Style print_address_symbolic
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "target-float.h"
42 #include "observable.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
49 #include "cli/cli-style.h"
50 #include "format.h"
51 #include "source.h"
52 #include "common/byte-vector.h"
53 #include "cli/cli-style.h"
54
55 /* Last specified output format. */
56
57 static char last_format = 0;
58
59 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
60
61 static char last_size = 'w';
62
63 /* Last specified count for the 'x' command. */
64
65 static int last_count;
66
67 /* Default address to examine next, and associated architecture. */
68
69 static struct gdbarch *next_gdbarch;
70 static CORE_ADDR next_address;
71
72 /* Number of delay instructions following current disassembled insn. */
73
74 static int branch_delay_insns;
75
76 /* Last address examined. */
77
78 static CORE_ADDR last_examine_address;
79
80 /* Contents of last address examined.
81 This is not valid past the end of the `x' command! */
82
83 static value_ref_ptr last_examine_value;
84
85 /* Largest offset between a symbolic value and an address, that will be
86 printed as `0x1234 <symbol+offset>'. */
87
88 static unsigned int max_symbolic_offset = UINT_MAX;
89 static void
90 show_max_symbolic_offset (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file,
94 _("The largest offset that will be "
95 "printed in <symbol+1234> form is %s.\n"),
96 value);
97 }
98
99 /* Append the source filename and linenumber of the symbol when
100 printing a symbolic value as `<symbol at filename:linenum>' if set. */
101 static int print_symbol_filename = 0;
102 static void
103 show_print_symbol_filename (struct ui_file *file, int from_tty,
104 struct cmd_list_element *c, const char *value)
105 {
106 fprintf_filtered (file, _("Printing of source filename and "
107 "line number with <symbol> is %s.\n"),
108 value);
109 }
110
111 /* Number of auto-display expression currently being displayed.
112 So that we can disable it if we get a signal within it.
113 -1 when not doing one. */
114
115 static int current_display_number;
116
117 struct display
118 {
119 /* Chain link to next auto-display item. */
120 struct display *next;
121
122 /* The expression as the user typed it. */
123 char *exp_string;
124
125 /* Expression to be evaluated and displayed. */
126 expression_up exp;
127
128 /* Item number of this auto-display item. */
129 int number;
130
131 /* Display format specified. */
132 struct format_data format;
133
134 /* Program space associated with `block'. */
135 struct program_space *pspace;
136
137 /* Innermost block required by this expression when evaluated. */
138 const struct block *block;
139
140 /* Status of this display (enabled or disabled). */
141 int enabled_p;
142 };
143
144 /* Chain of expressions whose values should be displayed
145 automatically each time the program stops. */
146
147 static struct display *display_chain;
148
149 static int display_number;
150
151 /* Walk the following statement or block through all displays.
152 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
153 display. */
154
155 #define ALL_DISPLAYS(B) \
156 for (B = display_chain; B; B = B->next)
157
158 #define ALL_DISPLAYS_SAFE(B,TMP) \
159 for (B = display_chain; \
160 B ? (TMP = B->next, 1): 0; \
161 B = TMP)
162
163 /* Prototypes for local functions. */
164
165 static void do_one_display (struct display *);
166 \f
167
168 /* Decode a format specification. *STRING_PTR should point to it.
169 OFORMAT and OSIZE are used as defaults for the format and size
170 if none are given in the format specification.
171 If OSIZE is zero, then the size field of the returned value
172 should be set only if a size is explicitly specified by the
173 user.
174 The structure returned describes all the data
175 found in the specification. In addition, *STRING_PTR is advanced
176 past the specification and past all whitespace following it. */
177
178 static struct format_data
179 decode_format (const char **string_ptr, int oformat, int osize)
180 {
181 struct format_data val;
182 const char *p = *string_ptr;
183
184 val.format = '?';
185 val.size = '?';
186 val.count = 1;
187 val.raw = 0;
188
189 if (*p == '-')
190 {
191 val.count = -1;
192 p++;
193 }
194 if (*p >= '0' && *p <= '9')
195 val.count *= atoi (p);
196 while (*p >= '0' && *p <= '9')
197 p++;
198
199 /* Now process size or format letters that follow. */
200
201 while (1)
202 {
203 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
204 val.size = *p++;
205 else if (*p == 'r')
206 {
207 val.raw = 1;
208 p++;
209 }
210 else if (*p >= 'a' && *p <= 'z')
211 val.format = *p++;
212 else
213 break;
214 }
215
216 *string_ptr = skip_spaces (p);
217
218 /* Set defaults for format and size if not specified. */
219 if (val.format == '?')
220 {
221 if (val.size == '?')
222 {
223 /* Neither has been specified. */
224 val.format = oformat;
225 val.size = osize;
226 }
227 else
228 /* If a size is specified, any format makes a reasonable
229 default except 'i'. */
230 val.format = oformat == 'i' ? 'x' : oformat;
231 }
232 else if (val.size == '?')
233 switch (val.format)
234 {
235 case 'a':
236 /* Pick the appropriate size for an address. This is deferred
237 until do_examine when we know the actual architecture to use.
238 A special size value of 'a' is used to indicate this case. */
239 val.size = osize ? 'a' : osize;
240 break;
241 case 'f':
242 /* Floating point has to be word or giantword. */
243 if (osize == 'w' || osize == 'g')
244 val.size = osize;
245 else
246 /* Default it to giantword if the last used size is not
247 appropriate. */
248 val.size = osize ? 'g' : osize;
249 break;
250 case 'c':
251 /* Characters default to one byte. */
252 val.size = osize ? 'b' : osize;
253 break;
254 case 's':
255 /* Display strings with byte size chars unless explicitly
256 specified. */
257 val.size = '\0';
258 break;
259
260 default:
261 /* The default is the size most recently specified. */
262 val.size = osize;
263 }
264
265 return val;
266 }
267 \f
268 /* Print value VAL on stream according to OPTIONS.
269 Do not end with a newline.
270 SIZE is the letter for the size of datum being printed.
271 This is used to pad hex numbers so they line up. SIZE is 0
272 for print / output and set for examine. */
273
274 static void
275 print_formatted (struct value *val, int size,
276 const struct value_print_options *options,
277 struct ui_file *stream)
278 {
279 struct type *type = check_typedef (value_type (val));
280 int len = TYPE_LENGTH (type);
281
282 if (VALUE_LVAL (val) == lval_memory)
283 next_address = value_address (val) + len;
284
285 if (size)
286 {
287 switch (options->format)
288 {
289 case 's':
290 {
291 struct type *elttype = value_type (val);
292
293 next_address = (value_address (val)
294 + val_print_string (elttype, NULL,
295 value_address (val), -1,
296 stream, options) * len);
297 }
298 return;
299
300 case 'i':
301 /* We often wrap here if there are long symbolic names. */
302 wrap_here (" ");
303 next_address = (value_address (val)
304 + gdb_print_insn (get_type_arch (type),
305 value_address (val), stream,
306 &branch_delay_insns));
307 return;
308 }
309 }
310
311 if (options->format == 0 || options->format == 's'
312 || TYPE_CODE (type) == TYPE_CODE_REF
313 || TYPE_CODE (type) == TYPE_CODE_ARRAY
314 || TYPE_CODE (type) == TYPE_CODE_STRING
315 || TYPE_CODE (type) == TYPE_CODE_STRUCT
316 || TYPE_CODE (type) == TYPE_CODE_UNION
317 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
318 value_print (val, stream, options);
319 else
320 /* User specified format, so don't look to the type to tell us
321 what to do. */
322 val_print_scalar_formatted (type,
323 value_embedded_offset (val),
324 val,
325 options, size, stream);
326 }
327
328 /* Return builtin floating point type of same length as TYPE.
329 If no such type is found, return TYPE itself. */
330 static struct type *
331 float_type_from_length (struct type *type)
332 {
333 struct gdbarch *gdbarch = get_type_arch (type);
334 const struct builtin_type *builtin = builtin_type (gdbarch);
335
336 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
337 type = builtin->builtin_float;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
339 type = builtin->builtin_double;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
341 type = builtin->builtin_long_double;
342
343 return type;
344 }
345
346 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
347 according to OPTIONS and SIZE on STREAM. Formats s and i are not
348 supported at this level. */
349
350 void
351 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
352 const struct value_print_options *options,
353 int size, struct ui_file *stream)
354 {
355 struct gdbarch *gdbarch = get_type_arch (type);
356 unsigned int len = TYPE_LENGTH (type);
357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
358
359 /* String printing should go through val_print_scalar_formatted. */
360 gdb_assert (options->format != 's');
361
362 /* If the value is a pointer, and pointers and addresses are not the
363 same, then at this point, the value's length (in target bytes) is
364 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
365 if (TYPE_CODE (type) == TYPE_CODE_PTR)
366 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
367
368 /* If we are printing it as unsigned, truncate it in case it is actually
369 a negative signed value (e.g. "print/u (short)-1" should print 65535
370 (if shorts are 16 bits) instead of 4294967295). */
371 if (options->format != 'c'
372 && (options->format != 'd' || TYPE_UNSIGNED (type)))
373 {
374 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
375 valaddr += TYPE_LENGTH (type) - len;
376 }
377
378 if (size != 0 && (options->format == 'x' || options->format == 't'))
379 {
380 /* Truncate to fit. */
381 unsigned newlen;
382 switch (size)
383 {
384 case 'b':
385 newlen = 1;
386 break;
387 case 'h':
388 newlen = 2;
389 break;
390 case 'w':
391 newlen = 4;
392 break;
393 case 'g':
394 newlen = 8;
395 break;
396 default:
397 error (_("Undefined output size \"%c\"."), size);
398 }
399 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
400 valaddr += len - newlen;
401 len = newlen;
402 }
403
404 /* Historically gdb has printed floats by first casting them to a
405 long, and then printing the long. PR cli/16242 suggests changing
406 this to using C-style hex float format. */
407 gdb::byte_vector converted_float_bytes;
408 if (TYPE_CODE (type) == TYPE_CODE_FLT
409 && (options->format == 'o'
410 || options->format == 'x'
411 || options->format == 't'
412 || options->format == 'z'
413 || options->format == 'd'
414 || options->format == 'u'))
415 {
416 LONGEST val_long = unpack_long (type, valaddr);
417 converted_float_bytes.resize (TYPE_LENGTH (type));
418 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
419 byte_order, val_long);
420 valaddr = converted_float_bytes.data ();
421 }
422
423 /* Printing a non-float type as 'f' will interpret the data as if it were
424 of a floating-point type of the same length, if that exists. Otherwise,
425 the data is printed as integer. */
426 char format = options->format;
427 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
428 {
429 type = float_type_from_length (type);
430 if (TYPE_CODE (type) != TYPE_CODE_FLT)
431 format = 0;
432 }
433
434 switch (format)
435 {
436 case 'o':
437 print_octal_chars (stream, valaddr, len, byte_order);
438 break;
439 case 'd':
440 print_decimal_chars (stream, valaddr, len, true, byte_order);
441 break;
442 case 'u':
443 print_decimal_chars (stream, valaddr, len, false, byte_order);
444 break;
445 case 0:
446 if (TYPE_CODE (type) != TYPE_CODE_FLT)
447 {
448 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
449 byte_order);
450 break;
451 }
452 /* FALLTHROUGH */
453 case 'f':
454 print_floating (valaddr, type, stream);
455 break;
456
457 case 't':
458 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
459 break;
460 case 'x':
461 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
462 break;
463 case 'z':
464 print_hex_chars (stream, valaddr, len, byte_order, true);
465 break;
466 case 'c':
467 {
468 struct value_print_options opts = *options;
469
470 LONGEST val_long = unpack_long (type, valaddr);
471
472 opts.format = 0;
473 if (TYPE_UNSIGNED (type))
474 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
475 else
476 type = builtin_type (gdbarch)->builtin_true_char;
477
478 value_print (value_from_longest (type, val_long), stream, &opts);
479 }
480 break;
481
482 case 'a':
483 {
484 CORE_ADDR addr = unpack_pointer (type, valaddr);
485
486 print_address (gdbarch, addr, stream);
487 }
488 break;
489
490 default:
491 error (_("Undefined output format \"%c\"."), format);
492 }
493 }
494
495 /* Specify default address for `x' command.
