fix printing of DWARF fixed-point type objects with format modifier
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "c-lang.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "block.h"
41 #include "disasm.h"
42 #include "target-float.h"
43 #include "observable.h"
44 #include "solist.h"
45 #include "parser-defs.h"
46 #include "charset.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
53 #include "source.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Last specified count for the 'x' command. */
66
67 static int last_count;
68
69 /* Default address to examine next, and associated architecture. */
70
71 static struct gdbarch *next_gdbarch;
72 static CORE_ADDR next_address;
73
74 /* Number of delay instructions following current disassembled insn. */
75
76 static int branch_delay_insns;
77
78 /* Last address examined. */
79
80 static CORE_ADDR last_examine_address;
81
82 /* Contents of last address examined.
83 This is not valid past the end of the `x' command! */
84
85 static value_ref_ptr last_examine_value;
86
87 /* Largest offset between a symbolic value and an address, that will be
88 printed as `0x1234 <symbol+offset>'. */
89
90 static unsigned int max_symbolic_offset = UINT_MAX;
91 static void
92 show_max_symbolic_offset (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file,
96 _("The largest offset that will be "
97 "printed in <symbol+1234> form is %s.\n"),
98 value);
99 }
100
101 /* Append the source filename and linenumber of the symbol when
102 printing a symbolic value as `<symbol at filename:linenum>' if set. */
103 static bool print_symbol_filename = false;
104 static void
105 show_print_symbol_filename (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Printing of source filename and "
109 "line number with <symbol> is %s.\n"),
110 value);
111 }
112
113 /* Number of auto-display expression currently being displayed.
114 So that we can disable it if we get a signal within it.
115 -1 when not doing one. */
116
117 static int current_display_number;
118
119 /* Last allocated display number. */
120
121 static int display_number;
122
123 struct display
124 {
125 display (const char *exp_string_, expression_up &&exp_,
126 const struct format_data &format_, struct program_space *pspace_,
127 const struct block *block_)
128 : exp_string (exp_string_),
129 exp (std::move (exp_)),
130 number (++display_number),
131 format (format_),
132 pspace (pspace_),
133 block (block_),
134 enabled_p (true)
135 {
136 }
137
138 /* The expression as the user typed it. */
139 std::string exp_string;
140
141 /* Expression to be evaluated and displayed. */
142 expression_up exp;
143
144 /* Item number of this auto-display item. */
145 int number;
146
147 /* Display format specified. */
148 struct format_data format;
149
150 /* Program space associated with `block'. */
151 struct program_space *pspace;
152
153 /* Innermost block required by this expression when evaluated. */
154 const struct block *block;
155
156 /* Status of this display (enabled or disabled). */
157 bool enabled_p;
158 };
159
160 /* Expressions whose values should be displayed automatically each
161 time the program stops. */
162
163 static std::vector<std::unique_ptr<struct display>> all_displays;
164
165 /* Prototypes for local functions. */
166
167 static void do_one_display (struct display *);
168 \f
169
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
175 user.
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
179
180 static struct format_data
181 decode_format (const char **string_ptr, int oformat, int osize)
182 {
183 struct format_data val;
184 const char *p = *string_ptr;
185
186 val.format = '?';
187 val.size = '?';
188 val.count = 1;
189 val.raw = 0;
190
191 if (*p == '-')
192 {
193 val.count = -1;
194 p++;
195 }
196 if (*p >= '0' && *p <= '9')
197 val.count *= atoi (p);
198 while (*p >= '0' && *p <= '9')
199 p++;
200
201 /* Now process size or format letters that follow. */
202
203 while (1)
204 {
205 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
206 val.size = *p++;
207 else if (*p == 'r')
208 {
209 val.raw = 1;
210 p++;
211 }
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 *string_ptr = skip_spaces (p);
219
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
222 {
223 if (val.size == '?')
224 {
225 /* Neither has been specified. */
226 val.format = oformat;
227 val.size = osize;
228 }
229 else
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
233 }
234 else if (val.size == '?')
235 switch (val.format)
236 {
237 case 'a':
238 /* Pick the appropriate size for an address. This is deferred
239 until do_examine when we know the actual architecture to use.
240 A special size value of 'a' is used to indicate this case. */
241 val.size = osize ? 'a' : osize;
242 break;
243 case 'f':
244 /* Floating point has to be word or giantword. */
245 if (osize == 'w' || osize == 'g')
246 val.size = osize;
247 else
248 /* Default it to giantword if the last used size is not
249 appropriate. */
250 val.size = osize ? 'g' : osize;
251 break;
252 case 'c':
253 /* Characters default to one byte. */
254 val.size = osize ? 'b' : osize;
255 break;
256 case 's':
257 /* Display strings with byte size chars unless explicitly
258 specified. */
259 val.size = '\0';
260 break;
261
262 default:
263 /* The default is the size most recently specified. */
264 val.size = osize;
265 }
266
267 return val;
268 }
269 \f
270 /* Print value VAL on stream according to OPTIONS.
271 Do not end with a newline.
272 SIZE is the letter for the size of datum being printed.
273 This is used to pad hex numbers so they line up. SIZE is 0
274 for print / output and set for examine. */
275
276 static void
277 print_formatted (struct value *val, int size,
278 const struct value_print_options *options,
279 struct ui_file *stream)
280 {
281 struct type *type = check_typedef (value_type (val));
282 int len = TYPE_LENGTH (type);
283
284 if (VALUE_LVAL (val) == lval_memory)
285 next_address = value_address (val) + len;
286
287 if (size)
288 {
289 switch (options->format)
290 {
291 case 's':
292 {
293 struct type *elttype = value_type (val);
294
295 next_address = (value_address (val)
296 + val_print_string (elttype, NULL,
297 value_address (val), -1,
298 stream, options) * len);
299 }
300 return;
301
302 case 'i':
303 /* We often wrap here if there are long symbolic names. */
304 wrap_here (" ");
305 next_address = (value_address (val)
306 + gdb_print_insn (get_type_arch (type),
307 value_address (val), stream,
308 &branch_delay_insns));
309 return;
310 }
311 }
312
313 if (options->format == 0 || options->format == 's'
314 || type->code () == TYPE_CODE_VOID
315 || type->code () == TYPE_CODE_REF
316 || type->code () == TYPE_CODE_ARRAY
317 || type->code () == TYPE_CODE_STRING
318 || type->code () == TYPE_CODE_STRUCT
319 || type->code () == TYPE_CODE_UNION
320 || type->code () == TYPE_CODE_NAMESPACE)
321 value_print (val, stream, options);
322 else
323 /* User specified format, so don't look to the type to tell us
324 what to do. */
325 value_print_scalar_formatted (val, options, size, stream);
326 }
327
328 /* Return builtin floating point type of same length as TYPE.
329 If no such type is found, return TYPE itself. */
330 static struct type *
331 float_type_from_length (struct type *type)
332 {
333 struct gdbarch *gdbarch = get_type_arch (type);
334 const struct builtin_type *builtin = builtin_type (gdbarch);
335
336 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
337 type = builtin->builtin_float;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
339 type = builtin->builtin_double;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
341 type = builtin->builtin_long_double;
342
343 return type;
344 }
345
346 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
347 according to OPTIONS and SIZE on STREAM. Formats s and i are not
348 supported at this level. */
349
350 void
351 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
352 const struct value_print_options *options,
353 int size, struct ui_file *stream)
354 {
355 struct gdbarch *gdbarch = get_type_arch (type);
356 unsigned int len = TYPE_LENGTH (type);
357 enum bfd_endian byte_order = type_byte_order (type);
358
359 /* String printing should go through val_print_scalar_formatted. */
360 gdb_assert (options->format != 's');
361
362 /* If the value is a pointer, and pointers and addresses are not the
363 same, then at this point, the value's length (in target bytes) is
364 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
365 if (type->code () == TYPE_CODE_PTR)
366 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
367
368 /* If we are printing it as unsigned, truncate it in case it is actually
369 a negative signed value (e.g. "print/u (short)-1" should print 65535
370 (if shorts are 16 bits) instead of 4294967295). */
371 if (options->format != 'c'
372 && (options->format != 'd' || type->is_unsigned ()))
373 {
374 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
375 valaddr += TYPE_LENGTH (type) - len;
376 }
377
378 /* Allow LEN == 0, and in this case, don't assume that VALADDR is
379 valid. */
380 const gdb_byte zero = 0;
381 if (len == 0)
382 {
383 len = 1;
384 valaddr = &zero;
385 }
386
387 if (size != 0 && (options->format == 'x' || options->format == 't'))
388 {
389 /* Truncate to fit. */
390 unsigned newlen;
391 switch (size)
392 {
393 case 'b':
394 newlen = 1;
395 break;
396 case 'h':
397 newlen = 2;
398 break;
399 case 'w':
400 newlen = 4;
401 break;
402 case 'g':
403 newlen = 8;
404 break;
405 default:
406 error (_("Undefined output size \"%c\"."), size);
407 }
408 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
409 valaddr += len - newlen;
410 len = newlen;
411 }
412
413 /* Historically gdb has printed floats by first casting them to a
414 long, and then printing the long. PR cli/16242 suggests changing
415 this to using C-style hex float format.
416
417 Biased range types and sub-word scalar types must also be handled
418 here; the value is correctly computed by unpack_long. */
419 gdb::byte_vector converted_bytes;
420 /* Some cases below will unpack the value again. In the biased
421 range case, we want to avoid this, so we store the unpacked value
422 here for possible use later. */
423 gdb::optional<LONGEST> val_long;
424 if (((type->code () == TYPE_CODE_FLT
425 || is_fixed_point_type (type))
426 && (options->format == 'o'
427 || options->format == 'x'
428 || options->format == 't'
429 || options->format == 'z'
430 || options->format == 'd'
431 || options->format == 'u'))
432 || (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0)
433 || type->bit_size_differs_p ())
434 {
435 val_long.emplace (unpack_long (type, valaddr));
436 converted_bytes.resize (TYPE_LENGTH (type));
437 store_signed_integer (converted_bytes.data (), TYPE_LENGTH (type),
438 byte_order, *val_long);
439 valaddr = converted_bytes.data ();
440 }
441
442 /* Printing a non-float type as 'f' will interpret the data as if it were
443 of a floating-point type of the same length, if that exists. Otherwise,
444 the data is printed as integer. */
445 char format = options->format;
446 if (format == 'f' && type->code () != TYPE_CODE_FLT)
447 {
448 type = float_type_from_length (type);
449 if (type->code () != TYPE_CODE_FLT)
450 format = 0;
451 }
452
453 switch (format)
454 {
455 case 'o':
456 print_octal_chars (stream, valaddr, len, byte_order);
457 break;
458 case 'd':
459 print_decimal_chars (stream, valaddr, len, true, byte_order);
460 break;
461 case 'u':
462 print_decimal_chars (stream, valaddr, len, false, byte_order);
463 break;
464 case 0:
465 if (type->code () != TYPE_CODE_FLT)
466 {
467 print_decimal_chars (stream, valaddr, len, !type->is_unsigned (),
468 byte_order);
469 break;
470 }
471 /* FALLTHROUGH */
472 case 'f':
473 print_floating (valaddr, type, stream);
474 break;
475
476 case 't':
477 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
478 break;
479 case 'x':
480 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
481 break;
482 case 'z':
483 print_hex_chars (stream, valaddr, len, byte_order, true);
484 break;
485 case 'c':
486 {
487 struct value_print_options opts = *options;
488
489 if (!val_long.has_value ())
490 val_long.emplace (unpack_long (type, valaddr));
491
492 opts.format = 0;
493 if (type->is_unsigned ())
494 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
495 else
496 type = builtin_type (gdbarch)->builtin_true_char;
497
498 value_print (value_from_longest (type, *val_long), stream, &opts);
499 }
500 break;
501
502 case 'a':
503 {
504 if (!val_long.has_value ())
505 val_long.emplace (unpack_long (type, valaddr));
506 print_address (gdbarch, *val_long, stream);
507 }
508 break;
509
510 default:
511 error (_("Undefined output format \"%c\"."), format);
512 }
513 }
514
515 /* Specify default address for `x' command.
