Enable hardware watchpoints on attach for aarch64
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "target-float.h"
42 #include "observable.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "format.h"
50 #include "source.h"
51 #include "common/byte-vector.h"
52
53 /* Last specified output format. */
54
55 static char last_format = 0;
56
57 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
58
59 static char last_size = 'w';
60
61 /* Last specified count for the 'x' command. */
62
63 static int last_count;
64
65 /* Default address to examine next, and associated architecture. */
66
67 static struct gdbarch *next_gdbarch;
68 static CORE_ADDR next_address;
69
70 /* Number of delay instructions following current disassembled insn. */
71
72 static int branch_delay_insns;
73
74 /* Last address examined. */
75
76 static CORE_ADDR last_examine_address;
77
78 /* Contents of last address examined.
79 This is not valid past the end of the `x' command! */
80
81 static value_ref_ptr last_examine_value;
82
83 /* Largest offset between a symbolic value and an address, that will be
84 printed as `0x1234 <symbol+offset>'. */
85
86 static unsigned int max_symbolic_offset = UINT_MAX;
87 static void
88 show_max_symbolic_offset (struct ui_file *file, int from_tty,
89 struct cmd_list_element *c, const char *value)
90 {
91 fprintf_filtered (file,
92 _("The largest offset that will be "
93 "printed in <symbol+1234> form is %s.\n"),
94 value);
95 }
96
97 /* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99 static int print_symbol_filename = 0;
100 static void
101 show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file, _("Printing of source filename and "
105 "line number with <symbol> is %s.\n"),
106 value);
107 }
108
109 /* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get a signal within it.
111 -1 when not doing one. */
112
113 static int current_display_number;
114
115 struct display
116 {
117 /* Chain link to next auto-display item. */
118 struct display *next;
119
120 /* The expression as the user typed it. */
121 char *exp_string;
122
123 /* Expression to be evaluated and displayed. */
124 expression_up exp;
125
126 /* Item number of this auto-display item. */
127 int number;
128
129 /* Display format specified. */
130 struct format_data format;
131
132 /* Program space associated with `block'. */
133 struct program_space *pspace;
134
135 /* Innermost block required by this expression when evaluated. */
136 const struct block *block;
137
138 /* Status of this display (enabled or disabled). */
139 int enabled_p;
140 };
141
142 /* Chain of expressions whose values should be displayed
143 automatically each time the program stops. */
144
145 static struct display *display_chain;
146
147 static int display_number;
148
149 /* Walk the following statement or block through all displays.
150 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
151 display. */
152
153 #define ALL_DISPLAYS(B) \
154 for (B = display_chain; B; B = B->next)
155
156 #define ALL_DISPLAYS_SAFE(B,TMP) \
157 for (B = display_chain; \
158 B ? (TMP = B->next, 1): 0; \
159 B = TMP)
160
161 /* Prototypes for local functions. */
162
163 static void do_one_display (struct display *);
164 \f
165
166 /* Decode a format specification. *STRING_PTR should point to it.
167 OFORMAT and OSIZE are used as defaults for the format and size
168 if none are given in the format specification.
169 If OSIZE is zero, then the size field of the returned value
170 should be set only if a size is explicitly specified by the
171 user.
172 The structure returned describes all the data
173 found in the specification. In addition, *STRING_PTR is advanced
174 past the specification and past all whitespace following it. */
175
176 static struct format_data
177 decode_format (const char **string_ptr, int oformat, int osize)
178 {
179 struct format_data val;
180 const char *p = *string_ptr;
181
182 val.format = '?';
183 val.size = '?';
184 val.count = 1;
185 val.raw = 0;
186
187 if (*p == '-')
188 {
189 val.count = -1;
190 p++;
191 }
192 if (*p >= '0' && *p <= '9')
193 val.count *= atoi (p);
194 while (*p >= '0' && *p <= '9')
195 p++;
196
197 /* Now process size or format letters that follow. */
198
199 while (1)
200 {
201 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
202 val.size = *p++;
203 else if (*p == 'r')
204 {
205 val.raw = 1;
206 p++;
207 }
208 else if (*p >= 'a' && *p <= 'z')
209 val.format = *p++;
210 else
211 break;
212 }
213
214 *string_ptr = skip_spaces (p);
215
216 /* Set defaults for format and size if not specified. */
217 if (val.format == '?')
218 {
219 if (val.size == '?')
220 {
221 /* Neither has been specified. */
222 val.format = oformat;
223 val.size = osize;
224 }
225 else
226 /* If a size is specified, any format makes a reasonable
227 default except 'i'. */
228 val.format = oformat == 'i' ? 'x' : oformat;
229 }
230 else if (val.size == '?')
231 switch (val.format)
232 {
233 case 'a':
234 /* Pick the appropriate size for an address. This is deferred
235 until do_examine when we know the actual architecture to use.
236 A special size value of 'a' is used to indicate this case. */
237 val.size = osize ? 'a' : osize;
238 break;
239 case 'f':
240 /* Floating point has to be word or giantword. */
241 if (osize == 'w' || osize == 'g')
242 val.size = osize;
243 else
244 /* Default it to giantword if the last used size is not
245 appropriate. */
246 val.size = osize ? 'g' : osize;
247 break;
248 case 'c':
249 /* Characters default to one byte. */
250 val.size = osize ? 'b' : osize;
251 break;
252 case 's':
253 /* Display strings with byte size chars unless explicitly
254 specified. */
255 val.size = '\0';
256 break;
257
258 default:
259 /* The default is the size most recently specified. */
260 val.size = osize;
261 }
262
263 return val;
264 }
265 \f
266 /* Print value VAL on stream according to OPTIONS.
267 Do not end with a newline.
268 SIZE is the letter for the size of datum being printed.
269 This is used to pad hex numbers so they line up. SIZE is 0
270 for print / output and set for examine. */
271
272 static void
273 print_formatted (struct value *val, int size,
274 const struct value_print_options *options,
275 struct ui_file *stream)
276 {
277 struct type *type = check_typedef (value_type (val));
278 int len = TYPE_LENGTH (type);
279
280 if (VALUE_LVAL (val) == lval_memory)
281 next_address = value_address (val) + len;
282
283 if (size)
284 {
285 switch (options->format)
286 {
287 case 's':
288 {
289 struct type *elttype = value_type (val);
290
291 next_address = (value_address (val)
292 + val_print_string (elttype, NULL,
293 value_address (val), -1,
294 stream, options) * len);
295 }
296 return;
297
298 case 'i':
299 /* We often wrap here if there are long symbolic names. */
300 wrap_here (" ");
301 next_address = (value_address (val)
302 + gdb_print_insn (get_type_arch (type),
303 value_address (val), stream,
304 &branch_delay_insns));
305 return;
306 }
307 }
308
309 if (options->format == 0 || options->format == 's'
310 || TYPE_CODE (type) == TYPE_CODE_REF
311 || TYPE_CODE (type) == TYPE_CODE_ARRAY
312 || TYPE_CODE (type) == TYPE_CODE_STRING
313 || TYPE_CODE (type) == TYPE_CODE_STRUCT
314 || TYPE_CODE (type) == TYPE_CODE_UNION
315 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
316 value_print (val, stream, options);
317 else
318 /* User specified format, so don't look to the type to tell us
319 what to do. */
320 val_print_scalar_formatted (type,
321 value_embedded_offset (val),
322 val,
323 options, size, stream);
324 }
325
326 /* Return builtin floating point type of same length as TYPE.
327 If no such type is found, return TYPE itself. */
328 static struct type *
329 float_type_from_length (struct type *type)
330 {
331 struct gdbarch *gdbarch = get_type_arch (type);
332 const struct builtin_type *builtin = builtin_type (gdbarch);
333
334 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
335 type = builtin->builtin_float;
336 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
337 type = builtin->builtin_double;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
339 type = builtin->builtin_long_double;
340
341 return type;
342 }
343
344 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
345 according to OPTIONS and SIZE on STREAM. Formats s and i are not
346 supported at this level. */
347
348 void
349 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
350 const struct value_print_options *options,
351 int size, struct ui_file *stream)
352 {
353 struct gdbarch *gdbarch = get_type_arch (type);
354 unsigned int len = TYPE_LENGTH (type);
355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
356
357 /* String printing should go through val_print_scalar_formatted. */
358 gdb_assert (options->format != 's');
359
360 /* If the value is a pointer, and pointers and addresses are not the
361 same, then at this point, the value's length (in target bytes) is
362 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
364 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
365
366 /* If we are printing it as unsigned, truncate it in case it is actually
367 a negative signed value (e.g. "print/u (short)-1" should print 65535
368 (if shorts are 16 bits) instead of 4294967295). */
369 if (options->format != 'c'
370 && (options->format != 'd' || TYPE_UNSIGNED (type)))
371 {
372 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
373 valaddr += TYPE_LENGTH (type) - len;
374 }
375
376 if (size != 0 && (options->format == 'x' || options->format == 't'))
377 {
378 /* Truncate to fit. */
379 unsigned newlen;
380 switch (size)
381 {
382 case 'b':
383 newlen = 1;
384 break;
385 case 'h':
386 newlen = 2;
387 break;
388 case 'w':
389 newlen = 4;
390 break;
391 case 'g':
392 newlen = 8;
393 break;
394 default:
395 error (_("Undefined output size \"%c\"."), size);
396 }
397 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
398 valaddr += len - newlen;
399 len = newlen;
400 }
401
402 /* Historically gdb has printed floats by first casting them to a
403 long, and then printing the long. PR cli/16242 suggests changing
404 this to using C-style hex float format. */
405 gdb::byte_vector converted_float_bytes;
406 if (TYPE_CODE (type) == TYPE_CODE_FLT
407 && (options->format == 'o'
408 || options->format == 'x'
409 || options->format == 't'
410 || options->format == 'z'
411 || options->format == 'd'
412 || options->format == 'u'))
413 {
414 LONGEST val_long = unpack_long (type, valaddr);
415 converted_float_bytes.resize (TYPE_LENGTH (type));
416 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
417 byte_order, val_long);
418 valaddr = converted_float_bytes.data ();
419 }
420
421 /* Printing a non-float type as 'f' will interpret the data as if it were
422 of a floating-point type of the same length, if that exists. Otherwise,
423 the data is printed as integer. */
424 char format = options->format;
425 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
426 {
427 type = float_type_from_length (type);
428 if (TYPE_CODE (type) != TYPE_CODE_FLT)
429 format = 0;
430 }
431
432 switch (format)
433 {
434 case 'o':
435 print_octal_chars (stream, valaddr, len, byte_order);
436 break;
437 case 'd':
438 print_decimal_chars (stream, valaddr, len, true, byte_order);
439 break;
440 case 'u':
441 print_decimal_chars (stream, valaddr, len, false, byte_order);
442 break;
443 case 0:
444 if (TYPE_CODE (type) != TYPE_CODE_FLT)
445 {
446 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
447 byte_order);
448 break;
449 }
450 /* FALLTHROUGH */
451 case 'f':
452 print_floating (valaddr, type, stream);
453 break;
454
455 case 't':
456 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
457 break;
458 case 'x':
459 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
460 break;
461 case 'z':
462 print_hex_chars (stream, valaddr, len, byte_order, true);
463 break;
464 case 'c':
465 {
466 struct value_print_options opts = *options;
467
468 LONGEST val_long = unpack_long (type, valaddr);
469
470 opts.format = 0;
471 if (TYPE_UNSIGNED (type))
472 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
473 else
474 type = builtin_type (gdbarch)->builtin_true_char;
475
476 value_print (value_from_longest (type, val_long), stream, &opts);
477 }
478 break;
479
480 case 'a':
481 {
482 CORE_ADDR addr = unpack_pointer (type, valaddr);
483
484 print_address (gdbarch, addr, stream);
485 }
486 break;
487
488 default:
489 error (_("Undefined output format \"%c\"."), format);
490 }
491 }
492
493 /* Specify default address for `x' command.