496 The `info lines' command uses this. */
497
498 void
499 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
500 {
501 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
502
503 next_gdbarch = gdbarch;
504 next_address = addr;
505
506 /* Make address available to the user as $_. */
507 set_internalvar (lookup_internalvar ("_"),
508 value_from_pointer (ptr_type, addr));
509 }
510
511 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
512 after LEADIN. Print nothing if no symbolic name is found nearby.
513 Optionally also print source file and line number, if available.
514 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
515 or to interpret it as a possible C++ name and convert it back to source
516 form. However note that DO_DEMANGLE can be overridden by the specific
517 settings of the demangle and asm_demangle variables. Returns
518 non-zero if anything was printed; zero otherwise. */
519
520 int
521 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
522 struct ui_file *stream,
523 int do_demangle, const char *leadin)
524 {
525 std::string name, filename;
526 int unmapped = 0;
527 int offset = 0;
528 int line = 0;
529
530 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
531 &filename, &line, &unmapped))
532 return 0;
533
534 fputs_filtered (leadin, stream);
535 if (unmapped)
536 fputs_filtered ("<*", stream);
537 else
538 fputs_filtered ("<", stream);
539 fputs_styled (name.c_str (), function_name_style.style (), stream);
540 if (offset != 0)
541 fprintf_filtered (stream, "+%u", (unsigned int) offset);
542
543 /* Append source filename and line number if desired. Give specific
544 line # of this addr, if we have it; else line # of the nearest symbol. */
545 if (print_symbol_filename && !filename.empty ())
546 {
547 fputs_filtered (line == -1 ? " in " : " at ", stream);
548 fputs_styled (filename.c_str (), file_name_style.style (), stream);
549 if (line != -1)
550 fprintf_filtered (stream, ":%d", line);
551 }
552 if (unmapped)
553 fputs_filtered ("*>", stream);
554 else
555 fputs_filtered (">", stream);
556
557 return 1;
558 }
559
560 /* See valprint.h. */
561
562 int
563 build_address_symbolic (struct gdbarch *gdbarch,
564 CORE_ADDR addr, /* IN */
565 int do_demangle, /* IN */
566 std::string *name, /* OUT */
567 int *offset, /* OUT */
568 std::string *filename, /* OUT */
569 int *line, /* OUT */
570 int *unmapped) /* OUT */
571 {
572 struct bound_minimal_symbol msymbol;
573 struct symbol *symbol;
574 CORE_ADDR name_location = 0;
575 struct obj_section *section = NULL;
576 const char *name_temp = "";
577
578 /* Let's say it is mapped (not unmapped). */
579 *unmapped = 0;
580
581 /* Determine if the address is in an overlay, and whether it is
582 mapped. */
583 if (overlay_debugging)
584 {
585 section = find_pc_overlay (addr);
586 if (pc_in_unmapped_range (addr, section))
587 {
588 *unmapped = 1;
589 addr = overlay_mapped_address (addr, section);
590 }
591 }
592
593 /* First try to find the address in the symbol table, then
594 in the minsyms. Take the closest one. */
595
596 /* This is defective in the sense that it only finds text symbols. So
597 really this is kind of pointless--we should make sure that the
598 minimal symbols have everything we need (by changing that we could
599 save some memory, but for many debug format--ELF/DWARF or
600 anything/stabs--it would be inconvenient to eliminate those minimal
601 symbols anyway). */
602 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
603 symbol = find_pc_sect_function (addr, section);
604
605 if (symbol)
606 {
607 /* If this is a function (i.e. a code address), strip out any
608 non-address bits. For instance, display a pointer to the
609 first instruction of a Thumb function as <function>; the
610 second instruction will be <function+2>, even though the
611 pointer is <function+3>. This matches the ISA behavior. */
612 addr = gdbarch_addr_bits_remove (gdbarch, addr);
613
614 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
615 if (do_demangle || asm_demangle)
616 name_temp = SYMBOL_PRINT_NAME (symbol);
617 else
618 name_temp = SYMBOL_LINKAGE_NAME (symbol);
619 }
620
621 if (msymbol.minsym != NULL
622 && MSYMBOL_HAS_SIZE (msymbol.minsym)
623 && MSYMBOL_SIZE (msymbol.minsym) == 0
624 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
625 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
626 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
627 msymbol.minsym = NULL;
628
629 if (msymbol.minsym != NULL)
630 {
631 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
632 {
633 /* If this is a function (i.e. a code address), strip out any
634 non-address bits. For instance, display a pointer to the
635 first instruction of a Thumb function as <function>; the
636 second instruction will be <function+2>, even though the
637 pointer is <function+3>. This matches the ISA behavior. */
638 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
639 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
640 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
641 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
642 addr = gdbarch_addr_bits_remove (gdbarch, addr);
643
644 /* The msymbol is closer to the address than the symbol;
645 use the msymbol instead. */
646 symbol = 0;
647 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
648 if (do_demangle || asm_demangle)
649 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
650 else
651 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
652 }
653 }
654 if (symbol == NULL && msymbol.minsym == NULL)
655 return 1;
656
657 /* If the nearest symbol is too far away, don't print anything symbolic. */
658
659 /* For when CORE_ADDR is larger than unsigned int, we do math in
660 CORE_ADDR. But when we detect unsigned wraparound in the
661 CORE_ADDR math, we ignore this test and print the offset,
662 because addr+max_symbolic_offset has wrapped through the end
663 of the address space back to the beginning, giving bogus comparison. */
664 if (addr > name_location + max_symbolic_offset
665 && name_location + max_symbolic_offset > name_location)
666 return 1;
667
668 *offset = addr - name_location;
669
670 *name = name_temp;
671
672 if (print_symbol_filename)
673 {
674 struct symtab_and_line sal;
675
676 sal = find_pc_sect_line (addr, section, 0);
677
678 if (sal.symtab)
679 {
680 *filename = symtab_to_filename_for_display (sal.symtab);
681 *line = sal.line;
682 }
683 }
684 return 0;
685 }
686
687
688 /* Print address ADDR symbolically on STREAM.
689 First print it as a number. Then perhaps print
690 <SYMBOL + OFFSET> after the number. */
691
692 void
693 print_address (struct gdbarch *gdbarch,
694 CORE_ADDR addr, struct ui_file *stream)
695 {
696 fputs_filtered (paddress (gdbarch, addr), stream);
697 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
698 }
699
700 /* Return a prefix for instruction address:
701 "=> " for current instruction, else " ". */
702
703 const char *
704 pc_prefix (CORE_ADDR addr)
705 {
706 if (has_stack_frames ())
707 {
708 struct frame_info *frame;
709 CORE_ADDR pc;
710
711 frame = get_selected_frame (NULL);
712 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
713 return "=> ";
714 }
715 return " ";
716 }
717
718 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
719 controls whether to print the symbolic name "raw" or demangled.
720 Return non-zero if anything was printed; zero otherwise. */
721
722 int
723 print_address_demangle (const struct value_print_options *opts,
724 struct gdbarch *gdbarch, CORE_ADDR addr,
725 struct ui_file *stream, int do_demangle)
726 {
727 if (opts->addressprint)
728 {
729 fputs_filtered (paddress (gdbarch, addr), stream);
730 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
731 }
732 else
733 {
734 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
735 }
736 return 1;
737 }
738 \f
739
740 /* Find the address of the instruction that is INST_COUNT instructions before
741 the instruction at ADDR.
742 Since some architectures have variable-length instructions, we can't just
743 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
744 number information to locate the nearest known instruction boundary,
745 and disassemble forward from there. If we go out of the symbol range
746 during disassembling, we return the lowest address we've got so far and
747 set the number of instructions read to INST_READ. */
748
749 static CORE_ADDR
750 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
751 int inst_count, int *inst_read)
752 {
753 /* The vector PCS is used to store instruction addresses within
754 a pc range. */
755 CORE_ADDR loop_start, loop_end, p;
756 std::vector<CORE_ADDR> pcs;
757 struct symtab_and_line sal;
758
759 *inst_read = 0;
760 loop_start = loop_end = addr;
761
762 /* In each iteration of the outer loop, we get a pc range that ends before
763 LOOP_START, then we count and store every instruction address of the range
764 iterated in the loop.
765 If the number of instructions counted reaches INST_COUNT, return the
766 stored address that is located INST_COUNT instructions back from ADDR.
