* gdbtypes.h (builtin_type_int0, builtin_type_int8, builtin_type_uint8,
[deliverable/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "language.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "breakpoint.h"
34 #include "demangle.h"
35 #include "valprint.h"
36 #include "annotate.h"
37 #include "symfile.h" /* for overlay functions */
38 #include "objfiles.h" /* ditto */
39 #include "completer.h" /* for completion functions */
40 #include "ui-out.h"
41 #include "gdb_assert.h"
42 #include "block.h"
43 #include "disasm.h"
44 #include "dfp.h"
45 #include "valprint.h"
46 #include "exceptions.h"
47 #include "observer.h"
48 #include "solist.h"
49 #include "solib.h"
50 #include "parser-defs.h"
51 #include "charset.h"
52
53 #ifdef TUI
54 #include "tui/tui.h" /* For tui_active et.al. */
55 #endif
56
57 #if defined(__MINGW32__) && !defined(PRINTF_HAS_LONG_LONG)
58 # define USE_PRINTF_I64 1
59 # define PRINTF_HAS_LONG_LONG
60 #else
61 # define USE_PRINTF_I64 0
62 #endif
63
64 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
65
66 struct format_data
67 {
68 int count;
69 char format;
70 char size;
71
72 /* True if the value should be printed raw -- that is, bypassing
73 python-based formatters. */
74 unsigned char raw;
75 };
76
77 /* Last specified output format. */
78
79 static char last_format = 0;
80
81 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
82
83 static char last_size = 'w';
84
85 /* Default address to examine next, and associated architecture. */
86
87 static struct gdbarch *next_gdbarch;
88 static CORE_ADDR next_address;
89
90 /* Number of delay instructions following current disassembled insn. */
91
92 static int branch_delay_insns;
93
94 /* Last address examined. */
95
96 static CORE_ADDR last_examine_address;
97
98 /* Contents of last address examined.
99 This is not valid past the end of the `x' command! */
100
101 static struct value *last_examine_value;
102
103 /* Largest offset between a symbolic value and an address, that will be
104 printed as `0x1234 <symbol+offset>'. */
105
106 static unsigned int max_symbolic_offset = UINT_MAX;
107 static void
108 show_max_symbolic_offset (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("\
112 The largest offset that will be printed in <symbol+1234> form is %s.\n"),
113 value);
114 }
115
116 /* Append the source filename and linenumber of the symbol when
117 printing a symbolic value as `<symbol at filename:linenum>' if set. */
118 static int print_symbol_filename = 0;
119 static void
120 show_print_symbol_filename (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("\
124 Printing of source filename and line number with <symbol> is %s.\n"),
125 value);
126 }
127
128 /* Number of auto-display expression currently being displayed.
129 So that we can disable it if we get an error or a signal within it.
130 -1 when not doing one. */
131
132 int current_display_number;
133
134 struct display
135 {
136 /* Chain link to next auto-display item. */
137 struct display *next;
138 /* The expression as the user typed it. */
139 char *exp_string;
140 /* Expression to be evaluated and displayed. */
141 struct expression *exp;
142 /* Item number of this auto-display item. */
143 int number;
144 /* Display format specified. */
145 struct format_data format;
146 /* Innermost block required by this expression when evaluated */
147 struct block *block;
148 /* Status of this display (enabled or disabled) */
149 int enabled_p;
150 };
151
152 /* Chain of expressions whose values should be displayed
153 automatically each time the program stops. */
154
155 static struct display *display_chain;
156
157 static int display_number;
158
159 /* Prototypes for exported functions. */
160
161 void output_command (char *, int);
162
163 void _initialize_printcmd (void);
164
165 /* Prototypes for local functions. */
166
167 static void do_one_display (struct display *);
168 \f
169
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
175 user.
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
179
180 static struct format_data
181 decode_format (char **string_ptr, int oformat, int osize)
182 {
183 struct format_data val;
184 char *p = *string_ptr;
185
186 val.format = '?';
187 val.size = '?';
188 val.count = 1;
189 val.raw = 0;
190
191 if (*p >= '0' && *p <= '9')
192 val.count = atoi (p);
193 while (*p >= '0' && *p <= '9')
194 p++;
195
196 /* Now process size or format letters that follow. */
197
198 while (1)
199 {
200 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
201 val.size = *p++;
202 else if (*p == 'r')
203 {
204 val.raw = 1;
205 p++;
206 }
207 else if (*p >= 'a' && *p <= 'z')
208 val.format = *p++;
209 else
210 break;
211 }
212
213 while (*p == ' ' || *p == '\t')
214 p++;
215 *string_ptr = p;
216
217 /* Set defaults for format and size if not specified. */
218 if (val.format == '?')
219 {
220 if (val.size == '?')
221 {
222 /* Neither has been specified. */
223 val.format = oformat;
224 val.size = osize;
225 }
226 else
227 /* If a size is specified, any format makes a reasonable
228 default except 'i'. */
229 val.format = oformat == 'i' ? 'x' : oformat;
230 }
231 else if (val.size == '?')
232 switch (val.format)
233 {
234 case 'a':
235 /* Pick the appropriate size for an address. This is deferred
236 until do_examine when we know the actual architecture to use.
237 A special size value of 'a' is used to indicate this case. */
238 val.size = osize ? 'a' : osize;
239 break;
240 case 'f':
241 /* Floating point has to be word or giantword. */
242 if (osize == 'w' || osize == 'g')
243 val.size = osize;
244 else
245 /* Default it to giantword if the last used size is not
246 appropriate. */
247 val.size = osize ? 'g' : osize;
248 break;
249 case 'c':
250 /* Characters default to one byte. */
251 val.size = osize ? 'b' : osize;
252 break;
253 default:
254 /* The default is the size most recently specified. */
255 val.size = osize;
256 }
257
258 return val;
259 }
260 \f
261 /* Print value VAL on stream according to OPTIONS.
262 Do not end with a newline.
263 SIZE is the letter for the size of datum being printed.
264 This is used to pad hex numbers so they line up. SIZE is 0
265 for print / output and set for examine. */
266
267 static void
268 print_formatted (struct value *val, int size,
269 const struct value_print_options *options,
270 struct ui_file *stream)
271 {
272 struct type *type = check_typedef (value_type (val));
273 int len = TYPE_LENGTH (type);
274
275 if (VALUE_LVAL (val) == lval_memory)
276 next_address = value_address (val) + len;
277
278 if (size)
279 {
280 switch (options->format)
281 {
282 case 's':
283 {
284 struct type *elttype = value_type (val);
285 next_address = (value_address (val)
286 + val_print_string (elttype,
287 value_address (val), -1,
288 stream, options));
289 }
290 return;
291
292 case 'i':
293 /* We often wrap here if there are long symbolic names. */
294 wrap_here (" ");
295 next_address = (value_address (val)
296 + gdb_print_insn (value_address (val), stream,
297 &branch_delay_insns));
298 return;
299 }
300 }
301
302 if (options->format == 0 || options->format == 's'
303 || TYPE_CODE (type) == TYPE_CODE_REF
304 || TYPE_CODE (type) == TYPE_CODE_ARRAY
305 || TYPE_CODE (type) == TYPE_CODE_STRING
306 || TYPE_CODE (type) == TYPE_CODE_STRUCT
307 || TYPE_CODE (type) == TYPE_CODE_UNION
308 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
309 value_print (val, stream, options);
310 else
311 /* User specified format, so don't look to the the type to
312 tell us what to do. */
313 print_scalar_formatted (value_contents (val), type,
314 options, size, stream);
315 }
316
317 /* Return builtin floating point type of same length as TYPE.
318 If no such type is found, return TYPE itself. */
319 static struct type *
320 float_type_from_length (struct gdbarch *gdbarch, struct type *type)
321 {
322 const struct builtin_type *builtin = builtin_type (gdbarch);
323 unsigned int len = TYPE_LENGTH (type);
324
325 if (len == TYPE_LENGTH (builtin->builtin_float))
326 type = builtin->builtin_float;
327 else if (len == TYPE_LENGTH (builtin->builtin_double))
328 type = builtin->builtin_double;
329 else if (len == TYPE_LENGTH (builtin->builtin_long_double))
330 type = builtin->builtin_long_double;
331
332 return type;
333 }
334
335 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
336 according to OPTIONS and SIZE on STREAM.
