7d0f3a517f825a2e4bc1393e6b32112dd8da82c4
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "language.h"
28 #include "expression.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "breakpoint.h"
33 #include "demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38
39 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
40 extern int addressprint; /* Whether to print hex addresses in HLL " */
41
42 struct format_data
43 {
44 int count;
45 char format;
46 char size;
47 };
48
49 /* Last specified output format. */
50
51 static char last_format = 'x';
52
53 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
54
55 static char last_size = 'w';
56
57 /* Default address to examine next. */
58
59 static CORE_ADDR next_address;
60
61 /* Default section to examine next. */
62
63 static asection *next_section;
64
65 /* Last address examined. */
66
67 static CORE_ADDR last_examine_address;
68
69 /* Contents of last address examined.
70 This is not valid past the end of the `x' command! */
71
72 static value_ptr last_examine_value;
73
74 /* Largest offset between a symbolic value and an address, that will be
75 printed as `0x1234 <symbol+offset>'. */
76
77 static unsigned int max_symbolic_offset = UINT_MAX;
78
79 /* Append the source filename and linenumber of the symbol when
80 printing a symbolic value as `<symbol at filename:linenum>' if set. */
81 static int print_symbol_filename = 0;
82
83 /* Number of auto-display expression currently being displayed.
84 So that we can disable it if we get an error or a signal within it.
85 -1 when not doing one. */
86
87 int current_display_number;
88
89 /* Flag to low-level print routines that this value is being printed
90 in an epoch window. We'd like to pass this as a parameter, but
91 every routine would need to take it. Perhaps we can encapsulate
92 this in the I/O stream once we have GNU stdio. */
93
94 int inspect_it = 0;
95
96 struct display
97 {
98 /* Chain link to next auto-display item. */
99 struct display *next;
100 /* Expression to be evaluated and displayed. */
101 struct expression *exp;
102 /* Item number of this auto-display item. */
103 int number;
104 /* Display format specified. */
105 struct format_data format;
106 /* Innermost block required by this expression when evaluated */
107 struct block *block;
108 /* Status of this display (enabled or disabled) */
109 enum enable status;
110 };
111
112 /* Chain of expressions whose values should be displayed
113 automatically each time the program stops. */
114
115 static struct display *display_chain;
116
117 static int display_number;
118
119 /* Pointer to the target-dependent disassembly function. */
120
121 int (*tm_print_insn) PARAMS ((bfd_vma, disassemble_info *));
122 disassemble_info tm_print_insn_info;
123
124 /* Functions exported for general use: */
125
126 void output_command PARAMS ((char *, int));
127
128
129 /* Prototypes for local functions. */
130
131 static void delete_display PARAMS ((int));
132
133 static void enable_display PARAMS ((char *, int));
134
135 static void disable_display_command PARAMS ((char *, int));
136
137 static void disassemble_command PARAMS ((char *, int));
138
139 static void printf_command PARAMS ((char *, int));
140
141 static void print_frame_nameless_args PARAMS ((struct frame_info *, long,
142 int, int, GDB_FILE *));
143
144 static void display_info PARAMS ((char *, int));
145
146 static void do_one_display PARAMS ((struct display *));
147
148 static void undisplay_command PARAMS ((char *, int));
149
150 static void free_display PARAMS ((struct display *));
151
152 static void display_command PARAMS ((char *, int));
153
154 void x_command PARAMS ((char *, int));
155
156 static void address_info PARAMS ((char *, int));
157
158 static void set_command PARAMS ((char *, int));
159
160 static void call_command PARAMS ((char *, int));
161
162 static void inspect_command PARAMS ((char *, int));
163
164 static void print_command PARAMS ((char *, int));
165
166 static void print_command_1 PARAMS ((char *, int, int));
167
168 static void validate_format PARAMS ((struct format_data, char *));
169
170 static void do_examine PARAMS ((struct format_data, CORE_ADDR addr, asection *section));
171
172 static void print_formatted PARAMS ((value_ptr, int, int));
173
174 static struct format_data decode_format PARAMS ((char **, int, int));
175
176 static int print_insn PARAMS ((CORE_ADDR, GDB_FILE *));
177
178 \f
179 /* Decode a format specification. *STRING_PTR should point to it.
180 OFORMAT and OSIZE are used as defaults for the format and size
181 if none are given in the format specification.
182 If OSIZE is zero, then the size field of the returned value
183 should be set only if a size is explicitly specified by the
184 user.
185 The structure returned describes all the data
186 found in the specification. In addition, *STRING_PTR is advanced
187 past the specification and past all whitespace following it. */
188
189 static struct format_data
190 decode_format (string_ptr, oformat, osize)
191 char **string_ptr;
192 int oformat;
193 int osize;
194 {
195 struct format_data val;
196 register char *p = *string_ptr;
197
198 val.format = '?';
199 val.size = '?';
200 val.count = 1;
201
202 if (*p >= '0' && *p <= '9')
203 val.count = atoi (p);
204 while (*p >= '0' && *p <= '9') p++;
205
206 /* Now process size or format letters that follow. */
207
208 while (1)
209 {
210 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
211 val.size = *p++;
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 while (*p == ' ' || *p == '\t') p++;
219 *string_ptr = p;
220
221 /* Set defaults for format and size if not specified. */
222 if (val.format == '?')
223 {
224 if (val.size == '?')
225 {
226 /* Neither has been specified. */
227 val.format = oformat;
228 val.size = osize;
229 }
230 else
231 /* If a size is specified, any format makes a reasonable
232 default except 'i'. */
233 val.format = oformat == 'i' ? 'x' : oformat;
234 }
235 else if (val.size == '?')
236 switch (val.format)
237 {
238 case 'a':
239 case 's':
240 /* Pick the appropriate size for an address. */
241 if (TARGET_PTR_BIT == 64)
242 val.size = osize ? 'g' : osize;
243 else if (TARGET_PTR_BIT == 32)
244 val.size = osize ? 'w' : osize;
245 else if (TARGET_PTR_BIT == 16)
246 val.size = osize ? 'h' : osize;
247 else
248 /* Bad value for TARGET_PTR_BIT */
249 abort ();
250 break;
251 case 'f':
252 /* Floating point has to be word or giantword. */
253 if (osize == 'w' || osize == 'g')
254 val.size = osize;
255 else
256 /* Default it to giantword if the last used size is not
257 appropriate. */
258 val.size = osize ? 'g' : osize;
259 break;
260 case 'c':
261 /* Characters default to one byte. */
262 val.size = osize ? 'b' : osize;
263 break;
264 default:
265 /* The default is the size most recently specified. */
266 val.size = osize;
267 }
268
269 return val;
270 }
271 \f
272 /* Print value VAL on gdb_stdout according to FORMAT, a letter or 0.
273 Do not end with a newline.
274 0 means print VAL according to its own type.
275 SIZE is the letter for the size of datum being printed.
276 This is used to pad hex numbers so they line up. */
277
278 static void
279 print_formatted (val, format, size)
280 register value_ptr val;
281 register int format;
282 int size;
283 {
284 struct type *type = check_typedef (VALUE_TYPE (val));
285 int len = TYPE_LENGTH (type);
286
287 if (VALUE_LVAL (val) == lval_memory)
288 {
289 next_address = VALUE_ADDRESS (val) + len;
290 next_section = VALUE_BFD_SECTION (val);
291 }
292
293 switch (format)
294 {
295 case 's':
296 /* FIXME: Need to handle wchar_t's here... */
297 next_address = VALUE_ADDRESS (val)
298 + val_print_string (VALUE_ADDRESS (val), -1, 1, gdb_stdout);
299 next_section = VALUE_BFD_SECTION (val);
300 break;
301
302 case 'i':
303 /* The old comment says
304 "Force output out, print_insn not using _filtered".
305 I'm not completely sure what that means, I suspect most print_insn
306 now do use _filtered, so I guess it's obsolete. */
307 /* We often wrap here if there are long symbolic names. */
308 wrap_here (" ");
309 next_address = VALUE_ADDRESS (val)
310 + print_insn (VALUE_ADDRESS (val), gdb_stdout);
311 next_section = VALUE_BFD_SECTION (val);
312 break;
313
314 default:
315 if (format == 0
316 || TYPE_CODE (type) == TYPE_CODE_ARRAY
317 || TYPE_CODE (type) == TYPE_CODE_STRING
318 || TYPE_CODE (type) == TYPE_CODE_STRUCT
319 || TYPE_CODE (type) == TYPE_CODE_UNION)
320 value_print (val, gdb_stdout, format, Val_pretty_default);
321 else
322 print_scalar_formatted (VALUE_CONTENTS (val), type,
323 format, size, gdb_stdout);
324 }
325 }
326
327 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
328 according to letters FORMAT and SIZE on STREAM.
329 FORMAT may not be zero. Formats s and i are not supported at this level.
330
331 This is how the elements of an array or structure are printed
332 with a format. */
333
334 void
335 print_scalar_formatted (valaddr, type, format, size, stream)
336 char *valaddr;
337 struct type *type;
338 int format;
339 int size;
340 GDB_FILE *stream;
341 {
342 LONGEST val_long;
343 unsigned int len = TYPE_LENGTH (type);
344
345 if (len > sizeof (LONGEST)
346 && (format == 't'
347 || format == 'c'
348 || format == 'o'
349 || format == 'u'
350 || format == 'd'
351 || format == 'x'))
352 {
353 if (! TYPE_UNSIGNED (type)
354 || ! extract_long_unsigned_integer (valaddr, len, &val_long))
355 {
356 /* We can't print it normally, but we can print it in hex.