516 The `info lines' command uses this. */
517
518 void
519 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
520 {
521 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
522
523 next_gdbarch = gdbarch;
524 next_address = addr;
525
526 /* Make address available to the user as $_. */
527 set_internalvar (lookup_internalvar ("_"),
528 value_from_pointer (ptr_type, addr));
529 }
530
531 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
532 after LEADIN. Print nothing if no symbolic name is found nearby.
533 Optionally also print source file and line number, if available.
534 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
535 or to interpret it as a possible C++ name and convert it back to source
536 form. However note that DO_DEMANGLE can be overridden by the specific
537 settings of the demangle and asm_demangle variables. Returns
538 non-zero if anything was printed; zero otherwise. */
539
540 int
541 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
542 struct ui_file *stream,
543 int do_demangle, const char *leadin)
544 {
545 std::string name, filename;
546 int unmapped = 0;
547 int offset = 0;
548 int line = 0;
549
550 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
551 &offset, &filename, &line, &unmapped))
552 return 0;
553
554 fputs_filtered (leadin, stream);
555 if (unmapped)
556 fputs_filtered ("<*", stream);
557 else
558 fputs_filtered ("<", stream);
559 fputs_styled (name.c_str (), function_name_style.style (), stream);
560 if (offset != 0)
561 fprintf_filtered (stream, "%+d", offset);
562
563 /* Append source filename and line number if desired. Give specific
564 line # of this addr, if we have it; else line # of the nearest symbol. */
565 if (print_symbol_filename && !filename.empty ())
566 {
567 fputs_filtered (line == -1 ? " in " : " at ", stream);
568 fputs_styled (filename.c_str (), file_name_style.style (), stream);
569 if (line != -1)
570 fprintf_filtered (stream, ":%d", line);
571 }
572 if (unmapped)
573 fputs_filtered ("*>", stream);
574 else
575 fputs_filtered (">", stream);
576
577 return 1;
578 }
579
580 /* See valprint.h. */
581
582 int
583 build_address_symbolic (struct gdbarch *gdbarch,
584 CORE_ADDR addr, /* IN */
585 bool do_demangle, /* IN */
586 bool prefer_sym_over_minsym, /* IN */
587 std::string *name, /* OUT */
588 int *offset, /* OUT */
589 std::string *filename, /* OUT */
590 int *line, /* OUT */
591 int *unmapped) /* OUT */
592 {
593 struct bound_minimal_symbol msymbol;
594 struct symbol *symbol;
595 CORE_ADDR name_location = 0;
596 struct obj_section *section = NULL;
597 const char *name_temp = "";
598
599 /* Let's say it is mapped (not unmapped). */
600 *unmapped = 0;
601
602 /* Determine if the address is in an overlay, and whether it is
603 mapped. */
604 if (overlay_debugging)
605 {
606 section = find_pc_overlay (addr);
607 if (pc_in_unmapped_range (addr, section))
608 {
609 *unmapped = 1;
610 addr = overlay_mapped_address (addr, section);
611 }
612 }
613
614 /* Try to find the address in both the symbol table and the minsyms.
615 In most cases, we'll prefer to use the symbol instead of the
616 minsym. However, there are cases (see below) where we'll choose
617 to use the minsym instead. */
618
619 /* This is defective in the sense that it only finds text symbols. So
620 really this is kind of pointless--we should make sure that the
621 minimal symbols have everything we need (by changing that we could
622 save some memory, but for many debug format--ELF/DWARF or
623 anything/stabs--it would be inconvenient to eliminate those minimal
624 symbols anyway). */
625 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
626 symbol = find_pc_sect_function (addr, section);
627
628 if (symbol)
629 {
630 /* If this is a function (i.e. a code address), strip out any
631 non-address bits. For instance, display a pointer to the
632 first instruction of a Thumb function as <function>; the
633 second instruction will be <function+2>, even though the
634 pointer is <function+3>. This matches the ISA behavior. */
635 addr = gdbarch_addr_bits_remove (gdbarch, addr);
636
637 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
638 if (do_demangle || asm_demangle)
639 name_temp = symbol->print_name ();
640 else
641 name_temp = symbol->linkage_name ();
642 }
643
644 if (msymbol.minsym != NULL
645 && MSYMBOL_HAS_SIZE (msymbol.minsym)
646 && MSYMBOL_SIZE (msymbol.minsym) == 0
647 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
648 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
649 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
650 msymbol.minsym = NULL;
651
652 if (msymbol.minsym != NULL)
653 {
654 /* Use the minsym if no symbol is found.
655
656 Additionally, use the minsym instead of a (found) symbol if
657 the following conditions all hold:
658 1) The prefer_sym_over_minsym flag is false.
659 2) The minsym address is identical to that of the address under
660 consideration.
661 3) The symbol address is not identical to that of the address
662 under consideration. */
663 if (symbol == NULL ||
664 (!prefer_sym_over_minsym
665 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
666 && name_location != addr))
667 {
668 /* If this is a function (i.e. a code address), strip out any
669 non-address bits. For instance, display a pointer to the
670 first instruction of a Thumb function as <function>; the
671 second instruction will be <function+2>, even though the
672 pointer is <function+3>. This matches the ISA behavior. */
673 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
674 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
675 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
676 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
677 addr = gdbarch_addr_bits_remove (gdbarch, addr);
678
679 symbol = 0;
680 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
681 if (do_demangle || asm_demangle)
682 name_temp = msymbol.minsym->print_name ();
683 else
684 name_temp = msymbol.minsym->linkage_name ();
685 }
686 }
687 if (symbol == NULL && msymbol.minsym == NULL)
688 return 1;
689
690 /* If the nearest symbol is too far away, don't print anything symbolic. */
691
692 /* For when CORE_ADDR is larger than unsigned int, we do math in
693 CORE_ADDR. But when we detect unsigned wraparound in the
694 CORE_ADDR math, we ignore this test and print the offset,
695 because addr+max_symbolic_offset has wrapped through the end
696 of the address space back to the beginning, giving bogus comparison. */
697 if (addr > name_location + max_symbolic_offset
698 && name_location + max_symbolic_offset > name_location)
699 return 1;
700
701 *offset = (LONGEST) addr - name_location;
702
703 *name = name_temp;
704
705 if (print_symbol_filename)
706 {
707 struct symtab_and_line sal;
708
709 sal = find_pc_sect_line (addr, section, 0);
710
711 if (sal.symtab)
712 {
713 *filename = symtab_to_filename_for_display (sal.symtab);
714 *line = sal.line;
715 }
716 }
717 return 0;
718 }
719
720
721 /* Print address ADDR symbolically on STREAM.
722 First print it as a number. Then perhaps print
723 <SYMBOL + OFFSET> after the number. */
724
725 void
726 print_address (struct gdbarch *gdbarch,
727 CORE_ADDR addr, struct ui_file *stream)
728 {
729 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
730 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
731 }
732
733 /* Return a prefix for instruction address:
734 "=> " for current instruction, else " ". */
735
736 const char *
737 pc_prefix (CORE_ADDR addr)
738 {
739 if (has_stack_frames ())
740 {
741 struct frame_info *frame;
742 CORE_ADDR pc;
743
744 frame = get_selected_frame (NULL);
745 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
746 return "=> ";
747 }
748 return " ";
749 }
750
751 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
752 controls whether to print the symbolic name "raw" or demangled.
753 Return non-zero if anything was printed; zero otherwise. */
754
755 int
756 print_address_demangle (const struct value_print_options *opts,
757 struct gdbarch *gdbarch, CORE_ADDR addr,
758 struct ui_file *stream, int do_demangle)
759 {
760 if (opts->addressprint)
761 {
762 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
763 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
764 }
765 else
766 {
767 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
768 }
769 return 1;
770 }
771 \f
772
773 /* Find the address of the instruction that is INST_COUNT instructions before
774 the instruction at ADDR.
775 Since some architectures have variable-length instructions, we can't just
776 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
777 number information to locate the nearest known instruction boundary,
778 and disassemble forward from there. If we go out of the symbol range
779 during disassembling, we return the lowest address we've got so far and
780 set the number of instructions read to INST_READ. */
781
782 static CORE_ADDR
783 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
784 int inst_count, int *inst_read)
785 {
786 /* The vector PCS is used to store instruction addresses within
787 a pc range. */
788 CORE_ADDR loop_start, loop_end, p;
789 std::vector<CORE_ADDR> pcs;
790 struct symtab_and_line sal;
791
792 *inst_read = 0;
793 loop_start = loop_end = addr;
794
795 /* In each iteration of the outer loop, we get a pc range that ends before
796 LOOP_START, then we count and store every instruction address of the range
797 iterated in the loop.
798 If the number of instructions counted reaches INST_COUNT, return the
799 stored address that is located INST_COUNT instructions back from ADDR.
800 If INST_COUNT is not reached, we subtract the number of counted
801 instructions from INST_COUNT, and go to the next iteration. */
802 do
803 {
804 pcs.clear ();
805 sal = find_pc_sect_line (loop_start, NULL, 1);
806 if (sal.line <= 0)
807 {
808 /* We reach here when line info is not available. In this case,
809 we print a message and just exit the loop. The return value
810 is calculated after the loop. */
811 printf_filtered (_("No line number information available "
812 "for address "));
813 wrap_here (" ");
814 print_address (gdbarch, loop_start - 1, gdb_stdout);
815 printf_filtered ("\n");
816 break;
817 }
818
819 loop_end = loop_start;
820 loop_start = sal.pc;
821
822 /* This loop pushes instruction addresses in the range from
823 LOOP_START to LOOP_END. */
824 for (p = loop_start; p < loop_end;)
825 {
826 pcs.push_back (p);
827 p += gdb_insn_length (gdbarch, p);
828 }
829
830 inst_count -= pcs.size ();
831 *inst_read += pcs.size ();
832 }
833 while (inst_count > 0);
834
835 /* After the loop, the vector PCS has instruction addresses of the last
836 source line we processed, and INST_COUNT has a negative value.