494 The `info lines' command uses this. */
495
496 void
497 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
498 {
499 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
500
501 next_gdbarch = gdbarch;
502 next_address = addr;
503
504 /* Make address available to the user as $_. */
505 set_internalvar (lookup_internalvar ("_"),
506 value_from_pointer (ptr_type, addr));
507 }
508
509 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
510 after LEADIN. Print nothing if no symbolic name is found nearby.
511 Optionally also print source file and line number, if available.
512 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
513 or to interpret it as a possible C++ name and convert it back to source
514 form. However note that DO_DEMANGLE can be overridden by the specific
515 settings of the demangle and asm_demangle variables. Returns
516 non-zero if anything was printed; zero otherwise. */
517
518 int
519 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
520 struct ui_file *stream,
521 int do_demangle, const char *leadin)
522 {
523 std::string name, filename;
524 int unmapped = 0;
525 int offset = 0;
526 int line = 0;
527
528 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
529 &filename, &line, &unmapped))
530 return 0;
531
532 fputs_filtered (leadin, stream);
533 if (unmapped)
534 fputs_filtered ("<*", stream);
535 else
536 fputs_filtered ("<", stream);
537 fputs_filtered (name.c_str (), stream);
538 if (offset != 0)
539 fprintf_filtered (stream, "+%u", (unsigned int) offset);
540
541 /* Append source filename and line number if desired. Give specific
542 line # of this addr, if we have it; else line # of the nearest symbol. */
543 if (print_symbol_filename && !filename.empty ())
544 {
545 if (line != -1)
546 fprintf_filtered (stream, " at %s:%d", filename.c_str (), line);
547 else
548 fprintf_filtered (stream, " in %s", filename.c_str ());
549 }
550 if (unmapped)
551 fputs_filtered ("*>", stream);
552 else
553 fputs_filtered (">", stream);
554
555 return 1;
556 }
557
558 /* See valprint.h. */
559
560 int
561 build_address_symbolic (struct gdbarch *gdbarch,
562 CORE_ADDR addr, /* IN */
563 int do_demangle, /* IN */
564 std::string *name, /* OUT */
565 int *offset, /* OUT */
566 std::string *filename, /* OUT */
567 int *line, /* OUT */
568 int *unmapped) /* OUT */
569 {
570 struct bound_minimal_symbol msymbol;
571 struct symbol *symbol;
572 CORE_ADDR name_location = 0;
573 struct obj_section *section = NULL;
574 const char *name_temp = "";
575
576 /* Let's say it is mapped (not unmapped). */
577 *unmapped = 0;
578
579 /* Determine if the address is in an overlay, and whether it is
580 mapped. */
581 if (overlay_debugging)
582 {
583 section = find_pc_overlay (addr);
584 if (pc_in_unmapped_range (addr, section))
585 {
586 *unmapped = 1;
587 addr = overlay_mapped_address (addr, section);
588 }
589 }
590
591 /* First try to find the address in the symbol table, then
592 in the minsyms. Take the closest one. */
593
594 /* This is defective in the sense that it only finds text symbols. So
595 really this is kind of pointless--we should make sure that the
596 minimal symbols have everything we need (by changing that we could
597 save some memory, but for many debug format--ELF/DWARF or
598 anything/stabs--it would be inconvenient to eliminate those minimal
599 symbols anyway). */
600 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
601 symbol = find_pc_sect_function (addr, section);
602
603 if (symbol)
604 {
605 /* If this is a function (i.e. a code address), strip out any
606 non-address bits. For instance, display a pointer to the
607 first instruction of a Thumb function as <function>; the
608 second instruction will be <function+2>, even though the
609 pointer is <function+3>. This matches the ISA behavior. */
610 addr = gdbarch_addr_bits_remove (gdbarch, addr);
611
612 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
613 if (do_demangle || asm_demangle)
614 name_temp = SYMBOL_PRINT_NAME (symbol);
615 else
616 name_temp = SYMBOL_LINKAGE_NAME (symbol);
617 }
618
619 if (msymbol.minsym != NULL
620 && MSYMBOL_HAS_SIZE (msymbol.minsym)
621 && MSYMBOL_SIZE (msymbol.minsym) == 0
622 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
623 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
624 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
625 msymbol.minsym = NULL;
626
627 if (msymbol.minsym != NULL)
628 {
629 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
630 {
631 /* If this is a function (i.e. a code address), strip out any
632 non-address bits. For instance, display a pointer to the
633 first instruction of a Thumb function as <function>; the
634 second instruction will be <function+2>, even though the
635 pointer is <function+3>. This matches the ISA behavior. */
636 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
637 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
638 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
639 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
640 addr = gdbarch_addr_bits_remove (gdbarch, addr);
641
642 /* The msymbol is closer to the address than the symbol;
643 use the msymbol instead. */
644 symbol = 0;
645 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
646 if (do_demangle || asm_demangle)
647 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
648 else
649 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
650 }
651 }
652 if (symbol == NULL && msymbol.minsym == NULL)
653 return 1;
654
655 /* If the nearest symbol is too far away, don't print anything symbolic. */
656
657 /* For when CORE_ADDR is larger than unsigned int, we do math in
658 CORE_ADDR. But when we detect unsigned wraparound in the
659 CORE_ADDR math, we ignore this test and print the offset,
660 because addr+max_symbolic_offset has wrapped through the end
661 of the address space back to the beginning, giving bogus comparison. */
662 if (addr > name_location + max_symbolic_offset
663 && name_location + max_symbolic_offset > name_location)
664 return 1;
665
666 *offset = addr - name_location;
667
668 *name = name_temp;
669
670 if (print_symbol_filename)
671 {
672 struct symtab_and_line sal;
673
674 sal = find_pc_sect_line (addr, section, 0);
675
676 if (sal.symtab)
677 {
678 *filename = symtab_to_filename_for_display (sal.symtab);
679 *line = sal.line;
680 }
681 }
682 return 0;
683 }
684
685
686 /* Print address ADDR symbolically on STREAM.
687 First print it as a number. Then perhaps print
688 <SYMBOL + OFFSET> after the number. */
689
690 void
691 print_address (struct gdbarch *gdbarch,
692 CORE_ADDR addr, struct ui_file *stream)
693 {
694 fputs_filtered (paddress (gdbarch, addr), stream);
695 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
696 }
697
698 /* Return a prefix for instruction address:
699 "=> " for current instruction, else " ". */
700
701 const char *
702 pc_prefix (CORE_ADDR addr)
703 {
704 if (has_stack_frames ())
705 {
706 struct frame_info *frame;
707 CORE_ADDR pc;
708
709 frame = get_selected_frame (NULL);
710 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
711 return "=> ";
712 }
713 return " ";
714 }
715
716 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
717 controls whether to print the symbolic name "raw" or demangled.
718 Return non-zero if anything was printed; zero otherwise. */
719
720 int
721 print_address_demangle (const struct value_print_options *opts,
722 struct gdbarch *gdbarch, CORE_ADDR addr,
723 struct ui_file *stream, int do_demangle)
724 {
725 if (opts->addressprint)
726 {
727 fputs_filtered (paddress (gdbarch, addr), stream);
728 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
729 }
730 else
731 {
732 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
733 }
734 return 1;
735 }
736 \f
737
738 /* Find the address of the instruction that is INST_COUNT instructions before
739 the instruction at ADDR.
740 Since some architectures have variable-length instructions, we can't just
741 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
742 number information to locate the nearest known instruction boundary,
743 and disassemble forward from there. If we go out of the symbol range
744 during disassembling, we return the lowest address we've got so far and
745 set the number of instructions read to INST_READ. */
746
747 static CORE_ADDR
748 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
749 int inst_count, int *inst_read)
750 {
751 /* The vector PCS is used to store instruction addresses within
752 a pc range. */
753 CORE_ADDR loop_start, loop_end, p;
754 std::vector<CORE_ADDR> pcs;
755 struct symtab_and_line sal;
756
757 *inst_read = 0;
758 loop_start = loop_end = addr;
759
760 /* In each iteration of the outer loop, we get a pc range that ends before
761 LOOP_START, then we count and store every instruction address of the range
762 iterated in the loop.
763 If the number of instructions counted reaches INST_COUNT, return the
764 stored address that is located INST_COUNT instructions back from ADDR.
