More C++-ification for struct display
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "c-lang.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "block.h"
41 #include "disasm.h"
42 #include "target-float.h"
43 #include "observable.h"
44 #include "solist.h"
45 #include "parser-defs.h"
46 #include "charset.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
53 #include "source.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Last specified count for the 'x' command. */
66
67 static int last_count;
68
69 /* Default address to examine next, and associated architecture. */
70
71 static struct gdbarch *next_gdbarch;
72 static CORE_ADDR next_address;
73
74 /* Number of delay instructions following current disassembled insn. */
75
76 static int branch_delay_insns;
77
78 /* Last address examined. */
79
80 static CORE_ADDR last_examine_address;
81
82 /* Contents of last address examined.
83 This is not valid past the end of the `x' command! */
84
85 static value_ref_ptr last_examine_value;
86
87 /* Largest offset between a symbolic value and an address, that will be
88 printed as `0x1234 <symbol+offset>'. */
89
90 static unsigned int max_symbolic_offset = UINT_MAX;
91 static void
92 show_max_symbolic_offset (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file,
96 _("The largest offset that will be "
97 "printed in <symbol+1234> form is %s.\n"),
98 value);
99 }
100
101 /* Append the source filename and linenumber of the symbol when
102 printing a symbolic value as `<symbol at filename:linenum>' if set. */
103 static bool print_symbol_filename = false;
104 static void
105 show_print_symbol_filename (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Printing of source filename and "
109 "line number with <symbol> is %s.\n"),
110 value);
111 }
112
113 /* Number of auto-display expression currently being displayed.
114 So that we can disable it if we get a signal within it.
115 -1 when not doing one. */
116
117 static int current_display_number;
118
119 /* Last allocated display number. */
120
121 static int display_number;
122
123 struct display
124 {
125 display (const char *exp_string_, expression_up &&exp_,
126 const struct format_data &format_, struct program_space *pspace_,
127 const struct block *block_)
128 : exp_string (exp_string_),
129 exp (std::move (exp_)),
130 number (++display_number),
131 format (format_),
132 pspace (pspace_),
133 block (block_),
134 enabled_p (true)
135 {
136 }
137
138 /* The expression as the user typed it. */
139 std::string exp_string;
140
141 /* Expression to be evaluated and displayed. */
142 expression_up exp;
143
144 /* Item number of this auto-display item. */
145 int number;
146
147 /* Display format specified. */
148 struct format_data format;
149
150 /* Program space associated with `block'. */
151 struct program_space *pspace;
152
153 /* Innermost block required by this expression when evaluated. */
154 const struct block *block;
155
156 /* Status of this display (enabled or disabled). */
157 bool enabled_p;
158 };
159
160 /* Expressions whose values should be displayed automatically each
161 time the program stops. */
162
163 static std::vector<std::unique_ptr<struct display>> all_displays;
164
165 /* Prototypes for local functions. */
166
167 static void do_one_display (struct display *);
168 \f
169
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
175 user.
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
179
180 static struct format_data
181 decode_format (const char **string_ptr, int oformat, int osize)
182 {
183 struct format_data val;
184 const char *p = *string_ptr;
185
186 val.format = '?';
187 val.size = '?';
188 val.count = 1;
189 val.raw = 0;
190
191 if (*p == '-')
192 {
193 val.count = -1;
194 p++;
195 }
196 if (*p >= '0' && *p <= '9')
197 val.count *= atoi (p);
198 while (*p >= '0' && *p <= '9')
199 p++;
200
201 /* Now process size or format letters that follow. */
202
203 while (1)
204 {
205 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
206 val.size = *p++;
207 else if (*p == 'r')
208 {
209 val.raw = 1;
210 p++;
211 }
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 *string_ptr = skip_spaces (p);
219
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
222 {
223 if (val.size == '?')
224 {
225 /* Neither has been specified. */
226 val.format = oformat;
227 val.size = osize;
228 }
229 else
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
233 }
234 else if (val.size == '?')
235 switch (val.format)
236 {
237 case 'a':
238 /* Pick the appropriate size for an address. This is deferred
239 until do_examine when we know the actual architecture to use.
240 A special size value of 'a' is used to indicate this case. */
241 val.size = osize ? 'a' : osize;
242 break;
243 case 'f':
244 /* Floating point has to be word or giantword. */
245 if (osize == 'w' || osize == 'g')
246 val.size = osize;
247 else
248 /* Default it to giantword if the last used size is not
249 appropriate. */
250 val.size = osize ? 'g' : osize;
251 break;
252 case 'c':
253 /* Characters default to one byte. */
254 val.size = osize ? 'b' : osize;
255 break;
256 case 's':
257 /* Display strings with byte size chars unless explicitly
258 specified. */
259 val.size = '\0';
260 break;
261
262 default:
263 /* The default is the size most recently specified. */
264 val.size = osize;
265 }
266
267 return val;
268 }
269 \f
270 /* Print value VAL on stream according to OPTIONS.
271 Do not end with a newline.
272 SIZE is the letter for the size of datum being printed.
273 This is used to pad hex numbers so they line up. SIZE is 0
274 for print / output and set for examine. */
275
276 static void
277 print_formatted (struct value *val, int size,
278 const struct value_print_options *options,
279 struct ui_file *stream)
280 {
281 struct type *type = check_typedef (value_type (val));
282 int len = TYPE_LENGTH (type);
283
284 if (VALUE_LVAL (val) == lval_memory)
285 next_address = value_address (val) + len;
286
287 if (size)
288 {
289 switch (options->format)
290 {
291 case 's':
292 {
293 struct type *elttype = value_type (val);
294
295 next_address = (value_address (val)
296 + val_print_string (elttype, NULL,
297 value_address (val), -1,
298 stream, options) * len);
299 }
300 return;
301
302 case 'i':
303 /* We often wrap here if there are long symbolic names. */
304 wrap_here (" ");
305 next_address = (value_address (val)
306 + gdb_print_insn (get_type_arch (type),
307 value_address (val), stream,
308 &branch_delay_insns));
309 return;
310 }
311 }
312
313 if (options->format == 0 || options->format == 's'
314 || TYPE_CODE (type) == TYPE_CODE_REF
315 || TYPE_CODE (type) == TYPE_CODE_ARRAY
316 || TYPE_CODE (type) == TYPE_CODE_STRING
317 || TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION
319 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
320 value_print (val, stream, options);
321 else
322 /* User specified format, so don't look to the type to tell us
323 what to do. */
324 value_print_scalar_formatted (val, options, size, stream);
325 }
326
327 /* Return builtin floating point type of same length as TYPE.
328 If no such type is found, return TYPE itself. */
329 static struct type *
330 float_type_from_length (struct type *type)
331 {
332 struct gdbarch *gdbarch = get_type_arch (type);
333 const struct builtin_type *builtin = builtin_type (gdbarch);
334
335 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
336 type = builtin->builtin_float;
337 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
338 type = builtin->builtin_double;
339 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
340 type = builtin->builtin_long_double;
341
342 return type;
343 }
344
345 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
346 according to OPTIONS and SIZE on STREAM. Formats s and i are not
347 supported at this level. */
348
349 void
350 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
351 const struct value_print_options *options,
352 int size, struct ui_file *stream)
353 {
354 struct gdbarch *gdbarch = get_type_arch (type);
355 unsigned int len = TYPE_LENGTH (type);
356 enum bfd_endian byte_order = type_byte_order (type);
357
358 /* String printing should go through val_print_scalar_formatted. */
359 gdb_assert (options->format != 's');
360
361 /* If the value is a pointer, and pointers and addresses are not the
362 same, then at this point, the value's length (in target bytes) is
363 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
364 if (TYPE_CODE (type) == TYPE_CODE_PTR)
365 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
366
367 /* If we are printing it as unsigned, truncate it in case it is actually
368 a negative signed value (e.g. "print/u (short)-1" should print 65535
369 (if shorts are 16 bits) instead of 4294967295). */
370 if (options->format != 'c'
371 && (options->format != 'd' || TYPE_UNSIGNED (type)))
372 {
373 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
374 valaddr += TYPE_LENGTH (type) - len;
375 }
376
377 if (size != 0 && (options->format == 'x' || options->format == 't'))
378 {
379 /* Truncate to fit. */
380 unsigned newlen;
381 switch (size)
382 {
383 case 'b':
384 newlen = 1;
385 break;
386 case 'h':
387 newlen = 2;
388 break;
389 case 'w':
390 newlen = 4;
391 break;
392 case 'g':
393 newlen = 8;
394 break;
395 default:
396 error (_("Undefined output size \"%c\"."), size);
397 }
398 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
399 valaddr += len - newlen;
400 len = newlen;
401 }
402
403 /* Historically gdb has printed floats by first casting them to a
404 long, and then printing the long. PR cli/16242 suggests changing
405 this to using C-style hex float format.
406
407 Biased range types must also be unbiased here; the unbiasing is
408 done by unpack_long. */
409 gdb::byte_vector converted_bytes;
410 /* Some cases below will unpack the value again. In the biased
411 range case, we want to avoid this, so we store the unpacked value
412 here for possible use later. */
413 gdb::optional<LONGEST> val_long;
414 if ((TYPE_CODE (type) == TYPE_CODE_FLT
415 && (options->format == 'o'
416 || options->format == 'x'
417 || options->format == 't'
418 || options->format == 'z'
419 || options->format == 'd'
420 || options->format == 'u'))
421 || (TYPE_CODE (type) == TYPE_CODE_RANGE
422 && TYPE_RANGE_DATA (type)->bias != 0))
423 {
424 val_long.emplace (unpack_long (type, valaddr));
425 converted_bytes.resize (TYPE_LENGTH (type));
426 store_signed_integer (converted_bytes.data (), TYPE_LENGTH (type),
427 byte_order, *val_long);
428 valaddr = converted_bytes.data ();
429 }
430
431 /* Printing a non-float type as 'f' will interpret the data as if it were
432 of a floating-point type of the same length, if that exists. Otherwise,
433 the data is printed as integer. */
434 char format = options->format;
435 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
436 {
437 type = float_type_from_length (type);
438 if (TYPE_CODE (type) != TYPE_CODE_FLT)
439 format = 0;
440 }
441
442 switch (format)
443 {
444 case 'o':
445 print_octal_chars (stream, valaddr, len, byte_order);
446 break;
447 case 'd':
448 print_decimal_chars (stream, valaddr, len, true, byte_order);
449 break;
450 case 'u':
451 print_decimal_chars (stream, valaddr, len, false, byte_order);
452 break;
453 case 0:
454 if (TYPE_CODE (type) != TYPE_CODE_FLT)
455 {
456 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
457 byte_order);
458 break;
459 }
460 /* FALLTHROUGH */
461 case 'f':
462 print_floating (valaddr, type, stream);
463 break;
464
465 case 't':
466 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
467 break;
468 case 'x':
469 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
470 break;
471 case 'z':
472 print_hex_chars (stream, valaddr, len, byte_order, true);
473 break;
474 case 'c':
475 {
476 struct value_print_options opts = *options;
477
478 if (!val_long.has_value ())
479 val_long.emplace (unpack_long (type, valaddr));
480
481 opts.format = 0;
482 if (TYPE_UNSIGNED (type))
483 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
484 else
485 type = builtin_type (gdbarch)->builtin_true_char;
486
487 value_print (value_from_longest (type, *val_long), stream, &opts);
488 }
489 break;
490
491 case 'a':
492 {
493 if (!val_long.has_value ())
494 val_long.emplace (unpack_long (type, valaddr));
495 print_address (gdbarch, *val_long, stream);
496 }
497 break;
498
499 default:
500 error (_("Undefined output format \"%c\"."), format);
501 }
502 }
503
504 /* Specify default address for `x' command.