767 If INST_COUNT is not reached, we subtract the number of counted
768 instructions from INST_COUNT, and go to the next iteration. */
769 do
770 {
771 pcs.clear ();
772 sal = find_pc_sect_line (loop_start, NULL, 1);
773 if (sal.line <= 0)
774 {
775 /* We reach here when line info is not available. In this case,
776 we print a message and just exit the loop. The return value
777 is calculated after the loop. */
778 printf_filtered (_("No line number information available "
779 "for address "));
780 wrap_here (" ");
781 print_address (gdbarch, loop_start - 1, gdb_stdout);
782 printf_filtered ("\n");
783 break;
784 }
785
786 loop_end = loop_start;
787 loop_start = sal.pc;
788
789 /* This loop pushes instruction addresses in the range from
790 LOOP_START to LOOP_END. */
791 for (p = loop_start; p < loop_end;)
792 {
793 pcs.push_back (p);
794 p += gdb_insn_length (gdbarch, p);
795 }
796
797 inst_count -= pcs.size ();
798 *inst_read += pcs.size ();
799 }
800 while (inst_count > 0);
801
802 /* After the loop, the vector PCS has instruction addresses of the last
803 source line we processed, and INST_COUNT has a negative value.
804 We return the address at the index of -INST_COUNT in the vector for
805 the reason below.
806 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
807 Line X of File
808 0x4000
809 0x4001
810 0x4005
811 Line Y of File
812 0x4009
813 0x400c
814 => 0x400e
815 0x4011
816 find_instruction_backward is called with INST_COUNT = 4 and expected to
817 return 0x4001. When we reach here, INST_COUNT is set to -1 because
818 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
819 4001 is located at the index 1 of the last iterated line (= Line X),
820 which is simply calculated by -INST_COUNT.
821 The case when the length of PCS is 0 means that we reached an area for
822 which line info is not available. In such case, we return LOOP_START,
823 which was the lowest instruction address that had line info. */
824 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
825
826 /* INST_READ includes all instruction addresses in a pc range. Need to
827 exclude the beginning part up to the address we're returning. That
828 is, exclude {0x4000} in the example above. */
829 if (inst_count < 0)
830 *inst_read += inst_count;
831
832 return p;
833 }
834
835 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
836 placing the results in GDB's memory from MYADDR + LEN. Returns
837 a count of the bytes actually read. */
838
839 static int
840 read_memory_backward (struct gdbarch *gdbarch,
841 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
842 {
843 int errcode;
844 int nread; /* Number of bytes actually read. */
845
846 /* First try a complete read. */
847 errcode = target_read_memory (memaddr, myaddr, len);
848 if (errcode == 0)
849 {
850 /* Got it all. */
851 nread = len;
852 }
853 else
854 {
855 /* Loop, reading one byte at a time until we get as much as we can. */
856 memaddr += len;
857 myaddr += len;
858 for (nread = 0; nread < len; ++nread)
859 {
860 errcode = target_read_memory (--memaddr, --myaddr, 1);
861 if (errcode != 0)
862 {
863 /* The read was unsuccessful, so exit the loop. */
864 printf_filtered (_("Cannot access memory at address %s\n"),
865 paddress (gdbarch, memaddr));
866 break;
867 }
868 }
869 }
870 return nread;
871 }
872
873 /* Returns true if X (which is LEN bytes wide) is the number zero. */
874
875 static int
876 integer_is_zero (const gdb_byte *x, int len)
877 {
878 int i = 0;
879
880 while (i < len && x[i] == 0)
881 ++i;
882 return (i == len);
883 }
884
885 /* Find the start address of a string in which ADDR is included.
886 Basically we search for '\0' and return the next address,
887 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
888 we stop searching and return the address to print characters as many as
889 PRINT_MAX from the string. */
890
891 static CORE_ADDR
892 find_string_backward (struct gdbarch *gdbarch,
893 CORE_ADDR addr, int count, int char_size,
894 const struct value_print_options *options,
895 int *strings_counted)
896 {
897 const int chunk_size = 0x20;
898 int read_error = 0;
899 int chars_read = 0;
900 int chars_to_read = chunk_size;
901 int chars_counted = 0;
902 int count_original = count;
903 CORE_ADDR string_start_addr = addr;
904
905 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
906 gdb::byte_vector buffer (chars_to_read * char_size);
907 while (count > 0 && read_error == 0)
908 {
909 int i;
910
911 addr -= chars_to_read * char_size;
912 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
913 chars_to_read * char_size);
914 chars_read /= char_size;
915 read_error = (chars_read == chars_to_read) ? 0 : 1;
916 /* Searching for '\0' from the end of buffer in backward direction. */
917 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
918 {
919 int offset = (chars_to_read - i - 1) * char_size;
920
921 if (integer_is_zero (&buffer[offset], char_size)
922 || chars_counted == options->print_max)
923 {
924 /* Found '\0' or reached print_max. As OFFSET is the offset to
925 '\0', we add CHAR_SIZE to return the start address of
926 a string. */
927 --count;
928 string_start_addr = addr + offset + char_size;
929 chars_counted = 0;
930 }
931 }
932 }
933
934 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
935 *strings_counted = count_original - count;
936
937 if (read_error != 0)
938 {
939 /* In error case, STRING_START_ADDR is pointing to the string that
940 was last successfully loaded. Rewind the partially loaded string. */
941 string_start_addr -= chars_counted * char_size;
942 }
943
944 return string_start_addr;
945 }
946
947 /* Examine data at address ADDR in format FMT.
948 Fetch it from memory and print on gdb_stdout. */
949
950 static void
951 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
952 {
953 char format = 0;
954 char size;
955 int count = 1;
956 struct type *val_type = NULL;
957 int i;
958 int maxelts;
959 struct value_print_options opts;
960 int need_to_update_next_address = 0;
961 CORE_ADDR addr_rewound = 0;
962
963 format = fmt.format;
964 size = fmt.size;
965 count = fmt.count;
966 next_gdbarch = gdbarch;
967 next_address = addr;
968
969 /* Instruction format implies fetch single bytes
970 regardless of the specified size.
971 The case of strings is handled in decode_format, only explicit
972 size operator are not changed to 'b'. */
973 if (format == 'i')
974 size = 'b';
975
976 if (size == 'a')
977 {
978 /* Pick the appropriate size for an address. */
979 if (gdbarch_ptr_bit (next_gdbarch) == 64)
980 size = 'g';
981 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
982 size = 'w';
983 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
984 size = 'h';
985 else
986 /* Bad value for gdbarch_ptr_bit. */
987 internal_error (__FILE__, __LINE__,
988 _("failed internal consistency check"));
989 }
990
991 if (size == 'b')
992 val_type = builtin_type (next_gdbarch)->builtin_int8;
993 else if (size == 'h')
994 val_type = builtin_type (next_gdbarch)->builtin_int16;
995 else if (size == 'w')
996 val_type = builtin_type (next_gdbarch)->builtin_int32;
997 else if (size == 'g')
998 val_type = builtin_type (next_gdbarch)->builtin_int64;
999
1000 if (format == 's')
1001 {
1002 struct type *char_type = NULL;
1003
1004 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1005 if type is not found. */
1006 if (size == 'h')
1007 char_type = builtin_type (next_gdbarch)->builtin_char16;
1008 else if (size == 'w')
1009 char_type = builtin_type (next_gdbarch)->builtin_char32;
1010 if (char_type)
1011 val_type = char_type;
1012 else
1013 {
1014 if (size != '\0' && size != 'b')
1015 warning (_("Unable to display strings with "
1016 "size '%c', using 'b' instead."), size);
1017 size = 'b';
1018 val_type = builtin_type (next_gdbarch)->builtin_int8;
1019 }
1020 }
1021
1022 maxelts = 8;
1023 if (size == 'w')
1024 maxelts = 4;
1025 if (size == 'g')
1026 maxelts = 2;
1027 if (format == 's' || format == 'i')
1028 maxelts = 1;
1029
1030 get_formatted_print_options (&opts, format);
1031
1032 if (count < 0)
1033 {
1034 /* This is the negative repeat count case.
1035 We rewind the address based on the given repeat count and format,
1036 then examine memory from there in forward direction. */
1037
1038 count = -count;
1039 if (format == 'i')
1040 {
1041 next_address = find_instruction_backward (gdbarch, addr, count,
1042 &count);
1043 }
1044 else if (format == 's')
1045 {
1046 next_address = find_string_backward (gdbarch, addr, count,
1047 TYPE_LENGTH (val_type),
1048 &opts, &count);
1049 }
1050 else
1051 {
1052 next_address = addr - count * TYPE_LENGTH (val_type);
1053 }
1054
1055 /* The following call to print_formatted updates next_address in every
1056 iteration. In backward case, we store the start address here
1057 and update next_address with it before exiting the function. */
1058 addr_rewound = (format == 's'
1059 ? next_address - TYPE_LENGTH (val_type)
1060 : next_address);
1061 need_to_update_next_address = 1;
1062 }
1063
1064 /* Print as many objects as specified in COUNT, at most maxelts per line,
1065 with the address of the next one at the start of each line. */
1066
1067 while (count > 0)
1068 {
1069 QUIT;
1070 if (format == 'i')
1071 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1072 print_address (next_gdbarch, next_address, gdb_stdout);
1073 printf_filtered (":");
1074 for (i = maxelts;
1075 i > 0 && count > 0;
1076 i--, count--)
1077 {
1078 printf_filtered ("\t");
1079 /* Note that print_formatted sets next_address for the next
1080 object. */
1081 last_examine_address = next_address;
1082
1083 /* The value to be displayed is not fetched greedily.
1084 Instead, to avoid the possibility of a fetched value not
1085 being used, its retrieval is delayed until the print code
1086 uses it. When examining an instruction stream, the
1087 disassembler will perform its own memory fetch using just
1088 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1089 the disassembler be modified so that LAST_EXAMINE_VALUE
1090 is left with the byte sequence from the last complete
1091 instruction fetched from memory? */
1092 last_examine_value
1093 = release_value (value_at_lazy (val_type, next_address));
1094
1095 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1096
1097 /* Display any branch delay slots following the final insn. */
1098 if (format == 'i' && count == 1)
1099 count += branch_delay_insns;
1100 }
1101 printf_filtered ("\n");
1102 gdb_flush (gdb_stdout);
1103 }
1104
1105 if (need_to_update_next_address)
1106 next_address = addr_rewound;
1107 }
1108 \f
1109 static void
1110 validate_format (struct format_data fmt, const char *cmdname)
1111 {
1112 if (fmt.size != 0)
1113 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1114 if (fmt.count != 1)
1115 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1116 cmdname);
1117 if (fmt.format == 'i')
1118 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1119 fmt.format, cmdname);
1120 }
1121
1122 /* Parse print command format string into *FMTP and update *EXPP.