357 Printing it in the wrong radix is more useful than saying
358 "use /x, you dummy". */
359 /* FIXME: we could also do octal or binary if that was the
360 desired format. */
361 /* FIXME: we should be using the size field to give us a
362 minimum field width to print. */
363 val_print_type_code_int (type, valaddr, stream);
364 return;
365 }
366
367 /* If we get here, extract_long_unsigned_integer set val_long. */
368 }
369 else if (format != 'f')
370 val_long = unpack_long (type, valaddr);
371
372 /* If we are printing it as unsigned, truncate it in case it is actually
373 a negative signed value (e.g. "print/u (short)-1" should print 65535
374 (if shorts are 16 bits) instead of 4294967295). */
375 if (format != 'd')
376 {
377 if (len < sizeof (LONGEST))
378 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
379 }
380
381 switch (format)
382 {
383 case 'x':
384 if (!size)
385 {
386 /* no size specified, like in print. Print varying # of digits. */
387 print_longest (stream, 'x', 1, val_long);
388 }
389 else
390 switch (size)
391 {
392 case 'b':
393 case 'h':
394 case 'w':
395 case 'g':
396 print_longest (stream, size, 1, val_long);
397 break;
398 default:
399 error ("Undefined output size \"%c\".", size);
400 }
401 break;
402
403 case 'd':
404 print_longest (stream, 'd', 1, val_long);
405 break;
406
407 case 'u':
408 print_longest (stream, 'u', 0, val_long);
409 break;
410
411 case 'o':
412 if (val_long)
413 print_longest (stream, 'o', 1, val_long);
414 else
415 fprintf_filtered (stream, "0");
416 break;
417
418 case 'a':
419 print_address (unpack_pointer (type, valaddr), stream);
420 break;
421
422 case 'c':
423 value_print (value_from_longest (builtin_type_char, val_long), stream, 0,
424 Val_pretty_default);
425 break;
426
427 case 'f':
428 if (len == sizeof (float))
429 type = builtin_type_float;
430 else if (len == sizeof (double))
431 type = builtin_type_double;
432 print_floating (valaddr, type, stream);
433 break;
434
435 case 0:
436 abort ();
437
438 case 't':
439 /* Binary; 't' stands for "two". */
440 {
441 char bits[8*(sizeof val_long) + 1];
442 char *cp = bits;
443 int width;
444
445 if (!size)
446 width = 8*(sizeof val_long);
447 else
448 switch (size)
449 {
450 case 'b':
451 width = 8;
452 break;
453 case 'h':
454 width = 16;
455 break;
456 case 'w':
457 width = 32;
458 break;
459 case 'g':
460 width = 64;
461 break;
462 default:
463 error ("Undefined output size \"%c\".", size);
464 }
465
466 bits[width] = '\0';
467 while (width-- > 0)
468 {
469 bits[width] = (val_long & 1) ? '1' : '0';
470 val_long >>= 1;
471 }
472 if (!size)
473 {
474 while (*cp && *cp == '0')
475 cp++;
476 if (*cp == '\0')
477 cp--;
478 }
479 fprintf_filtered (stream, local_binary_format_prefix());
480 fprintf_filtered (stream, cp);
481 fprintf_filtered (stream, local_binary_format_suffix());
482 }
483 break;
484
485 default:
486 error ("Undefined output format \"%c\".", format);
487 }
488 }
489
490 /* Specify default address for `x' command.
491 `info lines' uses this. */
492
493 void
494 set_next_address (addr)
495 CORE_ADDR addr;
496 {
497 next_address = addr;
498
499 /* Make address available to the user as $_. */
500 set_internalvar (lookup_internalvar ("_"),
501 value_from_longest (lookup_pointer_type (builtin_type_void),
502 (LONGEST) addr));
503 }
504
505 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
506 after LEADIN. Print nothing if no symbolic name is found nearby.
507 Optionally also print source file and line number, if available.
508 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
509 or to interpret it as a possible C++ name and convert it back to source
510 form. However note that DO_DEMANGLE can be overridden by the specific
511 settings of the demangle and asm_demangle variables. */
512
513 void
514 print_address_symbolic (addr, stream, do_demangle, leadin)
515 CORE_ADDR addr;
516 GDB_FILE *stream;
517 int do_demangle;
518 char *leadin;
519 {
520 struct minimal_symbol *msymbol;
521 struct symbol *symbol;
522 struct symtab *symtab = 0;
523 CORE_ADDR name_location = 0;
524 char *name = "";
525 asection *section = 0;
526 int unmapped = 0;
527
528 /* Determine if the address is in an overlay, and whether it is mapped. */
529 if (overlay_debugging)
530 {
531 section = find_pc_overlay (addr);
532 if (pc_in_unmapped_range (addr, section))
533 {
534 unmapped = 1;
535 addr = overlay_mapped_address (addr, section);
536 }
537 }
538
539 /* On some targets, add in extra "flag" bits to PC for
540 disassembly. This should ensure that "rounding errors" in
541 symbol addresses that are masked for disassembly favour the
542 the correct symbol. */
543
544 #ifdef GDB_TARGET_UNMASK_DISAS_PC
545 addr = GDB_TARGET_UNMASK_DISAS_PC (addr);
546 #endif
547
548 /* First try to find the address in the symbol table, then
549 in the minsyms. Take the closest one. */
550
551 /* This is defective in the sense that it only finds text symbols. So
552 really this is kind of pointless--we should make sure that the
553 minimal symbols have everything we need (by changing that we could
554 save some memory, but for many debug format--ELF/DWARF or
555 anything/stabs--it would be inconvenient to eliminate those minimal
556 symbols anyway). */
557 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
558 symbol = find_pc_sect_function (addr, section);
559
560 if (symbol)
561 {
562 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
563 if (do_demangle)
564 name = SYMBOL_SOURCE_NAME (symbol);
565 else
566 name = SYMBOL_LINKAGE_NAME (symbol);
567 }
568
569 if (msymbol != NULL)
570 {
571 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
572 {
573 /* The msymbol is closer to the address than the symbol;
574 use the msymbol instead. */
575 symbol = 0;
576 symtab = 0;
577 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
578 if (do_demangle)
579 name = SYMBOL_SOURCE_NAME (msymbol);
580 else
581 name = SYMBOL_LINKAGE_NAME (msymbol);
582 }
583 }
584 if (symbol == NULL && msymbol == NULL)
585 return;
586
587 /* On some targets, mask out extra "flag" bits from PC for handsome
588 disassembly. */
589
590 #ifdef GDB_TARGET_MASK_DISAS_PC
591 name_location = GDB_TARGET_MASK_DISAS_PC (name_location);
592 addr = GDB_TARGET_MASK_DISAS_PC (addr);
593 #endif
594
595 /* If the nearest symbol is too far away, don't print anything symbolic. */
596
597 /* For when CORE_ADDR is larger than unsigned int, we do math in
598 CORE_ADDR. But when we detect unsigned wraparound in the
599 CORE_ADDR math, we ignore this test and print the offset,
600 because addr+max_symbolic_offset has wrapped through the end
601 of the address space back to the beginning, giving bogus comparison. */
602 if (addr > name_location + max_symbolic_offset
603 && name_location + max_symbolic_offset > name_location)
604 return;
605
606 fputs_filtered (leadin, stream);
607 if (unmapped)
608 fputs_filtered ("<*", stream);
609 else
610 fputs_filtered ("<", stream);
611 fputs_filtered (name, stream);
612 if (addr != name_location)
613 fprintf_filtered (stream, "+%u", (unsigned int)(addr - name_location));
614
615 /* Append source filename and line number if desired. Give specific
616 line # of this addr, if we have it; else line # of the nearest symbol. */
617 if (print_symbol_filename)
618 {
619 struct symtab_and_line sal;
620
621 sal = find_pc_sect_line (addr, section, 0);
622
623 if (sal.symtab)
624 fprintf_filtered (stream, " at %s:%d", sal.symtab->filename, sal.line);
625 else if (symtab && symbol && symbol->line)
626 fprintf_filtered (stream, " at %s:%d", symtab->filename, symbol->line);
627 else if (symtab)
628 fprintf_filtered (stream, " in %s", symtab->filename);
629 }
630 if (unmapped)
631 fputs_filtered ("*>", stream);
632 else
633 fputs_filtered (">", stream);
634 }
635
636 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
637 print_longest. */
638 void
639 print_address_numeric (addr, use_local, stream)
640 CORE_ADDR addr;
641 int use_local;
642 GDB_FILE *stream;
643 {
644 /* This assumes a CORE_ADDR can fit in a LONGEST. Probably a safe
645 assumption. */
646 print_longest (stream, 'x', use_local, (ULONGEST) addr);
647 }
648
649 /* Print address ADDR symbolically on STREAM.
650 First print it as a number. Then perhaps print
651 <SYMBOL + OFFSET> after the number. */
652
653 void
654 print_address (addr, stream)
655 CORE_ADDR addr;
656 GDB_FILE *stream;
657 {
658 print_address_numeric (addr, 1, stream);
659 print_address_symbolic (addr, stream, asm_demangle, " ");
660 }
661
662 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
663 controls whether to print the symbolic name "raw" or demangled.