505 The `info lines' command uses this. */
506
507 void
508 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
509 {
510 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
511
512 next_gdbarch = gdbarch;
513 next_address = addr;
514
515 /* Make address available to the user as $_. */
516 set_internalvar (lookup_internalvar ("_"),
517 value_from_pointer (ptr_type, addr));
518 }
519
520 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
521 after LEADIN. Print nothing if no symbolic name is found nearby.
522 Optionally also print source file and line number, if available.
523 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
524 or to interpret it as a possible C++ name and convert it back to source
525 form. However note that DO_DEMANGLE can be overridden by the specific
526 settings of the demangle and asm_demangle variables. Returns
527 non-zero if anything was printed; zero otherwise. */
528
529 int
530 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
531 struct ui_file *stream,
532 int do_demangle, const char *leadin)
533 {
534 std::string name, filename;
535 int unmapped = 0;
536 int offset = 0;
537 int line = 0;
538
539 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
540 &offset, &filename, &line, &unmapped))
541 return 0;
542
543 fputs_filtered (leadin, stream);
544 if (unmapped)
545 fputs_filtered ("<*", stream);
546 else
547 fputs_filtered ("<", stream);
548 fputs_styled (name.c_str (), function_name_style.style (), stream);
549 if (offset != 0)
550 fprintf_filtered (stream, "%+d", offset);
551
552 /* Append source filename and line number if desired. Give specific
553 line # of this addr, if we have it; else line # of the nearest symbol. */
554 if (print_symbol_filename && !filename.empty ())
555 {
556 fputs_filtered (line == -1 ? " in " : " at ", stream);
557 fputs_styled (filename.c_str (), file_name_style.style (), stream);
558 if (line != -1)
559 fprintf_filtered (stream, ":%d", line);
560 }
561 if (unmapped)
562 fputs_filtered ("*>", stream);
563 else
564 fputs_filtered (">", stream);
565
566 return 1;
567 }
568
569 /* See valprint.h. */
570
571 int
572 build_address_symbolic (struct gdbarch *gdbarch,
573 CORE_ADDR addr, /* IN */
574 bool do_demangle, /* IN */
575 bool prefer_sym_over_minsym, /* IN */
576 std::string *name, /* OUT */
577 int *offset, /* OUT */
578 std::string *filename, /* OUT */
579 int *line, /* OUT */
580 int *unmapped) /* OUT */
581 {
582 struct bound_minimal_symbol msymbol;
583 struct symbol *symbol;
584 CORE_ADDR name_location = 0;
585 struct obj_section *section = NULL;
586 const char *name_temp = "";
587
588 /* Let's say it is mapped (not unmapped). */
589 *unmapped = 0;
590
591 /* Determine if the address is in an overlay, and whether it is
592 mapped. */
593 if (overlay_debugging)
594 {
595 section = find_pc_overlay (addr);
596 if (pc_in_unmapped_range (addr, section))
597 {
598 *unmapped = 1;
599 addr = overlay_mapped_address (addr, section);
600 }
601 }
602
603 /* Try to find the address in both the symbol table and the minsyms.
604 In most cases, we'll prefer to use the symbol instead of the
605 minsym. However, there are cases (see below) where we'll choose
606 to use the minsym instead. */
607
608 /* This is defective in the sense that it only finds text symbols. So
609 really this is kind of pointless--we should make sure that the
610 minimal symbols have everything we need (by changing that we could
611 save some memory, but for many debug format--ELF/DWARF or
612 anything/stabs--it would be inconvenient to eliminate those minimal
613 symbols anyway). */
614 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
615 symbol = find_pc_sect_function (addr, section);
616
617 if (symbol)
618 {
619 /* If this is a function (i.e. a code address), strip out any
620 non-address bits. For instance, display a pointer to the
621 first instruction of a Thumb function as <function>; the
622 second instruction will be <function+2>, even though the
623 pointer is <function+3>. This matches the ISA behavior. */
624 addr = gdbarch_addr_bits_remove (gdbarch, addr);
625
626 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
627 if (do_demangle || asm_demangle)
628 name_temp = symbol->print_name ();
629 else
630 name_temp = symbol->linkage_name ();
631 }
632
633 if (msymbol.minsym != NULL
634 && MSYMBOL_HAS_SIZE (msymbol.minsym)
635 && MSYMBOL_SIZE (msymbol.minsym) == 0
636 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
637 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
638 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
639 msymbol.minsym = NULL;
640
641 if (msymbol.minsym != NULL)
642 {
643 /* Use the minsym if no symbol is found.
644
645 Additionally, use the minsym instead of a (found) symbol if
646 the following conditions all hold:
647 1) The prefer_sym_over_minsym flag is false.
648 2) The minsym address is identical to that of the address under
649 consideration.
650 3) The symbol address is not identical to that of the address
651 under consideration. */
652 if (symbol == NULL ||
653 (!prefer_sym_over_minsym
654 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
655 && name_location != addr))
656 {
657 /* If this is a function (i.e. a code address), strip out any
658 non-address bits. For instance, display a pointer to the
659 first instruction of a Thumb function as <function>; the
660 second instruction will be <function+2>, even though the
661 pointer is <function+3>. This matches the ISA behavior. */
662 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
663 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
664 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
665 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
666 addr = gdbarch_addr_bits_remove (gdbarch, addr);
667
668 symbol = 0;
669 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
670 if (do_demangle || asm_demangle)
671 name_temp = msymbol.minsym->print_name ();
672 else
673 name_temp = msymbol.minsym->linkage_name ();
674 }
675 }
676 if (symbol == NULL && msymbol.minsym == NULL)
677 return 1;
678
679 /* If the nearest symbol is too far away, don't print anything symbolic. */
680
681 /* For when CORE_ADDR is larger than unsigned int, we do math in
682 CORE_ADDR. But when we detect unsigned wraparound in the
683 CORE_ADDR math, we ignore this test and print the offset,
684 because addr+max_symbolic_offset has wrapped through the end
685 of the address space back to the beginning, giving bogus comparison. */
686 if (addr > name_location + max_symbolic_offset
687 && name_location + max_symbolic_offset > name_location)
688 return 1;
689
690 *offset = (LONGEST) addr - name_location;
691
692 *name = name_temp;
693
694 if (print_symbol_filename)
695 {
696 struct symtab_and_line sal;
697
698 sal = find_pc_sect_line (addr, section, 0);
699
700 if (sal.symtab)
701 {
702 *filename = symtab_to_filename_for_display (sal.symtab);
703 *line = sal.line;
704 }
705 }
706 return 0;
707 }
708
709
710 /* Print address ADDR symbolically on STREAM.
711 First print it as a number. Then perhaps print
712 <SYMBOL + OFFSET> after the number. */
713
714 void
715 print_address (struct gdbarch *gdbarch,
716 CORE_ADDR addr, struct ui_file *stream)
717 {
718 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
719 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
720 }
721
722 /* Return a prefix for instruction address:
723 "=> " for current instruction, else " ". */
724
725 const char *
726 pc_prefix (CORE_ADDR addr)
727 {
728 if (has_stack_frames ())
729 {
730 struct frame_info *frame;
731 CORE_ADDR pc;
732
733 frame = get_selected_frame (NULL);
734 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
735 return "=> ";
736 }
737 return " ";
738 }
739
740 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
741 controls whether to print the symbolic name "raw" or demangled.
742 Return non-zero if anything was printed; zero otherwise. */
743
744 int
745 print_address_demangle (const struct value_print_options *opts,
746 struct gdbarch *gdbarch, CORE_ADDR addr,
747 struct ui_file *stream, int do_demangle)
748 {
749 if (opts->addressprint)
750 {
751 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
752 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
753 }
754 else
755 {
756 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
757 }
758 return 1;
759 }
760 \f
761
762 /* Find the address of the instruction that is INST_COUNT instructions before
763 the instruction at ADDR.
764 Since some architectures have variable-length instructions, we can't just
765 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
766 number information to locate the nearest known instruction boundary,
767 and disassemble forward from there. If we go out of the symbol range
768 during disassembling, we return the lowest address we've got so far and
769 set the number of instructions read to INST_READ. */
770
771 static CORE_ADDR
772 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
773 int inst_count, int *inst_read)
774 {
775 /* The vector PCS is used to store instruction addresses within
776 a pc range. */
777 CORE_ADDR loop_start, loop_end, p;
778 std::vector<CORE_ADDR> pcs;
779 struct symtab_and_line sal;
780
781 *inst_read = 0;
782 loop_start = loop_end = addr;
783
784 /* In each iteration of the outer loop, we get a pc range that ends before
785 LOOP_START, then we count and store every instruction address of the range
786 iterated in the loop.
787 If the number of instructions counted reaches INST_COUNT, return the
788 stored address that is located INST_COUNT instructions back from ADDR.
789 If INST_COUNT is not reached, we subtract the number of counted
790 instructions from INST_COUNT, and go to the next iteration. */
791 do
792 {
793 pcs.clear ();
794 sal = find_pc_sect_line (loop_start, NULL, 1);
795 if (sal.line <= 0)
796 {
797 /* We reach here when line info is not available. In this case,
798 we print a message and just exit the loop. The return value
799 is calculated after the loop. */
800 printf_filtered (_("No line number information available "
801 "for address "));
802 wrap_here (" ");
803 print_address (gdbarch, loop_start - 1, gdb_stdout);
804 printf_filtered ("\n");
805 break;
806 }
807
808 loop_end = loop_start;
809 loop_start = sal.pc;
810
811 /* This loop pushes instruction addresses in the range from
812 LOOP_START to LOOP_END. */
813 for (p = loop_start; p < loop_end;)
814 {
815 pcs.push_back (p);
816 p += gdb_insn_length (gdbarch, p);
817 }
818
819 inst_count -= pcs.size ();
820 *inst_read += pcs.size ();
821 }
822 while (inst_count > 0);
823
824 /* After the loop, the vector PCS has instruction addresses of the last
825 source line we processed, and INST_COUNT has a negative value.