337 Formats s and i are not supported at this level.
338
339 This is how the elements of an array or structure are printed
340 with a format. */
341
342 void
343 print_scalar_formatted (const void *valaddr, struct type *type,
344 const struct value_print_options *options,
345 int size, struct ui_file *stream)
346 {
347 struct gdbarch *gdbarch = current_gdbarch;
348 LONGEST val_long = 0;
349 unsigned int len = TYPE_LENGTH (type);
350 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
351
352 /* If we get here with a string format, try again without it. Go
353 all the way back to the language printers, which may call us
354 again. */
355 if (options->format == 's')
356 {
357 struct value_print_options opts = *options;
358 opts.format = 0;
359 opts.deref_ref = 0;
360 val_print (type, valaddr, 0, 0, stream, 0, &opts,
361 current_language);
362 return;
363 }
364
365 if (len > sizeof(LONGEST) &&
366 (TYPE_CODE (type) == TYPE_CODE_INT
367 || TYPE_CODE (type) == TYPE_CODE_ENUM))
368 {
369 switch (options->format)
370 {
371 case 'o':
372 print_octal_chars (stream, valaddr, len, byte_order);
373 return;
374 case 'u':
375 case 'd':
376 print_decimal_chars (stream, valaddr, len, byte_order);
377 return;
378 case 't':
379 print_binary_chars (stream, valaddr, len, byte_order);
380 return;
381 case 'x':
382 print_hex_chars (stream, valaddr, len, byte_order);
383 return;
384 case 'c':
385 print_char_chars (stream, type, valaddr, len, byte_order);
386 return;
387 default:
388 break;
389 };
390 }
391
392 if (options->format != 'f')
393 val_long = unpack_long (type, valaddr);
394
395 /* If the value is a pointer, and pointers and addresses are not the
396 same, then at this point, the value's length (in target bytes) is
397 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
398 if (TYPE_CODE (type) == TYPE_CODE_PTR)
399 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
400
401 /* If we are printing it as unsigned, truncate it in case it is actually
402 a negative signed value (e.g. "print/u (short)-1" should print 65535
403 (if shorts are 16 bits) instead of 4294967295). */
404 if (options->format != 'd' || TYPE_UNSIGNED (type))
405 {
406 if (len < sizeof (LONGEST))
407 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
408 }
409
410 switch (options->format)
411 {
412 case 'x':
413 if (!size)
414 {
415 /* No size specified, like in print. Print varying # of digits. */
416 print_longest (stream, 'x', 1, val_long);
417 }
418 else
419 switch (size)
420 {
421 case 'b':
422 case 'h':
423 case 'w':
424 case 'g':
425 print_longest (stream, size, 1, val_long);
426 break;
427 default:
428 error (_("Undefined output size \"%c\"."), size);
429 }
430 break;
431
432 case 'd':
433 print_longest (stream, 'd', 1, val_long);
434 break;
435
436 case 'u':
437 print_longest (stream, 'u', 0, val_long);
438 break;
439
440 case 'o':
441 if (val_long)
442 print_longest (stream, 'o', 1, val_long);
443 else
444 fprintf_filtered (stream, "0");
445 break;
446
447 case 'a':
448 {
449 CORE_ADDR addr = unpack_pointer (type, valaddr);
450 print_address (addr, stream);
451 }
452 break;
453
454 case 'c':
455 {
456 struct value_print_options opts = *options;
457 opts.format = 0;
458
459 if (TYPE_UNSIGNED (type))
460 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
461 else
462 type = builtin_type (gdbarch)->builtin_true_char;
463
464 value_print (value_from_longest (type, val_long), stream, &opts);
465 }
466 break;
467
468 case 'f':
469 type = float_type_from_length (current_gdbarch, type);
470 print_floating (valaddr, type, stream);
471 break;
472
473 case 0:
474 internal_error (__FILE__, __LINE__,
475 _("failed internal consistency check"));
476
477 case 't':
478 /* Binary; 't' stands for "two". */
479 {
480 char bits[8 * (sizeof val_long) + 1];
481 char buf[8 * (sizeof val_long) + 32];
482 char *cp = bits;
483 int width;
484
485 if (!size)
486 width = 8 * (sizeof val_long);
487 else
488 switch (size)
489 {
490 case 'b':
491 width = 8;
492 break;
493 case 'h':
494 width = 16;
495 break;
496 case 'w':
497 width = 32;
498 break;
499 case 'g':
500 width = 64;
501 break;
502 default:
503 error (_("Undefined output size \"%c\"."), size);
504 }
505
506 bits[width] = '\0';
507 while (width-- > 0)
508 {
509 bits[width] = (val_long & 1) ? '1' : '0';
510 val_long >>= 1;
511 }
512 if (!size)
513 {
514 while (*cp && *cp == '0')
515 cp++;
516 if (*cp == '\0')
517 cp--;
518 }
519 strcpy (buf, cp);
520 fputs_filtered (buf, stream);
521 }
522 break;
523
524 default:
525 error (_("Undefined output format \"%c\"."), options->format);
526 }
527 }
528
529 /* Specify default address for `x' command.
530 The `info lines' command uses this. */
531
532 void
533 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
534 {
535 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
536
537 next_gdbarch = gdbarch;
538 next_address = addr;
539
540 /* Make address available to the user as $_. */
541 set_internalvar (lookup_internalvar ("_"),
542 value_from_pointer (ptr_type, addr));
543 }
544
545 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
546 after LEADIN. Print nothing if no symbolic name is found nearby.
547 Optionally also print source file and line number, if available.
548 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
549 or to interpret it as a possible C++ name and convert it back to source
550 form. However note that DO_DEMANGLE can be overridden by the specific
551 settings of the demangle and asm_demangle variables. */
552
553 void
554 print_address_symbolic (CORE_ADDR addr, struct ui_file *stream,
555 int do_demangle, char *leadin)
556 {
557 char *name = NULL;
558 char *filename = NULL;
559 int unmapped = 0;
560 int offset = 0;
561 int line = 0;
562
563 /* Throw away both name and filename. */
564 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
565 make_cleanup (free_current_contents, &filename);
566
567 if (build_address_symbolic (addr, do_demangle, &name, &offset,
568 &filename, &line, &unmapped))
569 {
570 do_cleanups (cleanup_chain);
571 return;
572 }
573
574 fputs_filtered (leadin, stream);
575 if (unmapped)
576 fputs_filtered ("<*", stream);
577 else
578 fputs_filtered ("<", stream);
579 fputs_filtered (name, stream);
580 if (offset != 0)
581 fprintf_filtered (stream, "+%u", (unsigned int) offset);
582
583 /* Append source filename and line number if desired. Give specific
584 line # of this addr, if we have it; else line # of the nearest symbol. */
585 if (print_symbol_filename && filename != NULL)
586 {
587 if (line != -1)
588 fprintf_filtered (stream, " at %s:%d", filename, line);
589 else
590 fprintf_filtered (stream, " in %s", filename);
591 }
592 if (unmapped)
593 fputs_filtered ("*>", stream);
594 else
595 fputs_filtered (">", stream);
596
597 do_cleanups (cleanup_chain);
598 }
599
600 /* Given an address ADDR return all the elements needed to print the
601 address in a symbolic form. NAME can be mangled or not depending
602 on DO_DEMANGLE (and also on the asm_demangle global variable,
603 manipulated via ''set print asm-demangle''). Return 0 in case of
604 success, when all the info in the OUT paramters is valid. Return 1
605 otherwise. */
606 int
607 build_address_symbolic (CORE_ADDR addr, /* IN */
608 int do_demangle, /* IN */
609 char **name, /* OUT */
610 int *offset, /* OUT */
611 char **filename, /* OUT */
612 int *line, /* OUT */
613 int *unmapped) /* OUT */
614 {
615 struct minimal_symbol *msymbol;
616 struct symbol *symbol;
617 CORE_ADDR name_location = 0;
618 struct obj_section *section = NULL;
619 char *name_temp = "";
620
621 /* Let's say it is mapped (not unmapped). */
622 *unmapped = 0;
623
624 /* Determine if the address is in an overlay, and whether it is
625 mapped. */
626 if (overlay_debugging)
627 {
628 section = find_pc_overlay (addr);
629 if (pc_in_unmapped_range (addr, section))
630 {
631 *unmapped = 1;
632 addr = overlay_mapped_address (addr, section);
633 }
634 }
635
636 /* First try to find the address in the symbol table, then
637 in the minsyms. Take the closest one. */
638
639 /* This is defective in the sense that it only finds text symbols. So
640 really this is kind of pointless--we should make sure that the
641 minimal symbols have everything we need (by changing that we could
642 save some memory, but for many debug format--ELF/DWARF or
643 anything/stabs--it would be inconvenient to eliminate those minimal
644 symbols anyway). */
645 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
646 symbol = find_pc_sect_function (addr, section);
647
648 if (symbol)
649 {
650 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
651 if (do_demangle || asm_demangle)
652 name_temp = SYMBOL_PRINT_NAME (symbol);
653 else
654 name_temp = SYMBOL_LINKAGE_NAME (symbol);
655 }
656
657 if (msymbol != NULL)
658 {
659 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
660 {
661 /* The msymbol is closer to the address than the symbol;
662 use the msymbol instead. */
663 symbol = 0;
664 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
665 if (do_demangle || asm_demangle)
666 name_temp = SYMBOL_PRINT_NAME (msymbol);
667 else
668 name_temp = SYMBOL_LINKAGE_NAME (msymbol);
669 }
670 }
671 if (symbol == NULL && msymbol == NULL)
672 return 1;
673
674 /* If the nearest symbol is too far away, don't print anything symbolic. */
675
676 /* For when CORE_ADDR is larger than unsigned int, we do math in
677 CORE_ADDR. But when we detect unsigned wraparound in the
678 CORE_ADDR math, we ignore this test and print the offset,
679 because addr+max_symbolic_offset has wrapped through the end
680 of the address space back to the beginning, giving bogus comparison. */
681 if (addr > name_location + max_symbolic_offset
682 && name_location + max_symbolic_offset > name_location)
683 return 1;
684
685 *offset = addr - name_location;
686
687 *name = xstrdup (name_temp);
688
689 if (print_symbol_filename)
690 {
691 struct symtab_and_line sal;
692
693 sal = find_pc_sect_line (addr, section, 0);
694
695 if (sal.symtab)
696 {
697 *filename = xstrdup (sal.symtab->filename);
698 *line = sal.line;
699 }
700 }
701 return 0;
702 }
703
704
705 /* Print address ADDR symbolically on STREAM.
