Fix gdb.base/infcall-nested-structs-c++.exp with Clang
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "c-lang.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "block.h"
41 #include "disasm.h"
42 #include "target-float.h"
43 #include "observable.h"
44 #include "solist.h"
45 #include "parser-defs.h"
46 #include "charset.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
53 #include "source.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Last specified count for the 'x' command. */
66
67 static int last_count;
68
69 /* Default address to examine next, and associated architecture. */
70
71 static struct gdbarch *next_gdbarch;
72 static CORE_ADDR next_address;
73
74 /* Number of delay instructions following current disassembled insn. */
75
76 static int branch_delay_insns;
77
78 /* Last address examined. */
79
80 static CORE_ADDR last_examine_address;
81
82 /* Contents of last address examined.
83 This is not valid past the end of the `x' command! */
84
85 static value_ref_ptr last_examine_value;
86
87 /* Largest offset between a symbolic value and an address, that will be
88 printed as `0x1234 <symbol+offset>'. */
89
90 static unsigned int max_symbolic_offset = UINT_MAX;
91 static void
92 show_max_symbolic_offset (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file,
96 _("The largest offset that will be "
97 "printed in <symbol+1234> form is %s.\n"),
98 value);
99 }
100
101 /* Append the source filename and linenumber of the symbol when
102 printing a symbolic value as `<symbol at filename:linenum>' if set. */
103 static bool print_symbol_filename = false;
104 static void
105 show_print_symbol_filename (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Printing of source filename and "
109 "line number with <symbol> is %s.\n"),
110 value);
111 }
112
113 /* Number of auto-display expression currently being displayed.
114 So that we can disable it if we get a signal within it.
115 -1 when not doing one. */
116
117 static int current_display_number;
118
119 /* Last allocated display number. */
120
121 static int display_number;
122
123 struct display
124 {
125 display (const char *exp_string_, expression_up &&exp_,
126 const struct format_data &format_, struct program_space *pspace_,
127 const struct block *block_)
128 : exp_string (exp_string_),
129 exp (std::move (exp_)),
130 number (++display_number),
131 format (format_),
132 pspace (pspace_),
133 block (block_),
134 enabled_p (true)
135 {
136 }
137
138 /* The expression as the user typed it. */
139 std::string exp_string;
140
141 /* Expression to be evaluated and displayed. */
142 expression_up exp;
143
144 /* Item number of this auto-display item. */
145 int number;
146
147 /* Display format specified. */
148 struct format_data format;
149
150 /* Program space associated with `block'. */
151 struct program_space *pspace;
152
153 /* Innermost block required by this expression when evaluated. */
154 const struct block *block;
155
156 /* Status of this display (enabled or disabled). */
157 bool enabled_p;
158 };
159
160 /* Expressions whose values should be displayed automatically each
161 time the program stops. */
162
163 static std::vector<std::unique_ptr<struct display>> all_displays;
164
165 /* Prototypes for local functions. */
166
167 static void do_one_display (struct display *);
168 \f
169
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
175 user.
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
179
180 static struct format_data
181 decode_format (const char **string_ptr, int oformat, int osize)
182 {
183 struct format_data val;
184 const char *p = *string_ptr;
185
186 val.format = '?';
187 val.size = '?';
188 val.count = 1;
189 val.raw = 0;
190
191 if (*p == '-')
192 {
193 val.count = -1;
194 p++;
195 }
196 if (*p >= '0' && *p <= '9')
197 val.count *= atoi (p);
198 while (*p >= '0' && *p <= '9')
199 p++;
200
201 /* Now process size or format letters that follow. */
202
203 while (1)
204 {
205 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
206 val.size = *p++;
207 else if (*p == 'r')
208 {
209 val.raw = 1;
210 p++;
211 }
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 *string_ptr = skip_spaces (p);
219
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
222 {
223 if (val.size == '?')
224 {
225 /* Neither has been specified. */
226 val.format = oformat;
227 val.size = osize;
228 }
229 else
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
233 }
234 else if (val.size == '?')
235 switch (val.format)
236 {
237 case 'a':
238 /* Pick the appropriate size for an address. This is deferred
239 until do_examine when we know the actual architecture to use.
240 A special size value of 'a' is used to indicate this case. */
241 val.size = osize ? 'a' : osize;
242 break;
243 case 'f':
244 /* Floating point has to be word or giantword. */
245 if (osize == 'w' || osize == 'g')
246 val.size = osize;
247 else
248 /* Default it to giantword if the last used size is not
249 appropriate. */
250 val.size = osize ? 'g' : osize;
251 break;
252 case 'c':
253 /* Characters default to one byte. */
254 val.size = osize ? 'b' : osize;
255 break;
256 case 's':
257 /* Display strings with byte size chars unless explicitly
258 specified. */
259 val.size = '\0';
260 break;
261
262 default:
263 /* The default is the size most recently specified. */
264 val.size = osize;
265 }
266
267 return val;
268 }
269 \f
270 /* Print value VAL on stream according to OPTIONS.
271 Do not end with a newline.
272 SIZE is the letter for the size of datum being printed.
273 This is used to pad hex numbers so they line up. SIZE is 0
274 for print / output and set for examine. */
275
276 static void
277 print_formatted (struct value *val, int size,
278 const struct value_print_options *options,
279 struct ui_file *stream)
280 {
281 struct type *type = check_typedef (value_type (val));
282 int len = TYPE_LENGTH (type);
283
284 if (VALUE_LVAL (val) == lval_memory)
285 next_address = value_address (val) + len;
286
287 if (size)
288 {
289 switch (options->format)
290 {
291 case 's':
292 {
293 struct type *elttype = value_type (val);
294
295 next_address = (value_address (val)
296 + val_print_string (elttype, NULL,
297 value_address (val), -1,
298 stream, options) * len);
299 }
300 return;
301
302 case 'i':
303 /* We often wrap here if there are long symbolic names. */
304 wrap_here (" ");
305 next_address = (value_address (val)
306 + gdb_print_insn (get_type_arch (type),
307 value_address (val), stream,
308 &branch_delay_insns));
309 return;
310 }
311 }
312
313 if (options->format == 0 || options->format == 's'
314 || type->code () == TYPE_CODE_REF
315 || type->code () == TYPE_CODE_ARRAY
316 || type->code () == TYPE_CODE_STRING
317 || type->code () == TYPE_CODE_STRUCT
318 || type->code () == TYPE_CODE_UNION
319 || type->code () == TYPE_CODE_NAMESPACE)
320 value_print (val, stream, options);
321 else
322 /* User specified format, so don't look to the type to tell us
323 what to do. */
324 value_print_scalar_formatted (val, options, size, stream);
325 }
326
327 /* Return builtin floating point type of same length as TYPE.
328 If no such type is found, return TYPE itself. */
329 static struct type *
330 float_type_from_length (struct type *type)
331 {
332 struct gdbarch *gdbarch = get_type_arch (type);
333 const struct builtin_type *builtin = builtin_type (gdbarch);
334
335 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
336 type = builtin->builtin_float;
337 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
338 type = builtin->builtin_double;
339 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
340 type = builtin->builtin_long_double;
341
342 return type;
343 }
344
345 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
346 according to OPTIONS and SIZE on STREAM. Formats s and i are not
347 supported at this level. */
348
349 void
350 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
351 const struct value_print_options *options,
352 int size, struct ui_file *stream)
353 {
354 struct gdbarch *gdbarch = get_type_arch (type);
355 unsigned int len = TYPE_LENGTH (type);
356 enum bfd_endian byte_order = type_byte_order (type);
357
358 /* String printing should go through val_print_scalar_formatted. */
359 gdb_assert (options->format != 's');
360
361 /* If the value is a pointer, and pointers and addresses are not the
362 same, then at this point, the value's length (in target bytes) is
363 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
364 if (type->code () == TYPE_CODE_PTR)
365 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
366
367 /* If we are printing it as unsigned, truncate it in case it is actually
368 a negative signed value (e.g. "print/u (short)-1" should print 65535
369 (if shorts are 16 bits) instead of 4294967295). */
370 if (options->format != 'c'
371 && (options->format != 'd' || type->is_unsigned ()))
372 {
373 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
374 valaddr += TYPE_LENGTH (type) - len;
375 }
376
377 /* Allow LEN == 0, and in this case, don't assume that VALADDR is
378 valid. */
379 const gdb_byte zero = 0;
380 if (len == 0)
381 {
382 len = 1;
383 valaddr = &zero;
384 }
385
386 if (size != 0 && (options->format == 'x' || options->format == 't'))
387 {
388 /* Truncate to fit. */
389 unsigned newlen;
390 switch (size)
391 {
392 case 'b':
393 newlen = 1;
394 break;
395 case 'h':
396 newlen = 2;
397 break;
398 case 'w':
399 newlen = 4;
400 break;
401 case 'g':
402 newlen = 8;
403 break;
404 default:
405 error (_("Undefined output size \"%c\"."), size);
406 }
407 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
408 valaddr += len - newlen;
409 len = newlen;
410 }
411
412 /* Historically gdb has printed floats by first casting them to a
413 long, and then printing the long. PR cli/16242 suggests changing
414 this to using C-style hex float format.
415
416 Biased range types and sub-word scalar types must also be handled
417 here; the value is correctly computed by unpack_long. */
418 gdb::byte_vector converted_bytes;
419 /* Some cases below will unpack the value again. In the biased
420 range case, we want to avoid this, so we store the unpacked value
421 here for possible use later. */
422 gdb::optional<LONGEST> val_long;
423 if ((type->code () == TYPE_CODE_FLT
424 && (options->format == 'o'
425 || options->format == 'x'
426 || options->format == 't'
427 || options->format == 'z'
428 || options->format == 'd'
429 || options->format == 'u'))
430 || (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0)
431 || type->bit_size_differs_p ())
432 {
433 val_long.emplace (unpack_long (type, valaddr));
434 converted_bytes.resize (TYPE_LENGTH (type));
435 store_signed_integer (converted_bytes.data (), TYPE_LENGTH (type),
436 byte_order, *val_long);
437 valaddr = converted_bytes.data ();
438 }
439
440 /* Printing a non-float type as 'f' will interpret the data as if it were
441 of a floating-point type of the same length, if that exists. Otherwise,
442 the data is printed as integer. */
443 char format = options->format;
444 if (format == 'f' && type->code () != TYPE_CODE_FLT)
445 {
446 type = float_type_from_length (type);
447 if (type->code () != TYPE_CODE_FLT)
448 format = 0;
449 }
450
451 switch (format)
452 {
453 case 'o':
454 print_octal_chars (stream, valaddr, len, byte_order);
455 break;
456 case 'd':
457 print_decimal_chars (stream, valaddr, len, true, byte_order);
458 break;
459 case 'u':
460 print_decimal_chars (stream, valaddr, len, false, byte_order);
461 break;
462 case 0:
463 if (type->code () != TYPE_CODE_FLT)
464 {
465 print_decimal_chars (stream, valaddr, len, !type->is_unsigned (),
466 byte_order);
467 break;
468 }
469 /* FALLTHROUGH */
470 case 'f':
471 print_floating (valaddr, type, stream);
472 break;
473
474 case 't':
475 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
476 break;
477 case 'x':
478 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
479 break;
480 case 'z':
481 print_hex_chars (stream, valaddr, len, byte_order, true);
482 break;
483 case 'c':
484 {
485 struct value_print_options opts = *options;
486
487 if (!val_long.has_value ())
488 val_long.emplace (unpack_long (type, valaddr));
489
490 opts.format = 0;
491 if (type->is_unsigned ())
492 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
493 else
494 type = builtin_type (gdbarch)->builtin_true_char;
495
496 value_print (value_from_longest (type, *val_long), stream, &opts);
497 }
498 break;
499
500 case 'a':
501 {
502 if (!val_long.has_value ())
503 val_long.emplace (unpack_long (type, valaddr));
504 print_address (gdbarch, *val_long, stream);
505 }
506 break;
507
508 default:
509 error (_("Undefined output format \"%c\"."), format);
510 }
511 }
512
513 /* Specify default address for `x' command.
