c49f51b7c90fb711b79e363dbb4945a75992cf64
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "language.h"
30 #include "expression.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "breakpoint.h"
35 #include "demangle.h"
36 #include "valprint.h"
37 #include "annotate.h"
38 #include "symfile.h" /* for overlay functions */
39 #include "objfiles.h" /* ditto */
40 #ifdef UI_OUT
41 #include "ui-out.h"
42 #endif
43
44 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
45 extern int addressprint; /* Whether to print hex addresses in HLL " */
46
47 struct format_data
48 {
49 int count;
50 char format;
51 char size;
52 };
53
54 /* Last specified output format. */
55
56 static char last_format = 'x';
57
58 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
59
60 static char last_size = 'w';
61
62 /* Default address to examine next. */
63
64 static CORE_ADDR next_address;
65
66 /* Default section to examine next. */
67
68 static asection *next_section;
69
70 /* Last address examined. */
71
72 static CORE_ADDR last_examine_address;
73
74 /* Contents of last address examined.
75 This is not valid past the end of the `x' command! */
76
77 static value_ptr last_examine_value;
78
79 /* Largest offset between a symbolic value and an address, that will be
80 printed as `0x1234 <symbol+offset>'. */
81
82 static unsigned int max_symbolic_offset = UINT_MAX;
83
84 /* Append the source filename and linenumber of the symbol when
85 printing a symbolic value as `<symbol at filename:linenum>' if set. */
86 static int print_symbol_filename = 0;
87
88 /* Number of auto-display expression currently being displayed.
89 So that we can disable it if we get an error or a signal within it.
90 -1 when not doing one. */
91
92 int current_display_number;
93
94 /* Flag to low-level print routines that this value is being printed
95 in an epoch window. We'd like to pass this as a parameter, but
96 every routine would need to take it. Perhaps we can encapsulate
97 this in the I/O stream once we have GNU stdio. */
98
99 int inspect_it = 0;
100
101 struct display
102 {
103 /* Chain link to next auto-display item. */
104 struct display *next;
105 /* Expression to be evaluated and displayed. */
106 struct expression *exp;
107 /* Item number of this auto-display item. */
108 int number;
109 /* Display format specified. */
110 struct format_data format;
111 /* Innermost block required by this expression when evaluated */
112 struct block *block;
113 /* Status of this display (enabled or disabled) */
114 enum enable status;
115 };
116
117 /* Chain of expressions whose values should be displayed
118 automatically each time the program stops. */
119
120 static struct display *display_chain;
121
122 static int display_number;
123
124 /* Prototypes for exported functions. */
125
126 void output_command (char *, int);
127
128 void _initialize_printcmd (void);
129
130 /* Prototypes for local functions. */
131
132 static void delete_display (int);
133
134 static void enable_display (char *, int);
135
136 static void disable_display_command (char *, int);
137
138 static void disassemble_command (char *, int);
139
140 static void printf_command (char *, int);
141
142 static void print_frame_nameless_args (struct frame_info *, long,
143 int, int, struct ui_file *);
144
145 static void display_info (char *, int);
146
147 static void do_one_display (struct display *);
148
149 static void undisplay_command (char *, int);
150
151 static void free_display (struct display *);
152
153 static void display_command (char *, int);
154
155 void x_command (char *, int);
156
157 static void address_info (char *, int);
158
159 static void set_command (char *, int);
160
161 static void call_command (char *, int);
162
163 static void inspect_command (char *, int);
164
165 static void print_command (char *, int);
166
167 static void print_command_1 (char *, int, int);
168
169 static void validate_format (struct format_data, char *);
170
171 static void do_examine (struct format_data, CORE_ADDR addr,
172 asection * section);
173
174 static void print_formatted (value_ptr, int, int, struct ui_file *);
175
176 static struct format_data decode_format (char **, int, int);
177
178 static int print_insn (CORE_ADDR, struct ui_file *);
179
180 static void sym_info (char *, int);
181 \f
182
183 /* Decode a format specification. *STRING_PTR should point to it.
184 OFORMAT and OSIZE are used as defaults for the format and size
185 if none are given in the format specification.
186 If OSIZE is zero, then the size field of the returned value
187 should be set only if a size is explicitly specified by the
188 user.
189 The structure returned describes all the data
190 found in the specification. In addition, *STRING_PTR is advanced
191 past the specification and past all whitespace following it. */
192
193 static struct format_data
194 decode_format (char **string_ptr, int oformat, int osize)
195 {
196 struct format_data val;
197 register char *p = *string_ptr;
198
199 val.format = '?';
200 val.size = '?';
201 val.count = 1;
202
203 if (*p >= '0' && *p <= '9')
204 val.count = atoi (p);
205 while (*p >= '0' && *p <= '9')
206 p++;
207
208 /* Now process size or format letters that follow. */
209
210 while (1)
211 {
212 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
213 val.size = *p++;
214 else if (*p >= 'a' && *p <= 'z')
215 val.format = *p++;
216 else
217 break;
218 }
219
220 while (*p == ' ' || *p == '\t')
221 p++;
222 *string_ptr = p;
223
224 /* Set defaults for format and size if not specified. */
225 if (val.format == '?')
226 {
227 if (val.size == '?')
228 {
229 /* Neither has been specified. */
230 val.format = oformat;
231 val.size = osize;
232 }
233 else
234 /* If a size is specified, any format makes a reasonable
235 default except 'i'. */
236 val.format = oformat == 'i' ? 'x' : oformat;
237 }
238 else if (val.size == '?')
239 switch (val.format)
240 {
241 case 'a':
242 case 's':
243 /* Pick the appropriate size for an address. */
244 if (TARGET_PTR_BIT == 64)
245 val.size = osize ? 'g' : osize;
246 else if (TARGET_PTR_BIT == 32)
247 val.size = osize ? 'w' : osize;
248 else if (TARGET_PTR_BIT == 16)
249 val.size = osize ? 'h' : osize;
250 else
251 /* Bad value for TARGET_PTR_BIT */
252 internal_error (__FILE__, __LINE__, "failed internal consistency check");
253 break;
254 case 'f':
255 /* Floating point has to be word or giantword. */
256 if (osize == 'w' || osize == 'g')
257 val.size = osize;
258 else
259 /* Default it to giantword if the last used size is not
260 appropriate. */
261 val.size = osize ? 'g' : osize;
262 break;
263 case 'c':
264 /* Characters default to one byte. */
265 val.size = osize ? 'b' : osize;
266 break;
267 default:
268 /* The default is the size most recently specified. */
269 val.size = osize;
270 }
271
272 return val;
273 }
274 \f
275 /* Print value VAL on stream according to FORMAT, a letter or 0.
276 Do not end with a newline.
277 0 means print VAL according to its own type.
278 SIZE is the letter for the size of datum being printed.
279 This is used to pad hex numbers so they line up. */
280
281 static void
282 print_formatted (register value_ptr val, register int format, int size,
283 struct ui_file *stream)
284 {
285 struct type *type = check_typedef (VALUE_TYPE (val));
286 int len = TYPE_LENGTH (type);
287
288 if (VALUE_LVAL (val) == lval_memory)
289 {
290 next_address = VALUE_ADDRESS (val) + len;
291 next_section = VALUE_BFD_SECTION (val);
292 }
293
294 switch (format)
295 {
296 case 's':
297 /* FIXME: Need to handle wchar_t's here... */
298 next_address = VALUE_ADDRESS (val)
299 + val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
300 next_section = VALUE_BFD_SECTION (val);
301 break;
302
303 case 'i':
304 /* The old comment says
305 "Force output out, print_insn not using _filtered".
306 I'm not completely sure what that means, I suspect most print_insn
307 now do use _filtered, so I guess it's obsolete.
308 --Yes, it does filter now, and so this is obsolete. -JB */
309
310 /* We often wrap here if there are long symbolic names. */
311 wrap_here (" ");
312 next_address = VALUE_ADDRESS (val)
313 + print_insn (VALUE_ADDRESS (val), stream);
314 next_section = VALUE_BFD_SECTION (val);
315 break;
316
317 default:
318 if (format == 0
319 || TYPE_CODE (type) == TYPE_CODE_ARRAY
320 || TYPE_CODE (type) == TYPE_CODE_STRING
321 || TYPE_CODE (type) == TYPE_CODE_STRUCT
322 || TYPE_CODE (type) == TYPE_CODE_UNION)
323 /* If format is 0, use the 'natural' format for
324 * that type of value. If the type is non-scalar,
325 * we have to use language rules to print it as
326 * a series of scalars.
327 */
328 value_print (val, stream, format, Val_pretty_default);
329 else
330 /* User specified format, so don't look to the
331 * the type to tell us what to do.
332 */
333 print_scalar_formatted (VALUE_CONTENTS (val), type,
334 format, size, stream);
335 }
336 }
337
338 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
339 according to letters FORMAT and SIZE on STREAM.
340 FORMAT may not be zero. Formats s and i are not supported at this level.
341
342 This is how the elements of an array or structure are printed
343 with a format. */
344
345 void
346 print_scalar_formatted (char *valaddr, struct type *type, int format, int size,
347 struct ui_file *stream)
348 {
349 LONGEST val_long;
350 unsigned int len = TYPE_LENGTH (type);
351
352 if (len > sizeof (LONGEST)
353 && (format == 't'
354 || format == 'c'
355 || format == 'o'
356 || format == 'u'
357 || format == 'd'
358 || format == 'x'))
359 {
360 if (!TYPE_UNSIGNED (type)
361 || !extract_long_unsigned_integer (valaddr, len, &val_long))
362 {
363 /* We can't print it normally, but we can print it in hex.
