Clean up the D10V port so that GDB and the target program no
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "language.h"
30 #include "expression.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "breakpoint.h"
35 #include "demangle.h"
36 #include "valprint.h"
37 #include "annotate.h"
38 #include "symfile.h" /* for overlay functions */
39 #include "objfiles.h" /* ditto */
40 #include "completer.h" /* for completion functions */
41 #ifdef UI_OUT
42 #include "ui-out.h"
43 #endif
44
45 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
46 extern int addressprint; /* Whether to print hex addresses in HLL " */
47
48 struct format_data
49 {
50 int count;
51 char format;
52 char size;
53 };
54
55 /* Last specified output format. */
56
57 static char last_format = 'x';
58
59 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
60
61 static char last_size = 'w';
62
63 /* Default address to examine next. */
64
65 static CORE_ADDR next_address;
66
67 /* Default section to examine next. */
68
69 static asection *next_section;
70
71 /* Last address examined. */
72
73 static CORE_ADDR last_examine_address;
74
75 /* Contents of last address examined.
76 This is not valid past the end of the `x' command! */
77
78 static value_ptr last_examine_value;
79
80 /* Largest offset between a symbolic value and an address, that will be
81 printed as `0x1234 <symbol+offset>'. */
82
83 static unsigned int max_symbolic_offset = UINT_MAX;
84
85 /* Append the source filename and linenumber of the symbol when
86 printing a symbolic value as `<symbol at filename:linenum>' if set. */
87 static int print_symbol_filename = 0;
88
89 /* Number of auto-display expression currently being displayed.
90 So that we can disable it if we get an error or a signal within it.
91 -1 when not doing one. */
92
93 int current_display_number;
94
95 /* Flag to low-level print routines that this value is being printed
96 in an epoch window. We'd like to pass this as a parameter, but
97 every routine would need to take it. Perhaps we can encapsulate
98 this in the I/O stream once we have GNU stdio. */
99
100 int inspect_it = 0;
101
102 struct display
103 {
104 /* Chain link to next auto-display item. */
105 struct display *next;
106 /* Expression to be evaluated and displayed. */
107 struct expression *exp;
108 /* Item number of this auto-display item. */
109 int number;
110 /* Display format specified. */
111 struct format_data format;
112 /* Innermost block required by this expression when evaluated */
113 struct block *block;
114 /* Status of this display (enabled or disabled) */
115 enum enable status;
116 };
117
118 /* Chain of expressions whose values should be displayed
119 automatically each time the program stops. */
120
121 static struct display *display_chain;
122
123 static int display_number;
124
125 /* Prototypes for exported functions. */
126
127 void output_command (char *, int);
128
129 void _initialize_printcmd (void);
130
131 /* Prototypes for local functions. */
132
133 static void delete_display (int);
134
135 static void enable_display (char *, int);
136
137 static void disable_display_command (char *, int);
138
139 static void disassemble_command (char *, int);
140
141 static void printf_command (char *, int);
142
143 static void print_frame_nameless_args (struct frame_info *, long,
144 int, int, struct ui_file *);
145
146 static void display_info (char *, int);
147
148 static void do_one_display (struct display *);
149
150 static void undisplay_command (char *, int);
151
152 static void free_display (struct display *);
153
154 static void display_command (char *, int);
155
156 void x_command (char *, int);
157
158 static void address_info (char *, int);
159
160 static void set_command (char *, int);
161
162 static void call_command (char *, int);
163
164 static void inspect_command (char *, int);
165
166 static void print_command (char *, int);
167
168 static void print_command_1 (char *, int, int);
169
170 static void validate_format (struct format_data, char *);
171
172 static void do_examine (struct format_data, CORE_ADDR addr,
173 asection * section);
174
175 static void print_formatted (value_ptr, int, int, struct ui_file *);
176
177 static struct format_data decode_format (char **, int, int);
178
179 static int print_insn (CORE_ADDR, struct ui_file *);
180
181 static void sym_info (char *, int);
182 \f
183
184 /* Decode a format specification. *STRING_PTR should point to it.
185 OFORMAT and OSIZE are used as defaults for the format and size
186 if none are given in the format specification.
187 If OSIZE is zero, then the size field of the returned value
188 should be set only if a size is explicitly specified by the
189 user.
190 The structure returned describes all the data
191 found in the specification. In addition, *STRING_PTR is advanced
192 past the specification and past all whitespace following it. */
193
194 static struct format_data
195 decode_format (char **string_ptr, int oformat, int osize)
196 {
197 struct format_data val;
198 register char *p = *string_ptr;
199
200 val.format = '?';
201 val.size = '?';
202 val.count = 1;
203
204 if (*p >= '0' && *p <= '9')
205 val.count = atoi (p);
206 while (*p >= '0' && *p <= '9')
207 p++;
208
209 /* Now process size or format letters that follow. */
210
211 while (1)
212 {
213 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
214 val.size = *p++;
215 else if (*p >= 'a' && *p <= 'z')
216 val.format = *p++;
217 else
218 break;
219 }
220
221 while (*p == ' ' || *p == '\t')
222 p++;
223 *string_ptr = p;
224
225 /* Set defaults for format and size if not specified. */
226 if (val.format == '?')
227 {
228 if (val.size == '?')
229 {
230 /* Neither has been specified. */
231 val.format = oformat;
232 val.size = osize;
233 }
234 else
235 /* If a size is specified, any format makes a reasonable
236 default except 'i'. */
237 val.format = oformat == 'i' ? 'x' : oformat;
238 }
239 else if (val.size == '?')
240 switch (val.format)
241 {
242 case 'a':
243 case 's':
244 /* Pick the appropriate size for an address. */
245 if (TARGET_PTR_BIT == 64)
246 val.size = osize ? 'g' : osize;
247 else if (TARGET_PTR_BIT == 32)
248 val.size = osize ? 'w' : osize;
249 else if (TARGET_PTR_BIT == 16)
250 val.size = osize ? 'h' : osize;
251 else
252 /* Bad value for TARGET_PTR_BIT */
253 internal_error (__FILE__, __LINE__, "failed internal consistency check");
254 break;
255 case 'f':
256 /* Floating point has to be word or giantword. */
257 if (osize == 'w' || osize == 'g')
258 val.size = osize;
259 else
260 /* Default it to giantword if the last used size is not
261 appropriate. */
262 val.size = osize ? 'g' : osize;
263 break;
264 case 'c':
265 /* Characters default to one byte. */
266 val.size = osize ? 'b' : osize;
267 break;
268 default:
269 /* The default is the size most recently specified. */
270 val.size = osize;
271 }
272
273 return val;
274 }
275 \f
276 /* Print value VAL on stream according to FORMAT, a letter or 0.
277 Do not end with a newline.
278 0 means print VAL according to its own type.
279 SIZE is the letter for the size of datum being printed.
280 This is used to pad hex numbers so they line up. */
281
282 static void
283 print_formatted (register value_ptr val, register int format, int size,
284 struct ui_file *stream)
285 {
286 struct type *type = check_typedef (VALUE_TYPE (val));
287 int len = TYPE_LENGTH (type);
288
289 if (VALUE_LVAL (val) == lval_memory)
290 {
291 next_address = VALUE_ADDRESS (val) + len;
292 next_section = VALUE_BFD_SECTION (val);
293 }
294
295 switch (format)
296 {
297 case 's':
298 /* FIXME: Need to handle wchar_t's here... */
299 next_address = VALUE_ADDRESS (val)
300 + val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
301 next_section = VALUE_BFD_SECTION (val);
302 break;
303
304 case 'i':
305 /* The old comment says
306 "Force output out, print_insn not using _filtered".
307 I'm not completely sure what that means, I suspect most print_insn
308 now do use _filtered, so I guess it's obsolete.
309 --Yes, it does filter now, and so this is obsolete. -JB */
310
311 /* We often wrap here if there are long symbolic names. */
312 wrap_here (" ");
313 next_address = VALUE_ADDRESS (val)
314 + print_insn (VALUE_ADDRESS (val), stream);
315 next_section = VALUE_BFD_SECTION (val);
316 break;
317
318 default:
319 if (format == 0
320 || TYPE_CODE (type) == TYPE_CODE_ARRAY
321 || TYPE_CODE (type) == TYPE_CODE_STRING
322 || TYPE_CODE (type) == TYPE_CODE_STRUCT
323 || TYPE_CODE (type) == TYPE_CODE_UNION)
324 /* If format is 0, use the 'natural' format for
325 * that type of value. If the type is non-scalar,
326 * we have to use language rules to print it as
327 * a series of scalars.
328 */
329 value_print (val, stream, format, Val_pretty_default);
330 else
331 /* User specified format, so don't look to the
332 * the type to tell us what to do.
333 */
334 print_scalar_formatted (VALUE_CONTENTS (val), type,
335 format, size, stream);
336 }
337 }
338
339 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
340 according to letters FORMAT and SIZE on STREAM.
341 FORMAT may not be zero. Formats s and i are not supported at this level.
342
343 This is how the elements of an array or structure are printed
344 with a format. */
345
346 void
347 print_scalar_formatted (char *valaddr, struct type *type, int format, int size,
348 struct ui_file *stream)
349 {
350 LONGEST val_long;
351 unsigned int len = TYPE_LENGTH (type);
352
353 if (len > sizeof (LONGEST)
354 && (format == 't'
355 || format == 'c'
356 || format == 'o'
357 || format == 'u'
358 || format == 'd'
359 || format == 'x'))
360 {
361 if (!TYPE_UNSIGNED (type)
362 || !extract_long_unsigned_integer (valaddr, len, &val_long))
363 {
364 /* We can't print it normally, but we can print it in hex.
