253 val.size = osize ? 'w' : osize;
254 break;
255 #else /* Not 32 */
256 #if TARGET_PTR_BIT == 16
257 val.size = osize ? 'h' : osize;
258 break;
259 #else /* Not 16 */
260 #error Bad value for TARGET_PTR_BIT
261 #endif /* Not 16 */
262 #endif /* Not 32 */
263 #endif /* Not 64 */
264 break;
265 case 'f':
266 /* Floating point has to be word or giantword. */
267 if (osize == 'w' || osize == 'g')
268 val.size = osize;
269 else
270 /* Default it to giantword if the last used size is not
271 appropriate. */
272 val.size = osize ? 'g' : osize;
273 break;
274 case 'c':
275 /* Characters default to one byte. */
276 val.size = osize ? 'b' : osize;
277 break;
278 default:
279 /* The default is the size most recently specified. */
280 val.size = osize;
281 }
282
283 return val;
284 }
285 \f
286 /* Print value VAL on gdb_stdout according to FORMAT, a letter or 0.
287 Do not end with a newline.
288 0 means print VAL according to its own type.
289 SIZE is the letter for the size of datum being printed.
290 This is used to pad hex numbers so they line up. */
291
292 static void
293 print_formatted (val, format, size)
294 register value_ptr val;
295 register int format;
296 int size;
297 {
298 int len = TYPE_LENGTH (VALUE_TYPE (val));
299
300 if (VALUE_LVAL (val) == lval_memory)
301 next_address = VALUE_ADDRESS (val) + len;
302
303 switch (format)
304 {
305 case 's':
306 next_address = VALUE_ADDRESS (val)
307 + value_print (value_addr (val), gdb_stdout, format, Val_pretty_default);
308 break;
309
310 case 'i':
311 /* The old comment says
312 "Force output out, print_insn not using _filtered".
313 I'm not completely sure what that means, I suspect most print_insn
314 now do use _filtered, so I guess it's obsolete. */
315 /* We often wrap here if there are long symbolic names. */
316 wrap_here (" ");
317 next_address = VALUE_ADDRESS (val)
318 + print_insn (VALUE_ADDRESS (val), gdb_stdout);
319 break;
320
321 default:
322 if (format == 0
323 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_ARRAY
324 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_STRING
325 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_STRUCT
326 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_UNION
327 || VALUE_REPEATED (val))
328 value_print (val, gdb_stdout, format, Val_pretty_default);
329 else
330 print_scalar_formatted (VALUE_CONTENTS (val), VALUE_TYPE (val),
331 format, size, gdb_stdout);
332 }
333 }
334
335 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
336 according to letters FORMAT and SIZE on STREAM.
337 FORMAT may not be zero. Formats s and i are not supported at this level.
338
339 This is how the elements of an array or structure are printed
340 with a format. */
341
342 void
343 print_scalar_formatted (valaddr, type, format, size, stream)
344 char *valaddr;
345 struct type *type;
346 int format;
347 int size;
348 GDB_FILE *stream;
349 {
350 LONGEST val_long;
351 int len = TYPE_LENGTH (type);
352
353 if (len > sizeof (LONGEST)
354 && (format == 't'
355 || format == 'c'
356 || format == 'o'
357 || format == 'u'
358 || format == 'd'
359 || format == 'x'))
360 {
361 /* We can't print it normally, but we can print it in hex.
362 Printing it in the wrong radix is more useful than saying
363 "use /x, you dummy". */
364 /* FIXME: we could also do octal or binary if that was the
365 desired format. */
366 /* FIXME: we should be using the size field to give us a minimum
367 field width to print. */
368 val_print_type_code_int (type, valaddr, stream);
369 return;
370 }
371
372 if (format != 'f')
373 val_long = unpack_long (type, valaddr);
374
375 /* If we are printing it as unsigned, truncate it in case it is actually
376 a negative signed value (e.g. "print/u (short)-1" should print 65535
377 (if shorts are 16 bits) instead of 4294967295). */
378 if (format != 'd')
379 {
380 if (len < sizeof (LONGEST))
381 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
382 }
383
384 switch (format)
385 {
386 case 'x':
387 if (!size)
388 {
389 /* no size specified, like in print. Print varying # of digits. */
390 print_longest (stream, 'x', 1, val_long);
391 }
392 else
393 switch (size)
394 {
395 case 'b':
396 case 'h':
397 case 'w':
398 case 'g':
399 print_longest (stream, size, 1, val_long);
400 break;
401 default:
402 error ("Undefined output size \"%c\".", size);
403 }
404 break;
405
406 case 'd':
407 print_longest (stream, 'd', 1, val_long);
408 break;
409
410 case 'u':
411 print_longest (stream, 'u', 0, val_long);
412 break;
413
414 case 'o':
415 if (val_long)
416 print_longest (stream, 'o', 1, val_long);
417 else
418 fprintf_filtered (stream, "0");
419 break;
420
421 case 'a':
422 print_address (unpack_pointer (type, valaddr), stream);
423 break;
424
425 case 'c':
426 value_print (value_from_longest (builtin_type_char, val_long), stream, 0,
427 Val_pretty_default);
428 break;
429
430 case 'f':
431 if (len == sizeof (float))
432 type = builtin_type_float;
433 else if (len == sizeof (double))
434 type = builtin_type_double;
435 print_floating (valaddr, type, stream);
436 break;
437
438 case 0:
439 abort ();
440
441 case 't':
442 /* Binary; 't' stands for "two". */
443 {
444 char bits[8*(sizeof val_long) + 1];
445 char *cp = bits;
446 int width;
447
448 if (!size)
449 width = 8*(sizeof val_long);
450 else
451 switch (size)
452 {
453 case 'b':
454 width = 8;
455 break;
456 case 'h':
457 width = 16;
458 break;
459 case 'w':
460 width = 32;
461 break;
462 case 'g':
463 width = 64;
464 break;
465 default:
466 error ("Undefined output size \"%c\".", size);
467 }
468
469 bits[width] = '\0';
470 while (width-- > 0)
471 {
472 bits[width] = (val_long & 1) ? '1' : '0';
473 val_long >>= 1;
474 }
475 if (!size)
476 {
477 while (*cp && *cp == '0')
478 cp++;
479 if (*cp == '\0')
480 cp--;
481 }
482 fprintf_filtered (stream, local_binary_format_prefix());
483 fprintf_filtered (stream, cp);
484 fprintf_filtered (stream, local_binary_format_suffix());
485 }
486 break;
487
488 default:
489 error ("Undefined output format \"%c\".", format);
490 }
491 }
492
493 /* Specify default address for `x' command.
494 `info lines' uses this. */
495
496 void
497 set_next_address (addr)
498 CORE_ADDR addr;
499 {
500 next_address = addr;
501
502 /* Make address available to the user as $_. */
503 set_internalvar (lookup_internalvar ("_"),
504 value_from_longest (lookup_pointer_type (builtin_type_void),
505 (LONGEST) addr));
506 }
507
508 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
509 after LEADIN. Print nothing if no symbolic name is found nearby.