514 The `info lines' command uses this. */
515
516 void
517 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
518 {
519 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
520
521 next_gdbarch = gdbarch;
522 next_address = addr;
523
524 /* Make address available to the user as $_. */
525 set_internalvar (lookup_internalvar ("_"),
526 value_from_pointer (ptr_type, addr));
527 }
528
529 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
530 after LEADIN. Print nothing if no symbolic name is found nearby.
531 Optionally also print source file and line number, if available.
532 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
533 or to interpret it as a possible C++ name and convert it back to source
534 form. However note that DO_DEMANGLE can be overridden by the specific
535 settings of the demangle and asm_demangle variables. Returns
536 non-zero if anything was printed; zero otherwise. */
537
538 int
539 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
540 struct ui_file *stream,
541 int do_demangle, const char *leadin)
542 {
543 std::string name, filename;
544 int unmapped = 0;
545 int offset = 0;
546 int line = 0;
547
548 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
549 &offset, &filename, &line, &unmapped))
550 return 0;
551
552 fputs_filtered (leadin, stream);
553 if (unmapped)
554 fputs_filtered ("<*", stream);
555 else
556 fputs_filtered ("<", stream);
557 fputs_styled (name.c_str (), function_name_style.style (), stream);
558 if (offset != 0)
559 fprintf_filtered (stream, "%+d", offset);
560
561 /* Append source filename and line number if desired. Give specific
562 line # of this addr, if we have it; else line # of the nearest symbol. */
563 if (print_symbol_filename && !filename.empty ())
564 {
565 fputs_filtered (line == -1 ? " in " : " at ", stream);
566 fputs_styled (filename.c_str (), file_name_style.style (), stream);
567 if (line != -1)
568 fprintf_filtered (stream, ":%d", line);
569 }
570 if (unmapped)
571 fputs_filtered ("*>", stream);
572 else
573 fputs_filtered (">", stream);
574
575 return 1;
576 }
577
578 /* See valprint.h. */
579
580 int
581 build_address_symbolic (struct gdbarch *gdbarch,
582 CORE_ADDR addr, /* IN */
583 bool do_demangle, /* IN */
584 bool prefer_sym_over_minsym, /* IN */
585 std::string *name, /* OUT */
586 int *offset, /* OUT */
587 std::string *filename, /* OUT */
588 int *line, /* OUT */
589 int *unmapped) /* OUT */
590 {
591 struct bound_minimal_symbol msymbol;
592 struct symbol *symbol;
593 CORE_ADDR name_location = 0;
594 struct obj_section *section = NULL;
595 const char *name_temp = "";
596
597 /* Let's say it is mapped (not unmapped). */
598 *unmapped = 0;
599
600 /* Determine if the address is in an overlay, and whether it is
601 mapped. */
602 if (overlay_debugging)
603 {
604 section = find_pc_overlay (addr);
605 if (pc_in_unmapped_range (addr, section))
606 {
607 *unmapped = 1;
608 addr = overlay_mapped_address (addr, section);
609 }
610 }
611
612 /* Try to find the address in both the symbol table and the minsyms.
613 In most cases, we'll prefer to use the symbol instead of the
614 minsym. However, there are cases (see below) where we'll choose
615 to use the minsym instead. */
616
617 /* This is defective in the sense that it only finds text symbols. So
618 really this is kind of pointless--we should make sure that the
619 minimal symbols have everything we need (by changing that we could
620 save some memory, but for many debug format--ELF/DWARF or
621 anything/stabs--it would be inconvenient to eliminate those minimal
622 symbols anyway). */
623 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
624 symbol = find_pc_sect_function (addr, section);
625
626 if (symbol)
627 {
628 /* If this is a function (i.e. a code address), strip out any
629 non-address bits. For instance, display a pointer to the
630 first instruction of a Thumb function as <function>; the
631 second instruction will be <function+2>, even though the
632 pointer is <function+3>. This matches the ISA behavior. */
633 addr = gdbarch_addr_bits_remove (gdbarch, addr);
634
635 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
636 if (do_demangle || asm_demangle)
637 name_temp = symbol->print_name ();
638 else
639 name_temp = symbol->linkage_name ();
640 }
641
642 if (msymbol.minsym != NULL
643 && MSYMBOL_HAS_SIZE (msymbol.minsym)
644 && MSYMBOL_SIZE (msymbol.minsym) == 0
645 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
646 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
647 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
648 msymbol.minsym = NULL;
649
650 if (msymbol.minsym != NULL)
651 {
652 /* Use the minsym if no symbol is found.
653
654 Additionally, use the minsym instead of a (found) symbol if
655 the following conditions all hold:
656 1) The prefer_sym_over_minsym flag is false.
657 2) The minsym address is identical to that of the address under
658 consideration.
659 3) The symbol address is not identical to that of the address
660 under consideration. */
661 if (symbol == NULL ||
662 (!prefer_sym_over_minsym
663 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
664 && name_location != addr))
665 {
666 /* If this is a function (i.e. a code address), strip out any
667 non-address bits. For instance, display a pointer to the
668 first instruction of a Thumb function as <function>; the
669 second instruction will be <function+2>, even though the
670 pointer is <function+3>. This matches the ISA behavior. */
671 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
672 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
673 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
674 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
675 addr = gdbarch_addr_bits_remove (gdbarch, addr);
676
677 symbol = 0;
678 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
679 if (do_demangle || asm_demangle)
680 name_temp = msymbol.minsym->print_name ();
681 else
682 name_temp = msymbol.minsym->linkage_name ();
683 }
684 }
685 if (symbol == NULL && msymbol.minsym == NULL)
686 return 1;
687
688 /* If the nearest symbol is too far away, don't print anything symbolic. */
689
690 /* For when CORE_ADDR is larger than unsigned int, we do math in
691 CORE_ADDR. But when we detect unsigned wraparound in the
692 CORE_ADDR math, we ignore this test and print the offset,
693 because addr+max_symbolic_offset has wrapped through the end
694 of the address space back to the beginning, giving bogus comparison. */
695 if (addr > name_location + max_symbolic_offset
696 && name_location + max_symbolic_offset > name_location)
697 return 1;
698
699 *offset = (LONGEST) addr - name_location;
700
701 *name = name_temp;
702
703 if (print_symbol_filename)
704 {
705 struct symtab_and_line sal;
706
707 sal = find_pc_sect_line (addr, section, 0);
708
709 if (sal.symtab)
710 {
711 *filename = symtab_to_filename_for_display (sal.symtab);
712 *line = sal.line;
713 }
714 }
715 return 0;
716 }
717
718
719 /* Print address ADDR symbolically on STREAM.
720 First print it as a number. Then perhaps print
721 <SYMBOL + OFFSET> after the number. */
722
723 void
724 print_address (struct gdbarch *gdbarch,
725 CORE_ADDR addr, struct ui_file *stream)
726 {
727 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
728 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
729 }
730
731 /* Return a prefix for instruction address:
732 "=> " for current instruction, else " ". */
733
734 const char *
735 pc_prefix (CORE_ADDR addr)
736 {
737 if (has_stack_frames ())
738 {
739 struct frame_info *frame;
740 CORE_ADDR pc;
741
742 frame = get_selected_frame (NULL);
743 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
744 return "=> ";
745 }
746 return " ";
747 }
748
749 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
750 controls whether to print the symbolic name "raw" or demangled.
751 Return non-zero if anything was printed; zero otherwise. */
752
753 int
754 print_address_demangle (const struct value_print_options *opts,
755 struct gdbarch *gdbarch, CORE_ADDR addr,
756 struct ui_file *stream, int do_demangle)
757 {
758 if (opts->addressprint)
759 {
760 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
761 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
762 }
763 else
764 {
765 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
766 }
767 return 1;
768 }
769 \f
770
771 /* Find the address of the instruction that is INST_COUNT instructions before
772 the instruction at ADDR.
773 Since some architectures have variable-length instructions, we can't just
774 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
775 number information to locate the nearest known instruction boundary,
776 and disassemble forward from there. If we go out of the symbol range
777 during disassembling, we return the lowest address we've got so far and
778 set the number of instructions read to INST_READ. */
779
780 static CORE_ADDR
781 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
782 int inst_count, int *inst_read)
783 {
784 /* The vector PCS is used to store instruction addresses within
785 a pc range. */
786 CORE_ADDR loop_start, loop_end, p;
787 std::vector<CORE_ADDR> pcs;
788 struct symtab_and_line sal;
789
790 *inst_read = 0;
791 loop_start = loop_end = addr;
792
793 /* In each iteration of the outer loop, we get a pc range that ends before
794 LOOP_START, then we count and store every instruction address of the range
795 iterated in the loop.
796 If the number of instructions counted reaches INST_COUNT, return the
797 stored address that is located INST_COUNT instructions back from ADDR.
798 If INST_COUNT is not reached, we subtract the number of counted
799 instructions from INST_COUNT, and go to the next iteration. */
800 do
801 {
802 pcs.clear ();
803 sal = find_pc_sect_line (loop_start, NULL, 1);
804 if (sal.line <= 0)
805 {
806 /* We reach here when line info is not available. In this case,
807 we print a message and just exit the loop. The return value
808 is calculated after the loop. */
809 printf_filtered (_("No line number information available "
810 "for address "));
811 wrap_here (" ");
812 print_address (gdbarch, loop_start - 1, gdb_stdout);
813 printf_filtered ("\n");
814 break;
815 }
816
817 loop_end = loop_start;
818 loop_start = sal.pc;
819
820 /* This loop pushes instruction addresses in the range from
821 LOOP_START to LOOP_END. */
822 for (p = loop_start; p < loop_end;)
823 {
824 pcs.push_back (p);
825 p += gdb_insn_length (gdbarch, p);
826 }
827
828 inst_count -= pcs.size ();
829 *inst_read += pcs.size ();
830 }
831 while (inst_count > 0);
832
833 /* After the loop, the vector PCS has instruction addresses of the last
834 source line we processed, and INST_COUNT has a negative value.