364 Printing it in the wrong radix is more useful than saying
365 "use /x, you dummy". */
366 /* FIXME: we could also do octal or binary if that was the
367 desired format. */
368 /* FIXME: we should be using the size field to give us a
369 minimum field width to print. */
370
371 if (format == 'o')
372 print_octal_chars (stream, valaddr, len);
373 else if (format == 'd')
374 print_decimal_chars (stream, valaddr, len);
375 else if (format == 't')
376 print_binary_chars (stream, valaddr, len);
377 else
378 /* replace with call to print_hex_chars? Looks
379 like val_print_type_code_int is redoing
380 work. - edie */
381
382 val_print_type_code_int (type, valaddr, stream);
383
384 return;
385 }
386
387 /* If we get here, extract_long_unsigned_integer set val_long. */
388 }
389 else if (format != 'f')
390 val_long = unpack_long (type, valaddr);
391
392 /* If we are printing it as unsigned, truncate it in case it is actually
393 a negative signed value (e.g. "print/u (short)-1" should print 65535
394 (if shorts are 16 bits) instead of 4294967295). */
395 if (format != 'd')
396 {
397 if (len < sizeof (LONGEST))
398 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
399 }
400
401 switch (format)
402 {
403 case 'x':
404 if (!size)
405 {
406 /* no size specified, like in print. Print varying # of digits. */
407 print_longest (stream, 'x', 1, val_long);
408 }
409 else
410 switch (size)
411 {
412 case 'b':
413 case 'h':
414 case 'w':
415 case 'g':
416 print_longest (stream, size, 1, val_long);
417 break;
418 default:
419 error ("Undefined output size \"%c\".", size);
420 }
421 break;
422
423 case 'd':
424 print_longest (stream, 'd', 1, val_long);
425 break;
426
427 case 'u':
428 print_longest (stream, 'u', 0, val_long);
429 break;
430
431 case 'o':
432 if (val_long)
433 print_longest (stream, 'o', 1, val_long);
434 else
435 fprintf_filtered (stream, "0");
436 break;
437
438 case 'a':
439 {
440 CORE_ADDR addr = unpack_pointer (type, valaddr);
441 print_address (addr, stream);
442 }
443 break;
444
445 case 'c':
446 value_print (value_from_longest (builtin_type_true_char, val_long),
447 stream, 0, Val_pretty_default);
448 break;
449
450 case 'f':
451 if (len == sizeof (float))
452 type = builtin_type_float;
453 else if (len == sizeof (double))
454 type = builtin_type_double;
455 print_floating (valaddr, type, stream);
456 break;
457
458 case 0:
459 internal_error (__FILE__, __LINE__, "failed internal consistency check");
460
461 case 't':
462 /* Binary; 't' stands for "two". */
463 {
464 char bits[8 * (sizeof val_long) + 1];
465 char buf[8 * (sizeof val_long) + 32];
466 char *cp = bits;
467 int width;
468
469 if (!size)
470 width = 8 * (sizeof val_long);
471 else
472 switch (size)
473 {
474 case 'b':
475 width = 8;
476 break;
477 case 'h':
478 width = 16;
479 break;
480 case 'w':
481 width = 32;
482 break;
483 case 'g':
484 width = 64;
485 break;
486 default:
487 error ("Undefined output size \"%c\".", size);
488 }
489
490 bits[width] = '\0';
491 while (width-- > 0)
492 {
493 bits[width] = (val_long & 1) ? '1' : '0';
494 val_long >>= 1;
495 }
496 if (!size)
497 {
498 while (*cp && *cp == '0')
499 cp++;
500 if (*cp == '\0')
501 cp--;
502 }
503 strcpy (buf, local_binary_format_prefix ());
504 strcat (buf, cp);
505 strcat (buf, local_binary_format_suffix ());
506 fprintf_filtered (stream, buf);
507 }
508 break;
509
510 default:
511 error ("Undefined output format \"%c\".", format);
512 }
513 }
514
515 /* Specify default address for `x' command.
516 `info lines' uses this. */
517
518 void
519 set_next_address (CORE_ADDR addr)
520 {
521 next_address = addr;
522
523 /* Make address available to the user as $_. */
524 set_internalvar (lookup_internalvar ("_"),
525 value_from_pointer (lookup_pointer_type (builtin_type_void),
526 addr));
527 }
528
529 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
530 after LEADIN. Print nothing if no symbolic name is found nearby.
531 Optionally also print source file and line number, if available.
532 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
533 or to interpret it as a possible C++ name and convert it back to source
534 form. However note that DO_DEMANGLE can be overridden by the specific
535 settings of the demangle and asm_demangle variables. */
536
537 void
538 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream, int do_demangle,
539 char *leadin)
540 {
541 char *name = NULL;
542 char *filename = NULL;
543 int unmapped = 0;
544 int offset = 0;
545 int line = 0;
546
547 /* throw away both name and filename */
548 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
549 make_cleanup (free_current_contents, &filename);
550
551 if (build_address_symbolic (addr, do_demangle, &name, &offset, &filename, &line, &unmapped))
552 {
553 do_cleanups (cleanup_chain);
554 return;
555 }
556
557 fputs_filtered (leadin, stream);
558 if (unmapped)
559 fputs_filtered ("<*", stream);
560 else
561 fputs_filtered ("<", stream);
562 fputs_filtered (name, stream);
563 if (offset != 0)
564 fprintf_filtered (stream, "+%u", (unsigned int) offset);
565
566 /* Append source filename and line number if desired. Give specific
567 line # of this addr, if we have it; else line # of the nearest symbol. */
568 if (print_symbol_filename && filename != NULL)
569 {
570 if (line != -1)
571 fprintf_filtered (stream, " at %s:%d", filename, line);
572 else
573 fprintf_filtered (stream, " in %s", filename);
574 }
575 if (unmapped)
576 fputs_filtered ("*>", stream);
577 else
578 fputs_filtered (">", stream);
579
580 do_cleanups (cleanup_chain);
581 }
582
583 /* Given an address ADDR return all the elements needed to print the
584 address in a symbolic form. NAME can be mangled or not depending
585 on DO_DEMANGLE (and also on the asm_demangle global variable,
586 manipulated via ''set print asm-demangle''). Return 0 in case of
587 success, when all the info in the OUT paramters is valid. Return 1
588 otherwise. */
589 int
590 build_address_symbolic (CORE_ADDR addr, /* IN */
591 int do_demangle, /* IN */
592 char **name, /* OUT */
593 int *offset, /* OUT */
594 char **filename, /* OUT */
595 int *line, /* OUT */
596 int *unmapped) /* OUT */
597 {
598 struct minimal_symbol *msymbol;
599 struct symbol *symbol;
600 struct symtab *symtab = 0;
601 CORE_ADDR name_location = 0;
602 asection *section = 0;
603 char *name_temp = "";
604
605 /* Let's say it is unmapped. */
606 *unmapped = 0;
607
608 /* Determine if the address is in an overlay, and whether it is
609 mapped. */
610 if (overlay_debugging)
611 {
612 section = find_pc_overlay (addr);
613 if (pc_in_unmapped_range (addr, section))
614 {
615 *unmapped = 1;
616 addr = overlay_mapped_address (addr, section);
617 }
618 }
619
620 /* On some targets, add in extra "flag" bits to PC for
621 disassembly. This should ensure that "rounding errors" in
622 symbol addresses that are masked for disassembly favour the
623 the correct symbol. */
624
625 #ifdef GDB_TARGET_UNMASK_DISAS_PC
626 addr = GDB_TARGET_UNMASK_DISAS_PC (addr);
627 #endif
628
629 /* First try to find the address in the symbol table, then
630 in the minsyms. Take the closest one. */
631
632 /* This is defective in the sense that it only finds text symbols. So
633 really this is kind of pointless--we should make sure that the
634 minimal symbols have everything we need (by changing that we could
635 save some memory, but for many debug format--ELF/DWARF or
636 anything/stabs--it would be inconvenient to eliminate those minimal
637 symbols anyway). */
638 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
639 symbol = find_pc_sect_function (addr, section);
640
641 if (symbol)
642 {
643 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
644 if (do_demangle)
645 name_temp = SYMBOL_SOURCE_NAME (symbol);
646 else
647 name_temp = SYMBOL_LINKAGE_NAME (symbol);
648 }
649
650 if (msymbol != NULL)
651 {
652 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
653 {
654 /* The msymbol is closer to the address than the symbol;
655 use the msymbol instead. */
656 symbol = 0;
657 symtab = 0;
658 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
659 if (do_demangle)
660 name_temp = SYMBOL_SOURCE_NAME (msymbol);
661 else
662 name_temp = SYMBOL_LINKAGE_NAME (msymbol);
663 }
664 }
665 if (symbol == NULL && msymbol == NULL)
666 return 1;
667
668 /* On some targets, mask out extra "flag" bits from PC for handsome
669 disassembly. */
670
671 #ifdef GDB_TARGET_MASK_DISAS_PC
672 name_location = GDB_TARGET_MASK_DISAS_PC (name_location);
673 addr = GDB_TARGET_MASK_DISAS_PC (addr);
674 #endif
675
676 /* If the nearest symbol is too far away, don't print anything symbolic. */
677
678 /* For when CORE_ADDR is larger than unsigned int, we do math in
679 CORE_ADDR. But when we detect unsigned wraparound in the
680 CORE_ADDR math, we ignore this test and print the offset,
681 because addr+max_symbolic_offset has wrapped through the end
682 of the address space back to the beginning, giving bogus comparison. */
683 if (addr > name_location + max_symbolic_offset
684 && name_location + max_symbolic_offset > name_location)
685 return 1;
686
687 *offset = addr - name_location;
688
689 *name = xstrdup (name_temp);
690
691 if (print_symbol_filename)
692 {
693 struct symtab_and_line sal;
694
695 sal = find_pc_sect_line (addr, section, 0);
696
697 if (sal.symtab)
698 {
699 *filename = xstrdup (sal.symtab->filename);
700 *line = sal.line;
701 }
702 else if (symtab && symbol && symbol->line)
703 {
704 *filename = xstrdup (symtab->filename);
705 *line = symbol->line;
706 }
707 else if (symtab)
708 {
709 *filename = xstrdup (symtab->filename);
710 *line = -1;
711 }
712 }
713 return 0;
714 }
715
716 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
717 print_longest. */
718 void
719 print_address_numeric (CORE_ADDR addr, int use_local, struct ui_file *stream)
720 {
721 /* Truncate address to the size of a target address, avoiding shifts
722 larger or equal than the width of a CORE_ADDR. The local
723 variable ADDR_BIT stops the compiler reporting a shift overflow
724 when it won't occur. */
725 /* NOTE: This assumes that the significant address information is
726 kept in the least significant bits of ADDR - the upper bits were
727 either zero or sign extended. Should ADDRESS_TO_POINTER() or
728 some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
729
730 int addr_bit = TARGET_ADDR_BIT;
731
732 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
733 addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
734 print_longest (stream, 'x', use_local, (ULONGEST) addr);
735 }
736
737 /* Print address ADDR symbolically on STREAM.