1123 CMDNAME should name the current command. */
1124
1125 void
1126 print_command_parse_format (const char **expp, const char *cmdname,
1127 struct format_data *fmtp)
1128 {
1129 const char *exp = *expp;
1130
1131 if (exp && *exp == '/')
1132 {
1133 exp++;
1134 *fmtp = decode_format (&exp, last_format, 0);
1135 validate_format (*fmtp, cmdname);
1136 last_format = fmtp->format;
1137 }
1138 else
1139 {
1140 fmtp->count = 1;
1141 fmtp->format = 0;
1142 fmtp->size = 0;
1143 fmtp->raw = 0;
1144 }
1145
1146 *expp = exp;
1147 }
1148
1149 /* Print VAL to console according to *FMTP, including recording it to
1150 the history. */
1151
1152 void
1153 print_value (struct value *val, const struct format_data *fmtp)
1154 {
1155 struct value_print_options opts;
1156 int histindex = record_latest_value (val);
1157
1158 annotate_value_history_begin (histindex, value_type (val));
1159
1160 printf_filtered ("$%d = ", histindex);
1161
1162 annotate_value_history_value ();
1163
1164 get_formatted_print_options (&opts, fmtp->format);
1165 opts.raw = fmtp->raw;
1166
1167 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1168 printf_filtered ("\n");
1169
1170 annotate_value_history_end ();
1171 }
1172
1173 /* Evaluate string EXP as an expression in the current language and
1174 print the resulting value. EXP may contain a format specifier as the
1175 first argument ("/x myvar" for example, to print myvar in hex). */
1176
1177 static void
1178 print_command_1 (const char *exp, int voidprint)
1179 {
1180 struct value *val;
1181 struct format_data fmt;
1182
1183 print_command_parse_format (&exp, "print", &fmt);
1184
1185 if (exp && *exp)
1186 {
1187 expression_up expr = parse_expression (exp);
1188 val = evaluate_expression (expr.get ());
1189 }
1190 else
1191 val = access_value_history (0);
1192
1193 if (voidprint || (val && value_type (val) &&
1194 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1195 print_value (val, &fmt);
1196 }
1197
1198 static void
1199 print_command (const char *exp, int from_tty)
1200 {
1201 print_command_1 (exp, 1);
1202 }
1203
1204 /* Same as print, except it doesn't print void results. */
1205 static void
1206 call_command (const char *exp, int from_tty)
1207 {
1208 print_command_1 (exp, 0);
1209 }
1210
1211 /* Implementation of the "output" command. */
1212
1213 void
1214 output_command (const char *exp, int from_tty)
1215 {
1216 char format = 0;
1217 struct value *val;
1218 struct format_data fmt;
1219 struct value_print_options opts;
1220
1221 fmt.size = 0;
1222 fmt.raw = 0;
1223
1224 if (exp && *exp == '/')
1225 {
1226 exp++;
1227 fmt = decode_format (&exp, 0, 0);
1228 validate_format (fmt, "output");
1229 format = fmt.format;
1230 }
1231
1232 expression_up expr = parse_expression (exp);
1233
1234 val = evaluate_expression (expr.get ());
1235
1236 annotate_value_begin (value_type (val));
1237
1238 get_formatted_print_options (&opts, format);
1239 opts.raw = fmt.raw;
1240 print_formatted (val, fmt.size, &opts, gdb_stdout);
1241
1242 annotate_value_end ();
1243
1244 wrap_here ("");
1245 gdb_flush (gdb_stdout);
1246 }
1247
1248 static void
1249 set_command (const char *exp, int from_tty)
1250 {
1251 expression_up expr = parse_expression (exp);
1252
1253 if (expr->nelts >= 1)
1254 switch (expr->elts[0].opcode)
1255 {
1256 case UNOP_PREINCREMENT:
1257 case UNOP_POSTINCREMENT:
1258 case UNOP_PREDECREMENT:
1259 case UNOP_POSTDECREMENT:
1260 case BINOP_ASSIGN:
1261 case BINOP_ASSIGN_MODIFY:
1262 case BINOP_COMMA:
1263 break;
1264 default:
1265 warning
1266 (_("Expression is not an assignment (and might have no effect)"));
1267 }
1268
1269 evaluate_expression (expr.get ());
1270 }
1271
1272 static void
1273 info_symbol_command (const char *arg, int from_tty)
1274 {
1275 struct minimal_symbol *msymbol;
1276 struct objfile *objfile;
1277 struct obj_section *osect;
1278 CORE_ADDR addr, sect_addr;
1279 int matches = 0;
1280 unsigned int offset;
1281
1282 if (!arg)
1283 error_no_arg (_("address"));
1284
1285 addr = parse_and_eval_address (arg);
1286 ALL_OBJSECTIONS (objfile, osect)
1287 {
1288 /* Only process each object file once, even if there's a separate
1289 debug file. */
1290 if (objfile->separate_debug_objfile_backlink)
1291 continue;
1292
1293 sect_addr = overlay_mapped_address (addr, osect);
1294
1295 if (obj_section_addr (osect) <= sect_addr
1296 && sect_addr < obj_section_endaddr (osect)
1297 && (msymbol
1298 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1299 {
1300 const char *obj_name, *mapped, *sec_name, *msym_name;
1301 const char *loc_string;
1302
1303 matches = 1;
1304 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1305 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1306 sec_name = osect->the_bfd_section->name;
1307 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1308
1309 /* Don't print the offset if it is zero.
1310 We assume there's no need to handle i18n of "sym + offset". */
1311 std::string string_holder;
1312 if (offset)
1313 {
1314 string_holder = string_printf ("%s + %u", msym_name, offset);
1315 loc_string = string_holder.c_str ();
1316 }
1317 else
1318 loc_string = msym_name;
1319
1320 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1321 obj_name = objfile_name (osect->objfile);
1322
1323 if (MULTI_OBJFILE_P ())
1324 if (pc_in_unmapped_range (addr, osect))
1325 if (section_is_overlay (osect))
1326 printf_filtered (_("%s in load address range of "
1327 "%s overlay section %s of %s\n"),
1328 loc_string, mapped, sec_name, obj_name);
1329 else
1330 printf_filtered (_("%s in load address range of "
1331 "section %s of %s\n"),
1332 loc_string, sec_name, obj_name);
1333 else
1334 if (section_is_overlay (osect))
1335 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1336 loc_string, mapped, sec_name, obj_name);
1337 else
1338 printf_filtered (_("%s in section %s of %s\n"),
1339 loc_string, sec_name, obj_name);
1340 else
1341 if (pc_in_unmapped_range (addr, osect))
1342 if (section_is_overlay (osect))
1343 printf_filtered (_("%s in load address range of %s overlay "
1344 "section %s\n"),
1345 loc_string, mapped, sec_name);
1346 else
1347 printf_filtered (_("%s in load address range of section %s\n"),
1348 loc_string, sec_name);
1349 else
1350 if (section_is_overlay (osect))
1351 printf_filtered (_("%s in %s overlay section %s\n"),
1352 loc_string, mapped, sec_name);
1353 else
1354 printf_filtered (_("%s in section %s\n"),
1355 loc_string, sec_name);
1356 }
1357 }
1358 if (matches == 0)
1359 printf_filtered (_("No symbol matches %s.\n"), arg);
1360 }
1361
1362 static void
1363 info_address_command (const char *exp, int from_tty)
1364 {
1365 struct gdbarch *gdbarch;
1366 int regno;
1367 struct symbol *sym;
1368 struct bound_minimal_symbol msymbol;
1369 long val;
1370 struct obj_section *section;
1371 CORE_ADDR load_addr, context_pc = 0;
1372 struct field_of_this_result is_a_field_of_this;
1373
1374 if (exp == 0)
1375 error (_("Argument required."));
1376
1377 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1378 &is_a_field_of_this).symbol;
1379 if (sym == NULL)
1380 {
1381 if (is_a_field_of_this.type != NULL)
1382 {
1383 printf_filtered ("Symbol \"");
1384 fprintf_symbol_filtered (gdb_stdout, exp,
1385 current_language->la_language, DMGL_ANSI);
1386 printf_filtered ("\" is a field of the local class variable ");
1387 if (current_language->la_language == language_objc)
1388 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1389 else
1390 printf_filtered ("`this'\n");
1391 return;
1392 }
1393
1394 msymbol = lookup_bound_minimal_symbol (exp);
1395
1396 if (msymbol.minsym != NULL)
1397 {
1398 struct objfile *objfile = msymbol.objfile;
1399
1400 gdbarch = get_objfile_arch (objfile);
1401 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1402
1403 printf_filtered ("Symbol \"");
1404 fprintf_symbol_filtered (gdb_stdout, exp,
1405 current_language->la_language, DMGL_ANSI);
1406 printf_filtered ("\" is at ");
1407 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1408 printf_filtered (" in a file compiled without debugging");
1409 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1410 if (section_is_overlay (section))
1411 {
1412 load_addr = overlay_unmapped_address (load_addr, section);
1413 printf_filtered (",\n -- loaded at ");
1414 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1415 printf_filtered (" in overlay section %s",
1416 section->the_bfd_section->name);
1417 }
1418 printf_filtered (".\n");
1419 }
1420 else
1421 error (_("No symbol \"%s\" in current context."), exp);
1422 return;
1423 }
1424
1425 printf_filtered ("Symbol \"");
1426 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1427 current_language->la_language, DMGL_ANSI);
1428 printf_filtered ("\" is ");
1429 val = SYMBOL_VALUE (sym);
1430 if (SYMBOL_OBJFILE_OWNED (sym))
1431 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1432 else
1433 section = NULL;
1434 gdbarch = symbol_arch (sym);
1435
1436 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1437 {
1438 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1439 gdb_stdout);
1440 printf_filtered (".\n");
1441 return;
1442 }
1443
1444 switch (SYMBOL_CLASS (sym))
1445 {
1446 case LOC_CONST:
1447 case LOC_CONST_BYTES:
1448 printf_filtered ("constant");
1449 break;
1450
1451 case LOC_LABEL:
1452 printf_filtered ("a label at address ");
1453 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1454 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1455 if (section_is_overlay (section))
1456 {
1457 load_addr = overlay_unmapped_address (load_addr, section);
1458 printf_filtered (",\n -- loaded at ");
1459 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1460 printf_filtered (" in overlay section %s",
1461 section->the_bfd_section->name);
1462 }
1463 break;
1464
1465 case LOC_COMPUTED:
1466 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1467
1468 case LOC_REGISTER:
1469 /* GDBARCH is the architecture associated with the objfile the symbol
1470 is defined in; the target architecture may be different, and may
1471 provide additional registers. However, we do not know the target