365 Printing it in the wrong radix is more useful than saying
366 "use /x, you dummy". */
367 /* FIXME: we could also do octal or binary if that was the
368 desired format. */
369 /* FIXME: we should be using the size field to give us a
370 minimum field width to print. */
371
372 if (format == 'o')
373 print_octal_chars (stream, valaddr, len);
374 else if (format == 'd')
375 print_decimal_chars (stream, valaddr, len);
376 else if (format == 't')
377 print_binary_chars (stream, valaddr, len);
378 else
379 /* replace with call to print_hex_chars? Looks
380 like val_print_type_code_int is redoing
381 work. - edie */
382
383 val_print_type_code_int (type, valaddr, stream);
384
385 return;
386 }
387
388 /* If we get here, extract_long_unsigned_integer set val_long. */
389 }
390 else if (format != 'f')
391 val_long = unpack_long (type, valaddr);
392
393 /* If the value is a pointer, and pointers and addresses are not the
394 same, then at this point, the value's length is TARGET_ADDR_BIT, not
395 TYPE_LENGTH (type). */
396 if (TYPE_CODE (type) == TYPE_CODE_PTR)
397 len = TARGET_ADDR_BIT;
398
399 /* If we are printing it as unsigned, truncate it in case it is actually
400 a negative signed value (e.g. "print/u (short)-1" should print 65535
401 (if shorts are 16 bits) instead of 4294967295). */
402 if (format != 'd')
403 {
404 if (len < sizeof (LONGEST))
405 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
406 }
407
408 switch (format)
409 {
410 case 'x':
411 if (!size)
412 {
413 /* no size specified, like in print. Print varying # of digits. */
414 print_longest (stream, 'x', 1, val_long);
415 }
416 else
417 switch (size)
418 {
419 case 'b':
420 case 'h':
421 case 'w':
422 case 'g':
423 print_longest (stream, size, 1, val_long);
424 break;
425 default:
426 error ("Undefined output size \"%c\".", size);
427 }
428 break;
429
430 case 'd':
431 print_longest (stream, 'd', 1, val_long);
432 break;
433
434 case 'u':
435 print_longest (stream, 'u', 0, val_long);
436 break;
437
438 case 'o':
439 if (val_long)
440 print_longest (stream, 'o', 1, val_long);
441 else
442 fprintf_filtered (stream, "0");
443 break;
444
445 case 'a':
446 {
447 CORE_ADDR addr = unpack_pointer (type, valaddr);
448 print_address (addr, stream);
449 }
450 break;
451
452 case 'c':
453 value_print (value_from_longest (builtin_type_true_char, val_long),
454 stream, 0, Val_pretty_default);
455 break;
456
457 case 'f':
458 if (len == sizeof (float))
459 type = builtin_type_float;
460 else if (len == sizeof (double))
461 type = builtin_type_double;
462 print_floating (valaddr, type, stream);
463 break;
464
465 case 0:
466 internal_error (__FILE__, __LINE__, "failed internal consistency check");
467
468 case 't':
469 /* Binary; 't' stands for "two". */
470 {
471 char bits[8 * (sizeof val_long) + 1];
472 char buf[8 * (sizeof val_long) + 32];
473 char *cp = bits;
474 int width;
475
476 if (!size)
477 width = 8 * (sizeof val_long);
478 else
479 switch (size)
480 {
481 case 'b':
482 width = 8;
483 break;
484 case 'h':
485 width = 16;
486 break;
487 case 'w':
488 width = 32;
489 break;
490 case 'g':
491 width = 64;
492 break;
493 default:
494 error ("Undefined output size \"%c\".", size);
495 }
496
497 bits[width] = '\0';
498 while (width-- > 0)
499 {
500 bits[width] = (val_long & 1) ? '1' : '0';
501 val_long >>= 1;
502 }
503 if (!size)
504 {
505 while (*cp && *cp == '0')
506 cp++;
507 if (*cp == '\0')
508 cp--;
509 }
510 strcpy (buf, local_binary_format_prefix ());
511 strcat (buf, cp);
512 strcat (buf, local_binary_format_suffix ());
513 fprintf_filtered (stream, buf);
514 }
515 break;
516
517 default:
518 error ("Undefined output format \"%c\".", format);
519 }
520 }
521
522 /* Specify default address for `x' command.
523 `info lines' uses this. */
524
525 void
526 set_next_address (CORE_ADDR addr)
527 {
528 next_address = addr;
529
530 /* Make address available to the user as $_. */
531 set_internalvar (lookup_internalvar ("_"),
532 value_from_pointer (lookup_pointer_type (builtin_type_void),
533 addr));
534 }
535
536 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
537 after LEADIN. Print nothing if no symbolic name is found nearby.
538 Optionally also print source file and line number, if available.
539 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
540 or to interpret it as a possible C++ name and convert it back to source
541 form. However note that DO_DEMANGLE can be overridden by the specific
542 settings of the demangle and asm_demangle variables. */
543
544 void
545 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream, int do_demangle,
546 char *leadin)
547 {
548 char *name = NULL;
549 char *filename = NULL;
550 int unmapped = 0;
551 int offset = 0;
552 int line = 0;
553
554 /* throw away both name and filename */
555 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
556 make_cleanup (free_current_contents, &filename);
557
558 if (build_address_symbolic (addr, do_demangle, &name, &offset, &filename, &line, &unmapped))
559 {
560 do_cleanups (cleanup_chain);
561 return;
562 }
563
564 fputs_filtered (leadin, stream);
565 if (unmapped)
566 fputs_filtered ("<*", stream);
567 else
568 fputs_filtered ("<", stream);
569 fputs_filtered (name, stream);
570 if (offset != 0)
571 fprintf_filtered (stream, "+%u", (unsigned int) offset);
572
573 /* Append source filename and line number if desired. Give specific
574 line # of this addr, if we have it; else line # of the nearest symbol. */
575 if (print_symbol_filename && filename != NULL)
576 {
577 if (line != -1)
578 fprintf_filtered (stream, " at %s:%d", filename, line);
579 else
580 fprintf_filtered (stream, " in %s", filename);
581 }
582 if (unmapped)
583 fputs_filtered ("*>", stream);
584 else
585 fputs_filtered (">", stream);
586
587 do_cleanups (cleanup_chain);
588 }
589
590 /* Given an address ADDR return all the elements needed to print the
591 address in a symbolic form. NAME can be mangled or not depending
592 on DO_DEMANGLE (and also on the asm_demangle global variable,
593 manipulated via ''set print asm-demangle''). Return 0 in case of
594 success, when all the info in the OUT paramters is valid. Return 1
595 otherwise. */
596 int
597 build_address_symbolic (CORE_ADDR addr, /* IN */
598 int do_demangle, /* IN */
599 char **name, /* OUT */
600 int *offset, /* OUT */
601 char **filename, /* OUT */
602 int *line, /* OUT */
603 int *unmapped) /* OUT */
604 {
605 struct minimal_symbol *msymbol;
606 struct symbol *symbol;
607 struct symtab *symtab = 0;
608 CORE_ADDR name_location = 0;
609 asection *section = 0;
610 char *name_temp = "";
611
612 /* Let's say it is unmapped. */
613 *unmapped = 0;
614
615 /* Determine if the address is in an overlay, and whether it is
616 mapped. */
617 if (overlay_debugging)
618 {
619 section = find_pc_overlay (addr);
620 if (pc_in_unmapped_range (addr, section))
621 {
622 *unmapped = 1;
623 addr = overlay_mapped_address (addr, section);
624 }
625 }
626
627 /* On some targets, add in extra "flag" bits to PC for
628 disassembly. This should ensure that "rounding errors" in
629 symbol addresses that are masked for disassembly favour the
630 the correct symbol. */
631
632 #ifdef GDB_TARGET_UNMASK_DISAS_PC
633 addr = GDB_TARGET_UNMASK_DISAS_PC (addr);
634 #endif
635
636 /* First try to find the address in the symbol table, then
637 in the minsyms. Take the closest one. */
638
639 /* This is defective in the sense that it only finds text symbols. So
640 really this is kind of pointless--we should make sure that the
641 minimal symbols have everything we need (by changing that we could
642 save some memory, but for many debug format--ELF/DWARF or
643 anything/stabs--it would be inconvenient to eliminate those minimal
644 symbols anyway). */
645 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
646 symbol = find_pc_sect_function (addr, section);
647
648 if (symbol)
649 {
650 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
651 if (do_demangle)
652 name_temp = SYMBOL_SOURCE_NAME (symbol);
653 else
654 name_temp = SYMBOL_LINKAGE_NAME (symbol);
655 }
656
657 if (msymbol != NULL)
658 {
659 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
660 {
661 /* The msymbol is closer to the address than the symbol;
662 use the msymbol instead. */
663 symbol = 0;
664 symtab = 0;
665 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
666 if (do_demangle)
667 name_temp = SYMBOL_SOURCE_NAME (msymbol);
668 else
669 name_temp = SYMBOL_LINKAGE_NAME (msymbol);
670 }
671 }
672 if (symbol == NULL && msymbol == NULL)
673 return 1;
674
675 /* On some targets, mask out extra "flag" bits from PC for handsome
676 disassembly. */
677
678 #ifdef GDB_TARGET_MASK_DISAS_PC
679 name_location = GDB_TARGET_MASK_DISAS_PC (name_location);
680 addr = GDB_TARGET_MASK_DISAS_PC (addr);
681 #endif
682
683 /* If the nearest symbol is too far away, don't print anything symbolic. */
684
685 /* For when CORE_ADDR is larger than unsigned int, we do math in
686 CORE_ADDR. But when we detect unsigned wraparound in the
687 CORE_ADDR math, we ignore this test and print the offset,
688 because addr+max_symbolic_offset has wrapped through the end
689 of the address space back to the beginning, giving bogus comparison. */
690 if (addr > name_location + max_symbolic_offset
691 && name_location + max_symbolic_offset > name_location)
692 return 1;
693
694 *offset = addr - name_location;
695
696 *name = xstrdup (name_temp);
697
698 if (print_symbol_filename)
699 {
700 struct symtab_and_line sal;
701
702 sal = find_pc_sect_line (addr, section, 0);
703
704 if (sal.symtab)
705 {
706 *filename = xstrdup (sal.symtab->filename);
707 *line = sal.line;
708 }
709 else if (symtab && symbol && symbol->line)
710 {
711 *filename = xstrdup (symtab->filename);
712 *line = symbol->line;
713 }
714 else if (symtab)
715 {
716 *filename = xstrdup (symtab->filename);
717 *line = -1;
718 }
719 }
720 return 0;
721 }
722
723 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
724 print_longest. */
725 void
726 print_address_numeric (CORE_ADDR addr, int use_local, struct ui_file *stream)
727 {
728 /* Truncate address to the size of a target address, avoiding shifts
729 larger or equal than the width of a CORE_ADDR. The local
730 variable ADDR_BIT stops the compiler reporting a shift overflow
731 when it won't occur. */
732 /* NOTE: This assumes that the significant address information is
733 kept in the least significant bits of ADDR - the upper bits were
734 either zero or sign extended. Should ADDRESS_TO_POINTER() or
735 some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
736
737 int addr_bit = TARGET_ADDR_BIT;
738
739 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
740 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
741 print_longest (stream, 'x', use_local, (ULONGEST) addr);
742 }
743
744 /* Print address ADDR symbolically on STREAM.