765 If INST_COUNT is not reached, we subtract the number of counted
766 instructions from INST_COUNT, and go to the next iteration. */
767 do
768 {
769 pcs.clear ();
770 sal = find_pc_sect_line (loop_start, NULL, 1);
771 if (sal.line <= 0)
772 {
773 /* We reach here when line info is not available. In this case,
774 we print a message and just exit the loop. The return value
775 is calculated after the loop. */
776 printf_filtered (_("No line number information available "
777 "for address "));
778 wrap_here (" ");
779 print_address (gdbarch, loop_start - 1, gdb_stdout);
780 printf_filtered ("\n");
781 break;
782 }
783
784 loop_end = loop_start;
785 loop_start = sal.pc;
786
787 /* This loop pushes instruction addresses in the range from
788 LOOP_START to LOOP_END. */
789 for (p = loop_start; p < loop_end;)
790 {
791 pcs.push_back (p);
792 p += gdb_insn_length (gdbarch, p);
793 }
794
795 inst_count -= pcs.size ();
796 *inst_read += pcs.size ();
797 }
798 while (inst_count > 0);
799
800 /* After the loop, the vector PCS has instruction addresses of the last
801 source line we processed, and INST_COUNT has a negative value.
802 We return the address at the index of -INST_COUNT in the vector for
803 the reason below.
804 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
805 Line X of File
806 0x4000
807 0x4001
808 0x4005
809 Line Y of File
810 0x4009
811 0x400c
812 => 0x400e
813 0x4011
814 find_instruction_backward is called with INST_COUNT = 4 and expected to
815 return 0x4001. When we reach here, INST_COUNT is set to -1 because
816 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
817 4001 is located at the index 1 of the last iterated line (= Line X),
818 which is simply calculated by -INST_COUNT.
819 The case when the length of PCS is 0 means that we reached an area for
820 which line info is not available. In such case, we return LOOP_START,
821 which was the lowest instruction address that had line info. */
822 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
823
824 /* INST_READ includes all instruction addresses in a pc range. Need to
825 exclude the beginning part up to the address we're returning. That
826 is, exclude {0x4000} in the example above. */
827 if (inst_count < 0)
828 *inst_read += inst_count;
829
830 return p;
831 }
832
833 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
834 placing the results in GDB's memory from MYADDR + LEN. Returns
835 a count of the bytes actually read. */
836
837 static int
838 read_memory_backward (struct gdbarch *gdbarch,
839 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
840 {
841 int errcode;
842 int nread; /* Number of bytes actually read. */
843
844 /* First try a complete read. */
845 errcode = target_read_memory (memaddr, myaddr, len);
846 if (errcode == 0)
847 {
848 /* Got it all. */
849 nread = len;
850 }
851 else
852 {
853 /* Loop, reading one byte at a time until we get as much as we can. */
854 memaddr += len;
855 myaddr += len;
856 for (nread = 0; nread < len; ++nread)
857 {
858 errcode = target_read_memory (--memaddr, --myaddr, 1);
859 if (errcode != 0)
860 {
861 /* The read was unsuccessful, so exit the loop. */
862 printf_filtered (_("Cannot access memory at address %s\n"),
863 paddress (gdbarch, memaddr));
864 break;
865 }
866 }
867 }
868 return nread;
869 }
870
871 /* Returns true if X (which is LEN bytes wide) is the number zero. */
872
873 static int
874 integer_is_zero (const gdb_byte *x, int len)
875 {
876 int i = 0;
877
878 while (i < len && x[i] == 0)
879 ++i;
880 return (i == len);
881 }
882
883 /* Find the start address of a string in which ADDR is included.
884 Basically we search for '\0' and return the next address,
885 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
886 we stop searching and return the address to print characters as many as
887 PRINT_MAX from the string. */
888
889 static CORE_ADDR
890 find_string_backward (struct gdbarch *gdbarch,
891 CORE_ADDR addr, int count, int char_size,
892 const struct value_print_options *options,
893 int *strings_counted)
894 {
895 const int chunk_size = 0x20;
896 int read_error = 0;
897 int chars_read = 0;
898 int chars_to_read = chunk_size;
899 int chars_counted = 0;
900 int count_original = count;
901 CORE_ADDR string_start_addr = addr;
902
903 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
904 gdb::byte_vector buffer (chars_to_read * char_size);
905 while (count > 0 && read_error == 0)
906 {
907 int i;
908
909 addr -= chars_to_read * char_size;
910 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
911 chars_to_read * char_size);
912 chars_read /= char_size;
913 read_error = (chars_read == chars_to_read) ? 0 : 1;
914 /* Searching for '\0' from the end of buffer in backward direction. */
915 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
916 {
917 int offset = (chars_to_read - i - 1) * char_size;
918
919 if (integer_is_zero (&buffer[offset], char_size)
920 || chars_counted == options->print_max)
921 {
922 /* Found '\0' or reached print_max. As OFFSET is the offset to
923 '\0', we add CHAR_SIZE to return the start address of
924 a string. */
925 --count;
926 string_start_addr = addr + offset + char_size;
927 chars_counted = 0;
928 }
929 }
930 }
931
932 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
933 *strings_counted = count_original - count;
934
935 if (read_error != 0)
936 {
937 /* In error case, STRING_START_ADDR is pointing to the string that
938 was last successfully loaded. Rewind the partially loaded string. */
939 string_start_addr -= chars_counted * char_size;
940 }
941
942 return string_start_addr;
943 }
944
945 /* Examine data at address ADDR in format FMT.
946 Fetch it from memory and print on gdb_stdout. */
947
948 static void
949 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
950 {
951 char format = 0;
952 char size;
953 int count = 1;
954 struct type *val_type = NULL;
955 int i;
956 int maxelts;
957 struct value_print_options opts;
958 int need_to_update_next_address = 0;
959 CORE_ADDR addr_rewound = 0;
960
961 format = fmt.format;
962 size = fmt.size;
963 count = fmt.count;
964 next_gdbarch = gdbarch;
965 next_address = addr;
966
967 /* Instruction format implies fetch single bytes
968 regardless of the specified size.
969 The case of strings is handled in decode_format, only explicit
970 size operator are not changed to 'b'. */
971 if (format == 'i')
972 size = 'b';
973
974 if (size == 'a')
975 {
976 /* Pick the appropriate size for an address. */
977 if (gdbarch_ptr_bit (next_gdbarch) == 64)
978 size = 'g';
979 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
980 size = 'w';
981 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
982 size = 'h';
983 else
984 /* Bad value for gdbarch_ptr_bit. */
985 internal_error (__FILE__, __LINE__,
986 _("failed internal consistency check"));
987 }
988
989 if (size == 'b')
990 val_type = builtin_type (next_gdbarch)->builtin_int8;
991 else if (size == 'h')
992 val_type = builtin_type (next_gdbarch)->builtin_int16;
993 else if (size == 'w')
994 val_type = builtin_type (next_gdbarch)->builtin_int32;
995 else if (size == 'g')
996 val_type = builtin_type (next_gdbarch)->builtin_int64;
997
998 if (format == 's')
999 {
1000 struct type *char_type = NULL;
1001
1002 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1003 if type is not found. */
1004 if (size == 'h')
1005 char_type = builtin_type (next_gdbarch)->builtin_char16;
1006 else if (size == 'w')
1007 char_type = builtin_type (next_gdbarch)->builtin_char32;
1008 if (char_type)
1009 val_type = char_type;
1010 else
1011 {
1012 if (size != '\0' && size != 'b')
1013 warning (_("Unable to display strings with "
1014 "size '%c', using 'b' instead."), size);
1015 size = 'b';
1016 val_type = builtin_type (next_gdbarch)->builtin_int8;
1017 }
1018 }
1019
1020 maxelts = 8;
1021 if (size == 'w')
1022 maxelts = 4;
1023 if (size == 'g')
1024 maxelts = 2;
1025 if (format == 's' || format == 'i')
1026 maxelts = 1;
1027
1028 get_formatted_print_options (&opts, format);
1029
1030 if (count < 0)
1031 {
1032 /* This is the negative repeat count case.
1033 We rewind the address based on the given repeat count and format,
1034 then examine memory from there in forward direction. */
1035
1036 count = -count;
1037 if (format == 'i')
1038 {
1039 next_address = find_instruction_backward (gdbarch, addr, count,
1040 &count);
1041 }
1042 else if (format == 's')
1043 {
1044 next_address = find_string_backward (gdbarch, addr, count,
1045 TYPE_LENGTH (val_type),
1046 &opts, &count);
1047 }
1048 else
1049 {
1050 next_address = addr - count * TYPE_LENGTH (val_type);
1051 }
1052
1053 /* The following call to print_formatted updates next_address in every
1054 iteration. In backward case, we store the start address here
1055 and update next_address with it before exiting the function. */
1056 addr_rewound = (format == 's'
1057 ? next_address - TYPE_LENGTH (val_type)
1058 : next_address);
1059 need_to_update_next_address = 1;
1060 }
1061
1062 /* Print as many objects as specified in COUNT, at most maxelts per line,
1063 with the address of the next one at the start of each line. */
1064
1065 while (count > 0)
1066 {
1067 QUIT;
1068 if (format == 'i')
1069 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1070 print_address (next_gdbarch, next_address, gdb_stdout);
1071 printf_filtered (":");
1072 for (i = maxelts;
1073 i > 0 && count > 0;
1074 i--, count--)
1075 {
1076 printf_filtered ("\t");
1077 /* Note that print_formatted sets next_address for the next
1078 object. */
1079 last_examine_address = next_address;
1080
1081 /* The value to be displayed is not fetched greedily.
1082 Instead, to avoid the possibility of a fetched value not
1083 being used, its retrieval is delayed until the print code
1084 uses it. When examining an instruction stream, the
1085 disassembler will perform its own memory fetch using just
1086 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1087 the disassembler be modified so that LAST_EXAMINE_VALUE
1088 is left with the byte sequence from the last complete
1089 instruction fetched from memory? */
1090 last_examine_value
1091 = release_value (value_at_lazy (val_type, next_address));
1092
1093 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1094
1095 /* Display any branch delay slots following the final insn. */
1096 if (format == 'i' && count == 1)
1097 count += branch_delay_insns;
1098 }
1099 printf_filtered ("\n");
1100 gdb_flush (gdb_stdout);
1101 }
1102
1103 if (need_to_update_next_address)
1104 next_address = addr_rewound;
1105 }
1106 \f
1107 static void
1108 validate_format (struct format_data fmt, const char *cmdname)
1109 {
1110 if (fmt.size != 0)
1111 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1112 if (fmt.count != 1)
1113 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1114 cmdname);
1115 if (fmt.format == 'i')
1116 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1117 fmt.format, cmdname);
1118 }
1119
1120 /* Parse print command format string into *FMTP and update *EXPP.