706 First print it as a number. Then perhaps print
707 <SYMBOL + OFFSET> after the number. */
708
709 void
710 print_address (CORE_ADDR addr, struct ui_file *stream)
711 {
712 fputs_filtered (paddress (addr), stream);
713 print_address_symbolic (addr, stream, asm_demangle, " ");
714 }
715
716 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
717 controls whether to print the symbolic name "raw" or demangled.
718 Global setting "addressprint" controls whether to print hex address
719 or not. */
720
721 void
722 print_address_demangle (CORE_ADDR addr, struct ui_file *stream,
723 int do_demangle)
724 {
725 struct value_print_options opts;
726 get_user_print_options (&opts);
727 if (addr == 0)
728 {
729 fprintf_filtered (stream, "0");
730 }
731 else if (opts.addressprint)
732 {
733 fputs_filtered (paddress (addr), stream);
734 print_address_symbolic (addr, stream, do_demangle, " ");
735 }
736 else
737 {
738 print_address_symbolic (addr, stream, do_demangle, "");
739 }
740 }
741 \f
742
743 /* Examine data at address ADDR in format FMT.
744 Fetch it from memory and print on gdb_stdout. */
745
746 static void
747 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
748 {
749 char format = 0;
750 char size;
751 int count = 1;
752 struct type *val_type = NULL;
753 int i;
754 int maxelts;
755 struct value_print_options opts;
756
757 format = fmt.format;
758 size = fmt.size;
759 count = fmt.count;
760 next_gdbarch = gdbarch;
761 next_address = addr;
762
763 /* String or instruction format implies fetch single bytes
764 regardless of the specified size. */
765 if (format == 's' || format == 'i')
766 size = 'b';
767
768 if (size == 'a')
769 {
770 /* Pick the appropriate size for an address. */
771 if (gdbarch_ptr_bit (next_gdbarch) == 64)
772 size = 'g';
773 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
774 size = 'w';
775 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
776 size = 'h';
777 else
778 /* Bad value for gdbarch_ptr_bit. */
779 internal_error (__FILE__, __LINE__,
780 _("failed internal consistency check"));
781 }
782
783 if (size == 'b')
784 val_type = builtin_type (next_gdbarch)->builtin_int8;
785 else if (size == 'h')
786 val_type = builtin_type (next_gdbarch)->builtin_int16;
787 else if (size == 'w')
788 val_type = builtin_type (next_gdbarch)->builtin_int32;
789 else if (size == 'g')
790 val_type = builtin_type (next_gdbarch)->builtin_int64;
791
792 maxelts = 8;
793 if (size == 'w')
794 maxelts = 4;
795 if (size == 'g')
796 maxelts = 2;
797 if (format == 's' || format == 'i')
798 maxelts = 1;
799
800 get_formatted_print_options (&opts, format);
801
802 /* Print as many objects as specified in COUNT, at most maxelts per line,
803 with the address of the next one at the start of each line. */
804
805 while (count > 0)
806 {
807 QUIT;
808 print_address (next_address, gdb_stdout);
809 printf_filtered (":");
810 for (i = maxelts;
811 i > 0 && count > 0;
812 i--, count--)
813 {
814 printf_filtered ("\t");
815 /* Note that print_formatted sets next_address for the next
816 object. */
817 last_examine_address = next_address;
818
819 if (last_examine_value)
820 value_free (last_examine_value);
821
822 /* The value to be displayed is not fetched greedily.
823 Instead, to avoid the possibility of a fetched value not
824 being used, its retrieval is delayed until the print code
825 uses it. When examining an instruction stream, the
826 disassembler will perform its own memory fetch using just
827 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
828 the disassembler be modified so that LAST_EXAMINE_VALUE
829 is left with the byte sequence from the last complete
830 instruction fetched from memory? */
831 last_examine_value = value_at_lazy (val_type, next_address);
832
833 if (last_examine_value)
834 release_value (last_examine_value);
835
836 print_formatted (last_examine_value, size, &opts, gdb_stdout);
837
838 /* Display any branch delay slots following the final insn. */
839 if (format == 'i' && count == 1)
840 count += branch_delay_insns;
841 }
842 printf_filtered ("\n");
843 gdb_flush (gdb_stdout);
844 }
845 }
846 \f
847 static void
848 validate_format (struct format_data fmt, char *cmdname)
849 {
850 if (fmt.size != 0)
851 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
852 if (fmt.count != 1)
853 error (_("Item count other than 1 is meaningless in \"%s\" command."),
854 cmdname);
855 if (fmt.format == 'i')
856 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
857 fmt.format, cmdname);
858 }
859
860 /* Evaluate string EXP as an expression in the current language and
861 print the resulting value. EXP may contain a format specifier as the
862 first argument ("/x myvar" for example, to print myvar in hex). */
863
864 static void
865 print_command_1 (char *exp, int inspect, int voidprint)
866 {
867 struct expression *expr;
868 struct cleanup *old_chain = 0;
869 char format = 0;
870 struct value *val;
871 struct format_data fmt;
872 int cleanup = 0;
873
874 if (exp && *exp == '/')
875 {
876 exp++;
877 fmt = decode_format (&exp, last_format, 0);
878 validate_format (fmt, "print");
879 last_format = format = fmt.format;
880 }
881 else
882 {
883 fmt.count = 1;
884 fmt.format = 0;
885 fmt.size = 0;
886 fmt.raw = 0;
887 }
888
889 if (exp && *exp)
890 {
891 struct type *type;
892 expr = parse_expression (exp);
893 old_chain = make_cleanup (free_current_contents, &expr);
894 cleanup = 1;
895 val = evaluate_expression (expr);
896 }
897 else
898 val = access_value_history (0);
899
900 if (voidprint || (val && value_type (val) &&
901 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
902 {
903 struct value_print_options opts;
904 int histindex = record_latest_value (val);
905
906 if (histindex >= 0)
907 annotate_value_history_begin (histindex, value_type (val));
908 else
909 annotate_value_begin (value_type (val));
910
911 if (inspect)
912 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"",
913 exp, histindex);
914 else if (histindex >= 0)
915 printf_filtered ("$%d = ", histindex);
916
917 if (histindex >= 0)
918 annotate_value_history_value ();
919
920 get_formatted_print_options (&opts, format);
921 opts.inspect_it = inspect;
922 opts.raw = fmt.raw;
923
924 print_formatted (val, fmt.size, &opts, gdb_stdout);
925 printf_filtered ("\n");
926
927 if (histindex >= 0)
928 annotate_value_history_end ();
929 else
930 annotate_value_end ();
931
932 if (inspect)
933 printf_unfiltered ("\") )\030");
934 }
935
936 if (cleanup)
937 do_cleanups (old_chain);
938 }
939
940 static void
941 print_command (char *exp, int from_tty)
942 {
943 print_command_1 (exp, 0, 1);
944 }
945
946 /* Same as print, except in epoch, it gets its own window. */
947 static void
948 inspect_command (char *exp, int from_tty)
949 {
950 extern int epoch_interface;
951
952 print_command_1 (exp, epoch_interface, 1);
953 }
954
955 /* Same as print, except it doesn't print void results. */
956 static void
957 call_command (char *exp, int from_tty)
958 {
959 print_command_1 (exp, 0, 0);
960 }
961
962 void
963 output_command (char *exp, int from_tty)
964 {
965 struct expression *expr;
966 struct cleanup *old_chain;
967 char format = 0;
968 struct value *val;
969 struct format_data fmt;
970 struct value_print_options opts;
971
972 fmt.size = 0;
973 fmt.raw = 0;
974
975 if (exp && *exp == '/')
976 {
977 exp++;
978 fmt = decode_format (&exp, 0, 0);
979 validate_format (fmt, "output");
980 format = fmt.format;
981 }
982
983 expr = parse_expression (exp);
984 old_chain = make_cleanup (free_current_contents, &expr);
985
986 val = evaluate_expression (expr);
987
988 annotate_value_begin (value_type (val));
989
990 get_formatted_print_options (&opts, format);
991 opts.raw = fmt.raw;
992 print_formatted (val, fmt.size, &opts, gdb_stdout);
993
994 annotate_value_end ();
995
996 wrap_here ("");
997 gdb_flush (gdb_stdout);
998
999 do_cleanups (old_chain);
1000 }
1001
1002 static void
1003 set_command (char *exp, int from_tty)
1004 {
1005 struct expression *expr = parse_expression (exp);
1006 struct cleanup *old_chain =
1007 make_cleanup (free_current_contents, &expr);
1008 evaluate_expression (expr);
1009 do_cleanups (old_chain);
1010 }
1011
1012 static void
1013 sym_info (char *arg, int from_tty)
1014 {
1015 struct minimal_symbol *msymbol;
1016 struct objfile *objfile;
1017 struct obj_section *osect;
1018 CORE_ADDR addr, sect_addr;
1019 int matches = 0;
1020 unsigned int offset;
1021
1022 if (!arg)
1023 error_no_arg (_("address"));
1024
1025 addr = parse_and_eval_address (arg);
1026 ALL_OBJSECTIONS (objfile, osect)
1027 {
1028 /* Only process each object file once, even if there's a separate
1029 debug file. */
1030 if (objfile->separate_debug_objfile_backlink)
1031 continue;
1032
1033 sect_addr = overlay_mapped_address (addr, osect);
1034
1035 if (obj_section_addr (osect) <= sect_addr
1036 && sect_addr < obj_section_endaddr (osect)
1037 && (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, osect)))
1038 {
1039 const char *obj_name, *mapped, *sec_name, *msym_name;
1040 char *loc_string;
1041 struct cleanup *old_chain;
1042
1043 matches = 1;
1044 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1045 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1046 sec_name = osect->the_bfd_section->name;
1047 msym_name = SYMBOL_PRINT_NAME (msymbol);
1048
1049 /* Don't print the offset if it is zero.