745 First print it as a number. Then perhaps print
746 <SYMBOL + OFFSET> after the number. */
747
748 void
749 print_address (CORE_ADDR addr, struct ui_file *stream)
750 {
751 print_address_numeric (addr, 1, stream);
752 print_address_symbolic (addr, stream, asm_demangle, " ");
753 }
754
755 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
756 controls whether to print the symbolic name "raw" or demangled.
757 Global setting "addressprint" controls whether to print hex address
758 or not. */
759
760 void
761 print_address_demangle (CORE_ADDR addr, struct ui_file *stream, int do_demangle)
762 {
763 if (addr == 0)
764 {
765 fprintf_filtered (stream, "0");
766 }
767 else if (addressprint)
768 {
769 print_address_numeric (addr, 1, stream);
770 print_address_symbolic (addr, stream, do_demangle, " ");
771 }
772 else
773 {
774 print_address_symbolic (addr, stream, do_demangle, "");
775 }
776 }
777 \f
778
779 /* These are the types that $__ will get after an examine command of one
780 of these sizes. */
781
782 static struct type *examine_i_type;
783
784 static struct type *examine_b_type;
785 static struct type *examine_h_type;
786 static struct type *examine_w_type;
787 static struct type *examine_g_type;
788
789 /* Examine data at address ADDR in format FMT.
790 Fetch it from memory and print on gdb_stdout. */
791
792 static void
793 do_examine (struct format_data fmt, CORE_ADDR addr, asection *sect)
794 {
795 register char format = 0;
796 register char size;
797 register int count = 1;
798 struct type *val_type = NULL;
799 register int i;
800 register int maxelts;
801
802 format = fmt.format;
803 size = fmt.size;
804 count = fmt.count;
805 next_address = addr;
806 next_section = sect;
807
808 /* String or instruction format implies fetch single bytes
809 regardless of the specified size. */
810 if (format == 's' || format == 'i')
811 size = 'b';
812
813 if (format == 'i')
814 val_type = examine_i_type;
815 else if (size == 'b')
816 val_type = examine_b_type;
817 else if (size == 'h')
818 val_type = examine_h_type;
819 else if (size == 'w')
820 val_type = examine_w_type;
821 else if (size == 'g')
822 val_type = examine_g_type;
823
824 maxelts = 8;
825 if (size == 'w')
826 maxelts = 4;
827 if (size == 'g')
828 maxelts = 2;
829 if (format == 's' || format == 'i')
830 maxelts = 1;
831
832 /* Print as many objects as specified in COUNT, at most maxelts per line,
833 with the address of the next one at the start of each line. */
834
835 while (count > 0)
836 {
837 QUIT;
838 print_address (next_address, gdb_stdout);
839 printf_filtered (":");
840 for (i = maxelts;
841 i > 0 && count > 0;
842 i--, count--)
843 {
844 printf_filtered ("\t");
845 /* Note that print_formatted sets next_address for the next
846 object. */
847 last_examine_address = next_address;
848
849 if (last_examine_value)
850 value_free (last_examine_value);
851
852 /* The value to be displayed is not fetched greedily.
853 Instead, to avoid the posibility of a fetched value not
854 being used, its retreval is delayed until the print code
855 uses it. When examining an instruction stream, the
856 disassembler will perform its own memory fetch using just
857 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
858 the disassembler be modified so that LAST_EXAMINE_VALUE
859 is left with the byte sequence from the last complete
860 instruction fetched from memory? */
861 last_examine_value = value_at_lazy (val_type, next_address, sect);
862
863 if (last_examine_value)
864 release_value (last_examine_value);
865
866 print_formatted (last_examine_value, format, size, gdb_stdout);
867 }
868 printf_filtered ("\n");
869 gdb_flush (gdb_stdout);
870 }
871 }
872 \f
873 static void
874 validate_format (struct format_data fmt, char *cmdname)
875 {
876 if (fmt.size != 0)
877 error ("Size letters are meaningless in \"%s\" command.", cmdname);
878 if (fmt.count != 1)
879 error ("Item count other than 1 is meaningless in \"%s\" command.",
880 cmdname);
881 if (fmt.format == 'i' || fmt.format == 's')
882 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
883 fmt.format, cmdname);
884 }
885
886 /* Evaluate string EXP as an expression in the current language and
887 print the resulting value. EXP may contain a format specifier as the
888 first argument ("/x myvar" for example, to print myvar in hex).
889 */
890
891 static void
892 print_command_1 (char *exp, int inspect, int voidprint)
893 {
894 struct expression *expr;
895 register struct cleanup *old_chain = 0;
896 register char format = 0;
897 register value_ptr val;
898 struct format_data fmt;
899 int cleanup = 0;
900
901 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
902 inspect_it = inspect;
903
904 if (exp && *exp == '/')
905 {
906 exp++;
907 fmt = decode_format (&exp, last_format, 0);
908 validate_format (fmt, "print");
909 last_format = format = fmt.format;
910 }
911 else
912 {
913 fmt.count = 1;
914 fmt.format = 0;
915 fmt.size = 0;
916 }
917
918 if (exp && *exp)
919 {
920 struct type *type;
921 expr = parse_expression (exp);
922 old_chain = make_cleanup (free_current_contents, &expr);
923 cleanup = 1;
924 val = evaluate_expression (expr);
925
926 /* C++: figure out what type we actually want to print it as. */
927 type = VALUE_TYPE (val);
928
929 if (objectprint
930 && (TYPE_CODE (type) == TYPE_CODE_PTR
931 || TYPE_CODE (type) == TYPE_CODE_REF)
932 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT
933 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_UNION))
934 {
935 value_ptr v;
936
937 v = value_from_vtable_info (val, TYPE_TARGET_TYPE (type));
938 if (v != 0)
939 {
940 val = v;
941 type = VALUE_TYPE (val);
942 }
943 }
944 }
945 else
946 val = access_value_history (0);
947
948 if (voidprint || (val && VALUE_TYPE (val) &&
949 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
950 {
951 int histindex = record_latest_value (val);
952
953 if (histindex >= 0)
954 annotate_value_history_begin (histindex, VALUE_TYPE (val));
955 else
956 annotate_value_begin (VALUE_TYPE (val));
957
958 if (inspect)
959 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
960 else if (histindex >= 0)
961 printf_filtered ("$%d = ", histindex);
962
963 if (histindex >= 0)
964 annotate_value_history_value ();
965
966 print_formatted (val, format, fmt.size, gdb_stdout);
967 printf_filtered ("\n");
968
969 if (histindex >= 0)
970 annotate_value_history_end ();
971 else
972 annotate_value_end ();
973
974 if (inspect)
975 printf_unfiltered ("\") )\030");
976 }
977
978 if (cleanup)
979 do_cleanups (old_chain);
980 inspect_it = 0; /* Reset print routines to normal */
981 }
982
983 /* ARGSUSED */
984 static void
985 print_command (char *exp, int from_tty)
986 {
987 print_command_1 (exp, 0, 1);
988 }
989
990 /* Same as print, except in epoch, it gets its own window */
991 /* ARGSUSED */
992 static void
993 inspect_command (char *exp, int from_tty)
994 {
995 extern int epoch_interface;
996
997 print_command_1 (exp, epoch_interface, 1);
998 }
999
1000 /* Same as print, except it doesn't print void results. */
1001 /* ARGSUSED */
1002 static void
1003 call_command (char *exp, int from_tty)
1004 {
1005 print_command_1 (exp, 0, 0);
1006 }
1007
1008 /* ARGSUSED */
1009 void
1010 output_command (char *exp, int from_tty)
1011 {
1012 struct expression *expr;
1013 register struct cleanup *old_chain;
1014 register char format = 0;
1015 register value_ptr val;
1016 struct format_data fmt;
1017
1018 if (exp && *exp == '/')
1019 {
1020 exp++;
1021 fmt = decode_format (&exp, 0, 0);
1022 validate_format (fmt, "output");
1023 format = fmt.format;
1024 }
1025
1026 expr = parse_expression (exp);
1027 old_chain = make_cleanup (free_current_contents, &expr);
1028
1029 val = evaluate_expression (expr);
1030
1031 annotate_value_begin (VALUE_TYPE (val));
1032
1033 print_formatted (val, format, fmt.size, gdb_stdout);
1034
1035 annotate_value_end ();
1036
1037 wrap_here ("");
1038 gdb_flush (gdb_stdout);
1039
1040 do_cleanups (old_chain);
1041 }
1042
1043 /* ARGSUSED */
1044 static void
1045 set_command (char *exp, int from_tty)
1046 {
1047 struct expression *expr = parse_expression (exp);
1048 register struct cleanup *old_chain =
1049 make_cleanup (free_current_contents, &expr);
1050 evaluate_expression (expr);
1051 do_cleanups (old_chain);
1052 }
1053
1054 /* ARGSUSED */
1055 static void
1056 sym_info (char *arg, int from_tty)
1057 {
1058 struct minimal_symbol *msymbol;
1059 struct objfile *objfile;
1060 struct obj_section *osect;
1061 asection *sect;
1062 CORE_ADDR addr, sect_addr;
1063 int matches = 0;
1064 unsigned int offset;
1065
1066 if (!arg)
1067 error_no_arg ("address");
1068
1069 addr = parse_and_eval_address (arg);
1070 ALL_OBJSECTIONS (objfile, osect)
1071 {
1072 sect = osect->the_bfd_section;
1073 sect_addr = overlay_mapped_address (addr, sect);
1074
1075 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
1076 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
1077 {
1078 matches = 1;
1079 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1080 if (offset)
1081 printf_filtered ("%s + %u in ",
1082 SYMBOL_SOURCE_NAME (msymbol), offset);
1083 else
1084 printf_filtered ("%s in ",
1085 SYMBOL_SOURCE_NAME (msymbol));
1086 if (pc_in_unmapped_range (addr, sect))
1087 printf_filtered ("load address range of ");