738 First print it as a number. Then perhaps print
739 <SYMBOL + OFFSET> after the number. */
740
741 void
742 print_address (CORE_ADDR addr, struct ui_file *stream)
743 {
744 print_address_numeric (addr, 1, stream);
745 print_address_symbolic (addr, stream, asm_demangle, " ");
746 }
747
748 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
749 controls whether to print the symbolic name "raw" or demangled.
750 Global setting "addressprint" controls whether to print hex address
751 or not. */
752
753 void
754 print_address_demangle (CORE_ADDR addr, struct ui_file *stream, int do_demangle)
755 {
756 if (addr == 0)
757 {
758 fprintf_filtered (stream, "0");
759 }
760 else if (addressprint)
761 {
762 print_address_numeric (addr, 1, stream);
763 print_address_symbolic (addr, stream, do_demangle, " ");
764 }
765 else
766 {
767 print_address_symbolic (addr, stream, do_demangle, "");
768 }
769 }
770 \f
771
772 /* These are the types that $__ will get after an examine command of one
773 of these sizes. */
774
775 static struct type *examine_i_type;
776
777 static struct type *examine_b_type;
778 static struct type *examine_h_type;
779 static struct type *examine_w_type;
780 static struct type *examine_g_type;
781
782 /* Examine data at address ADDR in format FMT.
783 Fetch it from memory and print on gdb_stdout. */
784
785 static void
786 do_examine (struct format_data fmt, CORE_ADDR addr, asection *sect)
787 {
788 register char format = 0;
789 register char size;
790 register int count = 1;
791 struct type *val_type = NULL;
792 register int i;
793 register int maxelts;
794
795 format = fmt.format;
796 size = fmt.size;
797 count = fmt.count;
798 next_address = addr;
799 next_section = sect;
800
801 /* String or instruction format implies fetch single bytes
802 regardless of the specified size. */
803 if (format == 's' || format == 'i')
804 size = 'b';
805
806 if (format == 'i')
807 val_type = examine_i_type;
808 else if (size == 'b')
809 val_type = examine_b_type;
810 else if (size == 'h')
811 val_type = examine_h_type;
812 else if (size == 'w')
813 val_type = examine_w_type;
814 else if (size == 'g')
815 val_type = examine_g_type;
816
817 maxelts = 8;
818 if (size == 'w')
819 maxelts = 4;
820 if (size == 'g')
821 maxelts = 2;
822 if (format == 's' || format == 'i')
823 maxelts = 1;
824
825 /* Print as many objects as specified in COUNT, at most maxelts per line,
826 with the address of the next one at the start of each line. */
827
828 while (count > 0)
829 {
830 QUIT;
831 print_address (next_address, gdb_stdout);
832 printf_filtered (":");
833 for (i = maxelts;
834 i > 0 && count > 0;
835 i--, count--)
836 {
837 printf_filtered ("\t");
838 /* Note that print_formatted sets next_address for the next
839 object. */
840 last_examine_address = next_address;
841
842 if (last_examine_value)
843 value_free (last_examine_value);
844
845 /* The value to be displayed is not fetched greedily.
846 Instead, to avoid the posibility of a fetched value not
847 being used, its retreval is delayed until the print code
848 uses it. When examining an instruction stream, the
849 disassembler will perform its own memory fetch using just
850 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
851 the disassembler be modified so that LAST_EXAMINE_VALUE
852 is left with the byte sequence from the last complete
853 instruction fetched from memory? */
854 last_examine_value = value_at_lazy (val_type, next_address, sect);
855
856 if (last_examine_value)
857 release_value (last_examine_value);
858
859 print_formatted (last_examine_value, format, size, gdb_stdout);
860 }
861 printf_filtered ("\n");
862 gdb_flush (gdb_stdout);
863 }
864 }
865 \f
866 static void
867 validate_format (struct format_data fmt, char *cmdname)
868 {
869 if (fmt.size != 0)
870 error ("Size letters are meaningless in \"%s\" command.", cmdname);
871 if (fmt.count != 1)
872 error ("Item count other than 1 is meaningless in \"%s\" command.",
873 cmdname);
874 if (fmt.format == 'i' || fmt.format == 's')
875 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
876 fmt.format, cmdname);
877 }
878
879 /* Evaluate string EXP as an expression in the current language and
880 print the resulting value. EXP may contain a format specifier as the
881 first argument ("/x myvar" for example, to print myvar in hex).
882 */
883
884 static void
885 print_command_1 (char *exp, int inspect, int voidprint)
886 {
887 struct expression *expr;
888 register struct cleanup *old_chain = 0;
889 register char format = 0;
890 register value_ptr val;
891 struct format_data fmt;
892 int cleanup = 0;
893
894 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
895 inspect_it = inspect;
896
897 if (exp && *exp == '/')
898 {
899 exp++;
900 fmt = decode_format (&exp, last_format, 0);
901 validate_format (fmt, "print");
902 last_format = format = fmt.format;
903 }
904 else
905 {
906 fmt.count = 1;
907 fmt.format = 0;
908 fmt.size = 0;
909 }
910
911 if (exp && *exp)
912 {
913 struct type *type;
914 expr = parse_expression (exp);
915 old_chain = make_cleanup (free_current_contents, &expr);
916 cleanup = 1;
917 val = evaluate_expression (expr);
918
919 /* C++: figure out what type we actually want to print it as. */
920 type = VALUE_TYPE (val);
921
922 if (objectprint
923 && (TYPE_CODE (type) == TYPE_CODE_PTR
924 || TYPE_CODE (type) == TYPE_CODE_REF)
925 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT
926 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_UNION))
927 {
928 value_ptr v;
929
930 v = value_from_vtable_info (val, TYPE_TARGET_TYPE (type));
931 if (v != 0)
932 {
933 val = v;
934 type = VALUE_TYPE (val);
935 }
936 }
937 }
938 else
939 val = access_value_history (0);
940
941 if (voidprint || (val && VALUE_TYPE (val) &&
942 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
943 {
944 int histindex = record_latest_value (val);
945
946 if (histindex >= 0)
947 annotate_value_history_begin (histindex, VALUE_TYPE (val));
948 else
949 annotate_value_begin (VALUE_TYPE (val));
950
951 if (inspect)
952 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
953 else if (histindex >= 0)
954 printf_filtered ("$%d = ", histindex);
955
956 if (histindex >= 0)
957 annotate_value_history_value ();
958
959 print_formatted (val, format, fmt.size, gdb_stdout);
960 printf_filtered ("\n");
961
962 if (histindex >= 0)
963 annotate_value_history_end ();
964 else
965 annotate_value_end ();
966
967 if (inspect)
968 printf_unfiltered ("\") )\030");
969 }
970
971 if (cleanup)
972 do_cleanups (old_chain);
973 inspect_it = 0; /* Reset print routines to normal */
974 }
975
976 /* ARGSUSED */
977 static void
978 print_command (char *exp, int from_tty)
979 {
980 print_command_1 (exp, 0, 1);
981 }
982
983 /* Same as print, except in epoch, it gets its own window */
984 /* ARGSUSED */
985 static void
986 inspect_command (char *exp, int from_tty)
987 {
988 extern int epoch_interface;
989
990 print_command_1 (exp, epoch_interface, 1);
991 }
992
993 /* Same as print, except it doesn't print void results. */
994 /* ARGSUSED */
995 static void
996 call_command (char *exp, int from_tty)
997 {
998 print_command_1 (exp, 0, 0);
999 }
1000
1001 /* ARGSUSED */
1002 void
1003 output_command (char *exp, int from_tty)
1004 {
1005 struct expression *expr;
1006 register struct cleanup *old_chain;
1007 register char format = 0;
1008 register value_ptr val;
1009 struct format_data fmt;
1010
1011 if (exp && *exp == '/')
1012 {
1013 exp++;
1014 fmt = decode_format (&exp, 0, 0);
1015 validate_format (fmt, "output");
1016 format = fmt.format;
1017 }
1018
1019 expr = parse_expression (exp);
1020 old_chain = make_cleanup (free_current_contents, &expr);
1021
1022 val = evaluate_expression (expr);
1023
1024 annotate_value_begin (VALUE_TYPE (val));
1025
1026 print_formatted (val, format, fmt.size, gdb_stdout);
1027
1028 annotate_value_end ();
1029
1030 wrap_here ("");
1031 gdb_flush (gdb_stdout);
1032
1033 do_cleanups (old_chain);
1034 }
1035
1036 /* ARGSUSED */
1037 static void
1038 set_command (char *exp, int from_tty)
1039 {
1040 struct expression *expr = parse_expression (exp);
1041 register struct cleanup *old_chain =
1042 make_cleanup (free_current_contents, &expr);
1043 evaluate_expression (expr);
1044 do_cleanups (old_chain);
1045 }
1046
1047 /* ARGSUSED */
1048 static void
1049 sym_info (char *arg, int from_tty)
1050 {
1051 struct minimal_symbol *msymbol;
1052 struct objfile *objfile;
1053 struct obj_section *osect;
1054 asection *sect;
1055 CORE_ADDR addr, sect_addr;
1056 int matches = 0;
1057 unsigned int offset;
1058
1059 if (!arg)
1060 error_no_arg ("address");
1061
1062 addr = parse_and_eval_address (arg);
1063 ALL_OBJSECTIONS (objfile, osect)
1064 {
1065 sect = osect->the_bfd_section;
1066 sect_addr = overlay_mapped_address (addr, sect);
1067
1068 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
1069 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
1070 {
1071 matches = 1;
1072 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1073 if (offset)
1074 printf_filtered ("%s + %u in ",
1075 SYMBOL_SOURCE_NAME (msymbol), offset);
1076 else
1077 printf_filtered ("%s in ",
1078 SYMBOL_SOURCE_NAME (msymbol));
1079 if (pc_in_unmapped_range (addr, sect))
1080 printf_filtered ("load address range of ");
1081 if (section_is_overlay (sect))