826 We return the address at the index of -INST_COUNT in the vector for
827 the reason below.
828 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
829 Line X of File
830 0x4000
831 0x4001
832 0x4005
833 Line Y of File
834 0x4009
835 0x400c
836 => 0x400e
837 0x4011
838 find_instruction_backward is called with INST_COUNT = 4 and expected to
839 return 0x4001. When we reach here, INST_COUNT is set to -1 because
840 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
841 4001 is located at the index 1 of the last iterated line (= Line X),
842 which is simply calculated by -INST_COUNT.
843 The case when the length of PCS is 0 means that we reached an area for
844 which line info is not available. In such case, we return LOOP_START,
845 which was the lowest instruction address that had line info. */
846 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
847
848 /* INST_READ includes all instruction addresses in a pc range. Need to
849 exclude the beginning part up to the address we're returning. That
850 is, exclude {0x4000} in the example above. */
851 if (inst_count < 0)
852 *inst_read += inst_count;
853
854 return p;
855 }
856
857 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
858 placing the results in GDB's memory from MYADDR + LEN. Returns
859 a count of the bytes actually read. */
860
861 static int
862 read_memory_backward (struct gdbarch *gdbarch,
863 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
864 {
865 int errcode;
866 int nread; /* Number of bytes actually read. */
867
868 /* First try a complete read. */
869 errcode = target_read_memory (memaddr, myaddr, len);
870 if (errcode == 0)
871 {
872 /* Got it all. */
873 nread = len;
874 }
875 else
876 {
877 /* Loop, reading one byte at a time until we get as much as we can. */
878 memaddr += len;
879 myaddr += len;
880 for (nread = 0; nread < len; ++nread)
881 {
882 errcode = target_read_memory (--memaddr, --myaddr, 1);
883 if (errcode != 0)
884 {
885 /* The read was unsuccessful, so exit the loop. */
886 printf_filtered (_("Cannot access memory at address %s\n"),
887 paddress (gdbarch, memaddr));
888 break;
889 }
890 }
891 }
892 return nread;
893 }
894
895 /* Returns true if X (which is LEN bytes wide) is the number zero. */
896
897 static int
898 integer_is_zero (const gdb_byte *x, int len)
899 {
900 int i = 0;
901
902 while (i < len && x[i] == 0)
903 ++i;
904 return (i == len);
905 }
906
907 /* Find the start address of a string in which ADDR is included.
908 Basically we search for '\0' and return the next address,
909 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
910 we stop searching and return the address to print characters as many as
911 PRINT_MAX from the string. */
912
913 static CORE_ADDR
914 find_string_backward (struct gdbarch *gdbarch,
915 CORE_ADDR addr, int count, int char_size,
916 const struct value_print_options *options,
917 int *strings_counted)
918 {
919 const int chunk_size = 0x20;
920 int read_error = 0;
921 int chars_read = 0;
922 int chars_to_read = chunk_size;
923 int chars_counted = 0;
924 int count_original = count;
925 CORE_ADDR string_start_addr = addr;
926
927 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
928 gdb::byte_vector buffer (chars_to_read * char_size);
929 while (count > 0 && read_error == 0)
930 {
931 int i;
932
933 addr -= chars_to_read * char_size;
934 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
935 chars_to_read * char_size);
936 chars_read /= char_size;
937 read_error = (chars_read == chars_to_read) ? 0 : 1;
938 /* Searching for '\0' from the end of buffer in backward direction. */
939 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
940 {
941 int offset = (chars_to_read - i - 1) * char_size;
942
943 if (integer_is_zero (&buffer[offset], char_size)
944 || chars_counted == options->print_max)
945 {
946 /* Found '\0' or reached print_max. As OFFSET is the offset to
947 '\0', we add CHAR_SIZE to return the start address of
948 a string. */
949 --count;
950 string_start_addr = addr + offset + char_size;
951 chars_counted = 0;
952 }
953 }
954 }
955
956 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
957 *strings_counted = count_original - count;
958
959 if (read_error != 0)
960 {
961 /* In error case, STRING_START_ADDR is pointing to the string that
962 was last successfully loaded. Rewind the partially loaded string. */
963 string_start_addr -= chars_counted * char_size;
964 }
965
966 return string_start_addr;
967 }
968
969 /* Examine data at address ADDR in format FMT.
970 Fetch it from memory and print on gdb_stdout. */
971
972 static void
973 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
974 {
975 char format = 0;
976 char size;
977 int count = 1;
978 struct type *val_type = NULL;
979 int i;
980 int maxelts;
981 struct value_print_options opts;
982 int need_to_update_next_address = 0;
983 CORE_ADDR addr_rewound = 0;
984
985 format = fmt.format;
986 size = fmt.size;
987 count = fmt.count;
988 next_gdbarch = gdbarch;
989 next_address = addr;
990
991 /* Instruction format implies fetch single bytes
992 regardless of the specified size.
993 The case of strings is handled in decode_format, only explicit
994 size operator are not changed to 'b'. */
995 if (format == 'i')
996 size = 'b';
997
998 if (size == 'a')
999 {
1000 /* Pick the appropriate size for an address. */
1001 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1002 size = 'g';
1003 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1004 size = 'w';
1005 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1006 size = 'h';
1007 else
1008 /* Bad value for gdbarch_ptr_bit. */
1009 internal_error (__FILE__, __LINE__,
1010 _("failed internal consistency check"));
1011 }
1012
1013 if (size == 'b')
1014 val_type = builtin_type (next_gdbarch)->builtin_int8;
1015 else if (size == 'h')
1016 val_type = builtin_type (next_gdbarch)->builtin_int16;
1017 else if (size == 'w')
1018 val_type = builtin_type (next_gdbarch)->builtin_int32;
1019 else if (size == 'g')
1020 val_type = builtin_type (next_gdbarch)->builtin_int64;
1021
1022 if (format == 's')
1023 {
1024 struct type *char_type = NULL;
1025
1026 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1027 if type is not found. */
1028 if (size == 'h')
1029 char_type = builtin_type (next_gdbarch)->builtin_char16;
1030 else if (size == 'w')
1031 char_type = builtin_type (next_gdbarch)->builtin_char32;
1032 if (char_type)
1033 val_type = char_type;
1034 else
1035 {
1036 if (size != '\0' && size != 'b')
1037 warning (_("Unable to display strings with "
1038 "size '%c', using 'b' instead."), size);
1039 size = 'b';
1040 val_type = builtin_type (next_gdbarch)->builtin_int8;
1041 }
1042 }
1043
1044 maxelts = 8;
1045 if (size == 'w')
1046 maxelts = 4;
1047 if (size == 'g')
1048 maxelts = 2;
1049 if (format == 's' || format == 'i')
1050 maxelts = 1;
1051
1052 get_formatted_print_options (&opts, format);
1053
1054 if (count < 0)
1055 {
1056 /* This is the negative repeat count case.
1057 We rewind the address based on the given repeat count and format,
1058 then examine memory from there in forward direction. */
1059
1060 count = -count;
1061 if (format == 'i')
1062 {
1063 next_address = find_instruction_backward (gdbarch, addr, count,
1064 &count);
1065 }
1066 else if (format == 's')
1067 {
1068 next_address = find_string_backward (gdbarch, addr, count,
1069 TYPE_LENGTH (val_type),
1070 &opts, &count);
1071 }
1072 else
1073 {
1074 next_address = addr - count * TYPE_LENGTH (val_type);
1075 }
1076
1077 /* The following call to print_formatted updates next_address in every
1078 iteration. In backward case, we store the start address here
1079 and update next_address with it before exiting the function. */
1080 addr_rewound = (format == 's'
1081 ? next_address - TYPE_LENGTH (val_type)
1082 : next_address);
1083 need_to_update_next_address = 1;
1084 }
1085
1086 /* Print as many objects as specified in COUNT, at most maxelts per line,
1087 with the address of the next one at the start of each line. */
1088
1089 while (count > 0)
1090 {
1091 QUIT;
1092 if (format == 'i')
1093 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1094 print_address (next_gdbarch, next_address, gdb_stdout);
1095 printf_filtered (":");
1096 for (i = maxelts;
1097 i > 0 && count > 0;
1098 i--, count--)
1099 {
1100 printf_filtered ("\t");
1101 /* Note that print_formatted sets next_address for the next
1102 object. */
1103 last_examine_address = next_address;
1104
1105 /* The value to be displayed is not fetched greedily.
1106 Instead, to avoid the possibility of a fetched value not
1107 being used, its retrieval is delayed until the print code
1108 uses it. When examining an instruction stream, the
1109 disassembler will perform its own memory fetch using just
1110 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1111 the disassembler be modified so that LAST_EXAMINE_VALUE
1112 is left with the byte sequence from the last complete
1113 instruction fetched from memory? */
1114 last_examine_value
1115 = release_value (value_at_lazy (val_type, next_address));
1116
1117 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1118
1119 /* Display any branch delay slots following the final insn. */
1120 if (format == 'i' && count == 1)
1121 count += branch_delay_insns;
1122 }
1123 printf_filtered ("\n");
1124 }
1125
1126 if (need_to_update_next_address)
1127 next_address = addr_rewound;
1128 }
1129 \f
1130 static void
1131 validate_format (struct format_data fmt, const char *cmdname)
1132 {
1133 if (fmt.size != 0)
1134 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1135 if (fmt.count != 1)
1136 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1137 cmdname);
1138 if (fmt.format == 'i')
1139 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1140 fmt.format, cmdname);
1141 }
1142
1143 /* Parse print command format string into *OPTS and update *EXPP.
1144 CMDNAME should name the current command. */
1145
1146 void
1147 print_command_parse_format (const char **expp, const char *cmdname,
1148 value_print_options *opts)
1149 {
1150 const char *exp = *expp;
1151
1152 /* opts->raw value might already have been set by 'set print raw-values'
1153 or by using 'print -raw-values'.