1088 if (section_is_overlay (sect))
1089 printf_filtered ("%s overlay ",
1090 section_is_mapped (sect) ? "mapped" : "unmapped");
1091 printf_filtered ("section %s", sect->name);
1092 printf_filtered ("\n");
1093 }
1094 }
1095 if (matches == 0)
1096 printf_filtered ("No symbol matches %s.\n", arg);
1097 }
1098
1099 /* ARGSUSED */
1100 static void
1101 address_info (char *exp, int from_tty)
1102 {
1103 register struct symbol *sym;
1104 register struct minimal_symbol *msymbol;
1105 register long val;
1106 register long basereg;
1107 asection *section;
1108 CORE_ADDR load_addr;
1109 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1110 if exp is a field of `this'. */
1111
1112 if (exp == 0)
1113 error ("Argument required.");
1114
1115 sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE,
1116 &is_a_field_of_this, (struct symtab **) NULL);
1117 if (sym == NULL)
1118 {
1119 if (is_a_field_of_this)
1120 {
1121 printf_filtered ("Symbol \"");
1122 fprintf_symbol_filtered (gdb_stdout, exp,
1123 current_language->la_language, DMGL_ANSI);
1124 printf_filtered ("\" is a field of the local class variable `this'\n");
1125 return;
1126 }
1127
1128 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1129
1130 if (msymbol != NULL)
1131 {
1132 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1133
1134 printf_filtered ("Symbol \"");
1135 fprintf_symbol_filtered (gdb_stdout, exp,
1136 current_language->la_language, DMGL_ANSI);
1137 printf_filtered ("\" is at ");
1138 print_address_numeric (load_addr, 1, gdb_stdout);
1139 printf_filtered (" in a file compiled without debugging");
1140 section = SYMBOL_BFD_SECTION (msymbol);
1141 if (section_is_overlay (section))
1142 {
1143 load_addr = overlay_unmapped_address (load_addr, section);
1144 printf_filtered (",\n -- loaded at ");
1145 print_address_numeric (load_addr, 1, gdb_stdout);
1146 printf_filtered (" in overlay section %s", section->name);
1147 }
1148 printf_filtered (".\n");
1149 }
1150 else
1151 error ("No symbol \"%s\" in current context.", exp);
1152 return;
1153 }
1154
1155 printf_filtered ("Symbol \"");
1156 fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
1157 current_language->la_language, DMGL_ANSI);
1158 printf_filtered ("\" is ");
1159 val = SYMBOL_VALUE (sym);
1160 basereg = SYMBOL_BASEREG (sym);
1161 section = SYMBOL_BFD_SECTION (sym);
1162
1163 switch (SYMBOL_CLASS (sym))
1164 {
1165 case LOC_CONST:
1166 case LOC_CONST_BYTES:
1167 printf_filtered ("constant");
1168 break;
1169
1170 case LOC_LABEL:
1171 printf_filtered ("a label at address ");
1172 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1173 1, gdb_stdout);
1174 if (section_is_overlay (section))
1175 {
1176 load_addr = overlay_unmapped_address (load_addr, section);
1177 printf_filtered (",\n -- loaded at ");
1178 print_address_numeric (load_addr, 1, gdb_stdout);
1179 printf_filtered (" in overlay section %s", section->name);
1180 }
1181 break;
1182
1183 case LOC_REGISTER:
1184 printf_filtered ("a variable in register %s", REGISTER_NAME (val));
1185 break;
1186
1187 case LOC_STATIC:
1188 printf_filtered ("static storage at address ");
1189 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1190 1, gdb_stdout);
1191 if (section_is_overlay (section))
1192 {
1193 load_addr = overlay_unmapped_address (load_addr, section);
1194 printf_filtered (",\n -- loaded at ");
1195 print_address_numeric (load_addr, 1, gdb_stdout);
1196 printf_filtered (" in overlay section %s", section->name);
1197 }
1198 break;
1199
1200 case LOC_INDIRECT:
1201 printf_filtered ("external global (indirect addressing), at address *(");
1202 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1203 1, gdb_stdout);
1204 printf_filtered (")");
1205 if (section_is_overlay (section))
1206 {
1207 load_addr = overlay_unmapped_address (load_addr, section);
1208 printf_filtered (",\n -- loaded at ");
1209 print_address_numeric (load_addr, 1, gdb_stdout);
1210 printf_filtered (" in overlay section %s", section->name);
1211 }
1212 break;
1213
1214 case LOC_REGPARM:
1215 printf_filtered ("an argument in register %s", REGISTER_NAME (val));
1216 break;
1217
1218 case LOC_REGPARM_ADDR:
1219 printf_filtered ("address of an argument in register %s", REGISTER_NAME (val));
1220 break;
1221
1222 case LOC_ARG:
1223 printf_filtered ("an argument at offset %ld", val);
1224 break;
1225
1226 case LOC_LOCAL_ARG:
1227 printf_filtered ("an argument at frame offset %ld", val);
1228 break;
1229
1230 case LOC_LOCAL:
1231 printf_filtered ("a local variable at frame offset %ld", val);
1232 break;
1233
1234 case LOC_REF_ARG:
1235 printf_filtered ("a reference argument at offset %ld", val);
1236 break;
1237
1238 case LOC_BASEREG:
1239 printf_filtered ("a variable at offset %ld from register %s",
1240 val, REGISTER_NAME (basereg));
1241 break;
1242
1243 case LOC_BASEREG_ARG:
1244 printf_filtered ("an argument at offset %ld from register %s",
1245 val, REGISTER_NAME (basereg));
1246 break;
1247
1248 case LOC_TYPEDEF:
1249 printf_filtered ("a typedef");
1250 break;
1251
1252 case LOC_BLOCK:
1253 printf_filtered ("a function at address ");
1254 #ifdef GDB_TARGET_MASK_DISAS_PC
1255 print_address_numeric
1256 (load_addr = GDB_TARGET_MASK_DISAS_PC (BLOCK_START (SYMBOL_BLOCK_VALUE (sym))),
1257 1, gdb_stdout);
1258 #else
1259 print_address_numeric (load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1260 1, gdb_stdout);
1261 #endif
1262 if (section_is_overlay (section))
1263 {
1264 load_addr = overlay_unmapped_address (load_addr, section);
1265 printf_filtered (",\n -- loaded at ");
1266 print_address_numeric (load_addr, 1, gdb_stdout);
1267 printf_filtered (" in overlay section %s", section->name);
1268 }
1269 break;
1270
1271 case LOC_UNRESOLVED:
1272 {
1273 struct minimal_symbol *msym;
1274
1275 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, NULL);
1276 if (msym == NULL)
1277 printf_filtered ("unresolved");
1278 else
1279 {
1280 section = SYMBOL_BFD_SECTION (msym);
1281 printf_filtered ("static storage at address ");
1282 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1283 1, gdb_stdout);
1284 if (section_is_overlay (section))
1285 {
1286 load_addr = overlay_unmapped_address (load_addr, section);
1287 printf_filtered (",\n -- loaded at ");
1288 print_address_numeric (load_addr, 1, gdb_stdout);
1289 printf_filtered (" in overlay section %s", section->name);
1290 }
1291 }
1292 }
1293 break;
1294
1295 case LOC_THREAD_LOCAL_STATIC:
1296 printf_filtered (
1297 "a thread-local variable at offset %ld from the thread base register %s",
1298 val, REGISTER_NAME (basereg));
1299 break;
1300
1301 case LOC_OPTIMIZED_OUT:
1302 printf_filtered ("optimized out");
1303 break;
1304
1305 default:
1306 printf_filtered ("of unknown (botched) type");
1307 break;
1308 }
1309 printf_filtered (".\n");
1310 }
1311 \f
1312 void
1313 x_command (char *exp, int from_tty)
1314 {
1315 struct expression *expr;
1316 struct format_data fmt;
1317 struct cleanup *old_chain;
1318 struct value *val;
1319
1320 fmt.format = last_format;
1321 fmt.size = last_size;
1322 fmt.count = 1;
1323
1324 if (exp && *exp == '/')
1325 {
1326 exp++;
1327 fmt = decode_format (&exp, last_format, last_size);
1328 }
1329
1330 /* If we have an expression, evaluate it and use it as the address. */
1331
1332 if (exp != 0 && *exp != 0)
1333 {
1334 expr = parse_expression (exp);
1335 /* Cause expression not to be there any more
1336 if this command is repeated with Newline.
1337 But don't clobber a user-defined command's definition. */
1338 if (from_tty)
1339 *exp = 0;
1340 old_chain = make_cleanup (free_current_contents, &expr);
1341 val = evaluate_expression (expr);
1342 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1343 val = value_ind (val);
1344 /* In rvalue contexts, such as this, functions are coerced into
1345 pointers to functions. This makes "x/i main" work. */
1346 if (/* last_format == 'i' && */
1347 TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1348 && VALUE_LVAL (val) == lval_memory)
1349 next_address = VALUE_ADDRESS (val);
1350 else
1351 next_address = value_as_pointer (val);
1352 if (VALUE_BFD_SECTION (val))
1353 next_section = VALUE_BFD_SECTION (val);
1354 do_cleanups (old_chain);
1355 }
1356
1357 do_examine (fmt, next_address, next_section);
1358
1359 /* If the examine succeeds, we remember its size and format for next time. */
1360 last_size = fmt.size;
1361 last_format = fmt.format;
1362
1363 /* Set a couple of internal variables if appropriate. */
1364 if (last_examine_value)
1365 {
1366 /* Make last address examined available to the user as $_. Use
1367 the correct pointer type. */
1368 struct type *pointer_type
1369 = lookup_pointer_type (VALUE_TYPE (last_examine_value));
1370 set_internalvar (lookup_internalvar ("_"),
1371 value_from_pointer (pointer_type,
1372 last_examine_address));
1373
1374 /* Make contents of last address examined available to the user as $__. */
1375 /* If the last value has not been fetched from memory then don't
1376 fetch it now - instead mark it by voiding the $__ variable. */
1377 if (VALUE_LAZY (last_examine_value))
1378 set_internalvar (lookup_internalvar ("__"),
1379 allocate_value (builtin_type_void));
1380 else
1381 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1382 }
1383 }
1384 \f
1385
1386 /* Add an expression to the auto-display chain.