1472 architecture at this point. We assume the objfile architecture
1473 will contain all the standard registers that occur in debug info
1474 in that objfile. */
1475 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1476
1477 if (SYMBOL_IS_ARGUMENT (sym))
1478 printf_filtered (_("an argument in register %s"),
1479 gdbarch_register_name (gdbarch, regno));
1480 else
1481 printf_filtered (_("a variable in register %s"),
1482 gdbarch_register_name (gdbarch, regno));
1483 break;
1484
1485 case LOC_STATIC:
1486 printf_filtered (_("static storage at address "));
1487 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1488 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1489 if (section_is_overlay (section))
1490 {
1491 load_addr = overlay_unmapped_address (load_addr, section);
1492 printf_filtered (_(",\n -- loaded at "));
1493 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1494 printf_filtered (_(" in overlay section %s"),
1495 section->the_bfd_section->name);
1496 }
1497 break;
1498
1499 case LOC_REGPARM_ADDR:
1500 /* Note comment at LOC_REGISTER. */
1501 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1502 printf_filtered (_("address of an argument in register %s"),
1503 gdbarch_register_name (gdbarch, regno));
1504 break;
1505
1506 case LOC_ARG:
1507 printf_filtered (_("an argument at offset %ld"), val);
1508 break;
1509
1510 case LOC_LOCAL:
1511 printf_filtered (_("a local variable at frame offset %ld"), val);
1512 break;
1513
1514 case LOC_REF_ARG:
1515 printf_filtered (_("a reference argument at offset %ld"), val);
1516 break;
1517
1518 case LOC_TYPEDEF:
1519 printf_filtered (_("a typedef"));
1520 break;
1521
1522 case LOC_BLOCK:
1523 printf_filtered (_("a function at address "));
1524 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1525 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1526 if (section_is_overlay (section))
1527 {
1528 load_addr = overlay_unmapped_address (load_addr, section);
1529 printf_filtered (_(",\n -- loaded at "));
1530 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1531 printf_filtered (_(" in overlay section %s"),
1532 section->the_bfd_section->name);
1533 }
1534 break;
1535
1536 case LOC_UNRESOLVED:
1537 {
1538 struct bound_minimal_symbol msym;
1539
1540 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1541 if (msym.minsym == NULL)
1542 printf_filtered ("unresolved");
1543 else
1544 {
1545 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1546
1547 if (section
1548 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1549 {
1550 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1551 printf_filtered (_("a thread-local variable at offset %s "
1552 "in the thread-local storage for `%s'"),
1553 paddress (gdbarch, load_addr),
1554 objfile_name (section->objfile));
1555 }
1556 else
1557 {
1558 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1559 printf_filtered (_("static storage at address "));
1560 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1561 if (section_is_overlay (section))
1562 {
1563 load_addr = overlay_unmapped_address (load_addr, section);
1564 printf_filtered (_(",\n -- loaded at "));
1565 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1566 printf_filtered (_(" in overlay section %s"),
1567 section->the_bfd_section->name);
1568 }
1569 }
1570 }
1571 }
1572 break;
1573
1574 case LOC_OPTIMIZED_OUT:
1575 printf_filtered (_("optimized out"));
1576 break;
1577
1578 default:
1579 printf_filtered (_("of unknown (botched) type"));
1580 break;
1581 }
1582 printf_filtered (".\n");
1583 }
1584 \f
1585
1586 static void
1587 x_command (const char *exp, int from_tty)
1588 {
1589 struct format_data fmt;
1590 struct value *val;
1591
1592 fmt.format = last_format ? last_format : 'x';
1593 fmt.size = last_size;
1594 fmt.count = 1;
1595 fmt.raw = 0;
1596
1597 /* If there is no expression and no format, use the most recent
1598 count. */
1599 if (exp == nullptr && last_count > 0)
1600 fmt.count = last_count;
1601
1602 if (exp && *exp == '/')
1603 {
1604 const char *tmp = exp + 1;
1605
1606 fmt = decode_format (&tmp, last_format, last_size);
1607 exp = (char *) tmp;
1608 }
1609
1610 last_count = fmt.count;
1611
1612 /* If we have an expression, evaluate it and use it as the address. */
1613
1614 if (exp != 0 && *exp != 0)
1615 {
1616 expression_up expr = parse_expression (exp);
1617 /* Cause expression not to be there any more if this command is
1618 repeated with Newline. But don't clobber a user-defined
1619 command's definition. */
1620 if (from_tty)
1621 set_repeat_arguments ("");
1622 val = evaluate_expression (expr.get ());
1623 if (TYPE_IS_REFERENCE (value_type (val)))
1624 val = coerce_ref (val);
1625 /* In rvalue contexts, such as this, functions are coerced into
1626 pointers to functions. This makes "x/i main" work. */
1627 if (/* last_format == 'i' && */
1628 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1629 && VALUE_LVAL (val) == lval_memory)
1630 next_address = value_address (val);
1631 else
1632 next_address = value_as_address (val);
1633
1634 next_gdbarch = expr->gdbarch;
1635 }
1636
1637 if (!next_gdbarch)
1638 error_no_arg (_("starting display address"));
1639
1640 do_examine (fmt, next_gdbarch, next_address);
1641
1642 /* If the examine succeeds, we remember its size and format for next
1643 time. Set last_size to 'b' for strings. */
1644 if (fmt.format == 's')
1645 last_size = 'b';
1646 else
1647 last_size = fmt.size;
1648 last_format = fmt.format;
1649
1650 /* Set a couple of internal variables if appropriate. */
1651 if (last_examine_value != nullptr)
1652 {
1653 /* Make last address examined available to the user as $_. Use
1654 the correct pointer type. */
1655 struct type *pointer_type
1656 = lookup_pointer_type (value_type (last_examine_value.get ()));
1657 set_internalvar (lookup_internalvar ("_"),
1658 value_from_pointer (pointer_type,
1659 last_examine_address));
1660
1661 /* Make contents of last address examined available to the user
1662 as $__. If the last value has not been fetched from memory
1663 then don't fetch it now; instead mark it by voiding the $__
1664 variable. */
1665 if (value_lazy (last_examine_value.get ()))
1666 clear_internalvar (lookup_internalvar ("__"));
1667 else
1668 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1669 }
1670 }
1671 \f
1672
1673 /* Add an expression to the auto-display chain.
1674 Specify the expression. */
1675
1676 static void
1677 display_command (const char *arg, int from_tty)
1678 {
1679 struct format_data fmt;
1680 struct display *newobj;
1681 const char *exp = arg;
1682
1683 if (exp == 0)
1684 {
1685 do_displays ();
1686 return;
1687 }
1688
1689 if (*exp == '/')
1690 {
1691 exp++;
1692 fmt = decode_format (&exp, 0, 0);
1693 if (fmt.size && fmt.format == 0)
1694 fmt.format = 'x';
1695 if (fmt.format == 'i' || fmt.format == 's')
1696 fmt.size = 'b';
1697 }
1698 else
1699 {
1700 fmt.format = 0;
1701 fmt.size = 0;
1702 fmt.count = 0;
1703 fmt.raw = 0;
1704 }
1705
1706 innermost_block.reset ();
1707 expression_up expr = parse_expression (exp);
1708
1709 newobj = new display ();
1710
1711 newobj->exp_string = xstrdup (exp);
1712 newobj->exp = std::move (expr);
1713 newobj->block = innermost_block.block ();
1714 newobj->pspace = current_program_space;
1715 newobj->number = ++display_number;
1716 newobj->format = fmt;
1717 newobj->enabled_p = 1;
1718 newobj->next = NULL;
1719
1720 if (display_chain == NULL)
1721 display_chain = newobj;
1722 else
1723 {
1724 struct display *last;
1725
1726 for (last = display_chain; last->next != NULL; last = last->next)
1727 ;
1728 last->next = newobj;
1729 }
1730
1731 if (from_tty)
1732 do_one_display (newobj);
1733
1734 dont_repeat ();
1735 }
1736
1737 static void
1738 free_display (struct display *d)
1739 {
1740 xfree (d->exp_string);
1741 delete d;
1742 }
1743
1744 /* Clear out the display_chain. Done when new symtabs are loaded,
1745 since this invalidates the types stored in many expressions. */
1746
1747 void
1748 clear_displays (void)
1749 {
1750 struct display *d;
1751
1752 while ((d = display_chain) != NULL)
1753 {
1754 display_chain = d->next;
1755 free_display (d);
1756 }
1757 }
1758
1759 /* Delete the auto-display DISPLAY. */
1760
1761 static void
1762 delete_display (struct display *display)
1763 {
1764 struct display *d;
1765
1766 gdb_assert (display != NULL);
1767
1768 if (display_chain == display)
1769 display_chain = display->next;
1770
1771 ALL_DISPLAYS (d)
1772 if (d->next == display)
1773 {
1774 d->next = display->next;
1775 break;
1776 }
1777
1778 free_display (display);
1779 }
1780
1781 /* Call FUNCTION on each of the displays whose numbers are given in
1782 ARGS. DATA is passed unmodified to FUNCTION. */
1783
1784 static void
1785 map_display_numbers (const char *args,
1786 void (*function) (struct display *,
1787 void *),
1788 void *data)
1789 {
1790 int num;
1791
1792 if (args == NULL)
1793 error_no_arg (_("one or more display numbers"));
1794
1795 number_or_range_parser parser (args);
1796
1797 while (!parser.finished ())
1798 {
1799 const char *p = parser.cur_tok ();
1800
1801 num = parser.get_number ();
1802 if (num == 0)
1803 warning (_("bad display number at or near '%s'"), p);
1804 else
1805 {
1806 struct display *d, *tmp;
1807
1808 ALL_DISPLAYS_SAFE (d, tmp)
1809 if (d->number == num)
1810 break;
1811 if (d == NULL)
1812 printf_unfiltered (_("No display number %d.\n"), num);
1813 else
1814 function (d, data);
1815 }
1816 }
1817 }
1818
1819 /* Callback for map_display_numbers, that deletes a display. */
1820
1821 static void
1822 do_delete_display (struct display *d, void *data)
1823 {
1824 delete_display (d);
1825 }
1826
1827 /* "undisplay" command. */
1828
1829 static void
1830 undisplay_command (const char *args, int from_tty)
1831 {
1832 if (args == NULL)
1833 {
1834 if (query (_("Delete all auto-display expressions? ")))
1835 clear_displays ();
1836 dont_repeat ();
1837 return;
1838 }
1839
1840 map_display_numbers (args, do_delete_display, NULL);
1841 dont_repeat ();
1842 }
1843
1844 /* Display a single auto-display.