1154 So, do not set opts->raw to 0, only set it to 1 if /r is given. */
1155 if (exp && *exp == '/')
1156 {
1157 format_data fmt;
1158
1159 exp++;
1160 fmt = decode_format (&exp, last_format, 0);
1161 validate_format (fmt, cmdname);
1162 last_format = fmt.format;
1163
1164 opts->format = fmt.format;
1165 opts->raw = opts->raw || fmt.raw;
1166 }
1167 else
1168 {
1169 opts->format = 0;
1170 }
1171
1172 *expp = exp;
1173 }
1174
1175 /* See valprint.h. */
1176
1177 void
1178 print_value (value *val, const value_print_options &opts)
1179 {
1180 int histindex = record_latest_value (val);
1181
1182 annotate_value_history_begin (histindex, value_type (val));
1183
1184 printf_filtered ("$%d = ", histindex);
1185
1186 annotate_value_history_value ();
1187
1188 print_formatted (val, 0, &opts, gdb_stdout);
1189 printf_filtered ("\n");
1190
1191 annotate_value_history_end ();
1192 }
1193
1194 /* Implementation of the "print" and "call" commands. */
1195
1196 static void
1197 print_command_1 (const char *args, int voidprint)
1198 {
1199 struct value *val;
1200 value_print_options print_opts;
1201
1202 get_user_print_options (&print_opts);
1203 /* Override global settings with explicit options, if any. */
1204 auto group = make_value_print_options_def_group (&print_opts);
1205 gdb::option::process_options
1206 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1207
1208 print_command_parse_format (&args, "print", &print_opts);
1209
1210 const char *exp = args;
1211
1212 if (exp != nullptr && *exp)
1213 {
1214 expression_up expr = parse_expression (exp);
1215 val = evaluate_expression (expr.get ());
1216 }
1217 else
1218 val = access_value_history (0);
1219
1220 if (voidprint || (val && value_type (val) &&
1221 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1222 print_value (val, print_opts);
1223 }
1224
1225 /* See valprint.h. */
1226
1227 void
1228 print_command_completer (struct cmd_list_element *ignore,
1229 completion_tracker &tracker,
1230 const char *text, const char * /*word*/)
1231 {
1232 const auto group = make_value_print_options_def_group (nullptr);
1233 if (gdb::option::complete_options
1234 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1235 return;
1236
1237 const char *word = advance_to_expression_complete_word_point (tracker, text);
1238 expression_completer (ignore, tracker, text, word);
1239 }
1240
1241 static void
1242 print_command (const char *exp, int from_tty)
1243 {
1244 print_command_1 (exp, 1);
1245 }
1246
1247 /* Same as print, except it doesn't print void results. */
1248 static void
1249 call_command (const char *exp, int from_tty)
1250 {
1251 print_command_1 (exp, 0);
1252 }
1253
1254 /* Implementation of the "output" command. */
1255
1256 void
1257 output_command (const char *exp, int from_tty)
1258 {
1259 char format = 0;
1260 struct value *val;
1261 struct format_data fmt;
1262 struct value_print_options opts;
1263
1264 fmt.size = 0;
1265 fmt.raw = 0;
1266
1267 if (exp && *exp == '/')
1268 {
1269 exp++;
1270 fmt = decode_format (&exp, 0, 0);
1271 validate_format (fmt, "output");
1272 format = fmt.format;
1273 }
1274
1275 expression_up expr = parse_expression (exp);
1276
1277 val = evaluate_expression (expr.get ());
1278
1279 annotate_value_begin (value_type (val));
1280
1281 get_formatted_print_options (&opts, format);
1282 opts.raw = fmt.raw;
1283 print_formatted (val, fmt.size, &opts, gdb_stdout);
1284
1285 annotate_value_end ();
1286
1287 wrap_here ("");
1288 gdb_flush (gdb_stdout);
1289 }
1290
1291 static void
1292 set_command (const char *exp, int from_tty)
1293 {
1294 expression_up expr = parse_expression (exp);
1295
1296 if (expr->nelts >= 1)
1297 switch (expr->elts[0].opcode)
1298 {
1299 case UNOP_PREINCREMENT:
1300 case UNOP_POSTINCREMENT:
1301 case UNOP_PREDECREMENT:
1302 case UNOP_POSTDECREMENT:
1303 case BINOP_ASSIGN:
1304 case BINOP_ASSIGN_MODIFY:
1305 case BINOP_COMMA:
1306 break;
1307 default:
1308 warning
1309 (_("Expression is not an assignment (and might have no effect)"));
1310 }
1311
1312 evaluate_expression (expr.get ());
1313 }
1314
1315 static void
1316 info_symbol_command (const char *arg, int from_tty)
1317 {
1318 struct minimal_symbol *msymbol;
1319 struct obj_section *osect;
1320 CORE_ADDR addr, sect_addr;
1321 int matches = 0;
1322 unsigned int offset;
1323
1324 if (!arg)
1325 error_no_arg (_("address"));
1326
1327 addr = parse_and_eval_address (arg);
1328 for (objfile *objfile : current_program_space->objfiles ())
1329 ALL_OBJFILE_OSECTIONS (objfile, osect)
1330 {
1331 /* Only process each object file once, even if there's a separate
1332 debug file. */
1333 if (objfile->separate_debug_objfile_backlink)
1334 continue;
1335
1336 sect_addr = overlay_mapped_address (addr, osect);
1337
1338 if (obj_section_addr (osect) <= sect_addr
1339 && sect_addr < obj_section_endaddr (osect)
1340 && (msymbol
1341 = lookup_minimal_symbol_by_pc_section (sect_addr,
1342 osect).minsym))
1343 {
1344 const char *obj_name, *mapped, *sec_name, *msym_name;
1345 const char *loc_string;
1346
1347 matches = 1;
1348 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1349 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1350 sec_name = osect->the_bfd_section->name;
1351 msym_name = msymbol->print_name ();
1352
1353 /* Don't print the offset if it is zero.
1354 We assume there's no need to handle i18n of "sym + offset". */
1355 std::string string_holder;
1356 if (offset)
1357 {
1358 string_holder = string_printf ("%s + %u", msym_name, offset);
1359 loc_string = string_holder.c_str ();
1360 }
1361 else
1362 loc_string = msym_name;
1363
1364 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1365 obj_name = objfile_name (osect->objfile);
1366
1367 if (current_program_space->multi_objfile_p ())
1368 if (pc_in_unmapped_range (addr, osect))
1369 if (section_is_overlay (osect))
1370 printf_filtered (_("%s in load address range of "
1371 "%s overlay section %s of %s\n"),
1372 loc_string, mapped, sec_name, obj_name);
1373 else
1374 printf_filtered (_("%s in load address range of "
1375 "section %s of %s\n"),
1376 loc_string, sec_name, obj_name);
1377 else
1378 if (section_is_overlay (osect))
1379 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1380 loc_string, mapped, sec_name, obj_name);
1381 else
1382 printf_filtered (_("%s in section %s of %s\n"),
1383 loc_string, sec_name, obj_name);
1384 else
1385 if (pc_in_unmapped_range (addr, osect))
1386 if (section_is_overlay (osect))
1387 printf_filtered (_("%s in load address range of %s overlay "
1388 "section %s\n"),
1389 loc_string, mapped, sec_name);
1390 else
1391 printf_filtered
1392 (_("%s in load address range of section %s\n"),
1393 loc_string, sec_name);
1394 else
1395 if (section_is_overlay (osect))
1396 printf_filtered (_("%s in %s overlay section %s\n"),
1397 loc_string, mapped, sec_name);
1398 else
1399 printf_filtered (_("%s in section %s\n"),
1400 loc_string, sec_name);
1401 }
1402 }
1403 if (matches == 0)
1404 printf_filtered (_("No symbol matches %s.\n"), arg);
1405 }
1406
1407 static void
1408 info_address_command (const char *exp, int from_tty)
1409 {
1410 struct gdbarch *gdbarch;
1411 int regno;
1412 struct symbol *sym;
1413 struct bound_minimal_symbol msymbol;
1414 long val;
1415 struct obj_section *section;
1416 CORE_ADDR load_addr, context_pc = 0;
1417 struct field_of_this_result is_a_field_of_this;
1418
1419 if (exp == 0)
1420 error (_("Argument required."));
1421
1422 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1423 &is_a_field_of_this).symbol;
1424 if (sym == NULL)
1425 {
1426 if (is_a_field_of_this.type != NULL)
1427 {
1428 printf_filtered ("Symbol \"");
1429 fprintf_symbol_filtered (gdb_stdout, exp,
1430 current_language->la_language, DMGL_ANSI);
1431 printf_filtered ("\" is a field of the local class variable ");
1432 if (current_language->la_language == language_objc)
1433 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1434 else
1435 printf_filtered ("`this'\n");
1436 return;
1437 }
1438
1439 msymbol = lookup_bound_minimal_symbol (exp);
1440
1441 if (msymbol.minsym != NULL)
1442 {
1443 struct objfile *objfile = msymbol.objfile;
1444
1445 gdbarch = objfile->arch ();
1446 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1447
1448 printf_filtered ("Symbol \"");
1449 fprintf_symbol_filtered (gdb_stdout, exp,
1450 current_language->la_language, DMGL_ANSI);
1451 printf_filtered ("\" is at ");
1452 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1453 gdb_stdout);
1454 printf_filtered (" in a file compiled without debugging");
1455 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1456 if (section_is_overlay (section))
1457 {
1458 load_addr = overlay_unmapped_address (load_addr, section);
1459 printf_filtered (",\n -- loaded at ");
1460 fputs_styled (paddress (gdbarch, load_addr),
1461 address_style.style (),
1462 gdb_stdout);
1463 printf_filtered (" in overlay section %s",
1464 section->the_bfd_section->name);
1465 }
1466 printf_filtered (".\n");
1467 }
1468 else
1469 error (_("No symbol \"%s\" in current context."), exp);
1470 return;
1471 }
1472
1473 printf_filtered ("Symbol \"");
1474 fprintf_symbol_filtered (gdb_stdout, sym->print_name (),
1475 current_language->la_language, DMGL_ANSI);
1476 printf_filtered ("\" is ");
1477 val = SYMBOL_VALUE (sym);
1478 if (SYMBOL_OBJFILE_OWNED (sym))
1479 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1480 else
1481 section = NULL;
1482 gdbarch = symbol_arch (sym);
1483
1484 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1485 {
1486 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1487 gdb_stdout);
1488 printf_filtered (".\n");
1489 return;
1490 }
1491
1492 switch (SYMBOL_CLASS (sym))
1493 {
1494 case LOC_CONST:
1495 case LOC_CONST_BYTES:
1496 printf_filtered ("constant");
1497 break;
1498
1499 case LOC_LABEL:
1500 printf_filtered ("a label at address ");
1501 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1502 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1503 gdb_stdout);
1504 if (section_is_overlay (section))
1505 {
1506 load_addr = overlay_unmapped_address (load_addr, section);
1507 printf_filtered (",\n -- loaded at ");
1508 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1509 gdb_stdout);
1510 printf_filtered (" in overlay section %s",
1511 section->the_bfd_section->name);
1512 }
1513 break;