837 We return the address at the index of -INST_COUNT in the vector for
838 the reason below.
839 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
840 Line X of File
841 0x4000
842 0x4001
843 0x4005
844 Line Y of File
845 0x4009
846 0x400c
847 => 0x400e
848 0x4011
849 find_instruction_backward is called with INST_COUNT = 4 and expected to
850 return 0x4001. When we reach here, INST_COUNT is set to -1 because
851 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
852 4001 is located at the index 1 of the last iterated line (= Line X),
853 which is simply calculated by -INST_COUNT.
854 The case when the length of PCS is 0 means that we reached an area for
855 which line info is not available. In such case, we return LOOP_START,
856 which was the lowest instruction address that had line info. */
857 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
858
859 /* INST_READ includes all instruction addresses in a pc range. Need to
860 exclude the beginning part up to the address we're returning. That
861 is, exclude {0x4000} in the example above. */
862 if (inst_count < 0)
863 *inst_read += inst_count;
864
865 return p;
866 }
867
868 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
869 placing the results in GDB's memory from MYADDR + LEN. Returns
870 a count of the bytes actually read. */
871
872 static int
873 read_memory_backward (struct gdbarch *gdbarch,
874 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
875 {
876 int errcode;
877 int nread; /* Number of bytes actually read. */
878
879 /* First try a complete read. */
880 errcode = target_read_memory (memaddr, myaddr, len);
881 if (errcode == 0)
882 {
883 /* Got it all. */
884 nread = len;
885 }
886 else
887 {
888 /* Loop, reading one byte at a time until we get as much as we can. */
889 memaddr += len;
890 myaddr += len;
891 for (nread = 0; nread < len; ++nread)
892 {
893 errcode = target_read_memory (--memaddr, --myaddr, 1);
894 if (errcode != 0)
895 {
896 /* The read was unsuccessful, so exit the loop. */
897 printf_filtered (_("Cannot access memory at address %s\n"),
898 paddress (gdbarch, memaddr));
899 break;
900 }
901 }
902 }
903 return nread;
904 }
905
906 /* Returns true if X (which is LEN bytes wide) is the number zero. */
907
908 static int
909 integer_is_zero (const gdb_byte *x, int len)
910 {
911 int i = 0;
912
913 while (i < len && x[i] == 0)
914 ++i;
915 return (i == len);
916 }
917
918 /* Find the start address of a string in which ADDR is included.
919 Basically we search for '\0' and return the next address,
920 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
921 we stop searching and return the address to print characters as many as
922 PRINT_MAX from the string. */
923
924 static CORE_ADDR
925 find_string_backward (struct gdbarch *gdbarch,
926 CORE_ADDR addr, int count, int char_size,
927 const struct value_print_options *options,
928 int *strings_counted)
929 {
930 const int chunk_size = 0x20;
931 int read_error = 0;
932 int chars_read = 0;
933 int chars_to_read = chunk_size;
934 int chars_counted = 0;
935 int count_original = count;
936 CORE_ADDR string_start_addr = addr;
937
938 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
939 gdb::byte_vector buffer (chars_to_read * char_size);
940 while (count > 0 && read_error == 0)
941 {
942 int i;
943
944 addr -= chars_to_read * char_size;
945 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
946 chars_to_read * char_size);
947 chars_read /= char_size;
948 read_error = (chars_read == chars_to_read) ? 0 : 1;
949 /* Searching for '\0' from the end of buffer in backward direction. */
950 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
951 {
952 int offset = (chars_to_read - i - 1) * char_size;
953
954 if (integer_is_zero (&buffer[offset], char_size)
955 || chars_counted == options->print_max)
956 {
957 /* Found '\0' or reached print_max. As OFFSET is the offset to
958 '\0', we add CHAR_SIZE to return the start address of
959 a string. */
960 --count;
961 string_start_addr = addr + offset + char_size;
962 chars_counted = 0;
963 }
964 }
965 }
966
967 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
968 *strings_counted = count_original - count;
969
970 if (read_error != 0)
971 {
972 /* In error case, STRING_START_ADDR is pointing to the string that
973 was last successfully loaded. Rewind the partially loaded string. */
974 string_start_addr -= chars_counted * char_size;
975 }
976
977 return string_start_addr;
978 }
979
980 /* Examine data at address ADDR in format FMT.
981 Fetch it from memory and print on gdb_stdout. */
982
983 static void
984 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
985 {
986 char format = 0;
987 char size;
988 int count = 1;
989 struct type *val_type = NULL;
990 int i;
991 int maxelts;
992 struct value_print_options opts;
993 int need_to_update_next_address = 0;
994 CORE_ADDR addr_rewound = 0;
995
996 format = fmt.format;
997 size = fmt.size;
998 count = fmt.count;
999 next_gdbarch = gdbarch;
1000 next_address = addr;
1001
1002 /* Instruction format implies fetch single bytes
1003 regardless of the specified size.
1004 The case of strings is handled in decode_format, only explicit
1005 size operator are not changed to 'b'. */
1006 if (format == 'i')
1007 size = 'b';
1008
1009 if (size == 'a')
1010 {
1011 /* Pick the appropriate size for an address. */
1012 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1013 size = 'g';
1014 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1015 size = 'w';
1016 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1017 size = 'h';
1018 else
1019 /* Bad value for gdbarch_ptr_bit. */
1020 internal_error (__FILE__, __LINE__,
1021 _("failed internal consistency check"));
1022 }
1023
1024 if (size == 'b')
1025 val_type = builtin_type (next_gdbarch)->builtin_int8;
1026 else if (size == 'h')
1027 val_type = builtin_type (next_gdbarch)->builtin_int16;
1028 else if (size == 'w')
1029 val_type = builtin_type (next_gdbarch)->builtin_int32;
1030 else if (size == 'g')
1031 val_type = builtin_type (next_gdbarch)->builtin_int64;
1032
1033 if (format == 's')
1034 {
1035 struct type *char_type = NULL;
1036
1037 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1038 if type is not found. */
1039 if (size == 'h')
1040 char_type = builtin_type (next_gdbarch)->builtin_char16;
1041 else if (size == 'w')
1042 char_type = builtin_type (next_gdbarch)->builtin_char32;
1043 if (char_type)
1044 val_type = char_type;
1045 else
1046 {
1047 if (size != '\0' && size != 'b')
1048 warning (_("Unable to display strings with "
1049 "size '%c', using 'b' instead."), size);
1050 size = 'b';
1051 val_type = builtin_type (next_gdbarch)->builtin_int8;
1052 }
1053 }
1054
1055 maxelts = 8;
1056 if (size == 'w')
1057 maxelts = 4;
1058 if (size == 'g')
1059 maxelts = 2;
1060 if (format == 's' || format == 'i')
1061 maxelts = 1;
1062
1063 get_formatted_print_options (&opts, format);
1064
1065 if (count < 0)
1066 {
1067 /* This is the negative repeat count case.
1068 We rewind the address based on the given repeat count and format,
1069 then examine memory from there in forward direction. */
1070
1071 count = -count;
1072 if (format == 'i')
1073 {
1074 next_address = find_instruction_backward (gdbarch, addr, count,
1075 &count);
1076 }
1077 else if (format == 's')
1078 {
1079 next_address = find_string_backward (gdbarch, addr, count,
1080 TYPE_LENGTH (val_type),
1081 &opts, &count);
1082 }
1083 else
1084 {
1085 next_address = addr - count * TYPE_LENGTH (val_type);
1086 }
1087
1088 /* The following call to print_formatted updates next_address in every
1089 iteration. In backward case, we store the start address here
1090 and update next_address with it before exiting the function. */
1091 addr_rewound = (format == 's'
1092 ? next_address - TYPE_LENGTH (val_type)
1093 : next_address);
1094 need_to_update_next_address = 1;
1095 }
1096
1097 /* Print as many objects as specified in COUNT, at most maxelts per line,
1098 with the address of the next one at the start of each line. */
1099
1100 while (count > 0)
1101 {
1102 QUIT;
1103 if (format == 'i')
1104 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1105 print_address (next_gdbarch, next_address, gdb_stdout);
1106 printf_filtered (":");
1107 for (i = maxelts;
1108 i > 0 && count > 0;
1109 i--, count--)
1110 {
1111 printf_filtered ("\t");
1112 /* Note that print_formatted sets next_address for the next
1113 object. */
1114 last_examine_address = next_address;
1115
1116 /* The value to be displayed is not fetched greedily.
1117 Instead, to avoid the possibility of a fetched value not
1118 being used, its retrieval is delayed until the print code
1119 uses it. When examining an instruction stream, the
1120 disassembler will perform its own memory fetch using just
1121 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1122 the disassembler be modified so that LAST_EXAMINE_VALUE
1123 is left with the byte sequence from the last complete
1124 instruction fetched from memory? */
1125 last_examine_value
1126 = release_value (value_at_lazy (val_type, next_address));
1127
1128 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1129
1130 /* Display any branch delay slots following the final insn. */
1131 if (format == 'i' && count == 1)
1132 count += branch_delay_insns;
1133 }
1134 printf_filtered ("\n");
1135 }
1136
1137 if (need_to_update_next_address)
1138 next_address = addr_rewound;
1139 }
1140 \f
1141 static void
1142 validate_format (struct format_data fmt, const char *cmdname)
1143 {
1144 if (fmt.size != 0)
1145 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1146 if (fmt.count != 1)
1147 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1148 cmdname);
1149 if (fmt.format == 'i')
1150 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1151 fmt.format, cmdname);
1152 }
1153
1154 /* Parse print command format string into *OPTS and update *EXPP.
1155 CMDNAME should name the current command. */
1156
1157 void
1158 print_command_parse_format (const char **expp, const char *cmdname,
1159 value_print_options *opts)
1160 {
1161 const char *exp = *expp;
1162
1163 /* opts->raw value might already have been set by 'set print raw-values'
1164 or by using 'print -raw-values'.