510 Optionally also print source file and line number, if available.
511 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
512 or to interpret it as a possible C++ name and convert it back to source
513 form. However note that DO_DEMANGLE can be overridden by the specific
514 settings of the demangle and asm_demangle variables. */
515
516 void
517 print_address_symbolic (addr, stream, do_demangle, leadin)
518 CORE_ADDR addr;
519 GDB_FILE *stream;
520 int do_demangle;
521 char *leadin;
522 {
523 struct minimal_symbol *msymbol;
524 struct symbol *symbol;
525 struct symtab *symtab = 0;
526 CORE_ADDR name_location = 0;
527 char *name;
528
529 /* First try to find the address in the symbol table, then
530 in the minsyms. Take the closest one. */
531
532 /* This is defective in the sense that it only finds text symbols. So
533 really this is kind of pointless--we should make sure that the
534 minimal symbols have everything we need (by changing that we could
535 save some memory, but for many debug format--ELF/DWARF or
536 anything/stabs--it would be inconvenient to eliminate those minimal
537 symbols anyway). */
538 symbol = find_pc_function (addr);
539 if (symbol)
540 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
541
542 if (symbol)
543 {
544 if (do_demangle)
545 name = SYMBOL_SOURCE_NAME (symbol);
546 else
547 name = SYMBOL_LINKAGE_NAME (symbol);
548 }
549
550 msymbol = lookup_minimal_symbol_by_pc (addr);
551 if (msymbol != NULL)
552 {
553 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
554 {
555 /* The msymbol is closer to the address than the symbol;
556 use the msymbol instead. */
557 symbol = 0;
558 symtab = 0;
559 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
560 if (do_demangle)
561 name = SYMBOL_SOURCE_NAME (msymbol);
562 else
563 name = SYMBOL_LINKAGE_NAME (msymbol);
564 }
565 }
566 if (symbol == NULL && msymbol == NULL)
567 return;
568
569 /* If the nearest symbol is too far away, don't print anything symbolic. */
570
571 /* For when CORE_ADDR is larger than unsigned int, we do math in
572 CORE_ADDR. But when we detect unsigned wraparound in the
573 CORE_ADDR math, we ignore this test and print the offset,
574 because addr+max_symbolic_offset has wrapped through the end
575 of the address space back to the beginning, giving bogus comparison. */
576 if (addr > name_location + max_symbolic_offset
577 && name_location + max_symbolic_offset > name_location)
578 return;
579
580 fputs_filtered (leadin, stream);
581 fputs_filtered ("<", stream);
582 fputs_filtered (name, stream);
583 if (addr != name_location)
584 fprintf_filtered (stream, "+%u", (unsigned int)(addr - name_location));
585
586 /* Append source filename and line number if desired. Give specific
587 line # of this addr, if we have it; else line # of the nearest symbol. */
588 if (print_symbol_filename)
589 {
590 struct symtab_and_line sal;
591
592 sal = find_pc_line (addr, 0);
593 if (sal.symtab)
594 fprintf_filtered (stream, " at %s:%d", sal.symtab->filename, sal.line);
595 else if (symtab && symbol && symbol->line)
596 fprintf_filtered (stream, " at %s:%d", symtab->filename, symbol->line);
597 else if (symtab)
598 fprintf_filtered (stream, " in %s", symtab->filename);
599 }
600 fputs_filtered (">", stream);
601 }
602
603 /* Print address ADDR on STREAM. */
604 void
605 print_address_numeric (addr, stream)
606 CORE_ADDR addr;
607 GDB_FILE *stream;
608 {
609 /* This assumes a CORE_ADDR can fit in a LONGEST. Probably a safe
610 assumption. We pass use_local but I'm not completely sure whether
611 that is correct. When (if ever) should we *not* use_local? */
612 print_longest (stream, 'x', 1, (unsigned LONGEST) addr);
613 }
614
615 /* Print address ADDR symbolically on STREAM.
616 First print it as a number. Then perhaps print
617 <SYMBOL + OFFSET> after the number. */
618
619 void
620 print_address (addr, stream)
621 CORE_ADDR addr;
622 GDB_FILE *stream;
623 {
624 print_address_numeric (addr, stream);
625 print_address_symbolic (addr, stream, asm_demangle, " ");
626 }
627
628 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
629 controls whether to print the symbolic name "raw" or demangled.
630 Global setting "addressprint" controls whether to print hex address
631 or not. */
632
633 void
634 print_address_demangle (addr, stream, do_demangle)
635 CORE_ADDR addr;
636 GDB_FILE *stream;
637 int do_demangle;
638 {
639 if (addr == 0)
640 {
641 fprintf_filtered (stream, "0");
642 }
643 else if (addressprint)
644 {
645 print_address_numeric (addr, stream);
646 print_address_symbolic (addr, stream, do_demangle, " ");
647 }
648 else
649 {
650 print_address_symbolic (addr, stream, do_demangle, "");
651 }
652 }
653 \f
654
655 /* These are the types that $__ will get after an examine command of one
656 of these sizes. */
657
658 static struct type *examine_b_type;
659 static struct type *examine_h_type;
660 static struct type *examine_w_type;
661 static struct type *examine_g_type;
662
663 /* Examine data at address ADDR in format FMT.
664 Fetch it from memory and print on gdb_stdout. */
665
666 static void
667 do_examine (fmt, addr)
668 struct format_data fmt;
669 CORE_ADDR addr;
670 {
671 register char format = 0;
672 register char size;
673 register int count = 1;
674 struct type *val_type = NULL;
675 register int i;
676 register int maxelts;
677
678 format = fmt.format;
679 size = fmt.size;
680 count = fmt.count;
681 next_address = addr;
682
683 /* String or instruction format implies fetch single bytes
684 regardless of the specified size. */
685 if (format == 's' || format == 'i')
686 size = 'b';
687
688 if (size == 'b')
689 val_type = examine_b_type;
690 else if (size == 'h')
691 val_type = examine_h_type;
692 else if (size == 'w')
693 val_type = examine_w_type;
694 else if (size == 'g')
695 val_type = examine_g_type;
696
697 maxelts = 8;
698 if (size == 'w')
699 maxelts = 4;
700 if (size == 'g')
701 maxelts = 2;
702 if (format == 's' || format == 'i')
703 maxelts = 1;
704
705 /* Print as many objects as specified in COUNT, at most maxelts per line,
706 with the address of the next one at the start of each line. */
707
708 while (count > 0)
709 {
710 print_address (next_address, gdb_stdout);
711 printf_filtered (":");
712 for (i = maxelts;
713 i > 0 && count > 0;
714 i--, count--)
715 {
716 printf_filtered ("\t");
717 /* Note that print_formatted sets next_address for the next
718 object. */
719 last_examine_address = next_address;
720 last_examine_value = value_at (val_type, next_address);
721 print_formatted (last_examine_value, format, size);
722 }
723 printf_filtered ("\n");
724 gdb_flush (gdb_stdout);
725 }
726 }
727 \f
728 static void
729 validate_format (fmt, cmdname)
730 struct format_data fmt;
731 char *cmdname;
732 {
733 if (fmt.size != 0)
734 error ("Size letters are meaningless in \"%s\" command.", cmdname);
735 if (fmt.count != 1)
736 error ("Item count other than 1 is meaningless in \"%s\" command.",
737 cmdname);
738 if (fmt.format == 'i' || fmt.format == 's')
739 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
740 fmt.format, cmdname);
741 }
742
743 /* Evaluate string EXP as an expression in the current language and
744 print the resulting value. EXP may contain a format specifier as the
745 first argument ("/x myvar" for example, to print myvar in hex).