1845 Do nothing if the display cannot be printed in the current context,
1846 or if the display is disabled. */
1847
1848 static void
1849 do_one_display (struct display *d)
1850 {
1851 int within_current_scope;
1852
1853 if (d->enabled_p == 0)
1854 return;
1855
1856 /* The expression carries the architecture that was used at parse time.
1857 This is a problem if the expression depends on architecture features
1858 (e.g. register numbers), and the current architecture is now different.
1859 For example, a display statement like "display/i $pc" is expected to
1860 display the PC register of the current architecture, not the arch at
1861 the time the display command was given. Therefore, we re-parse the
1862 expression if the current architecture has changed. */
1863 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1864 {
1865 d->exp.reset ();
1866 d->block = NULL;
1867 }
1868
1869 if (d->exp == NULL)
1870 {
1871
1872 TRY
1873 {
1874 innermost_block.reset ();
1875 d->exp = parse_expression (d->exp_string);
1876 d->block = innermost_block.block ();
1877 }
1878 CATCH (ex, RETURN_MASK_ALL)
1879 {
1880 /* Can't re-parse the expression. Disable this display item. */
1881 d->enabled_p = 0;
1882 warning (_("Unable to display \"%s\": %s"),
1883 d->exp_string, ex.message);
1884 return;
1885 }
1886 END_CATCH
1887 }
1888
1889 if (d->block)
1890 {
1891 if (d->pspace == current_program_space)
1892 within_current_scope = contained_in (get_selected_block (0), d->block);
1893 else
1894 within_current_scope = 0;
1895 }
1896 else
1897 within_current_scope = 1;
1898 if (!within_current_scope)
1899 return;
1900
1901 scoped_restore save_display_number
1902 = make_scoped_restore (&current_display_number, d->number);
1903
1904 annotate_display_begin ();
1905 printf_filtered ("%d", d->number);
1906 annotate_display_number_end ();
1907 printf_filtered (": ");
1908 if (d->format.size)
1909 {
1910
1911 annotate_display_format ();
1912
1913 printf_filtered ("x/");
1914 if (d->format.count != 1)
1915 printf_filtered ("%d", d->format.count);
1916 printf_filtered ("%c", d->format.format);
1917 if (d->format.format != 'i' && d->format.format != 's')
1918 printf_filtered ("%c", d->format.size);
1919 printf_filtered (" ");
1920
1921 annotate_display_expression ();
1922
1923 puts_filtered (d->exp_string);
1924 annotate_display_expression_end ();
1925
1926 if (d->format.count != 1 || d->format.format == 'i')
1927 printf_filtered ("\n");
1928 else
1929 printf_filtered (" ");
1930
1931 annotate_display_value ();
1932
1933 TRY
1934 {
1935 struct value *val;
1936 CORE_ADDR addr;
1937
1938 val = evaluate_expression (d->exp.get ());
1939 addr = value_as_address (val);
1940 if (d->format.format == 'i')
1941 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1942 do_examine (d->format, d->exp->gdbarch, addr);
1943 }
1944 CATCH (ex, RETURN_MASK_ERROR)
1945 {
1946 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1947 }
1948 END_CATCH
1949 }
1950 else
1951 {
1952 struct value_print_options opts;
1953
1954 annotate_display_format ();
1955
1956 if (d->format.format)
1957 printf_filtered ("/%c ", d->format.format);
1958
1959 annotate_display_expression ();
1960
1961 puts_filtered (d->exp_string);
1962 annotate_display_expression_end ();
1963
1964 printf_filtered (" = ");
1965
1966 annotate_display_expression ();
1967
1968 get_formatted_print_options (&opts, d->format.format);
1969 opts.raw = d->format.raw;
1970
1971 TRY
1972 {
1973 struct value *val;
1974
1975 val = evaluate_expression (d->exp.get ());
1976 print_formatted (val, d->format.size, &opts, gdb_stdout);
1977 }
1978 CATCH (ex, RETURN_MASK_ERROR)
1979 {
1980 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1981 }
1982 END_CATCH
1983
1984 printf_filtered ("\n");
1985 }
1986
1987 annotate_display_end ();
1988
1989 gdb_flush (gdb_stdout);
1990 }
1991
1992 /* Display all of the values on the auto-display chain which can be
1993 evaluated in the current scope. */
1994
1995 void
1996 do_displays (void)
1997 {
1998 struct display *d;
1999
2000 for (d = display_chain; d; d = d->next)
2001 do_one_display (d);
2002 }
2003
2004 /* Delete the auto-display which we were in the process of displaying.
2005 This is done when there is an error or a signal. */
2006
2007 void
2008 disable_display (int num)
2009 {
2010 struct display *d;
2011
2012 for (d = display_chain; d; d = d->next)
2013 if (d->number == num)
2014 {
2015 d->enabled_p = 0;
2016 return;
2017 }
2018 printf_unfiltered (_("No display number %d.\n"), num);
2019 }
2020
2021 void
2022 disable_current_display (void)
2023 {
2024 if (current_display_number >= 0)
2025 {
2026 disable_display (current_display_number);
2027 fprintf_unfiltered (gdb_stderr,
2028 _("Disabling display %d to "
2029 "avoid infinite recursion.\n"),
2030 current_display_number);
2031 }
2032 current_display_number = -1;
2033 }
2034
2035 static void
2036 info_display_command (const char *ignore, int from_tty)
2037 {
2038 struct display *d;
2039
2040 if (!display_chain)
2041 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2042 else
2043 printf_filtered (_("Auto-display expressions now in effect:\n\
2044 Num Enb Expression\n"));
2045
2046 for (d = display_chain; d; d = d->next)
2047 {
2048 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2049 if (d->format.size)
2050 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2051 d->format.format);
2052 else if (d->format.format)
2053 printf_filtered ("/%c ", d->format.format);
2054 puts_filtered (d->exp_string);
2055 if (d->block && !contained_in (get_selected_block (0), d->block))
2056 printf_filtered (_(" (cannot be evaluated in the current context)"));
2057 printf_filtered ("\n");
2058 gdb_flush (gdb_stdout);
2059 }
2060 }
2061
2062 /* Callback fo map_display_numbers, that enables or disables the
2063 passed in display D. */
2064
2065 static void
2066 do_enable_disable_display (struct display *d, void *data)
2067 {
2068 d->enabled_p = *(int *) data;
2069 }
2070
2071 /* Implamentation of both the "disable display" and "enable display"
2072 commands. ENABLE decides what to do. */
2073
2074 static void
2075 enable_disable_display_command (const char *args, int from_tty, int enable)
2076 {
2077 if (args == NULL)
2078 {
2079 struct display *d;
2080
2081 ALL_DISPLAYS (d)
2082 d->enabled_p = enable;
2083 return;
2084 }
2085
2086 map_display_numbers (args, do_enable_disable_display, &enable);
2087 }
2088
2089 /* The "enable display" command. */
2090
2091 static void
2092 enable_display_command (const char *args, int from_tty)
2093 {
2094 enable_disable_display_command (args, from_tty, 1);
2095 }
2096
2097 /* The "disable display" command. */
2098
2099 static void
2100 disable_display_command (const char *args, int from_tty)
2101 {
2102 enable_disable_display_command (args, from_tty, 0);
2103 }
2104
2105 /* display_chain items point to blocks and expressions. Some expressions in
2106 turn may point to symbols.
2107 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2108 obstack_free'd when a shared library is unloaded.
2109 Clear pointers that are about to become dangling.
2110 Both .exp and .block fields will be restored next time we need to display
2111 an item by re-parsing .exp_string field in the new execution context. */
2112
2113 static void
2114 clear_dangling_display_expressions (struct objfile *objfile)
2115 {
2116 struct display *d;
2117 struct program_space *pspace;
2118
2119 /* With no symbol file we cannot have a block or expression from it. */
2120 if (objfile == NULL)
2121 return;
2122 pspace = objfile->pspace;
2123 if (objfile->separate_debug_objfile_backlink)
2124 {
2125 objfile = objfile->separate_debug_objfile_backlink;
2126 gdb_assert (objfile->pspace == pspace);
2127 }
2128
2129 for (d = display_chain; d != NULL; d = d->next)
2130 {
2131 if (d->pspace != pspace)
2132 continue;
2133
2134 if (lookup_objfile_from_block (d->block) == objfile
2135 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2136 {
2137 d->exp.reset ();
2138 d->block = NULL;
2139 }
2140 }
2141 }
2142 \f
2143
2144 /* Print the value in stack frame FRAME of a variable specified by a
2145 struct symbol. NAME is the name to print; if NULL then VAR's print
2146 name will be used. STREAM is the ui_file on which to print the
2147 value. INDENT specifies the number of indent levels to print
2148 before printing the variable name.
2149
2150 This function invalidates FRAME. */
2151
2152 void
2153 print_variable_and_value (const char *name, struct symbol *var,
2154 struct frame_info *frame,
2155 struct ui_file *stream, int indent)
2156 {
2157
2158 if (!name)
2159 name = SYMBOL_PRINT_NAME (var);
2160
2161 fputs_filtered (n_spaces (2 * indent), stream);
2162 fputs_styled (name, variable_name_style.style (), stream);
2163 fputs_filtered (" = ", stream);
2164
2165 TRY
2166 {
2167 struct value *val;
2168 struct value_print_options opts;
2169
2170 /* READ_VAR_VALUE needs a block in order to deal with non-local
2171 references (i.e. to handle nested functions). In this context, we
2172 print variables that are local to this frame, so we can avoid passing
2173 a block to it. */
2174 val = read_var_value (var, NULL, frame);
2175 get_user_print_options (&opts);
2176 opts.deref_ref = 1;
2177 common_val_print (val, stream, indent, &opts, current_language);
2178
2179 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2180 function. */
2181 frame = NULL;
2182 }
2183 CATCH (except, RETURN_MASK_ERROR)
2184 {
2185 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2186 except.message);
2187 }
2188 END_CATCH
2189
2190 fprintf_filtered (stream, "\n");
2191 }
2192
2193 /* Subroutine of ui_printf to simplify it.