1165 So, do not set opts->raw to 0, only set it to 1 if /r is given. */
1166 if (exp && *exp == '/')
1167 {
1168 format_data fmt;
1169
1170 exp++;
1171 fmt = decode_format (&exp, last_format, 0);
1172 validate_format (fmt, cmdname);
1173 last_format = fmt.format;
1174
1175 opts->format = fmt.format;
1176 opts->raw = opts->raw || fmt.raw;
1177 }
1178 else
1179 {
1180 opts->format = 0;
1181 }
1182
1183 *expp = exp;
1184 }
1185
1186 /* See valprint.h. */
1187
1188 void
1189 print_value (value *val, const value_print_options &opts)
1190 {
1191 int histindex = record_latest_value (val);
1192
1193 annotate_value_history_begin (histindex, value_type (val));
1194
1195 printf_filtered ("$%d = ", histindex);
1196
1197 annotate_value_history_value ();
1198
1199 print_formatted (val, 0, &opts, gdb_stdout);
1200 printf_filtered ("\n");
1201
1202 annotate_value_history_end ();
1203 }
1204
1205 /* Implementation of the "print" and "call" commands. */
1206
1207 static void
1208 print_command_1 (const char *args, int voidprint)
1209 {
1210 struct value *val;
1211 value_print_options print_opts;
1212
1213 get_user_print_options (&print_opts);
1214 /* Override global settings with explicit options, if any. */
1215 auto group = make_value_print_options_def_group (&print_opts);
1216 gdb::option::process_options
1217 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1218
1219 print_command_parse_format (&args, "print", &print_opts);
1220
1221 const char *exp = args;
1222
1223 if (exp != nullptr && *exp)
1224 {
1225 expression_up expr = parse_expression (exp);
1226 val = evaluate_expression (expr.get ());
1227 }
1228 else
1229 val = access_value_history (0);
1230
1231 if (voidprint || (val && value_type (val) &&
1232 value_type (val)->code () != TYPE_CODE_VOID))
1233 print_value (val, print_opts);
1234 }
1235
1236 /* See valprint.h. */
1237
1238 void
1239 print_command_completer (struct cmd_list_element *ignore,
1240 completion_tracker &tracker,
1241 const char *text, const char * /*word*/)
1242 {
1243 const auto group = make_value_print_options_def_group (nullptr);
1244 if (gdb::option::complete_options
1245 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1246 return;
1247
1248 const char *word = advance_to_expression_complete_word_point (tracker, text);
1249 expression_completer (ignore, tracker, text, word);
1250 }
1251
1252 static void
1253 print_command (const char *exp, int from_tty)
1254 {
1255 print_command_1 (exp, 1);
1256 }
1257
1258 /* Same as print, except it doesn't print void results. */
1259 static void
1260 call_command (const char *exp, int from_tty)
1261 {
1262 print_command_1 (exp, 0);
1263 }
1264
1265 /* Implementation of the "output" command. */
1266
1267 void
1268 output_command (const char *exp, int from_tty)
1269 {
1270 char format = 0;
1271 struct value *val;
1272 struct format_data fmt;
1273 struct value_print_options opts;
1274
1275 fmt.size = 0;
1276 fmt.raw = 0;
1277
1278 if (exp && *exp == '/')
1279 {
1280 exp++;
1281 fmt = decode_format (&exp, 0, 0);
1282 validate_format (fmt, "output");
1283 format = fmt.format;
1284 }
1285
1286 expression_up expr = parse_expression (exp);
1287
1288 val = evaluate_expression (expr.get ());
1289
1290 annotate_value_begin (value_type (val));
1291
1292 get_formatted_print_options (&opts, format);
1293 opts.raw = fmt.raw;
1294 print_formatted (val, fmt.size, &opts, gdb_stdout);
1295
1296 annotate_value_end ();
1297
1298 wrap_here ("");
1299 gdb_flush (gdb_stdout);
1300 }
1301
1302 static void
1303 set_command (const char *exp, int from_tty)
1304 {
1305 expression_up expr = parse_expression (exp);
1306
1307 if (expr->nelts >= 1)
1308 switch (expr->elts[0].opcode)
1309 {
1310 case UNOP_PREINCREMENT:
1311 case UNOP_POSTINCREMENT:
1312 case UNOP_PREDECREMENT:
1313 case UNOP_POSTDECREMENT:
1314 case BINOP_ASSIGN:
1315 case BINOP_ASSIGN_MODIFY:
1316 case BINOP_COMMA:
1317 break;
1318 default:
1319 warning
1320 (_("Expression is not an assignment (and might have no effect)"));
1321 }
1322
1323 evaluate_expression (expr.get ());
1324 }
1325
1326 static void
1327 info_symbol_command (const char *arg, int from_tty)
1328 {
1329 struct minimal_symbol *msymbol;
1330 struct obj_section *osect;
1331 CORE_ADDR addr, sect_addr;
1332 int matches = 0;
1333 unsigned int offset;
1334
1335 if (!arg)
1336 error_no_arg (_("address"));
1337
1338 addr = parse_and_eval_address (arg);
1339 for (objfile *objfile : current_program_space->objfiles ())
1340 ALL_OBJFILE_OSECTIONS (objfile, osect)
1341 {
1342 /* Only process each object file once, even if there's a separate
1343 debug file. */
1344 if (objfile->separate_debug_objfile_backlink)
1345 continue;
1346
1347 sect_addr = overlay_mapped_address (addr, osect);
1348
1349 if (obj_section_addr (osect) <= sect_addr
1350 && sect_addr < obj_section_endaddr (osect)
1351 && (msymbol
1352 = lookup_minimal_symbol_by_pc_section (sect_addr,
1353 osect).minsym))
1354 {
1355 const char *obj_name, *mapped, *sec_name, *msym_name;
1356 const char *loc_string;
1357
1358 matches = 1;
1359 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1360 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1361 sec_name = osect->the_bfd_section->name;
1362 msym_name = msymbol->print_name ();
1363
1364 /* Don't print the offset if it is zero.
1365 We assume there's no need to handle i18n of "sym + offset". */
1366 std::string string_holder;
1367 if (offset)
1368 {
1369 string_holder = string_printf ("%s + %u", msym_name, offset);
1370 loc_string = string_holder.c_str ();
1371 }
1372 else
1373 loc_string = msym_name;
1374
1375 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1376 obj_name = objfile_name (osect->objfile);
1377
1378 if (current_program_space->multi_objfile_p ())
1379 if (pc_in_unmapped_range (addr, osect))
1380 if (section_is_overlay (osect))
1381 printf_filtered (_("%s in load address range of "
1382 "%s overlay section %s of %s\n"),
1383 loc_string, mapped, sec_name, obj_name);
1384 else
1385 printf_filtered (_("%s in load address range of "
1386 "section %s of %s\n"),
1387 loc_string, sec_name, obj_name);
1388 else
1389 if (section_is_overlay (osect))
1390 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1391 loc_string, mapped, sec_name, obj_name);
1392 else
1393 printf_filtered (_("%s in section %s of %s\n"),
1394 loc_string, sec_name, obj_name);
1395 else
1396 if (pc_in_unmapped_range (addr, osect))
1397 if (section_is_overlay (osect))
1398 printf_filtered (_("%s in load address range of %s overlay "
1399 "section %s\n"),
1400 loc_string, mapped, sec_name);
1401 else
1402 printf_filtered
1403 (_("%s in load address range of section %s\n"),
1404 loc_string, sec_name);
1405 else
1406 if (section_is_overlay (osect))
1407 printf_filtered (_("%s in %s overlay section %s\n"),
1408 loc_string, mapped, sec_name);
1409 else
1410 printf_filtered (_("%s in section %s\n"),
1411 loc_string, sec_name);
1412 }
1413 }
1414 if (matches == 0)
1415 printf_filtered (_("No symbol matches %s.\n"), arg);
1416 }
1417
1418 static void
1419 info_address_command (const char *exp, int from_tty)
1420 {
1421 struct gdbarch *gdbarch;
1422 int regno;
1423 struct symbol *sym;
1424 struct bound_minimal_symbol msymbol;
1425 long val;
1426 struct obj_section *section;
1427 CORE_ADDR load_addr, context_pc = 0;
1428 struct field_of_this_result is_a_field_of_this;
1429
1430 if (exp == 0)
1431 error (_("Argument required."));
1432
1433 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1434 &is_a_field_of_this).symbol;
1435 if (sym == NULL)
1436 {
1437 if (is_a_field_of_this.type != NULL)
1438 {
1439 printf_filtered ("Symbol \"");
1440 fprintf_symbol_filtered (gdb_stdout, exp,
1441 current_language->la_language, DMGL_ANSI);
1442 printf_filtered ("\" is a field of the local class variable ");
1443 if (current_language->la_language == language_objc)
1444 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1445 else
1446 printf_filtered ("`this'\n");
1447 return;
1448 }
1449
1450 msymbol = lookup_bound_minimal_symbol (exp);
1451
1452 if (msymbol.minsym != NULL)
1453 {
1454 struct objfile *objfile = msymbol.objfile;
1455
1456 gdbarch = objfile->arch ();
1457 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1458
1459 printf_filtered ("Symbol \"");
1460 fprintf_symbol_filtered (gdb_stdout, exp,
1461 current_language->la_language, DMGL_ANSI);
1462 printf_filtered ("\" is at ");
1463 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1464 gdb_stdout);
1465 printf_filtered (" in a file compiled without debugging");
1466 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1467 if (section_is_overlay (section))
1468 {
1469 load_addr = overlay_unmapped_address (load_addr, section);
1470 printf_filtered (",\n -- loaded at ");
1471 fputs_styled (paddress (gdbarch, load_addr),
1472 address_style.style (),
1473 gdb_stdout);
1474 printf_filtered (" in overlay section %s",
1475 section->the_bfd_section->name);
1476 }
1477 printf_filtered (".\n");
1478 }
1479 else
1480 error (_("No symbol \"%s\" in current context."), exp);
1481 return;
1482 }
1483
1484 printf_filtered ("Symbol \"");
1485 fprintf_symbol_filtered (gdb_stdout, sym->print_name (),
1486 current_language->la_language, DMGL_ANSI);
1487 printf_filtered ("\" is ");
1488 val = SYMBOL_VALUE (sym);
1489 if (SYMBOL_OBJFILE_OWNED (sym))
1490 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1491 else
1492 section = NULL;
1493 gdbarch = symbol_arch (sym);
1494
1495 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1496 {
1497 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1498 gdb_stdout);
1499 printf_filtered (".\n");
1500 return;
1501 }
1502
1503 switch (SYMBOL_CLASS (sym))
1504 {
1505 case LOC_CONST:
1506 case LOC_CONST_BYTES:
1507 printf_filtered ("constant");
1508 break;
1509
1510 case LOC_LABEL:
1511 printf_filtered ("a label at address ");
1512 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1513 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1514 gdb_stdout);
1515 if (section_is_overlay (section))
1516 {
1517 load_addr = overlay_unmapped_address (load_addr, section);
1518 printf_filtered (",\n -- loaded at ");
1519 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1520 gdb_stdout);
1521 printf_filtered (" in overlay section %s",
1522 section->the_bfd_section->name);