835 We return the address at the index of -INST_COUNT in the vector for
836 the reason below.
837 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
838 Line X of File
839 0x4000
840 0x4001
841 0x4005
842 Line Y of File
843 0x4009
844 0x400c
845 => 0x400e
846 0x4011
847 find_instruction_backward is called with INST_COUNT = 4 and expected to
848 return 0x4001. When we reach here, INST_COUNT is set to -1 because
849 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
850 4001 is located at the index 1 of the last iterated line (= Line X),
851 which is simply calculated by -INST_COUNT.
852 The case when the length of PCS is 0 means that we reached an area for
853 which line info is not available. In such case, we return LOOP_START,
854 which was the lowest instruction address that had line info. */
855 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
856
857 /* INST_READ includes all instruction addresses in a pc range. Need to
858 exclude the beginning part up to the address we're returning. That
859 is, exclude {0x4000} in the example above. */
860 if (inst_count < 0)
861 *inst_read += inst_count;
862
863 return p;
864 }
865
866 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
867 placing the results in GDB's memory from MYADDR + LEN. Returns
868 a count of the bytes actually read. */
869
870 static int
871 read_memory_backward (struct gdbarch *gdbarch,
872 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
873 {
874 int errcode;
875 int nread; /* Number of bytes actually read. */
876
877 /* First try a complete read. */
878 errcode = target_read_memory (memaddr, myaddr, len);
879 if (errcode == 0)
880 {
881 /* Got it all. */
882 nread = len;
883 }
884 else
885 {
886 /* Loop, reading one byte at a time until we get as much as we can. */
887 memaddr += len;
888 myaddr += len;
889 for (nread = 0; nread < len; ++nread)
890 {
891 errcode = target_read_memory (--memaddr, --myaddr, 1);
892 if (errcode != 0)
893 {
894 /* The read was unsuccessful, so exit the loop. */
895 printf_filtered (_("Cannot access memory at address %s\n"),
896 paddress (gdbarch, memaddr));
897 break;
898 }
899 }
900 }
901 return nread;
902 }
903
904 /* Returns true if X (which is LEN bytes wide) is the number zero. */
905
906 static int
907 integer_is_zero (const gdb_byte *x, int len)
908 {
909 int i = 0;
910
911 while (i < len && x[i] == 0)
912 ++i;
913 return (i == len);
914 }
915
916 /* Find the start address of a string in which ADDR is included.
917 Basically we search for '\0' and return the next address,
918 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
919 we stop searching and return the address to print characters as many as
920 PRINT_MAX from the string. */
921
922 static CORE_ADDR
923 find_string_backward (struct gdbarch *gdbarch,
924 CORE_ADDR addr, int count, int char_size,
925 const struct value_print_options *options,
926 int *strings_counted)
927 {
928 const int chunk_size = 0x20;
929 int read_error = 0;
930 int chars_read = 0;
931 int chars_to_read = chunk_size;
932 int chars_counted = 0;
933 int count_original = count;
934 CORE_ADDR string_start_addr = addr;
935
936 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
937 gdb::byte_vector buffer (chars_to_read * char_size);
938 while (count > 0 && read_error == 0)
939 {
940 int i;
941
942 addr -= chars_to_read * char_size;
943 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
944 chars_to_read * char_size);
945 chars_read /= char_size;
946 read_error = (chars_read == chars_to_read) ? 0 : 1;
947 /* Searching for '\0' from the end of buffer in backward direction. */
948 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
949 {
950 int offset = (chars_to_read - i - 1) * char_size;
951
952 if (integer_is_zero (&buffer[offset], char_size)
953 || chars_counted == options->print_max)
954 {
955 /* Found '\0' or reached print_max. As OFFSET is the offset to
956 '\0', we add CHAR_SIZE to return the start address of
957 a string. */
958 --count;
959 string_start_addr = addr + offset + char_size;
960 chars_counted = 0;
961 }
962 }
963 }
964
965 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
966 *strings_counted = count_original - count;
967
968 if (read_error != 0)
969 {
970 /* In error case, STRING_START_ADDR is pointing to the string that
971 was last successfully loaded. Rewind the partially loaded string. */
972 string_start_addr -= chars_counted * char_size;
973 }
974
975 return string_start_addr;
976 }
977
978 /* Examine data at address ADDR in format FMT.
979 Fetch it from memory and print on gdb_stdout. */
980
981 static void
982 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
983 {
984 char format = 0;
985 char size;
986 int count = 1;
987 struct type *val_type = NULL;
988 int i;
989 int maxelts;
990 struct value_print_options opts;
991 int need_to_update_next_address = 0;
992 CORE_ADDR addr_rewound = 0;
993
994 format = fmt.format;
995 size = fmt.size;
996 count = fmt.count;
997 next_gdbarch = gdbarch;
998 next_address = addr;
999
1000 /* Instruction format implies fetch single bytes
1001 regardless of the specified size.
1002 The case of strings is handled in decode_format, only explicit
1003 size operator are not changed to 'b'. */
1004 if (format == 'i')
1005 size = 'b';
1006
1007 if (size == 'a')
1008 {
1009 /* Pick the appropriate size for an address. */
1010 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1011 size = 'g';
1012 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1013 size = 'w';
1014 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1015 size = 'h';
1016 else
1017 /* Bad value for gdbarch_ptr_bit. */
1018 internal_error (__FILE__, __LINE__,
1019 _("failed internal consistency check"));
1020 }
1021
1022 if (size == 'b')
1023 val_type = builtin_type (next_gdbarch)->builtin_int8;
1024 else if (size == 'h')
1025 val_type = builtin_type (next_gdbarch)->builtin_int16;
1026 else if (size == 'w')
1027 val_type = builtin_type (next_gdbarch)->builtin_int32;
1028 else if (size == 'g')
1029 val_type = builtin_type (next_gdbarch)->builtin_int64;
1030
1031 if (format == 's')
1032 {
1033 struct type *char_type = NULL;
1034
1035 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1036 if type is not found. */
1037 if (size == 'h')
1038 char_type = builtin_type (next_gdbarch)->builtin_char16;
1039 else if (size == 'w')
1040 char_type = builtin_type (next_gdbarch)->builtin_char32;
1041 if (char_type)
1042 val_type = char_type;
1043 else
1044 {
1045 if (size != '\0' && size != 'b')
1046 warning (_("Unable to display strings with "
1047 "size '%c', using 'b' instead."), size);
1048 size = 'b';
1049 val_type = builtin_type (next_gdbarch)->builtin_int8;
1050 }
1051 }
1052
1053 maxelts = 8;
1054 if (size == 'w')
1055 maxelts = 4;
1056 if (size == 'g')
1057 maxelts = 2;
1058 if (format == 's' || format == 'i')
1059 maxelts = 1;
1060
1061 get_formatted_print_options (&opts, format);
1062
1063 if (count < 0)
1064 {
1065 /* This is the negative repeat count case.
1066 We rewind the address based on the given repeat count and format,
1067 then examine memory from there in forward direction. */
1068
1069 count = -count;
1070 if (format == 'i')
1071 {
1072 next_address = find_instruction_backward (gdbarch, addr, count,
1073 &count);
1074 }
1075 else if (format == 's')
1076 {
1077 next_address = find_string_backward (gdbarch, addr, count,
1078 TYPE_LENGTH (val_type),
1079 &opts, &count);
1080 }
1081 else
1082 {
1083 next_address = addr - count * TYPE_LENGTH (val_type);
1084 }
1085
1086 /* The following call to print_formatted updates next_address in every
1087 iteration. In backward case, we store the start address here
1088 and update next_address with it before exiting the function. */
1089 addr_rewound = (format == 's'
1090 ? next_address - TYPE_LENGTH (val_type)
1091 : next_address);
1092 need_to_update_next_address = 1;
1093 }
1094
1095 /* Print as many objects as specified in COUNT, at most maxelts per line,
1096 with the address of the next one at the start of each line. */
1097
1098 while (count > 0)
1099 {
1100 QUIT;
1101 if (format == 'i')
1102 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1103 print_address (next_gdbarch, next_address, gdb_stdout);
1104 printf_filtered (":");
1105 for (i = maxelts;
1106 i > 0 && count > 0;
1107 i--, count--)
1108 {
1109 printf_filtered ("\t");
1110 /* Note that print_formatted sets next_address for the next
1111 object. */
1112 last_examine_address = next_address;
1113
1114 /* The value to be displayed is not fetched greedily.
1115 Instead, to avoid the possibility of a fetched value not
1116 being used, its retrieval is delayed until the print code
1117 uses it. When examining an instruction stream, the
1118 disassembler will perform its own memory fetch using just
1119 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1120 the disassembler be modified so that LAST_EXAMINE_VALUE
1121 is left with the byte sequence from the last complete
1122 instruction fetched from memory? */
1123 last_examine_value
1124 = release_value (value_at_lazy (val_type, next_address));
1125
1126 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1127
1128 /* Display any branch delay slots following the final insn. */
1129 if (format == 'i' && count == 1)
1130 count += branch_delay_insns;
1131 }
1132 printf_filtered ("\n");
1133 }
1134
1135 if (need_to_update_next_address)
1136 next_address = addr_rewound;
1137 }
1138 \f
1139 static void
1140 validate_format (struct format_data fmt, const char *cmdname)
1141 {
1142 if (fmt.size != 0)
1143 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1144 if (fmt.count != 1)
1145 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1146 cmdname);
1147 if (fmt.format == 'i')
1148 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1149 fmt.format, cmdname);
1150 }
1151
1152 /* Parse print command format string into *OPTS and update *EXPP.
1153 CMDNAME should name the current command. */
1154
1155 void
1156 print_command_parse_format (const char **expp, const char *cmdname,
1157 value_print_options *opts)
1158 {
1159 const char *exp = *expp;
1160
1161 /* opts->raw value might already have been set by 'set print raw-values'
1162 or by using 'print -raw-values'.