2194 Print VALUE to STREAM using FORMAT.
2195 VALUE is a C-style string on the target. */
2196
2197 static void
2198 printf_c_string (struct ui_file *stream, const char *format,
2199 struct value *value)
2200 {
2201 gdb_byte *str;
2202 CORE_ADDR tem;
2203 int j;
2204
2205 tem = value_as_address (value);
2206 if (tem == 0)
2207 {
2208 DIAGNOSTIC_PUSH
2209 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2210 fprintf_filtered (stream, format, "(null)");
2211 DIAGNOSTIC_POP
2212 return;
2213 }
2214
2215 /* This is a %s argument. Find the length of the string. */
2216 for (j = 0;; j++)
2217 {
2218 gdb_byte c;
2219
2220 QUIT;
2221 read_memory (tem + j, &c, 1);
2222 if (c == 0)
2223 break;
2224 }
2225
2226 /* Copy the string contents into a string inside GDB. */
2227 str = (gdb_byte *) alloca (j + 1);
2228 if (j != 0)
2229 read_memory (tem, str, j);
2230 str[j] = 0;
2231
2232 DIAGNOSTIC_PUSH
2233 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2234 fprintf_filtered (stream, format, (char *) str);
2235 DIAGNOSTIC_POP
2236 }
2237
2238 /* Subroutine of ui_printf to simplify it.
2239 Print VALUE to STREAM using FORMAT.
2240 VALUE is a wide C-style string on the target. */
2241
2242 static void
2243 printf_wide_c_string (struct ui_file *stream, const char *format,
2244 struct value *value)
2245 {
2246 gdb_byte *str;
2247 CORE_ADDR tem;
2248 int j;
2249 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2251 struct type *wctype = lookup_typename (current_language, gdbarch,
2252 "wchar_t", NULL, 0);
2253 int wcwidth = TYPE_LENGTH (wctype);
2254 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2255
2256 tem = value_as_address (value);
2257 if (tem == 0)
2258 {
2259 DIAGNOSTIC_PUSH
2260 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2261 fprintf_filtered (stream, format, "(null)");
2262 DIAGNOSTIC_POP
2263 return;
2264 }
2265
2266 /* This is a %s argument. Find the length of the string. */
2267 for (j = 0;; j += wcwidth)
2268 {
2269 QUIT;
2270 read_memory (tem + j, buf, wcwidth);
2271 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2272 break;
2273 }
2274
2275 /* Copy the string contents into a string inside GDB. */
2276 str = (gdb_byte *) alloca (j + wcwidth);
2277 if (j != 0)
2278 read_memory (tem, str, j);
2279 memset (&str[j], 0, wcwidth);
2280
2281 auto_obstack output;
2282
2283 convert_between_encodings (target_wide_charset (gdbarch),
2284 host_charset (),
2285 str, j, wcwidth,
2286 &output, translit_char);
2287 obstack_grow_str0 (&output, "");
2288
2289 DIAGNOSTIC_PUSH
2290 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2291 fprintf_filtered (stream, format, obstack_base (&output));
2292 DIAGNOSTIC_POP
2293 }
2294
2295 /* Subroutine of ui_printf to simplify it.
2296 Print VALUE, a floating point value, to STREAM using FORMAT. */
2297
2298 static void
2299 printf_floating (struct ui_file *stream, const char *format,
2300 struct value *value, enum argclass argclass)
2301 {
2302 /* Parameter data. */
2303 struct type *param_type = value_type (value);
2304 struct gdbarch *gdbarch = get_type_arch (param_type);
2305
2306 /* Determine target type corresponding to the format string. */
2307 struct type *fmt_type;
2308 switch (argclass)
2309 {
2310 case double_arg:
2311 fmt_type = builtin_type (gdbarch)->builtin_double;
2312 break;
2313 case long_double_arg:
2314 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2315 break;
2316 case dec32float_arg:
2317 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2318 break;
2319 case dec64float_arg:
2320 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2321 break;
2322 case dec128float_arg:
2323 fmt_type = builtin_type (gdbarch)->builtin_declong;
2324 break;
2325 default:
2326 gdb_assert_not_reached ("unexpected argument class");
2327 }
2328
2329 /* To match the traditional GDB behavior, the conversion is
2330 done differently depending on the type of the parameter:
2331
2332 - if the parameter has floating-point type, it's value
2333 is converted to the target type;
2334
2335 - otherwise, if the parameter has a type that is of the
2336 same size as a built-in floating-point type, the value
2337 bytes are interpreted as if they were of that type, and
2338 then converted to the target type (this is not done for
2339 decimal floating-point argument classes);
2340
2341 - otherwise, if the source value has an integer value,
2342 it's value is converted to the target type;
2343
2344 - otherwise, an error is raised.
2345
2346 In either case, the result of the conversion is a byte buffer
2347 formatted in the target format for the target type. */
2348
2349 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2350 {
2351 param_type = float_type_from_length (param_type);
2352 if (param_type != value_type (value))
2353 value = value_from_contents (param_type, value_contents (value));
2354 }
2355
2356 value = value_cast (fmt_type, value);
2357
2358 /* Convert the value to a string and print it. */
2359 std::string str
2360 = target_float_to_string (value_contents (value), fmt_type, format);
2361 fputs_filtered (str.c_str (), stream);
2362 }
2363
2364 /* Subroutine of ui_printf to simplify it.
2365 Print VALUE, a target pointer, to STREAM using FORMAT. */
2366
2367 static void
2368 printf_pointer (struct ui_file *stream, const char *format,
2369 struct value *value)
2370 {
2371 /* We avoid the host's %p because pointers are too
2372 likely to be the wrong size. The only interesting
2373 modifier for %p is a width; extract that, and then
2374 handle %p as glibc would: %#x or a literal "(nil)". */
2375
2376 const char *p;
2377 char *fmt, *fmt_p;
2378 #ifdef PRINTF_HAS_LONG_LONG
2379 long long val = value_as_long (value);
2380 #else
2381 long val = value_as_long (value);
2382 #endif
2383
2384 fmt = (char *) alloca (strlen (format) + 5);
2385
2386 /* Copy up to the leading %. */
2387 p = format;
2388 fmt_p = fmt;
2389 while (*p)
2390 {
2391 int is_percent = (*p == '%');
2392
2393 *fmt_p++ = *p++;
2394 if (is_percent)
2395 {
2396 if (*p == '%')
2397 *fmt_p++ = *p++;
2398 else
2399 break;
2400 }
2401 }
2402
2403 if (val != 0)
2404 *fmt_p++ = '#';
2405
2406 /* Copy any width or flags. Only the "-" flag is valid for pointers
2407 -- see the format_pieces constructor. */
2408 while (*p == '-' || (*p >= '0' && *p < '9'))
2409 *fmt_p++ = *p++;
2410
2411 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2412 if (val != 0)
2413 {
2414 #ifdef PRINTF_HAS_LONG_LONG
2415 *fmt_p++ = 'l';
2416 #endif
2417 *fmt_p++ = 'l';
2418 *fmt_p++ = 'x';
2419 *fmt_p++ = '\0';
2420 DIAGNOSTIC_PUSH
2421 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2422 fprintf_filtered (stream, fmt, val);
2423 DIAGNOSTIC_POP
2424 }
2425 else
2426 {
2427 *fmt_p++ = 's';
2428 *fmt_p++ = '\0';
2429 DIAGNOSTIC_PUSH
2430 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2431 fprintf_filtered (stream, fmt, "(nil)");
2432 DIAGNOSTIC_POP
2433 }
2434 }
2435
2436 /* printf "printf format string" ARG to STREAM. */
2437
2438 static void
2439 ui_printf (const char *arg, struct ui_file *stream)
2440 {
2441 const char *s = arg;
2442 std::vector<struct value *> val_args;
2443
2444 if (s == 0)
2445 error_no_arg (_("format-control string and values to print"));
2446
2447 s = skip_spaces (s);
2448
2449 /* A format string should follow, enveloped in double quotes. */
2450 if (*s++ != '"')
2451 error (_("Bad format string, missing '\"'."));
2452
2453 format_pieces fpieces (&s);
2454
2455 if (*s++ != '"')
2456 error (_("Bad format string, non-terminated '\"'."));
2457
2458 s = skip_spaces (s);
2459
2460 if (*s != ',' && *s != 0)
2461 error (_("Invalid argument syntax"));
2462
2463 if (*s == ',')
2464 s++;
2465 s = skip_spaces (s);
2466
2467 {
2468 int nargs_wanted;
2469 int i;
2470 const char *current_substring;
2471
2472 nargs_wanted = 0;
2473 for (auto &&piece : fpieces)
2474 if (piece.argclass != literal_piece)
2475 ++nargs_wanted;
2476
2477 /* Now, parse all arguments and evaluate them.