664 Global setting "addressprint" controls whether to print hex address
665 or not. */
666
667 void
668 print_address_demangle (addr, stream, do_demangle)
669 CORE_ADDR addr;
670 GDB_FILE *stream;
671 int do_demangle;
672 {
673 if (addr == 0)
674 {
675 fprintf_filtered (stream, "0");
676 }
677 else if (addressprint)
678 {
679 print_address_numeric (addr, 1, stream);
680 print_address_symbolic (addr, stream, do_demangle, " ");
681 }
682 else
683 {
684 print_address_symbolic (addr, stream, do_demangle, "");
685 }
686 }
687 \f
688
689 /* These are the types that $__ will get after an examine command of one
690 of these sizes. */
691
692 static struct type *examine_i_type;
693
694 static struct type *examine_b_type;
695 static struct type *examine_h_type;
696 static struct type *examine_w_type;
697 static struct type *examine_g_type;
698
699 /* Examine data at address ADDR in format FMT.
700 Fetch it from memory and print on gdb_stdout. */
701
702 static void
703 do_examine (fmt, addr, sect)
704 struct format_data fmt;
705 CORE_ADDR addr;
706 asection *sect;
707 {
708 register char format = 0;
709 register char size;
710 register int count = 1;
711 struct type *val_type = NULL;
712 register int i;
713 register int maxelts;
714
715 format = fmt.format;
716 size = fmt.size;
717 count = fmt.count;
718 next_address = addr;
719 next_section = sect;
720
721 /* String or instruction format implies fetch single bytes
722 regardless of the specified size. */
723 if (format == 's' || format == 'i')
724 size = 'b';
725
726 if (format == 'i')
727 val_type = examine_i_type;
728 else if (size == 'b')
729 val_type = examine_b_type;
730 else if (size == 'h')
731 val_type = examine_h_type;
732 else if (size == 'w')
733 val_type = examine_w_type;
734 else if (size == 'g')
735 val_type = examine_g_type;
736
737 maxelts = 8;
738 if (size == 'w')
739 maxelts = 4;
740 if (size == 'g')
741 maxelts = 2;
742 if (format == 's' || format == 'i')
743 maxelts = 1;
744
745 /* Print as many objects as specified in COUNT, at most maxelts per line,
746 with the address of the next one at the start of each line. */
747
748 while (count > 0)
749 {
750 QUIT;
751 print_address (next_address, gdb_stdout);
752 printf_filtered (":");
753 for (i = maxelts;
754 i > 0 && count > 0;
755 i--, count--)
756 {
757 printf_filtered ("\t");
758 /* Note that print_formatted sets next_address for the next
759 object. */
760 last_examine_address = next_address;
761 /* The value to be displayed is not fetched greedily.
762 Instead, to avoid the posibility of a fetched value not
763 being used, its retreval is delayed until the print code
764 uses it. When examining an instruction stream, the
765 disassembler will perform its own memory fetch using just
766 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
767 the disassembler be modified so that LAST_EXAMINE_VALUE
768 is left with the byte sequence from the last complete
769 instruction fetched from memory? */
770 last_examine_value = value_at_lazy (val_type, next_address, sect);
771 print_formatted (last_examine_value, format, size);
772 }
773 printf_filtered ("\n");
774 gdb_flush (gdb_stdout);
775 }
776 }
777 \f
778 static void
779 validate_format (fmt, cmdname)
780 struct format_data fmt;
781 char *cmdname;
782 {
783 if (fmt.size != 0)
784 error ("Size letters are meaningless in \"%s\" command.", cmdname);
785 if (fmt.count != 1)
786 error ("Item count other than 1 is meaningless in \"%s\" command.",
787 cmdname);
788 if (fmt.format == 'i' || fmt.format == 's')
789 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
790 fmt.format, cmdname);
791 }
792
793 /* Evaluate string EXP as an expression in the current language and
794 print the resulting value. EXP may contain a format specifier as the
795 first argument ("/x myvar" for example, to print myvar in hex).
796 */
797
798 static void
799 print_command_1 (exp, inspect, voidprint)
800 char *exp;
801 int inspect;
802 int voidprint;
803 {
804 struct expression *expr;
805 register struct cleanup *old_chain = 0;
806 register char format = 0;
807 register value_ptr val;
808 struct format_data fmt;
809 int cleanup = 0;
810
811 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
812 inspect_it = inspect;
813
814 if (exp && *exp == '/')
815 {
816 exp++;
817 fmt = decode_format (&exp, last_format, 0);
818 validate_format (fmt, "print");
819 last_format = format = fmt.format;
820 }
821 else
822 {
823 fmt.count = 1;
824 fmt.format = 0;
825 fmt.size = 0;
826 }
827
828 if (exp && *exp)
829 {
830 extern int objectprint;
831 struct type *type;
832 expr = parse_expression (exp);
833 old_chain = make_cleanup (free_current_contents, &expr);
834 cleanup = 1;
835 val = evaluate_expression (expr);
836
837 /* C++: figure out what type we actually want to print it as. */
838 type = VALUE_TYPE (val);
839
840 if (objectprint
841 && ( TYPE_CODE (type) == TYPE_CODE_PTR
842 || TYPE_CODE (type) == TYPE_CODE_REF)
843 && ( TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT
844 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_UNION))
845 {
846 value_ptr v;
847
848 v = value_from_vtable_info (val, TYPE_TARGET_TYPE (type));
849 if (v != 0)
850 {
851 val = v;
852 type = VALUE_TYPE (val);
853 }
854 }
855 }
856 else
857 val = access_value_history (0);
858
859 if (voidprint || (val && VALUE_TYPE (val) &&
860 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
861 {
862 int histindex = record_latest_value (val);
863
864 if (histindex >= 0)
865 annotate_value_history_begin (histindex, VALUE_TYPE (val));
866 else
867 annotate_value_begin (VALUE_TYPE (val));
868
869 if (inspect)
870 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
871 else
872 if (histindex >= 0) printf_filtered ("$%d = ", histindex);
873
874 if (histindex >= 0)
875 annotate_value_history_value ();
876
877 print_formatted (val, format, fmt.size);
878 printf_filtered ("\n");
879
880 if (histindex >= 0)
881 annotate_value_history_end ();
882 else
883 annotate_value_end ();
884
885 if (inspect)
886 printf_unfiltered("\") )\030");
887 }
888
889 if (cleanup)
890 do_cleanups (old_chain);
891 inspect_it = 0; /* Reset print routines to normal */
892 }
893
894 /* ARGSUSED */
895 static void
896 print_command (exp, from_tty)
897 char *exp;
898 int from_tty;
899 {
900 print_command_1 (exp, 0, 1);
901 }
902
903 /* Same as print, except in epoch, it gets its own window */
904 /* ARGSUSED */
905 static void
906 inspect_command (exp, from_tty)
907 char *exp;
908 int from_tty;
909 {
910 extern int epoch_interface;
911
912 print_command_1 (exp, epoch_interface, 1);
913 }
914
915 /* Same as print, except it doesn't print void results. */
916 /* ARGSUSED */
917 static void
918 call_command (exp, from_tty)
919 char *exp;
920 int from_tty;
921 {
922 print_command_1 (exp, 0, 0);
923 }
924
925 /* ARGSUSED */
926 void
927 output_command (exp, from_tty)
928 char *exp;
929 int from_tty;
930 {
931 struct expression *expr;
932 register struct cleanup *old_chain;
933 register char format = 0;
934 register value_ptr val;
935 struct format_data fmt;
936
937 if (exp && *exp == '/')
938 {
939 exp++;
940 fmt = decode_format (&exp, 0, 0);
941 validate_format (fmt, "output");
942 format = fmt.format;
943 }
944
945 expr = parse_expression (exp);
946 old_chain = make_cleanup (free_current_contents, &expr);
947
948 val = evaluate_expression (expr);
949
950 annotate_value_begin (VALUE_TYPE (val));
951
952 print_formatted (val, format, fmt.size);
953
954 annotate_value_end ();
955
956 do_cleanups (old_chain);
957 }
958
959 /* ARGSUSED */
960 static void
961 set_command (exp, from_tty)
962 char *exp;
963 int from_tty;
964 {
965 struct expression *expr = parse_expression (exp);
966 register struct cleanup *old_chain
967 = make_cleanup (free_current_contents, &expr);
968 evaluate_expression (expr);
969 do_cleanups (old_chain);
970 }
971
972 /* ARGSUSED */
973 static void
974 sym_info (arg, from_tty)
975 char *arg;
976 int from_tty;
977 {
978 struct minimal_symbol *msymbol;
979 struct objfile *objfile;
980 struct obj_section *osect;
981 asection *sect;
982 CORE_ADDR addr, sect_addr;
983 int matches = 0;
984 unsigned int offset;
985
986 if (!arg)
987 error_no_arg ("address");
988
989 addr = parse_and_eval_address (arg);
990 ALL_OBJSECTIONS (objfile, osect)
991 {
992 sect = osect->the_bfd_section;
993 sect_addr = overlay_mapped_address (addr, sect);
994
995 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
996 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
997 {
998 matches = 1;
999 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1000 if (offset)
1001 printf_filtered ("%s + %u in ",
1002 SYMBOL_SOURCE_NAME (msymbol), offset);
1003 else
1004 printf_filtered ("%s in ",