1514
1515 case LOC_COMPUTED:
1516 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1517
1518 case LOC_REGISTER:
1519 /* GDBARCH is the architecture associated with the objfile the symbol
1520 is defined in; the target architecture may be different, and may
1521 provide additional registers. However, we do not know the target
1522 architecture at this point. We assume the objfile architecture
1523 will contain all the standard registers that occur in debug info
1524 in that objfile. */
1525 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1526
1527 if (SYMBOL_IS_ARGUMENT (sym))
1528 printf_filtered (_("an argument in register %s"),
1529 gdbarch_register_name (gdbarch, regno));
1530 else
1531 printf_filtered (_("a variable in register %s"),
1532 gdbarch_register_name (gdbarch, regno));
1533 break;
1534
1535 case LOC_STATIC:
1536 printf_filtered (_("static storage at address "));
1537 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1538 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1539 gdb_stdout);
1540 if (section_is_overlay (section))
1541 {
1542 load_addr = overlay_unmapped_address (load_addr, section);
1543 printf_filtered (_(",\n -- loaded at "));
1544 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1545 gdb_stdout);
1546 printf_filtered (_(" in overlay section %s"),
1547 section->the_bfd_section->name);
1548 }
1549 break;
1550
1551 case LOC_REGPARM_ADDR:
1552 /* Note comment at LOC_REGISTER. */
1553 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1554 printf_filtered (_("address of an argument in register %s"),
1555 gdbarch_register_name (gdbarch, regno));
1556 break;
1557
1558 case LOC_ARG:
1559 printf_filtered (_("an argument at offset %ld"), val);
1560 break;
1561
1562 case LOC_LOCAL:
1563 printf_filtered (_("a local variable at frame offset %ld"), val);
1564 break;
1565
1566 case LOC_REF_ARG:
1567 printf_filtered (_("a reference argument at offset %ld"), val);
1568 break;
1569
1570 case LOC_TYPEDEF:
1571 printf_filtered (_("a typedef"));
1572 break;
1573
1574 case LOC_BLOCK:
1575 printf_filtered (_("a function at address "));
1576 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1577 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1578 gdb_stdout);
1579 if (section_is_overlay (section))
1580 {
1581 load_addr = overlay_unmapped_address (load_addr, section);
1582 printf_filtered (_(",\n -- loaded at "));
1583 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1584 gdb_stdout);
1585 printf_filtered (_(" in overlay section %s"),
1586 section->the_bfd_section->name);
1587 }
1588 break;
1589
1590 case LOC_UNRESOLVED:
1591 {
1592 struct bound_minimal_symbol msym;
1593
1594 msym = lookup_bound_minimal_symbol (sym->linkage_name ());
1595 if (msym.minsym == NULL)
1596 printf_filtered ("unresolved");
1597 else
1598 {
1599 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1600
1601 if (section
1602 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1603 {
1604 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1605 printf_filtered (_("a thread-local variable at offset %s "
1606 "in the thread-local storage for `%s'"),
1607 paddress (gdbarch, load_addr),
1608 objfile_name (section->objfile));
1609 }
1610 else
1611 {
1612 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1613 printf_filtered (_("static storage at address "));
1614 fputs_styled (paddress (gdbarch, load_addr),
1615 address_style.style (), gdb_stdout);
1616 if (section_is_overlay (section))
1617 {
1618 load_addr = overlay_unmapped_address (load_addr, section);
1619 printf_filtered (_(",\n -- loaded at "));
1620 fputs_styled (paddress (gdbarch, load_addr),
1621 address_style.style (),
1622 gdb_stdout);
1623 printf_filtered (_(" in overlay section %s"),
1624 section->the_bfd_section->name);
1625 }
1626 }
1627 }
1628 }
1629 break;
1630
1631 case LOC_OPTIMIZED_OUT:
1632 printf_filtered (_("optimized out"));
1633 break;
1634
1635 default:
1636 printf_filtered (_("of unknown (botched) type"));
1637 break;
1638 }
1639 printf_filtered (".\n");
1640 }
1641 \f
1642
1643 static void
1644 x_command (const char *exp, int from_tty)
1645 {
1646 struct format_data fmt;
1647 struct value *val;
1648
1649 fmt.format = last_format ? last_format : 'x';
1650 fmt.size = last_size;
1651 fmt.count = 1;
1652 fmt.raw = 0;
1653
1654 /* If there is no expression and no format, use the most recent
1655 count. */
1656 if (exp == nullptr && last_count > 0)
1657 fmt.count = last_count;
1658
1659 if (exp && *exp == '/')
1660 {
1661 const char *tmp = exp + 1;
1662
1663 fmt = decode_format (&tmp, last_format, last_size);
1664 exp = (char *) tmp;
1665 }
1666
1667 last_count = fmt.count;
1668
1669 /* If we have an expression, evaluate it and use it as the address. */
1670
1671 if (exp != 0 && *exp != 0)
1672 {
1673 expression_up expr = parse_expression (exp);
1674 /* Cause expression not to be there any more if this command is
1675 repeated with Newline. But don't clobber a user-defined
1676 command's definition. */
1677 if (from_tty)
1678 set_repeat_arguments ("");
1679 val = evaluate_expression (expr.get ());
1680 if (TYPE_IS_REFERENCE (value_type (val)))
1681 val = coerce_ref (val);
1682 /* In rvalue contexts, such as this, functions are coerced into
1683 pointers to functions. This makes "x/i main" work. */
1684 if (/* last_format == 'i' && */
1685 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1686 && VALUE_LVAL (val) == lval_memory)
1687 next_address = value_address (val);
1688 else
1689 next_address = value_as_address (val);
1690
1691 next_gdbarch = expr->gdbarch;
1692 }
1693
1694 if (!next_gdbarch)
1695 error_no_arg (_("starting display address"));
1696
1697 do_examine (fmt, next_gdbarch, next_address);
1698
1699 /* If the examine succeeds, we remember its size and format for next
1700 time. Set last_size to 'b' for strings. */
1701 if (fmt.format == 's')
1702 last_size = 'b';
1703 else
1704 last_size = fmt.size;
1705 last_format = fmt.format;
1706
1707 /* Set a couple of internal variables if appropriate. */
1708 if (last_examine_value != nullptr)
1709 {
1710 /* Make last address examined available to the user as $_. Use
1711 the correct pointer type. */
1712 struct type *pointer_type
1713 = lookup_pointer_type (value_type (last_examine_value.get ()));
1714 set_internalvar (lookup_internalvar ("_"),
1715 value_from_pointer (pointer_type,
1716 last_examine_address));
1717
1718 /* Make contents of last address examined available to the user
1719 as $__. If the last value has not been fetched from memory
1720 then don't fetch it now; instead mark it by voiding the $__
1721 variable. */
1722 if (value_lazy (last_examine_value.get ()))
1723 clear_internalvar (lookup_internalvar ("__"));
1724 else
1725 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1726 }
1727 }
1728 \f
1729
1730 /* Add an expression to the auto-display chain.
1731 Specify the expression. */
1732
1733 static void
1734 display_command (const char *arg, int from_tty)
1735 {
1736 struct format_data fmt;
1737 struct display *newobj;
1738 const char *exp = arg;
1739
1740 if (exp == 0)
1741 {
1742 do_displays ();
1743 return;
1744 }
1745
1746 if (*exp == '/')
1747 {
1748 exp++;
1749 fmt = decode_format (&exp, 0, 0);
1750 if (fmt.size && fmt.format == 0)
1751 fmt.format = 'x';
1752 if (fmt.format == 'i' || fmt.format == 's')
1753 fmt.size = 'b';
1754 }
1755 else
1756 {
1757 fmt.format = 0;
1758 fmt.size = 0;
1759 fmt.count = 0;
1760 fmt.raw = 0;
1761 }
1762
1763 innermost_block_tracker tracker;
1764 expression_up expr = parse_expression (exp, &tracker);
1765
1766 newobj = new display (exp, std::move (expr), fmt,
1767 current_program_space, tracker.block ());
1768 all_displays.emplace_back (newobj);
1769
1770 if (from_tty)
1771 do_one_display (newobj);
1772
1773 dont_repeat ();
1774 }
1775
1776 /* Clear out the display_chain. Done when new symtabs are loaded,
1777 since this invalidates the types stored in many expressions. */
1778
1779 void
1780 clear_displays ()
1781 {
1782 all_displays.clear ();
1783 }
1784
1785 /* Delete the auto-display DISPLAY. */
1786
1787 static void
1788 delete_display (struct display *display)
1789 {
1790 gdb_assert (display != NULL);
1791
1792 auto iter = std::find_if (all_displays.begin (),
1793 all_displays.end (),
1794 [=] (const std::unique_ptr<struct display> &item)
1795 {
1796 return item.get () == display;
1797 });
1798 gdb_assert (iter != all_displays.end ());
1799 all_displays.erase (iter);
1800 }
1801
1802 /* Call FUNCTION on each of the displays whose numbers are given in
1803 ARGS. DATA is passed unmodified to FUNCTION. */
1804
1805 static void
1806 map_display_numbers (const char *args,
1807 gdb::function_view<void (struct display *)> function)
1808 {
1809 int num;
1810
1811 if (args == NULL)
1812 error_no_arg (_("one or more display numbers"));
1813
1814 number_or_range_parser parser (args);
1815
1816 while (!parser.finished ())
1817 {
1818 const char *p = parser.cur_tok ();
1819
1820 num = parser.get_number ();
1821 if (num == 0)
1822 warning (_("bad display number at or near '%s'"), p);
1823 else
1824 {
1825 auto iter = std::find_if (all_displays.begin (),
1826 all_displays.end (),
1827 [=] (const std::unique_ptr<display> &item)
1828 {
1829 return item->number == num;
1830 });
1831 if (iter == all_displays.end ())
1832 printf_unfiltered (_("No display number %d.\n"), num);
1833 else
1834 function (iter->get ());
1835 }
1836 }
1837 }
1838
1839 /* "undisplay" command. */
1840
1841 static void
1842 undisplay_command (const char *args, int from_tty)
1843 {
1844 if (args == NULL)
1845 {
1846 if (query (_("Delete all auto-display expressions? ")))
1847 clear_displays ();
1848 dont_repeat ();
1849 return;
1850 }
1851
1852 map_display_numbers (args, delete_display);
1853 dont_repeat ();
1854 }
1855
1856 /* Display a single auto-display.
1857 Do nothing if the display cannot be printed in the current context,
1858 or if the display is disabled. */
1859
1860 static void
1861 do_one_display (struct display *d)
1862 {
1863 int within_current_scope;
1864
1865 if (!d->enabled_p)
1866 return;
1867
1868 /* The expression carries the architecture that was used at parse time.
1869 This is a problem if the expression depends on architecture features
1870 (e.g. register numbers), and the current architecture is now different.