1163 So, do not set opts->raw to 0, only set it to 1 if /r is given. */
1164 if (exp && *exp == '/')
1165 {
1166 format_data fmt;
1167
1168 exp++;
1169 fmt = decode_format (&exp, last_format, 0);
1170 validate_format (fmt, cmdname);
1171 last_format = fmt.format;
1172
1173 opts->format = fmt.format;
1174 opts->raw = opts->raw || fmt.raw;
1175 }
1176 else
1177 {
1178 opts->format = 0;
1179 }
1180
1181 *expp = exp;
1182 }
1183
1184 /* See valprint.h. */
1185
1186 void
1187 print_value (value *val, const value_print_options &opts)
1188 {
1189 int histindex = record_latest_value (val);
1190
1191 annotate_value_history_begin (histindex, value_type (val));
1192
1193 printf_filtered ("$%d = ", histindex);
1194
1195 annotate_value_history_value ();
1196
1197 print_formatted (val, 0, &opts, gdb_stdout);
1198 printf_filtered ("\n");
1199
1200 annotate_value_history_end ();
1201 }
1202
1203 /* Implementation of the "print" and "call" commands. */
1204
1205 static void
1206 print_command_1 (const char *args, int voidprint)
1207 {
1208 struct value *val;
1209 value_print_options print_opts;
1210
1211 get_user_print_options (&print_opts);
1212 /* Override global settings with explicit options, if any. */
1213 auto group = make_value_print_options_def_group (&print_opts);
1214 gdb::option::process_options
1215 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1216
1217 print_command_parse_format (&args, "print", &print_opts);
1218
1219 const char *exp = args;
1220
1221 if (exp != nullptr && *exp)
1222 {
1223 expression_up expr = parse_expression (exp);
1224 val = evaluate_expression (expr.get ());
1225 }
1226 else
1227 val = access_value_history (0);
1228
1229 if (voidprint || (val && value_type (val) &&
1230 value_type (val)->code () != TYPE_CODE_VOID))
1231 print_value (val, print_opts);
1232 }
1233
1234 /* See valprint.h. */
1235
1236 void
1237 print_command_completer (struct cmd_list_element *ignore,
1238 completion_tracker &tracker,
1239 const char *text, const char * /*word*/)
1240 {
1241 const auto group = make_value_print_options_def_group (nullptr);
1242 if (gdb::option::complete_options
1243 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1244 return;
1245
1246 const char *word = advance_to_expression_complete_word_point (tracker, text);
1247 expression_completer (ignore, tracker, text, word);
1248 }
1249
1250 static void
1251 print_command (const char *exp, int from_tty)
1252 {
1253 print_command_1 (exp, 1);
1254 }
1255
1256 /* Same as print, except it doesn't print void results. */
1257 static void
1258 call_command (const char *exp, int from_tty)
1259 {
1260 print_command_1 (exp, 0);
1261 }
1262
1263 /* Implementation of the "output" command. */
1264
1265 void
1266 output_command (const char *exp, int from_tty)
1267 {
1268 char format = 0;
1269 struct value *val;
1270 struct format_data fmt;
1271 struct value_print_options opts;
1272
1273 fmt.size = 0;
1274 fmt.raw = 0;
1275
1276 if (exp && *exp == '/')
1277 {
1278 exp++;
1279 fmt = decode_format (&exp, 0, 0);
1280 validate_format (fmt, "output");
1281 format = fmt.format;
1282 }
1283
1284 expression_up expr = parse_expression (exp);
1285
1286 val = evaluate_expression (expr.get ());
1287
1288 annotate_value_begin (value_type (val));
1289
1290 get_formatted_print_options (&opts, format);
1291 opts.raw = fmt.raw;
1292 print_formatted (val, fmt.size, &opts, gdb_stdout);
1293
1294 annotate_value_end ();
1295
1296 wrap_here ("");
1297 gdb_flush (gdb_stdout);
1298 }
1299
1300 static void
1301 set_command (const char *exp, int from_tty)
1302 {
1303 expression_up expr = parse_expression (exp);
1304
1305 if (expr->nelts >= 1)
1306 switch (expr->elts[0].opcode)
1307 {
1308 case UNOP_PREINCREMENT:
1309 case UNOP_POSTINCREMENT:
1310 case UNOP_PREDECREMENT:
1311 case UNOP_POSTDECREMENT:
1312 case BINOP_ASSIGN:
1313 case BINOP_ASSIGN_MODIFY:
1314 case BINOP_COMMA:
1315 break;
1316 default:
1317 warning
1318 (_("Expression is not an assignment (and might have no effect)"));
1319 }
1320
1321 evaluate_expression (expr.get ());
1322 }
1323
1324 static void
1325 info_symbol_command (const char *arg, int from_tty)
1326 {
1327 struct minimal_symbol *msymbol;
1328 struct obj_section *osect;
1329 CORE_ADDR addr, sect_addr;
1330 int matches = 0;
1331 unsigned int offset;
1332
1333 if (!arg)
1334 error_no_arg (_("address"));
1335
1336 addr = parse_and_eval_address (arg);
1337 for (objfile *objfile : current_program_space->objfiles ())
1338 ALL_OBJFILE_OSECTIONS (objfile, osect)
1339 {
1340 /* Only process each object file once, even if there's a separate
1341 debug file. */
1342 if (objfile->separate_debug_objfile_backlink)
1343 continue;
1344
1345 sect_addr = overlay_mapped_address (addr, osect);
1346
1347 if (obj_section_addr (osect) <= sect_addr
1348 && sect_addr < obj_section_endaddr (osect)
1349 && (msymbol
1350 = lookup_minimal_symbol_by_pc_section (sect_addr,
1351 osect).minsym))
1352 {
1353 const char *obj_name, *mapped, *sec_name, *msym_name;
1354 const char *loc_string;
1355
1356 matches = 1;
1357 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1358 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1359 sec_name = osect->the_bfd_section->name;
1360 msym_name = msymbol->print_name ();
1361
1362 /* Don't print the offset if it is zero.
1363 We assume there's no need to handle i18n of "sym + offset". */
1364 std::string string_holder;
1365 if (offset)
1366 {
1367 string_holder = string_printf ("%s + %u", msym_name, offset);
1368 loc_string = string_holder.c_str ();
1369 }
1370 else
1371 loc_string = msym_name;
1372
1373 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1374 obj_name = objfile_name (osect->objfile);
1375
1376 if (current_program_space->multi_objfile_p ())
1377 if (pc_in_unmapped_range (addr, osect))
1378 if (section_is_overlay (osect))
1379 printf_filtered (_("%s in load address range of "
1380 "%s overlay section %s of %s\n"),
1381 loc_string, mapped, sec_name, obj_name);
1382 else
1383 printf_filtered (_("%s in load address range of "
1384 "section %s of %s\n"),
1385 loc_string, sec_name, obj_name);
1386 else
1387 if (section_is_overlay (osect))
1388 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1389 loc_string, mapped, sec_name, obj_name);
1390 else
1391 printf_filtered (_("%s in section %s of %s\n"),
1392 loc_string, sec_name, obj_name);
1393 else
1394 if (pc_in_unmapped_range (addr, osect))
1395 if (section_is_overlay (osect))
1396 printf_filtered (_("%s in load address range of %s overlay "
1397 "section %s\n"),
1398 loc_string, mapped, sec_name);
1399 else
1400 printf_filtered
1401 (_("%s in load address range of section %s\n"),
1402 loc_string, sec_name);
1403 else
1404 if (section_is_overlay (osect))
1405 printf_filtered (_("%s in %s overlay section %s\n"),
1406 loc_string, mapped, sec_name);
1407 else
1408 printf_filtered (_("%s in section %s\n"),
1409 loc_string, sec_name);
1410 }
1411 }
1412 if (matches == 0)
1413 printf_filtered (_("No symbol matches %s.\n"), arg);
1414 }
1415
1416 static void
1417 info_address_command (const char *exp, int from_tty)
1418 {
1419 struct gdbarch *gdbarch;
1420 int regno;
1421 struct symbol *sym;
1422 struct bound_minimal_symbol msymbol;
1423 long val;
1424 struct obj_section *section;
1425 CORE_ADDR load_addr, context_pc = 0;
1426 struct field_of_this_result is_a_field_of_this;
1427
1428 if (exp == 0)
1429 error (_("Argument required."));
1430
1431 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1432 &is_a_field_of_this).symbol;
1433 if (sym == NULL)
1434 {
1435 if (is_a_field_of_this.type != NULL)
1436 {
1437 printf_filtered ("Symbol \"");
1438 fprintf_symbol_filtered (gdb_stdout, exp,
1439 current_language->la_language, DMGL_ANSI);
1440 printf_filtered ("\" is a field of the local class variable ");
1441 if (current_language->la_language == language_objc)
1442 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1443 else
1444 printf_filtered ("`this'\n");
1445 return;
1446 }
1447
1448 msymbol = lookup_bound_minimal_symbol (exp);
1449
1450 if (msymbol.minsym != NULL)
1451 {
1452 struct objfile *objfile = msymbol.objfile;
1453
1454 gdbarch = objfile->arch ();
1455 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1456
1457 printf_filtered ("Symbol \"");
1458 fprintf_symbol_filtered (gdb_stdout, exp,
1459 current_language->la_language, DMGL_ANSI);
1460 printf_filtered ("\" is at ");
1461 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1462 gdb_stdout);
1463 printf_filtered (" in a file compiled without debugging");
1464 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1465 if (section_is_overlay (section))
1466 {
1467 load_addr = overlay_unmapped_address (load_addr, section);
1468 printf_filtered (",\n -- loaded at ");
1469 fputs_styled (paddress (gdbarch, load_addr),
1470 address_style.style (),
1471 gdb_stdout);
1472 printf_filtered (" in overlay section %s",
1473 section->the_bfd_section->name);
1474 }
1475 printf_filtered (".\n");
1476 }
1477 else
1478 error (_("No symbol \"%s\" in current context."), exp);
1479 return;
1480 }
1481
1482 printf_filtered ("Symbol \"");
1483 fprintf_symbol_filtered (gdb_stdout, sym->print_name (),
1484 current_language->la_language, DMGL_ANSI);
1485 printf_filtered ("\" is ");
1486 val = SYMBOL_VALUE (sym);
1487 if (SYMBOL_OBJFILE_OWNED (sym))
1488 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1489 else
1490 section = NULL;
1491 gdbarch = symbol_arch (sym);
1492
1493 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1494 {
1495 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1496 gdb_stdout);
1497 printf_filtered (".\n");
1498 return;
1499 }
1500
1501 switch (SYMBOL_CLASS (sym))
1502 {
1503 case LOC_CONST:
1504 case LOC_CONST_BYTES:
1505 printf_filtered ("constant");
1506 break;
1507
1508 case LOC_LABEL:
1509 printf_filtered ("a label at address ");
1510 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1511 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1512 gdb_stdout);
1513 if (section_is_overlay (section))
1514 {
1515 load_addr = overlay_unmapped_address (load_addr, section);
1516 printf_filtered (",\n -- loaded at ");
1517 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1518 gdb_stdout);
1519 printf_filtered (" in overlay section %s",
1520 section->the_bfd_section->name);