1050 We assume there's no need to handle i18n of "sym + offset". */
1051 if (offset)
1052 loc_string = xstrprintf ("%s + %u", msym_name, offset);
1053 else
1054 loc_string = xstrprintf ("%s", msym_name);
1055
1056 /* Use a cleanup to free loc_string in case the user quits
1057 a pagination request inside printf_filtered. */
1058 old_chain = make_cleanup (xfree, loc_string);
1059
1060 gdb_assert (osect->objfile && osect->objfile->name);
1061 obj_name = osect->objfile->name;
1062
1063 if (MULTI_OBJFILE_P ())
1064 if (pc_in_unmapped_range (addr, osect))
1065 if (section_is_overlay (osect))
1066 printf_filtered (_("%s in load address range of "
1067 "%s overlay section %s of %s\n"),
1068 loc_string, mapped, sec_name, obj_name);
1069 else
1070 printf_filtered (_("%s in load address range of "
1071 "section %s of %s\n"),
1072 loc_string, sec_name, obj_name);
1073 else
1074 if (section_is_overlay (osect))
1075 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1076 loc_string, mapped, sec_name, obj_name);
1077 else
1078 printf_filtered (_("%s in section %s of %s\n"),
1079 loc_string, sec_name, obj_name);
1080 else
1081 if (pc_in_unmapped_range (addr, osect))
1082 if (section_is_overlay (osect))
1083 printf_filtered (_("%s in load address range of %s overlay "
1084 "section %s\n"),
1085 loc_string, mapped, sec_name);
1086 else
1087 printf_filtered (_("%s in load address range of section %s\n"),
1088 loc_string, sec_name);
1089 else
1090 if (section_is_overlay (osect))
1091 printf_filtered (_("%s in %s overlay section %s\n"),
1092 loc_string, mapped, sec_name);
1093 else
1094 printf_filtered (_("%s in section %s\n"),
1095 loc_string, sec_name);
1096
1097 do_cleanups (old_chain);
1098 }
1099 }
1100 if (matches == 0)
1101 printf_filtered (_("No symbol matches %s.\n"), arg);
1102 }
1103
1104 static void
1105 address_info (char *exp, int from_tty)
1106 {
1107 struct gdbarch *gdbarch;
1108 int regno;
1109 struct symbol *sym;
1110 struct minimal_symbol *msymbol;
1111 long val;
1112 struct obj_section *section;
1113 CORE_ADDR load_addr;
1114 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1115 if exp is a field of `this'. */
1116
1117 if (exp == 0)
1118 error (_("Argument required."));
1119
1120 sym = lookup_symbol (exp, get_selected_block (0), VAR_DOMAIN,
1121 &is_a_field_of_this);
1122 if (sym == NULL)
1123 {
1124 if (is_a_field_of_this)
1125 {
1126 printf_filtered ("Symbol \"");
1127 fprintf_symbol_filtered (gdb_stdout, exp,
1128 current_language->la_language, DMGL_ANSI);
1129 printf_filtered ("\" is a field of the local class variable ");
1130 if (current_language->la_language == language_objc)
1131 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1132 else
1133 printf_filtered ("`this'\n");
1134 return;
1135 }
1136
1137 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1138
1139 if (msymbol != NULL)
1140 {
1141 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1142
1143 printf_filtered ("Symbol \"");
1144 fprintf_symbol_filtered (gdb_stdout, exp,
1145 current_language->la_language, DMGL_ANSI);
1146 printf_filtered ("\" is at ");
1147 fputs_filtered (paddress (load_addr), gdb_stdout);
1148 printf_filtered (" in a file compiled without debugging");
1149 section = SYMBOL_OBJ_SECTION (msymbol);
1150 if (section_is_overlay (section))
1151 {
1152 load_addr = overlay_unmapped_address (load_addr, section);
1153 printf_filtered (",\n -- loaded at ");
1154 fputs_filtered (paddress (load_addr), gdb_stdout);
1155 printf_filtered (" in overlay section %s",
1156 section->the_bfd_section->name);
1157 }
1158 printf_filtered (".\n");
1159 }
1160 else
1161 error (_("No symbol \"%s\" in current context."), exp);
1162 return;
1163 }
1164
1165 printf_filtered ("Symbol \"");
1166 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1167 current_language->la_language, DMGL_ANSI);
1168 printf_filtered ("\" is ");
1169 val = SYMBOL_VALUE (sym);
1170 section = SYMBOL_OBJ_SECTION (sym);
1171 gdbarch = get_objfile_arch (SYMBOL_SYMTAB (sym)->objfile);
1172
1173 switch (SYMBOL_CLASS (sym))
1174 {
1175 case LOC_CONST:
1176 case LOC_CONST_BYTES:
1177 printf_filtered ("constant");
1178 break;
1179
1180 case LOC_LABEL:
1181 printf_filtered ("a label at address ");
1182 fputs_filtered (paddress (load_addr = SYMBOL_VALUE_ADDRESS (sym)),
1183 gdb_stdout);
1184 if (section_is_overlay (section))
1185 {
1186 load_addr = overlay_unmapped_address (load_addr, section);
1187 printf_filtered (",\n -- loaded at ");
1188 fputs_filtered (paddress (load_addr), gdb_stdout);
1189 printf_filtered (" in overlay section %s",
1190 section->the_bfd_section->name);
1191 }
1192 break;
1193
1194 case LOC_COMPUTED:
1195 /* FIXME: cagney/2004-01-26: It should be possible to
1196 unconditionally call the SYMBOL_COMPUTED_OPS method when available.