746 */
747
748 static void
749 print_command_1 (exp, inspect, voidprint)
750 char *exp;
751 int inspect;
752 int voidprint;
753 {
754 struct expression *expr;
755 register struct cleanup *old_chain = 0;
756 register char format = 0;
757 register value_ptr val;
758 struct format_data fmt;
759 int cleanup = 0;
760
761 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
762 inspect_it = inspect;
763
764 if (exp && *exp == '/')
765 {
766 exp++;
767 fmt = decode_format (&exp, last_format, 0);
768 validate_format (fmt, "print");
769 last_format = format = fmt.format;
770 }
771 else
772 {
773 fmt.count = 1;
774 fmt.format = 0;
775 fmt.size = 0;
776 }
777
778 if (exp && *exp)
779 {
780 extern int objectprint;
781 struct type *type;
782 expr = parse_expression (exp);
783 old_chain = make_cleanup (free_current_contents, &expr);
784 cleanup = 1;
785 val = evaluate_expression (expr);
786
787 /* C++: figure out what type we actually want to print it as. */
788 type = VALUE_TYPE (val);
789
790 if (objectprint
791 && ( TYPE_CODE (type) == TYPE_CODE_PTR
792 || TYPE_CODE (type) == TYPE_CODE_REF)
793 && ( TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT
794 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_UNION))
795 {
796 value_ptr v;
797
798 v = value_from_vtable_info (val, TYPE_TARGET_TYPE (type));
799 if (v != 0)
800 {
801 val = v;
802 type = VALUE_TYPE (val);
803 }
804 }
805 }
806 else
807 val = access_value_history (0);
808
809 if (voidprint || (val && VALUE_TYPE (val) &&
810 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
811 {
812 int histindex = record_latest_value (val);
813
814 if (inspect)
815 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
816 else
817 if (histindex >= 0) printf_filtered ("$%d = ", histindex);
818
819 print_formatted (val, format, fmt.size);
820 printf_filtered ("\n");
821 if (inspect)
822 printf_unfiltered("\") )\030");
823 }
824
825 if (cleanup)
826 do_cleanups (old_chain);
827 inspect_it = 0; /* Reset print routines to normal */
828 }
829
830 /* ARGSUSED */
831 static void
832 print_command (exp, from_tty)
833 char *exp;
834 int from_tty;
835 {
836 print_command_1 (exp, 0, 1);
837 }
838
839 /* Same as print, except in epoch, it gets its own window */
840 /* ARGSUSED */
841 static void
842 inspect_command (exp, from_tty)
843 char *exp;
844 int from_tty;
845 {
846 extern int epoch_interface;
847
848 print_command_1 (exp, epoch_interface, 1);
849 }
850
851 /* Same as print, except it doesn't print void results. */
852 /* ARGSUSED */
853 static void
854 call_command (exp, from_tty)
855 char *exp;
856 int from_tty;
857 {
858 print_command_1 (exp, 0, 0);
859 }
860
861 /* ARGSUSED */
862 static void
863 output_command (exp, from_tty)
864 char *exp;
865 int from_tty;
866 {
867 struct expression *expr;
868 register struct cleanup *old_chain;
869 register char format = 0;
870 register value_ptr val;
871 struct format_data fmt;
872
873 if (exp && *exp == '/')
874 {
875 exp++;
876 fmt = decode_format (&exp, 0, 0);
877 validate_format (fmt, "output");
878 format = fmt.format;
879 }
880
881 expr = parse_expression (exp);
882 old_chain = make_cleanup (free_current_contents, &expr);
883
884 val = evaluate_expression (expr);
885
886 print_formatted (val, format, fmt.size);
887
888 do_cleanups (old_chain);
889 }
890
891 /* ARGSUSED */
892 static void
893 set_command (exp, from_tty)
894 char *exp;
895 int from_tty;
896 {
897 struct expression *expr = parse_expression (exp);
898 register struct cleanup *old_chain
899 = make_cleanup (free_current_contents, &expr);
900 evaluate_expression (expr);
901 do_cleanups (old_chain);
902 }
903
904 /* ARGSUSED */
905 static void
906 address_info (exp, from_tty)
907 char *exp;
908 int from_tty;
909 {
910 register struct symbol *sym;
911 register struct minimal_symbol *msymbol;
912 register long val;
913 register long basereg;
914 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
915 if exp is a field of `this'. */
916
917 if (exp == 0)
918 error ("Argument required.");
919
920 sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE,
921 &is_a_field_of_this, (struct symtab **)NULL);
922 if (sym == NULL)
923 {
924 if (is_a_field_of_this)
925 {
926 printf_filtered ("Symbol \"");
927 fprintf_symbol_filtered (gdb_stdout, exp,
928 current_language->la_language, DMGL_ANSI);
929 printf_filtered ("\" is a field of the local class variable `this'\n");
930 return;
931 }
932
933 msymbol = lookup_minimal_symbol (exp, (struct objfile *) NULL);
934
935 if (msymbol != NULL)
936 {
937 printf_filtered ("Symbol \"");
938 fprintf_symbol_filtered (gdb_stdout, exp,
939 current_language->la_language, DMGL_ANSI);
940 printf_filtered ("\" is at ");
941 print_address_numeric (SYMBOL_VALUE_ADDRESS (msymbol), gdb_stdout);
942 printf_filtered (" in a file compiled without debugging.\n");
943 }
944 else
945 error ("No symbol \"%s\" in current context.", exp);
946 return;
947 }
948
949 printf_filtered ("Symbol \"");
950 fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
951 current_language->la_language, DMGL_ANSI);
952 printf_filtered ("\" is ", SYMBOL_NAME (sym));
953 val = SYMBOL_VALUE (sym);
954 basereg = SYMBOL_BASEREG (sym);
955
956 switch (SYMBOL_CLASS (sym))
957 {
958 case LOC_CONST:
959 case LOC_CONST_BYTES:
960 printf_filtered ("constant");
961 break;
962
963 case LOC_LABEL:
964 printf_filtered ("a label at address ");
965 print_address_numeric (SYMBOL_VALUE_ADDRESS (sym), gdb_stdout);
966 break;
967
968 case LOC_REGISTER:
969 printf_filtered ("a variable in register %s", reg_names[val]);
970 break;
971
972 case LOC_STATIC:
973 printf_filtered ("static storage at address ");
974 print_address_numeric (SYMBOL_VALUE_ADDRESS (sym), gdb_stdout);
975 break;
976
977 case LOC_REGPARM:
978 printf_filtered ("an argument in register %s", reg_names[val]);
979 break;
980
981 case LOC_REGPARM_ADDR:
982 printf_filtered ("address of an argument in register %s", reg_names[val]);
983 break;
984
985 case LOC_ARG:
986 printf_filtered ("an argument at offset %ld", val);
987 break;
988
989 case LOC_LOCAL_ARG:
990 printf_filtered ("an argument at frame offset %ld", val);
991 break;
992
993 case LOC_LOCAL:
994 printf_filtered ("a local variable at frame offset %ld", val);
995 break;
996
997 case LOC_REF_ARG:
998 printf_filtered ("a reference argument at offset %ld", val);
999 break;
1000
1001 case LOC_BASEREG:
1002 printf_filtered ("a variable at offset %ld from register %s",
1003 val, reg_names[basereg]);
1004 break;
1005
1006 case LOC_BASEREG_ARG:
1007 printf_filtered ("an argument at offset %ld from register %s",
1008 val, reg_names[basereg]);
1009 break;
1010
1011 case LOC_TYPEDEF:
1012 printf_filtered ("a typedef");
1013 break;
1014
1015 case LOC_BLOCK:
1016 printf_filtered ("a function at address ");
1017 print_address_numeric (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1018 gdb_stdout);
1019 break;
1020
1021 case LOC_OPTIMIZED_OUT:
1022 printf_filtered ("optimized out");
1023 break;
1024
1025 default:
1026 printf_filtered ("of unknown (botched) type");
1027 break;
1028 }
1029 printf_filtered (".\n");
1030 }
1031 \f
1032 static void
1033 x_command (exp, from_tty)
1034 char *exp;
1035 int from_tty;
1036 {
1037 struct expression *expr;
1038 struct format_data fmt;
1039 struct cleanup *old_chain;
1040 struct value *val;
1041
1042 fmt.format = last_format;
1043 fmt.size = last_size;
1044 fmt.count = 1;
1045
1046 if (exp && *exp == '/')
1047 {
1048 exp++;
1049 fmt = decode_format (&exp, last_format, last_size);
1050 }
1051
1052 /* If we have an expression, evaluate it and use it as the address. */
1053
1054 if (exp != 0 && *exp != 0)
1055 {
1056 expr = parse_expression (exp);
1057 /* Cause expression not to be there any more
1058 if this command is repeated with Newline.