1387 Specify the expression. */
1388
1389 static void
1390 display_command (char *exp, int from_tty)
1391 {
1392 struct format_data fmt;
1393 register struct expression *expr;
1394 register struct display *new;
1395 int display_it = 1;
1396
1397 #if defined(TUI)
1398 if (tui_version && *exp == '$')
1399 display_it = ((TuiStatus) tuiDo (
1400 (TuiOpaqueFuncPtr) tui_vSetLayoutTo, exp) == TUI_FAILURE);
1401 #endif
1402
1403 if (display_it)
1404 {
1405 if (exp == 0)
1406 {
1407 do_displays ();
1408 return;
1409 }
1410
1411 if (*exp == '/')
1412 {
1413 exp++;
1414 fmt = decode_format (&exp, 0, 0);
1415 if (fmt.size && fmt.format == 0)
1416 fmt.format = 'x';
1417 if (fmt.format == 'i' || fmt.format == 's')
1418 fmt.size = 'b';
1419 }
1420 else
1421 {
1422 fmt.format = 0;
1423 fmt.size = 0;
1424 fmt.count = 0;
1425 }
1426
1427 innermost_block = 0;
1428 expr = parse_expression (exp);
1429
1430 new = (struct display *) xmalloc (sizeof (struct display));
1431
1432 new->exp = expr;
1433 new->block = innermost_block;
1434 new->next = display_chain;
1435 new->number = ++display_number;
1436 new->format = fmt;
1437 new->status = enabled;
1438 display_chain = new;
1439
1440 if (from_tty && target_has_execution)
1441 do_one_display (new);
1442
1443 dont_repeat ();
1444 }
1445 }
1446
1447 static void
1448 free_display (struct display *d)
1449 {
1450 xfree (d->exp);
1451 xfree (d);
1452 }
1453
1454 /* Clear out the display_chain.
1455 Done when new symtabs are loaded, since this invalidates
1456 the types stored in many expressions. */
1457
1458 void
1459 clear_displays (void)
1460 {
1461 register struct display *d;
1462
1463 while ((d = display_chain) != NULL)
1464 {
1465 xfree (d->exp);
1466 display_chain = d->next;
1467 xfree (d);
1468 }
1469 }
1470
1471 /* Delete the auto-display number NUM. */
1472
1473 static void
1474 delete_display (int num)
1475 {
1476 register struct display *d1, *d;
1477
1478 if (!display_chain)
1479 error ("No display number %d.", num);
1480
1481 if (display_chain->number == num)
1482 {
1483 d1 = display_chain;
1484 display_chain = d1->next;
1485 free_display (d1);
1486 }
1487 else
1488 for (d = display_chain;; d = d->next)
1489 {
1490 if (d->next == 0)
1491 error ("No display number %d.", num);
1492 if (d->next->number == num)
1493 {
1494 d1 = d->next;
1495 d->next = d1->next;
1496 free_display (d1);
1497 break;
1498 }
1499 }
1500 }
1501
1502 /* Delete some values from the auto-display chain.
1503 Specify the element numbers. */
1504
1505 static void
1506 undisplay_command (char *args, int from_tty)
1507 {
1508 register char *p = args;
1509 register char *p1;
1510 register int num;
1511
1512 if (args == 0)
1513 {
1514 if (query ("Delete all auto-display expressions? "))
1515 clear_displays ();
1516 dont_repeat ();
1517 return;
1518 }
1519
1520 while (*p)
1521 {
1522 p1 = p;
1523 while (*p1 >= '0' && *p1 <= '9')
1524 p1++;
1525 if (*p1 && *p1 != ' ' && *p1 != '\t')
1526 error ("Arguments must be display numbers.");
1527
1528 num = atoi (p);
1529
1530 delete_display (num);
1531
1532 p = p1;
1533 while (*p == ' ' || *p == '\t')
1534 p++;
1535 }
1536 dont_repeat ();
1537 }
1538
1539 /* Display a single auto-display.
1540 Do nothing if the display cannot be printed in the current context,
1541 or if the display is disabled. */
1542
1543 static void
1544 do_one_display (struct display *d)
1545 {
1546 int within_current_scope;
1547
1548 if (d->status == disabled)
1549 return;
1550
1551 if (d->block)
1552 within_current_scope = contained_in (get_selected_block (), d->block);
1553 else
1554 within_current_scope = 1;
1555 if (!within_current_scope)
1556 return;
1557
1558 current_display_number = d->number;
1559
1560 annotate_display_begin ();
1561 printf_filtered ("%d", d->number);
1562 annotate_display_number_end ();
1563 printf_filtered (": ");
1564 if (d->format.size)
1565 {
1566 CORE_ADDR addr;
1567 value_ptr val;
1568
1569 annotate_display_format ();
1570
1571 printf_filtered ("x/");
1572 if (d->format.count != 1)
1573 printf_filtered ("%d", d->format.count);
1574 printf_filtered ("%c", d->format.format);
1575 if (d->format.format != 'i' && d->format.format != 's')
1576 printf_filtered ("%c", d->format.size);
1577 printf_filtered (" ");
1578
1579 annotate_display_expression ();
1580
1581 print_expression (d->exp, gdb_stdout);
1582 annotate_display_expression_end ();
1583
1584 if (d->format.count != 1)
1585 printf_filtered ("\n");
1586 else
1587 printf_filtered (" ");
1588
1589 val = evaluate_expression (d->exp);
1590 addr = value_as_pointer (val);
1591 if (d->format.format == 'i')
1592 addr = ADDR_BITS_REMOVE (addr);
1593
1594 annotate_display_value ();
1595
1596 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1597 }
1598 else
1599 {
1600 annotate_display_format ();
1601
1602 if (d->format.format)
1603 printf_filtered ("/%c ", d->format.format);
1604
1605 annotate_display_expression ();
1606
1607 print_expression (d->exp, gdb_stdout);
1608 annotate_display_expression_end ();
1609
1610 printf_filtered (" = ");
1611
1612 annotate_display_expression ();
1613
1614 print_formatted (evaluate_expression (d->exp),
1615 d->format.format, d->format.size, gdb_stdout);
1616 printf_filtered ("\n");
1617 }
1618
1619 annotate_display_end ();
1620
1621 gdb_flush (gdb_stdout);
1622 current_display_number = -1;
1623 }
1624
1625 /* Display all of the values on the auto-display chain which can be
1626 evaluated in the current scope. */
1627
1628 void
1629 do_displays (void)
1630 {
1631 register struct display *d;
1632
1633 for (d = display_chain; d; d = d->next)
1634 do_one_display (d);
1635 }
1636
1637 /* Delete the auto-display which we were in the process of displaying.
1638 This is done when there is an error or a signal. */
1639
1640 void
1641 disable_display (int num)
1642 {
1643 register struct display *d;
1644
1645 for (d = display_chain; d; d = d->next)
1646 if (d->number == num)
1647 {
1648 d->status = disabled;
1649 return;
1650 }
1651 printf_unfiltered ("No display number %d.\n", num);
1652 }
1653
1654 void
1655 disable_current_display (void)
1656 {
1657 if (current_display_number >= 0)
1658 {
1659 disable_display (current_display_number);
1660 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1661 current_display_number);
1662 }
1663 current_display_number = -1;
1664 }
1665
1666 static void
1667 display_info (char *ignore, int from_tty)
1668 {
1669 register struct display *d;
1670
1671 if (!display_chain)
1672 printf_unfiltered ("There are no auto-display expressions now.\n");
1673 else
1674 printf_filtered ("Auto-display expressions now in effect:\n\
1675 Num Enb Expression\n");
1676
1677 for (d = display_chain; d; d = d->next)
1678 {
1679 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->status]);
1680 if (d->format.size)
1681 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1682 d->format.format);
1683 else if (d->format.format)
1684 printf_filtered ("/%c ", d->format.format);
1685 print_expression (d->exp, gdb_stdout);
1686 if (d->block && !contained_in (get_selected_block (), d->block))
1687 printf_filtered (" (cannot be evaluated in the current context)");
1688 printf_filtered ("\n");
1689 gdb_flush (gdb_stdout);
1690 }
1691 }
1692
1693 static void
1694 enable_display (char *args, int from_tty)
1695 {
1696 register char *p = args;
1697 register char *p1;
1698 register int num;
1699 register struct display *d;
1700
1701 if (p == 0)
1702 {
1703 for (d = display_chain; d; d = d->next)
1704 d->status = enabled;
1705 }
1706 else
1707 while (*p)
1708 {
1709 p1 = p;
1710 while (*p1 >= '0' && *p1 <= '9')
1711 p1++;
1712 if (*p1 && *p1 != ' ' && *p1 != '\t')
1713 error ("Arguments must be display numbers.");
1714
1715 num = atoi (p);
1716
1717 for (d = display_chain; d; d = d->next)
1718 if (d->number == num)
1719 {
1720 d->status = enabled;
1721 goto win;
1722 }
1723 printf_unfiltered ("No display number %d.\n", num);
1724 win:
1725 p = p1;
1726 while (*p == ' ' || *p == '\t')
1727 p++;
1728 }
1729 }
1730
1731 /* ARGSUSED */
1732 static void
1733 disable_display_command (char *args, int from_tty)
1734 {
1735 register char *p = args;
1736 register char *p1;
1737 register struct display *d;
1738
1739 if (p == 0)
1740 {
1741 for (d = display_chain; d; d = d->next)
1742 d->status = disabled;
1743 }
1744 else
1745 while (*p)
1746 {
1747 p1 = p;
1748 while (*p1 >= '0' && *p1 <= '9')
1749 p1++;
1750 if (*p1 && *p1 != ' ' && *p1 != '\t')
1751 error ("Arguments must be display numbers.");
1752
1753 disable_display (atoi (p));
1754
1755 p = p1;
1756 while (*p == ' ' || *p == '\t')
1757 p++;
1758 }
1759 }
1760 \f
1761
1762 /* Print the value in stack frame FRAME of a variable
1763 specified by a struct symbol. */
1764
1765 void
1766 print_variable_value (struct symbol *var, struct frame_info *frame,
1767 struct ui_file *stream)
1768 {
1769 value_ptr val = read_var_value (var, frame);
1770
1771 value_print (val, stream, 0, Val_pretty_default);
1772 }
1773
1774 /* Print the arguments of a stack frame, given the function FUNC
1775 running in that frame (as a symbol), the info on the frame,
1776 and the number of args according to the stack frame (or -1 if unknown). */
1777
1778 /* References here and elsewhere to "number of args according to the
1779 stack frame" appear in all cases to refer to "number of ints of args
1780 according to the stack frame". At least for VAX, i386, isi. */
1781
1782 void
1783 print_frame_args (struct symbol *func, struct frame_info *fi, int num,
1784 struct ui_file *stream)
1785 {
1786 struct block *b = NULL;
1787 int nsyms = 0;
1788 int first = 1;
1789 register int i;
1790 register struct symbol *sym;
1791 register value_ptr val;
1792 /* Offset of next stack argument beyond the one we have seen that is
1793 at the highest offset.