1197 Unfortunately DWARF 2 stores the frame-base (instead of the
1198 function) location in a function's symbol. Oops! For the
1199 moment enable this when/where applicable. */
1200 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, gdb_stdout);
1201 break;
1202
1203 case LOC_REGISTER:
1204 /* GDBARCH is the architecture associated with the objfile the symbol
1205 is defined in; the target architecture may be different, and may
1206 provide additional registers. However, we do not know the target
1207 architecture at this point. We assume the objfile architecture
1208 will contain all the standard registers that occur in debug info
1209 in that objfile. */
1210 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1211
1212 if (SYMBOL_IS_ARGUMENT (sym))
1213 printf_filtered (_("an argument in register %s"),
1214 gdbarch_register_name (gdbarch, regno));
1215 else
1216 printf_filtered (_("a variable in register %s"),
1217 gdbarch_register_name (gdbarch, regno));
1218 break;
1219
1220 case LOC_STATIC:
1221 printf_filtered (_("static storage at address "));
1222 fputs_filtered (paddress (load_addr = SYMBOL_VALUE_ADDRESS (sym)),
1223 gdb_stdout);
1224 if (section_is_overlay (section))
1225 {
1226 load_addr = overlay_unmapped_address (load_addr, section);
1227 printf_filtered (_(",\n -- loaded at "));
1228 fputs_filtered (paddress (load_addr), gdb_stdout);
1229 printf_filtered (_(" in overlay section %s"),
1230 section->the_bfd_section->name);
1231 }
1232 break;
1233
1234 case LOC_REGPARM_ADDR:
1235 /* Note comment at LOC_REGISTER. */
1236 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1237 printf_filtered (_("address of an argument in register %s"),
1238 gdbarch_register_name (gdbarch, regno));
1239 break;
1240
1241 case LOC_ARG:
1242 printf_filtered (_("an argument at offset %ld"), val);
1243 break;
1244
1245 case LOC_LOCAL:
1246 printf_filtered (_("a local variable at frame offset %ld"), val);
1247 break;
1248
1249 case LOC_REF_ARG:
1250 printf_filtered (_("a reference argument at offset %ld"), val);
1251 break;
1252
1253 case LOC_TYPEDEF:
1254 printf_filtered (_("a typedef"));
1255 break;
1256
1257 case LOC_BLOCK:
1258 printf_filtered (_("a function at address "));
1259 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1260 fputs_filtered (paddress (load_addr), gdb_stdout);
1261 if (section_is_overlay (section))
1262 {
1263 load_addr = overlay_unmapped_address (load_addr, section);
1264 printf_filtered (_(",\n -- loaded at "));
1265 fputs_filtered (paddress (load_addr), gdb_stdout);
1266 printf_filtered (_(" in overlay section %s"),
1267 section->the_bfd_section->name);
1268 }
1269 break;
1270
1271 case LOC_UNRESOLVED:
1272 {
1273 struct minimal_symbol *msym;
1274
1275 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, NULL);
1276 if (msym == NULL)
1277 printf_filtered ("unresolved");
1278 else
1279 {
1280 section = SYMBOL_OBJ_SECTION (msym);
1281 load_addr = SYMBOL_VALUE_ADDRESS (msym);
1282
1283 if (section
1284 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1285 printf_filtered (_("a thread-local variable at offset %s "
1286 "in the thread-local storage for `%s'"),
1287 paddr_nz (load_addr), section->objfile->name);
1288 else
1289 {
1290 printf_filtered (_("static storage at address "));
1291 fputs_filtered (paddress (load_addr), gdb_stdout);
1292 if (section_is_overlay (section))
1293 {
1294 load_addr = overlay_unmapped_address (load_addr, section);
1295 printf_filtered (_(",\n -- loaded at "));
1296 fputs_filtered (paddress (load_addr), gdb_stdout);
1297 printf_filtered (_(" in overlay section %s"),
1298 section->the_bfd_section->name);
1299 }
1300 }
1301 }
1302 }
1303 break;
1304
1305 case LOC_OPTIMIZED_OUT:
1306 printf_filtered (_("optimized out"));
1307 break;
1308
1309 default:
1310 printf_filtered (_("of unknown (botched) type"));
1311 break;
1312 }
1313 printf_filtered (".\n");
1314 }
1315 \f
1316
1317 static void
1318 x_command (char *exp, int from_tty)
1319 {
1320 struct expression *expr;
1321 struct format_data fmt;
1322 struct cleanup *old_chain;
1323 struct value *val;
1324
1325 fmt.format = last_format ? last_format : 'x';
1326 fmt.size = last_size;
1327 fmt.count = 1;
1328 fmt.raw = 0;
1329
1330 if (exp && *exp == '/')
1331 {
1332 exp++;
1333 fmt = decode_format (&exp, last_format, last_size);
1334 }
1335
1336 /* If we have an expression, evaluate it and use it as the address. */
1337
1338 if (exp != 0 && *exp != 0)
1339 {
1340 expr = parse_expression (exp);
1341 /* Cause expression not to be there any more if this command is
1342 repeated with Newline. But don't clobber a user-defined
1343 command's definition. */
1344 if (from_tty)
1345 *exp = 0;
1346 old_chain = make_cleanup (free_current_contents, &expr);
1347 val = evaluate_expression (expr);
1348 if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF)
1349 val = value_ind (val);
1350 /* In rvalue contexts, such as this, functions are coerced into
1351 pointers to functions. This makes "x/i main" work. */
1352 if (/* last_format == 'i' && */
1353 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1354 && VALUE_LVAL (val) == lval_memory)
1355 next_address = value_address (val);
1356 else
1357 next_address = value_as_address (val);
1358
1359 next_gdbarch = expr->gdbarch;
1360 do_cleanups (old_chain);
1361 }
1362
1363 if (!next_gdbarch)
1364 error_no_arg (_("starting display address"));
1365
1366 do_examine (fmt, next_gdbarch, next_address);
1367
1368 /* If the examine succeeds, we remember its size and format for next
1369 time. */
1370 last_size = fmt.size;
1371 last_format = fmt.format;
1372
1373 /* Set a couple of internal variables if appropriate. */
1374 if (last_examine_value)
1375 {
1376 /* Make last address examined available to the user as $_. Use
1377 the correct pointer type. */
1378 struct type *pointer_type
1379 = lookup_pointer_type (value_type (last_examine_value));
1380 set_internalvar (lookup_internalvar ("_"),
1381 value_from_pointer (pointer_type,
1382 last_examine_address));
1383
1384 /* Make contents of last address examined available to the user
1385 as $__. If the last value has not been fetched from memory
1386 then don't fetch it now; instead mark it by voiding the $__
1387 variable. */
1388 if (value_lazy (last_examine_value))
1389 clear_internalvar (lookup_internalvar ("__"));
1390 else
1391 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1392 }
1393 }
1394 \f
1395
1396 /* Add an expression to the auto-display chain.
1397 Specify the expression. */
1398
1399 static void
1400 display_command (char *exp, int from_tty)
1401 {
1402 struct format_data fmt;
1403 struct expression *expr;
1404 struct display *new;
1405 int display_it = 1;
1406
1407 #if defined(TUI)
1408 /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1409 `tui_version'. */
1410 if (tui_active && exp != NULL && *exp == '$')
1411 display_it = (tui_set_layout_for_display_command (exp) == TUI_FAILURE);
1412 #endif
1413
1414 if (display_it)
1415 {
1416 if (exp == 0)
1417 {
1418 do_displays ();
1419 return;
1420 }
1421
1422 if (*exp == '/')
1423 {
1424 exp++;
1425 fmt = decode_format (&exp, 0, 0);
1426 if (fmt.size && fmt.format == 0)
1427 fmt.format = 'x';
1428 if (fmt.format == 'i' || fmt.format == 's')
1429 fmt.size = 'b';
1430 }
1431 else
1432 {
1433 fmt.format = 0;
1434 fmt.size = 0;
1435 fmt.count = 0;
1436 fmt.raw = 0;
1437 }
1438
1439 innermost_block = NULL;
1440 expr = parse_expression (exp);
1441
1442 new = (struct display *) xmalloc (sizeof (struct display));
1443
1444 new->exp_string = xstrdup (exp);
1445 new->exp = expr;
1446 new->block = innermost_block;
1447 new->next = display_chain;
1448 new->number = ++display_number;
1449 new->format = fmt;
1450 new->enabled_p = 1;
1451 display_chain = new;
1452
1453 if (from_tty && target_has_execution)
1454 do_one_display (new);
1455
1456 dont_repeat ();
1457 }
1458 }
1459
1460 static void
1461 free_display (struct display *d)
1462 {
1463 xfree (d->exp_string);
1464 xfree (d->exp);
1465 xfree (d);
1466 }
1467
1468 /* Clear out the display_chain. Done when new symtabs are loaded,
1469 since this invalidates the types stored in many expressions. */
1470
1471 void
1472 clear_displays (void)
1473 {
1474 struct display *d;
1475
1476 while ((d = display_chain) != NULL)
1477 {
1478 display_chain = d->next;
1479 free_display (d);
1480 }
1481 }
1482
1483 /* Delete the auto-display number NUM. */
1484
1485 static void
1486 delete_display (int num)
1487 {
1488 struct display *d1, *d;
1489
1490 if (!display_chain)
1491 error (_("No display number %d."), num);
1492
1493 if (display_chain->number == num)
1494 {
1495 d1 = display_chain;
1496 display_chain = d1->next;
1497 free_display (d1);
1498 }
1499 else
1500 for (d = display_chain;; d = d->next)
1501 {
1502 if (d->next == 0)
1503 error (_("No display number %d."), num);
1504 if (d->next->number == num)
1505 {
1506 d1 = d->next;
1507 d->next = d1->next;
1508 free_display (d1);
1509 break;
1510 }
1511 }
1512 }
1513
1514 /* Delete some values from the auto-display chain.