1082 printf_filtered ("%s overlay ",
1083 section_is_mapped (sect) ? "mapped" : "unmapped");
1084 printf_filtered ("section %s", sect->name);
1085 printf_filtered ("\n");
1086 }
1087 }
1088 if (matches == 0)
1089 printf_filtered ("No symbol matches %s.\n", arg);
1090 }
1091
1092 /* ARGSUSED */
1093 static void
1094 address_info (char *exp, int from_tty)
1095 {
1096 register struct symbol *sym;
1097 register struct minimal_symbol *msymbol;
1098 register long val;
1099 register long basereg;
1100 asection *section;
1101 CORE_ADDR load_addr;
1102 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1103 if exp is a field of `this'. */
1104
1105 if (exp == 0)
1106 error ("Argument required.");
1107
1108 sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE,
1109 &is_a_field_of_this, (struct symtab **) NULL);
1110 if (sym == NULL)
1111 {
1112 if (is_a_field_of_this)
1113 {
1114 printf_filtered ("Symbol \"");
1115 fprintf_symbol_filtered (gdb_stdout, exp,
1116 current_language->la_language, DMGL_ANSI);
1117 printf_filtered ("\" is a field of the local class variable `this'\n");
1118 return;
1119 }
1120
1121 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1122
1123 if (msymbol != NULL)
1124 {
1125 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1126
1127 printf_filtered ("Symbol \"");
1128 fprintf_symbol_filtered (gdb_stdout, exp,
1129 current_language->la_language, DMGL_ANSI);
1130 printf_filtered ("\" is at ");
1131 print_address_numeric (load_addr, 1, gdb_stdout);
1132 printf_filtered (" in a file compiled without debugging");
1133 section = SYMBOL_BFD_SECTION (msymbol);
1134 if (section_is_overlay (section))
1135 {
1136 load_addr = overlay_unmapped_address (load_addr, section);
1137 printf_filtered (",\n -- loaded at ");
1138 print_address_numeric (load_addr, 1, gdb_stdout);
1139 printf_filtered (" in overlay section %s", section->name);
1140 }
1141 printf_filtered (".\n");
1142 }
1143 else
1144 error ("No symbol \"%s\" in current context.", exp);
1145 return;
1146 }
1147
1148 printf_filtered ("Symbol \"");
1149 fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
1150 current_language->la_language, DMGL_ANSI);
1151 printf_filtered ("\" is ");
1152 val = SYMBOL_VALUE (sym);
1153 basereg = SYMBOL_BASEREG (sym);
1154 section = SYMBOL_BFD_SECTION (sym);
1155
1156 switch (SYMBOL_CLASS (sym))
1157 {
1158 case LOC_CONST:
1159 case LOC_CONST_BYTES:
1160 printf_filtered ("constant");
1161 break;
1162
1163 case LOC_LABEL:
1164 printf_filtered ("a label at address ");
1165 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1166 1, gdb_stdout);
1167 if (section_is_overlay (section))
1168 {
1169 load_addr = overlay_unmapped_address (load_addr, section);
1170 printf_filtered (",\n -- loaded at ");
1171 print_address_numeric (load_addr, 1, gdb_stdout);
1172 printf_filtered (" in overlay section %s", section->name);
1173 }
1174 break;
1175
1176 case LOC_REGISTER:
1177 printf_filtered ("a variable in register %s", REGISTER_NAME (val));
1178 break;
1179
1180 case LOC_STATIC:
1181 printf_filtered ("static storage at address ");
1182 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1183 1, gdb_stdout);
1184 if (section_is_overlay (section))
1185 {
1186 load_addr = overlay_unmapped_address (load_addr, section);
1187 printf_filtered (",\n -- loaded at ");
1188 print_address_numeric (load_addr, 1, gdb_stdout);
1189 printf_filtered (" in overlay section %s", section->name);
1190 }
1191 break;
1192
1193 case LOC_INDIRECT:
1194 printf_filtered ("external global (indirect addressing), at address *(");
1195 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1196 1, gdb_stdout);
1197 printf_filtered (")");
1198 if (section_is_overlay (section))
1199 {
1200 load_addr = overlay_unmapped_address (load_addr, section);
1201 printf_filtered (",\n -- loaded at ");
1202 print_address_numeric (load_addr, 1, gdb_stdout);
1203 printf_filtered (" in overlay section %s", section->name);
1204 }
1205 break;
1206
1207 case LOC_REGPARM:
1208 printf_filtered ("an argument in register %s", REGISTER_NAME (val));
1209 break;
1210
1211 case LOC_REGPARM_ADDR:
1212 printf_filtered ("address of an argument in register %s", REGISTER_NAME (val));
1213 break;
1214
1215 case LOC_ARG:
1216 printf_filtered ("an argument at offset %ld", val);
1217 break;
1218
1219 case LOC_LOCAL_ARG:
1220 printf_filtered ("an argument at frame offset %ld", val);
1221 break;
1222
1223 case LOC_LOCAL:
1224 printf_filtered ("a local variable at frame offset %ld", val);
1225 break;
1226
1227 case LOC_REF_ARG:
1228 printf_filtered ("a reference argument at offset %ld", val);
1229 break;
1230
1231 case LOC_BASEREG:
1232 printf_filtered ("a variable at offset %ld from register %s",
1233 val, REGISTER_NAME (basereg));
1234 break;
1235
1236 case LOC_BASEREG_ARG:
1237 printf_filtered ("an argument at offset %ld from register %s",
1238 val, REGISTER_NAME (basereg));
1239 break;
1240
1241 case LOC_TYPEDEF:
1242 printf_filtered ("a typedef");
1243 break;
1244
1245 case LOC_BLOCK:
1246 printf_filtered ("a function at address ");
1247 #ifdef GDB_TARGET_MASK_DISAS_PC
1248 print_address_numeric
1249 (load_addr = GDB_TARGET_MASK_DISAS_PC (BLOCK_START (SYMBOL_BLOCK_VALUE (sym))),
1250 1, gdb_stdout);
1251 #else
1252 print_address_numeric (load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1253 1, gdb_stdout);
1254 #endif
1255 if (section_is_overlay (section))
1256 {
1257 load_addr = overlay_unmapped_address (load_addr, section);
1258 printf_filtered (",\n -- loaded at ");
1259 print_address_numeric (load_addr, 1, gdb_stdout);
1260 printf_filtered (" in overlay section %s", section->name);
1261 }
1262 break;
1263
1264 case LOC_UNRESOLVED:
1265 {
1266 struct minimal_symbol *msym;
1267
1268 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, NULL);
1269 if (msym == NULL)
1270 printf_filtered ("unresolved");
1271 else
1272 {
1273 section = SYMBOL_BFD_SECTION (msym);
1274 printf_filtered ("static storage at address ");
1275 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1276 1, gdb_stdout);
1277 if (section_is_overlay (section))
1278 {
1279 load_addr = overlay_unmapped_address (load_addr, section);
1280 printf_filtered (",\n -- loaded at ");
1281 print_address_numeric (load_addr, 1, gdb_stdout);
1282 printf_filtered (" in overlay section %s", section->name);
1283 }
1284 }
1285 }
1286 break;
1287
1288 case LOC_THREAD_LOCAL_STATIC:
1289 printf_filtered (
1290 "a thread-local variable at offset %ld from the thread base register %s",
1291 val, REGISTER_NAME (basereg));
1292 break;
1293
1294 case LOC_OPTIMIZED_OUT:
1295 printf_filtered ("optimized out");
1296 break;
1297
1298 default:
1299 printf_filtered ("of unknown (botched) type");
1300 break;
1301 }
1302 printf_filtered (".\n");
1303 }
1304 \f
1305 void
1306 x_command (char *exp, int from_tty)
1307 {
1308 struct expression *expr;
1309 struct format_data fmt;
1310 struct cleanup *old_chain;
1311 struct value *val;
1312
1313 fmt.format = last_format;
1314 fmt.size = last_size;
1315 fmt.count = 1;
1316
1317 if (exp && *exp == '/')
1318 {
1319 exp++;
1320 fmt = decode_format (&exp, last_format, last_size);
1321 }
1322
1323 /* If we have an expression, evaluate it and use it as the address. */
1324
1325 if (exp != 0 && *exp != 0)
1326 {
1327 expr = parse_expression (exp);
1328 /* Cause expression not to be there any more
1329 if this command is repeated with Newline.
1330 But don't clobber a user-defined command's definition. */
1331 if (from_tty)
1332 *exp = 0;
1333 old_chain = make_cleanup (free_current_contents, &expr);
1334 val = evaluate_expression (expr);
1335 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1336 val = value_ind (val);
1337 /* In rvalue contexts, such as this, functions are coerced into
1338 pointers to functions. This makes "x/i main" work. */
1339 if (/* last_format == 'i' && */
1340 TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1341 && VALUE_LVAL (val) == lval_memory)
1342 next_address = VALUE_ADDRESS (val);
1343 else
1344 next_address = value_as_pointer (val);
1345 if (VALUE_BFD_SECTION (val))
1346 next_section = VALUE_BFD_SECTION (val);
1347 do_cleanups (old_chain);
1348 }
1349
1350 do_examine (fmt, next_address, next_section);
1351
1352 /* If the examine succeeds, we remember its size and format for next time. */
1353 last_size = fmt.size;
1354 last_format = fmt.format;
1355
1356 /* Set a couple of internal variables if appropriate. */
1357 if (last_examine_value)
1358 {
1359 /* Make last address examined available to the user as $_. Use
1360 the correct pointer type. */
1361 struct type *pointer_type
1362 = lookup_pointer_type (VALUE_TYPE (last_examine_value));
1363 set_internalvar (lookup_internalvar ("_"),
1364 value_from_pointer (pointer_type,
1365 last_examine_address));
1366
1367 /* Make contents of last address examined available to the user as $__. */
1368 /* If the last value has not been fetched from memory then don't
1369 fetch it now - instead mark it by voiding the $__ variable. */
1370 if (VALUE_LAZY (last_examine_value))
1371 set_internalvar (lookup_internalvar ("__"),
1372 allocate_value (builtin_type_void));
1373 else
1374 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1375 }
1376 }
1377 \f
1378
1379 /* Add an expression to the auto-display chain.