1005 SYMBOL_SOURCE_NAME (msymbol));
1006 if (pc_in_unmapped_range (addr, sect))
1007 printf_filtered ("load address range of ");
1008 if (section_is_overlay (sect))
1009 printf_filtered ("%s overlay ",
1010 section_is_mapped (sect) ? "mapped" : "unmapped");
1011 printf_filtered ("section %s", sect->name);
1012 printf_filtered ("\n");
1013 }
1014 }
1015 if (matches == 0)
1016 printf_filtered ("No symbol matches %s.\n", arg);
1017 }
1018
1019 /* ARGSUSED */
1020 static void
1021 address_info (exp, from_tty)
1022 char *exp;
1023 int from_tty;
1024 {
1025 register struct symbol *sym;
1026 register struct minimal_symbol *msymbol;
1027 register long val;
1028 register long basereg;
1029 asection *section;
1030 CORE_ADDR load_addr;
1031 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1032 if exp is a field of `this'. */
1033
1034 if (exp == 0)
1035 error ("Argument required.");
1036
1037 sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE,
1038 &is_a_field_of_this, (struct symtab **)NULL);
1039 if (sym == NULL)
1040 {
1041 if (is_a_field_of_this)
1042 {
1043 printf_filtered ("Symbol \"");
1044 fprintf_symbol_filtered (gdb_stdout, exp,
1045 current_language->la_language, DMGL_ANSI);
1046 printf_filtered ("\" is a field of the local class variable `this'\n");
1047 return;
1048 }
1049
1050 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1051
1052 if (msymbol != NULL)
1053 {
1054 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1055
1056 printf_filtered ("Symbol \"");
1057 fprintf_symbol_filtered (gdb_stdout, exp,
1058 current_language->la_language, DMGL_ANSI);
1059 printf_filtered ("\" is at ");
1060 print_address_numeric (load_addr, 1, gdb_stdout);
1061 printf_filtered (" in a file compiled without debugging");
1062 section = SYMBOL_BFD_SECTION (msymbol);
1063 if (section_is_overlay (section))
1064 {
1065 load_addr = overlay_unmapped_address (load_addr, section);
1066 printf_filtered (",\n -- loaded at ");
1067 print_address_numeric (load_addr, 1, gdb_stdout);
1068 printf_filtered (" in overlay section %s", section->name);
1069 }
1070 printf_filtered (".\n");
1071 }
1072 else
1073 error ("No symbol \"%s\" in current context.", exp);
1074 return;
1075 }
1076
1077 printf_filtered ("Symbol \"");
1078 fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
1079 current_language->la_language, DMGL_ANSI);
1080 printf_filtered ("\" is ");
1081 val = SYMBOL_VALUE (sym);
1082 basereg = SYMBOL_BASEREG (sym);
1083 section = SYMBOL_BFD_SECTION (sym);
1084
1085 switch (SYMBOL_CLASS (sym))
1086 {
1087 case LOC_CONST:
1088 case LOC_CONST_BYTES:
1089 printf_filtered ("constant");
1090 break;
1091
1092 case LOC_LABEL:
1093 printf_filtered ("a label at address ");
1094 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1095 1, gdb_stdout);
1096 if (section_is_overlay (section))
1097 {
1098 load_addr = overlay_unmapped_address (load_addr, section);
1099 printf_filtered (",\n -- loaded at ");
1100 print_address_numeric (load_addr, 1, gdb_stdout);
1101 printf_filtered (" in overlay section %s", section->name);
1102 }
1103 break;
1104
1105 case LOC_REGISTER:
1106 printf_filtered ("a variable in register %s", reg_names[val]);
1107 break;
1108
1109 case LOC_STATIC:
1110 printf_filtered ("static storage at address ");
1111 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1112 1, gdb_stdout);
1113 if (section_is_overlay (section))
1114 {
1115 load_addr = overlay_unmapped_address (load_addr, section);
1116 printf_filtered (",\n -- loaded at ");
1117 print_address_numeric (load_addr, 1, gdb_stdout);
1118 printf_filtered (" in overlay section %s", section->name);
1119 }
1120 break;
1121
1122 case LOC_REGPARM:
1123 printf_filtered ("an argument in register %s", reg_names[val]);
1124 break;
1125
1126 case LOC_REGPARM_ADDR:
1127 printf_filtered ("address of an argument in register %s", reg_names[val]);
1128 break;
1129
1130 case LOC_ARG:
1131 printf_filtered ("an argument at offset %ld", val);
1132 break;
1133
1134 case LOC_LOCAL_ARG:
1135 printf_filtered ("an argument at frame offset %ld", val);
1136 break;
1137
1138 case LOC_LOCAL:
1139 printf_filtered ("a local variable at frame offset %ld", val);
1140 break;
1141
1142 case LOC_REF_ARG:
1143 printf_filtered ("a reference argument at offset %ld", val);
1144 break;
1145
1146 case LOC_BASEREG:
1147 printf_filtered ("a variable at offset %ld from register %s",
1148 val, reg_names[basereg]);
1149 break;
1150
1151 case LOC_BASEREG_ARG:
1152 printf_filtered ("an argument at offset %ld from register %s",
1153 val, reg_names[basereg]);
1154 break;
1155
1156 case LOC_TYPEDEF:
1157 printf_filtered ("a typedef");
1158 break;
1159
1160 case LOC_BLOCK:
1161 printf_filtered ("a function at address ");
1162 #ifdef GDB_TARGET_MASK_DISAS_PC
1163 print_address_numeric
1164 (load_addr= GDB_TARGET_MASK_DISAS_PC (BLOCK_START (SYMBOL_BLOCK_VALUE (sym))),
1165 1, gdb_stdout);
1166 #else
1167 print_address_numeric (load_addr=BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1168 1, gdb_stdout);
1169 #endif
1170 if (section_is_overlay (section))
1171 {
1172 load_addr = overlay_unmapped_address (load_addr, section);
1173 printf_filtered (",\n -- loaded at ");
1174 print_address_numeric (load_addr, 1, gdb_stdout);
1175 printf_filtered (" in overlay section %s", section->name);
1176 }
1177 break;
1178
1179 case LOC_UNRESOLVED:
1180 {
1181 struct minimal_symbol *msym;
1182
1183 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, NULL);
1184 if (msym == NULL)
1185 printf_filtered ("unresolved");
1186 else
1187 {
1188 section = SYMBOL_BFD_SECTION (msym);
1189 printf_filtered ("static storage at address ");
1190 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1191 1, gdb_stdout);
1192 if (section_is_overlay (section))
1193 {
1194 load_addr = overlay_unmapped_address (load_addr, section);
1195 printf_filtered (",\n -- loaded at ");
1196 print_address_numeric (load_addr, 1, gdb_stdout);
1197 printf_filtered (" in overlay section %s", section->name);
1198 }
1199 }
1200 }
1201 break;
1202
1203 case LOC_OPTIMIZED_OUT:
1204 printf_filtered ("optimized out");
1205 break;
1206
1207 default:
1208 printf_filtered ("of unknown (botched) type");
1209 break;
1210 }
1211 printf_filtered (".\n");
1212 }
1213 \f
1214 void
1215 x_command (exp, from_tty)
1216 char *exp;
1217 int from_tty;
1218 {
1219 struct expression *expr;
1220 struct format_data fmt;
1221 struct cleanup *old_chain;
1222 struct value *val;
1223
1224 fmt.format = last_format;
1225 fmt.size = last_size;
1226 fmt.count = 1;
1227
1228 if (exp && *exp == '/')
1229 {
1230 exp++;
1231 fmt = decode_format (&exp, last_format, last_size);
1232 }
1233
1234 /* If we have an expression, evaluate it and use it as the address. */
1235
1236 if (exp != 0 && *exp != 0)
1237 {
1238 expr = parse_expression (exp);
1239 /* Cause expression not to be there any more
1240 if this command is repeated with Newline.
1241 But don't clobber a user-defined command's definition. */
1242 if (from_tty)
1243 *exp = 0;
1244 old_chain = make_cleanup (free_current_contents, &expr);
1245 val = evaluate_expression (expr);
1246 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1247 val = value_ind (val);
1248 /* In rvalue contexts, such as this, functions are coerced into
1249 pointers to functions. This makes "x/i main" work. */
1250 if (/* last_format == 'i'
1251 && */ TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1252 && VALUE_LVAL (val) == lval_memory)
1253 next_address = VALUE_ADDRESS (val);
1254 else
1255 next_address = value_as_pointer (val);
1256 if (VALUE_BFD_SECTION (val))
1257 next_section = VALUE_BFD_SECTION (val);
1258 do_cleanups (old_chain);
1259 }
1260
1261 do_examine (fmt, next_address, next_section);
1262
1263 /* If the examine succeeds, we remember its size and format for next time. */
1264 last_size = fmt.size;
1265 last_format = fmt.format;
1266
1267 /* Set a couple of internal variables if appropriate. */
1268 if (last_examine_value)
1269 {
1270 /* Make last address examined available to the user as $_. Use
1271 the correct pointer type. */
1272 set_internalvar (lookup_internalvar ("_"),
1273 value_from_longest (
1274 lookup_pointer_type (VALUE_TYPE (last_examine_value)),
1275 (LONGEST) last_examine_address));
1276
1277 /* Make contents of last address examined available to the user as $__.*/
1278 /* If the last value has not been fetched from memory then don't
1279 fetch it now - instead mark it by voiding the $__ variable. */
1280 if (VALUE_LAZY (last_examine_value))
1281 set_internalvar (lookup_internalvar ("__"),
1282 allocate_value (builtin_type_void));
1283 else
1284 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1285 }
1286 }
1287
1288 \f
1289 /* Add an expression to the auto-display chain.