1121 CMDNAME should name the current command. */
1122
1123 void
1124 print_command_parse_format (const char **expp, const char *cmdname,
1125 struct format_data *fmtp)
1126 {
1127 const char *exp = *expp;
1128
1129 if (exp && *exp == '/')
1130 {
1131 exp++;
1132 *fmtp = decode_format (&exp, last_format, 0);
1133 validate_format (*fmtp, cmdname);
1134 last_format = fmtp->format;
1135 }
1136 else
1137 {
1138 fmtp->count = 1;
1139 fmtp->format = 0;
1140 fmtp->size = 0;
1141 fmtp->raw = 0;
1142 }
1143
1144 *expp = exp;
1145 }
1146
1147 /* Print VAL to console according to *FMTP, including recording it to
1148 the history. */
1149
1150 void
1151 print_value (struct value *val, const struct format_data *fmtp)
1152 {
1153 struct value_print_options opts;
1154 int histindex = record_latest_value (val);
1155
1156 annotate_value_history_begin (histindex, value_type (val));
1157
1158 printf_filtered ("$%d = ", histindex);
1159
1160 annotate_value_history_value ();
1161
1162 get_formatted_print_options (&opts, fmtp->format);
1163 opts.raw = fmtp->raw;
1164
1165 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1166 printf_filtered ("\n");
1167
1168 annotate_value_history_end ();
1169 }
1170
1171 /* Evaluate string EXP as an expression in the current language and
1172 print the resulting value. EXP may contain a format specifier as the
1173 first argument ("/x myvar" for example, to print myvar in hex). */
1174
1175 static void
1176 print_command_1 (const char *exp, int voidprint)
1177 {
1178 struct value *val;
1179 struct format_data fmt;
1180
1181 print_command_parse_format (&exp, "print", &fmt);
1182
1183 if (exp && *exp)
1184 {
1185 expression_up expr = parse_expression (exp);
1186 val = evaluate_expression (expr.get ());
1187 }
1188 else
1189 val = access_value_history (0);
1190
1191 if (voidprint || (val && value_type (val) &&
1192 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1193 print_value (val, &fmt);
1194 }
1195
1196 static void
1197 print_command (const char *exp, int from_tty)
1198 {
1199 print_command_1 (exp, 1);
1200 }
1201
1202 /* Same as print, except it doesn't print void results. */
1203 static void
1204 call_command (const char *exp, int from_tty)
1205 {
1206 print_command_1 (exp, 0);
1207 }
1208
1209 /* Implementation of the "output" command. */
1210
1211 void
1212 output_command (const char *exp, int from_tty)
1213 {
1214 char format = 0;
1215 struct value *val;
1216 struct format_data fmt;
1217 struct value_print_options opts;
1218
1219 fmt.size = 0;
1220 fmt.raw = 0;
1221
1222 if (exp && *exp == '/')
1223 {
1224 exp++;
1225 fmt = decode_format (&exp, 0, 0);
1226 validate_format (fmt, "output");
1227 format = fmt.format;
1228 }
1229
1230 expression_up expr = parse_expression (exp);
1231
1232 val = evaluate_expression (expr.get ());
1233
1234 annotate_value_begin (value_type (val));
1235
1236 get_formatted_print_options (&opts, format);
1237 opts.raw = fmt.raw;
1238 print_formatted (val, fmt.size, &opts, gdb_stdout);
1239
1240 annotate_value_end ();
1241
1242 wrap_here ("");
1243 gdb_flush (gdb_stdout);
1244 }
1245
1246 static void
1247 set_command (const char *exp, int from_tty)
1248 {
1249 expression_up expr = parse_expression (exp);
1250
1251 if (expr->nelts >= 1)
1252 switch (expr->elts[0].opcode)
1253 {
1254 case UNOP_PREINCREMENT:
1255 case UNOP_POSTINCREMENT:
1256 case UNOP_PREDECREMENT:
1257 case UNOP_POSTDECREMENT:
1258 case BINOP_ASSIGN:
1259 case BINOP_ASSIGN_MODIFY:
1260 case BINOP_COMMA:
1261 break;
1262 default:
1263 warning
1264 (_("Expression is not an assignment (and might have no effect)"));
1265 }
1266
1267 evaluate_expression (expr.get ());
1268 }
1269
1270 static void
1271 info_symbol_command (const char *arg, int from_tty)
1272 {
1273 struct minimal_symbol *msymbol;
1274 struct objfile *objfile;
1275 struct obj_section *osect;
1276 CORE_ADDR addr, sect_addr;
1277 int matches = 0;
1278 unsigned int offset;
1279
1280 if (!arg)
1281 error_no_arg (_("address"));
1282
1283 addr = parse_and_eval_address (arg);
1284 ALL_OBJSECTIONS (objfile, osect)
1285 {
1286 /* Only process each object file once, even if there's a separate
1287 debug file. */
1288 if (objfile->separate_debug_objfile_backlink)
1289 continue;
1290
1291 sect_addr = overlay_mapped_address (addr, osect);
1292
1293 if (obj_section_addr (osect) <= sect_addr
1294 && sect_addr < obj_section_endaddr (osect)
1295 && (msymbol
1296 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1297 {
1298 const char *obj_name, *mapped, *sec_name, *msym_name;
1299 const char *loc_string;
1300 struct cleanup *old_chain;
1301
1302 matches = 1;
1303 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1304 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1305 sec_name = osect->the_bfd_section->name;
1306 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1307
1308 /* Don't print the offset if it is zero.
1309 We assume there's no need to handle i18n of "sym + offset". */
1310 std::string string_holder;
1311 if (offset)
1312 {
1313 string_holder = string_printf ("%s + %u", msym_name, offset);
1314 loc_string = string_holder.c_str ();
1315 }
1316 else
1317 loc_string = msym_name;
1318
1319 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1320 obj_name = objfile_name (osect->objfile);
1321
1322 if (MULTI_OBJFILE_P ())
1323 if (pc_in_unmapped_range (addr, osect))
1324 if (section_is_overlay (osect))
1325 printf_filtered (_("%s in load address range of "
1326 "%s overlay section %s of %s\n"),
1327 loc_string, mapped, sec_name, obj_name);
1328 else
1329 printf_filtered (_("%s in load address range of "
1330 "section %s of %s\n"),
1331 loc_string, sec_name, obj_name);
1332 else
1333 if (section_is_overlay (osect))
1334 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1335 loc_string, mapped, sec_name, obj_name);
1336 else
1337 printf_filtered (_("%s in section %s of %s\n"),
1338 loc_string, sec_name, obj_name);
1339 else
1340 if (pc_in_unmapped_range (addr, osect))
1341 if (section_is_overlay (osect))
1342 printf_filtered (_("%s in load address range of %s overlay "
1343 "section %s\n"),
1344 loc_string, mapped, sec_name);
1345 else
1346 printf_filtered (_("%s in load address range of section %s\n"),
1347 loc_string, sec_name);
1348 else
1349 if (section_is_overlay (osect))
1350 printf_filtered (_("%s in %s overlay section %s\n"),
1351 loc_string, mapped, sec_name);
1352 else
1353 printf_filtered (_("%s in section %s\n"),
1354 loc_string, sec_name);
1355 }
1356 }
1357 if (matches == 0)
1358 printf_filtered (_("No symbol matches %s.\n"), arg);
1359 }
1360
1361 static void
1362 info_address_command (const char *exp, int from_tty)
1363 {
1364 struct gdbarch *gdbarch;
1365 int regno;
1366 struct symbol *sym;
1367 struct bound_minimal_symbol msymbol;
1368 long val;
1369 struct obj_section *section;
1370 CORE_ADDR load_addr, context_pc = 0;
1371 struct field_of_this_result is_a_field_of_this;
1372
1373 if (exp == 0)
1374 error (_("Argument required."));
1375
1376 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1377 &is_a_field_of_this).symbol;
1378 if (sym == NULL)
1379 {
1380 if (is_a_field_of_this.type != NULL)
1381 {
1382 printf_filtered ("Symbol \"");
1383 fprintf_symbol_filtered (gdb_stdout, exp,
1384 current_language->la_language, DMGL_ANSI);
1385 printf_filtered ("\" is a field of the local class variable ");
1386 if (current_language->la_language == language_objc)
1387 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1388 else
1389 printf_filtered ("`this'\n");
1390 return;
1391 }
1392
1393 msymbol = lookup_bound_minimal_symbol (exp);
1394
1395 if (msymbol.minsym != NULL)
1396 {
1397 struct objfile *objfile = msymbol.objfile;
1398
1399 gdbarch = get_objfile_arch (objfile);
1400 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1401
1402 printf_filtered ("Symbol \"");
1403 fprintf_symbol_filtered (gdb_stdout, exp,
1404 current_language->la_language, DMGL_ANSI);
1405 printf_filtered ("\" is at ");
1406 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1407 printf_filtered (" in a file compiled without debugging");
1408 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1409 if (section_is_overlay (section))
1410 {
1411 load_addr = overlay_unmapped_address (load_addr, section);
1412 printf_filtered (",\n -- loaded at ");
1413 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1414 printf_filtered (" in overlay section %s",
1415 section->the_bfd_section->name);
1416 }
1417 printf_filtered (".\n");
1418 }
1419 else
1420 error (_("No symbol \"%s\" in current context."), exp);
1421 return;
1422 }
1423
1424 printf_filtered ("Symbol \"");
1425 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1426 current_language->la_language, DMGL_ANSI);
1427 printf_filtered ("\" is ");
1428 val = SYMBOL_VALUE (sym);
1429 if (SYMBOL_OBJFILE_OWNED (sym))
1430 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1431 else
1432 section = NULL;
1433 gdbarch = symbol_arch (sym);
1434
1435 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1436 {
1437 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1438 gdb_stdout);
1439 printf_filtered (".\n");
1440 return;
1441 }
1442
1443 switch (SYMBOL_CLASS (sym))
1444 {
1445 case LOC_CONST:
1446 case LOC_CONST_BYTES:
1447 printf_filtered ("constant");
1448 break;
1449
1450 case LOC_LABEL:
1451 printf_filtered ("a label at address ");
1452 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1453 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1454 if (section_is_overlay (section))
1455 {
1456 load_addr = overlay_unmapped_address (load_addr, section);
1457 printf_filtered (",\n -- loaded at ");
1458 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1459 printf_filtered (" in overlay section %s",
1460 section->the_bfd_section->name);
1461 }
1462 break;
1463
1464 case LOC_COMPUTED:
1465 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1466
1467 case LOC_REGISTER:
1468 /* GDBARCH is the architecture associated with the objfile the symbol
1469 is defined in; the target architecture may be different, and may
1470 provide additional registers. However, we do not know the target