1871 For example, a display statement like "display/i $pc" is expected to
1872 display the PC register of the current architecture, not the arch at
1873 the time the display command was given. Therefore, we re-parse the
1874 expression if the current architecture has changed. */
1875 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1876 {
1877 d->exp.reset ();
1878 d->block = NULL;
1879 }
1880
1881 if (d->exp == NULL)
1882 {
1883
1884 try
1885 {
1886 innermost_block_tracker tracker;
1887 d->exp = parse_expression (d->exp_string.c_str (), &tracker);
1888 d->block = tracker.block ();
1889 }
1890 catch (const gdb_exception &ex)
1891 {
1892 /* Can't re-parse the expression. Disable this display item. */
1893 d->enabled_p = false;
1894 warning (_("Unable to display \"%s\": %s"),
1895 d->exp_string.c_str (), ex.what ());
1896 return;
1897 }
1898 }
1899
1900 if (d->block)
1901 {
1902 if (d->pspace == current_program_space)
1903 within_current_scope = contained_in (get_selected_block (0), d->block,
1904 true);
1905 else
1906 within_current_scope = 0;
1907 }
1908 else
1909 within_current_scope = 1;
1910 if (!within_current_scope)
1911 return;
1912
1913 scoped_restore save_display_number
1914 = make_scoped_restore (&current_display_number, d->number);
1915
1916 annotate_display_begin ();
1917 printf_filtered ("%d", d->number);
1918 annotate_display_number_end ();
1919 printf_filtered (": ");
1920 if (d->format.size)
1921 {
1922
1923 annotate_display_format ();
1924
1925 printf_filtered ("x/");
1926 if (d->format.count != 1)
1927 printf_filtered ("%d", d->format.count);
1928 printf_filtered ("%c", d->format.format);
1929 if (d->format.format != 'i' && d->format.format != 's')
1930 printf_filtered ("%c", d->format.size);
1931 printf_filtered (" ");
1932
1933 annotate_display_expression ();
1934
1935 puts_filtered (d->exp_string.c_str ());
1936 annotate_display_expression_end ();
1937
1938 if (d->format.count != 1 || d->format.format == 'i')
1939 printf_filtered ("\n");
1940 else
1941 printf_filtered (" ");
1942
1943 annotate_display_value ();
1944
1945 try
1946 {
1947 struct value *val;
1948 CORE_ADDR addr;
1949
1950 val = evaluate_expression (d->exp.get ());
1951 addr = value_as_address (val);
1952 if (d->format.format == 'i')
1953 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1954 do_examine (d->format, d->exp->gdbarch, addr);
1955 }
1956 catch (const gdb_exception_error &ex)
1957 {
1958 fprintf_filtered (gdb_stdout, _("%p[<error: %s>%p]\n"),
1959 metadata_style.style ().ptr (), ex.what (),
1960 nullptr);
1961 }
1962 }
1963 else
1964 {
1965 struct value_print_options opts;
1966
1967 annotate_display_format ();
1968
1969 if (d->format.format)
1970 printf_filtered ("/%c ", d->format.format);
1971
1972 annotate_display_expression ();
1973
1974 puts_filtered (d->exp_string.c_str ());
1975 annotate_display_expression_end ();
1976
1977 printf_filtered (" = ");
1978
1979 annotate_display_expression ();
1980
1981 get_formatted_print_options (&opts, d->format.format);
1982 opts.raw = d->format.raw;
1983
1984 try
1985 {
1986 struct value *val;
1987
1988 val = evaluate_expression (d->exp.get ());
1989 print_formatted (val, d->format.size, &opts, gdb_stdout);
1990 }
1991 catch (const gdb_exception_error &ex)
1992 {
1993 fprintf_styled (gdb_stdout, metadata_style.style (),
1994 _("<error: %s>"), ex.what ());
1995 }
1996
1997 printf_filtered ("\n");
1998 }
1999
2000 annotate_display_end ();
2001
2002 gdb_flush (gdb_stdout);
2003 }
2004
2005 /* Display all of the values on the auto-display chain which can be
2006 evaluated in the current scope. */
2007
2008 void
2009 do_displays (void)
2010 {
2011 for (auto &d : all_displays)
2012 do_one_display (d.get ());
2013 }
2014
2015 /* Delete the auto-display which we were in the process of displaying.
2016 This is done when there is an error or a signal. */
2017
2018 void
2019 disable_display (int num)
2020 {
2021 for (auto &d : all_displays)
2022 if (d->number == num)
2023 {
2024 d->enabled_p = false;
2025 return;
2026 }
2027 printf_unfiltered (_("No display number %d.\n"), num);
2028 }
2029
2030 void
2031 disable_current_display (void)
2032 {
2033 if (current_display_number >= 0)
2034 {
2035 disable_display (current_display_number);
2036 fprintf_unfiltered (gdb_stderr,
2037 _("Disabling display %d to "
2038 "avoid infinite recursion.\n"),
2039 current_display_number);
2040 }
2041 current_display_number = -1;
2042 }
2043
2044 static void
2045 info_display_command (const char *ignore, int from_tty)
2046 {
2047 if (all_displays.empty ())
2048 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2049 else
2050 printf_filtered (_("Auto-display expressions now in effect:\n\
2051 Num Enb Expression\n"));
2052
2053 for (auto &d : all_displays)
2054 {
2055 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2056 if (d->format.size)
2057 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2058 d->format.format);
2059 else if (d->format.format)
2060 printf_filtered ("/%c ", d->format.format);
2061 puts_filtered (d->exp_string.c_str ());
2062 if (d->block && !contained_in (get_selected_block (0), d->block, true))
2063 printf_filtered (_(" (cannot be evaluated in the current context)"));
2064 printf_filtered ("\n");
2065 }
2066 }
2067
2068 /* Implementation of both the "disable display" and "enable display"
2069 commands. ENABLE decides what to do. */
2070
2071 static void
2072 enable_disable_display_command (const char *args, int from_tty, bool enable)
2073 {
2074 if (args == NULL)
2075 {
2076 for (auto &d : all_displays)
2077 d->enabled_p = enable;
2078 return;
2079 }
2080
2081 map_display_numbers (args,
2082 [=] (struct display *d)
2083 {
2084 d->enabled_p = enable;
2085 });
2086 }
2087
2088 /* The "enable display" command. */
2089
2090 static void
2091 enable_display_command (const char *args, int from_tty)
2092 {
2093 enable_disable_display_command (args, from_tty, true);
2094 }
2095
2096 /* The "disable display" command. */
2097
2098 static void
2099 disable_display_command (const char *args, int from_tty)
2100 {
2101 enable_disable_display_command (args, from_tty, false);
2102 }
2103
2104 /* display_chain items point to blocks and expressions. Some expressions in
2105 turn may point to symbols.
2106 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2107 obstack_free'd when a shared library is unloaded.
2108 Clear pointers that are about to become dangling.
2109 Both .exp and .block fields will be restored next time we need to display
2110 an item by re-parsing .exp_string field in the new execution context. */
2111
2112 static void
2113 clear_dangling_display_expressions (struct objfile *objfile)
2114 {
2115 struct program_space *pspace;
2116
2117 /* With no symbol file we cannot have a block or expression from it. */
2118 if (objfile == NULL)
2119 return;
2120 pspace = objfile->pspace;
2121 if (objfile->separate_debug_objfile_backlink)
2122 {
2123 objfile = objfile->separate_debug_objfile_backlink;
2124 gdb_assert (objfile->pspace == pspace);
2125 }
2126
2127 for (auto &d : all_displays)
2128 {
2129 if (d->pspace != pspace)
2130 continue;
2131
2132 if (lookup_objfile_from_block (d->block) == objfile
2133 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2134 {
2135 d->exp.reset ();
2136 d->block = NULL;
2137 }
2138 }
2139 }
2140 \f
2141
2142 /* Print the value in stack frame FRAME of a variable specified by a
2143 struct symbol. NAME is the name to print; if NULL then VAR's print
2144 name will be used. STREAM is the ui_file on which to print the
2145 value. INDENT specifies the number of indent levels to print
2146 before printing the variable name.
2147
2148 This function invalidates FRAME. */
2149
2150 void
2151 print_variable_and_value (const char *name, struct symbol *var,
2152 struct frame_info *frame,
2153 struct ui_file *stream, int indent)
2154 {
2155
2156 if (!name)
2157 name = var->print_name ();
2158
2159 fprintf_filtered (stream, "%s%ps = ", n_spaces (2 * indent),
2160 styled_string (variable_name_style.style (), name));
2161
2162 try
2163 {
2164 struct value *val;
2165 struct value_print_options opts;
2166
2167 /* READ_VAR_VALUE needs a block in order to deal with non-local
2168 references (i.e. to handle nested functions). In this context, we
2169 print variables that are local to this frame, so we can avoid passing
2170 a block to it. */
2171 val = read_var_value (var, NULL, frame);
2172 get_user_print_options (&opts);
2173 opts.deref_ref = 1;
2174 common_val_print (val, stream, indent, &opts, current_language);
2175
2176 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2177 function. */
2178 frame = NULL;
2179 }
2180 catch (const gdb_exception_error &except)
2181 {
2182 fprintf_styled (stream, metadata_style.style (),
2183 "<error reading variable %s (%s)>", name,
2184 except.what ());
2185 }
2186
2187 fprintf_filtered (stream, "\n");
2188 }
2189
2190 /* Subroutine of ui_printf to simplify it.
2191 Print VALUE to STREAM using FORMAT.
2192 VALUE is a C-style string either on the target or
2193 in a GDB internal variable. */
2194
2195 static void
2196 printf_c_string (struct ui_file *stream, const char *format,
2197 struct value *value)
2198 {
2199 const gdb_byte *str;
2200
2201 if (TYPE_CODE (value_type (value)) != TYPE_CODE_PTR
2202 && VALUE_LVAL (value) == lval_internalvar
2203 && c_is_string_type_p (value_type (value)))
2204 {
2205 size_t len = TYPE_LENGTH (value_type (value));
2206
2207 /* Copy the internal var value to TEM_STR and append a terminating null
2208 character. This protects against corrupted C-style strings that lack
2209 the terminating null char. It also allows Ada-style strings (not
2210 null terminated) to be printed without problems. */
2211 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2212
2213 memcpy (tem_str, value_contents (value), len);
2214 tem_str [len] = 0;
2215 str = tem_str;
2216 }
2217 else
2218 {
2219 CORE_ADDR tem = value_as_address (value);;
2220
2221 if (tem == 0)
2222 {
2223 DIAGNOSTIC_PUSH
2224 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2225 fprintf_filtered (stream, format, "(null)");
2226 DIAGNOSTIC_POP
2227 return;
2228 }
2229
2230 /* This is a %s argument. Find the length of the string. */
2231 size_t len;
2232
2233 for (len = 0;; len++)
2234 {
2235 gdb_byte c;
2236
2237 QUIT;
2238 read_memory (tem + len, &c, 1);
2239 if (c == 0)
2240 break;
2241 }
2242
2243 /* Copy the string contents into a string inside GDB. */
2244 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2245
2246 if (len != 0)
2247 read_memory (tem, tem_str, len);
2248 tem_str[len] = 0;
2249 str = tem_str;
2250 }
2251
2252 DIAGNOSTIC_PUSH
2253 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2254 fprintf_filtered (stream, format, (char *) str);
2255 DIAGNOSTIC_POP
2256 }
2257
2258 /* Subroutine of ui_printf to simplify it.