1380 Specify the expression. */
1381
1382 static void
1383 display_command (char *exp, int from_tty)
1384 {
1385 struct format_data fmt;
1386 register struct expression *expr;
1387 register struct display *new;
1388 int display_it = 1;
1389
1390 #if defined(TUI)
1391 if (tui_version && *exp == '$')
1392 display_it = ((TuiStatus) tuiDo (
1393 (TuiOpaqueFuncPtr) tui_vSetLayoutTo, exp) == TUI_FAILURE);
1394 #endif
1395
1396 if (display_it)
1397 {
1398 if (exp == 0)
1399 {
1400 do_displays ();
1401 return;
1402 }
1403
1404 if (*exp == '/')
1405 {
1406 exp++;
1407 fmt = decode_format (&exp, 0, 0);
1408 if (fmt.size && fmt.format == 0)
1409 fmt.format = 'x';
1410 if (fmt.format == 'i' || fmt.format == 's')
1411 fmt.size = 'b';
1412 }
1413 else
1414 {
1415 fmt.format = 0;
1416 fmt.size = 0;
1417 fmt.count = 0;
1418 }
1419
1420 innermost_block = 0;
1421 expr = parse_expression (exp);
1422
1423 new = (struct display *) xmalloc (sizeof (struct display));
1424
1425 new->exp = expr;
1426 new->block = innermost_block;
1427 new->next = display_chain;
1428 new->number = ++display_number;
1429 new->format = fmt;
1430 new->status = enabled;
1431 display_chain = new;
1432
1433 if (from_tty && target_has_execution)
1434 do_one_display (new);
1435
1436 dont_repeat ();
1437 }
1438 }
1439
1440 static void
1441 free_display (struct display *d)
1442 {
1443 xfree (d->exp);
1444 xfree (d);
1445 }
1446
1447 /* Clear out the display_chain.
1448 Done when new symtabs are loaded, since this invalidates
1449 the types stored in many expressions. */
1450
1451 void
1452 clear_displays (void)
1453 {
1454 register struct display *d;
1455
1456 while ((d = display_chain) != NULL)
1457 {
1458 xfree (d->exp);
1459 display_chain = d->next;
1460 xfree (d);
1461 }
1462 }
1463
1464 /* Delete the auto-display number NUM. */
1465
1466 static void
1467 delete_display (int num)
1468 {
1469 register struct display *d1, *d;
1470
1471 if (!display_chain)
1472 error ("No display number %d.", num);
1473
1474 if (display_chain->number == num)
1475 {
1476 d1 = display_chain;
1477 display_chain = d1->next;
1478 free_display (d1);
1479 }
1480 else
1481 for (d = display_chain;; d = d->next)
1482 {
1483 if (d->next == 0)
1484 error ("No display number %d.", num);
1485 if (d->next->number == num)
1486 {
1487 d1 = d->next;
1488 d->next = d1->next;
1489 free_display (d1);
1490 break;
1491 }
1492 }
1493 }
1494
1495 /* Delete some values from the auto-display chain.
1496 Specify the element numbers. */
1497
1498 static void
1499 undisplay_command (char *args, int from_tty)
1500 {
1501 register char *p = args;
1502 register char *p1;
1503 register int num;
1504
1505 if (args == 0)
1506 {
1507 if (query ("Delete all auto-display expressions? "))
1508 clear_displays ();
1509 dont_repeat ();
1510 return;
1511 }
1512
1513 while (*p)
1514 {
1515 p1 = p;
1516 while (*p1 >= '0' && *p1 <= '9')
1517 p1++;
1518 if (*p1 && *p1 != ' ' && *p1 != '\t')
1519 error ("Arguments must be display numbers.");
1520
1521 num = atoi (p);
1522
1523 delete_display (num);
1524
1525 p = p1;
1526 while (*p == ' ' || *p == '\t')
1527 p++;
1528 }
1529 dont_repeat ();
1530 }
1531
1532 /* Display a single auto-display.
1533 Do nothing if the display cannot be printed in the current context,
1534 or if the display is disabled. */
1535
1536 static void
1537 do_one_display (struct display *d)
1538 {
1539 int within_current_scope;
1540
1541 if (d->status == disabled)
1542 return;
1543
1544 if (d->block)
1545 within_current_scope = contained_in (get_selected_block (), d->block);
1546 else
1547 within_current_scope = 1;
1548 if (!within_current_scope)
1549 return;
1550
1551 current_display_number = d->number;
1552
1553 annotate_display_begin ();
1554 printf_filtered ("%d", d->number);
1555 annotate_display_number_end ();
1556 printf_filtered (": ");
1557 if (d->format.size)
1558 {
1559 CORE_ADDR addr;
1560 value_ptr val;
1561
1562 annotate_display_format ();
1563
1564 printf_filtered ("x/");
1565 if (d->format.count != 1)
1566 printf_filtered ("%d", d->format.count);
1567 printf_filtered ("%c", d->format.format);
1568 if (d->format.format != 'i' && d->format.format != 's')
1569 printf_filtered ("%c", d->format.size);
1570 printf_filtered (" ");
1571
1572 annotate_display_expression ();
1573
1574 print_expression (d->exp, gdb_stdout);
1575 annotate_display_expression_end ();
1576
1577 if (d->format.count != 1)
1578 printf_filtered ("\n");
1579 else
1580 printf_filtered (" ");
1581
1582 val = evaluate_expression (d->exp);
1583 addr = value_as_pointer (val);
1584 if (d->format.format == 'i')
1585 addr = ADDR_BITS_REMOVE (addr);
1586
1587 annotate_display_value ();
1588
1589 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1590 }
1591 else
1592 {
1593 annotate_display_format ();
1594
1595 if (d->format.format)
1596 printf_filtered ("/%c ", d->format.format);
1597
1598 annotate_display_expression ();
1599
1600 print_expression (d->exp, gdb_stdout);
1601 annotate_display_expression_end ();
1602
1603 printf_filtered (" = ");
1604
1605 annotate_display_expression ();
1606
1607 print_formatted (evaluate_expression (d->exp),
1608 d->format.format, d->format.size, gdb_stdout);
1609 printf_filtered ("\n");
1610 }
1611
1612 annotate_display_end ();
1613
1614 gdb_flush (gdb_stdout);
1615 current_display_number = -1;
1616 }
1617
1618 /* Display all of the values on the auto-display chain which can be
1619 evaluated in the current scope. */
1620
1621 void
1622 do_displays (void)
1623 {
1624 register struct display *d;
1625
1626 for (d = display_chain; d; d = d->next)
1627 do_one_display (d);
1628 }
1629
1630 /* Delete the auto-display which we were in the process of displaying.
1631 This is done when there is an error or a signal. */
1632
1633 void
1634 disable_display (int num)
1635 {
1636 register struct display *d;
1637
1638 for (d = display_chain; d; d = d->next)
1639 if (d->number == num)
1640 {
1641 d->status = disabled;
1642 return;
1643 }
1644 printf_unfiltered ("No display number %d.\n", num);
1645 }
1646
1647 void
1648 disable_current_display (void)
1649 {
1650 if (current_display_number >= 0)
1651 {
1652 disable_display (current_display_number);
1653 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1654 current_display_number);
1655 }
1656 current_display_number = -1;
1657 }
1658
1659 static void
1660 display_info (char *ignore, int from_tty)
1661 {
1662 register struct display *d;
1663
1664 if (!display_chain)
1665 printf_unfiltered ("There are no auto-display expressions now.\n");
1666 else
1667 printf_filtered ("Auto-display expressions now in effect:\n\
1668 Num Enb Expression\n");
1669
1670 for (d = display_chain; d; d = d->next)
1671 {
1672 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->status]);
1673 if (d->format.size)
1674 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1675 d->format.format);
1676 else if (d->format.format)
1677 printf_filtered ("/%c ", d->format.format);
1678 print_expression (d->exp, gdb_stdout);
1679 if (d->block && !contained_in (get_selected_block (), d->block))
1680 printf_filtered (" (cannot be evaluated in the current context)");
1681 printf_filtered ("\n");
1682 gdb_flush (gdb_stdout);
1683 }
1684 }
1685
1686 static void
1687 enable_display (char *args, int from_tty)
1688 {
1689 register char *p = args;
1690 register char *p1;
1691 register int num;
1692 register struct display *d;
1693
1694 if (p == 0)
1695 {
1696 for (d = display_chain; d; d = d->next)
1697 d->status = enabled;
1698 }
1699 else
1700 while (*p)
1701 {
1702 p1 = p;
1703 while (*p1 >= '0' && *p1 <= '9')
1704 p1++;
1705 if (*p1 && *p1 != ' ' && *p1 != '\t')
1706 error ("Arguments must be display numbers.");
1707
1708 num = atoi (p);
1709
1710 for (d = display_chain; d; d = d->next)
1711 if (d->number == num)
1712 {
1713 d->status = enabled;
1714 goto win;
1715 }
1716 printf_unfiltered ("No display number %d.\n", num);
1717 win:
1718 p = p1;
1719 while (*p == ' ' || *p == '\t')
1720 p++;
1721 }
1722 }
1723
1724 /* ARGSUSED */
1725 static void
1726 disable_display_command (char *args, int from_tty)
1727 {
1728 register char *p = args;
1729 register char *p1;
1730 register struct display *d;
1731
1732 if (p == 0)
1733 {
1734 for (d = display_chain; d; d = d->next)
1735 d->status = disabled;
1736 }
1737 else
1738 while (*p)
1739 {
1740 p1 = p;
1741 while (*p1 >= '0' && *p1 <= '9')
1742 p1++;
1743 if (*p1 && *p1 != ' ' && *p1 != '\t')
1744 error ("Arguments must be display numbers.");
1745
1746 disable_display (atoi (p));
1747
1748 p = p1;
1749 while (*p == ' ' || *p == '\t')
1750 p++;
1751 }
1752 }
1753 \f
1754
1755 /* Print the value in stack frame FRAME of a variable
1756 specified by a struct symbol. */
1757
1758 void
1759 print_variable_value (struct symbol *var, struct frame_info *frame,
1760 struct ui_file *stream)
1761 {
1762 value_ptr val = read_var_value (var, frame);
1763
1764 value_print (val, stream, 0, Val_pretty_default);
1765 }
1766
1767 /* Print the arguments of a stack frame, given the function FUNC
1768 running in that frame (as a symbol), the info on the frame,
1769 and the number of args according to the stack frame (or -1 if unknown). */
1770
1771 /* References here and elsewhere to "number of args according to the
1772 stack frame" appear in all cases to refer to "number of ints of args
1773 according to the stack frame". At least for VAX, i386, isi. */
1774
1775 void
1776 print_frame_args (struct symbol *func, struct frame_info *fi, int num,
1777 struct ui_file *stream)
1778 {
1779 struct block *b = NULL;
1780 int nsyms = 0;
1781 int first = 1;
1782 register int i;
1783 register struct symbol *sym;
1784 register value_ptr val;
1785 /* Offset of next stack argument beyond the one we have seen that is
1786 at the highest offset.