1471 architecture at this point. We assume the objfile architecture
1472 will contain all the standard registers that occur in debug info
1473 in that objfile. */
1474 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1475
1476 if (SYMBOL_IS_ARGUMENT (sym))
1477 printf_filtered (_("an argument in register %s"),
1478 gdbarch_register_name (gdbarch, regno));
1479 else
1480 printf_filtered (_("a variable in register %s"),
1481 gdbarch_register_name (gdbarch, regno));
1482 break;
1483
1484 case LOC_STATIC:
1485 printf_filtered (_("static storage at address "));
1486 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1487 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1488 if (section_is_overlay (section))
1489 {
1490 load_addr = overlay_unmapped_address (load_addr, section);
1491 printf_filtered (_(",\n -- loaded at "));
1492 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1493 printf_filtered (_(" in overlay section %s"),
1494 section->the_bfd_section->name);
1495 }
1496 break;
1497
1498 case LOC_REGPARM_ADDR:
1499 /* Note comment at LOC_REGISTER. */
1500 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1501 printf_filtered (_("address of an argument in register %s"),
1502 gdbarch_register_name (gdbarch, regno));
1503 break;
1504
1505 case LOC_ARG:
1506 printf_filtered (_("an argument at offset %ld"), val);
1507 break;
1508
1509 case LOC_LOCAL:
1510 printf_filtered (_("a local variable at frame offset %ld"), val);
1511 break;
1512
1513 case LOC_REF_ARG:
1514 printf_filtered (_("a reference argument at offset %ld"), val);
1515 break;
1516
1517 case LOC_TYPEDEF:
1518 printf_filtered (_("a typedef"));
1519 break;
1520
1521 case LOC_BLOCK:
1522 printf_filtered (_("a function at address "));
1523 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1524 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1525 if (section_is_overlay (section))
1526 {
1527 load_addr = overlay_unmapped_address (load_addr, section);
1528 printf_filtered (_(",\n -- loaded at "));
1529 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1530 printf_filtered (_(" in overlay section %s"),
1531 section->the_bfd_section->name);
1532 }
1533 break;
1534
1535 case LOC_UNRESOLVED:
1536 {
1537 struct bound_minimal_symbol msym;
1538
1539 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1540 if (msym.minsym == NULL)
1541 printf_filtered ("unresolved");
1542 else
1543 {
1544 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1545
1546 if (section
1547 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1548 {
1549 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1550 printf_filtered (_("a thread-local variable at offset %s "
1551 "in the thread-local storage for `%s'"),
1552 paddress (gdbarch, load_addr),
1553 objfile_name (section->objfile));
1554 }
1555 else
1556 {
1557 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1558 printf_filtered (_("static storage at address "));
1559 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1560 if (section_is_overlay (section))
1561 {
1562 load_addr = overlay_unmapped_address (load_addr, section);
1563 printf_filtered (_(",\n -- loaded at "));
1564 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1565 printf_filtered (_(" in overlay section %s"),
1566 section->the_bfd_section->name);
1567 }
1568 }
1569 }
1570 }
1571 break;
1572
1573 case LOC_OPTIMIZED_OUT:
1574 printf_filtered (_("optimized out"));
1575 break;
1576
1577 default:
1578 printf_filtered (_("of unknown (botched) type"));
1579 break;
1580 }
1581 printf_filtered (".\n");
1582 }
1583 \f
1584
1585 static void
1586 x_command (const char *exp, int from_tty)
1587 {
1588 struct format_data fmt;
1589 struct value *val;
1590
1591 fmt.format = last_format ? last_format : 'x';
1592 fmt.size = last_size;
1593 fmt.count = 1;
1594 fmt.raw = 0;
1595
1596 /* If there is no expression and no format, use the most recent
1597 count. */
1598 if (exp == nullptr && last_count > 0)
1599 fmt.count = last_count;
1600
1601 if (exp && *exp == '/')
1602 {
1603 const char *tmp = exp + 1;
1604
1605 fmt = decode_format (&tmp, last_format, last_size);
1606 exp = (char *) tmp;
1607 }
1608
1609 last_count = fmt.count;
1610
1611 /* If we have an expression, evaluate it and use it as the address. */
1612
1613 if (exp != 0 && *exp != 0)
1614 {
1615 expression_up expr = parse_expression (exp);
1616 /* Cause expression not to be there any more if this command is
1617 repeated with Newline. But don't clobber a user-defined
1618 command's definition. */
1619 if (from_tty)
1620 set_repeat_arguments ("");
1621 val = evaluate_expression (expr.get ());
1622 if (TYPE_IS_REFERENCE (value_type (val)))
1623 val = coerce_ref (val);
1624 /* In rvalue contexts, such as this, functions are coerced into
1625 pointers to functions. This makes "x/i main" work. */
1626 if (/* last_format == 'i' && */
1627 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1628 && VALUE_LVAL (val) == lval_memory)
1629 next_address = value_address (val);
1630 else
1631 next_address = value_as_address (val);
1632
1633 next_gdbarch = expr->gdbarch;
1634 }
1635
1636 if (!next_gdbarch)
1637 error_no_arg (_("starting display address"));
1638
1639 do_examine (fmt, next_gdbarch, next_address);
1640
1641 /* If the examine succeeds, we remember its size and format for next
1642 time. Set last_size to 'b' for strings. */
1643 if (fmt.format == 's')
1644 last_size = 'b';
1645 else
1646 last_size = fmt.size;
1647 last_format = fmt.format;
1648
1649 /* Set a couple of internal variables if appropriate. */
1650 if (last_examine_value != nullptr)
1651 {
1652 /* Make last address examined available to the user as $_. Use
1653 the correct pointer type. */
1654 struct type *pointer_type
1655 = lookup_pointer_type (value_type (last_examine_value.get ()));
1656 set_internalvar (lookup_internalvar ("_"),
1657 value_from_pointer (pointer_type,
1658 last_examine_address));
1659
1660 /* Make contents of last address examined available to the user
1661 as $__. If the last value has not been fetched from memory
1662 then don't fetch it now; instead mark it by voiding the $__
1663 variable. */
1664 if (value_lazy (last_examine_value.get ()))
1665 clear_internalvar (lookup_internalvar ("__"));
1666 else
1667 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1668 }
1669 }
1670 \f
1671
1672 /* Add an expression to the auto-display chain.
1673 Specify the expression. */
1674
1675 static void
1676 display_command (const char *arg, int from_tty)
1677 {
1678 struct format_data fmt;
1679 struct display *newobj;
1680 const char *exp = arg;
1681
1682 if (exp == 0)
1683 {
1684 do_displays ();
1685 return;
1686 }
1687
1688 if (*exp == '/')
1689 {
1690 exp++;
1691 fmt = decode_format (&exp, 0, 0);
1692 if (fmt.size && fmt.format == 0)
1693 fmt.format = 'x';
1694 if (fmt.format == 'i' || fmt.format == 's')
1695 fmt.size = 'b';
1696 }
1697 else
1698 {
1699 fmt.format = 0;
1700 fmt.size = 0;
1701 fmt.count = 0;
1702 fmt.raw = 0;
1703 }
1704
1705 innermost_block.reset ();
1706 expression_up expr = parse_expression (exp);
1707
1708 newobj = new display ();
1709
1710 newobj->exp_string = xstrdup (exp);
1711 newobj->exp = std::move (expr);
1712 newobj->block = innermost_block.block ();
1713 newobj->pspace = current_program_space;
1714 newobj->number = ++display_number;
1715 newobj->format = fmt;
1716 newobj->enabled_p = 1;
1717 newobj->next = NULL;
1718
1719 if (display_chain == NULL)
1720 display_chain = newobj;
1721 else
1722 {
1723 struct display *last;
1724
1725 for (last = display_chain; last->next != NULL; last = last->next)
1726 ;
1727 last->next = newobj;
1728 }
1729
1730 if (from_tty)
1731 do_one_display (newobj);
1732
1733 dont_repeat ();
1734 }
1735
1736 static void
1737 free_display (struct display *d)
1738 {
1739 xfree (d->exp_string);
1740 delete d;
1741 }
1742
1743 /* Clear out the display_chain. Done when new symtabs are loaded,
1744 since this invalidates the types stored in many expressions. */
1745
1746 void
1747 clear_displays (void)
1748 {
1749 struct display *d;
1750
1751 while ((d = display_chain) != NULL)
1752 {
1753 display_chain = d->next;
1754 free_display (d);
1755 }
1756 }
1757
1758 /* Delete the auto-display DISPLAY. */
1759
1760 static void
1761 delete_display (struct display *display)
1762 {
1763 struct display *d;
1764
1765 gdb_assert (display != NULL);
1766
1767 if (display_chain == display)
1768 display_chain = display->next;
1769
1770 ALL_DISPLAYS (d)
1771 if (d->next == display)
1772 {
1773 d->next = display->next;
1774 break;
1775 }
1776
1777 free_display (display);
1778 }
1779
1780 /* Call FUNCTION on each of the displays whose numbers are given in
1781 ARGS. DATA is passed unmodified to FUNCTION. */
1782
1783 static void
1784 map_display_numbers (const char *args,
1785 void (*function) (struct display *,
1786 void *),
1787 void *data)
1788 {
1789 int num;
1790
1791 if (args == NULL)
1792 error_no_arg (_("one or more display numbers"));
1793
1794 number_or_range_parser parser (args);
1795
1796 while (!parser.finished ())
1797 {
1798 const char *p = parser.cur_tok ();
1799
1800 num = parser.get_number ();
1801 if (num == 0)
1802 warning (_("bad display number at or near '%s'"), p);
1803 else
1804 {
1805 struct display *d, *tmp;
1806
1807 ALL_DISPLAYS_SAFE (d, tmp)
1808 if (d->number == num)
1809 break;
1810 if (d == NULL)
1811 printf_unfiltered (_("No display number %d.\n"), num);
1812 else
1813 function (d, data);
1814 }
1815 }
1816 }
1817
1818 /* Callback for map_display_numbers, that deletes a display. */
1819
1820 static void
1821 do_delete_display (struct display *d, void *data)
1822 {
1823 delete_display (d);
1824 }
1825
1826 /* "undisplay" command. */
1827
1828 static void
1829 undisplay_command (const char *args, int from_tty)
1830 {
1831 if (args == NULL)
1832 {
1833 if (query (_("Delete all auto-display expressions? ")))
1834 clear_displays ();
1835 dont_repeat ();
1836 return;
1837 }
1838
1839 map_display_numbers (args, do_delete_display, NULL);
1840 dont_repeat ();
1841 }
1842
1843 /* Display a single auto-display.