2259 Print VALUE to STREAM using FORMAT.
2260 VALUE is a wide C-style string on the target or
2261 in a GDB internal variable. */
2262
2263 static void
2264 printf_wide_c_string (struct ui_file *stream, const char *format,
2265 struct value *value)
2266 {
2267 const gdb_byte *str;
2268 size_t len;
2269 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2270 struct type *wctype = lookup_typename (current_language,
2271 "wchar_t", NULL, 0);
2272 int wcwidth = TYPE_LENGTH (wctype);
2273
2274 if (VALUE_LVAL (value) == lval_internalvar
2275 && c_is_string_type_p (value_type (value)))
2276 {
2277 str = value_contents (value);
2278 len = TYPE_LENGTH (value_type (value));
2279 }
2280 else
2281 {
2282 CORE_ADDR tem = value_as_address (value);
2283
2284 if (tem == 0)
2285 {
2286 DIAGNOSTIC_PUSH
2287 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2288 fprintf_filtered (stream, format, "(null)");
2289 DIAGNOSTIC_POP
2290 return;
2291 }
2292
2293 /* This is a %s argument. Find the length of the string. */
2294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2295 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2296
2297 for (len = 0;; len += wcwidth)
2298 {
2299 QUIT;
2300 read_memory (tem + len, buf, wcwidth);
2301 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2302 break;
2303 }
2304
2305 /* Copy the string contents into a string inside GDB. */
2306 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2307
2308 if (len != 0)
2309 read_memory (tem, tem_str, len);
2310 memset (&tem_str[len], 0, wcwidth);
2311 str = tem_str;
2312 }
2313
2314 auto_obstack output;
2315
2316 convert_between_encodings (target_wide_charset (gdbarch),
2317 host_charset (),
2318 str, len, wcwidth,
2319 &output, translit_char);
2320 obstack_grow_str0 (&output, "");
2321
2322 DIAGNOSTIC_PUSH
2323 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2324 fprintf_filtered (stream, format, obstack_base (&output));
2325 DIAGNOSTIC_POP
2326 }
2327
2328 /* Subroutine of ui_printf to simplify it.
2329 Print VALUE, a floating point value, to STREAM using FORMAT. */
2330
2331 static void
2332 printf_floating (struct ui_file *stream, const char *format,
2333 struct value *value, enum argclass argclass)
2334 {
2335 /* Parameter data. */
2336 struct type *param_type = value_type (value);
2337 struct gdbarch *gdbarch = get_type_arch (param_type);
2338
2339 /* Determine target type corresponding to the format string. */
2340 struct type *fmt_type;
2341 switch (argclass)
2342 {
2343 case double_arg:
2344 fmt_type = builtin_type (gdbarch)->builtin_double;
2345 break;
2346 case long_double_arg:
2347 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2348 break;
2349 case dec32float_arg:
2350 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2351 break;
2352 case dec64float_arg:
2353 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2354 break;
2355 case dec128float_arg:
2356 fmt_type = builtin_type (gdbarch)->builtin_declong;
2357 break;
2358 default:
2359 gdb_assert_not_reached ("unexpected argument class");
2360 }
2361
2362 /* To match the traditional GDB behavior, the conversion is
2363 done differently depending on the type of the parameter:
2364
2365 - if the parameter has floating-point type, it's value
2366 is converted to the target type;
2367
2368 - otherwise, if the parameter has a type that is of the
2369 same size as a built-in floating-point type, the value
2370 bytes are interpreted as if they were of that type, and
2371 then converted to the target type (this is not done for
2372 decimal floating-point argument classes);
2373
2374 - otherwise, if the source value has an integer value,
2375 it's value is converted to the target type;
2376
2377 - otherwise, an error is raised.
2378
2379 In either case, the result of the conversion is a byte buffer
2380 formatted in the target format for the target type. */
2381
2382 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2383 {
2384 param_type = float_type_from_length (param_type);
2385 if (param_type != value_type (value))
2386 value = value_from_contents (param_type, value_contents (value));
2387 }
2388
2389 value = value_cast (fmt_type, value);
2390
2391 /* Convert the value to a string and print it. */
2392 std::string str
2393 = target_float_to_string (value_contents (value), fmt_type, format);
2394 fputs_filtered (str.c_str (), stream);
2395 }
2396
2397 /* Subroutine of ui_printf to simplify it.
2398 Print VALUE, a target pointer, to STREAM using FORMAT. */
2399
2400 static void
2401 printf_pointer (struct ui_file *stream, const char *format,
2402 struct value *value)
2403 {
2404 /* We avoid the host's %p because pointers are too
2405 likely to be the wrong size. The only interesting
2406 modifier for %p is a width; extract that, and then
2407 handle %p as glibc would: %#x or a literal "(nil)". */
2408
2409 const char *p;
2410 char *fmt, *fmt_p;
2411 #ifdef PRINTF_HAS_LONG_LONG
2412 long long val = value_as_long (value);
2413 #else
2414 long val = value_as_long (value);
2415 #endif
2416
2417 fmt = (char *) alloca (strlen (format) + 5);
2418
2419 /* Copy up to the leading %. */
2420 p = format;
2421 fmt_p = fmt;
2422 while (*p)
2423 {
2424 int is_percent = (*p == '%');
2425
2426 *fmt_p++ = *p++;
2427 if (is_percent)
2428 {
2429 if (*p == '%')
2430 *fmt_p++ = *p++;
2431 else
2432 break;
2433 }
2434 }
2435
2436 if (val != 0)
2437 *fmt_p++ = '#';
2438
2439 /* Copy any width or flags. Only the "-" flag is valid for pointers
2440 -- see the format_pieces constructor. */
2441 while (*p == '-' || (*p >= '0' && *p < '9'))
2442 *fmt_p++ = *p++;
2443
2444 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2445 if (val != 0)
2446 {
2447 #ifdef PRINTF_HAS_LONG_LONG
2448 *fmt_p++ = 'l';
2449 #endif
2450 *fmt_p++ = 'l';
2451 *fmt_p++ = 'x';
2452 *fmt_p++ = '\0';
2453 DIAGNOSTIC_PUSH
2454 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2455 fprintf_filtered (stream, fmt, val);
2456 DIAGNOSTIC_POP
2457 }
2458 else
2459 {
2460 *fmt_p++ = 's';
2461 *fmt_p++ = '\0';
2462 DIAGNOSTIC_PUSH
2463 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2464 fprintf_filtered (stream, fmt, "(nil)");
2465 DIAGNOSTIC_POP
2466 }
2467 }
2468
2469 /* printf "printf format string" ARG to STREAM. */
2470
2471 static void
2472 ui_printf (const char *arg, struct ui_file *stream)
2473 {
2474 const char *s = arg;
2475 std::vector<struct value *> val_args;
2476
2477 if (s == 0)
2478 error_no_arg (_("format-control string and values to print"));
2479
2480 s = skip_spaces (s);
2481
2482 /* A format string should follow, enveloped in double quotes. */
2483 if (*s++ != '"')
2484 error (_("Bad format string, missing '\"'."));
2485
2486 format_pieces fpieces (&s);
2487
2488 if (*s++ != '"')
2489 error (_("Bad format string, non-terminated '\"'."));
2490
2491 s = skip_spaces (s);
2492
2493 if (*s != ',' && *s != 0)
2494 error (_("Invalid argument syntax"));
2495
2496 if (*s == ',')
2497 s++;
2498 s = skip_spaces (s);
2499
2500 {
2501 int nargs_wanted;
2502 int i;
2503 const char *current_substring;
2504
2505 nargs_wanted = 0;
2506 for (auto &&piece : fpieces)
2507 if (piece.argclass != literal_piece)
2508 ++nargs_wanted;
2509
2510 /* Now, parse all arguments and evaluate them.
2511 Store the VALUEs in VAL_ARGS. */
2512
2513 while (*s != '\0')
2514 {
2515 const char *s1;
2516
2517 s1 = s;
2518 val_args.push_back (parse_to_comma_and_eval (&s1));
2519
2520 s = s1;
2521 if (*s == ',')
2522 s++;
2523 }
2524
2525 if (val_args.size () != nargs_wanted)
2526 error (_("Wrong number of arguments for specified format-string"));
2527
2528 /* Now actually print them. */
2529 i = 0;
2530 for (auto &&piece : fpieces)
2531 {
2532 current_substring = piece.string;
2533 switch (piece.argclass)
2534 {
2535 case string_arg:
2536 printf_c_string (stream, current_substring, val_args[i]);
2537 break;
2538 case wide_string_arg:
2539 printf_wide_c_string (stream, current_substring, val_args[i]);
2540 break;
2541 case wide_char_arg:
2542 {
2543 struct gdbarch *gdbarch
2544 = get_type_arch (value_type (val_args[i]));
2545 struct type *wctype = lookup_typename (current_language,
2546 "wchar_t", NULL, 0);
2547 struct type *valtype;
2548 const gdb_byte *bytes;
2549
2550 valtype = value_type (val_args[i]);
2551 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2552 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2553 error (_("expected wchar_t argument for %%lc"));
2554
2555 bytes = value_contents (val_args[i]);
2556
2557 auto_obstack output;
2558
2559 convert_between_encodings (target_wide_charset (gdbarch),
2560 host_charset (),
2561 bytes, TYPE_LENGTH (valtype),
2562 TYPE_LENGTH (valtype),
2563 &output, translit_char);
2564 obstack_grow_str0 (&output, "");
2565
2566 DIAGNOSTIC_PUSH
2567 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2568 fprintf_filtered (stream, current_substring,
2569 obstack_base (&output));
2570 DIAGNOSTIC_POP
2571 }
2572 break;
2573 case long_long_arg:
2574 #ifdef PRINTF_HAS_LONG_LONG
2575 {
2576 long long val = value_as_long (val_args[i]);
2577
2578 DIAGNOSTIC_PUSH
2579 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2580 fprintf_filtered (stream, current_substring, val);
2581 DIAGNOSTIC_POP
2582 break;
2583 }
2584 #else
2585 error (_("long long not supported in printf"));
2586 #endif
2587 case int_arg:
2588 {
2589 int val = value_as_long (val_args[i]);
2590
2591 DIAGNOSTIC_PUSH
2592 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2593 fprintf_filtered (stream, current_substring, val);
2594 DIAGNOSTIC_POP
2595 break;
2596 }
2597 case long_arg:
2598 {
2599 long val = value_as_long (val_args[i]);
2600
2601 DIAGNOSTIC_PUSH
2602 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2603 fprintf_filtered (stream, current_substring, val);
2604 DIAGNOSTIC_POP
2605 break;
2606 }
2607 case size_t_arg:
2608 {
2609 size_t val = value_as_long (val_args[i]);
2610
2611 DIAGNOSTIC_PUSH
2612 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2613 fprintf_filtered (stream, current_substring, val);
2614 DIAGNOSTIC_POP
2615 break;
2616 }
2617 /* Handles floating-point values. */
2618 case double_arg:
2619 case long_double_arg:
2620 case dec32float_arg:
2621 case dec64float_arg:
2622 case dec128float_arg:
2623 printf_floating (stream, current_substring, val_args[i],
2624 piece.argclass);
2625 break;
2626 case ptr_arg:
2627 printf_pointer (stream, current_substring, val_args[i]);
2628 break;
2629 case literal_piece:
2630 /* Print a portion of the format string that has no
2631 directives. Note that this will not include any
2632 ordinary %-specs, but it might include "%%". That is
2633 why we use printf_filtered and not puts_filtered here.