1515 Specify the element numbers. */
1516
1517 static void
1518 undisplay_command (char *args, int from_tty)
1519 {
1520 char *p = args;
1521 char *p1;
1522 int num;
1523
1524 if (args == 0)
1525 {
1526 if (query (_("Delete all auto-display expressions? ")))
1527 clear_displays ();
1528 dont_repeat ();
1529 return;
1530 }
1531
1532 while (*p)
1533 {
1534 p1 = p;
1535 while (*p1 >= '0' && *p1 <= '9')
1536 p1++;
1537 if (*p1 && *p1 != ' ' && *p1 != '\t')
1538 error (_("Arguments must be display numbers."));
1539
1540 num = atoi (p);
1541
1542 delete_display (num);
1543
1544 p = p1;
1545 while (*p == ' ' || *p == '\t')
1546 p++;
1547 }
1548 dont_repeat ();
1549 }
1550
1551 /* Display a single auto-display.
1552 Do nothing if the display cannot be printed in the current context,
1553 or if the display is disabled. */
1554
1555 static void
1556 do_one_display (struct display *d)
1557 {
1558 int within_current_scope;
1559
1560 if (d->enabled_p == 0)
1561 return;
1562
1563 if (d->exp == NULL)
1564 {
1565 volatile struct gdb_exception ex;
1566 TRY_CATCH (ex, RETURN_MASK_ALL)
1567 {
1568 innermost_block = NULL;
1569 d->exp = parse_expression (d->exp_string);
1570 d->block = innermost_block;
1571 }
1572 if (ex.reason < 0)
1573 {
1574 /* Can't re-parse the expression. Disable this display item. */
1575 d->enabled_p = 0;
1576 warning (_("Unable to display \"%s\": %s"),
1577 d->exp_string, ex.message);
1578 return;
1579 }
1580 }
1581
1582 if (d->block)
1583 within_current_scope = contained_in (get_selected_block (0), d->block);
1584 else
1585 within_current_scope = 1;
1586 if (!within_current_scope)
1587 return;
1588
1589 current_display_number = d->number;
1590
1591 annotate_display_begin ();
1592 printf_filtered ("%d", d->number);
1593 annotate_display_number_end ();
1594 printf_filtered (": ");
1595 if (d->format.size)
1596 {
1597 CORE_ADDR addr;
1598 struct value *val;
1599
1600 annotate_display_format ();
1601
1602 printf_filtered ("x/");
1603 if (d->format.count != 1)
1604 printf_filtered ("%d", d->format.count);
1605 printf_filtered ("%c", d->format.format);
1606 if (d->format.format != 'i' && d->format.format != 's')
1607 printf_filtered ("%c", d->format.size);
1608 printf_filtered (" ");
1609
1610 annotate_display_expression ();
1611
1612 puts_filtered (d->exp_string);
1613 annotate_display_expression_end ();
1614
1615 if (d->format.count != 1 || d->format.format == 'i')
1616 printf_filtered ("\n");
1617 else
1618 printf_filtered (" ");
1619
1620 val = evaluate_expression (d->exp);
1621 addr = value_as_address (val);
1622 if (d->format.format == 'i')
1623 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1624
1625 annotate_display_value ();
1626
1627 do_examine (d->format, d->exp->gdbarch, addr);
1628 }
1629 else
1630 {
1631 struct value_print_options opts;
1632
1633 annotate_display_format ();
1634
1635 if (d->format.format)
1636 printf_filtered ("/%c ", d->format.format);
1637
1638 annotate_display_expression ();
1639
1640 puts_filtered (d->exp_string);
1641 annotate_display_expression_end ();
1642
1643 printf_filtered (" = ");
1644
1645 annotate_display_expression ();
1646
1647 get_formatted_print_options (&opts, d->format.format);
1648 opts.raw = d->format.raw;
1649 print_formatted (evaluate_expression (d->exp),
1650 d->format.size, &opts, gdb_stdout);
1651 printf_filtered ("\n");
1652 }
1653
1654 annotate_display_end ();
1655
1656 gdb_flush (gdb_stdout);
1657 current_display_number = -1;
1658 }
1659
1660 /* Display all of the values on the auto-display chain which can be
1661 evaluated in the current scope. */
1662
1663 void
1664 do_displays (void)
1665 {
1666 struct display *d;
1667
1668 for (d = display_chain; d; d = d->next)
1669 do_one_display (d);
1670 }
1671
1672 /* Delete the auto-display which we were in the process of displaying.
1673 This is done when there is an error or a signal. */
1674
1675 void
1676 disable_display (int num)
1677 {
1678 struct display *d;
1679
1680 for (d = display_chain; d; d = d->next)
1681 if (d->number == num)
1682 {
1683 d->enabled_p = 0;
1684 return;
1685 }
1686 printf_unfiltered (_("No display number %d.\n"), num);
1687 }
1688
1689 void
1690 disable_current_display (void)
1691 {
1692 if (current_display_number >= 0)
1693 {
1694 disable_display (current_display_number);
1695 fprintf_unfiltered (gdb_stderr, _("\
1696 Disabling display %d to avoid infinite recursion.\n"),
1697 current_display_number);
1698 }
1699 current_display_number = -1;
1700 }
1701
1702 static void
1703 display_info (char *ignore, int from_tty)
1704 {
1705 struct display *d;
1706
1707 if (!display_chain)
1708 printf_unfiltered (_("There are no auto-display expressions now.\n"));
1709 else
1710 printf_filtered (_("Auto-display expressions now in effect:\n\
1711 Num Enb Expression\n"));
1712
1713 for (d = display_chain; d; d = d->next)
1714 {
1715 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1716 if (d->format.size)
1717 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1718 d->format.format);
1719 else if (d->format.format)
1720 printf_filtered ("/%c ", d->format.format);
1721 puts_filtered (d->exp_string);
1722 if (d->block && !contained_in (get_selected_block (0), d->block))
1723 printf_filtered (_(" (cannot be evaluated in the current context)"));
1724 printf_filtered ("\n");
1725 gdb_flush (gdb_stdout);
1726 }
1727 }
1728
1729 static void
1730 enable_display (char *args, int from_tty)
1731 {
1732 char *p = args;
1733 char *p1;
1734 int num;
1735 struct display *d;
1736
1737 if (p == 0)
1738 {
1739 for (d = display_chain; d; d = d->next)
1740 d->enabled_p = 1;
1741 }
1742 else
1743 while (*p)
1744 {
1745 p1 = p;
1746 while (*p1 >= '0' && *p1 <= '9')
1747 p1++;
1748 if (*p1 && *p1 != ' ' && *p1 != '\t')
1749 error (_("Arguments must be display numbers."));
1750
1751 num = atoi (p);
1752
1753 for (d = display_chain; d; d = d->next)
1754 if (d->number == num)
1755 {
1756 d->enabled_p = 1;
1757 goto win;
1758 }
1759 printf_unfiltered (_("No display number %d.\n"), num);
1760 win:
1761 p = p1;
1762 while (*p == ' ' || *p == '\t')
1763 p++;
1764 }
1765 }
1766
1767 static void
1768 disable_display_command (char *args, int from_tty)
1769 {
1770 char *p = args;
1771 char *p1;
1772 struct display *d;
1773
1774 if (p == 0)
1775 {
1776 for (d = display_chain; d; d = d->next)
1777 d->enabled_p = 0;
1778 }
1779 else
1780 while (*p)
1781 {
1782 p1 = p;
1783 while (*p1 >= '0' && *p1 <= '9')
1784 p1++;
1785 if (*p1 && *p1 != ' ' && *p1 != '\t')
1786 error (_("Arguments must be display numbers."));
1787
1788 disable_display (atoi (p));
1789
1790 p = p1;
1791 while (*p == ' ' || *p == '\t')
1792 p++;
1793 }
1794 }
1795
1796 /* Return 1 if D uses SOLIB (and will become dangling when SOLIB
1797 is unloaded), otherwise return 0. */
1798
1799 static int
1800 display_uses_solib_p (const struct display *d,
1801 const struct so_list *solib)
1802 {
1803 int endpos;
1804 struct expression *const exp = d->exp;
1805 const union exp_element *const elts = exp->elts;
1806
1807 if (d->block != NULL
1808 && solib_contains_address_p (solib, d->block->startaddr))
1809 return 1;
1810
1811 for (endpos = exp->nelts; endpos > 0; )
1812 {
1813 int i, args, oplen = 0;
1814
1815 exp->language_defn->la_exp_desc->operator_length (exp, endpos,
1816 &oplen, &args);
1817 gdb_assert (oplen > 0);
1818
1819 i = endpos - oplen;
1820 if (elts[i].opcode == OP_VAR_VALUE)
1821 {
1822 const struct block *const block = elts[i + 1].block;
1823 const struct symbol *const symbol = elts[i + 2].symbol;
1824 const struct obj_section *const section =
1825 SYMBOL_OBJ_SECTION (symbol);
1826
1827 if (block != NULL
1828 && solib_contains_address_p (solib, block->startaddr))
1829 return 1;
1830
1831 if (section && section->objfile == solib->objfile)
1832 return 1;
1833 }
1834 endpos -= oplen;
1835 }
1836
1837 return 0;
1838 }
1839
1840 /* display_chain items point to blocks and expressions. Some expressions in
1841 turn may point to symbols.