1523 }
1524 break;
1525
1526 case LOC_COMPUTED:
1527 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1528
1529 case LOC_REGISTER:
1530 /* GDBARCH is the architecture associated with the objfile the symbol
1531 is defined in; the target architecture may be different, and may
1532 provide additional registers. However, we do not know the target
1533 architecture at this point. We assume the objfile architecture
1534 will contain all the standard registers that occur in debug info
1535 in that objfile. */
1536 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1537
1538 if (SYMBOL_IS_ARGUMENT (sym))
1539 printf_filtered (_("an argument in register %s"),
1540 gdbarch_register_name (gdbarch, regno));
1541 else
1542 printf_filtered (_("a variable in register %s"),
1543 gdbarch_register_name (gdbarch, regno));
1544 break;
1545
1546 case LOC_STATIC:
1547 printf_filtered (_("static storage at address "));
1548 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1549 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1550 gdb_stdout);
1551 if (section_is_overlay (section))
1552 {
1553 load_addr = overlay_unmapped_address (load_addr, section);
1554 printf_filtered (_(",\n -- loaded at "));
1555 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1556 gdb_stdout);
1557 printf_filtered (_(" in overlay section %s"),
1558 section->the_bfd_section->name);
1559 }
1560 break;
1561
1562 case LOC_REGPARM_ADDR:
1563 /* Note comment at LOC_REGISTER. */
1564 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1565 printf_filtered (_("address of an argument in register %s"),
1566 gdbarch_register_name (gdbarch, regno));
1567 break;
1568
1569 case LOC_ARG:
1570 printf_filtered (_("an argument at offset %ld"), val);
1571 break;
1572
1573 case LOC_LOCAL:
1574 printf_filtered (_("a local variable at frame offset %ld"), val);
1575 break;
1576
1577 case LOC_REF_ARG:
1578 printf_filtered (_("a reference argument at offset %ld"), val);
1579 break;
1580
1581 case LOC_TYPEDEF:
1582 printf_filtered (_("a typedef"));
1583 break;
1584
1585 case LOC_BLOCK:
1586 printf_filtered (_("a function at address "));
1587 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1588 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1589 gdb_stdout);
1590 if (section_is_overlay (section))
1591 {
1592 load_addr = overlay_unmapped_address (load_addr, section);
1593 printf_filtered (_(",\n -- loaded at "));
1594 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1595 gdb_stdout);
1596 printf_filtered (_(" in overlay section %s"),
1597 section->the_bfd_section->name);
1598 }
1599 break;
1600
1601 case LOC_UNRESOLVED:
1602 {
1603 struct bound_minimal_symbol msym;
1604
1605 msym = lookup_bound_minimal_symbol (sym->linkage_name ());
1606 if (msym.minsym == NULL)
1607 printf_filtered ("unresolved");
1608 else
1609 {
1610 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1611
1612 if (section
1613 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1614 {
1615 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1616 printf_filtered (_("a thread-local variable at offset %s "
1617 "in the thread-local storage for `%s'"),
1618 paddress (gdbarch, load_addr),
1619 objfile_name (section->objfile));
1620 }
1621 else
1622 {
1623 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1624 printf_filtered (_("static storage at address "));
1625 fputs_styled (paddress (gdbarch, load_addr),
1626 address_style.style (), gdb_stdout);
1627 if (section_is_overlay (section))
1628 {
1629 load_addr = overlay_unmapped_address (load_addr, section);
1630 printf_filtered (_(",\n -- loaded at "));
1631 fputs_styled (paddress (gdbarch, load_addr),
1632 address_style.style (),
1633 gdb_stdout);
1634 printf_filtered (_(" in overlay section %s"),
1635 section->the_bfd_section->name);
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case LOC_OPTIMIZED_OUT:
1643 printf_filtered (_("optimized out"));
1644 break;
1645
1646 default:
1647 printf_filtered (_("of unknown (botched) type"));
1648 break;
1649 }
1650 printf_filtered (".\n");
1651 }
1652 \f
1653
1654 static void
1655 x_command (const char *exp, int from_tty)
1656 {
1657 struct format_data fmt;
1658 struct value *val;
1659
1660 fmt.format = last_format ? last_format : 'x';
1661 fmt.size = last_size;
1662 fmt.count = 1;
1663 fmt.raw = 0;
1664
1665 /* If there is no expression and no format, use the most recent
1666 count. */
1667 if (exp == nullptr && last_count > 0)
1668 fmt.count = last_count;
1669
1670 if (exp && *exp == '/')
1671 {
1672 const char *tmp = exp + 1;
1673
1674 fmt = decode_format (&tmp, last_format, last_size);
1675 exp = (char *) tmp;
1676 }
1677
1678 last_count = fmt.count;
1679
1680 /* If we have an expression, evaluate it and use it as the address. */
1681
1682 if (exp != 0 && *exp != 0)
1683 {
1684 expression_up expr = parse_expression (exp);
1685 /* Cause expression not to be there any more if this command is
1686 repeated with Newline. But don't clobber a user-defined
1687 command's definition. */
1688 if (from_tty)
1689 set_repeat_arguments ("");
1690 val = evaluate_expression (expr.get ());
1691 if (TYPE_IS_REFERENCE (value_type (val)))
1692 val = coerce_ref (val);
1693 /* In rvalue contexts, such as this, functions are coerced into
1694 pointers to functions. This makes "x/i main" work. */
1695 if (value_type (val)->code () == TYPE_CODE_FUNC
1696 && VALUE_LVAL (val) == lval_memory)
1697 next_address = value_address (val);
1698 else
1699 next_address = value_as_address (val);
1700
1701 next_gdbarch = expr->gdbarch;
1702 }
1703
1704 if (!next_gdbarch)
1705 error_no_arg (_("starting display address"));
1706
1707 do_examine (fmt, next_gdbarch, next_address);
1708
1709 /* If the examine succeeds, we remember its size and format for next
1710 time. Set last_size to 'b' for strings. */
1711 if (fmt.format == 's')
1712 last_size = 'b';
1713 else
1714 last_size = fmt.size;
1715 last_format = fmt.format;
1716
1717 /* Set a couple of internal variables if appropriate. */
1718 if (last_examine_value != nullptr)
1719 {
1720 /* Make last address examined available to the user as $_. Use
1721 the correct pointer type. */
1722 struct type *pointer_type
1723 = lookup_pointer_type (value_type (last_examine_value.get ()));
1724 set_internalvar (lookup_internalvar ("_"),
1725 value_from_pointer (pointer_type,
1726 last_examine_address));
1727
1728 /* Make contents of last address examined available to the user
1729 as $__. If the last value has not been fetched from memory
1730 then don't fetch it now; instead mark it by voiding the $__
1731 variable. */
1732 if (value_lazy (last_examine_value.get ()))
1733 clear_internalvar (lookup_internalvar ("__"));
1734 else
1735 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1736 }
1737 }
1738 \f
1739
1740 /* Add an expression to the auto-display chain.
1741 Specify the expression. */
1742
1743 static void
1744 display_command (const char *arg, int from_tty)
1745 {
1746 struct format_data fmt;
1747 struct display *newobj;
1748 const char *exp = arg;
1749
1750 if (exp == 0)
1751 {
1752 do_displays ();
1753 return;
1754 }
1755
1756 if (*exp == '/')
1757 {
1758 exp++;
1759 fmt = decode_format (&exp, 0, 0);
1760 if (fmt.size && fmt.format == 0)
1761 fmt.format = 'x';
1762 if (fmt.format == 'i' || fmt.format == 's')
1763 fmt.size = 'b';
1764 }
1765 else
1766 {
1767 fmt.format = 0;
1768 fmt.size = 0;
1769 fmt.count = 0;
1770 fmt.raw = 0;
1771 }
1772
1773 innermost_block_tracker tracker;
1774 expression_up expr = parse_expression (exp, &tracker);
1775
1776 newobj = new display (exp, std::move (expr), fmt,
1777 current_program_space, tracker.block ());
1778 all_displays.emplace_back (newobj);
1779
1780 if (from_tty)
1781 do_one_display (newobj);
1782
1783 dont_repeat ();
1784 }
1785
1786 /* Clear out the display_chain. Done when new symtabs are loaded,
1787 since this invalidates the types stored in many expressions. */
1788
1789 void
1790 clear_displays ()
1791 {
1792 all_displays.clear ();
1793 }
1794
1795 /* Delete the auto-display DISPLAY. */
1796
1797 static void
1798 delete_display (struct display *display)
1799 {
1800 gdb_assert (display != NULL);
1801
1802 auto iter = std::find_if (all_displays.begin (),
1803 all_displays.end (),
1804 [=] (const std::unique_ptr<struct display> &item)
1805 {
1806 return item.get () == display;
1807 });
1808 gdb_assert (iter != all_displays.end ());
1809 all_displays.erase (iter);
1810 }
1811
1812 /* Call FUNCTION on each of the displays whose numbers are given in
1813 ARGS. DATA is passed unmodified to FUNCTION. */
1814
1815 static void
1816 map_display_numbers (const char *args,
1817 gdb::function_view<void (struct display *)> function)
1818 {
1819 int num;
1820
1821 if (args == NULL)
1822 error_no_arg (_("one or more display numbers"));
1823
1824 number_or_range_parser parser (args);
1825
1826 while (!parser.finished ())
1827 {
1828 const char *p = parser.cur_tok ();
1829
1830 num = parser.get_number ();
1831 if (num == 0)
1832 warning (_("bad display number at or near '%s'"), p);
1833 else
1834 {
1835 auto iter = std::find_if (all_displays.begin (),
1836 all_displays.end (),
1837 [=] (const std::unique_ptr<display> &item)
1838 {
1839 return item->number == num;
1840 });
1841 if (iter == all_displays.end ())
1842 printf_unfiltered (_("No display number %d.\n"), num);
1843 else
1844 function (iter->get ());
1845 }
1846 }
1847 }
1848
1849 /* "undisplay" command. */
1850
1851 static void
1852 undisplay_command (const char *args, int from_tty)
1853 {
1854 if (args == NULL)
1855 {
1856 if (query (_("Delete all auto-display expressions? ")))
1857 clear_displays ();
1858 dont_repeat ();
1859 return;
1860 }
1861
1862 map_display_numbers (args, delete_display);
1863 dont_repeat ();
1864 }
1865
1866 /* Display a single auto-display.
1867 Do nothing if the display cannot be printed in the current context,
1868 or if the display is disabled. */
1869
1870 static void
1871 do_one_display (struct display *d)
1872 {
1873 int within_current_scope;
1874
1875 if (!d->enabled_p)
1876 return;
1877
1878 /* The expression carries the architecture that was used at parse time.
1879 This is a problem if the expression depends on architecture features
1880 (e.g. register numbers), and the current architecture is now different.