1794 -1 if we haven't come to a stack argument yet. */
1795 long highest_offset = -1;
1796 int arg_size;
1797 /* Number of ints of arguments that we have printed so far. */
1798 int args_printed = 0;
1799 #ifdef UI_OUT
1800 struct cleanup *old_chain, *list_chain;
1801 struct ui_stream *stb;
1802
1803 stb = ui_out_stream_new (uiout);
1804 old_chain = make_cleanup_ui_out_stream_delete (stb);
1805 #endif /* UI_OUT */
1806
1807 if (func)
1808 {
1809 b = SYMBOL_BLOCK_VALUE (func);
1810 nsyms = BLOCK_NSYMS (b);
1811 }
1812
1813 for (i = 0; i < nsyms; i++)
1814 {
1815 QUIT;
1816 sym = BLOCK_SYM (b, i);
1817
1818 /* Keep track of the highest stack argument offset seen, and
1819 skip over any kinds of symbols we don't care about. */
1820
1821 switch (SYMBOL_CLASS (sym))
1822 {
1823 case LOC_ARG:
1824 case LOC_REF_ARG:
1825 {
1826 long current_offset = SYMBOL_VALUE (sym);
1827 arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
1828
1829 /* Compute address of next argument by adding the size of
1830 this argument and rounding to an int boundary. */
1831 current_offset =
1832 ((current_offset + arg_size + sizeof (int) - 1)
1833 & ~(sizeof (int) - 1));
1834
1835 /* If this is the highest offset seen yet, set highest_offset. */
1836 if (highest_offset == -1
1837 || (current_offset > highest_offset))
1838 highest_offset = current_offset;
1839
1840 /* Add the number of ints we're about to print to args_printed. */
1841 args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
1842 }
1843
1844 /* We care about types of symbols, but don't need to keep track of
1845 stack offsets in them. */
1846 case LOC_REGPARM:
1847 case LOC_REGPARM_ADDR:
1848 case LOC_LOCAL_ARG:
1849 case LOC_BASEREG_ARG:
1850 break;
1851
1852 /* Other types of symbols we just skip over. */
1853 default:
1854 continue;
1855 }
1856
1857 /* We have to look up the symbol because arguments can have
1858 two entries (one a parameter, one a local) and the one we
1859 want is the local, which lookup_symbol will find for us.
1860 This includes gcc1 (not gcc2) on the sparc when passing a
1861 small structure and gcc2 when the argument type is float
1862 and it is passed as a double and converted to float by
1863 the prologue (in the latter case the type of the LOC_ARG
1864 symbol is double and the type of the LOC_LOCAL symbol is
1865 float). */
1866 /* But if the parameter name is null, don't try it.
1867 Null parameter names occur on the RS/6000, for traceback tables.
1868 FIXME, should we even print them? */
1869
1870 if (*SYMBOL_NAME (sym))
1871 {
1872 struct symbol *nsym;
1873 nsym = lookup_symbol
1874 (SYMBOL_NAME (sym),
1875 b, VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
1876 if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
1877 {
1878 /* There is a LOC_ARG/LOC_REGISTER pair. This means that
1879 it was passed on the stack and loaded into a register,
1880 or passed in a register and stored in a stack slot.
1881 GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
1882
1883 Reasons for using the LOC_ARG:
1884 (1) because find_saved_registers may be slow for remote
1885 debugging,
1886 (2) because registers are often re-used and stack slots
1887 rarely (never?) are. Therefore using the stack slot is
1888 much less likely to print garbage.
1889
1890 Reasons why we might want to use the LOC_REGISTER:
1891 (1) So that the backtrace prints the same value as
1892 "print foo". I see no compelling reason why this needs
1893 to be the case; having the backtrace print the value which
1894 was passed in, and "print foo" print the value as modified
1895 within the called function, makes perfect sense to me.
1896
1897 Additional note: It might be nice if "info args" displayed
1898 both values.
1899 One more note: There is a case with sparc structure passing
1900 where we need to use the LOC_REGISTER, but this is dealt with
1901 by creating a single LOC_REGPARM in symbol reading. */
1902
1903 /* Leave sym (the LOC_ARG) alone. */
1904 ;
1905 }
1906 else
1907 sym = nsym;
1908 }
1909
1910 #ifdef UI_OUT
1911 /* Print the current arg. */
1912 if (!first)
1913 ui_out_text (uiout, ", ");
1914 ui_out_wrap_hint (uiout, " ");
1915
1916 annotate_arg_begin ();
1917
1918 list_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1919 fprintf_symbol_filtered (stb->stream, SYMBOL_SOURCE_NAME (sym),
1920 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1921 ui_out_field_stream (uiout, "name", stb);
1922 annotate_arg_name_end ();
1923 ui_out_text (uiout, "=");
1924 #else
1925 /* Print the current arg. */
1926 if (!first)
1927 fprintf_filtered (stream, ", ");
1928 wrap_here (" ");
1929
1930 annotate_arg_begin ();
1931
1932 fprintf_symbol_filtered (stream, SYMBOL_SOURCE_NAME (sym),
1933 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1934 annotate_arg_name_end ();
1935 fputs_filtered ("=", stream);
1936 #endif
1937
1938 /* Avoid value_print because it will deref ref parameters. We just
1939 want to print their addresses. Print ??? for args whose address
1940 we do not know. We pass 2 as "recurse" to val_print because our
1941 standard indentation here is 4 spaces, and val_print indents
1942 2 for each recurse. */
1943 val = read_var_value (sym, fi);
1944
1945 annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
1946
1947 if (val)
1948 {
1949 #ifdef UI_OUT
1950 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
1951 VALUE_ADDRESS (val),
1952 stb->stream, 0, 0, 2, Val_no_prettyprint);
1953 ui_out_field_stream (uiout, "value", stb);
1954 }
1955 else
1956 ui_out_text (uiout, "???");
1957
1958 /* Invoke ui_out_tuple_end. */
1959 do_cleanups (list_chain);
1960 #else
1961 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
1962 VALUE_ADDRESS (val),
1963 stream, 0, 0, 2, Val_no_prettyprint);
1964 }
1965 else
1966 fputs_filtered ("???", stream);
1967 #endif
1968
1969 annotate_arg_end ();
1970
1971 first = 0;
1972 }
1973
1974 /* Don't print nameless args in situations where we don't know
1975 enough about the stack to find them. */
1976 if (num != -1)
1977 {
1978 long start;
1979
1980 if (highest_offset == -1)
1981 start = FRAME_ARGS_SKIP;
1982 else
1983 start = highest_offset;
1984
1985 print_frame_nameless_args (fi, start, num - args_printed,
1986 first, stream);
1987 }
1988 #ifdef UI_OUT
1989 do_cleanups (old_chain);
1990 #endif /* no UI_OUT */
1991 }
1992
1993 /* Print nameless args on STREAM.