1059 But don't clobber a user-defined command's definition. */
1060 if (from_tty)
1061 *exp = 0;
1062 old_chain = make_cleanup (free_current_contents, &expr);
1063 val = evaluate_expression (expr);
1064 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1065 val = value_ind (val);
1066 /* In rvalue contexts, such as this, functions are coerced into
1067 pointers to functions. This makes "x/i main" work. */
1068 if (/* last_format == 'i'
1069 && */ TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1070 && VALUE_LVAL (val) == lval_memory)
1071 next_address = VALUE_ADDRESS (val);
1072 else
1073 next_address = value_as_pointer (val);
1074 do_cleanups (old_chain);
1075 }
1076
1077 do_examine (fmt, next_address);
1078
1079 /* If the examine succeeds, we remember its size and format for next time. */
1080 last_size = fmt.size;
1081 last_format = fmt.format;
1082
1083 /* Set a couple of internal variables if appropriate. */
1084 if (last_examine_value)
1085 {
1086 /* Make last address examined available to the user as $_. Use
1087 the correct pointer type. */
1088 set_internalvar (lookup_internalvar ("_"),
1089 value_from_longest (
1090 lookup_pointer_type (VALUE_TYPE (last_examine_value)),
1091 (LONGEST) last_examine_address));
1092
1093 /* Make contents of last address examined available to the user as $__.*/
1094 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1095 }
1096 }
1097
1098 \f
1099 /* Add an expression to the auto-display chain.
1100 Specify the expression. */
1101
1102 static void
1103 display_command (exp, from_tty)
1104 char *exp;
1105 int from_tty;
1106 {
1107 struct format_data fmt;
1108 register struct expression *expr;
1109 register struct display *new;
1110
1111 if (exp == 0)
1112 {
1113 do_displays ();
1114 return;
1115 }
1116
1117 if (*exp == '/')
1118 {
1119 exp++;
1120 fmt = decode_format (&exp, 0, 0);
1121 if (fmt.size && fmt.format == 0)
1122 fmt.format = 'x';
1123 if (fmt.format == 'i' || fmt.format == 's')
1124 fmt.size = 'b';
1125 }
1126 else
1127 {
1128 fmt.format = 0;
1129 fmt.size = 0;
1130 fmt.count = 0;
1131 }
1132
1133 innermost_block = 0;
1134 expr = parse_expression (exp);
1135
1136 new = (struct display *) xmalloc (sizeof (struct display));
1137
1138 new->exp = expr;
1139 new->block = innermost_block;
1140 new->next = display_chain;
1141 new->number = ++display_number;
1142 new->format = fmt;
1143 new->status = enabled;
1144 display_chain = new;
1145
1146 if (from_tty && target_has_execution)
1147 do_one_display (new);
1148
1149 dont_repeat ();
1150 }
1151
1152 static void
1153 free_display (d)
1154 struct display *d;
1155 {
1156 free ((PTR)d->exp);
1157 free ((PTR)d);
1158 }
1159
1160 /* Clear out the display_chain.
1161 Done when new symtabs are loaded, since this invalidates
1162 the types stored in many expressions. */
1163
1164 void
1165 clear_displays ()
1166 {
1167 register struct display *d;
1168
1169 while ((d = display_chain) != NULL)
1170 {
1171 free ((PTR)d->exp);
1172 display_chain = d->next;
1173 free ((PTR)d);
1174 }
1175 }
1176
1177 /* Delete the auto-display number NUM. */
1178
1179 static void
1180 delete_display (num)
1181 int num;
1182 {
1183 register struct display *d1, *d;
1184
1185 if (!display_chain)
1186 error ("No display number %d.", num);
1187
1188 if (display_chain->number == num)
1189 {
1190 d1 = display_chain;
1191 display_chain = d1->next;
1192 free_display (d1);
1193 }
1194 else
1195 for (d = display_chain; ; d = d->next)
1196 {
1197 if (d->next == 0)
1198 error ("No display number %d.", num);
1199 if (d->next->number == num)
1200 {
1201 d1 = d->next;
1202 d->next = d1->next;
1203 free_display (d1);
1204 break;
1205 }
1206 }
1207 }
1208
1209 /* Delete some values from the auto-display chain.
1210 Specify the element numbers. */
1211
1212 static void
1213 undisplay_command (args, from_tty)
1214 char *args;
1215 int from_tty;
1216 {
1217 register char *p = args;
1218 register char *p1;
1219 register int num;
1220
1221 if (args == 0)
1222 {
1223 if (query ("Delete all auto-display expressions? "))
1224 clear_displays ();
1225 dont_repeat ();
1226 return;
1227 }
1228
1229 while (*p)
1230 {
1231 p1 = p;
1232 while (*p1 >= '0' && *p1 <= '9') p1++;
1233 if (*p1 && *p1 != ' ' && *p1 != '\t')
1234 error ("Arguments must be display numbers.");
1235
1236 num = atoi (p);
1237
1238 delete_display (num);
1239
1240 p = p1;
1241 while (*p == ' ' || *p == '\t') p++;
1242 }
1243 dont_repeat ();
1244 }
1245
1246 /* Display a single auto-display.
1247 Do nothing if the display cannot be printed in the current context,
1248 or if the display is disabled. */
1249
1250 static void
1251 do_one_display (d)
1252 struct display *d;
1253 {
1254 int within_current_scope;
1255
1256 if (d->status == disabled)
1257 return;
1258
1259 if (d->block)
1260 within_current_scope = contained_in (get_selected_block (), d->block);
1261 else
1262 within_current_scope = 1;
1263 if (!within_current_scope)
1264 return;
1265
1266 current_display_number = d->number;
1267
1268 printf_filtered ("%d: ", d->number);
1269 if (d->format.size)
1270 {
1271 CORE_ADDR addr;
1272
1273 printf_filtered ("x/");
1274 if (d->format.count != 1)
1275 printf_filtered ("%d", d->format.count);
1276 printf_filtered ("%c", d->format.format);
1277 if (d->format.format != 'i' && d->format.format != 's')
1278 printf_filtered ("%c", d->format.size);
1279 printf_filtered (" ");
1280 print_expression (d->exp, gdb_stdout);
1281 if (d->format.count != 1)
1282 printf_filtered ("\n");
1283 else
1284 printf_filtered (" ");
1285
1286 addr = value_as_pointer (evaluate_expression (d->exp));
1287 if (d->format.format == 'i')
1288 addr = ADDR_BITS_REMOVE (addr);
1289
1290 do_examine (d->format, addr);
1291 }
1292 else
1293 {
1294 if (d->format.format)
1295 printf_filtered ("/%c ", d->format.format);
1296 print_expression (d->exp, gdb_stdout);
1297 printf_filtered (" = ");
1298 print_formatted (evaluate_expression (d->exp),
1299 d->format.format, d->format.size);
1300 printf_filtered ("\n");
1301 }
1302
1303 gdb_flush (gdb_stdout);
1304 current_display_number = -1;
1305 }
1306
1307 /* Display all of the values on the auto-display chain which can be
1308 evaluated in the current scope. */
1309
1310 void
1311 do_displays ()
1312 {
1313 register struct display *d;
1314
1315 for (d = display_chain; d; d = d->next)
1316 do_one_display (d);
1317 }
1318
1319 /* Delete the auto-display which we were in the process of displaying.