1787 -1 if we haven't come to a stack argument yet. */
1788 long highest_offset = -1;
1789 int arg_size;
1790 /* Number of ints of arguments that we have printed so far. */
1791 int args_printed = 0;
1792 #ifdef UI_OUT
1793 struct cleanup *old_chain, *list_chain;
1794 struct ui_stream *stb;
1795
1796 stb = ui_out_stream_new (uiout);
1797 old_chain = make_cleanup_ui_out_stream_delete (stb);
1798 #endif /* UI_OUT */
1799
1800 if (func)
1801 {
1802 b = SYMBOL_BLOCK_VALUE (func);
1803 nsyms = BLOCK_NSYMS (b);
1804 }
1805
1806 for (i = 0; i < nsyms; i++)
1807 {
1808 QUIT;
1809 sym = BLOCK_SYM (b, i);
1810
1811 /* Keep track of the highest stack argument offset seen, and
1812 skip over any kinds of symbols we don't care about. */
1813
1814 switch (SYMBOL_CLASS (sym))
1815 {
1816 case LOC_ARG:
1817 case LOC_REF_ARG:
1818 {
1819 long current_offset = SYMBOL_VALUE (sym);
1820 arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
1821
1822 /* Compute address of next argument by adding the size of
1823 this argument and rounding to an int boundary. */
1824 current_offset =
1825 ((current_offset + arg_size + sizeof (int) - 1)
1826 & ~(sizeof (int) - 1));
1827
1828 /* If this is the highest offset seen yet, set highest_offset. */
1829 if (highest_offset == -1
1830 || (current_offset > highest_offset))
1831 highest_offset = current_offset;
1832
1833 /* Add the number of ints we're about to print to args_printed. */
1834 args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
1835 }
1836
1837 /* We care about types of symbols, but don't need to keep track of
1838 stack offsets in them. */
1839 case LOC_REGPARM:
1840 case LOC_REGPARM_ADDR:
1841 case LOC_LOCAL_ARG:
1842 case LOC_BASEREG_ARG:
1843 break;
1844
1845 /* Other types of symbols we just skip over. */
1846 default:
1847 continue;
1848 }
1849
1850 /* We have to look up the symbol because arguments can have
1851 two entries (one a parameter, one a local) and the one we
1852 want is the local, which lookup_symbol will find for us.
1853 This includes gcc1 (not gcc2) on the sparc when passing a
1854 small structure and gcc2 when the argument type is float
1855 and it is passed as a double and converted to float by
1856 the prologue (in the latter case the type of the LOC_ARG
1857 symbol is double and the type of the LOC_LOCAL symbol is
1858 float). */
1859 /* But if the parameter name is null, don't try it.
1860 Null parameter names occur on the RS/6000, for traceback tables.
1861 FIXME, should we even print them? */
1862
1863 if (*SYMBOL_NAME (sym))
1864 {
1865 struct symbol *nsym;
1866 nsym = lookup_symbol
1867 (SYMBOL_NAME (sym),
1868 b, VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
1869 if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
1870 {
1871 /* There is a LOC_ARG/LOC_REGISTER pair. This means that
1872 it was passed on the stack and loaded into a register,
1873 or passed in a register and stored in a stack slot.
1874 GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
1875
1876 Reasons for using the LOC_ARG:
1877 (1) because find_saved_registers may be slow for remote
1878 debugging,
1879 (2) because registers are often re-used and stack slots
1880 rarely (never?) are. Therefore using the stack slot is
1881 much less likely to print garbage.
1882
1883 Reasons why we might want to use the LOC_REGISTER:
1884 (1) So that the backtrace prints the same value as
1885 "print foo". I see no compelling reason why this needs
1886 to be the case; having the backtrace print the value which
1887 was passed in, and "print foo" print the value as modified
1888 within the called function, makes perfect sense to me.
1889
1890 Additional note: It might be nice if "info args" displayed
1891 both values.
1892 One more note: There is a case with sparc structure passing
1893 where we need to use the LOC_REGISTER, but this is dealt with
1894 by creating a single LOC_REGPARM in symbol reading. */
1895
1896 /* Leave sym (the LOC_ARG) alone. */
1897 ;
1898 }
1899 else
1900 sym = nsym;
1901 }
1902
1903 #ifdef UI_OUT
1904 /* Print the current arg. */
1905 if (!first)
1906 ui_out_text (uiout, ", ");
1907 ui_out_wrap_hint (uiout, " ");
1908
1909 annotate_arg_begin ();
1910
1911 ui_out_list_begin (uiout, NULL);
1912 list_chain = make_cleanup_ui_out_list_end (uiout);
1913 fprintf_symbol_filtered (stb->stream, SYMBOL_SOURCE_NAME (sym),
1914 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1915 ui_out_field_stream (uiout, "name", stb);
1916 annotate_arg_name_end ();
1917 ui_out_text (uiout, "=");
1918 #else
1919 /* Print the current arg. */
1920 if (!first)
1921 fprintf_filtered (stream, ", ");
1922 wrap_here (" ");
1923
1924 annotate_arg_begin ();
1925
1926 fprintf_symbol_filtered (stream, SYMBOL_SOURCE_NAME (sym),
1927 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1928 annotate_arg_name_end ();
1929 fputs_filtered ("=", stream);
1930 #endif
1931
1932 /* Avoid value_print because it will deref ref parameters. We just
1933 want to print their addresses. Print ??? for args whose address
1934 we do not know. We pass 2 as "recurse" to val_print because our
1935 standard indentation here is 4 spaces, and val_print indents
1936 2 for each recurse. */
1937 val = read_var_value (sym, fi);
1938
1939 annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
1940
1941 if (val)
1942 {
1943 if (GDB_TARGET_IS_D10V
1944 && SYMBOL_CLASS (sym) == LOC_REGPARM && TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_PTR)
1945 TYPE_LENGTH (VALUE_TYPE (val)) = 2;
1946 #ifdef UI_OUT
1947 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
1948 VALUE_ADDRESS (val),
1949 stb->stream, 0, 0, 2, Val_no_prettyprint);
1950 ui_out_field_stream (uiout, "value", stb);
1951 }
1952 else
1953 ui_out_text (uiout, "???");
1954
1955 /* Invoke ui_out_list_end. */
1956 do_cleanups (list_chain);
1957 #else
1958 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
1959 VALUE_ADDRESS (val),
1960 stream, 0, 0, 2, Val_no_prettyprint);
1961 }
1962 else
1963 fputs_filtered ("???", stream);
1964 #endif
1965
1966 annotate_arg_end ();
1967
1968 first = 0;
1969 }
1970
1971 /* Don't print nameless args in situations where we don't know
1972 enough about the stack to find them. */
1973 if (num != -1)
1974 {
1975 long start;
1976
1977 if (highest_offset == -1)
1978 start = FRAME_ARGS_SKIP;
1979 else
1980 start = highest_offset;
1981
1982 print_frame_nameless_args (fi, start, num - args_printed,
1983 first, stream);
1984 }
1985 #ifdef UI_OUT
1986 do_cleanups (old_chain);
1987 #endif /* no UI_OUT */
1988 }
1989
1990 /* Print nameless args on STREAM.