1521 }
1522 break;
1523
1524 case LOC_COMPUTED:
1525 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1526
1527 case LOC_REGISTER:
1528 /* GDBARCH is the architecture associated with the objfile the symbol
1529 is defined in; the target architecture may be different, and may
1530 provide additional registers. However, we do not know the target
1531 architecture at this point. We assume the objfile architecture
1532 will contain all the standard registers that occur in debug info
1533 in that objfile. */
1534 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1535
1536 if (SYMBOL_IS_ARGUMENT (sym))
1537 printf_filtered (_("an argument in register %s"),
1538 gdbarch_register_name (gdbarch, regno));
1539 else
1540 printf_filtered (_("a variable in register %s"),
1541 gdbarch_register_name (gdbarch, regno));
1542 break;
1543
1544 case LOC_STATIC:
1545 printf_filtered (_("static storage at address "));
1546 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1547 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1548 gdb_stdout);
1549 if (section_is_overlay (section))
1550 {
1551 load_addr = overlay_unmapped_address (load_addr, section);
1552 printf_filtered (_(",\n -- loaded at "));
1553 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1554 gdb_stdout);
1555 printf_filtered (_(" in overlay section %s"),
1556 section->the_bfd_section->name);
1557 }
1558 break;
1559
1560 case LOC_REGPARM_ADDR:
1561 /* Note comment at LOC_REGISTER. */
1562 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1563 printf_filtered (_("address of an argument in register %s"),
1564 gdbarch_register_name (gdbarch, regno));
1565 break;
1566
1567 case LOC_ARG:
1568 printf_filtered (_("an argument at offset %ld"), val);
1569 break;
1570
1571 case LOC_LOCAL:
1572 printf_filtered (_("a local variable at frame offset %ld"), val);
1573 break;
1574
1575 case LOC_REF_ARG:
1576 printf_filtered (_("a reference argument at offset %ld"), val);
1577 break;
1578
1579 case LOC_TYPEDEF:
1580 printf_filtered (_("a typedef"));
1581 break;
1582
1583 case LOC_BLOCK:
1584 printf_filtered (_("a function at address "));
1585 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1586 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1587 gdb_stdout);
1588 if (section_is_overlay (section))
1589 {
1590 load_addr = overlay_unmapped_address (load_addr, section);
1591 printf_filtered (_(",\n -- loaded at "));
1592 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1593 gdb_stdout);
1594 printf_filtered (_(" in overlay section %s"),
1595 section->the_bfd_section->name);
1596 }
1597 break;
1598
1599 case LOC_UNRESOLVED:
1600 {
1601 struct bound_minimal_symbol msym;
1602
1603 msym = lookup_bound_minimal_symbol (sym->linkage_name ());
1604 if (msym.minsym == NULL)
1605 printf_filtered ("unresolved");
1606 else
1607 {
1608 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1609
1610 if (section
1611 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1612 {
1613 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1614 printf_filtered (_("a thread-local variable at offset %s "
1615 "in the thread-local storage for `%s'"),
1616 paddress (gdbarch, load_addr),
1617 objfile_name (section->objfile));
1618 }
1619 else
1620 {
1621 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1622 printf_filtered (_("static storage at address "));
1623 fputs_styled (paddress (gdbarch, load_addr),
1624 address_style.style (), gdb_stdout);
1625 if (section_is_overlay (section))
1626 {
1627 load_addr = overlay_unmapped_address (load_addr, section);
1628 printf_filtered (_(",\n -- loaded at "));
1629 fputs_styled (paddress (gdbarch, load_addr),
1630 address_style.style (),
1631 gdb_stdout);
1632 printf_filtered (_(" in overlay section %s"),
1633 section->the_bfd_section->name);
1634 }
1635 }
1636 }
1637 }
1638 break;
1639
1640 case LOC_OPTIMIZED_OUT:
1641 printf_filtered (_("optimized out"));
1642 break;
1643
1644 default:
1645 printf_filtered (_("of unknown (botched) type"));
1646 break;
1647 }
1648 printf_filtered (".\n");
1649 }
1650 \f
1651
1652 static void
1653 x_command (const char *exp, int from_tty)
1654 {
1655 struct format_data fmt;
1656 struct value *val;
1657
1658 fmt.format = last_format ? last_format : 'x';
1659 fmt.size = last_size;
1660 fmt.count = 1;
1661 fmt.raw = 0;
1662
1663 /* If there is no expression and no format, use the most recent
1664 count. */
1665 if (exp == nullptr && last_count > 0)
1666 fmt.count = last_count;
1667
1668 if (exp && *exp == '/')
1669 {
1670 const char *tmp = exp + 1;
1671
1672 fmt = decode_format (&tmp, last_format, last_size);
1673 exp = (char *) tmp;
1674 }
1675
1676 last_count = fmt.count;
1677
1678 /* If we have an expression, evaluate it and use it as the address. */
1679
1680 if (exp != 0 && *exp != 0)
1681 {
1682 expression_up expr = parse_expression (exp);
1683 /* Cause expression not to be there any more if this command is
1684 repeated with Newline. But don't clobber a user-defined
1685 command's definition. */
1686 if (from_tty)
1687 set_repeat_arguments ("");
1688 val = evaluate_expression (expr.get ());
1689 if (TYPE_IS_REFERENCE (value_type (val)))
1690 val = coerce_ref (val);
1691 /* In rvalue contexts, such as this, functions are coerced into
1692 pointers to functions. This makes "x/i main" work. */
1693 if (value_type (val)->code () == TYPE_CODE_FUNC
1694 && VALUE_LVAL (val) == lval_memory)
1695 next_address = value_address (val);
1696 else
1697 next_address = value_as_address (val);
1698
1699 next_gdbarch = expr->gdbarch;
1700 }
1701
1702 if (!next_gdbarch)
1703 error_no_arg (_("starting display address"));
1704
1705 do_examine (fmt, next_gdbarch, next_address);
1706
1707 /* If the examine succeeds, we remember its size and format for next
1708 time. Set last_size to 'b' for strings. */
1709 if (fmt.format == 's')
1710 last_size = 'b';
1711 else
1712 last_size = fmt.size;
1713 last_format = fmt.format;
1714
1715 /* Set a couple of internal variables if appropriate. */
1716 if (last_examine_value != nullptr)
1717 {
1718 /* Make last address examined available to the user as $_. Use
1719 the correct pointer type. */
1720 struct type *pointer_type
1721 = lookup_pointer_type (value_type (last_examine_value.get ()));
1722 set_internalvar (lookup_internalvar ("_"),
1723 value_from_pointer (pointer_type,
1724 last_examine_address));
1725
1726 /* Make contents of last address examined available to the user
1727 as $__. If the last value has not been fetched from memory
1728 then don't fetch it now; instead mark it by voiding the $__
1729 variable. */
1730 if (value_lazy (last_examine_value.get ()))
1731 clear_internalvar (lookup_internalvar ("__"));
1732 else
1733 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1734 }
1735 }
1736 \f
1737
1738 /* Add an expression to the auto-display chain.
1739 Specify the expression. */
1740
1741 static void
1742 display_command (const char *arg, int from_tty)
1743 {
1744 struct format_data fmt;
1745 struct display *newobj;
1746 const char *exp = arg;
1747
1748 if (exp == 0)
1749 {
1750 do_displays ();
1751 return;
1752 }
1753
1754 if (*exp == '/')
1755 {
1756 exp++;
1757 fmt = decode_format (&exp, 0, 0);
1758 if (fmt.size && fmt.format == 0)
1759 fmt.format = 'x';
1760 if (fmt.format == 'i' || fmt.format == 's')
1761 fmt.size = 'b';
1762 }
1763 else
1764 {
1765 fmt.format = 0;
1766 fmt.size = 0;
1767 fmt.count = 0;
1768 fmt.raw = 0;
1769 }
1770
1771 innermost_block_tracker tracker;
1772 expression_up expr = parse_expression (exp, &tracker);
1773
1774 newobj = new display (exp, std::move (expr), fmt,
1775 current_program_space, tracker.block ());
1776 all_displays.emplace_back (newobj);
1777
1778 if (from_tty)
1779 do_one_display (newobj);
1780
1781 dont_repeat ();
1782 }
1783
1784 /* Clear out the display_chain. Done when new symtabs are loaded,
1785 since this invalidates the types stored in many expressions. */
1786
1787 void
1788 clear_displays ()
1789 {
1790 all_displays.clear ();
1791 }
1792
1793 /* Delete the auto-display DISPLAY. */
1794
1795 static void
1796 delete_display (struct display *display)
1797 {
1798 gdb_assert (display != NULL);
1799
1800 auto iter = std::find_if (all_displays.begin (),
1801 all_displays.end (),
1802 [=] (const std::unique_ptr<struct display> &item)
1803 {
1804 return item.get () == display;
1805 });
1806 gdb_assert (iter != all_displays.end ());
1807 all_displays.erase (iter);
1808 }
1809
1810 /* Call FUNCTION on each of the displays whose numbers are given in
1811 ARGS. DATA is passed unmodified to FUNCTION. */
1812
1813 static void
1814 map_display_numbers (const char *args,
1815 gdb::function_view<void (struct display *)> function)
1816 {
1817 int num;
1818
1819 if (args == NULL)
1820 error_no_arg (_("one or more display numbers"));
1821
1822 number_or_range_parser parser (args);
1823
1824 while (!parser.finished ())
1825 {
1826 const char *p = parser.cur_tok ();
1827
1828 num = parser.get_number ();
1829 if (num == 0)
1830 warning (_("bad display number at or near '%s'"), p);
1831 else
1832 {
1833 auto iter = std::find_if (all_displays.begin (),
1834 all_displays.end (),
1835 [=] (const std::unique_ptr<display> &item)
1836 {
1837 return item->number == num;
1838 });
1839 if (iter == all_displays.end ())
1840 printf_unfiltered (_("No display number %d.\n"), num);
1841 else
1842 function (iter->get ());
1843 }
1844 }
1845 }
1846
1847 /* "undisplay" command. */
1848
1849 static void
1850 undisplay_command (const char *args, int from_tty)
1851 {
1852 if (args == NULL)
1853 {
1854 if (query (_("Delete all auto-display expressions? ")))
1855 clear_displays ();
1856 dont_repeat ();
1857 return;
1858 }
1859
1860 map_display_numbers (args, delete_display);
1861 dont_repeat ();
1862 }
1863
1864 /* Display a single auto-display.
1865 Do nothing if the display cannot be printed in the current context,
1866 or if the display is disabled. */
1867
1868 static void
1869 do_one_display (struct display *d)
1870 {
1871 int within_current_scope;
1872
1873 if (!d->enabled_p)
1874 return;
1875
1876 /* The expression carries the architecture that was used at parse time.
1877 This is a problem if the expression depends on architecture features
1878 (e.g. register numbers), and the current architecture is now different.