1320 This is done when there is an error or a signal. */
1321
1322 void
1323 disable_display (num)
1324 int num;
1325 {
1326 register struct display *d;
1327
1328 for (d = display_chain; d; d = d->next)
1329 if (d->number == num)
1330 {
1331 d->status = disabled;
1332 return;
1333 }
1334 printf_unfiltered ("No display number %d.\n", num);
1335 }
1336
1337 void
1338 disable_current_display ()
1339 {
1340 if (current_display_number >= 0)
1341 {
1342 disable_display (current_display_number);
1343 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1344 current_display_number);
1345 }
1346 current_display_number = -1;
1347 }
1348
1349 static void
1350 display_info (ignore, from_tty)
1351 char *ignore;
1352 int from_tty;
1353 {
1354 register struct display *d;
1355
1356 if (!display_chain)
1357 printf_unfiltered ("There are no auto-display expressions now.\n");
1358 else
1359 printf_filtered ("Auto-display expressions now in effect:\n\
1360 Num Enb Expression\n");
1361
1362 for (d = display_chain; d; d = d->next)
1363 {
1364 printf_filtered ("%d: %c ", d->number, "ny"[(int)d->status]);
1365 if (d->format.size)
1366 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1367 d->format.format);
1368 else if (d->format.format)
1369 printf_filtered ("/%c ", d->format.format);
1370 print_expression (d->exp, gdb_stdout);
1371 if (d->block && !contained_in (get_selected_block (), d->block))
1372 printf_filtered (" (cannot be evaluated in the current context)");
1373 printf_filtered ("\n");
1374 gdb_flush (gdb_stdout);
1375 }
1376 }
1377
1378 static void
1379 enable_display (args, from_tty)
1380 char *args;
1381 int from_tty;
1382 {
1383 register char *p = args;
1384 register char *p1;
1385 register int num;
1386 register struct display *d;
1387
1388 if (p == 0)
1389 {
1390 for (d = display_chain; d; d = d->next)
1391 d->status = enabled;
1392 }
1393 else
1394 while (*p)
1395 {
1396 p1 = p;
1397 while (*p1 >= '0' && *p1 <= '9')
1398 p1++;
1399 if (*p1 && *p1 != ' ' && *p1 != '\t')
1400 error ("Arguments must be display numbers.");
1401
1402 num = atoi (p);
1403
1404 for (d = display_chain; d; d = d->next)
1405 if (d->number == num)
1406 {
1407 d->status = enabled;
1408 goto win;
1409 }
1410 printf_unfiltered ("No display number %d.\n", num);
1411 win:
1412 p = p1;
1413 while (*p == ' ' || *p == '\t')
1414 p++;
1415 }
1416 }
1417
1418 /* ARGSUSED */
1419 static void
1420 disable_display_command (args, from_tty)
1421 char *args;
1422 int from_tty;
1423 {
1424 register char *p = args;
1425 register char *p1;
1426 register struct display *d;
1427
1428 if (p == 0)
1429 {
1430 for (d = display_chain; d; d = d->next)
1431 d->status = disabled;
1432 }
1433 else
1434 while (*p)
1435 {
1436 p1 = p;
1437 while (*p1 >= '0' && *p1 <= '9')
1438 p1++;
1439 if (*p1 && *p1 != ' ' && *p1 != '\t')
1440 error ("Arguments must be display numbers.");
1441
1442 disable_display (atoi (p));
1443
1444 p = p1;
1445 while (*p == ' ' || *p == '\t')
1446 p++;
1447 }
1448 }
1449
1450 \f
1451 /* Print the value in stack frame FRAME of a variable
1452 specified by a struct symbol. */
1453
1454 void
1455 print_variable_value (var, frame, stream)
1456 struct symbol *var;
1457 FRAME frame;
1458 GDB_FILE *stream;
1459 {
1460 value_ptr val = read_var_value (var, frame);
1461 value_print (val, stream, 0, Val_pretty_default);
1462 }
1463
1464 /* Print the arguments of a stack frame, given the function FUNC
1465 running in that frame (as a symbol), the info on the frame,
1466 and the number of args according to the stack frame (or -1 if unknown). */
1467
1468 /* References here and elsewhere to "number of args according to the
1469 stack frame" appear in all cases to refer to "number of ints of args
1470 according to the stack frame". At least for VAX, i386, isi. */
1471
1472 void
1473 print_frame_args (func, fi, num, stream)
1474 struct symbol *func;
1475 struct frame_info *fi;
1476 int num;
1477 GDB_FILE *stream;
1478 {
1479 struct block *b = NULL;
1480 int nsyms = 0;
1481 int first = 1;
1482 register int i;
1483 register struct symbol *sym;
1484 register value_ptr val;
1485 /* Offset of next stack argument beyond the one we have seen that is
1486 at the highest offset.
1487 -1 if we haven't come to a stack argument yet. */
1488 long highest_offset = -1;
1489 int arg_size;
1490 /* Number of ints of arguments that we have printed so far. */
1491 int args_printed = 0;
1492
1493 if (func)
1494 {
1495 b = SYMBOL_BLOCK_VALUE (func);
1496 nsyms = BLOCK_NSYMS (b);
1497 }
1498
1499 for (i = 0; i < nsyms; i++)
1500 {
1501 QUIT;
1502 sym = BLOCK_SYM (b, i);
1503
1504 /* Keep track of the highest stack argument offset seen, and
1505 skip over any kinds of symbols we don't care about. */
1506
1507 switch (SYMBOL_CLASS (sym)) {
1508 case LOC_ARG:
1509 case LOC_REF_ARG:
1510 {
1511 long current_offset = SYMBOL_VALUE (sym);
1512
1513 arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
1514
1515 /* Compute address of next argument by adding the size of
1516 this argument and rounding to an int boundary. */
1517 current_offset
1518 = ((current_offset + arg_size + sizeof (int) - 1)
1519 & ~(sizeof (int) - 1));
1520
1521 /* If this is the highest offset seen yet, set highest_offset. */
1522 if (highest_offset == -1
1523 || (current_offset > highest_offset))
1524 highest_offset = current_offset;
1525
1526 /* Add the number of ints we're about to print to args_printed. */
1527 args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
1528 }
1529
1530 /* We care about types of symbols, but don't need to keep track of
1531 stack offsets in them. */
1532 case LOC_REGPARM:
1533 case LOC_REGPARM_ADDR:
1534 case LOC_LOCAL_ARG:
1535 case LOC_BASEREG_ARG:
1536 break;
1537
1538 /* Other types of symbols we just skip over. */
1539 default:
1540 continue;
1541 }
1542
1543 /* We have to look up the symbol because arguments can have
1544 two entries (one a parameter, one a local) and the one we
1545 want is the local, which lookup_symbol will find for us.