1991 FI is the frameinfo for this frame, START is the offset
1992 of the first nameless arg, and NUM is the number of nameless args to
1993 print. FIRST is nonzero if this is the first argument (not just
1994 the first nameless arg). */
1995
1996 static void
1997 print_frame_nameless_args (struct frame_info *fi, long start, int num,
1998 int first, struct ui_file *stream)
1999 {
2000 int i;
2001 CORE_ADDR argsaddr;
2002 long arg_value;
2003
2004 for (i = 0; i < num; i++)
2005 {
2006 QUIT;
2007 #ifdef NAMELESS_ARG_VALUE
2008 NAMELESS_ARG_VALUE (fi, start, &arg_value);
2009 #else
2010 argsaddr = FRAME_ARGS_ADDRESS (fi);
2011 if (!argsaddr)
2012 return;
2013
2014 arg_value = read_memory_integer (argsaddr + start, sizeof (int));
2015 #endif
2016
2017 if (!first)
2018 fprintf_filtered (stream, ", ");
2019
2020 #ifdef PRINT_NAMELESS_INTEGER
2021 PRINT_NAMELESS_INTEGER (stream, arg_value);
2022 #else
2023 #ifdef PRINT_TYPELESS_INTEGER
2024 PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
2025 #else
2026 fprintf_filtered (stream, "%ld", arg_value);
2027 #endif /* PRINT_TYPELESS_INTEGER */
2028 #endif /* PRINT_NAMELESS_INTEGER */
2029 first = 0;
2030 start += sizeof (int);
2031 }
2032 }
2033 \f
2034 /* ARGSUSED */
2035 static void
2036 printf_command (char *arg, int from_tty)
2037 {
2038 register char *f = NULL;
2039 register char *s = arg;
2040 char *string = NULL;
2041 value_ptr *val_args;
2042 char *substrings;
2043 char *current_substring;
2044 int nargs = 0;
2045 int allocated_args = 20;
2046 struct cleanup *old_cleanups;
2047
2048 val_args = (value_ptr *) xmalloc (allocated_args * sizeof (value_ptr));
2049 old_cleanups = make_cleanup (free_current_contents, &val_args);
2050
2051 if (s == 0)
2052 error_no_arg ("format-control string and values to print");
2053
2054 /* Skip white space before format string */
2055 while (*s == ' ' || *s == '\t')
2056 s++;
2057
2058 /* A format string should follow, enveloped in double quotes */
2059 if (*s++ != '"')
2060 error ("Bad format string, missing '\"'.");
2061
2062 /* Parse the format-control string and copy it into the string STRING,
2063 processing some kinds of escape sequence. */
2064
2065 f = string = (char *) alloca (strlen (s) + 1);
2066
2067 while (*s != '"')
2068 {
2069 int c = *s++;
2070 switch (c)
2071 {
2072 case '\0':
2073 error ("Bad format string, non-terminated '\"'.");
2074
2075 case '\\':
2076 switch (c = *s++)
2077 {
2078 case '\\':
2079 *f++ = '\\';
2080 break;
2081 case 'a':
2082 *f++ = '\a';
2083 break;
2084 case 'b':
2085 *f++ = '\b';
2086 break;
2087 case 'f':
2088 *f++ = '\f';
2089 break;
2090 case 'n':
2091 *f++ = '\n';
2092 break;
2093 case 'r':
2094 *f++ = '\r';
2095 break;
2096 case 't':
2097 *f++ = '\t';
2098 break;
2099 case 'v':
2100 *f++ = '\v';
2101 break;
2102 case '"':
2103 *f++ = '"';
2104 break;
2105 default:
2106 /* ??? TODO: handle other escape sequences */
2107 error ("Unrecognized escape character \\%c in format string.",
2108 c);
2109 }
2110 break;
2111
2112 default:
2113 *f++ = c;
2114 }
2115 }
2116
2117 /* Skip over " and following space and comma. */
2118 s++;
2119 *f++ = '\0';
2120 while (*s == ' ' || *s == '\t')
2121 s++;
2122
2123 if (*s != ',' && *s != 0)
2124 error ("Invalid argument syntax");
2125
2126 if (*s == ',')
2127 s++;
2128 while (*s == ' ' || *s == '\t')
2129 s++;
2130
2131 /* Need extra space for the '\0's. Doubling the size is sufficient. */
2132 substrings = alloca (strlen (string) * 2);
2133 current_substring = substrings;
2134
2135 {
2136 /* Now scan the string for %-specs and see what kinds of args they want.
2137 argclass[I] classifies the %-specs so we can give printf_filtered
2138 something of the right size. */
2139
2140 enum argclass
2141 {
2142 no_arg, int_arg, string_arg, double_arg, long_long_arg
2143 };
2144 enum argclass *argclass;
2145 enum argclass this_argclass;
2146 char *last_arg;
2147 int nargs_wanted;
2148 int lcount;
2149 int i;
2150
2151 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
2152 nargs_wanted = 0;
2153 f = string;
2154 last_arg = string;
2155 while (*f)
2156 if (*f++ == '%')
2157 {
2158 lcount = 0;
2159 while (strchr ("0123456789.hlL-+ #", *f))
2160 {
2161 if (*f == 'l' || *f == 'L')
2162 lcount++;
2163 f++;
2164 }
2165 switch (*f)
2166 {
2167 case 's':
2168 this_argclass = string_arg;
2169 break;
2170
2171 case 'e':
2172 case 'f':
2173 case 'g':
2174 this_argclass = double_arg;
2175 break;
2176
2177 case '*':
2178 error ("`*' not supported for precision or width in printf");
2179
2180 case 'n':
2181 error ("Format specifier `n' not supported in printf");
2182
2183 case '%':
2184 this_argclass = no_arg;
2185 break;
2186
2187 default:
2188 if (lcount > 1)
2189 this_argclass = long_long_arg;
2190 else
2191 this_argclass = int_arg;
2192 break;
2193 }
2194 f++;
2195 if (this_argclass != no_arg)
2196 {
2197 strncpy (current_substring, last_arg, f - last_arg);
2198 current_substring += f - last_arg;
2199 *current_substring++ = '\0';
2200 last_arg = f;
2201 argclass[nargs_wanted++] = this_argclass;
2202 }
2203 }
2204
2205 /* Now, parse all arguments and evaluate them.
2206 Store the VALUEs in VAL_ARGS. */
2207
2208 while (*s != '\0')
2209 {
2210 char *s1;
2211 if (nargs == allocated_args)
2212 val_args = (value_ptr *) xrealloc ((char *) val_args,
2213 (allocated_args *= 2)
2214 * sizeof (value_ptr));
2215 s1 = s;
2216 val_args[nargs] = parse_to_comma_and_eval (&s1);
2217
2218 /* If format string wants a float, unchecked-convert the value to
2219 floating point of the same size */
2220
2221 if (argclass[nargs] == double_arg)
2222 {
2223 struct type *type = VALUE_TYPE (val_args[nargs]);
2224 if (TYPE_LENGTH (type) == sizeof (float))
2225 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
2226 if (TYPE_LENGTH (type) == sizeof (double))
2227 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
2228 }
2229 nargs++;
2230 s = s1;
2231 if (*s == ',')
2232 s++;
2233 }
2234
2235 if (nargs != nargs_wanted)
2236 error ("Wrong number of arguments for specified format-string");
2237
2238 /* Now actually print them. */
2239 current_substring = substrings;
2240 for (i = 0; i < nargs; i++)
2241 {
2242 switch (argclass[i])
2243 {
2244 case string_arg:
2245 {
2246 char *str;
2247 CORE_ADDR tem;
2248 int j;
2249 tem = value_as_pointer (val_args[i]);
2250
2251 /* This is a %s argument. Find the length of the string. */
2252 for (j = 0;; j++)
2253 {
2254 char c;
2255 QUIT;
2256 read_memory (tem + j, &c, 1);
2257 if (c == 0)
2258 break;
2259 }
2260
2261 /* Copy the string contents into a string inside GDB. */
2262 str = (char *) alloca (j + 1);
2263 if (j != 0)
2264 read_memory (tem, str, j);
2265 str[j] = 0;
2266
2267 printf_filtered (current_substring, str);
2268 }
2269 break;
2270 case double_arg:
2271 {
2272 double val = value_as_double (val_args[i]);
2273 printf_filtered (current_substring, val);
2274 break;
2275 }
2276 case long_long_arg:
2277 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2278 {
2279 long long val = value_as_long (val_args[i]);
2280 printf_filtered (current_substring, val);
2281 break;
2282 }
2283 #else
2284 error ("long long not supported in printf");
2285 #endif
2286 case int_arg:
2287 {
2288 /* FIXME: there should be separate int_arg and long_arg. */
2289 long val = value_as_long (val_args[i]);
2290 printf_filtered (current_substring, val);
2291 break;
2292 }
2293 default: /* purecov: deadcode */
2294 error ("internal error in printf_command"); /* purecov: deadcode */
2295 }
2296 /* Skip to the next substring. */
2297 current_substring += strlen (current_substring) + 1;
2298 }
2299 /* Print the portion of the format string after the last argument. */
2300 printf_filtered (last_arg);
2301 }
2302 do_cleanups (old_cleanups);
2303 }
2304 \f
2305 /* Dump a specified section of assembly code. With no command line
2306 arguments, this command will dump the assembly code for the
2307 function surrounding the pc value in the selected frame. With one
2308 argument, it will dump the assembly code surrounding that pc value.