1844 Do nothing if the display cannot be printed in the current context,
1845 or if the display is disabled. */
1846
1847 static void
1848 do_one_display (struct display *d)
1849 {
1850 int within_current_scope;
1851
1852 if (d->enabled_p == 0)
1853 return;
1854
1855 /* The expression carries the architecture that was used at parse time.
1856 This is a problem if the expression depends on architecture features
1857 (e.g. register numbers), and the current architecture is now different.
1858 For example, a display statement like "display/i $pc" is expected to
1859 display the PC register of the current architecture, not the arch at
1860 the time the display command was given. Therefore, we re-parse the
1861 expression if the current architecture has changed. */
1862 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1863 {
1864 d->exp.reset ();
1865 d->block = NULL;
1866 }
1867
1868 if (d->exp == NULL)
1869 {
1870
1871 TRY
1872 {
1873 innermost_block.reset ();
1874 d->exp = parse_expression (d->exp_string);
1875 d->block = innermost_block.block ();
1876 }
1877 CATCH (ex, RETURN_MASK_ALL)
1878 {
1879 /* Can't re-parse the expression. Disable this display item. */
1880 d->enabled_p = 0;
1881 warning (_("Unable to display \"%s\": %s"),
1882 d->exp_string, ex.message);
1883 return;
1884 }
1885 END_CATCH
1886 }
1887
1888 if (d->block)
1889 {
1890 if (d->pspace == current_program_space)
1891 within_current_scope = contained_in (get_selected_block (0), d->block);
1892 else
1893 within_current_scope = 0;
1894 }
1895 else
1896 within_current_scope = 1;
1897 if (!within_current_scope)
1898 return;
1899
1900 scoped_restore save_display_number
1901 = make_scoped_restore (&current_display_number, d->number);
1902
1903 annotate_display_begin ();
1904 printf_filtered ("%d", d->number);
1905 annotate_display_number_end ();
1906 printf_filtered (": ");
1907 if (d->format.size)
1908 {
1909
1910 annotate_display_format ();
1911
1912 printf_filtered ("x/");
1913 if (d->format.count != 1)
1914 printf_filtered ("%d", d->format.count);
1915 printf_filtered ("%c", d->format.format);
1916 if (d->format.format != 'i' && d->format.format != 's')
1917 printf_filtered ("%c", d->format.size);
1918 printf_filtered (" ");
1919
1920 annotate_display_expression ();
1921
1922 puts_filtered (d->exp_string);
1923 annotate_display_expression_end ();
1924
1925 if (d->format.count != 1 || d->format.format == 'i')
1926 printf_filtered ("\n");
1927 else
1928 printf_filtered (" ");
1929
1930 annotate_display_value ();
1931
1932 TRY
1933 {
1934 struct value *val;
1935 CORE_ADDR addr;
1936
1937 val = evaluate_expression (d->exp.get ());
1938 addr = value_as_address (val);
1939 if (d->format.format == 'i')
1940 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1941 do_examine (d->format, d->exp->gdbarch, addr);
1942 }
1943 CATCH (ex, RETURN_MASK_ERROR)
1944 {
1945 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1946 }
1947 END_CATCH
1948 }
1949 else
1950 {
1951 struct value_print_options opts;
1952
1953 annotate_display_format ();
1954
1955 if (d->format.format)
1956 printf_filtered ("/%c ", d->format.format);
1957
1958 annotate_display_expression ();
1959
1960 puts_filtered (d->exp_string);
1961 annotate_display_expression_end ();
1962
1963 printf_filtered (" = ");
1964
1965 annotate_display_expression ();
1966
1967 get_formatted_print_options (&opts, d->format.format);
1968 opts.raw = d->format.raw;
1969
1970 TRY
1971 {
1972 struct value *val;
1973
1974 val = evaluate_expression (d->exp.get ());
1975 print_formatted (val, d->format.size, &opts, gdb_stdout);
1976 }
1977 CATCH (ex, RETURN_MASK_ERROR)
1978 {
1979 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1980 }
1981 END_CATCH
1982
1983 printf_filtered ("\n");
1984 }
1985
1986 annotate_display_end ();
1987
1988 gdb_flush (gdb_stdout);
1989 }
1990
1991 /* Display all of the values on the auto-display chain which can be
1992 evaluated in the current scope. */
1993
1994 void
1995 do_displays (void)
1996 {
1997 struct display *d;
1998
1999 for (d = display_chain; d; d = d->next)
2000 do_one_display (d);
2001 }
2002
2003 /* Delete the auto-display which we were in the process of displaying.
2004 This is done when there is an error or a signal. */
2005
2006 void
2007 disable_display (int num)
2008 {
2009 struct display *d;
2010
2011 for (d = display_chain; d; d = d->next)
2012 if (d->number == num)
2013 {
2014 d->enabled_p = 0;
2015 return;
2016 }
2017 printf_unfiltered (_("No display number %d.\n"), num);
2018 }
2019
2020 void
2021 disable_current_display (void)
2022 {
2023 if (current_display_number >= 0)
2024 {
2025 disable_display (current_display_number);
2026 fprintf_unfiltered (gdb_stderr,
2027 _("Disabling display %d to "
2028 "avoid infinite recursion.\n"),
2029 current_display_number);
2030 }
2031 current_display_number = -1;
2032 }
2033
2034 static void
2035 info_display_command (const char *ignore, int from_tty)
2036 {
2037 struct display *d;
2038
2039 if (!display_chain)
2040 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2041 else
2042 printf_filtered (_("Auto-display expressions now in effect:\n\
2043 Num Enb Expression\n"));
2044
2045 for (d = display_chain; d; d = d->next)
2046 {
2047 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2048 if (d->format.size)
2049 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2050 d->format.format);
2051 else if (d->format.format)
2052 printf_filtered ("/%c ", d->format.format);
2053 puts_filtered (d->exp_string);
2054 if (d->block && !contained_in (get_selected_block (0), d->block))
2055 printf_filtered (_(" (cannot be evaluated in the current context)"));
2056 printf_filtered ("\n");
2057 gdb_flush (gdb_stdout);
2058 }
2059 }
2060
2061 /* Callback fo map_display_numbers, that enables or disables the
2062 passed in display D. */
2063
2064 static void
2065 do_enable_disable_display (struct display *d, void *data)
2066 {
2067 d->enabled_p = *(int *) data;
2068 }
2069
2070 /* Implamentation of both the "disable display" and "enable display"
2071 commands. ENABLE decides what to do. */
2072
2073 static void
2074 enable_disable_display_command (const char *args, int from_tty, int enable)
2075 {
2076 if (args == NULL)
2077 {
2078 struct display *d;
2079
2080 ALL_DISPLAYS (d)
2081 d->enabled_p = enable;
2082 return;
2083 }
2084
2085 map_display_numbers (args, do_enable_disable_display, &enable);
2086 }
2087
2088 /* The "enable display" command. */
2089
2090 static void
2091 enable_display_command (const char *args, int from_tty)
2092 {
2093 enable_disable_display_command (args, from_tty, 1);
2094 }
2095
2096 /* The "disable display" command. */
2097
2098 static void
2099 disable_display_command (const char *args, int from_tty)
2100 {
2101 enable_disable_display_command (args, from_tty, 0);
2102 }
2103
2104 /* display_chain items point to blocks and expressions. Some expressions in
2105 turn may point to symbols.
2106 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2107 obstack_free'd when a shared library is unloaded.
2108 Clear pointers that are about to become dangling.
2109 Both .exp and .block fields will be restored next time we need to display
2110 an item by re-parsing .exp_string field in the new execution context. */
2111
2112 static void
2113 clear_dangling_display_expressions (struct objfile *objfile)
2114 {
2115 struct display *d;
2116 struct program_space *pspace;
2117
2118 /* With no symbol file we cannot have a block or expression from it. */
2119 if (objfile == NULL)
2120 return;
2121 pspace = objfile->pspace;
2122 if (objfile->separate_debug_objfile_backlink)
2123 {
2124 objfile = objfile->separate_debug_objfile_backlink;
2125 gdb_assert (objfile->pspace == pspace);
2126 }
2127
2128 for (d = display_chain; d != NULL; d = d->next)
2129 {
2130 if (d->pspace != pspace)
2131 continue;
2132
2133 if (lookup_objfile_from_block (d->block) == objfile
2134 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2135 {
2136 d->exp.reset ();
2137 d->block = NULL;
2138 }
2139 }
2140 }
2141 \f
2142
2143 /* Print the value in stack frame FRAME of a variable specified by a
2144 struct symbol. NAME is the name to print; if NULL then VAR's print
2145 name will be used. STREAM is the ui_file on which to print the
2146 value. INDENT specifies the number of indent levels to print
2147 before printing the variable name.