1290 Specify the expression. */
1291
1292 static void
1293 display_command (exp, from_tty)
1294 char *exp;
1295 int from_tty;
1296 {
1297 struct format_data fmt;
1298 register struct expression *expr;
1299 register struct display *new;
1300
1301 if (exp == 0)
1302 {
1303 do_displays ();
1304 return;
1305 }
1306
1307 if (*exp == '/')
1308 {
1309 exp++;
1310 fmt = decode_format (&exp, 0, 0);
1311 if (fmt.size && fmt.format == 0)
1312 fmt.format = 'x';
1313 if (fmt.format == 'i' || fmt.format == 's')
1314 fmt.size = 'b';
1315 }
1316 else
1317 {
1318 fmt.format = 0;
1319 fmt.size = 0;
1320 fmt.count = 0;
1321 }
1322
1323 innermost_block = 0;
1324 expr = parse_expression (exp);
1325
1326 new = (struct display *) xmalloc (sizeof (struct display));
1327
1328 new->exp = expr;
1329 new->block = innermost_block;
1330 new->next = display_chain;
1331 new->number = ++display_number;
1332 new->format = fmt;
1333 new->status = enabled;
1334 display_chain = new;
1335
1336 if (from_tty && target_has_execution)
1337 do_one_display (new);
1338
1339 dont_repeat ();
1340 }
1341
1342 static void
1343 free_display (d)
1344 struct display *d;
1345 {
1346 free ((PTR)d->exp);
1347 free ((PTR)d);
1348 }
1349
1350 /* Clear out the display_chain.
1351 Done when new symtabs are loaded, since this invalidates
1352 the types stored in many expressions. */
1353
1354 void
1355 clear_displays ()
1356 {
1357 register struct display *d;
1358
1359 while ((d = display_chain) != NULL)
1360 {
1361 free ((PTR)d->exp);
1362 display_chain = d->next;
1363 free ((PTR)d);
1364 }
1365 }
1366
1367 /* Delete the auto-display number NUM. */
1368
1369 static void
1370 delete_display (num)
1371 int num;
1372 {
1373 register struct display *d1, *d;
1374
1375 if (!display_chain)
1376 error ("No display number %d.", num);
1377
1378 if (display_chain->number == num)
1379 {
1380 d1 = display_chain;
1381 display_chain = d1->next;
1382 free_display (d1);
1383 }
1384 else
1385 for (d = display_chain; ; d = d->next)
1386 {
1387 if (d->next == 0)
1388 error ("No display number %d.", num);
1389 if (d->next->number == num)
1390 {
1391 d1 = d->next;
1392 d->next = d1->next;
1393 free_display (d1);
1394 break;
1395 }
1396 }
1397 }
1398
1399 /* Delete some values from the auto-display chain.
1400 Specify the element numbers. */
1401
1402 static void
1403 undisplay_command (args, from_tty)
1404 char *args;
1405 int from_tty;
1406 {
1407 register char *p = args;
1408 register char *p1;
1409 register int num;
1410
1411 if (args == 0)
1412 {
1413 if (query ("Delete all auto-display expressions? "))
1414 clear_displays ();
1415 dont_repeat ();
1416 return;
1417 }
1418
1419 while (*p)
1420 {
1421 p1 = p;
1422 while (*p1 >= '0' && *p1 <= '9') p1++;
1423 if (*p1 && *p1 != ' ' && *p1 != '\t')
1424 error ("Arguments must be display numbers.");
1425
1426 num = atoi (p);
1427
1428 delete_display (num);
1429
1430 p = p1;
1431 while (*p == ' ' || *p == '\t') p++;
1432 }
1433 dont_repeat ();
1434 }
1435
1436 /* Display a single auto-display.
1437 Do nothing if the display cannot be printed in the current context,
1438 or if the display is disabled. */
1439
1440 static void
1441 do_one_display (d)
1442 struct display *d;
1443 {
1444 int within_current_scope;
1445
1446 if (d->status == disabled)
1447 return;
1448
1449 if (d->block)
1450 within_current_scope = contained_in (get_selected_block (), d->block);
1451 else
1452 within_current_scope = 1;
1453 if (!within_current_scope)
1454 return;
1455
1456 current_display_number = d->number;
1457
1458 annotate_display_begin ();
1459 printf_filtered ("%d", d->number);
1460 annotate_display_number_end ();
1461 printf_filtered (": ");
1462 if (d->format.size)
1463 {
1464 CORE_ADDR addr;
1465 value_ptr val;
1466
1467 annotate_display_format ();
1468
1469 printf_filtered ("x/");
1470 if (d->format.count != 1)
1471 printf_filtered ("%d", d->format.count);
1472 printf_filtered ("%c", d->format.format);
1473 if (d->format.format != 'i' && d->format.format != 's')
1474 printf_filtered ("%c", d->format.size);
1475 printf_filtered (" ");
1476
1477 annotate_display_expression ();
1478
1479 print_expression (d->exp, gdb_stdout);
1480 annotate_display_expression_end ();
1481
1482 if (d->format.count != 1)
1483 printf_filtered ("\n");
1484 else
1485 printf_filtered (" ");
1486
1487 val = evaluate_expression (d->exp);
1488 addr = value_as_pointer (val);
1489 if (d->format.format == 'i')
1490 addr = ADDR_BITS_REMOVE (addr);
1491
1492 annotate_display_value ();
1493
1494 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1495 }
1496 else
1497 {
1498 annotate_display_format ();
1499
1500 if (d->format.format)
1501 printf_filtered ("/%c ", d->format.format);
1502
1503 annotate_display_expression ();
1504
1505 print_expression (d->exp, gdb_stdout);
1506 annotate_display_expression_end ();
1507
1508 printf_filtered (" = ");
1509
1510 annotate_display_expression ();
1511
1512 print_formatted (evaluate_expression (d->exp),
1513 d->format.format, d->format.size);
1514 printf_filtered ("\n");
1515 }
1516
1517 annotate_display_end ();
1518
1519 gdb_flush (gdb_stdout);
1520 current_display_number = -1;
1521 }
1522
1523 /* Display all of the values on the auto-display chain which can be
1524 evaluated in the current scope. */
1525
1526 void
1527 do_displays ()
1528 {
1529 register struct display *d;
1530
1531 for (d = display_chain; d; d = d->next)
1532 do_one_display (d);
1533 }
1534
1535 /* Delete the auto-display which we were in the process of displaying.