2309 Two arguments are interpeted as bounds within which to dump
2310 assembly. */
2311
2312 /* ARGSUSED */
2313 static void
2314 disassemble_command (char *arg, int from_tty)
2315 {
2316 CORE_ADDR low, high;
2317 char *name;
2318 CORE_ADDR pc, pc_masked;
2319 char *space_index;
2320 #if 0
2321 asection *section;
2322 #endif
2323
2324 name = NULL;
2325 if (!arg)
2326 {
2327 if (!selected_frame)
2328 error ("No frame selected.\n");
2329
2330 pc = get_frame_pc (selected_frame);
2331 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2332 error ("No function contains program counter for selected frame.\n");
2333 #if defined(TUI)
2334 else if (tui_version)
2335 low = (CORE_ADDR) tuiDo ((TuiOpaqueFuncPtr) tui_vGetLowDisassemblyAddress,
2336 (Opaque) low,
2337 (Opaque) pc);
2338 #endif
2339 low += FUNCTION_START_OFFSET;
2340 }
2341 else if (!(space_index = (char *) strchr (arg, ' ')))
2342 {
2343 /* One argument. */
2344 pc = parse_and_eval_address (arg);
2345 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2346 error ("No function contains specified address.\n");
2347 #if defined(TUI)
2348 else if (tui_version)
2349 low = (CORE_ADDR) tuiDo ((TuiOpaqueFuncPtr) tui_vGetLowDisassemblyAddress,
2350 (Opaque) low,
2351 (Opaque) pc);
2352 #endif
2353 #if 0
2354 if (overlay_debugging)
2355 {
2356 section = find_pc_overlay (pc);
2357 if (pc_in_unmapped_range (pc, section))
2358 {
2359 /* find_pc_partial_function will have returned low and high
2360 relative to the symbolic (mapped) address range. Need to
2361 translate them back to the unmapped range where PC is. */
2362 low = overlay_unmapped_address (low, section);
2363 high = overlay_unmapped_address (high, section);
2364 }
2365 }
2366 #endif
2367 low += FUNCTION_START_OFFSET;
2368 }
2369 else
2370 {
2371 /* Two arguments. */
2372 *space_index = '\0';
2373 low = parse_and_eval_address (arg);
2374 high = parse_and_eval_address (space_index + 1);
2375 }
2376
2377 #if defined(TUI)
2378 if (!tui_version ||
2379 m_winPtrIsNull (disassemWin) || !disassemWin->generic.isVisible)
2380 #endif
2381 {
2382 printf_filtered ("Dump of assembler code ");
2383 if (name != NULL)
2384 {
2385 printf_filtered ("for function %s:\n", name);
2386 }
2387 else
2388 {
2389 printf_filtered ("from ");
2390 print_address_numeric (low, 1, gdb_stdout);
2391 printf_filtered (" to ");
2392 print_address_numeric (high, 1, gdb_stdout);
2393 printf_filtered (":\n");
2394 }
2395
2396 /* Dump the specified range. */
2397 pc = low;
2398
2399 #ifdef GDB_TARGET_MASK_DISAS_PC
2400 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2401 #else
2402 pc_masked = pc;
2403 #endif
2404
2405 while (pc_masked < high)
2406 {
2407 QUIT;
2408 print_address (pc_masked, gdb_stdout);
2409 printf_filtered (":\t");
2410 /* We often wrap here if there are long symbolic names. */
2411 wrap_here (" ");
2412 pc += print_insn (pc, gdb_stdout);
2413 printf_filtered ("\n");
2414
2415 #ifdef GDB_TARGET_MASK_DISAS_PC
2416 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2417 #else
2418 pc_masked = pc;
2419 #endif
2420 }
2421 printf_filtered ("End of assembler dump.\n");
2422 gdb_flush (gdb_stdout);
2423 }
2424 #if defined(TUI)
2425 else
2426 {
2427 tuiDo ((TuiOpaqueFuncPtr) tui_vAddWinToLayout, DISASSEM_WIN);
2428 tuiDo ((TuiOpaqueFuncPtr) tui_vUpdateSourceWindowsWithAddr, low);
2429 }
2430 #endif
2431 }
2432
2433 /* Print the instruction at address MEMADDR in debugged memory,
2434 on STREAM. Returns length of the instruction, in bytes. */
2435
2436 static int
2437 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
2438 {
2439 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2440 TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_BIG;
2441 else
2442 TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_LITTLE;
2443
2444 if (TARGET_ARCHITECTURE != NULL)
2445 TARGET_PRINT_INSN_INFO->mach = TARGET_ARCHITECTURE->mach;
2446 /* else: should set .mach=0 but some disassemblers don't grok this */
2447
2448 return TARGET_PRINT_INSN (memaddr, TARGET_PRINT_INSN_INFO);
2449 }
2450 \f
2451
2452 void
2453 _initialize_printcmd (void)
2454 {
2455 current_display_number = -1;
2456
2457 add_info ("address", address_info,
2458 "Describe where symbol SYM is stored.");
2459
2460 add_info ("symbol", sym_info,
2461 "Describe what symbol is at location ADDR.\n\
2462 Only for symbols with fixed locations (global or static scope).");
2463
2464 add_com ("x", class_vars, x_command,
2465 concat ("Examine memory: x/FMT ADDRESS.\n\
2466 ADDRESS is an expression for the memory address to examine.\n\
2467 FMT is a repeat count followed by a format letter and a size letter.\n\
2468 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2469 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2470 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2471 The specified number of objects of the specified size are printed\n\
2472 according to the format.\n\n\
2473 Defaults for format and size letters are those previously used.\n\
2474 Default count is 1. Default address is following last thing printed\n\
2475 with this command or \"print\".", NULL));
2476
2477 add_com ("disassemble", class_vars, disassemble_command,
2478 "Disassemble a specified section of memory.\n\
2479 Default is the function surrounding the pc of the selected frame.\n\
2480 With a single argument, the function surrounding that address is dumped.\n\
2481 Two arguments are taken as a range of memory to dump.");
2482 if (xdb_commands)
2483 add_com_alias ("va", "disassemble", class_xdb, 0);
2484
2485 #if 0
2486 add_com ("whereis", class_vars, whereis_command,
2487 "Print line number and file of definition of variable.");
2488 #endif
2489
2490 add_info ("display", display_info,
2491 "Expressions to display when program stops, with code numbers.");
2492
2493 add_cmd ("undisplay", class_vars, undisplay_command,
2494 "Cancel some expressions to be displayed when program stops.\n\
2495 Arguments are the code numbers of the expressions to stop displaying.\n\
2496 No argument means cancel all automatic-display expressions.\n\
2497 \"delete display\" has the same effect as this command.\n\
2498 Do \"info display\" to see current list of code numbers.",
2499 &cmdlist);
2500
2501 add_com ("display", class_vars, display_command,
2502 "Print value of expression EXP each time the program stops.\n\
2503 /FMT may be used before EXP as in the \"print\" command.\n\
2504 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2505 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2506 and examining is done as in the \"x\" command.\n\n\
2507 With no argument, display all currently requested auto-display expressions.\n\
2508 Use \"undisplay\" to cancel display requests previously made."
2509 );
2510
2511 add_cmd ("display", class_vars, enable_display,
2512 "Enable some expressions to be displayed when program stops.\n\
2513 Arguments are the code numbers of the expressions to resume displaying.\n\
2514 No argument means enable all automatic-display expressions.\n\
2515 Do \"info display\" to see current list of code numbers.", &enablelist);
2516
2517 add_cmd ("display", class_vars, disable_display_command,
2518 "Disable some expressions to be displayed when program stops.\n\
2519 Arguments are the code numbers of the expressions to stop displaying.\n\
2520 No argument means disable all automatic-display expressions.\n\
2521 Do \"info display\" to see current list of code numbers.", &disablelist);
2522
2523 add_cmd ("display", class_vars, undisplay_command,
2524 "Cancel some expressions to be displayed when program stops.\n\
2525 Arguments are the code numbers of the expressions to stop displaying.\n\
2526 No argument means cancel all automatic-display expressions.\n\
2527 Do \"info display\" to see current list of code numbers.", &deletelist);
2528
2529 add_com ("printf", class_vars, printf_command,
2530 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2531 This is useful for formatted output in user-defined commands.");
2532
2533 add_com ("output", class_vars, output_command,
2534 "Like \"print\" but don't put in value history and don't print newline.\n\
2535 This is useful in user-defined commands.");
2536
2537 add_prefix_cmd ("set", class_vars, set_command,
2538 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2539 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2540 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2541 with $), a register (a few standard names starting with $), or an actual\n\
2542 variable in the program being debugged. EXP is any valid expression.\n",
2543 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2544 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2545 You can see these environment settings with the \"show\" command.", NULL),
2546 &setlist, "set ", 1, &cmdlist);
2547 if (dbx_commands)
2548 add_com ("assign", class_vars, set_command, concat ("Evaluate expression \
2549 EXP and assign result to variable VAR, using assignment\n\
2550 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2551 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2552 with $), a register (a few standard names starting with $), or an actual\n\
2553 variable in the program being debugged. EXP is any valid expression.\n",
2554 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2555 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2556 You can see these environment settings with the \"show\" command.", NULL));
2557
2558 /* "call" is the same as "set", but handy for dbx users to call fns. */
2559 add_com ("call", class_vars, call_command,
2560 "Call a function in the program.\n\
2561 The argument is the function name and arguments, in the notation of the\n\
2562 current working language. The result is printed and saved in the value\n\
2563 history, if it is not void.");
2564
2565 add_cmd ("variable", class_vars, set_command,
2566 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2567 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2568 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2569 with $), a register (a few standard names starting with $), or an actual\n\
2570 variable in the program being debugged. EXP is any valid expression.\n\
2571 This may usually be abbreviated to simply \"set\".",
2572 &setlist);
2573
2574 add_com ("print", class_vars, print_command,
2575 concat ("Print value of expression EXP.\n\
2576 Variables accessible are those of the lexical environment of the selected\n\
2577 stack frame, plus all those whose scope is global or an entire file.\n\
2578 \n\
2579 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2580 $$NUM refers to NUM'th value back from the last one.\n\
2581 Names starting with $ refer to registers (with the values they would have\n",
2582 "if the program were to return to the stack frame now selected, restoring\n\
2583 all registers saved by frames farther in) or else to debugger\n\
2584 \"convenience\" variables (any such name not a known register).\n\
2585 Use assignment expressions to give values to convenience variables.\n",
2586 "\n\
2587 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2588 @ is a binary operator for treating consecutive data objects\n\
2589 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2590 element is FOO, whose second element is stored in the space following\n\
2591 where FOO is stored, etc. FOO must be an expression whose value\n\
2592 resides in memory.\n",
2593 "\n\
2594 EXP may be preceded with /FMT, where FMT is a format letter\n\
2595 but no count or size letter (see \"x\" command).", NULL));
2596 add_com_alias ("p", "print", class_vars, 1);
2597
2598 add_com ("inspect", class_vars, inspect_command,
2599 "Same as \"print\" command, except that if you are running in the epoch\n\
2600 environment, the value is printed in its own window.");
2601
2602 add_show_from_set (
2603 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2604 (char *) &max_symbolic_offset,
2605 "Set the largest offset that will be printed in <symbol+1234> form.",
2606 &setprintlist),
2607 &showprintlist);
2608 add_show_from_set (
2609 add_set_cmd ("symbol-filename", no_class, var_boolean,
2610 (char *) &print_symbol_filename,
2611 "Set printing of source filename and line number with <symbol>.",
2612 &setprintlist),
2613 &showprintlist);
2614
2615 /* For examine/instruction a single byte quantity is specified as
2616 the data. This avoids problems with value_at_lazy() requiring a
2617 valid data type (and rejecting VOID). */
2618 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2619
2620 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2621 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2622 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2623 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2624
2625 }
This page took 0.081196 seconds and 3 git commands to generate.