1881 For example, a display statement like "display/i $pc" is expected to
1882 display the PC register of the current architecture, not the arch at
1883 the time the display command was given. Therefore, we re-parse the
1884 expression if the current architecture has changed. */
1885 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1886 {
1887 d->exp.reset ();
1888 d->block = NULL;
1889 }
1890
1891 if (d->exp == NULL)
1892 {
1893
1894 try
1895 {
1896 innermost_block_tracker tracker;
1897 d->exp = parse_expression (d->exp_string.c_str (), &tracker);
1898 d->block = tracker.block ();
1899 }
1900 catch (const gdb_exception &ex)
1901 {
1902 /* Can't re-parse the expression. Disable this display item. */
1903 d->enabled_p = false;
1904 warning (_("Unable to display \"%s\": %s"),
1905 d->exp_string.c_str (), ex.what ());
1906 return;
1907 }
1908 }
1909
1910 if (d->block)
1911 {
1912 if (d->pspace == current_program_space)
1913 within_current_scope = contained_in (get_selected_block (0), d->block,
1914 true);
1915 else
1916 within_current_scope = 0;
1917 }
1918 else
1919 within_current_scope = 1;
1920 if (!within_current_scope)
1921 return;
1922
1923 scoped_restore save_display_number
1924 = make_scoped_restore (&current_display_number, d->number);
1925
1926 annotate_display_begin ();
1927 printf_filtered ("%d", d->number);
1928 annotate_display_number_end ();
1929 printf_filtered (": ");
1930 if (d->format.size)
1931 {
1932
1933 annotate_display_format ();
1934
1935 printf_filtered ("x/");
1936 if (d->format.count != 1)
1937 printf_filtered ("%d", d->format.count);
1938 printf_filtered ("%c", d->format.format);
1939 if (d->format.format != 'i' && d->format.format != 's')
1940 printf_filtered ("%c", d->format.size);
1941 printf_filtered (" ");
1942
1943 annotate_display_expression ();
1944
1945 puts_filtered (d->exp_string.c_str ());
1946 annotate_display_expression_end ();
1947
1948 if (d->format.count != 1 || d->format.format == 'i')
1949 printf_filtered ("\n");
1950 else
1951 printf_filtered (" ");
1952
1953 annotate_display_value ();
1954
1955 try
1956 {
1957 struct value *val;
1958 CORE_ADDR addr;
1959
1960 val = evaluate_expression (d->exp.get ());
1961 addr = value_as_address (val);
1962 if (d->format.format == 'i')
1963 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1964 do_examine (d->format, d->exp->gdbarch, addr);
1965 }
1966 catch (const gdb_exception_error &ex)
1967 {
1968 fprintf_filtered (gdb_stdout, _("%p[<error: %s>%p]\n"),
1969 metadata_style.style ().ptr (), ex.what (),
1970 nullptr);
1971 }
1972 }
1973 else
1974 {
1975 struct value_print_options opts;
1976
1977 annotate_display_format ();
1978
1979 if (d->format.format)
1980 printf_filtered ("/%c ", d->format.format);
1981
1982 annotate_display_expression ();
1983
1984 puts_filtered (d->exp_string.c_str ());
1985 annotate_display_expression_end ();
1986
1987 printf_filtered (" = ");
1988
1989 annotate_display_expression ();
1990
1991 get_formatted_print_options (&opts, d->format.format);
1992 opts.raw = d->format.raw;
1993
1994 try
1995 {
1996 struct value *val;
1997
1998 val = evaluate_expression (d->exp.get ());
1999 print_formatted (val, d->format.size, &opts, gdb_stdout);
2000 }
2001 catch (const gdb_exception_error &ex)
2002 {
2003 fprintf_styled (gdb_stdout, metadata_style.style (),
2004 _("<error: %s>"), ex.what ());
2005 }
2006
2007 printf_filtered ("\n");
2008 }
2009
2010 annotate_display_end ();
2011
2012 gdb_flush (gdb_stdout);
2013 }
2014
2015 /* Display all of the values on the auto-display chain which can be
2016 evaluated in the current scope. */
2017
2018 void
2019 do_displays (void)
2020 {
2021 for (auto &d : all_displays)
2022 do_one_display (d.get ());
2023 }
2024
2025 /* Delete the auto-display which we were in the process of displaying.
2026 This is done when there is an error or a signal. */
2027
2028 void
2029 disable_display (int num)
2030 {
2031 for (auto &d : all_displays)
2032 if (d->number == num)
2033 {
2034 d->enabled_p = false;
2035 return;
2036 }
2037 printf_unfiltered (_("No display number %d.\n"), num);
2038 }
2039
2040 void
2041 disable_current_display (void)
2042 {
2043 if (current_display_number >= 0)
2044 {
2045 disable_display (current_display_number);
2046 fprintf_unfiltered (gdb_stderr,
2047 _("Disabling display %d to "
2048 "avoid infinite recursion.\n"),
2049 current_display_number);
2050 }
2051 current_display_number = -1;
2052 }
2053
2054 static void
2055 info_display_command (const char *ignore, int from_tty)
2056 {
2057 if (all_displays.empty ())
2058 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2059 else
2060 printf_filtered (_("Auto-display expressions now in effect:\n\
2061 Num Enb Expression\n"));
2062
2063 for (auto &d : all_displays)
2064 {
2065 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2066 if (d->format.size)
2067 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2068 d->format.format);
2069 else if (d->format.format)
2070 printf_filtered ("/%c ", d->format.format);
2071 puts_filtered (d->exp_string.c_str ());
2072 if (d->block && !contained_in (get_selected_block (0), d->block, true))
2073 printf_filtered (_(" (cannot be evaluated in the current context)"));
2074 printf_filtered ("\n");
2075 }
2076 }
2077
2078 /* Implementation of both the "disable display" and "enable display"
2079 commands. ENABLE decides what to do. */
2080
2081 static void
2082 enable_disable_display_command (const char *args, int from_tty, bool enable)
2083 {
2084 if (args == NULL)
2085 {
2086 for (auto &d : all_displays)
2087 d->enabled_p = enable;
2088 return;
2089 }
2090
2091 map_display_numbers (args,
2092 [=] (struct display *d)
2093 {
2094 d->enabled_p = enable;
2095 });
2096 }
2097
2098 /* The "enable display" command. */
2099
2100 static void
2101 enable_display_command (const char *args, int from_tty)
2102 {
2103 enable_disable_display_command (args, from_tty, true);
2104 }
2105
2106 /* The "disable display" command. */
2107
2108 static void
2109 disable_display_command (const char *args, int from_tty)
2110 {
2111 enable_disable_display_command (args, from_tty, false);
2112 }
2113
2114 /* display_chain items point to blocks and expressions. Some expressions in
2115 turn may point to symbols.
2116 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2117 obstack_free'd when a shared library is unloaded.
2118 Clear pointers that are about to become dangling.
2119 Both .exp and .block fields will be restored next time we need to display
2120 an item by re-parsing .exp_string field in the new execution context. */
2121
2122 static void
2123 clear_dangling_display_expressions (struct objfile *objfile)
2124 {
2125 struct program_space *pspace;
2126
2127 /* With no symbol file we cannot have a block or expression from it. */
2128 if (objfile == NULL)
2129 return;
2130 pspace = objfile->pspace;
2131 if (objfile->separate_debug_objfile_backlink)
2132 {
2133 objfile = objfile->separate_debug_objfile_backlink;
2134 gdb_assert (objfile->pspace == pspace);
2135 }
2136
2137 for (auto &d : all_displays)
2138 {
2139 if (d->pspace != pspace)
2140 continue;
2141
2142 struct objfile *bl_objf = nullptr;
2143 if (d->block != nullptr)
2144 {
2145 bl_objf = block_objfile (d->block);
2146 if (bl_objf->separate_debug_objfile_backlink != nullptr)
2147 bl_objf = bl_objf->separate_debug_objfile_backlink;
2148 }
2149
2150 if (bl_objf == objfile
2151 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2152 {
2153 d->exp.reset ();
2154 d->block = NULL;
2155 }
2156 }
2157 }
2158 \f
2159
2160 /* Print the value in stack frame FRAME of a variable specified by a
2161 struct symbol. NAME is the name to print; if NULL then VAR's print
2162 name will be used. STREAM is the ui_file on which to print the
2163 value. INDENT specifies the number of indent levels to print
2164 before printing the variable name.
2165
2166 This function invalidates FRAME. */
2167
2168 void
2169 print_variable_and_value (const char *name, struct symbol *var,
2170 struct frame_info *frame,
2171 struct ui_file *stream, int indent)
2172 {
2173
2174 if (!name)
2175 name = var->print_name ();
2176
2177 fprintf_filtered (stream, "%s%ps = ", n_spaces (2 * indent),
2178 styled_string (variable_name_style.style (), name));
2179
2180 try
2181 {
2182 struct value *val;
2183 struct value_print_options opts;
2184
2185 /* READ_VAR_VALUE needs a block in order to deal with non-local
2186 references (i.e. to handle nested functions). In this context, we
2187 print variables that are local to this frame, so we can avoid passing
2188 a block to it. */
2189 val = read_var_value (var, NULL, frame);
2190 get_user_print_options (&opts);
2191 opts.deref_ref = 1;
2192 common_val_print (val, stream, indent, &opts, current_language);
2193
2194 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2195 function. */
2196 frame = NULL;
2197 }
2198 catch (const gdb_exception_error &except)
2199 {
2200 fprintf_styled (stream, metadata_style.style (),
2201 "<error reading variable %s (%s)>", name,
2202 except.what ());
2203 }
2204
2205 fprintf_filtered (stream, "\n");
2206 }
2207
2208 /* Subroutine of ui_printf to simplify it.
2209 Print VALUE to STREAM using FORMAT.
2210 VALUE is a C-style string either on the target or
2211 in a GDB internal variable. */
2212
2213 static void
2214 printf_c_string (struct ui_file *stream, const char *format,
2215 struct value *value)
2216 {
2217 const gdb_byte *str;
2218
2219 if (value_type (value)->code () != TYPE_CODE_PTR
2220 && VALUE_LVAL (value) == lval_internalvar
2221 && c_is_string_type_p (value_type (value)))
2222 {
2223 size_t len = TYPE_LENGTH (value_type (value));
2224
2225 /* Copy the internal var value to TEM_STR and append a terminating null
2226 character. This protects against corrupted C-style strings that lack
2227 the terminating null char. It also allows Ada-style strings (not
2228 null terminated) to be printed without problems. */
2229 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2230
2231 memcpy (tem_str, value_contents (value), len);
2232 tem_str [len] = 0;
2233 str = tem_str;
2234 }
2235 else
2236 {
2237 CORE_ADDR tem = value_as_address (value);;
2238
2239 if (tem == 0)
2240 {
2241 DIAGNOSTIC_PUSH
2242 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2243 fprintf_filtered (stream, format, "(null)");
2244 DIAGNOSTIC_POP
2245 return;
2246 }
2247
2248 /* This is a %s argument. Find the length of the string. */
2249 size_t len;
2250
2251 for (len = 0;; len++)
2252 {
2253 gdb_byte c;
2254
2255 QUIT;
2256 read_memory (tem + len, &c, 1);
2257 if (c == 0)
2258 break;
2259 }
2260
2261 /* Copy the string contents into a string inside GDB. */
2262 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2263
2264 if (len != 0)
2265 read_memory (tem, tem_str, len);
2266 tem_str[len] = 0;
2267 str = tem_str;
2268 }
2269
2270 DIAGNOSTIC_PUSH
2271 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2272 fprintf_filtered (stream, format, (char *) str);
2273 DIAGNOSTIC_POP
2274 }
2275
2276 /* Subroutine of ui_printf to simplify it.