1879 For example, a display statement like "display/i $pc" is expected to
1880 display the PC register of the current architecture, not the arch at
1881 the time the display command was given. Therefore, we re-parse the
1882 expression if the current architecture has changed. */
1883 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1884 {
1885 d->exp.reset ();
1886 d->block = NULL;
1887 }
1888
1889 if (d->exp == NULL)
1890 {
1891
1892 try
1893 {
1894 innermost_block_tracker tracker;
1895 d->exp = parse_expression (d->exp_string.c_str (), &tracker);
1896 d->block = tracker.block ();
1897 }
1898 catch (const gdb_exception &ex)
1899 {
1900 /* Can't re-parse the expression. Disable this display item. */
1901 d->enabled_p = false;
1902 warning (_("Unable to display \"%s\": %s"),
1903 d->exp_string.c_str (), ex.what ());
1904 return;
1905 }
1906 }
1907
1908 if (d->block)
1909 {
1910 if (d->pspace == current_program_space)
1911 within_current_scope = contained_in (get_selected_block (0), d->block,
1912 true);
1913 else
1914 within_current_scope = 0;
1915 }
1916 else
1917 within_current_scope = 1;
1918 if (!within_current_scope)
1919 return;
1920
1921 scoped_restore save_display_number
1922 = make_scoped_restore (&current_display_number, d->number);
1923
1924 annotate_display_begin ();
1925 printf_filtered ("%d", d->number);
1926 annotate_display_number_end ();
1927 printf_filtered (": ");
1928 if (d->format.size)
1929 {
1930
1931 annotate_display_format ();
1932
1933 printf_filtered ("x/");
1934 if (d->format.count != 1)
1935 printf_filtered ("%d", d->format.count);
1936 printf_filtered ("%c", d->format.format);
1937 if (d->format.format != 'i' && d->format.format != 's')
1938 printf_filtered ("%c", d->format.size);
1939 printf_filtered (" ");
1940
1941 annotate_display_expression ();
1942
1943 puts_filtered (d->exp_string.c_str ());
1944 annotate_display_expression_end ();
1945
1946 if (d->format.count != 1 || d->format.format == 'i')
1947 printf_filtered ("\n");
1948 else
1949 printf_filtered (" ");
1950
1951 annotate_display_value ();
1952
1953 try
1954 {
1955 struct value *val;
1956 CORE_ADDR addr;
1957
1958 val = evaluate_expression (d->exp.get ());
1959 addr = value_as_address (val);
1960 if (d->format.format == 'i')
1961 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1962 do_examine (d->format, d->exp->gdbarch, addr);
1963 }
1964 catch (const gdb_exception_error &ex)
1965 {
1966 fprintf_filtered (gdb_stdout, _("%p[<error: %s>%p]\n"),
1967 metadata_style.style ().ptr (), ex.what (),
1968 nullptr);
1969 }
1970 }
1971 else
1972 {
1973 struct value_print_options opts;
1974
1975 annotate_display_format ();
1976
1977 if (d->format.format)
1978 printf_filtered ("/%c ", d->format.format);
1979
1980 annotate_display_expression ();
1981
1982 puts_filtered (d->exp_string.c_str ());
1983 annotate_display_expression_end ();
1984
1985 printf_filtered (" = ");
1986
1987 annotate_display_expression ();
1988
1989 get_formatted_print_options (&opts, d->format.format);
1990 opts.raw = d->format.raw;
1991
1992 try
1993 {
1994 struct value *val;
1995
1996 val = evaluate_expression (d->exp.get ());
1997 print_formatted (val, d->format.size, &opts, gdb_stdout);
1998 }
1999 catch (const gdb_exception_error &ex)
2000 {
2001 fprintf_styled (gdb_stdout, metadata_style.style (),
2002 _("<error: %s>"), ex.what ());
2003 }
2004
2005 printf_filtered ("\n");
2006 }
2007
2008 annotate_display_end ();
2009
2010 gdb_flush (gdb_stdout);
2011 }
2012
2013 /* Display all of the values on the auto-display chain which can be
2014 evaluated in the current scope. */
2015
2016 void
2017 do_displays (void)
2018 {
2019 for (auto &d : all_displays)
2020 do_one_display (d.get ());
2021 }
2022
2023 /* Delete the auto-display which we were in the process of displaying.
2024 This is done when there is an error or a signal. */
2025
2026 void
2027 disable_display (int num)
2028 {
2029 for (auto &d : all_displays)
2030 if (d->number == num)
2031 {
2032 d->enabled_p = false;
2033 return;
2034 }
2035 printf_unfiltered (_("No display number %d.\n"), num);
2036 }
2037
2038 void
2039 disable_current_display (void)
2040 {
2041 if (current_display_number >= 0)
2042 {
2043 disable_display (current_display_number);
2044 fprintf_unfiltered (gdb_stderr,
2045 _("Disabling display %d to "
2046 "avoid infinite recursion.\n"),
2047 current_display_number);
2048 }
2049 current_display_number = -1;
2050 }
2051
2052 static void
2053 info_display_command (const char *ignore, int from_tty)
2054 {
2055 if (all_displays.empty ())
2056 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2057 else
2058 printf_filtered (_("Auto-display expressions now in effect:\n\
2059 Num Enb Expression\n"));
2060
2061 for (auto &d : all_displays)
2062 {
2063 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2064 if (d->format.size)
2065 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2066 d->format.format);
2067 else if (d->format.format)
2068 printf_filtered ("/%c ", d->format.format);
2069 puts_filtered (d->exp_string.c_str ());
2070 if (d->block && !contained_in (get_selected_block (0), d->block, true))
2071 printf_filtered (_(" (cannot be evaluated in the current context)"));
2072 printf_filtered ("\n");
2073 }
2074 }
2075
2076 /* Implementation of both the "disable display" and "enable display"
2077 commands. ENABLE decides what to do. */
2078
2079 static void
2080 enable_disable_display_command (const char *args, int from_tty, bool enable)
2081 {
2082 if (args == NULL)
2083 {
2084 for (auto &d : all_displays)
2085 d->enabled_p = enable;
2086 return;
2087 }
2088
2089 map_display_numbers (args,
2090 [=] (struct display *d)
2091 {
2092 d->enabled_p = enable;
2093 });
2094 }
2095
2096 /* The "enable display" command. */
2097
2098 static void
2099 enable_display_command (const char *args, int from_tty)
2100 {
2101 enable_disable_display_command (args, from_tty, true);
2102 }
2103
2104 /* The "disable display" command. */
2105
2106 static void
2107 disable_display_command (const char *args, int from_tty)
2108 {
2109 enable_disable_display_command (args, from_tty, false);
2110 }
2111
2112 /* display_chain items point to blocks and expressions. Some expressions in
2113 turn may point to symbols.
2114 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2115 obstack_free'd when a shared library is unloaded.
2116 Clear pointers that are about to become dangling.
2117 Both .exp and .block fields will be restored next time we need to display
2118 an item by re-parsing .exp_string field in the new execution context. */
2119
2120 static void
2121 clear_dangling_display_expressions (struct objfile *objfile)
2122 {
2123 struct program_space *pspace;
2124
2125 /* With no symbol file we cannot have a block or expression from it. */
2126 if (objfile == NULL)
2127 return;
2128 pspace = objfile->pspace;
2129 if (objfile->separate_debug_objfile_backlink)
2130 {
2131 objfile = objfile->separate_debug_objfile_backlink;
2132 gdb_assert (objfile->pspace == pspace);
2133 }
2134
2135 for (auto &d : all_displays)
2136 {
2137 if (d->pspace != pspace)
2138 continue;
2139
2140 struct objfile *bl_objf = nullptr;
2141 if (d->block != nullptr)
2142 {
2143 bl_objf = block_objfile (d->block);
2144 if (bl_objf->separate_debug_objfile_backlink != nullptr)
2145 bl_objf = bl_objf->separate_debug_objfile_backlink;
2146 }
2147
2148 if (bl_objf == objfile
2149 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2150 {
2151 d->exp.reset ();
2152 d->block = NULL;
2153 }
2154 }
2155 }
2156 \f
2157
2158 /* Print the value in stack frame FRAME of a variable specified by a
2159 struct symbol. NAME is the name to print; if NULL then VAR's print
2160 name will be used. STREAM is the ui_file on which to print the
2161 value. INDENT specifies the number of indent levels to print
2162 before printing the variable name.
2163
2164 This function invalidates FRAME. */
2165
2166 void
2167 print_variable_and_value (const char *name, struct symbol *var,
2168 struct frame_info *frame,
2169 struct ui_file *stream, int indent)
2170 {
2171
2172 if (!name)
2173 name = var->print_name ();
2174
2175 fprintf_filtered (stream, "%s%ps = ", n_spaces (2 * indent),
2176 styled_string (variable_name_style.style (), name));
2177
2178 try
2179 {
2180 struct value *val;
2181 struct value_print_options opts;
2182
2183 /* READ_VAR_VALUE needs a block in order to deal with non-local
2184 references (i.e. to handle nested functions). In this context, we
2185 print variables that are local to this frame, so we can avoid passing
2186 a block to it. */
2187 val = read_var_value (var, NULL, frame);
2188 get_user_print_options (&opts);
2189 opts.deref_ref = 1;
2190 common_val_print (val, stream, indent, &opts, current_language);
2191
2192 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2193 function. */
2194 frame = NULL;
2195 }
2196 catch (const gdb_exception_error &except)
2197 {
2198 fprintf_styled (stream, metadata_style.style (),
2199 "<error reading variable %s (%s)>", name,
2200 except.what ());
2201 }
2202
2203 fprintf_filtered (stream, "\n");
2204 }
2205
2206 /* Subroutine of ui_printf to simplify it.
2207 Print VALUE to STREAM using FORMAT.
2208 VALUE is a C-style string either on the target or
2209 in a GDB internal variable. */
2210
2211 static void
2212 printf_c_string (struct ui_file *stream, const char *format,
2213 struct value *value)
2214 {
2215 const gdb_byte *str;
2216
2217 if (value_type (value)->code () != TYPE_CODE_PTR
2218 && VALUE_LVAL (value) == lval_internalvar
2219 && c_is_string_type_p (value_type (value)))
2220 {
2221 size_t len = TYPE_LENGTH (value_type (value));
2222
2223 /* Copy the internal var value to TEM_STR and append a terminating null
2224 character. This protects against corrupted C-style strings that lack
2225 the terminating null char. It also allows Ada-style strings (not
2226 null terminated) to be printed without problems. */
2227 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2228
2229 memcpy (tem_str, value_contents (value), len);
2230 tem_str [len] = 0;
2231 str = tem_str;
2232 }
2233 else
2234 {
2235 CORE_ADDR tem = value_as_address (value);;
2236
2237 if (tem == 0)
2238 {
2239 DIAGNOSTIC_PUSH
2240 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2241 fprintf_filtered (stream, format, "(null)");
2242 DIAGNOSTIC_POP
2243 return;
2244 }
2245
2246 /* This is a %s argument. Find the length of the string. */
2247 size_t len;
2248
2249 for (len = 0;; len++)
2250 {
2251 gdb_byte c;
2252
2253 QUIT;
2254 read_memory (tem + len, &c, 1);
2255 if (c == 0)
2256 break;
2257 }
2258
2259 /* Copy the string contents into a string inside GDB. */
2260 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2261
2262 if (len != 0)
2263 read_memory (tem, tem_str, len);
2264 tem_str[len] = 0;
2265 str = tem_str;
2266 }
2267
2268 DIAGNOSTIC_PUSH
2269 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2270 fprintf_filtered (stream, format, (char *) str);
2271 DIAGNOSTIC_POP
2272 }
2273
2274 /* Subroutine of ui_printf to simplify it.