1546 This includes gcc1 (not gcc2) on the sparc when passing a
1547 small structure and gcc2 when the argument type is float
1548 and it is passed as a double and converted to float by
1549 the prologue (in the latter case the type of the LOC_ARG
1550 symbol is double and the type of the LOC_LOCAL symbol is
1551 float). */
1552 /* But if the parameter name is null, don't try it.
1553 Null parameter names occur on the RS/6000, for traceback tables.
1554 FIXME, should we even print them? */
1555
1556 if (*SYMBOL_NAME (sym))
1557 {
1558 struct symbol *nsym;
1559 nsym = lookup_symbol
1560 (SYMBOL_NAME (sym),
1561 b, VAR_NAMESPACE, (int *)NULL, (struct symtab **)NULL);
1562 if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
1563 {
1564 /* There is a LOC_ARG/LOC_REGISTER pair. This means that
1565 it was passed on the stack and loaded into a register,
1566 or passed in a register and stored in a stack slot.
1567 GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
1568
1569 Reasons for using the LOC_ARG:
1570 (1) because find_saved_registers may be slow for remote
1571 debugging,
1572 (2) because registers are often re-used and stack slots
1573 rarely (never?) are. Therefore using the stack slot is
1574 much less likely to print garbage.
1575
1576 Reasons why we might want to use the LOC_REGISTER:
1577 (1) So that the backtrace prints the same value as
1578 "print foo". I see no compelling reason why this needs
1579 to be the case; having the backtrace print the value which
1580 was passed in, and "print foo" print the value as modified
1581 within the called function, makes perfect sense to me.
1582
1583 Additional note: It might be nice if "info args" displayed
1584 both values.
1585 One more note: There is a case with sparc sturcture passing
1586 where we need to use the LOC_REGISTER, but this is dealt with
1587 by creating a single LOC_REGPARM in symbol reading. */
1588
1589 /* Leave sym (the LOC_ARG) alone. */
1590 ;
1591 }
1592 else
1593 sym = nsym;
1594 }
1595
1596 /* Print the current arg. */
1597 if (! first)
1598 fprintf_filtered (stream, ", ");
1599 wrap_here (" ");
1600 fprintf_symbol_filtered (stream, SYMBOL_SOURCE_NAME (sym),
1601 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1602 fputs_filtered ("=", stream);
1603
1604 /* Avoid value_print because it will deref ref parameters. We just
1605 want to print their addresses. Print ??? for args whose address
1606 we do not know. We pass 2 as "recurse" to val_print because our
1607 standard indentation here is 4 spaces, and val_print indents
1608 2 for each recurse. */
1609 val = read_var_value (sym, FRAME_INFO_ID (fi));
1610 if (val)
1611 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), VALUE_ADDRESS (val),
1612 stream, 0, 0, 2, Val_no_prettyprint);
1613 else
1614 fputs_filtered ("???", stream);
1615 first = 0;
1616 }
1617
1618 /* Don't print nameless args in situations where we don't know
1619 enough about the stack to find them. */
1620 if (num != -1)
1621 {
1622 long start;
1623
1624 if (highest_offset == -1)
1625 start = FRAME_ARGS_SKIP;
1626 else
1627 start = highest_offset;
1628
1629 print_frame_nameless_args (fi, start, num - args_printed,
1630 first, stream);
1631 }
1632 }
1633
1634 /* Print nameless args on STREAM.
1635 FI is the frameinfo for this frame, START is the offset
1636 of the first nameless arg, and NUM is the number of nameless args to
1637 print. FIRST is nonzero if this is the first argument (not just
1638 the first nameless arg). */
1639 static void
1640 print_frame_nameless_args (fi, start, num, first, stream)
1641 struct frame_info *fi;
1642 long start;
1643 int num;
1644 int first;
1645 GDB_FILE *stream;
1646 {
1647 int i;
1648 CORE_ADDR argsaddr;
1649 long arg_value;
1650
1651 for (i = 0; i < num; i++)
1652 {
1653 QUIT;
1654 #ifdef NAMELESS_ARG_VALUE
1655 NAMELESS_ARG_VALUE (fi, start, &arg_value);
1656 #else
1657 argsaddr = FRAME_ARGS_ADDRESS (fi);
1658 if (!argsaddr)
1659 return;
1660
1661 arg_value = read_memory_integer (argsaddr + start, sizeof (int));
1662 #endif
1663
1664 if (!first)
1665 fprintf_filtered (stream, ", ");
1666
1667 #ifdef PRINT_NAMELESS_INTEGER
1668 PRINT_NAMELESS_INTEGER (stream, arg_value);
1669 #else
1670 #ifdef PRINT_TYPELESS_INTEGER
1671 PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
1672 #else
1673 fprintf_filtered (stream, "%d", arg_value);
1674 #endif /* PRINT_TYPELESS_INTEGER */
1675 #endif /* PRINT_NAMELESS_INTEGER */
1676 first = 0;
1677 start += sizeof (int);
1678 }
1679 }
1680 \f
1681 /* ARGSUSED */
1682 static void
1683 printf_command (arg, from_tty)
1684 char *arg;
1685 int from_tty;
1686 {
1687 register char *f;
1688 register char *s = arg;
1689 char *string;
1690 value_ptr *val_args;
1691 char *substrings;
1692 char *current_substring;
1693 int nargs = 0;
1694 int allocated_args = 20;
1695 struct cleanup *old_cleanups;
1696
1697 val_args = (value_ptr *) xmalloc (allocated_args * sizeof (value_ptr));
1698 old_cleanups = make_cleanup (free_current_contents, &val_args);
1699
1700 if (s == 0)
1701 error_no_arg ("format-control string and values to print");
1702
1703 /* Skip white space before format string */
1704 while (*s == ' ' || *s == '\t') s++;
1705
1706 /* A format string should follow, enveloped in double quotes */
1707 if (*s++ != '"')
1708 error ("Bad format string, missing '\"'.");
1709
1710 /* Parse the format-control string and copy it into the string STRING,
1711 processing some kinds of escape sequence. */
1712
1713 f = string = (char *) alloca (strlen (s) + 1);
1714
1715 while (*s != '"')
1716 {
1717 int c = *s++;
1718 switch (c)
1719 {
1720 case '\0':
1721 error ("Bad format string, non-terminated '\"'.");
1722
1723 case '\\':
1724 switch (c = *s++)
1725 {
1726 case '\\':
1727 *f++ = '\\';
1728 break;
1729 case 'a':
1730 #ifdef __STDC__
1731 *f++ = '\a';
1732 #else
1733 *f++ = '\007'; /* Bell */
1734 #endif
1735 break;
1736 case 'b':
1737 *f++ = '\b';
1738 break;
1739 case 'f':
1740 *f++ = '\f';
1741 break;
1742 case 'n':
1743 *f++ = '\n';
1744 break;
1745 case 'r':
1746 *f++ = '\r';
1747 break;
1748 case 't':
1749 *f++ = '\t';
1750 break;
1751 case 'v':
1752 *f++ = '\v';
1753 break;
1754 case '"':
1755 *f++ = '"';
1756 break;
1757 default:
1758 /* ??? TODO: handle other escape sequences */
1759 error ("Unrecognized escape character \\%c in format string.",
1760 c);
1761 }
1762 break;
1763
1764 default:
1765 *f++ = c;
1766 }
1767 }
1768
1769 /* Skip over " and following space and comma. */
1770 s++;
1771 *f++ = '\0';
1772 while (*s == ' ' || *s == '\t') s++;
1773
1774 if (*s != ',' && *s != 0)
1775 error ("Invalid argument syntax");
1776
1777 if (*s == ',') s++;
1778 while (*s == ' ' || *s == '\t') s++;
1779
1780 /* Need extra space for the '\0's. Doubling the size is sufficient. */
1781 substrings = alloca (strlen (string) * 2);
1782 current_substring = substrings;
1783
1784 {
1785 /* Now scan the string for %-specs and see what kinds of args they want.