2277 Print VALUE to STREAM using FORMAT.
2278 VALUE is a wide C-style string on the target or
2279 in a GDB internal variable. */
2280
2281 static void
2282 printf_wide_c_string (struct ui_file *stream, const char *format,
2283 struct value *value)
2284 {
2285 const gdb_byte *str;
2286 size_t len;
2287 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2288 struct type *wctype = lookup_typename (current_language,
2289 "wchar_t", NULL, 0);
2290 int wcwidth = TYPE_LENGTH (wctype);
2291
2292 if (VALUE_LVAL (value) == lval_internalvar
2293 && c_is_string_type_p (value_type (value)))
2294 {
2295 str = value_contents (value);
2296 len = TYPE_LENGTH (value_type (value));
2297 }
2298 else
2299 {
2300 CORE_ADDR tem = value_as_address (value);
2301
2302 if (tem == 0)
2303 {
2304 DIAGNOSTIC_PUSH
2305 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2306 fprintf_filtered (stream, format, "(null)");
2307 DIAGNOSTIC_POP
2308 return;
2309 }
2310
2311 /* This is a %s argument. Find the length of the string. */
2312 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2313 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2314
2315 for (len = 0;; len += wcwidth)
2316 {
2317 QUIT;
2318 read_memory (tem + len, buf, wcwidth);
2319 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2320 break;
2321 }
2322
2323 /* Copy the string contents into a string inside GDB. */
2324 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2325
2326 if (len != 0)
2327 read_memory (tem, tem_str, len);
2328 memset (&tem_str[len], 0, wcwidth);
2329 str = tem_str;
2330 }
2331
2332 auto_obstack output;
2333
2334 convert_between_encodings (target_wide_charset (gdbarch),
2335 host_charset (),
2336 str, len, wcwidth,
2337 &output, translit_char);
2338 obstack_grow_str0 (&output, "");
2339
2340 DIAGNOSTIC_PUSH
2341 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2342 fprintf_filtered (stream, format, obstack_base (&output));
2343 DIAGNOSTIC_POP
2344 }
2345
2346 /* Subroutine of ui_printf to simplify it.
2347 Print VALUE, a floating point value, to STREAM using FORMAT. */
2348
2349 static void
2350 printf_floating (struct ui_file *stream, const char *format,
2351 struct value *value, enum argclass argclass)
2352 {
2353 /* Parameter data. */
2354 struct type *param_type = value_type (value);
2355 struct gdbarch *gdbarch = get_type_arch (param_type);
2356
2357 /* Determine target type corresponding to the format string. */
2358 struct type *fmt_type;
2359 switch (argclass)
2360 {
2361 case double_arg:
2362 fmt_type = builtin_type (gdbarch)->builtin_double;
2363 break;
2364 case long_double_arg:
2365 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2366 break;
2367 case dec32float_arg:
2368 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2369 break;
2370 case dec64float_arg:
2371 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2372 break;
2373 case dec128float_arg:
2374 fmt_type = builtin_type (gdbarch)->builtin_declong;
2375 break;
2376 default:
2377 gdb_assert_not_reached ("unexpected argument class");
2378 }
2379
2380 /* To match the traditional GDB behavior, the conversion is
2381 done differently depending on the type of the parameter:
2382
2383 - if the parameter has floating-point type, it's value
2384 is converted to the target type;
2385
2386 - otherwise, if the parameter has a type that is of the
2387 same size as a built-in floating-point type, the value
2388 bytes are interpreted as if they were of that type, and
2389 then converted to the target type (this is not done for
2390 decimal floating-point argument classes);
2391
2392 - otherwise, if the source value has an integer value,
2393 it's value is converted to the target type;
2394
2395 - otherwise, an error is raised.
2396
2397 In either case, the result of the conversion is a byte buffer
2398 formatted in the target format for the target type. */
2399
2400 if (fmt_type->code () == TYPE_CODE_FLT)
2401 {
2402 param_type = float_type_from_length (param_type);
2403 if (param_type != value_type (value))
2404 value = value_from_contents (param_type, value_contents (value));
2405 }
2406
2407 value = value_cast (fmt_type, value);
2408
2409 /* Convert the value to a string and print it. */
2410 std::string str
2411 = target_float_to_string (value_contents (value), fmt_type, format);
2412 fputs_filtered (str.c_str (), stream);
2413 }
2414
2415 /* Subroutine of ui_printf to simplify it.
2416 Print VALUE, a target pointer, to STREAM using FORMAT. */
2417
2418 static void
2419 printf_pointer (struct ui_file *stream, const char *format,
2420 struct value *value)
2421 {
2422 /* We avoid the host's %p because pointers are too
2423 likely to be the wrong size. The only interesting
2424 modifier for %p is a width; extract that, and then
2425 handle %p as glibc would: %#x or a literal "(nil)". */
2426
2427 const char *p;
2428 char *fmt, *fmt_p;
2429 #ifdef PRINTF_HAS_LONG_LONG
2430 long long val = value_as_long (value);
2431 #else
2432 long val = value_as_long (value);
2433 #endif
2434
2435 fmt = (char *) alloca (strlen (format) + 5);
2436
2437 /* Copy up to the leading %. */
2438 p = format;
2439 fmt_p = fmt;
2440 while (*p)
2441 {
2442 int is_percent = (*p == '%');
2443
2444 *fmt_p++ = *p++;
2445 if (is_percent)
2446 {
2447 if (*p == '%')
2448 *fmt_p++ = *p++;
2449 else
2450 break;
2451 }
2452 }
2453
2454 if (val != 0)
2455 *fmt_p++ = '#';
2456
2457 /* Copy any width or flags. Only the "-" flag is valid for pointers
2458 -- see the format_pieces constructor. */
2459 while (*p == '-' || (*p >= '0' && *p < '9'))
2460 *fmt_p++ = *p++;
2461
2462 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2463 if (val != 0)
2464 {
2465 #ifdef PRINTF_HAS_LONG_LONG
2466 *fmt_p++ = 'l';
2467 #endif
2468 *fmt_p++ = 'l';
2469 *fmt_p++ = 'x';
2470 *fmt_p++ = '\0';
2471 DIAGNOSTIC_PUSH
2472 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2473 fprintf_filtered (stream, fmt, val);
2474 DIAGNOSTIC_POP
2475 }
2476 else
2477 {
2478 *fmt_p++ = 's';
2479 *fmt_p++ = '\0';
2480 DIAGNOSTIC_PUSH
2481 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2482 fprintf_filtered (stream, fmt, "(nil)");
2483 DIAGNOSTIC_POP
2484 }
2485 }
2486
2487 /* printf "printf format string" ARG to STREAM. */
2488
2489 static void
2490 ui_printf (const char *arg, struct ui_file *stream)
2491 {
2492 const char *s = arg;
2493 std::vector<struct value *> val_args;
2494
2495 if (s == 0)
2496 error_no_arg (_("format-control string and values to print"));
2497
2498 s = skip_spaces (s);
2499
2500 /* A format string should follow, enveloped in double quotes. */
2501 if (*s++ != '"')
2502 error (_("Bad format string, missing '\"'."));
2503
2504 format_pieces fpieces (&s);
2505
2506 if (*s++ != '"')
2507 error (_("Bad format string, non-terminated '\"'."));
2508
2509 s = skip_spaces (s);
2510
2511 if (*s != ',' && *s != 0)
2512 error (_("Invalid argument syntax"));
2513
2514 if (*s == ',')
2515 s++;
2516 s = skip_spaces (s);
2517
2518 {
2519 int nargs_wanted;
2520 int i;
2521 const char *current_substring;
2522
2523 nargs_wanted = 0;
2524 for (auto &&piece : fpieces)
2525 if (piece.argclass != literal_piece)
2526 ++nargs_wanted;
2527
2528 /* Now, parse all arguments and evaluate them.
2529 Store the VALUEs in VAL_ARGS. */
2530
2531 while (*s != '\0')
2532 {
2533 const char *s1;
2534
2535 s1 = s;
2536 val_args.push_back (parse_to_comma_and_eval (&s1));
2537
2538 s = s1;
2539 if (*s == ',')
2540 s++;
2541 }
2542
2543 if (val_args.size () != nargs_wanted)
2544 error (_("Wrong number of arguments for specified format-string"));
2545
2546 /* Now actually print them. */
2547 i = 0;
2548 for (auto &&piece : fpieces)
2549 {
2550 current_substring = piece.string;
2551 switch (piece.argclass)
2552 {
2553 case string_arg:
2554 printf_c_string (stream, current_substring, val_args[i]);
2555 break;
2556 case wide_string_arg:
2557 printf_wide_c_string (stream, current_substring, val_args[i]);
2558 break;
2559 case wide_char_arg:
2560 {
2561 struct gdbarch *gdbarch
2562 = get_type_arch (value_type (val_args[i]));
2563 struct type *wctype = lookup_typename (current_language,
2564 "wchar_t", NULL, 0);
2565 struct type *valtype;
2566 const gdb_byte *bytes;
2567
2568 valtype = value_type (val_args[i]);
2569 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2570 || valtype->code () != TYPE_CODE_INT)
2571 error (_("expected wchar_t argument for %%lc"));
2572
2573 bytes = value_contents (val_args[i]);
2574
2575 auto_obstack output;
2576
2577 convert_between_encodings (target_wide_charset (gdbarch),
2578 host_charset (),
2579 bytes, TYPE_LENGTH (valtype),
2580 TYPE_LENGTH (valtype),
2581 &output, translit_char);
2582 obstack_grow_str0 (&output, "");
2583
2584 DIAGNOSTIC_PUSH
2585 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2586 fprintf_filtered (stream, current_substring,
2587 obstack_base (&output));
2588 DIAGNOSTIC_POP
2589 }
2590 break;
2591 case long_long_arg:
2592 #ifdef PRINTF_HAS_LONG_LONG
2593 {
2594 long long val = value_as_long (val_args[i]);
2595
2596 DIAGNOSTIC_PUSH
2597 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2598 fprintf_filtered (stream, current_substring, val);
2599 DIAGNOSTIC_POP
2600 break;
2601 }
2602 #else
2603 error (_("long long not supported in printf"));
2604 #endif
2605 case int_arg:
2606 {
2607 int val = value_as_long (val_args[i]);
2608
2609 DIAGNOSTIC_PUSH
2610 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2611 fprintf_filtered (stream, current_substring, val);
2612 DIAGNOSTIC_POP
2613 break;
2614 }
2615 case long_arg:
2616 {
2617 long val = value_as_long (val_args[i]);
2618
2619 DIAGNOSTIC_PUSH
2620 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2621 fprintf_filtered (stream, current_substring, val);
2622 DIAGNOSTIC_POP
2623 break;
2624 }
2625 case size_t_arg:
2626 {
2627 size_t val = value_as_long (val_args[i]);
2628
2629 DIAGNOSTIC_PUSH
2630 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2631 fprintf_filtered (stream, current_substring, val);
2632 DIAGNOSTIC_POP
2633 break;
2634 }
2635 /* Handles floating-point values. */
2636 case double_arg:
2637 case long_double_arg:
2638 case dec32float_arg:
2639 case dec64float_arg:
2640 case dec128float_arg:
2641 printf_floating (stream, current_substring, val_args[i],
2642 piece.argclass);
2643 break;
2644 case ptr_arg:
2645 printf_pointer (stream, current_substring, val_args[i]);
2646 break;
2647 case literal_piece:
2648 /* Print a portion of the format string that has no
2649 directives. Note that this will not include any
2650 ordinary %-specs, but it might include "%%". That is
2651 why we use printf_filtered and not puts_filtered here.