1536 This is done when there is an error or a signal. */
1537
1538 void
1539 disable_display (num)
1540 int num;
1541 {
1542 register struct display *d;
1543
1544 for (d = display_chain; d; d = d->next)
1545 if (d->number == num)
1546 {
1547 d->status = disabled;
1548 return;
1549 }
1550 printf_unfiltered ("No display number %d.\n", num);
1551 }
1552
1553 void
1554 disable_current_display ()
1555 {
1556 if (current_display_number >= 0)
1557 {
1558 disable_display (current_display_number);
1559 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1560 current_display_number);
1561 }
1562 current_display_number = -1;
1563 }
1564
1565 static void
1566 display_info (ignore, from_tty)
1567 char *ignore;
1568 int from_tty;
1569 {
1570 register struct display *d;
1571
1572 if (!display_chain)
1573 printf_unfiltered ("There are no auto-display expressions now.\n");
1574 else
1575 printf_filtered ("Auto-display expressions now in effect:\n\
1576 Num Enb Expression\n");
1577
1578 for (d = display_chain; d; d = d->next)
1579 {
1580 printf_filtered ("%d: %c ", d->number, "ny"[(int)d->status]);
1581 if (d->format.size)
1582 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1583 d->format.format);
1584 else if (d->format.format)
1585 printf_filtered ("/%c ", d->format.format);
1586 print_expression (d->exp, gdb_stdout);
1587 if (d->block && !contained_in (get_selected_block (), d->block))
1588 printf_filtered (" (cannot be evaluated in the current context)");
1589 printf_filtered ("\n");
1590 gdb_flush (gdb_stdout);
1591 }
1592 }
1593
1594 static void
1595 enable_display (args, from_tty)
1596 char *args;
1597 int from_tty;
1598 {
1599 register char *p = args;
1600 register char *p1;
1601 register int num;
1602 register struct display *d;
1603
1604 if (p == 0)
1605 {
1606 for (d = display_chain; d; d = d->next)
1607 d->status = enabled;
1608 }
1609 else
1610 while (*p)
1611 {
1612 p1 = p;
1613 while (*p1 >= '0' && *p1 <= '9')
1614 p1++;
1615 if (*p1 && *p1 != ' ' && *p1 != '\t')
1616 error ("Arguments must be display numbers.");
1617
1618 num = atoi (p);
1619
1620 for (d = display_chain; d; d = d->next)
1621 if (d->number == num)
1622 {
1623 d->status = enabled;
1624 goto win;
1625 }
1626 printf_unfiltered ("No display number %d.\n", num);
1627 win:
1628 p = p1;
1629 while (*p == ' ' || *p == '\t')
1630 p++;
1631 }
1632 }
1633
1634 /* ARGSUSED */
1635 static void
1636 disable_display_command (args, from_tty)
1637 char *args;
1638 int from_tty;
1639 {
1640 register char *p = args;
1641 register char *p1;
1642 register struct display *d;
1643
1644 if (p == 0)
1645 {
1646 for (d = display_chain; d; d = d->next)
1647 d->status = disabled;
1648 }
1649 else
1650 while (*p)
1651 {
1652 p1 = p;
1653 while (*p1 >= '0' && *p1 <= '9')
1654 p1++;
1655 if (*p1 && *p1 != ' ' && *p1 != '\t')
1656 error ("Arguments must be display numbers.");
1657
1658 disable_display (atoi (p));
1659
1660 p = p1;
1661 while (*p == ' ' || *p == '\t')
1662 p++;
1663 }
1664 }
1665
1666 \f
1667 /* Print the value in stack frame FRAME of a variable
1668 specified by a struct symbol. */
1669
1670 void
1671 print_variable_value (var, frame, stream)
1672 struct symbol *var;
1673 struct frame_info *frame;
1674 GDB_FILE *stream;
1675 {
1676 value_ptr val = read_var_value (var, frame);
1677
1678 value_print (val, stream, 0, Val_pretty_default);
1679 }
1680
1681 /* Print the arguments of a stack frame, given the function FUNC
1682 running in that frame (as a symbol), the info on the frame,
1683 and the number of args according to the stack frame (or -1 if unknown). */
1684
1685 /* References here and elsewhere to "number of args according to the
1686 stack frame" appear in all cases to refer to "number of ints of args
1687 according to the stack frame". At least for VAX, i386, isi. */
1688
1689 void
1690 print_frame_args (func, fi, num, stream)
1691 struct symbol *func;
1692 struct frame_info *fi;
1693 int num;
1694 GDB_FILE *stream;
1695 {
1696 struct block *b = NULL;
1697 int nsyms = 0;
1698 int first = 1;
1699 register int i;
1700 register struct symbol *sym;
1701 register value_ptr val;
1702 /* Offset of next stack argument beyond the one we have seen that is
1703 at the highest offset.
1704 -1 if we haven't come to a stack argument yet. */
1705 long highest_offset = -1;
1706 int arg_size;
1707 /* Number of ints of arguments that we have printed so far. */
1708 int args_printed = 0;
1709
1710 if (func)
1711 {
1712 b = SYMBOL_BLOCK_VALUE (func);
1713 nsyms = BLOCK_NSYMS (b);
1714 }
1715
1716 for (i = 0; i < nsyms; i++)
1717 {
1718 QUIT;
1719 sym = BLOCK_SYM (b, i);
1720
1721 /* Keep track of the highest stack argument offset seen, and
1722 skip over any kinds of symbols we don't care about. */
1723
1724 switch (SYMBOL_CLASS (sym)) {
1725 case LOC_ARG:
1726 case LOC_REF_ARG:
1727 {
1728 long current_offset = SYMBOL_VALUE (sym);
1729 arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
1730
1731 /* Compute address of next argument by adding the size of
1732 this argument and rounding to an int boundary. */
1733 current_offset
1734 = ((current_offset + arg_size + sizeof (int) - 1)
1735 & ~(sizeof (int) - 1));
1736
1737 /* If this is the highest offset seen yet, set highest_offset. */
1738 if (highest_offset == -1
1739 || (current_offset > highest_offset))
1740 highest_offset = current_offset;
1741
1742 /* Add the number of ints we're about to print to args_printed. */
1743 args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
1744 }
1745
1746 /* We care about types of symbols, but don't need to keep track of
1747 stack offsets in them. */
1748 case LOC_REGPARM:
1749 case LOC_REGPARM_ADDR:
1750 case LOC_LOCAL_ARG:
1751 case LOC_BASEREG_ARG:
1752 break;
1753
1754 /* Other types of symbols we just skip over. */
1755 default:
1756 continue;
1757 }
1758
1759 /* We have to look up the symbol because arguments can have
1760 two entries (one a parameter, one a local) and the one we
1761 want is the local, which lookup_symbol will find for us.
1762 This includes gcc1 (not gcc2) on the sparc when passing a
1763 small structure and gcc2 when the argument type is float
1764 and it is passed as a double and converted to float by
1765 the prologue (in the latter case the type of the LOC_ARG
1766 symbol is double and the type of the LOC_LOCAL symbol is
1767 float). */
1768 /* But if the parameter name is null, don't try it.
1769 Null parameter names occur on the RS/6000, for traceback tables.
1770 FIXME, should we even print them? */
1771
1772 if (*SYMBOL_NAME (sym))
1773 {
1774 struct symbol *nsym;
1775 nsym = lookup_symbol
1776 (SYMBOL_NAME (sym),
1777 b, VAR_NAMESPACE, (int *)NULL, (struct symtab **)NULL);
1778 if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
1779 {
1780 /* There is a LOC_ARG/LOC_REGISTER pair. This means that
1781 it was passed on the stack and loaded into a register,
1782 or passed in a register and stored in a stack slot.
1783 GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
1784
1785 Reasons for using the LOC_ARG:
1786 (1) because find_saved_registers may be slow for remote
1787 debugging,
1788 (2) because registers are often re-used and stack slots
1789 rarely (never?) are. Therefore using the stack slot is
1790 much less likely to print garbage.
1791
1792 Reasons why we might want to use the LOC_REGISTER:
1793 (1) So that the backtrace prints the same value as
1794 "print foo". I see no compelling reason why this needs
1795 to be the case; having the backtrace print the value which
1796 was passed in, and "print foo" print the value as modified
1797 within the called function, makes perfect sense to me.
1798
1799 Additional note: It might be nice if "info args" displayed
1800 both values.
1801 One more note: There is a case with sparc structure passing
1802 where we need to use the LOC_REGISTER, but this is dealt with
1803 by creating a single LOC_REGPARM in symbol reading. */
1804
1805 /* Leave sym (the LOC_ARG) alone. */
1806 ;
1807 }
1808 else
1809 sym = nsym;
1810 }
1811
1812 /* Print the current arg. */
1813 if (! first)
1814 fprintf_filtered (stream, ", ");
1815 wrap_here (" ");
1816
1817 annotate_arg_begin ();
1818
1819 fprintf_symbol_filtered (stream, SYMBOL_SOURCE_NAME (sym),
1820 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1821 annotate_arg_name_end ();
1822 fputs_filtered ("=", stream);
1823
1824 /* Avoid value_print because it will deref ref parameters. We just
1825 want to print their addresses. Print ??? for args whose address
1826 we do not know. We pass 2 as "recurse" to val_print because our
1827 standard indentation here is 4 spaces, and val_print indents
1828 2 for each recurse. */
1829 val = read_var_value (sym, fi);
1830
1831 annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
1832
1833 if (val)
1834 {
1835 #ifdef GDB_TARGET_IS_D10V
1836 if (SYMBOL_CLASS(sym) == LOC_REGPARM && TYPE_CODE(VALUE_TYPE(val)) == TYPE_CODE_PTR)
1837 TYPE_LENGTH(VALUE_TYPE(val)) = 2;
1838 #endif
1839 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), VALUE_ADDRESS (val),
1840 stream, 0, 0, 2, Val_no_prettyprint);
1841 }
1842 else
1843 fputs_filtered ("???", stream);
1844
1845 annotate_arg_end ();
1846
1847 first = 0;
1848 }
1849
1850 /* Don't print nameless args in situations where we don't know
1851 enough about the stack to find them. */
1852 if (num != -1)
1853 {
1854 long start;
1855
1856 if (highest_offset == -1)
1857 start = FRAME_ARGS_SKIP;
1858 else
1859 start = highest_offset;
1860
1861 print_frame_nameless_args (fi, start, num - args_printed,
1862 first, stream);
1863 }
1864 }
1865
1866 /* Print nameless args on STREAM.