1842 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
1843 obstack_free'd when a shared library is unloaded.
1844 Clear pointers that are about to become dangling.
1845 Both .exp and .block fields will be restored next time we need to display
1846 an item by re-parsing .exp_string field in the new execution context. */
1847
1848 static void
1849 clear_dangling_display_expressions (struct so_list *solib)
1850 {
1851 struct display *d;
1852 struct objfile *objfile = NULL;
1853
1854 for (d = display_chain; d; d = d->next)
1855 {
1856 if (d->exp && display_uses_solib_p (d, solib))
1857 {
1858 xfree (d->exp);
1859 d->exp = NULL;
1860 d->block = NULL;
1861 }
1862 }
1863 }
1864 \f
1865
1866 /* Print the value in stack frame FRAME of a variable specified by a
1867 struct symbol. NAME is the name to print; if NULL then VAR's print
1868 name will be used. STREAM is the ui_file on which to print the
1869 value. INDENT specifies the number of indent levels to print
1870 before printing the variable name. */
1871
1872 void
1873 print_variable_and_value (const char *name, struct symbol *var,
1874 struct frame_info *frame,
1875 struct ui_file *stream, int indent)
1876 {
1877 struct value *val;
1878 struct value_print_options opts;
1879
1880 if (!name)
1881 name = SYMBOL_PRINT_NAME (var);
1882
1883 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
1884
1885 val = read_var_value (var, frame);
1886 get_user_print_options (&opts);
1887 common_val_print (val, stream, indent, &opts, current_language);
1888 fprintf_filtered (stream, "\n");
1889 }
1890
1891 static void
1892 printf_command (char *arg, int from_tty)
1893 {
1894 char *f = NULL;
1895 char *s = arg;
1896 char *string = NULL;
1897 struct value **val_args;
1898 char *substrings;
1899 char *current_substring;
1900 int nargs = 0;
1901 int allocated_args = 20;
1902 struct cleanup *old_cleanups;
1903
1904 val_args = xmalloc (allocated_args * sizeof (struct value *));
1905 old_cleanups = make_cleanup (free_current_contents, &val_args);
1906
1907 if (s == 0)
1908 error_no_arg (_("format-control string and values to print"));
1909
1910 /* Skip white space before format string */
1911 while (*s == ' ' || *s == '\t')
1912 s++;
1913
1914 /* A format string should follow, enveloped in double quotes. */
1915 if (*s++ != '"')
1916 error (_("Bad format string, missing '\"'."));
1917
1918 /* Parse the format-control string and copy it into the string STRING,
1919 processing some kinds of escape sequence. */
1920
1921 f = string = (char *) alloca (strlen (s) + 1);
1922
1923 while (*s != '"')
1924 {
1925 int c = *s++;
1926 switch (c)
1927 {
1928 case '\0':
1929 error (_("Bad format string, non-terminated '\"'."));
1930
1931 case '\\':
1932 switch (c = *s++)
1933 {
1934 case '\\':
1935 *f++ = '\\';
1936 break;
1937 case 'a':
1938 *f++ = '\a';
1939 break;
1940 case 'b':
1941 *f++ = '\b';
1942 break;
1943 case 'f':
1944 *f++ = '\f';
1945 break;
1946 case 'n':
1947 *f++ = '\n';
1948 break;
1949 case 'r':
1950 *f++ = '\r';
1951 break;
1952 case 't':
1953 *f++ = '\t';
1954 break;
1955 case 'v':
1956 *f++ = '\v';
1957 break;
1958 case '"':
1959 *f++ = '"';
1960 break;
1961 default:
1962 /* ??? TODO: handle other escape sequences */
1963 error (_("Unrecognized escape character \\%c in format string."),
1964 c);
1965 }
1966 break;
1967
1968 default:
1969 *f++ = c;
1970 }
1971 }
1972
1973 /* Skip over " and following space and comma. */
1974 s++;
1975 *f++ = '\0';
1976 while (*s == ' ' || *s == '\t')
1977 s++;
1978
1979 if (*s != ',' && *s != 0)
1980 error (_("Invalid argument syntax"));
1981
1982 if (*s == ',')
1983 s++;
1984 while (*s == ' ' || *s == '\t')
1985 s++;
1986
1987 /* Need extra space for the '\0's. Doubling the size is sufficient. */
1988 substrings = alloca (strlen (string) * 2);
1989 current_substring = substrings;
1990
1991 {
1992 /* Now scan the string for %-specs and see what kinds of args they want.
1993 argclass[I] classifies the %-specs so we can give printf_filtered
1994 something of the right size. */
1995
1996 enum argclass
1997 {
1998 int_arg, long_arg, long_long_arg, ptr_arg,
1999 string_arg, wide_string_arg, wide_char_arg,
2000 double_arg, long_double_arg, decfloat_arg
2001 };
2002 enum argclass *argclass;
2003 enum argclass this_argclass;
2004 char *last_arg;
2005 int nargs_wanted;
2006 int i;
2007
2008 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
2009 nargs_wanted = 0;
2010 f = string;
2011 last_arg = string;
2012 while (*f)
2013 if (*f++ == '%')
2014 {
2015 int seen_hash = 0, seen_zero = 0, lcount = 0, seen_prec = 0;
2016 int seen_space = 0, seen_plus = 0;
2017 int seen_big_l = 0, seen_h = 0, seen_big_h = 0;
2018 int seen_big_d = 0, seen_double_big_d = 0;
2019 int bad = 0;
2020
2021 /* Check the validity of the format specifier, and work
2022 out what argument it expects. We only accept C89
2023 format strings, with the exception of long long (which
2024 we autoconf for). */
2025
2026 /* Skip over "%%". */
2027 if (*f == '%')
2028 {
2029 f++;
2030 continue;
2031 }
2032
2033 /* The first part of a format specifier is a set of flag
2034 characters. */
2035 while (strchr ("0-+ #", *f))
2036 {
2037 if (*f == '#')
2038 seen_hash = 1;
2039 else if (*f == '0')
2040 seen_zero = 1;
2041 else if (*f == ' ')
2042 seen_space = 1;
2043 else if (*f == '+')
2044 seen_plus = 1;
2045 f++;
2046 }
2047
2048 /* The next part of a format specifier is a width. */
2049 while (strchr ("0123456789", *f))
2050 f++;
2051
2052 /* The next part of a format specifier is a precision. */
2053 if (*f == '.')
2054 {
2055 seen_prec = 1;
2056 f++;
2057 while (strchr ("0123456789", *f))
2058 f++;
2059 }
2060
2061 /* The next part of a format specifier is a length modifier. */
2062 if (*f == 'h')
2063 {
2064 seen_h = 1;
2065 f++;
2066 }
2067 else if (*f == 'l')
2068 {
2069 f++;
2070 lcount++;
2071 if (*f == 'l')
2072 {
2073 f++;
2074 lcount++;
2075 }
2076 }
2077 else if (*f == 'L')
2078 {
2079 seen_big_l = 1;
2080 f++;
2081 }
2082 /* Decimal32 modifier. */
2083 else if (*f == 'H')
2084 {
2085 seen_big_h = 1;
2086 f++;
2087 }
2088 /* Decimal64 and Decimal128 modifiers. */
2089 else if (*f == 'D')
2090 {
2091 f++;
2092
2093 /* Check for a Decimal128. */
2094 if (*f == 'D')
2095 {
2096 f++;
2097 seen_double_big_d = 1;
2098 }
2099 else
2100 seen_big_d = 1;
2101 }
2102
2103 switch (*f)
2104 {
2105 case 'u':
2106 if (seen_hash)
2107 bad = 1;
2108 /* FALLTHROUGH */
2109
2110 case 'o':
2111 case 'x':
2112 case 'X':
2113 if (seen_space || seen_plus)
2114 bad = 1;
2115 /* FALLTHROUGH */
2116
2117 case 'd':
2118 case 'i':
2119 if (lcount == 0)
2120 this_argclass = int_arg;
2121 else if (lcount == 1)
2122 this_argclass = long_arg;
2123 else
2124 this_argclass = long_long_arg;
2125
2126 if (seen_big_l)
2127 bad = 1;
2128 break;
2129
2130 case 'c':
2131 this_argclass = lcount == 0 ? int_arg : wide_char_arg;
2132 if (lcount > 1 || seen_h || seen_big_l)
2133 bad = 1;
2134 if (seen_prec || seen_zero || seen_space || seen_plus)
2135 bad = 1;
2136 break;
2137
2138 case 'p':
2139 this_argclass = ptr_arg;
2140 if (lcount || seen_h || seen_big_l)
2141 bad = 1;
2142 if (seen_prec || seen_zero || seen_space || seen_plus)
2143 bad = 1;
2144 break;
2145
2146 case 's':
2147 this_argclass = lcount == 0 ? string_arg : wide_string_arg;
2148 if (lcount > 1 || seen_h || seen_big_l)
2149 bad = 1;
2150 if (seen_zero || seen_space || seen_plus)
2151 bad = 1;
2152 break;
2153
2154 case 'e':
2155 case 'f':
2156 case 'g':
2157 case 'E':
2158 case 'G':
2159 if (seen_big_h || seen_big_d || seen_double_big_d)
2160 this_argclass = decfloat_arg;
2161 else if (seen_big_l)
2162 this_argclass = long_double_arg;
2163 else
2164 this_argclass = double_arg;
2165
2166 if (lcount || seen_h)
2167 bad = 1;
2168 break;
2169
2170 case '*':
2171 error (_("`*' not supported for precision or width in printf"));
2172
2173 case 'n':
2174 error (_("Format specifier `n' not supported in printf"));
2175
2176 case '\0':
2177 error (_("Incomplete format specifier at end of format string"));
2178
2179 default:
2180 error (_("Unrecognized format specifier '%c' in printf"), *f);
2181 }
2182
2183 if (bad)
2184 error (_("Inappropriate modifiers to format specifier '%c' in printf"),
2185 *f);
2186
2187 f++;
2188
2189 if (lcount > 1 && USE_PRINTF_I64)
2190 {
2191 /* Windows' printf does support long long, but not the usual way.