2275 Print VALUE to STREAM using FORMAT.
2276 VALUE is a wide C-style string on the target or
2277 in a GDB internal variable. */
2278
2279 static void
2280 printf_wide_c_string (struct ui_file *stream, const char *format,
2281 struct value *value)
2282 {
2283 const gdb_byte *str;
2284 size_t len;
2285 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2286 struct type *wctype = lookup_typename (current_language,
2287 "wchar_t", NULL, 0);
2288 int wcwidth = TYPE_LENGTH (wctype);
2289
2290 if (VALUE_LVAL (value) == lval_internalvar
2291 && c_is_string_type_p (value_type (value)))
2292 {
2293 str = value_contents (value);
2294 len = TYPE_LENGTH (value_type (value));
2295 }
2296 else
2297 {
2298 CORE_ADDR tem = value_as_address (value);
2299
2300 if (tem == 0)
2301 {
2302 DIAGNOSTIC_PUSH
2303 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2304 fprintf_filtered (stream, format, "(null)");
2305 DIAGNOSTIC_POP
2306 return;
2307 }
2308
2309 /* This is a %s argument. Find the length of the string. */
2310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2311 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2312
2313 for (len = 0;; len += wcwidth)
2314 {
2315 QUIT;
2316 read_memory (tem + len, buf, wcwidth);
2317 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2318 break;
2319 }
2320
2321 /* Copy the string contents into a string inside GDB. */
2322 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2323
2324 if (len != 0)
2325 read_memory (tem, tem_str, len);
2326 memset (&tem_str[len], 0, wcwidth);
2327 str = tem_str;
2328 }
2329
2330 auto_obstack output;
2331
2332 convert_between_encodings (target_wide_charset (gdbarch),
2333 host_charset (),
2334 str, len, wcwidth,
2335 &output, translit_char);
2336 obstack_grow_str0 (&output, "");
2337
2338 DIAGNOSTIC_PUSH
2339 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2340 fprintf_filtered (stream, format, obstack_base (&output));
2341 DIAGNOSTIC_POP
2342 }
2343
2344 /* Subroutine of ui_printf to simplify it.
2345 Print VALUE, a floating point value, to STREAM using FORMAT. */
2346
2347 static void
2348 printf_floating (struct ui_file *stream, const char *format,
2349 struct value *value, enum argclass argclass)
2350 {
2351 /* Parameter data. */
2352 struct type *param_type = value_type (value);
2353 struct gdbarch *gdbarch = get_type_arch (param_type);
2354
2355 /* Determine target type corresponding to the format string. */
2356 struct type *fmt_type;
2357 switch (argclass)
2358 {
2359 case double_arg:
2360 fmt_type = builtin_type (gdbarch)->builtin_double;
2361 break;
2362 case long_double_arg:
2363 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2364 break;
2365 case dec32float_arg:
2366 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2367 break;
2368 case dec64float_arg:
2369 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2370 break;
2371 case dec128float_arg:
2372 fmt_type = builtin_type (gdbarch)->builtin_declong;
2373 break;
2374 default:
2375 gdb_assert_not_reached ("unexpected argument class");
2376 }
2377
2378 /* To match the traditional GDB behavior, the conversion is
2379 done differently depending on the type of the parameter:
2380
2381 - if the parameter has floating-point type, it's value
2382 is converted to the target type;
2383
2384 - otherwise, if the parameter has a type that is of the
2385 same size as a built-in floating-point type, the value
2386 bytes are interpreted as if they were of that type, and
2387 then converted to the target type (this is not done for
2388 decimal floating-point argument classes);
2389
2390 - otherwise, if the source value has an integer value,
2391 it's value is converted to the target type;
2392
2393 - otherwise, an error is raised.
2394
2395 In either case, the result of the conversion is a byte buffer
2396 formatted in the target format for the target type. */
2397
2398 if (fmt_type->code () == TYPE_CODE_FLT)
2399 {
2400 param_type = float_type_from_length (param_type);
2401 if (param_type != value_type (value))
2402 value = value_from_contents (param_type, value_contents (value));
2403 }
2404
2405 value = value_cast (fmt_type, value);
2406
2407 /* Convert the value to a string and print it. */
2408 std::string str
2409 = target_float_to_string (value_contents (value), fmt_type, format);
2410 fputs_filtered (str.c_str (), stream);
2411 }
2412
2413 /* Subroutine of ui_printf to simplify it.
2414 Print VALUE, a target pointer, to STREAM using FORMAT. */
2415
2416 static void
2417 printf_pointer (struct ui_file *stream, const char *format,
2418 struct value *value)
2419 {
2420 /* We avoid the host's %p because pointers are too
2421 likely to be the wrong size. The only interesting
2422 modifier for %p is a width; extract that, and then
2423 handle %p as glibc would: %#x or a literal "(nil)". */
2424
2425 const char *p;
2426 char *fmt, *fmt_p;
2427 #ifdef PRINTF_HAS_LONG_LONG
2428 long long val = value_as_long (value);
2429 #else
2430 long val = value_as_long (value);
2431 #endif
2432
2433 fmt = (char *) alloca (strlen (format) + 5);
2434
2435 /* Copy up to the leading %. */
2436 p = format;
2437 fmt_p = fmt;
2438 while (*p)
2439 {
2440 int is_percent = (*p == '%');
2441
2442 *fmt_p++ = *p++;
2443 if (is_percent)
2444 {
2445 if (*p == '%')
2446 *fmt_p++ = *p++;
2447 else
2448 break;
2449 }
2450 }
2451
2452 if (val != 0)
2453 *fmt_p++ = '#';
2454
2455 /* Copy any width or flags. Only the "-" flag is valid for pointers
2456 -- see the format_pieces constructor. */
2457 while (*p == '-' || (*p >= '0' && *p < '9'))
2458 *fmt_p++ = *p++;
2459
2460 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2461 if (val != 0)
2462 {
2463 #ifdef PRINTF_HAS_LONG_LONG
2464 *fmt_p++ = 'l';
2465 #endif
2466 *fmt_p++ = 'l';
2467 *fmt_p++ = 'x';
2468 *fmt_p++ = '\0';
2469 DIAGNOSTIC_PUSH
2470 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2471 fprintf_filtered (stream, fmt, val);
2472 DIAGNOSTIC_POP
2473 }
2474 else
2475 {
2476 *fmt_p++ = 's';
2477 *fmt_p++ = '\0';
2478 DIAGNOSTIC_PUSH
2479 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2480 fprintf_filtered (stream, fmt, "(nil)");
2481 DIAGNOSTIC_POP
2482 }
2483 }
2484
2485 /* printf "printf format string" ARG to STREAM. */
2486
2487 static void
2488 ui_printf (const char *arg, struct ui_file *stream)
2489 {
2490 const char *s = arg;
2491 std::vector<struct value *> val_args;
2492
2493 if (s == 0)
2494 error_no_arg (_("format-control string and values to print"));
2495
2496 s = skip_spaces (s);
2497
2498 /* A format string should follow, enveloped in double quotes. */
2499 if (*s++ != '"')
2500 error (_("Bad format string, missing '\"'."));
2501
2502 format_pieces fpieces (&s);
2503
2504 if (*s++ != '"')
2505 error (_("Bad format string, non-terminated '\"'."));
2506
2507 s = skip_spaces (s);
2508
2509 if (*s != ',' && *s != 0)
2510 error (_("Invalid argument syntax"));
2511
2512 if (*s == ',')
2513 s++;
2514 s = skip_spaces (s);
2515
2516 {
2517 int nargs_wanted;
2518 int i;
2519 const char *current_substring;
2520
2521 nargs_wanted = 0;
2522 for (auto &&piece : fpieces)
2523 if (piece.argclass != literal_piece)
2524 ++nargs_wanted;
2525
2526 /* Now, parse all arguments and evaluate them.
2527 Store the VALUEs in VAL_ARGS. */
2528
2529 while (*s != '\0')
2530 {
2531 const char *s1;
2532
2533 s1 = s;
2534 val_args.push_back (parse_to_comma_and_eval (&s1));
2535
2536 s = s1;
2537 if (*s == ',')
2538 s++;
2539 }
2540
2541 if (val_args.size () != nargs_wanted)
2542 error (_("Wrong number of arguments for specified format-string"));
2543
2544 /* Now actually print them. */
2545 i = 0;
2546 for (auto &&piece : fpieces)
2547 {
2548 current_substring = piece.string;
2549 switch (piece.argclass)
2550 {
2551 case string_arg:
2552 printf_c_string (stream, current_substring, val_args[i]);
2553 break;
2554 case wide_string_arg:
2555 printf_wide_c_string (stream, current_substring, val_args[i]);
2556 break;
2557 case wide_char_arg:
2558 {
2559 struct gdbarch *gdbarch
2560 = get_type_arch (value_type (val_args[i]));
2561 struct type *wctype = lookup_typename (current_language,
2562 "wchar_t", NULL, 0);
2563 struct type *valtype;
2564 const gdb_byte *bytes;
2565
2566 valtype = value_type (val_args[i]);
2567 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2568 || valtype->code () != TYPE_CODE_INT)
2569 error (_("expected wchar_t argument for %%lc"));
2570
2571 bytes = value_contents (val_args[i]);
2572
2573 auto_obstack output;
2574
2575 convert_between_encodings (target_wide_charset (gdbarch),
2576 host_charset (),
2577 bytes, TYPE_LENGTH (valtype),
2578 TYPE_LENGTH (valtype),
2579 &output, translit_char);
2580 obstack_grow_str0 (&output, "");
2581
2582 DIAGNOSTIC_PUSH
2583 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2584 fprintf_filtered (stream, current_substring,
2585 obstack_base (&output));
2586 DIAGNOSTIC_POP
2587 }
2588 break;
2589 case long_long_arg:
2590 #ifdef PRINTF_HAS_LONG_LONG
2591 {
2592 long long val = value_as_long (val_args[i]);
2593
2594 DIAGNOSTIC_PUSH
2595 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2596 fprintf_filtered (stream, current_substring, val);
2597 DIAGNOSTIC_POP
2598 break;
2599 }
2600 #else
2601 error (_("long long not supported in printf"));
2602 #endif
2603 case int_arg:
2604 {
2605 int val = value_as_long (val_args[i]);
2606
2607 DIAGNOSTIC_PUSH
2608 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2609 fprintf_filtered (stream, current_substring, val);
2610 DIAGNOSTIC_POP
2611 break;
2612 }
2613 case long_arg:
2614 {
2615 long val = value_as_long (val_args[i]);
2616
2617 DIAGNOSTIC_PUSH
2618 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2619 fprintf_filtered (stream, current_substring, val);
2620 DIAGNOSTIC_POP
2621 break;
2622 }
2623 case size_t_arg:
2624 {
2625 size_t val = value_as_long (val_args[i]);
2626
2627 DIAGNOSTIC_PUSH
2628 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2629 fprintf_filtered (stream, current_substring, val);
2630 DIAGNOSTIC_POP
2631 break;
2632 }
2633 /* Handles floating-point values. */
2634 case double_arg:
2635 case long_double_arg:
2636 case dec32float_arg:
2637 case dec64float_arg:
2638 case dec128float_arg:
2639 printf_floating (stream, current_substring, val_args[i],
2640 piece.argclass);
2641 break;
2642 case ptr_arg:
2643 printf_pointer (stream, current_substring, val_args[i]);
2644 break;
2645 case literal_piece:
2646 /* Print a portion of the format string that has no
2647 directives. Note that this will not include any
2648 ordinary %-specs, but it might include "%%". That is
2649 why we use printf_filtered and not puts_filtered here.