1867 FI is the frameinfo for this frame, START is the offset
1868 of the first nameless arg, and NUM is the number of nameless args to
1869 print. FIRST is nonzero if this is the first argument (not just
1870 the first nameless arg). */
1871
1872 static void
1873 print_frame_nameless_args (fi, start, num, first, stream)
1874 struct frame_info *fi;
1875 long start;
1876 int num;
1877 int first;
1878 GDB_FILE *stream;
1879 {
1880 int i;
1881 CORE_ADDR argsaddr;
1882 long arg_value;
1883
1884 for (i = 0; i < num; i++)
1885 {
1886 QUIT;
1887 #ifdef NAMELESS_ARG_VALUE
1888 NAMELESS_ARG_VALUE (fi, start, &arg_value);
1889 #else
1890 argsaddr = FRAME_ARGS_ADDRESS (fi);
1891 if (!argsaddr)
1892 return;
1893
1894 arg_value = read_memory_integer (argsaddr + start, sizeof (int));
1895 #endif
1896
1897 if (!first)
1898 fprintf_filtered (stream, ", ");
1899
1900 #ifdef PRINT_NAMELESS_INTEGER
1901 PRINT_NAMELESS_INTEGER (stream, arg_value);
1902 #else
1903 #ifdef PRINT_TYPELESS_INTEGER
1904 PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
1905 #else
1906 fprintf_filtered (stream, "%ld", arg_value);
1907 #endif /* PRINT_TYPELESS_INTEGER */
1908 #endif /* PRINT_NAMELESS_INTEGER */
1909 first = 0;
1910 start += sizeof (int);
1911 }
1912 }
1913 \f
1914 /* ARGSUSED */
1915 static void
1916 printf_command (arg, from_tty)
1917 char *arg;
1918 int from_tty;
1919 {
1920 register char *f;
1921 register char *s = arg;
1922 char *string;
1923 value_ptr *val_args;
1924 char *substrings;
1925 char *current_substring;
1926 int nargs = 0;
1927 int allocated_args = 20;
1928 struct cleanup *old_cleanups;
1929
1930 val_args = (value_ptr *) xmalloc (allocated_args * sizeof (value_ptr));
1931 old_cleanups = make_cleanup (free_current_contents, &val_args);
1932
1933 if (s == 0)
1934 error_no_arg ("format-control string and values to print");
1935
1936 /* Skip white space before format string */
1937 while (*s == ' ' || *s == '\t') s++;
1938
1939 /* A format string should follow, enveloped in double quotes */
1940 if (*s++ != '"')
1941 error ("Bad format string, missing '\"'.");
1942
1943 /* Parse the format-control string and copy it into the string STRING,
1944 processing some kinds of escape sequence. */
1945
1946 f = string = (char *) alloca (strlen (s) + 1);
1947
1948 while (*s != '"')
1949 {
1950 int c = *s++;
1951 switch (c)
1952 {
1953 case '\0':
1954 error ("Bad format string, non-terminated '\"'.");
1955
1956 case '\\':
1957 switch (c = *s++)
1958 {
1959 case '\\':
1960 *f++ = '\\';
1961 break;
1962 case 'a':
1963 #ifdef __STDC__
1964 *f++ = '\a';
1965 #else
1966 *f++ = '\007'; /* Bell */
1967 #endif
1968 break;
1969 case 'b':
1970 *f++ = '\b';
1971 break;
1972 case 'f':
1973 *f++ = '\f';
1974 break;
1975 case 'n':
1976 *f++ = '\n';
1977 break;
1978 case 'r':
1979 *f++ = '\r';
1980 break;
1981 case 't':
1982 *f++ = '\t';
1983 break;
1984 case 'v':
1985 *f++ = '\v';
1986 break;
1987 case '"':
1988 *f++ = '"';
1989 break;
1990 default:
1991 /* ??? TODO: handle other escape sequences */
1992 error ("Unrecognized escape character \\%c in format string.",
1993 c);
1994 }
1995 break;
1996
1997 default:
1998 *f++ = c;
1999 }
2000 }
2001
2002 /* Skip over " and following space and comma. */
2003 s++;
2004 *f++ = '\0';
2005 while (*s == ' ' || *s == '\t') s++;
2006
2007 if (*s != ',' && *s != 0)
2008 error ("Invalid argument syntax");
2009
2010 if (*s == ',') s++;
2011 while (*s == ' ' || *s == '\t') s++;
2012
2013 /* Need extra space for the '\0's. Doubling the size is sufficient. */
2014 substrings = alloca (strlen (string) * 2);
2015 current_substring = substrings;
2016
2017 {
2018 /* Now scan the string for %-specs and see what kinds of args they want.
2019 argclass[I] classifies the %-specs so we can give printf_filtered
2020 something of the right size. */
2021
2022 enum argclass {no_arg, int_arg, string_arg, double_arg, long_long_arg};
2023 enum argclass *argclass;
2024 enum argclass this_argclass;
2025 char *last_arg;
2026 int nargs_wanted;
2027 int lcount;
2028 int i;
2029
2030 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
2031 nargs_wanted = 0;
2032 f = string;
2033 last_arg = string;
2034 while (*f)
2035 if (*f++ == '%')
2036 {
2037 lcount = 0;
2038 while (strchr ("0123456789.hlL-+ #", *f))
2039 {
2040 if (*f == 'l' || *f == 'L')
2041 lcount++;
2042 f++;
2043 }
2044 switch (*f)
2045 {
2046 case 's':
2047 this_argclass = string_arg;
2048 break;
2049
2050 case 'e':
2051 case 'f':
2052 case 'g':
2053 this_argclass = double_arg;
2054 break;
2055
2056 case '*':
2057 error ("`*' not supported for precision or width in printf");
2058
2059 case 'n':
2060 error ("Format specifier `n' not supported in printf");
2061
2062 case '%':
2063 this_argclass = no_arg;
2064 break;
2065
2066 default:
2067 if (lcount > 1)
2068 this_argclass = long_long_arg;
2069 else
2070 this_argclass = int_arg;
2071 break;
2072 }
2073 f++;
2074 if (this_argclass != no_arg)
2075 {
2076 strncpy (current_substring, last_arg, f - last_arg);
2077 current_substring += f - last_arg;
2078 *current_substring++ = '\0';
2079 last_arg = f;
2080 argclass[nargs_wanted++] = this_argclass;
2081 }
2082 }
2083
2084 /* Now, parse all arguments and evaluate them.
2085 Store the VALUEs in VAL_ARGS. */
2086
2087 while (*s != '\0')
2088 {
2089 char *s1;
2090 if (nargs == allocated_args)
2091 val_args = (value_ptr *) xrealloc ((char *) val_args,
2092 (allocated_args *= 2)
2093 * sizeof (value_ptr));
2094 s1 = s;
2095 val_args[nargs] = parse_to_comma_and_eval (&s1);
2096
2097 /* If format string wants a float, unchecked-convert the value to
2098 floating point of the same size */
2099
2100 if (argclass[nargs] == double_arg)
2101 {
2102 struct type *type = VALUE_TYPE (val_args[nargs]);
2103 if (TYPE_LENGTH (type) == sizeof (float))
2104 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
2105 if (TYPE_LENGTH (type) == sizeof (double))
2106 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
2107 }
2108 nargs++;
2109 s = s1;
2110 if (*s == ',')
2111 s++;
2112 }
2113
2114 if (nargs != nargs_wanted)
2115 error ("Wrong number of arguments for specified format-string");
2116
2117 /* Now actually print them. */
2118 current_substring = substrings;
2119 for (i = 0; i < nargs; i++)
2120 {
2121 switch (argclass[i])
2122 {
2123 case string_arg:
2124 {
2125 char *str;
2126 CORE_ADDR tem;
2127 int j;
2128 tem = value_as_pointer (val_args[i]);
2129
2130 /* This is a %s argument. Find the length of the string. */
2131 for (j = 0; ; j++)
2132 {
2133 char c;
2134 QUIT;
2135 read_memory_section (tem + j, &c, 1,
2136 VALUE_BFD_SECTION (val_args[i]));
2137 if (c == 0)
2138 break;
2139 }
2140
2141 /* Copy the string contents into a string inside GDB. */
2142 str = (char *) alloca (j + 1);
2143 read_memory_section (tem, str, j, VALUE_BFD_SECTION (val_args[i]));
2144 str[j] = 0;
2145
2146 printf_filtered (current_substring, str);
2147 }
2148 break;
2149 case double_arg:
2150 {
2151 double val = value_as_double (val_args[i]);
2152 printf_filtered (current_substring, val);
2153 break;
2154 }
2155 case long_long_arg:
2156 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2157 {
2158 long long val = value_as_long (val_args[i]);
2159 printf_filtered (current_substring, val);
2160 break;
2161 }
2162 #else
2163 error ("long long not supported in printf");
2164 #endif
2165 case int_arg:
2166 {
2167 /* FIXME: there should be separate int_arg and long_arg. */
2168 long val = value_as_long (val_args[i]);
2169 printf_filtered (current_substring, val);
2170 break;
2171 }
2172 default:
2173 error ("internal error in printf_command");
2174 }
2175 /* Skip to the next substring. */
2176 current_substring += strlen (current_substring) + 1;
2177 }
2178 /* Print the portion of the format string after the last argument. */
2179 printf_filtered (last_arg);
2180 }
2181 do_cleanups (old_cleanups);
2182 }
2183 \f
2184 /* Dump a specified section of assembly code. With no command line
2185 arguments, this command will dump the assembly code for the
2186 function surrounding the pc value in the selected frame. With one
2187 argument, it will dump the assembly code surrounding that pc value.