2652 Also, we pass a dummy argument because some platforms
2653 have modified GCC to include -Wformat-security by
2654 default, which will warn here if there is no
2655 argument. */
2656 DIAGNOSTIC_PUSH
2657 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2658 fprintf_filtered (stream, current_substring, 0);
2659 DIAGNOSTIC_POP
2660 break;
2661 default:
2662 internal_error (__FILE__, __LINE__,
2663 _("failed internal consistency check"));
2664 }
2665 /* Maybe advance to the next argument. */
2666 if (piece.argclass != literal_piece)
2667 ++i;
2668 }
2669 }
2670 }
2671
2672 /* Implement the "printf" command. */
2673
2674 static void
2675 printf_command (const char *arg, int from_tty)
2676 {
2677 ui_printf (arg, gdb_stdout);
2678 reset_terminal_style (gdb_stdout);
2679 wrap_here ("");
2680 gdb_stdout->flush ();
2681 }
2682
2683 /* Implement the "eval" command. */
2684
2685 static void
2686 eval_command (const char *arg, int from_tty)
2687 {
2688 string_file stb;
2689
2690 ui_printf (arg, &stb);
2691
2692 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2693
2694 execute_command (expanded.c_str (), from_tty);
2695 }
2696
2697 void _initialize_printcmd ();
2698 void
2699 _initialize_printcmd ()
2700 {
2701 struct cmd_list_element *c;
2702
2703 current_display_number = -1;
2704
2705 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2706
2707 add_info ("address", info_address_command,
2708 _("Describe where symbol SYM is stored.\n\
2709 Usage: info address SYM"));
2710
2711 add_info ("symbol", info_symbol_command, _("\
2712 Describe what symbol is at location ADDR.\n\
2713 Usage: info symbol ADDR\n\
2714 Only for symbols with fixed locations (global or static scope)."));
2715
2716 add_com ("x", class_vars, x_command, _("\
2717 Examine memory: x/FMT ADDRESS.\n\
2718 ADDRESS is an expression for the memory address to examine.\n\
2719 FMT is a repeat count followed by a format letter and a size letter.\n\
2720 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2721 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2722 and z(hex, zero padded on the left).\n\
2723 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2724 The specified number of objects of the specified size are printed\n\
2725 according to the format. If a negative number is specified, memory is\n\
2726 examined backward from the address.\n\n\
2727 Defaults for format and size letters are those previously used.\n\
2728 Default count is 1. Default address is following last thing printed\n\
2729 with this command or \"print\"."));
2730
2731 add_info ("display", info_display_command, _("\
2732 Expressions to display when program stops, with code numbers.\n\
2733 Usage: info display"));
2734
2735 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2736 Cancel some expressions to be displayed when program stops.\n\
2737 Usage: undisplay [NUM]...\n\
2738 Arguments are the code numbers of the expressions to stop displaying.\n\
2739 No argument means cancel all automatic-display expressions.\n\
2740 \"delete display\" has the same effect as this command.\n\
2741 Do \"info display\" to see current list of code numbers."),
2742 &cmdlist);
2743
2744 add_com ("display", class_vars, display_command, _("\
2745 Print value of expression EXP each time the program stops.\n\
2746 Usage: display[/FMT] EXP\n\
2747 /FMT may be used before EXP as in the \"print\" command.\n\
2748 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2749 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2750 and examining is done as in the \"x\" command.\n\n\
2751 With no argument, display all currently requested auto-display expressions.\n\
2752 Use \"undisplay\" to cancel display requests previously made."));
2753
2754 add_cmd ("display", class_vars, enable_display_command, _("\
2755 Enable some expressions to be displayed when program stops.\n\
2756 Usage: enable display [NUM]...\n\
2757 Arguments are the code numbers of the expressions to resume displaying.\n\
2758 No argument means enable all automatic-display expressions.\n\
2759 Do \"info display\" to see current list of code numbers."), &enablelist);
2760
2761 add_cmd ("display", class_vars, disable_display_command, _("\
2762 Disable some expressions to be displayed when program stops.\n\
2763 Usage: disable display [NUM]...\n\
2764 Arguments are the code numbers of the expressions to stop displaying.\n\
2765 No argument means disable all automatic-display expressions.\n\
2766 Do \"info display\" to see current list of code numbers."), &disablelist);
2767
2768 add_cmd ("display", class_vars, undisplay_command, _("\
2769 Cancel some expressions to be displayed when program stops.\n\
2770 Usage: delete display [NUM]...\n\
2771 Arguments are the code numbers of the expressions to stop displaying.\n\
2772 No argument means cancel all automatic-display expressions.\n\
2773 Do \"info display\" to see current list of code numbers."), &deletelist);
2774
2775 add_com ("printf", class_vars, printf_command, _("\
2776 Formatted printing, like the C \"printf\" function.\n\
2777 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2778 This supports most C printf format specifications, like %s, %d, etc."));
2779
2780 add_com ("output", class_vars, output_command, _("\
2781 Like \"print\" but don't put in value history and don't print newline.\n\
2782 Usage: output EXP\n\
2783 This is useful in user-defined commands."));
2784
2785 add_prefix_cmd ("set", class_vars, set_command, _("\
2786 Evaluate expression EXP and assign result to variable VAR.\n\
2787 Usage: set VAR = EXP\n\
2788 This uses assignment syntax appropriate for the current language\n\
2789 (VAR = EXP or VAR := EXP for example).\n\
2790 VAR may be a debugger \"convenience\" variable (names starting\n\
2791 with $), a register (a few standard names starting with $), or an actual\n\
2792 variable in the program being debugged. EXP is any valid expression.\n\
2793 Use \"set variable\" for variables with names identical to set subcommands.\n\
2794 \n\
2795 With a subcommand, this command modifies parts of the gdb environment.\n\
2796 You can see these environment settings with the \"show\" command."),
2797 &setlist, "set ", 1, &cmdlist);
2798 if (dbx_commands)
2799 add_com ("assign", class_vars, set_command, _("\
2800 Evaluate expression EXP and assign result to variable VAR.\n\
2801 Usage: assign VAR = EXP\n\
2802 This uses assignment syntax appropriate for the current language\n\
2803 (VAR = EXP or VAR := EXP for example).\n\
2804 VAR may be a debugger \"convenience\" variable (names starting\n\
2805 with $), a register (a few standard names starting with $), or an actual\n\
2806 variable in the program being debugged. EXP is any valid expression.\n\
2807 Use \"set variable\" for variables with names identical to set subcommands.\n\
2808 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2809 You can see these environment settings with the \"show\" command."));
2810
2811 /* "call" is the same as "set", but handy for dbx users to call fns. */
2812 c = add_com ("call", class_vars, call_command, _("\
2813 Call a function in the program.\n\
2814 Usage: call EXP\n\
2815 The argument is the function name and arguments, in the notation of the\n\
2816 current working language. The result is printed and saved in the value\n\
2817 history, if it is not void."));
2818 set_cmd_completer_handle_brkchars (c, print_command_completer);
2819
2820 add_cmd ("variable", class_vars, set_command, _("\
2821 Evaluate expression EXP and assign result to variable VAR.\n\
2822 Usage: set variable VAR = EXP\n\
2823 This uses assignment syntax appropriate for the current language\n\
2824 (VAR = EXP or VAR := EXP for example).\n\
2825 VAR may be a debugger \"convenience\" variable (names starting\n\
2826 with $), a register (a few standard names starting with $), or an actual\n\
2827 variable in the program being debugged. EXP is any valid expression.\n\
2828 This may usually be abbreviated to simply \"set\"."),
2829 &setlist);
2830 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2831
2832 const auto print_opts = make_value_print_options_def_group (nullptr);
2833
2834 static const std::string print_help = gdb::option::build_help (_("\
2835 Print value of expression EXP.\n\
2836 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2837 \n\
2838 Options:\n\
2839 %OPTIONS%\n\
2840 \n\
2841 Note: because this command accepts arbitrary expressions, if you\n\
2842 specify any command option, you must use a double dash (\"--\")\n\
2843 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2844 \n\
2845 Variables accessible are those of the lexical environment of the selected\n\
2846 stack frame, plus all those whose scope is global or an entire file.\n\
2847 \n\
2848 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2849 $$NUM refers to NUM'th value back from the last one.\n\
2850 Names starting with $ refer to registers (with the values they would have\n\
2851 if the program were to return to the stack frame now selected, restoring\n\
2852 all registers saved by frames farther in) or else to debugger\n\
2853 \"convenience\" variables (any such name not a known register).\n\
2854 Use assignment expressions to give values to convenience variables.\n\
2855 \n\
2856 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2857 @ is a binary operator for treating consecutive data objects\n\
2858 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2859 element is FOO, whose second element is stored in the space following\n\
2860 where FOO is stored, etc. FOO must be an expression whose value\n\
2861 resides in memory.\n\
2862 \n\
2863 EXP may be preceded with /FMT, where FMT is a format letter\n\
2864 but no count or size letter (see \"x\" command)."),
2865 print_opts);
2866
2867 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2868 set_cmd_completer_handle_brkchars (c, print_command_completer);
2869 add_com_alias ("p", "print", class_vars, 1);
2870 add_com_alias ("inspect", "print", class_vars, 1);
2871
2872 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2873 &max_symbolic_offset, _("\
2874 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2875 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2876 Tell GDB to only display the symbolic form of an address if the\n\
2877 offset between the closest earlier symbol and the address is less than\n\
2878 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2879 to always print the symbolic form of an address if any symbol precedes\n\
2880 it. Zero is equivalent to \"unlimited\"."),
2881 NULL,
2882 show_max_symbolic_offset,
2883 &setprintlist, &showprintlist);
2884 add_setshow_boolean_cmd ("symbol-filename", no_class,
2885 &print_symbol_filename, _("\
2886 Set printing of source filename and line number with <SYMBOL>."), _("\
2887 Show printing of source filename and line number with <SYMBOL>."), NULL,
2888 NULL,
2889 show_print_symbol_filename,
2890 &setprintlist, &showprintlist);
2891
2892 add_com ("eval", no_class, eval_command, _("\
2893 Construct a GDB command and then evaluate it.\n\
2894 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2895 Convert the arguments to a string as \"printf\" would, but then\n\
2896 treat this string as a command line, and evaluate it."));
2897 }
This page took 0.085435 seconds and 5 git commands to generate.