1994 FI is the frameinfo for this frame, START is the offset
1995 of the first nameless arg, and NUM is the number of nameless args to
1996 print. FIRST is nonzero if this is the first argument (not just
1997 the first nameless arg). */
1998
1999 static void
2000 print_frame_nameless_args (struct frame_info *fi, long start, int num,
2001 int first, struct ui_file *stream)
2002 {
2003 int i;
2004 CORE_ADDR argsaddr;
2005 long arg_value;
2006
2007 for (i = 0; i < num; i++)
2008 {
2009 QUIT;
2010 #ifdef NAMELESS_ARG_VALUE
2011 NAMELESS_ARG_VALUE (fi, start, &arg_value);
2012 #else
2013 argsaddr = FRAME_ARGS_ADDRESS (fi);
2014 if (!argsaddr)
2015 return;
2016
2017 arg_value = read_memory_integer (argsaddr + start, sizeof (int));
2018 #endif
2019
2020 if (!first)
2021 fprintf_filtered (stream, ", ");
2022
2023 #ifdef PRINT_NAMELESS_INTEGER
2024 PRINT_NAMELESS_INTEGER (stream, arg_value);
2025 #else
2026 #ifdef PRINT_TYPELESS_INTEGER
2027 PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
2028 #else
2029 fprintf_filtered (stream, "%ld", arg_value);
2030 #endif /* PRINT_TYPELESS_INTEGER */
2031 #endif /* PRINT_NAMELESS_INTEGER */
2032 first = 0;
2033 start += sizeof (int);
2034 }
2035 }
2036 \f
2037 /* ARGSUSED */
2038 static void
2039 printf_command (char *arg, int from_tty)
2040 {
2041 register char *f = NULL;
2042 register char *s = arg;
2043 char *string = NULL;
2044 value_ptr *val_args;
2045 char *substrings;
2046 char *current_substring;
2047 int nargs = 0;
2048 int allocated_args = 20;
2049 struct cleanup *old_cleanups;
2050
2051 val_args = (value_ptr *) xmalloc (allocated_args * sizeof (value_ptr));
2052 old_cleanups = make_cleanup (free_current_contents, &val_args);
2053
2054 if (s == 0)
2055 error_no_arg ("format-control string and values to print");
2056
2057 /* Skip white space before format string */
2058 while (*s == ' ' || *s == '\t')
2059 s++;
2060
2061 /* A format string should follow, enveloped in double quotes */
2062 if (*s++ != '"')
2063 error ("Bad format string, missing '\"'.");
2064
2065 /* Parse the format-control string and copy it into the string STRING,
2066 processing some kinds of escape sequence. */
2067
2068 f = string = (char *) alloca (strlen (s) + 1);
2069
2070 while (*s != '"')
2071 {
2072 int c = *s++;
2073 switch (c)
2074 {
2075 case '\0':
2076 error ("Bad format string, non-terminated '\"'.");
2077
2078 case '\\':
2079 switch (c = *s++)
2080 {
2081 case '\\':
2082 *f++ = '\\';
2083 break;
2084 case 'a':
2085 *f++ = '\a';
2086 break;
2087 case 'b':
2088 *f++ = '\b';
2089 break;
2090 case 'f':
2091 *f++ = '\f';
2092 break;
2093 case 'n':
2094 *f++ = '\n';
2095 break;
2096 case 'r':
2097 *f++ = '\r';
2098 break;
2099 case 't':
2100 *f++ = '\t';
2101 break;
2102 case 'v':
2103 *f++ = '\v';
2104 break;
2105 case '"':
2106 *f++ = '"';
2107 break;
2108 default:
2109 /* ??? TODO: handle other escape sequences */
2110 error ("Unrecognized escape character \\%c in format string.",
2111 c);
2112 }
2113 break;
2114
2115 default:
2116 *f++ = c;
2117 }
2118 }
2119
2120 /* Skip over " and following space and comma. */
2121 s++;
2122 *f++ = '\0';
2123 while (*s == ' ' || *s == '\t')
2124 s++;
2125
2126 if (*s != ',' && *s != 0)
2127 error ("Invalid argument syntax");
2128
2129 if (*s == ',')
2130 s++;
2131 while (*s == ' ' || *s == '\t')
2132 s++;
2133
2134 /* Need extra space for the '\0's. Doubling the size is sufficient. */
2135 substrings = alloca (strlen (string) * 2);
2136 current_substring = substrings;
2137
2138 {
2139 /* Now scan the string for %-specs and see what kinds of args they want.
2140 argclass[I] classifies the %-specs so we can give printf_filtered
2141 something of the right size. */
2142
2143 enum argclass
2144 {
2145 no_arg, int_arg, string_arg, double_arg, long_long_arg
2146 };
2147 enum argclass *argclass;
2148 enum argclass this_argclass;
2149 char *last_arg;
2150 int nargs_wanted;
2151 int lcount;
2152 int i;
2153
2154 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
2155 nargs_wanted = 0;
2156 f = string;
2157 last_arg = string;
2158 while (*f)
2159 if (*f++ == '%')
2160 {
2161 lcount = 0;
2162 while (strchr ("0123456789.hlL-+ #", *f))
2163 {
2164 if (*f == 'l' || *f == 'L')
2165 lcount++;
2166 f++;
2167 }
2168 switch (*f)
2169 {
2170 case 's':
2171 this_argclass = string_arg;
2172 break;
2173
2174 case 'e':
2175 case 'f':
2176 case 'g':
2177 this_argclass = double_arg;
2178 break;
2179
2180 case '*':
2181 error ("`*' not supported for precision or width in printf");
2182
2183 case 'n':
2184 error ("Format specifier `n' not supported in printf");
2185
2186 case '%':
2187 this_argclass = no_arg;
2188 break;
2189
2190 default:
2191 if (lcount > 1)
2192 this_argclass = long_long_arg;
2193 else
2194 this_argclass = int_arg;
2195 break;
2196 }
2197 f++;
2198 if (this_argclass != no_arg)
2199 {
2200 strncpy (current_substring, last_arg, f - last_arg);
2201 current_substring += f - last_arg;
2202 *current_substring++ = '\0';
2203 last_arg = f;
2204 argclass[nargs_wanted++] = this_argclass;
2205 }
2206 }
2207
2208 /* Now, parse all arguments and evaluate them.
2209 Store the VALUEs in VAL_ARGS. */
2210
2211 while (*s != '\0')
2212 {
2213 char *s1;
2214 if (nargs == allocated_args)
2215 val_args = (value_ptr *) xrealloc ((char *) val_args,
2216 (allocated_args *= 2)
2217 * sizeof (value_ptr));
2218 s1 = s;
2219 val_args[nargs] = parse_to_comma_and_eval (&s1);
2220
2221 /* If format string wants a float, unchecked-convert the value to
2222 floating point of the same size */
2223
2224 if (argclass[nargs] == double_arg)
2225 {
2226 struct type *type = VALUE_TYPE (val_args[nargs]);
2227 if (TYPE_LENGTH (type) == sizeof (float))
2228 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
2229 if (TYPE_LENGTH (type) == sizeof (double))
2230 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
2231 }
2232 nargs++;
2233 s = s1;
2234 if (*s == ',')
2235 s++;
2236 }
2237
2238 if (nargs != nargs_wanted)
2239 error ("Wrong number of arguments for specified format-string");
2240
2241 /* Now actually print them. */
2242 current_substring = substrings;
2243 for (i = 0; i < nargs; i++)
2244 {
2245 switch (argclass[i])
2246 {
2247 case string_arg:
2248 {
2249 char *str;
2250 CORE_ADDR tem;
2251 int j;
2252 tem = value_as_pointer (val_args[i]);
2253
2254 /* This is a %s argument. Find the length of the string. */
2255 for (j = 0;; j++)
2256 {
2257 char c;
2258 QUIT;
2259 read_memory (tem + j, &c, 1);
2260 if (c == 0)
2261 break;
2262 }
2263
2264 /* Copy the string contents into a string inside GDB. */
2265 str = (char *) alloca (j + 1);
2266 if (j != 0)
2267 read_memory (tem, str, j);
2268 str[j] = 0;
2269
2270 printf_filtered (current_substring, str);
2271 }
2272 break;
2273 case double_arg:
2274 {
2275 double val = value_as_double (val_args[i]);
2276 printf_filtered (current_substring, val);
2277 break;
2278 }
2279 case long_long_arg:
2280 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2281 {
2282 long long val = value_as_long (val_args[i]);
2283 printf_filtered (current_substring, val);
2284 break;
2285 }
2286 #else
2287 error ("long long not supported in printf");
2288 #endif
2289 case int_arg:
2290 {
2291 /* FIXME: there should be separate int_arg and long_arg. */
2292 long val = value_as_long (val_args[i]);
2293 printf_filtered (current_substring, val);
2294 break;
2295 }
2296 default: /* purecov: deadcode */
2297 error ("internal error in printf_command"); /* purecov: deadcode */
2298 }
2299 /* Skip to the next substring. */
2300 current_substring += strlen (current_substring) + 1;
2301 }
2302 /* Print the portion of the format string after the last argument. */
2303 printf_filtered (last_arg);
2304 }
2305 do_cleanups (old_cleanups);
2306 }
2307 \f
2308 /* Dump a specified section of assembly code. With no command line
2309 arguments, this command will dump the assembly code for the
2310 function surrounding the pc value in the selected frame. With one
2311 argument, it will dump the assembly code surrounding that pc value.