2188 Two arguments are interpeted as bounds within which to dump
2189 assembly. */
2190
2191 /* ARGSUSED */
2192 static void
2193 disassemble_command (arg, from_tty)
2194 char *arg;
2195 int from_tty;
2196 {
2197 CORE_ADDR low, high;
2198 char *name;
2199 CORE_ADDR pc, pc_masked;
2200 char *space_index;
2201 asection *section;
2202
2203 name = NULL;
2204 if (!arg)
2205 {
2206 if (!selected_frame)
2207 error ("No frame selected.\n");
2208
2209 pc = get_frame_pc (selected_frame);
2210 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2211 error ("No function contains program counter for selected frame.\n");
2212 low += FUNCTION_START_OFFSET;
2213 }
2214 else if (!(space_index = (char *) strchr (arg, ' ')))
2215 {
2216 /* One argument. */
2217 pc = parse_and_eval_address (arg);
2218 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2219 error ("No function contains specified address.\n");
2220 low += FUNCTION_START_OFFSET;
2221 }
2222 else
2223 {
2224 /* Two arguments. */
2225 *space_index = '\0';
2226 low = parse_and_eval_address (arg);
2227 high = parse_and_eval_address (space_index + 1);
2228 }
2229
2230 printf_filtered ("Dump of assembler code ");
2231 if (name != NULL)
2232 {
2233 printf_filtered ("for function %s:\n", name);
2234 }
2235 else
2236 {
2237 printf_filtered ("from ");
2238 print_address_numeric (low, 1, gdb_stdout);
2239 printf_filtered (" to ");
2240 print_address_numeric (high, 1, gdb_stdout);
2241 printf_filtered (":\n");
2242 }
2243
2244 /* Dump the specified range. */
2245 pc = low;
2246
2247 #ifdef GDB_TARGET_MASK_DISAS_PC
2248 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2249 #else
2250 pc_masked = pc;
2251 #endif
2252
2253 while (pc_masked < high)
2254 {
2255 QUIT;
2256 print_address (pc_masked, gdb_stdout);
2257 printf_filtered (":\t");
2258 /* We often wrap here if there are long symbolic names. */
2259 wrap_here (" ");
2260 pc += print_insn (pc, gdb_stdout);
2261 printf_filtered ("\n");
2262
2263 #ifdef GDB_TARGET_MASK_DISAS_PC
2264 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2265 #else
2266 pc_masked = pc;
2267 #endif
2268 }
2269 printf_filtered ("End of assembler dump.\n");
2270 gdb_flush (gdb_stdout);
2271 }
2272
2273 /* Print the instruction at address MEMADDR in debugged memory,
2274 on STREAM. Returns length of the instruction, in bytes. */
2275
2276 static int
2277 print_insn (memaddr, stream)
2278 CORE_ADDR memaddr;
2279 GDB_FILE *stream;
2280 {
2281 /* If there's no disassembler, something is very wrong. */
2282 if (tm_print_insn == NULL)
2283 abort ();
2284
2285 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2286 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
2287 else
2288 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
2289
2290 if (target_architecture != NULL)
2291 tm_print_insn_info.mach = target_architecture->mach;
2292 /* else: should set .mach=0 but some disassemblers don't grok this */
2293
2294 return (*tm_print_insn) (memaddr, &tm_print_insn_info);
2295 }
2296
2297 \f
2298 void
2299 _initialize_printcmd ()
2300 {
2301 current_display_number = -1;
2302
2303 add_info ("address", address_info,
2304 "Describe where symbol SYM is stored.");
2305
2306 add_info ("symbol", sym_info,
2307 "Describe what symbol is at location ADDR.\n\
2308 Only for symbols with fixed locations (global or static scope).");
2309
2310 add_com ("x", class_vars, x_command,
2311 concat ("Examine memory: x/FMT ADDRESS.\n\
2312 ADDRESS is an expression for the memory address to examine.\n\
2313 FMT is a repeat count followed by a format letter and a size letter.\n\
2314 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2315 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2316 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2317 The specified number of objects of the specified size are printed\n\
2318 according to the format.\n\n\
2319 Defaults for format and size letters are those previously used.\n\
2320 Default count is 1. Default address is following last thing printed\n\
2321 with this command or \"print\".", NULL));
2322
2323 add_com ("disassemble", class_vars, disassemble_command,
2324 "Disassemble a specified section of memory.\n\
2325 Default is the function surrounding the pc of the selected frame.\n\
2326 With a single argument, the function surrounding that address is dumped.\n\
2327 Two arguments are taken as a range of memory to dump.");
2328
2329 #if 0
2330 add_com ("whereis", class_vars, whereis_command,
2331 "Print line number and file of definition of variable.");
2332 #endif
2333
2334 add_info ("display", display_info,
2335 "Expressions to display when program stops, with code numbers.");
2336
2337 add_cmd ("undisplay", class_vars, undisplay_command,
2338 "Cancel some expressions to be displayed when program stops.\n\
2339 Arguments are the code numbers of the expressions to stop displaying.\n\
2340 No argument means cancel all automatic-display expressions.\n\
2341 \"delete display\" has the same effect as this command.\n\
2342 Do \"info display\" to see current list of code numbers.",
2343 &cmdlist);
2344
2345 add_com ("display", class_vars, display_command,
2346 "Print value of expression EXP each time the program stops.\n\
2347 /FMT may be used before EXP as in the \"print\" command.\n\
2348 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2349 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2350 and examining is done as in the \"x\" command.\n\n\
2351 With no argument, display all currently requested auto-display expressions.\n\
2352 Use \"undisplay\" to cancel display requests previously made."
2353 );
2354
2355 add_cmd ("display", class_vars, enable_display,
2356 "Enable some expressions to be displayed when program stops.\n\
2357 Arguments are the code numbers of the expressions to resume displaying.\n\
2358 No argument means enable all automatic-display expressions.\n\
2359 Do \"info display\" to see current list of code numbers.", &enablelist);
2360
2361 add_cmd ("display", class_vars, disable_display_command,
2362 "Disable some expressions to be displayed when program stops.\n\
2363 Arguments are the code numbers of the expressions to stop displaying.\n\
2364 No argument means disable all automatic-display expressions.\n\
2365 Do \"info display\" to see current list of code numbers.", &disablelist);
2366
2367 add_cmd ("display", class_vars, undisplay_command,
2368 "Cancel some expressions to be displayed when program stops.\n\
2369 Arguments are the code numbers of the expressions to stop displaying.\n\
2370 No argument means cancel all automatic-display expressions.\n\
2371 Do \"info display\" to see current list of code numbers.", &deletelist);
2372
2373 add_com ("printf", class_vars, printf_command,
2374 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2375 This is useful for formatted output in user-defined commands.");
2376
2377 add_com ("output", class_vars, output_command,
2378 "Like \"print\" but don't put in value history and don't print newline.\n\
2379 This is useful in user-defined commands.");
2380
2381 add_prefix_cmd ("set", class_vars, set_command,
2382 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2383 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2384 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2385 with $), a register (a few standard names starting with $), or an actual\n\
2386 variable in the program being debugged. EXP is any valid expression.\n",
2387 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2388 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2389 You can see these environment settings with the \"show\" command.", NULL),
2390 &setlist, "set ", 1, &cmdlist);
2391
2392 /* "call" is the same as "set", but handy for dbx users to call fns. */
2393 add_com ("call", class_vars, call_command,
2394 "Call a function in the program.\n\
2395 The argument is the function name and arguments, in the notation of the\n\
2396 current working language. The result is printed and saved in the value\n\
2397 history, if it is not void.");
2398
2399 add_cmd ("variable", class_vars, set_command,
2400 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2401 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2402 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2403 with $), a register (a few standard names starting with $), or an actual\n\
2404 variable in the program being debugged. EXP is any valid expression.\n\
2405 This may usually be abbreviated to simply \"set\".",
2406 &setlist);
2407
2408 add_com ("print", class_vars, print_command,
2409 concat ("Print value of expression EXP.\n\
2410 Variables accessible are those of the lexical environment of the selected\n\
2411 stack frame, plus all those whose scope is global or an entire file.\n\
2412 \n\
2413 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2414 $$NUM refers to NUM'th value back from the last one.\n\
2415 Names starting with $ refer to registers (with the values they would have\n",
2416 "if the program were to return to the stack frame now selected, restoring\n\
2417 all registers saved by frames farther in) or else to debugger\n\
2418 \"convenience\" variables (any such name not a known register).\n\
2419 Use assignment expressions to give values to convenience variables.\n",
2420 "\n\
2421 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2422 @ is a binary operator for treating consecutive data objects\n\
2423 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2424 element is FOO, whose second element is stored in the space following\n\
2425 where FOO is stored, etc. FOO must be an expression whose value\n\
2426 resides in memory.\n",
2427 "\n\
2428 EXP may be preceded with /FMT, where FMT is a format letter\n\
2429 but no count or size letter (see \"x\" command).", NULL));
2430 add_com_alias ("p", "print", class_vars, 1);
2431
2432 add_com ("inspect", class_vars, inspect_command,
2433 "Same as \"print\" command, except that if you are running in the epoch\n\
2434 environment, the value is printed in its own window.");
2435
2436 add_show_from_set (
2437 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2438 (char *)&max_symbolic_offset,
2439 "Set the largest offset that will be printed in <symbol+1234> form.",
2440 &setprintlist),
2441 &showprintlist);
2442 add_show_from_set (
2443 add_set_cmd ("symbol-filename", no_class, var_boolean,
2444 (char *)&print_symbol_filename,
2445 "Set printing of source filename and line number with <symbol>.",
2446 &setprintlist),
2447 &showprintlist);
2448
2449 /* For examine/instruction a single byte quantity is specified as
2450 the data. This avoids problems with value_at_lazy() requiring a
2451 valid data type (and rejecting VOID). */
2452 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2453
2454 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2455 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2456 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2457 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2458
2459 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2460 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2461 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2462 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2463 tm_print_insn_info.print_address_func = dis_asm_print_address;
2464 }
This page took 0.082239 seconds and 4 git commands to generate.