1786 argclass[I] classifies the %-specs so we can give vprintf_unfiltered something
1787 of the right size. */
1788
1789 enum argclass {no_arg, int_arg, string_arg, double_arg, long_long_arg};
1790 enum argclass *argclass;
1791 enum argclass this_argclass;
1792 char *last_arg;
1793 int nargs_wanted;
1794 int lcount;
1795 int i;
1796
1797 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
1798 nargs_wanted = 0;
1799 f = string;
1800 last_arg = string;
1801 while (*f)
1802 if (*f++ == '%')
1803 {
1804 lcount = 0;
1805 while (strchr ("0123456789.hlL-+ #", *f))
1806 {
1807 if (*f == 'l' || *f == 'L')
1808 lcount++;
1809 f++;
1810 }
1811 switch (*f)
1812 {
1813 case 's':
1814 this_argclass = string_arg;
1815 break;
1816
1817 case 'e':
1818 case 'f':
1819 case 'g':
1820 this_argclass = double_arg;
1821 break;
1822
1823 case '*':
1824 error ("`*' not supported for precision or width in printf");
1825
1826 case 'n':
1827 error ("Format specifier `n' not supported in printf");
1828
1829 case '%':
1830 this_argclass = no_arg;
1831 break;
1832
1833 default:
1834 if (lcount > 1)
1835 this_argclass = long_long_arg;
1836 else
1837 this_argclass = int_arg;
1838 break;
1839 }
1840 f++;
1841 if (this_argclass != no_arg)
1842 {
1843 strncpy (current_substring, last_arg, f - last_arg);
1844 current_substring += f - last_arg;
1845 *current_substring++ = '\0';
1846 last_arg = f;
1847 argclass[nargs_wanted++] = this_argclass;
1848 }
1849 }
1850
1851 /* Now, parse all arguments and evaluate them.
1852 Store the VALUEs in VAL_ARGS. */
1853
1854 while (*s != '\0')
1855 {
1856 char *s1;
1857 if (nargs == allocated_args)
1858 val_args = (value_ptr *) xrealloc ((char *) val_args,
1859 (allocated_args *= 2)
1860 * sizeof (value_ptr));
1861 s1 = s;
1862 val_args[nargs] = parse_to_comma_and_eval (&s1);
1863
1864 /* If format string wants a float, unchecked-convert the value to
1865 floating point of the same size */
1866
1867 if (argclass[nargs] == double_arg)
1868 {
1869 if (TYPE_LENGTH (VALUE_TYPE (val_args[nargs])) == sizeof (float))
1870 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
1871 if (TYPE_LENGTH (VALUE_TYPE (val_args[nargs])) == sizeof (double))
1872 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
1873 }
1874 nargs++;
1875 s = s1;
1876 if (*s == ',')
1877 s++;
1878 }
1879
1880 if (nargs != nargs_wanted)
1881 error ("Wrong number of arguments for specified format-string");
1882
1883 /* FIXME: We should be using vprintf_filtered, but as long as it
1884 has an arbitrary limit that is unacceptable. Correct fix is
1885 for vprintf_filtered to scan down the format string so it knows
1886 how big a buffer it needs (perhaps by putting a vasprintf (see
1887 GNU C library) in libiberty).
1888
1889 But for now, just force out any pending output, so at least the output
1890 appears in the correct order. */
1891 wrap_here ((char *)NULL);
1892
1893 /* Now actually print them. */
1894 current_substring = substrings;
1895 for (i = 0; i < nargs; i++)
1896 {
1897 switch (argclass[i])
1898 {
1899 case string_arg:
1900 {
1901 char *str;
1902 CORE_ADDR tem;
1903 int j;
1904 tem = value_as_pointer (val_args[i]);
1905
1906 /* This is a %s argument. Find the length of the string. */
1907 for (j = 0; ; j++)
1908 {
1909 char c;
1910 QUIT;
1911 read_memory (tem + j, &c, 1);
1912 if (c == 0)
1913 break;
1914 }
1915
1916 /* Copy the string contents into a string inside GDB. */
1917 str = (char *) alloca (j + 1);
1918 read_memory (tem, str, j);
1919 str[j] = 0;
1920
1921 /* Don't use printf_filtered because of arbitrary limit. */
1922 printf_unfiltered (current_substring, str);
1923 }
1924 break;
1925 case double_arg:
1926 {
1927 double val = value_as_double (val_args[i]);
1928 /* Don't use printf_filtered because of arbitrary limit. */
1929 printf_unfiltered (current_substring, val);
1930 break;
1931 }
1932 case long_long_arg:
1933 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
1934 {
1935 long long val = value_as_long (val_args[i]);
1936 /* Don't use printf_filtered because of arbitrary limit. */
1937 printf_unfiltered (current_substring, val);
1938 break;
1939 }
1940 #else
1941 error ("long long not supported in printf");
1942 #endif
1943 case int_arg:
1944 {
1945 /* FIXME: there should be separate int_arg and long_arg. */
1946 long val = value_as_long (val_args[i]);
1947 /* Don't use printf_filtered because of arbitrary limit. */
1948 printf_unfiltered (current_substring, val);
1949 break;
1950 }
1951 default:
1952 error ("internal error in printf_command");
1953 }
1954 /* Skip to the next substring. */
1955 current_substring += strlen (current_substring) + 1;
1956 }
1957 /* Print the portion of the format string after the last argument. */
1958 /* It would be OK to use printf_filtered here. */
1959 printf (last_arg);
1960 }
1961 do_cleanups (old_cleanups);
1962 }
1963 \f
1964 /* Dump a specified section of assembly code. With no command line
1965 arguments, this command will dump the assembly code for the
1966 function surrounding the pc value in the selected frame. With one
1967 argument, it will dump the assembly code surrounding that pc value.