2478 Store the VALUEs in VAL_ARGS. */
2479
2480 while (*s != '\0')
2481 {
2482 const char *s1;
2483
2484 s1 = s;
2485 val_args.push_back (parse_to_comma_and_eval (&s1));
2486
2487 s = s1;
2488 if (*s == ',')
2489 s++;
2490 }
2491
2492 if (val_args.size () != nargs_wanted)
2493 error (_("Wrong number of arguments for specified format-string"));
2494
2495 /* Now actually print them. */
2496 i = 0;
2497 for (auto &&piece : fpieces)
2498 {
2499 current_substring = piece.string;
2500 switch (piece.argclass)
2501 {
2502 case string_arg:
2503 printf_c_string (stream, current_substring, val_args[i]);
2504 break;
2505 case wide_string_arg:
2506 printf_wide_c_string (stream, current_substring, val_args[i]);
2507 break;
2508 case wide_char_arg:
2509 {
2510 struct gdbarch *gdbarch
2511 = get_type_arch (value_type (val_args[i]));
2512 struct type *wctype = lookup_typename (current_language, gdbarch,
2513 "wchar_t", NULL, 0);
2514 struct type *valtype;
2515 const gdb_byte *bytes;
2516
2517 valtype = value_type (val_args[i]);
2518 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2519 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2520 error (_("expected wchar_t argument for %%lc"));
2521
2522 bytes = value_contents (val_args[i]);
2523
2524 auto_obstack output;
2525
2526 convert_between_encodings (target_wide_charset (gdbarch),
2527 host_charset (),
2528 bytes, TYPE_LENGTH (valtype),
2529 TYPE_LENGTH (valtype),
2530 &output, translit_char);
2531 obstack_grow_str0 (&output, "");
2532
2533 DIAGNOSTIC_PUSH
2534 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2535 fprintf_filtered (stream, current_substring,
2536 obstack_base (&output));
2537 DIAGNOSTIC_POP
2538 }
2539 break;
2540 case long_long_arg:
2541 #ifdef PRINTF_HAS_LONG_LONG
2542 {
2543 long long val = value_as_long (val_args[i]);
2544
2545 DIAGNOSTIC_PUSH
2546 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2547 fprintf_filtered (stream, current_substring, val);
2548 DIAGNOSTIC_POP
2549 break;
2550 }
2551 #else
2552 error (_("long long not supported in printf"));
2553 #endif
2554 case int_arg:
2555 {
2556 int val = value_as_long (val_args[i]);
2557
2558 DIAGNOSTIC_PUSH
2559 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2560 fprintf_filtered (stream, current_substring, val);
2561 DIAGNOSTIC_POP
2562 break;
2563 }
2564 case long_arg:
2565 {
2566 long val = value_as_long (val_args[i]);
2567
2568 DIAGNOSTIC_PUSH
2569 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2570 fprintf_filtered (stream, current_substring, val);
2571 DIAGNOSTIC_POP
2572 break;
2573 }
2574 /* Handles floating-point values. */
2575 case double_arg:
2576 case long_double_arg:
2577 case dec32float_arg:
2578 case dec64float_arg:
2579 case dec128float_arg:
2580 printf_floating (stream, current_substring, val_args[i],
2581 piece.argclass);
2582 break;
2583 case ptr_arg:
2584 printf_pointer (stream, current_substring, val_args[i]);
2585 break;
2586 case literal_piece:
2587 /* Print a portion of the format string that has no
2588 directives. Note that this will not include any
2589 ordinary %-specs, but it might include "%%". That is
2590 why we use printf_filtered and not puts_filtered here.
2591 Also, we pass a dummy argument because some platforms
2592 have modified GCC to include -Wformat-security by
2593 default, which will warn here if there is no
2594 argument. */
2595 DIAGNOSTIC_PUSH
2596 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2597 fprintf_filtered (stream, current_substring, 0);
2598 DIAGNOSTIC_POP
2599 break;
2600 default:
2601 internal_error (__FILE__, __LINE__,
2602 _("failed internal consistency check"));
2603 }
2604 /* Maybe advance to the next argument. */
2605 if (piece.argclass != literal_piece)
2606 ++i;
2607 }
2608 }
2609 }
2610
2611 /* Implement the "printf" command. */
2612
2613 static void
2614 printf_command (const char *arg, int from_tty)
2615 {
2616 ui_printf (arg, gdb_stdout);
2617 reset_terminal_style (gdb_stdout);
2618 wrap_here ("");
2619 gdb_flush (gdb_stdout);
2620 }
2621
2622 /* Implement the "eval" command. */
2623
2624 static void
2625 eval_command (const char *arg, int from_tty)
2626 {
2627 string_file stb;
2628
2629 ui_printf (arg, &stb);
2630
2631 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2632
2633 execute_command (expanded.c_str (), from_tty);
2634 }
2635
2636 void
2637 _initialize_printcmd (void)
2638 {
2639 struct cmd_list_element *c;
2640
2641 current_display_number = -1;
2642
2643 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2644
2645 add_info ("address", info_address_command,
2646 _("Describe where symbol SYM is stored."));
2647
2648 add_info ("symbol", info_symbol_command, _("\
2649 Describe what symbol is at location ADDR.\n\
2650 Only for symbols with fixed locations (global or static scope)."));
2651
2652 add_com ("x", class_vars, x_command, _("\
2653 Examine memory: x/FMT ADDRESS.\n\
2654 ADDRESS is an expression for the memory address to examine.\n\
2655 FMT is a repeat count followed by a format letter and a size letter.\n\
2656 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2657 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2658 and z(hex, zero padded on the left).\n\
2659 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2660 The specified number of objects of the specified size are printed\n\
2661 according to the format. If a negative number is specified, memory is\n\
2662 examined backward from the address.\n\n\
2663 Defaults for format and size letters are those previously used.\n\
2664 Default count is 1. Default address is following last thing printed\n\
2665 with this command or \"print\"."));
2666
2667 #if 0
2668 add_com ("whereis", class_vars, whereis_command,
2669 _("Print line number and file of definition of variable."));
2670 #endif
2671
2672 add_info ("display", info_display_command, _("\
2673 Expressions to display when program stops, with code numbers."));
2674
2675 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2676 Cancel some expressions to be displayed when program stops.\n\
2677 Arguments are the code numbers of the expressions to stop displaying.\n\
2678 No argument means cancel all automatic-display expressions.\n\
2679 \"delete display\" has the same effect as this command.\n\
2680 Do \"info display\" to see current list of code numbers."),
2681 &cmdlist);
2682
2683 add_com ("display", class_vars, display_command, _("\
2684 Print value of expression EXP each time the program stops.\n\
2685 /FMT may be used before EXP as in the \"print\" command.\n\
2686 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2687 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2688 and examining is done as in the \"x\" command.\n\n\
2689 With no argument, display all currently requested auto-display expressions.\n\
2690 Use \"undisplay\" to cancel display requests previously made."));
2691
2692 add_cmd ("display", class_vars, enable_display_command, _("\
2693 Enable some expressions to be displayed when program stops.\n\
2694 Arguments are the code numbers of the expressions to resume displaying.\n\
2695 No argument means enable all automatic-display expressions.\n\
2696 Do \"info display\" to see current list of code numbers."), &enablelist);
2697
2698 add_cmd ("display", class_vars, disable_display_command, _("\
2699 Disable some expressions to be displayed when program stops.\n\
2700 Arguments are the code numbers of the expressions to stop displaying.\n\
2701 No argument means disable all automatic-display expressions.\n\
2702 Do \"info display\" to see current list of code numbers."), &disablelist);
2703
2704 add_cmd ("display", class_vars, undisplay_command, _("\
2705 Cancel some expressions to be displayed when program stops.\n\
2706 Arguments are the code numbers of the expressions to stop displaying.\n\
2707 No argument means cancel all automatic-display expressions.\n\
2708 Do \"info display\" to see current list of code numbers."), &deletelist);
2709
2710 add_com ("printf", class_vars, printf_command, _("\
2711 Formatted printing, like the C \"printf\" function.\n\
2712 Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2713 This supports most C printf format specifications, like %s, %d, etc."));
2714
2715 add_com ("output", class_vars, output_command, _("\
2716 Like \"print\" but don't put in value history and don't print newline.\n\
2717 This is useful in user-defined commands."));
2718
2719 add_prefix_cmd ("set", class_vars, set_command, _("\
2720 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2721 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2722 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2723 with $), a register (a few standard names starting with $), or an actual\n\
2724 variable in the program being debugged. EXP is any valid expression.\n\
2725 Use \"set variable\" for variables with names identical to set subcommands.\n\
2726 \n\
2727 With a subcommand, this command modifies parts of the gdb environment.\n\
2728 You can see these environment settings with the \"show\" command."),
2729 &setlist, "set ", 1, &cmdlist);
2730 if (dbx_commands)
2731 add_com ("assign", class_vars, set_command, _("\
2732 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2733 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2734 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2735 with $), a register (a few standard names starting with $), or an actual\n\
2736 variable in the program being debugged. EXP is any valid expression.\n\
2737 Use \"set variable\" for variables with names identical to set subcommands.\n\
2738 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2739 You can see these environment settings with the \"show\" command."));
2740
2741 /* "call" is the same as "set", but handy for dbx users to call fns. */
2742 c = add_com ("call", class_vars, call_command, _("\
2743 Call a function in the program.\n\
2744 The argument is the function name and arguments, in the notation of the\n\
2745 current working language. The result is printed and saved in the value\n\
2746 history, if it is not void."));
2747 set_cmd_completer (c, expression_completer);
2748
2749 add_cmd ("variable", class_vars, set_command, _("\
2750 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2751 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2752 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2753 with $), a register (a few standard names starting with $), or an actual\n\
2754 variable in the program being debugged. EXP is any valid expression.\n\
2755 This may usually be abbreviated to simply \"set\"."),
2756 &setlist);
2757 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2758
2759 c = add_com ("print", class_vars, print_command, _("\
2760 Print value of expression EXP.\n\
2761 Variables accessible are those of the lexical environment of the selected\n\
2762 stack frame, plus all those whose scope is global or an entire file.\n\
2763 \n\
2764 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2765 $$NUM refers to NUM'th value back from the last one.\n\
2766 Names starting with $ refer to registers (with the values they would have\n\
2767 if the program were to return to the stack frame now selected, restoring\n\
2768 all registers saved by frames farther in) or else to debugger\n\
2769 \"convenience\" variables (any such name not a known register).\n\
2770 Use assignment expressions to give values to convenience variables.\n\
2771 \n\
2772 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2773 @ is a binary operator for treating consecutive data objects\n\
2774 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2775 element is FOO, whose second element is stored in the space following\n\
2776 where FOO is stored, etc. FOO must be an expression whose value\n\
2777 resides in memory.\n\
2778 \n\
2779 EXP may be preceded with /FMT, where FMT is a format letter\n\
2780 but no count or size letter (see \"x\" command)."));
2781 set_cmd_completer (c, expression_completer);
2782 add_com_alias ("p", "print", class_vars, 1);
2783 add_com_alias ("inspect", "print", class_vars, 1);
2784
2785 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2786 &max_symbolic_offset, _("\
2787 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2788 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2789 Tell GDB to only display the symbolic form of an address if the\n\
2790 offset between the closest earlier symbol and the address is less than\n\
2791 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2792 to always print the symbolic form of an address if any symbol precedes\n\
2793 it. Zero is equivalent to \"unlimited\"."),
2794 NULL,
2795 show_max_symbolic_offset,
2796 &setprintlist, &showprintlist);
2797 add_setshow_boolean_cmd ("symbol-filename", no_class,
2798 &print_symbol_filename, _("\
2799 Set printing of source filename and line number with <symbol>."), _("\
2800 Show printing of source filename and line number with <symbol>."), NULL,
2801 NULL,
2802 show_print_symbol_filename,
2803 &setprintlist, &showprintlist);
2804
2805 add_com ("eval", no_class, eval_command, _("\
2806 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2807 a command line, and call it."));
2808 }
This page took 0.130145 seconds and 5 git commands to generate.