2148
2149 This function invalidates FRAME. */
2150
2151 void
2152 print_variable_and_value (const char *name, struct symbol *var,
2153 struct frame_info *frame,
2154 struct ui_file *stream, int indent)
2155 {
2156
2157 if (!name)
2158 name = SYMBOL_PRINT_NAME (var);
2159
2160 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2161 TRY
2162 {
2163 struct value *val;
2164 struct value_print_options opts;
2165
2166 /* READ_VAR_VALUE needs a block in order to deal with non-local
2167 references (i.e. to handle nested functions). In this context, we
2168 print variables that are local to this frame, so we can avoid passing
2169 a block to it. */
2170 val = read_var_value (var, NULL, frame);
2171 get_user_print_options (&opts);
2172 opts.deref_ref = 1;
2173 common_val_print (val, stream, indent, &opts, current_language);
2174
2175 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2176 function. */
2177 frame = NULL;
2178 }
2179 CATCH (except, RETURN_MASK_ERROR)
2180 {
2181 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2182 except.message);
2183 }
2184 END_CATCH
2185
2186 fprintf_filtered (stream, "\n");
2187 }
2188
2189 /* Subroutine of ui_printf to simplify it.
2190 Print VALUE to STREAM using FORMAT.
2191 VALUE is a C-style string on the target. */
2192
2193 static void
2194 printf_c_string (struct ui_file *stream, const char *format,
2195 struct value *value)
2196 {
2197 gdb_byte *str;
2198 CORE_ADDR tem;
2199 int j;
2200
2201 tem = value_as_address (value);
2202 if (tem == 0)
2203 {
2204 fprintf_filtered (stream, format, "(null)");
2205 return;
2206 }
2207
2208 /* This is a %s argument. Find the length of the string. */
2209 for (j = 0;; j++)
2210 {
2211 gdb_byte c;
2212
2213 QUIT;
2214 read_memory (tem + j, &c, 1);
2215 if (c == 0)
2216 break;
2217 }
2218
2219 /* Copy the string contents into a string inside GDB. */
2220 str = (gdb_byte *) alloca (j + 1);
2221 if (j != 0)
2222 read_memory (tem, str, j);
2223 str[j] = 0;
2224
2225 fprintf_filtered (stream, format, (char *) str);
2226 }
2227
2228 /* Subroutine of ui_printf to simplify it.
2229 Print VALUE to STREAM using FORMAT.
2230 VALUE is a wide C-style string on the target. */
2231
2232 static void
2233 printf_wide_c_string (struct ui_file *stream, const char *format,
2234 struct value *value)
2235 {
2236 gdb_byte *str;
2237 CORE_ADDR tem;
2238 int j;
2239 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2240 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2241 struct type *wctype = lookup_typename (current_language, gdbarch,
2242 "wchar_t", NULL, 0);
2243 int wcwidth = TYPE_LENGTH (wctype);
2244 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2245
2246 tem = value_as_address (value);
2247 if (tem == 0)
2248 {
2249 fprintf_filtered (stream, format, "(null)");
2250 return;
2251 }
2252
2253 /* This is a %s argument. Find the length of the string. */
2254 for (j = 0;; j += wcwidth)
2255 {
2256 QUIT;
2257 read_memory (tem + j, buf, wcwidth);
2258 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2259 break;
2260 }
2261
2262 /* Copy the string contents into a string inside GDB. */
2263 str = (gdb_byte *) alloca (j + wcwidth);
2264 if (j != 0)
2265 read_memory (tem, str, j);
2266 memset (&str[j], 0, wcwidth);
2267
2268 auto_obstack output;
2269
2270 convert_between_encodings (target_wide_charset (gdbarch),
2271 host_charset (),
2272 str, j, wcwidth,
2273 &output, translit_char);
2274 obstack_grow_str0 (&output, "");
2275
2276 fprintf_filtered (stream, format, obstack_base (&output));
2277 }
2278
2279 /* Subroutine of ui_printf to simplify it.
2280 Print VALUE, a floating point value, to STREAM using FORMAT. */
2281
2282 static void
2283 printf_floating (struct ui_file *stream, const char *format,
2284 struct value *value, enum argclass argclass)
2285 {
2286 /* Parameter data. */
2287 struct type *param_type = value_type (value);
2288 struct gdbarch *gdbarch = get_type_arch (param_type);
2289 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2290
2291 /* Determine target type corresponding to the format string. */
2292 struct type *fmt_type;
2293 switch (argclass)
2294 {
2295 case double_arg:
2296 fmt_type = builtin_type (gdbarch)->builtin_double;
2297 break;
2298 case long_double_arg:
2299 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2300 break;
2301 case dec32float_arg:
2302 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2303 break;
2304 case dec64float_arg:
2305 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2306 break;
2307 case dec128float_arg:
2308 fmt_type = builtin_type (gdbarch)->builtin_declong;
2309 break;
2310 default:
2311 gdb_assert_not_reached ("unexpected argument class");
2312 }
2313
2314 /* To match the traditional GDB behavior, the conversion is
2315 done differently depending on the type of the parameter:
2316
2317 - if the parameter has floating-point type, it's value
2318 is converted to the target type;
2319
2320 - otherwise, if the parameter has a type that is of the
2321 same size as a built-in floating-point type, the value
2322 bytes are interpreted as if they were of that type, and
2323 then converted to the target type (this is not done for
2324 decimal floating-point argument classes);
2325
2326 - otherwise, if the source value has an integer value,
2327 it's value is converted to the target type;
2328
2329 - otherwise, an error is raised.
2330
2331 In either case, the result of the conversion is a byte buffer
2332 formatted in the target format for the target type. */
2333
2334 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2335 {
2336 param_type = float_type_from_length (param_type);
2337 if (param_type != value_type (value))
2338 value = value_from_contents (param_type, value_contents (value));
2339 }
2340
2341 value = value_cast (fmt_type, value);
2342
2343 /* Convert the value to a string and print it. */
2344 std::string str
2345 = target_float_to_string (value_contents (value), fmt_type, format);
2346 fputs_filtered (str.c_str (), stream);
2347 }
2348
2349 /* Subroutine of ui_printf to simplify it.
2350 Print VALUE, a target pointer, to STREAM using FORMAT. */
2351
2352 static void
2353 printf_pointer (struct ui_file *stream, const char *format,
2354 struct value *value)
2355 {
2356 /* We avoid the host's %p because pointers are too
2357 likely to be the wrong size. The only interesting
2358 modifier for %p is a width; extract that, and then
2359 handle %p as glibc would: %#x or a literal "(nil)". */
2360
2361 const char *p;
2362 char *fmt, *fmt_p;
2363 #ifdef PRINTF_HAS_LONG_LONG
2364 long long val = value_as_long (value);
2365 #else
2366 long val = value_as_long (value);
2367 #endif
2368
2369 fmt = (char *) alloca (strlen (format) + 5);
2370
2371 /* Copy up to the leading %. */
2372 p = format;
2373 fmt_p = fmt;
2374 while (*p)
2375 {
2376 int is_percent = (*p == '%');
2377
2378 *fmt_p++ = *p++;
2379 if (is_percent)
2380 {
2381 if (*p == '%')
2382 *fmt_p++ = *p++;
2383 else
2384 break;
2385 }
2386 }
2387
2388 if (val != 0)
2389 *fmt_p++ = '#';
2390
2391 /* Copy any width or flags. Only the "-" flag is valid for pointers
2392 -- see the format_pieces constructor. */
2393 while (*p == '-' || (*p >= '0' && *p < '9'))
2394 *fmt_p++ = *p++;
2395
2396 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2397 if (val != 0)
2398 {
2399 #ifdef PRINTF_HAS_LONG_LONG
2400 *fmt_p++ = 'l';
2401 #endif
2402 *fmt_p++ = 'l';
2403 *fmt_p++ = 'x';
2404 *fmt_p++ = '\0';
2405 fprintf_filtered (stream, fmt, val);
2406 }
2407 else
2408 {
2409 *fmt_p++ = 's';
2410 *fmt_p++ = '\0';
2411 fprintf_filtered (stream, fmt, "(nil)");
2412 }
2413 }
2414
2415 /* printf "printf format string" ARG to STREAM. */
2416
2417 static void
2418 ui_printf (const char *arg, struct ui_file *stream)
2419 {
2420 const char *s = arg;
2421 std::vector<struct value *> val_args;
2422
2423 if (s == 0)
2424 error_no_arg (_("format-control string and values to print"));
2425
2426 s = skip_spaces (s);
2427
2428 /* A format string should follow, enveloped in double quotes. */
2429 if (*s++ != '"')
2430 error (_("Bad format string, missing '\"'."));
2431
2432 format_pieces fpieces (&s);
2433
2434 if (*s++ != '"')
2435 error (_("Bad format string, non-terminated '\"'."));
2436
2437 s = skip_spaces (s);
2438
2439 if (*s != ',' && *s != 0)
2440 error (_("Invalid argument syntax"));
2441
2442 if (*s == ',')
2443 s++;
2444 s = skip_spaces (s);
2445
2446 {
2447 int nargs_wanted;
2448 int i;
2449 const char *current_substring;
2450
2451 nargs_wanted = 0;
2452 for (auto &&piece : fpieces)
2453 if (piece.argclass != literal_piece)
2454 ++nargs_wanted;
2455
2456 /* Now, parse all arguments and evaluate them.