2650 Also, we pass a dummy argument because some platforms
2651 have modified GCC to include -Wformat-security by
2652 default, which will warn here if there is no
2653 argument. */
2654 DIAGNOSTIC_PUSH
2655 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2656 fprintf_filtered (stream, current_substring, 0);
2657 DIAGNOSTIC_POP
2658 break;
2659 default:
2660 internal_error (__FILE__, __LINE__,
2661 _("failed internal consistency check"));
2662 }
2663 /* Maybe advance to the next argument. */
2664 if (piece.argclass != literal_piece)
2665 ++i;
2666 }
2667 }
2668 }
2669
2670 /* Implement the "printf" command. */
2671
2672 static void
2673 printf_command (const char *arg, int from_tty)
2674 {
2675 ui_printf (arg, gdb_stdout);
2676 reset_terminal_style (gdb_stdout);
2677 wrap_here ("");
2678 gdb_stdout->flush ();
2679 }
2680
2681 /* Implement the "eval" command. */
2682
2683 static void
2684 eval_command (const char *arg, int from_tty)
2685 {
2686 string_file stb;
2687
2688 ui_printf (arg, &stb);
2689
2690 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2691
2692 execute_command (expanded.c_str (), from_tty);
2693 }
2694
2695 void _initialize_printcmd ();
2696 void
2697 _initialize_printcmd ()
2698 {
2699 struct cmd_list_element *c;
2700
2701 current_display_number = -1;
2702
2703 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2704
2705 add_info ("address", info_address_command,
2706 _("Describe where symbol SYM is stored.\n\
2707 Usage: info address SYM"));
2708
2709 add_info ("symbol", info_symbol_command, _("\
2710 Describe what symbol is at location ADDR.\n\
2711 Usage: info symbol ADDR\n\
2712 Only for symbols with fixed locations (global or static scope)."));
2713
2714 add_com ("x", class_vars, x_command, _("\
2715 Examine memory: x/FMT ADDRESS.\n\
2716 ADDRESS is an expression for the memory address to examine.\n\
2717 FMT is a repeat count followed by a format letter and a size letter.\n\
2718 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2719 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2720 and z(hex, zero padded on the left).\n\
2721 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2722 The specified number of objects of the specified size are printed\n\
2723 according to the format. If a negative number is specified, memory is\n\
2724 examined backward from the address.\n\n\
2725 Defaults for format and size letters are those previously used.\n\
2726 Default count is 1. Default address is following last thing printed\n\
2727 with this command or \"print\"."));
2728
2729 add_info ("display", info_display_command, _("\
2730 Expressions to display when program stops, with code numbers.\n\
2731 Usage: info display"));
2732
2733 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2734 Cancel some expressions to be displayed when program stops.\n\
2735 Usage: undisplay [NUM]...\n\
2736 Arguments are the code numbers of the expressions to stop displaying.\n\
2737 No argument means cancel all automatic-display expressions.\n\
2738 \"delete display\" has the same effect as this command.\n\
2739 Do \"info display\" to see current list of code numbers."),
2740 &cmdlist);
2741
2742 add_com ("display", class_vars, display_command, _("\
2743 Print value of expression EXP each time the program stops.\n\
2744 Usage: display[/FMT] EXP\n\
2745 /FMT may be used before EXP as in the \"print\" command.\n\
2746 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2747 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2748 and examining is done as in the \"x\" command.\n\n\
2749 With no argument, display all currently requested auto-display expressions.\n\
2750 Use \"undisplay\" to cancel display requests previously made."));
2751
2752 add_cmd ("display", class_vars, enable_display_command, _("\
2753 Enable some expressions to be displayed when program stops.\n\
2754 Usage: enable display [NUM]...\n\
2755 Arguments are the code numbers of the expressions to resume displaying.\n\
2756 No argument means enable all automatic-display expressions.\n\
2757 Do \"info display\" to see current list of code numbers."), &enablelist);
2758
2759 add_cmd ("display", class_vars, disable_display_command, _("\
2760 Disable some expressions to be displayed when program stops.\n\
2761 Usage: disable display [NUM]...\n\
2762 Arguments are the code numbers of the expressions to stop displaying.\n\
2763 No argument means disable all automatic-display expressions.\n\
2764 Do \"info display\" to see current list of code numbers."), &disablelist);
2765
2766 add_cmd ("display", class_vars, undisplay_command, _("\
2767 Cancel some expressions to be displayed when program stops.\n\
2768 Usage: delete display [NUM]...\n\
2769 Arguments are the code numbers of the expressions to stop displaying.\n\
2770 No argument means cancel all automatic-display expressions.\n\
2771 Do \"info display\" to see current list of code numbers."), &deletelist);
2772
2773 add_com ("printf", class_vars, printf_command, _("\
2774 Formatted printing, like the C \"printf\" function.\n\
2775 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2776 This supports most C printf format specifications, like %s, %d, etc."));
2777
2778 add_com ("output", class_vars, output_command, _("\
2779 Like \"print\" but don't put in value history and don't print newline.\n\
2780 Usage: output EXP\n\
2781 This is useful in user-defined commands."));
2782
2783 add_prefix_cmd ("set", class_vars, set_command, _("\
2784 Evaluate expression EXP and assign result to variable VAR.\n\
2785 Usage: set VAR = EXP\n\
2786 This uses assignment syntax appropriate for the current language\n\
2787 (VAR = EXP or VAR := EXP for example).\n\
2788 VAR may be a debugger \"convenience\" variable (names starting\n\
2789 with $), a register (a few standard names starting with $), or an actual\n\
2790 variable in the program being debugged. EXP is any valid expression.\n\
2791 Use \"set variable\" for variables with names identical to set subcommands.\n\
2792 \n\
2793 With a subcommand, this command modifies parts of the gdb environment.\n\
2794 You can see these environment settings with the \"show\" command."),
2795 &setlist, "set ", 1, &cmdlist);
2796 if (dbx_commands)
2797 add_com ("assign", class_vars, set_command, _("\
2798 Evaluate expression EXP and assign result to variable VAR.\n\
2799 Usage: assign VAR = EXP\n\
2800 This uses assignment syntax appropriate for the current language\n\
2801 (VAR = EXP or VAR := EXP for example).\n\
2802 VAR may be a debugger \"convenience\" variable (names starting\n\
2803 with $), a register (a few standard names starting with $), or an actual\n\
2804 variable in the program being debugged. EXP is any valid expression.\n\
2805 Use \"set variable\" for variables with names identical to set subcommands.\n\
2806 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2807 You can see these environment settings with the \"show\" command."));
2808
2809 /* "call" is the same as "set", but handy for dbx users to call fns. */
2810 c = add_com ("call", class_vars, call_command, _("\
2811 Call a function in the program.\n\
2812 Usage: call EXP\n\
2813 The argument is the function name and arguments, in the notation of the\n\
2814 current working language. The result is printed and saved in the value\n\
2815 history, if it is not void."));
2816 set_cmd_completer_handle_brkchars (c, print_command_completer);
2817
2818 add_cmd ("variable", class_vars, set_command, _("\
2819 Evaluate expression EXP and assign result to variable VAR.\n\
2820 Usage: set variable VAR = EXP\n\
2821 This uses assignment syntax appropriate for the current language\n\
2822 (VAR = EXP or VAR := EXP for example).\n\
2823 VAR may be a debugger \"convenience\" variable (names starting\n\
2824 with $), a register (a few standard names starting with $), or an actual\n\
2825 variable in the program being debugged. EXP is any valid expression.\n\
2826 This may usually be abbreviated to simply \"set\"."),
2827 &setlist);
2828 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2829
2830 const auto print_opts = make_value_print_options_def_group (nullptr);
2831
2832 static const std::string print_help = gdb::option::build_help (_("\
2833 Print value of expression EXP.\n\
2834 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2835 \n\
2836 Options:\n\
2837 %OPTIONS%\n\
2838 \n\
2839 Note: because this command accepts arbitrary expressions, if you\n\
2840 specify any command option, you must use a double dash (\"--\")\n\
2841 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2842 \n\
2843 Variables accessible are those of the lexical environment of the selected\n\
2844 stack frame, plus all those whose scope is global or an entire file.\n\
2845 \n\
2846 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2847 $$NUM refers to NUM'th value back from the last one.\n\
2848 Names starting with $ refer to registers (with the values they would have\n\
2849 if the program were to return to the stack frame now selected, restoring\n\
2850 all registers saved by frames farther in) or else to debugger\n\
2851 \"convenience\" variables (any such name not a known register).\n\
2852 Use assignment expressions to give values to convenience variables.\n\
2853 \n\
2854 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2855 @ is a binary operator for treating consecutive data objects\n\
2856 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2857 element is FOO, whose second element is stored in the space following\n\
2858 where FOO is stored, etc. FOO must be an expression whose value\n\
2859 resides in memory.\n\
2860 \n\
2861 EXP may be preceded with /FMT, where FMT is a format letter\n\
2862 but no count or size letter (see \"x\" command)."),
2863 print_opts);
2864
2865 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2866 set_cmd_completer_handle_brkchars (c, print_command_completer);
2867 add_com_alias ("p", "print", class_vars, 1);
2868 add_com_alias ("inspect", "print", class_vars, 1);
2869
2870 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2871 &max_symbolic_offset, _("\
2872 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2873 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2874 Tell GDB to only display the symbolic form of an address if the\n\
2875 offset between the closest earlier symbol and the address is less than\n\
2876 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2877 to always print the symbolic form of an address if any symbol precedes\n\
2878 it. Zero is equivalent to \"unlimited\"."),
2879 NULL,
2880 show_max_symbolic_offset,
2881 &setprintlist, &showprintlist);
2882 add_setshow_boolean_cmd ("symbol-filename", no_class,
2883 &print_symbol_filename, _("\
2884 Set printing of source filename and line number with <SYMBOL>."), _("\
2885 Show printing of source filename and line number with <SYMBOL>."), NULL,
2886 NULL,
2887 show_print_symbol_filename,
2888 &setprintlist, &showprintlist);
2889
2890 add_com ("eval", no_class, eval_command, _("\
2891 Construct a GDB command and then evaluate it.\n\
2892 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2893 Convert the arguments to a string as \"printf\" would, but then\n\
2894 treat this string as a command line, and evaluate it."));
2895 }
This page took 0.087677 seconds and 4 git commands to generate.