1968 Two arguments are interpeted as bounds within which to dump
1969 assembly. */
1970
1971 /* ARGSUSED */
1972 static void
1973 disassemble_command (arg, from_tty)
1974 char *arg;
1975 int from_tty;
1976 {
1977 CORE_ADDR low, high;
1978 char *name;
1979 CORE_ADDR pc;
1980 char *space_index;
1981
1982 name = NULL;
1983 if (!arg)
1984 {
1985 if (!selected_frame)
1986 error ("No frame selected.\n");
1987
1988 pc = get_frame_pc (selected_frame);
1989 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
1990 error ("No function contains program counter for selected frame.\n");
1991 }
1992 else if (!(space_index = (char *) strchr (arg, ' ')))
1993 {
1994 /* One argument. */
1995 pc = parse_and_eval_address (arg);
1996 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
1997 error ("No function contains specified address.\n");
1998 }
1999 else
2000 {
2001 /* Two arguments. */
2002 *space_index = '\0';
2003 low = parse_and_eval_address (arg);
2004 high = parse_and_eval_address (space_index + 1);
2005 }
2006
2007 printf_filtered ("Dump of assembler code ");
2008 if (name != NULL)
2009 {
2010 printf_filtered ("for function %s:\n", name);
2011 }
2012 else
2013 {
2014 printf_filtered ("from ");
2015 print_address_numeric (low, gdb_stdout);
2016 printf_filtered (" to ");
2017 print_address_numeric (high, gdb_stdout);
2018 printf_filtered (":\n");
2019 }
2020
2021 /* Dump the specified range. */
2022 for (pc = low; pc < high; )
2023 {
2024 QUIT;
2025 print_address (pc, gdb_stdout);
2026 printf_filtered (":\t");
2027 /* We often wrap here if there are long symbolic names. */
2028 wrap_here (" ");
2029 pc += print_insn (pc, gdb_stdout);
2030 printf_filtered ("\n");
2031 }
2032 printf_filtered ("End of assembler dump.\n");
2033 gdb_flush (gdb_stdout);
2034 }
2035
2036 \f
2037 void
2038 _initialize_printcmd ()
2039 {
2040 current_display_number = -1;
2041
2042 add_info ("address", address_info,
2043 "Describe where variable VAR is stored.");
2044
2045 add_com ("x", class_vars, x_command,
2046 "Examine memory: x/FMT ADDRESS.\n\
2047 ADDRESS is an expression for the memory address to examine.\n\
2048 FMT is a repeat count followed by a format letter and a size letter.\n\
2049 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2050 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n\
2051 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2052 The specified number of objects of the specified size are printed\n\
2053 according to the format.\n\n\
2054 Defaults for format and size letters are those previously used.\n\
2055 Default count is 1. Default address is following last thing printed\n\
2056 with this command or \"print\".");
2057
2058 add_com ("disassemble", class_vars, disassemble_command,
2059 "Disassemble a specified section of memory.\n\
2060 Default is the function surrounding the pc of the selected frame.\n\
2061 With a single argument, the function surrounding that address is dumped.\n\
2062 Two arguments are taken as a range of memory to dump.");
2063
2064 #if 0
2065 add_com ("whereis", class_vars, whereis_command,
2066 "Print line number and file of definition of variable.");
2067 #endif
2068
2069 add_info ("display", display_info,
2070 "Expressions to display when program stops, with code numbers.");
2071
2072 add_cmd ("undisplay", class_vars, undisplay_command,
2073 "Cancel some expressions to be displayed when program stops.\n\
2074 Arguments are the code numbers of the expressions to stop displaying.\n\
2075 No argument means cancel all automatic-display expressions.\n\
2076 \"delete display\" has the same effect as this command.\n\
2077 Do \"info display\" to see current list of code numbers.",
2078 &cmdlist);
2079
2080 add_com ("display", class_vars, display_command,
2081 "Print value of expression EXP each time the program stops.\n\
2082 /FMT may be used before EXP as in the \"print\" command.\n\
2083 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2084 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2085 and examining is done as in the \"x\" command.\n\n\
2086 With no argument, display all currently requested auto-display expressions.\n\
2087 Use \"undisplay\" to cancel display requests previously made.");
2088
2089 add_cmd ("display", class_vars, enable_display,
2090 "Enable some expressions to be displayed when program stops.\n\
2091 Arguments are the code numbers of the expressions to resume displaying.\n\
2092 No argument means enable all automatic-display expressions.\n\
2093 Do \"info display\" to see current list of code numbers.", &enablelist);
2094
2095 add_cmd ("display", class_vars, disable_display_command,
2096 "Disable some expressions to be displayed when program stops.\n\
2097 Arguments are the code numbers of the expressions to stop displaying.\n\
2098 No argument means disable all automatic-display expressions.\n\
2099 Do \"info display\" to see current list of code numbers.", &disablelist);
2100
2101 add_cmd ("display", class_vars, undisplay_command,
2102 "Cancel some expressions to be displayed when program stops.\n\
2103 Arguments are the code numbers of the expressions to stop displaying.\n\
2104 No argument means cancel all automatic-display expressions.\n\
2105 Do \"info display\" to see current list of code numbers.", &deletelist);
2106
2107 add_com ("printf", class_vars, printf_command,
2108 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2109 This is useful for formatted output in user-defined commands.");
2110 add_com ("output", class_vars, output_command,
2111 "Like \"print\" but don't put in value history and don't print newline.\n\
2112 This is useful in user-defined commands.");
2113
2114 add_prefix_cmd ("set", class_vars, set_command,
2115 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2116 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2117 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2118 with $), a register (a few standard names starting with $), or an actual\n\
2119 variable in the program being debugged. EXP is any valid expression.\n\
2120 Use \"set variable\" for variables with names identical to set subcommands.\n\
2121 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2122 You can see these environment settings with the \"show\" command.",
2123 &setlist, "set ", 1, &cmdlist);
2124
2125 /* "call" is the same as "set", but handy for dbx users to call fns. */
2126 add_com ("call", class_vars, call_command,
2127 "Call a function in the program.\n\
2128 The argument is the function name and arguments, in the notation of the\n\
2129 current working language. The result is printed and saved in the value\n\
2130 history, if it is not void.");
2131
2132 add_cmd ("variable", class_vars, set_command,
2133 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2134 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2135 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2136 with $), a register (a few standard names starting with $), or an actual\n\
2137 variable in the program being debugged. EXP is any valid expression.\n\
2138 This may usually be abbreviated to simply \"set\".",
2139 &setlist);
2140
2141 add_com ("print", class_vars, print_command,
2142 concat ("Print value of expression EXP.\n\
2143 Variables accessible are those of the lexical environment of the selected\n\
2144 stack frame, plus all those whose scope is global or an entire file.\n\
2145 \n\
2146 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2147 $$NUM refers to NUM'th value back from the last one.\n\
2148 Names starting with $ refer to registers (with the values they would have\n\
2149 if the program were to return to the stack frame now selected, restoring\n\
2150 all registers saved by frames farther in) or else to debugger\n\
2151 \"convenience\" variables (any such name not a known register).\n\
2152 Use assignment expressions to give values to convenience variables.\n",
2153 "\n\
2154 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2155 @ is a binary operator for treating consecutive data objects\n\
2156 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2157 element is FOO, whose second element is stored in the space following\n\
2158 where FOO is stored, etc. FOO must be an expression whose value\n\
2159 resides in memory.\n",
2160 "\n\
2161 EXP may be preceded with /FMT, where FMT is a format letter\n\
2162 but no count or size letter (see \"x\" command).", NULL));
2163 add_com_alias ("p", "print", class_vars, 1);
2164
2165 add_com ("inspect", class_vars, inspect_command,
2166 "Same as \"print\" command, except that if you are running in the epoch\n\
2167 environment, the value is printed in its own window.");
2168
2169 add_show_from_set (
2170 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2171 (char *)&max_symbolic_offset,
2172 "Set the largest offset that will be printed in <symbol+1234> form.",
2173 &setprintlist),
2174 &showprintlist);
2175 add_show_from_set (
2176 add_set_cmd ("symbol-filename", no_class, var_boolean,
2177 (char *)&print_symbol_filename,
2178 "Set printing of source filename and line number with <symbol>.",
2179 &setprintlist),
2180 &showprintlist);
2181
2182 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, NULL, NULL);
2183 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, NULL, NULL);
2184 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, NULL, NULL);
2185 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, NULL, NULL);
2186 }
This page took 0.13847 seconds and 4 git commands to generate.