2457 Store the VALUEs in VAL_ARGS. */
2458
2459 while (*s != '\0')
2460 {
2461 const char *s1;
2462
2463 s1 = s;
2464 val_args.push_back (parse_to_comma_and_eval (&s1));
2465
2466 s = s1;
2467 if (*s == ',')
2468 s++;
2469 }
2470
2471 if (val_args.size () != nargs_wanted)
2472 error (_("Wrong number of arguments for specified format-string"));
2473
2474 /* Now actually print them. */
2475 i = 0;
2476 for (auto &&piece : fpieces)
2477 {
2478 current_substring = piece.string;
2479 switch (piece.argclass)
2480 {
2481 case string_arg:
2482 printf_c_string (stream, current_substring, val_args[i]);
2483 break;
2484 case wide_string_arg:
2485 printf_wide_c_string (stream, current_substring, val_args[i]);
2486 break;
2487 case wide_char_arg:
2488 {
2489 struct gdbarch *gdbarch
2490 = get_type_arch (value_type (val_args[i]));
2491 struct type *wctype = lookup_typename (current_language, gdbarch,
2492 "wchar_t", NULL, 0);
2493 struct type *valtype;
2494 const gdb_byte *bytes;
2495
2496 valtype = value_type (val_args[i]);
2497 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2498 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2499 error (_("expected wchar_t argument for %%lc"));
2500
2501 bytes = value_contents (val_args[i]);
2502
2503 auto_obstack output;
2504
2505 convert_between_encodings (target_wide_charset (gdbarch),
2506 host_charset (),
2507 bytes, TYPE_LENGTH (valtype),
2508 TYPE_LENGTH (valtype),
2509 &output, translit_char);
2510 obstack_grow_str0 (&output, "");
2511
2512 fprintf_filtered (stream, current_substring,
2513 obstack_base (&output));
2514 }
2515 break;
2516 case long_long_arg:
2517 #ifdef PRINTF_HAS_LONG_LONG
2518 {
2519 long long val = value_as_long (val_args[i]);
2520
2521 fprintf_filtered (stream, current_substring, val);
2522 break;
2523 }
2524 #else
2525 error (_("long long not supported in printf"));
2526 #endif
2527 case int_arg:
2528 {
2529 int val = value_as_long (val_args[i]);
2530
2531 fprintf_filtered (stream, current_substring, val);
2532 break;
2533 }
2534 case long_arg:
2535 {
2536 long val = value_as_long (val_args[i]);
2537
2538 fprintf_filtered (stream, current_substring, val);
2539 break;
2540 }
2541 /* Handles floating-point values. */
2542 case double_arg:
2543 case long_double_arg:
2544 case dec32float_arg:
2545 case dec64float_arg:
2546 case dec128float_arg:
2547 printf_floating (stream, current_substring, val_args[i],
2548 piece.argclass);
2549 break;
2550 case ptr_arg:
2551 printf_pointer (stream, current_substring, val_args[i]);
2552 break;
2553 case literal_piece:
2554 /* Print a portion of the format string that has no
2555 directives. Note that this will not include any
2556 ordinary %-specs, but it might include "%%". That is
2557 why we use printf_filtered and not puts_filtered here.
2558 Also, we pass a dummy argument because some platforms
2559 have modified GCC to include -Wformat-security by
2560 default, which will warn here if there is no
2561 argument. */
2562 fprintf_filtered (stream, current_substring, 0);
2563 break;
2564 default:
2565 internal_error (__FILE__, __LINE__,
2566 _("failed internal consistency check"));
2567 }
2568 /* Maybe advance to the next argument. */
2569 if (piece.argclass != literal_piece)
2570 ++i;
2571 }
2572 }
2573 }
2574
2575 /* Implement the "printf" command. */
2576
2577 static void
2578 printf_command (const char *arg, int from_tty)
2579 {
2580 ui_printf (arg, gdb_stdout);
2581 gdb_flush (gdb_stdout);
2582 }
2583
2584 /* Implement the "eval" command. */
2585
2586 static void
2587 eval_command (const char *arg, int from_tty)
2588 {
2589 string_file stb;
2590
2591 ui_printf (arg, &stb);
2592
2593 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2594
2595 execute_command (expanded.c_str (), from_tty);
2596 }
2597
2598 void
2599 _initialize_printcmd (void)
2600 {
2601 struct cmd_list_element *c;
2602
2603 current_display_number = -1;
2604
2605 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2606
2607 add_info ("address", info_address_command,
2608 _("Describe where symbol SYM is stored."));
2609
2610 add_info ("symbol", info_symbol_command, _("\
2611 Describe what symbol is at location ADDR.\n\
2612 Only for symbols with fixed locations (global or static scope)."));
2613
2614 add_com ("x", class_vars, x_command, _("\
2615 Examine memory: x/FMT ADDRESS.\n\
2616 ADDRESS is an expression for the memory address to examine.\n\
2617 FMT is a repeat count followed by a format letter and a size letter.\n\
2618 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2619 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2620 and z(hex, zero padded on the left).\n\
2621 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2622 The specified number of objects of the specified size are printed\n\
2623 according to the format. If a negative number is specified, memory is\n\
2624 examined backward from the address.\n\n\
2625 Defaults for format and size letters are those previously used.\n\
2626 Default count is 1. Default address is following last thing printed\n\
2627 with this command or \"print\"."));
2628
2629 #if 0
2630 add_com ("whereis", class_vars, whereis_command,
2631 _("Print line number and file of definition of variable."));
2632 #endif
2633
2634 add_info ("display", info_display_command, _("\
2635 Expressions to display when program stops, with code numbers."));
2636
2637 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2638 Cancel some expressions to be displayed when program stops.\n\
2639 Arguments are the code numbers of the expressions to stop displaying.\n\
2640 No argument means cancel all automatic-display expressions.\n\
2641 \"delete display\" has the same effect as this command.\n\
2642 Do \"info display\" to see current list of code numbers."),
2643 &cmdlist);
2644
2645 add_com ("display", class_vars, display_command, _("\
2646 Print value of expression EXP each time the program stops.\n\
2647 /FMT may be used before EXP as in the \"print\" command.\n\
2648 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2649 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2650 and examining is done as in the \"x\" command.\n\n\
2651 With no argument, display all currently requested auto-display expressions.\n\
2652 Use \"undisplay\" to cancel display requests previously made."));
2653
2654 add_cmd ("display", class_vars, enable_display_command, _("\
2655 Enable some expressions to be displayed when program stops.\n\
2656 Arguments are the code numbers of the expressions to resume displaying.\n\
2657 No argument means enable all automatic-display expressions.\n\
2658 Do \"info display\" to see current list of code numbers."), &enablelist);
2659
2660 add_cmd ("display", class_vars, disable_display_command, _("\
2661 Disable some expressions to be displayed when program stops.\n\
2662 Arguments are the code numbers of the expressions to stop displaying.\n\
2663 No argument means disable all automatic-display expressions.\n\
2664 Do \"info display\" to see current list of code numbers."), &disablelist);
2665
2666 add_cmd ("display", class_vars, undisplay_command, _("\
2667 Cancel some expressions to be displayed when program stops.\n\
2668 Arguments are the code numbers of the expressions to stop displaying.\n\
2669 No argument means cancel all automatic-display expressions.\n\
2670 Do \"info display\" to see current list of code numbers."), &deletelist);
2671
2672 add_com ("printf", class_vars, printf_command, _("\
2673 Formatted printing, like the C \"printf\" function.\n\
2674 Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2675 This supports most C printf format specifications, like %s, %d, etc."));
2676
2677 add_com ("output", class_vars, output_command, _("\
2678 Like \"print\" but don't put in value history and don't print newline.\n\
2679 This is useful in user-defined commands."));
2680
2681 add_prefix_cmd ("set", class_vars, set_command, _("\
2682 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2683 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2684 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2685 with $), a register (a few standard names starting with $), or an actual\n\
2686 variable in the program being debugged. EXP is any valid expression.\n\
2687 Use \"set variable\" for variables with names identical to set subcommands.\n\
2688 \n\
2689 With a subcommand, this command modifies parts of the gdb environment.\n\
2690 You can see these environment settings with the \"show\" command."),
2691 &setlist, "set ", 1, &cmdlist);
2692 if (dbx_commands)
2693 add_com ("assign", class_vars, set_command, _("\
2694 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2695 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2696 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2697 with $), a register (a few standard names starting with $), or an actual\n\
2698 variable in the program being debugged. EXP is any valid expression.\n\
2699 Use \"set variable\" for variables with names identical to set subcommands.\n\
2700 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2701 You can see these environment settings with the \"show\" command."));
2702
2703 /* "call" is the same as "set", but handy for dbx users to call fns. */
2704 c = add_com ("call", class_vars, call_command, _("\
2705 Call a function in the program.\n\
2706 The argument is the function name and arguments, in the notation of the\n\
2707 current working language. The result is printed and saved in the value\n\
2708 history, if it is not void."));
2709 set_cmd_completer (c, expression_completer);
2710
2711 add_cmd ("variable", class_vars, set_command, _("\
2712 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2713 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2714 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2715 with $), a register (a few standard names starting with $), or an actual\n\
2716 variable in the program being debugged. EXP is any valid expression.\n\
2717 This may usually be abbreviated to simply \"set\"."),
2718 &setlist);
2719 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2720
2721 c = add_com ("print", class_vars, print_command, _("\
2722 Print value of expression EXP.\n\
2723 Variables accessible are those of the lexical environment of the selected\n\
2724 stack frame, plus all those whose scope is global or an entire file.\n\
2725 \n\
2726 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2727 $$NUM refers to NUM'th value back from the last one.\n\
2728 Names starting with $ refer to registers (with the values they would have\n\
2729 if the program were to return to the stack frame now selected, restoring\n\
2730 all registers saved by frames farther in) or else to debugger\n\
2731 \"convenience\" variables (any such name not a known register).\n\
2732 Use assignment expressions to give values to convenience variables.\n\
2733 \n\
2734 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2735 @ is a binary operator for treating consecutive data objects\n\
2736 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2737 element is FOO, whose second element is stored in the space following\n\
2738 where FOO is stored, etc. FOO must be an expression whose value\n\
2739 resides in memory.\n\
2740 \n\
2741 EXP may be preceded with /FMT, where FMT is a format letter\n\
2742 but no count or size letter (see \"x\" command)."));
2743 set_cmd_completer (c, expression_completer);
2744 add_com_alias ("p", "print", class_vars, 1);
2745 add_com_alias ("inspect", "print", class_vars, 1);
2746
2747 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2748 &max_symbolic_offset, _("\
2749 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2750 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2751 Tell GDB to only display the symbolic form of an address if the\n\
2752 offset between the closest earlier symbol and the address is less than\n\
2753 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2754 to always print the symbolic form of an address if any symbol precedes\n\
2755 it. Zero is equivalent to \"unlimited\"."),
2756 NULL,
2757 show_max_symbolic_offset,
2758 &setprintlist, &showprintlist);
2759 add_setshow_boolean_cmd ("symbol-filename", no_class,
2760 &print_symbol_filename, _("\
2761 Set printing of source filename and line number with <symbol>."), _("\
2762 Show printing of source filename and line number with <symbol>."), NULL,
2763 NULL,
2764 show_print_symbol_filename,
2765 &setprintlist, &showprintlist);
2766
2767 add_com ("eval", no_class, eval_command, _("\
2768 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2769 a command line, and call it."));
2770 }
This page took 0.09042 seconds and 4 git commands to generate.