2634 Also, we pass a dummy argument because some platforms
2635 have modified GCC to include -Wformat-security by
2636 default, which will warn here if there is no
2637 argument. */
2638 DIAGNOSTIC_PUSH
2639 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2640 fprintf_filtered (stream, current_substring, 0);
2641 DIAGNOSTIC_POP
2642 break;
2643 default:
2644 internal_error (__FILE__, __LINE__,
2645 _("failed internal consistency check"));
2646 }
2647 /* Maybe advance to the next argument. */
2648 if (piece.argclass != literal_piece)
2649 ++i;
2650 }
2651 }
2652 }
2653
2654 /* Implement the "printf" command. */
2655
2656 static void
2657 printf_command (const char *arg, int from_tty)
2658 {
2659 ui_printf (arg, gdb_stdout);
2660 reset_terminal_style (gdb_stdout);
2661 wrap_here ("");
2662 gdb_stdout->flush ();
2663 }
2664
2665 /* Implement the "eval" command. */
2666
2667 static void
2668 eval_command (const char *arg, int from_tty)
2669 {
2670 string_file stb;
2671
2672 ui_printf (arg, &stb);
2673
2674 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2675
2676 execute_command (expanded.c_str (), from_tty);
2677 }
2678
2679 void _initialize_printcmd ();
2680 void
2681 _initialize_printcmd ()
2682 {
2683 struct cmd_list_element *c;
2684
2685 current_display_number = -1;
2686
2687 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2688
2689 add_info ("address", info_address_command,
2690 _("Describe where symbol SYM is stored.\n\
2691 Usage: info address SYM"));
2692
2693 add_info ("symbol", info_symbol_command, _("\
2694 Describe what symbol is at location ADDR.\n\
2695 Usage: info symbol ADDR\n\
2696 Only for symbols with fixed locations (global or static scope)."));
2697
2698 add_com ("x", class_vars, x_command, _("\
2699 Examine memory: x/FMT ADDRESS.\n\
2700 ADDRESS is an expression for the memory address to examine.\n\
2701 FMT is a repeat count followed by a format letter and a size letter.\n\
2702 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2703 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2704 and z(hex, zero padded on the left).\n\
2705 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2706 The specified number of objects of the specified size are printed\n\
2707 according to the format. If a negative number is specified, memory is\n\
2708 examined backward from the address.\n\n\
2709 Defaults for format and size letters are those previously used.\n\
2710 Default count is 1. Default address is following last thing printed\n\
2711 with this command or \"print\"."));
2712
2713 add_info ("display", info_display_command, _("\
2714 Expressions to display when program stops, with code numbers.\n\
2715 Usage: info display"));
2716
2717 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2718 Cancel some expressions to be displayed when program stops.\n\
2719 Usage: undisplay [NUM]...\n\
2720 Arguments are the code numbers of the expressions to stop displaying.\n\
2721 No argument means cancel all automatic-display expressions.\n\
2722 \"delete display\" has the same effect as this command.\n\
2723 Do \"info display\" to see current list of code numbers."),
2724 &cmdlist);
2725
2726 add_com ("display", class_vars, display_command, _("\
2727 Print value of expression EXP each time the program stops.\n\
2728 Usage: display[/FMT] EXP\n\
2729 /FMT may be used before EXP as in the \"print\" command.\n\
2730 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2731 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2732 and examining is done as in the \"x\" command.\n\n\
2733 With no argument, display all currently requested auto-display expressions.\n\
2734 Use \"undisplay\" to cancel display requests previously made."));
2735
2736 add_cmd ("display", class_vars, enable_display_command, _("\
2737 Enable some expressions to be displayed when program stops.\n\
2738 Usage: enable display [NUM]...\n\
2739 Arguments are the code numbers of the expressions to resume displaying.\n\
2740 No argument means enable all automatic-display expressions.\n\
2741 Do \"info display\" to see current list of code numbers."), &enablelist);
2742
2743 add_cmd ("display", class_vars, disable_display_command, _("\
2744 Disable some expressions to be displayed when program stops.\n\
2745 Usage: disable display [NUM]...\n\
2746 Arguments are the code numbers of the expressions to stop displaying.\n\
2747 No argument means disable all automatic-display expressions.\n\
2748 Do \"info display\" to see current list of code numbers."), &disablelist);
2749
2750 add_cmd ("display", class_vars, undisplay_command, _("\
2751 Cancel some expressions to be displayed when program stops.\n\
2752 Usage: delete display [NUM]...\n\
2753 Arguments are the code numbers of the expressions to stop displaying.\n\
2754 No argument means cancel all automatic-display expressions.\n\
2755 Do \"info display\" to see current list of code numbers."), &deletelist);
2756
2757 add_com ("printf", class_vars, printf_command, _("\
2758 Formatted printing, like the C \"printf\" function.\n\
2759 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2760 This supports most C printf format specifications, like %s, %d, etc."));
2761
2762 add_com ("output", class_vars, output_command, _("\
2763 Like \"print\" but don't put in value history and don't print newline.\n\
2764 Usage: output EXP\n\
2765 This is useful in user-defined commands."));
2766
2767 add_prefix_cmd ("set", class_vars, set_command, _("\
2768 Evaluate expression EXP and assign result to variable VAR.\n\
2769 Usage: set VAR = EXP\n\
2770 This uses assignment syntax appropriate for the current language\n\
2771 (VAR = EXP or VAR := EXP for example).\n\
2772 VAR may be a debugger \"convenience\" variable (names starting\n\
2773 with $), a register (a few standard names starting with $), or an actual\n\
2774 variable in the program being debugged. EXP is any valid expression.\n\
2775 Use \"set variable\" for variables with names identical to set subcommands.\n\
2776 \n\
2777 With a subcommand, this command modifies parts of the gdb environment.\n\
2778 You can see these environment settings with the \"show\" command."),
2779 &setlist, "set ", 1, &cmdlist);
2780 if (dbx_commands)
2781 add_com ("assign", class_vars, set_command, _("\
2782 Evaluate expression EXP and assign result to variable VAR.\n\
2783 Usage: assign VAR = EXP\n\
2784 This uses assignment syntax appropriate for the current language\n\
2785 (VAR = EXP or VAR := EXP for example).\n\
2786 VAR may be a debugger \"convenience\" variable (names starting\n\
2787 with $), a register (a few standard names starting with $), or an actual\n\
2788 variable in the program being debugged. EXP is any valid expression.\n\
2789 Use \"set variable\" for variables with names identical to set subcommands.\n\
2790 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2791 You can see these environment settings with the \"show\" command."));
2792
2793 /* "call" is the same as "set", but handy for dbx users to call fns. */
2794 c = add_com ("call", class_vars, call_command, _("\
2795 Call a function in the program.\n\
2796 Usage: call EXP\n\
2797 The argument is the function name and arguments, in the notation of the\n\
2798 current working language. The result is printed and saved in the value\n\
2799 history, if it is not void."));
2800 set_cmd_completer_handle_brkchars (c, print_command_completer);
2801
2802 add_cmd ("variable", class_vars, set_command, _("\
2803 Evaluate expression EXP and assign result to variable VAR.\n\
2804 Usage: set variable VAR = EXP\n\
2805 This uses assignment syntax appropriate for the current language\n\
2806 (VAR = EXP or VAR := EXP for example).\n\
2807 VAR may be a debugger \"convenience\" variable (names starting\n\
2808 with $), a register (a few standard names starting with $), or an actual\n\
2809 variable in the program being debugged. EXP is any valid expression.\n\
2810 This may usually be abbreviated to simply \"set\"."),
2811 &setlist);
2812 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2813
2814 const auto print_opts = make_value_print_options_def_group (nullptr);
2815
2816 static const std::string print_help = gdb::option::build_help (_("\
2817 Print value of expression EXP.\n\
2818 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2819 \n\
2820 Options:\n\
2821 %OPTIONS%\n\
2822 \n\
2823 Note: because this command accepts arbitrary expressions, if you\n\
2824 specify any command option, you must use a double dash (\"--\")\n\
2825 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2826 \n\
2827 Variables accessible are those of the lexical environment of the selected\n\
2828 stack frame, plus all those whose scope is global or an entire file.\n\
2829 \n\
2830 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2831 $$NUM refers to NUM'th value back from the last one.\n\
2832 Names starting with $ refer to registers (with the values they would have\n\
2833 if the program were to return to the stack frame now selected, restoring\n\
2834 all registers saved by frames farther in) or else to debugger\n\
2835 \"convenience\" variables (any such name not a known register).\n\
2836 Use assignment expressions to give values to convenience variables.\n\
2837 \n\
2838 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2839 @ is a binary operator for treating consecutive data objects\n\
2840 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2841 element is FOO, whose second element is stored in the space following\n\
2842 where FOO is stored, etc. FOO must be an expression whose value\n\
2843 resides in memory.\n\
2844 \n\
2845 EXP may be preceded with /FMT, where FMT is a format letter\n\
2846 but no count or size letter (see \"x\" command)."),
2847 print_opts);
2848
2849 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2850 set_cmd_completer_handle_brkchars (c, print_command_completer);
2851 add_com_alias ("p", "print", class_vars, 1);
2852 add_com_alias ("inspect", "print", class_vars, 1);
2853
2854 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2855 &max_symbolic_offset, _("\
2856 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2857 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2858 Tell GDB to only display the symbolic form of an address if the\n\
2859 offset between the closest earlier symbol and the address is less than\n\
2860 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2861 to always print the symbolic form of an address if any symbol precedes\n\
2862 it. Zero is equivalent to \"unlimited\"."),
2863 NULL,
2864 show_max_symbolic_offset,
2865 &setprintlist, &showprintlist);
2866 add_setshow_boolean_cmd ("symbol-filename", no_class,
2867 &print_symbol_filename, _("\
2868 Set printing of source filename and line number with <SYMBOL>."), _("\
2869 Show printing of source filename and line number with <SYMBOL>."), NULL,
2870 NULL,
2871 show_print_symbol_filename,
2872 &setprintlist, &showprintlist);
2873
2874 add_com ("eval", no_class, eval_command, _("\
2875 Construct a GDB command and then evaluate it.\n\
2876 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2877 Convert the arguments to a string as \"printf\" would, but then\n\
2878 treat this string as a command line, and evaluate it."));
2879 }
This page took 0.110224 seconds and 5 git commands to generate.