2312 Two arguments are interpeted as bounds within which to dump
2313 assembly. */
2314
2315 /* ARGSUSED */
2316 static void
2317 disassemble_command (char *arg, int from_tty)
2318 {
2319 CORE_ADDR low, high;
2320 char *name;
2321 CORE_ADDR pc, pc_masked;
2322 char *space_index;
2323 #if 0
2324 asection *section;
2325 #endif
2326
2327 name = NULL;
2328 if (!arg)
2329 {
2330 if (!selected_frame)
2331 error ("No frame selected.\n");
2332
2333 pc = get_frame_pc (selected_frame);
2334 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2335 error ("No function contains program counter for selected frame.\n");
2336 #if defined(TUI)
2337 else if (tui_version)
2338 low = (CORE_ADDR) tuiDo ((TuiOpaqueFuncPtr) tui_vGetLowDisassemblyAddress,
2339 (Opaque) low,
2340 (Opaque) pc);
2341 #endif
2342 low += FUNCTION_START_OFFSET;
2343 }
2344 else if (!(space_index = (char *) strchr (arg, ' ')))
2345 {
2346 /* One argument. */
2347 pc = parse_and_eval_address (arg);
2348 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2349 error ("No function contains specified address.\n");
2350 #if defined(TUI)
2351 else if (tui_version)
2352 low = (CORE_ADDR) tuiDo ((TuiOpaqueFuncPtr) tui_vGetLowDisassemblyAddress,
2353 (Opaque) low,
2354 (Opaque) pc);
2355 #endif
2356 #if 0
2357 if (overlay_debugging)
2358 {
2359 section = find_pc_overlay (pc);
2360 if (pc_in_unmapped_range (pc, section))
2361 {
2362 /* find_pc_partial_function will have returned low and high
2363 relative to the symbolic (mapped) address range. Need to
2364 translate them back to the unmapped range where PC is. */
2365 low = overlay_unmapped_address (low, section);
2366 high = overlay_unmapped_address (high, section);
2367 }
2368 }
2369 #endif
2370 low += FUNCTION_START_OFFSET;
2371 }
2372 else
2373 {
2374 /* Two arguments. */
2375 *space_index = '\0';
2376 low = parse_and_eval_address (arg);
2377 high = parse_and_eval_address (space_index + 1);
2378 }
2379
2380 #if defined(TUI)
2381 if (!tui_version ||
2382 m_winPtrIsNull (disassemWin) || !disassemWin->generic.isVisible)
2383 #endif
2384 {
2385 printf_filtered ("Dump of assembler code ");
2386 if (name != NULL)
2387 {
2388 printf_filtered ("for function %s:\n", name);
2389 }
2390 else
2391 {
2392 printf_filtered ("from ");
2393 print_address_numeric (low, 1, gdb_stdout);
2394 printf_filtered (" to ");
2395 print_address_numeric (high, 1, gdb_stdout);
2396 printf_filtered (":\n");
2397 }
2398
2399 /* Dump the specified range. */
2400 pc = low;
2401
2402 #ifdef GDB_TARGET_MASK_DISAS_PC
2403 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2404 #else
2405 pc_masked = pc;
2406 #endif
2407
2408 while (pc_masked < high)
2409 {
2410 QUIT;
2411 print_address (pc_masked, gdb_stdout);
2412 printf_filtered (":\t");
2413 /* We often wrap here if there are long symbolic names. */
2414 wrap_here (" ");
2415 pc += print_insn (pc, gdb_stdout);
2416 printf_filtered ("\n");
2417
2418 #ifdef GDB_TARGET_MASK_DISAS_PC
2419 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2420 #else
2421 pc_masked = pc;
2422 #endif
2423 }
2424 printf_filtered ("End of assembler dump.\n");
2425 gdb_flush (gdb_stdout);
2426 }
2427 #if defined(TUI)
2428 else
2429 {
2430 tuiDo ((TuiOpaqueFuncPtr) tui_vAddWinToLayout, DISASSEM_WIN);
2431 tuiDo ((TuiOpaqueFuncPtr) tui_vUpdateSourceWindowsWithAddr, low);
2432 }
2433 #endif
2434 }
2435
2436 /* Print the instruction at address MEMADDR in debugged memory,
2437 on STREAM. Returns length of the instruction, in bytes. */
2438
2439 static int
2440 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
2441 {
2442 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2443 TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_BIG;
2444 else
2445 TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_LITTLE;
2446
2447 if (TARGET_ARCHITECTURE != NULL)
2448 TARGET_PRINT_INSN_INFO->mach = TARGET_ARCHITECTURE->mach;
2449 /* else: should set .mach=0 but some disassemblers don't grok this */
2450
2451 return TARGET_PRINT_INSN (memaddr, TARGET_PRINT_INSN_INFO);
2452 }
2453 \f
2454
2455 void
2456 _initialize_printcmd (void)
2457 {
2458 struct cmd_list_element *c;
2459
2460 current_display_number = -1;
2461
2462 add_info ("address", address_info,
2463 "Describe where symbol SYM is stored.");
2464
2465 add_info ("symbol", sym_info,
2466 "Describe what symbol is at location ADDR.\n\
2467 Only for symbols with fixed locations (global or static scope).");
2468
2469 add_com ("x", class_vars, x_command,
2470 concat ("Examine memory: x/FMT ADDRESS.\n\
2471 ADDRESS is an expression for the memory address to examine.\n\
2472 FMT is a repeat count followed by a format letter and a size letter.\n\
2473 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2474 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2475 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2476 The specified number of objects of the specified size are printed\n\
2477 according to the format.\n\n\
2478 Defaults for format and size letters are those previously used.\n\
2479 Default count is 1. Default address is following last thing printed\n\
2480 with this command or \"print\".", NULL));
2481
2482 c = add_com ("disassemble", class_vars, disassemble_command,
2483 "Disassemble a specified section of memory.\n\
2484 Default is the function surrounding the pc of the selected frame.\n\
2485 With a single argument, the function surrounding that address is dumped.\n\
2486 Two arguments are taken as a range of memory to dump.");
2487 c->completer = location_completer;
2488 if (xdb_commands)
2489 add_com_alias ("va", "disassemble", class_xdb, 0);
2490
2491 #if 0
2492 add_com ("whereis", class_vars, whereis_command,
2493 "Print line number and file of definition of variable.");
2494 #endif
2495
2496 add_info ("display", display_info,
2497 "Expressions to display when program stops, with code numbers.");
2498
2499 add_cmd ("undisplay", class_vars, undisplay_command,
2500 "Cancel some expressions to be displayed when program stops.\n\
2501 Arguments are the code numbers of the expressions to stop displaying.\n\
2502 No argument means cancel all automatic-display expressions.\n\
2503 \"delete display\" has the same effect as this command.\n\
2504 Do \"info display\" to see current list of code numbers.",
2505 &cmdlist);
2506
2507 add_com ("display", class_vars, display_command,
2508 "Print value of expression EXP each time the program stops.\n\
2509 /FMT may be used before EXP as in the \"print\" command.\n\
2510 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2511 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2512 and examining is done as in the \"x\" command.\n\n\
2513 With no argument, display all currently requested auto-display expressions.\n\
2514 Use \"undisplay\" to cancel display requests previously made."
2515 );
2516
2517 add_cmd ("display", class_vars, enable_display,
2518 "Enable some expressions to be displayed when program stops.\n\
2519 Arguments are the code numbers of the expressions to resume displaying.\n\
2520 No argument means enable all automatic-display expressions.\n\
2521 Do \"info display\" to see current list of code numbers.", &enablelist);
2522
2523 add_cmd ("display", class_vars, disable_display_command,
2524 "Disable some expressions to be displayed when program stops.\n\
2525 Arguments are the code numbers of the expressions to stop displaying.\n\
2526 No argument means disable all automatic-display expressions.\n\
2527 Do \"info display\" to see current list of code numbers.", &disablelist);
2528
2529 add_cmd ("display", class_vars, undisplay_command,
2530 "Cancel some expressions to be displayed when program stops.\n\
2531 Arguments are the code numbers of the expressions to stop displaying.\n\
2532 No argument means cancel all automatic-display expressions.\n\
2533 Do \"info display\" to see current list of code numbers.", &deletelist);
2534
2535 add_com ("printf", class_vars, printf_command,
2536 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2537 This is useful for formatted output in user-defined commands.");
2538
2539 add_com ("output", class_vars, output_command,
2540 "Like \"print\" but don't put in value history and don't print newline.\n\
2541 This is useful in user-defined commands.");
2542
2543 add_prefix_cmd ("set", class_vars, set_command,
2544 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2545 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2546 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2547 with $), a register (a few standard names starting with $), or an actual\n\
2548 variable in the program being debugged. EXP is any valid expression.\n",
2549 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2550 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2551 You can see these environment settings with the \"show\" command.", NULL),
2552 &setlist, "set ", 1, &cmdlist);
2553 if (dbx_commands)
2554 add_com ("assign", class_vars, set_command, concat ("Evaluate expression \
2555 EXP and assign result to variable VAR, using assignment\n\
2556 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2557 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2558 with $), a register (a few standard names starting with $), or an actual\n\
2559 variable in the program being debugged. EXP is any valid expression.\n",
2560 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2561 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2562 You can see these environment settings with the \"show\" command.", NULL));
2563
2564 /* "call" is the same as "set", but handy for dbx users to call fns. */
2565 c = add_com ("call", class_vars, call_command,
2566 "Call a function in the program.\n\
2567 The argument is the function name and arguments, in the notation of the\n\
2568 current working language. The result is printed and saved in the value\n\
2569 history, if it is not void.");
2570 c->completer = location_completer;
2571
2572 add_cmd ("variable", class_vars, set_command,
2573 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2574 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2575 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2576 with $), a register (a few standard names starting with $), or an actual\n\
2577 variable in the program being debugged. EXP is any valid expression.\n\
2578 This may usually be abbreviated to simply \"set\".",
2579 &setlist);
2580
2581 c = add_com ("print", class_vars, print_command,
2582 concat ("Print value of expression EXP.\n\
2583 Variables accessible are those of the lexical environment of the selected\n\
2584 stack frame, plus all those whose scope is global or an entire file.\n\
2585 \n\
2586 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2587 $$NUM refers to NUM'th value back from the last one.\n\
2588 Names starting with $ refer to registers (with the values they would have\n",
2589 "if the program were to return to the stack frame now selected, restoring\n\
2590 all registers saved by frames farther in) or else to debugger\n\
2591 \"convenience\" variables (any such name not a known register).\n\
2592 Use assignment expressions to give values to convenience variables.\n",
2593 "\n\
2594 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2595 @ is a binary operator for treating consecutive data objects\n\
2596 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2597 element is FOO, whose second element is stored in the space following\n\
2598 where FOO is stored, etc. FOO must be an expression whose value\n\
2599 resides in memory.\n",
2600 "\n\
2601 EXP may be preceded with /FMT, where FMT is a format letter\n\
2602 but no count or size letter (see \"x\" command).", NULL));
2603 c->completer = location_completer;
2604 add_com_alias ("p", "print", class_vars, 1);
2605
2606 c = add_com ("inspect", class_vars, inspect_command,
2607 "Same as \"print\" command, except that if you are running in the epoch\n\
2608 environment, the value is printed in its own window.");
2609 c->completer = location_completer;
2610
2611 add_show_from_set (
2612 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2613 (char *) &max_symbolic_offset,
2614 "Set the largest offset that will be printed in <symbol+1234> form.",
2615 &setprintlist),
2616 &showprintlist);
2617 add_show_from_set (
2618 add_set_cmd ("symbol-filename", no_class, var_boolean,
2619 (char *) &print_symbol_filename,
2620 "Set printing of source filename and line number with <symbol>.",
2621 &setprintlist),
2622 &showprintlist);
2623
2624 /* For examine/instruction a single byte quantity is specified as
2625 the data. This avoids problems with value_at_lazy() requiring a
2626 valid data type (and rejecting VOID). */
2627 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2628
2629 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2630 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2631 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2632 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2633
2634 }
This page took 0.105867 seconds and 4 git commands to generate.