2192 Convert %lld to %I64d. */
2193 int length_before_ll = f - last_arg - 1 - lcount;
2194 strncpy (current_substring, last_arg, length_before_ll);
2195 strcpy (current_substring + length_before_ll, "I64");
2196 current_substring[length_before_ll + 3] =
2197 last_arg[length_before_ll + lcount];
2198 current_substring += length_before_ll + 4;
2199 }
2200 else if (this_argclass == wide_string_arg
2201 || this_argclass == wide_char_arg)
2202 {
2203 /* Convert %ls or %lc to %s. */
2204 int length_before_ls = f - last_arg - 2;
2205 strncpy (current_substring, last_arg, length_before_ls);
2206 strcpy (current_substring + length_before_ls, "s");
2207 current_substring += length_before_ls + 2;
2208 }
2209 else
2210 {
2211 strncpy (current_substring, last_arg, f - last_arg);
2212 current_substring += f - last_arg;
2213 }
2214 *current_substring++ = '\0';
2215 last_arg = f;
2216 argclass[nargs_wanted++] = this_argclass;
2217 }
2218
2219 /* Now, parse all arguments and evaluate them.
2220 Store the VALUEs in VAL_ARGS. */
2221
2222 while (*s != '\0')
2223 {
2224 char *s1;
2225 if (nargs == allocated_args)
2226 val_args = (struct value **) xrealloc ((char *) val_args,
2227 (allocated_args *= 2)
2228 * sizeof (struct value *));
2229 s1 = s;
2230 val_args[nargs] = parse_to_comma_and_eval (&s1);
2231
2232 nargs++;
2233 s = s1;
2234 if (*s == ',')
2235 s++;
2236 }
2237
2238 if (nargs != nargs_wanted)
2239 error (_("Wrong number of arguments for specified format-string"));
2240
2241 /* Now actually print them. */
2242 current_substring = substrings;
2243 for (i = 0; i < nargs; i++)
2244 {
2245 switch (argclass[i])
2246 {
2247 case string_arg:
2248 {
2249 gdb_byte *str;
2250 CORE_ADDR tem;
2251 int j;
2252 tem = value_as_address (val_args[i]);
2253
2254 /* This is a %s argument. Find the length of the string. */
2255 for (j = 0;; j++)
2256 {
2257 gdb_byte c;
2258 QUIT;
2259 read_memory (tem + j, &c, 1);
2260 if (c == 0)
2261 break;
2262 }
2263
2264 /* Copy the string contents into a string inside GDB. */
2265 str = (gdb_byte *) alloca (j + 1);
2266 if (j != 0)
2267 read_memory (tem, str, j);
2268 str[j] = 0;
2269
2270 printf_filtered (current_substring, (char *) str);
2271 }
2272 break;
2273 case wide_string_arg:
2274 {
2275 gdb_byte *str;
2276 CORE_ADDR tem;
2277 int j;
2278 struct type *wctype = lookup_typename (current_language,
2279 current_gdbarch,
2280 "wchar_t", NULL, 0);
2281 int wcwidth = TYPE_LENGTH (wctype);
2282 gdb_byte *buf = alloca (wcwidth);
2283 struct obstack output;
2284 struct cleanup *inner_cleanup;
2285
2286 tem = value_as_address (val_args[i]);
2287
2288 /* This is a %s argument. Find the length of the string. */
2289 for (j = 0;; j += wcwidth)
2290 {
2291 QUIT;
2292 read_memory (tem + j, buf, wcwidth);
2293 if (extract_unsigned_integer (buf, wcwidth) == 0)
2294 break;
2295 }
2296
2297 /* Copy the string contents into a string inside GDB. */
2298 str = (gdb_byte *) alloca (j + wcwidth);
2299 if (j != 0)
2300 read_memory (tem, str, j);
2301 memset (&str[j], 0, wcwidth);
2302
2303 obstack_init (&output);
2304 inner_cleanup = make_cleanup_obstack_free (&output);
2305
2306 convert_between_encodings (target_wide_charset (),
2307 host_charset (),
2308 str, j, wcwidth,
2309 &output, translit_char);
2310 obstack_grow_str0 (&output, "");
2311
2312 printf_filtered (current_substring, obstack_base (&output));
2313 do_cleanups (inner_cleanup);
2314 }
2315 break;
2316 case wide_char_arg:
2317 {
2318 struct type *wctype = lookup_typename (current_language,
2319 current_gdbarch,
2320 "wchar_t", NULL, 0);
2321 struct type *valtype;
2322 struct obstack output;
2323 struct cleanup *inner_cleanup;
2324 const gdb_byte *bytes;
2325
2326 valtype = value_type (val_args[i]);
2327 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2328 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2329 error (_("expected wchar_t argument for %%lc"));
2330
2331 bytes = value_contents (val_args[i]);
2332
2333 obstack_init (&output);
2334 inner_cleanup = make_cleanup_obstack_free (&output);
2335
2336 convert_between_encodings (target_wide_charset (),
2337 host_charset (),
2338 bytes, TYPE_LENGTH (valtype),
2339 TYPE_LENGTH (valtype),
2340 &output, translit_char);
2341 obstack_grow_str0 (&output, "");
2342
2343 printf_filtered (current_substring, obstack_base (&output));
2344 do_cleanups (inner_cleanup);
2345 }
2346 break;
2347 case double_arg:
2348 {
2349 struct type *type = value_type (val_args[i]);
2350 DOUBLEST val;
2351 int inv;
2352
2353 /* If format string wants a float, unchecked-convert the value
2354 to floating point of the same size. */
2355 type = float_type_from_length (current_gdbarch, type);
2356 val = unpack_double (type, value_contents (val_args[i]), &inv);
2357 if (inv)
2358 error (_("Invalid floating value found in program."));
2359
2360 printf_filtered (current_substring, (double) val);
2361 break;
2362 }
2363 case long_double_arg:
2364 #ifdef HAVE_LONG_DOUBLE
2365 {
2366 struct type *type = value_type (val_args[i]);
2367 DOUBLEST val;
2368 int inv;
2369
2370 /* If format string wants a float, unchecked-convert the value
2371 to floating point of the same size. */
2372 type = float_type_from_length (current_gdbarch, type);
2373 val = unpack_double (type, value_contents (val_args[i]), &inv);
2374 if (inv)
2375 error (_("Invalid floating value found in program."));
2376
2377 printf_filtered (current_substring, (long double) val);
2378 break;
2379 }
2380 #else
2381 error (_("long double not supported in printf"));
2382 #endif
2383 case long_long_arg:
2384 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2385 {
2386 long long val = value_as_long (val_args[i]);
2387 printf_filtered (current_substring, val);
2388 break;
2389 }
2390 #else
2391 error (_("long long not supported in printf"));
2392 #endif
2393 case int_arg:
2394 {
2395 int val = value_as_long (val_args[i]);
2396 printf_filtered (current_substring, val);
2397 break;
2398 }
2399 case long_arg:
2400 {
2401 long val = value_as_long (val_args[i]);
2402 printf_filtered (current_substring, val);
2403 break;
2404 }
2405
2406 /* Handles decimal floating values. */
2407 case decfloat_arg:
2408 {
2409 const gdb_byte *param_ptr = value_contents (val_args[i]);
2410 #if defined (PRINTF_HAS_DECFLOAT)
2411 /* If we have native support for Decimal floating
2412 printing, handle it here. */
2413 printf_filtered (current_substring, param_ptr);
2414 #else
2415
2416 /* As a workaround until vasprintf has native support for DFP
2417 we convert the DFP values to string and print them using
2418 the %s format specifier. */
2419
2420 char *eos, *sos;
2421 int nnull_chars = 0;
2422
2423 /* Parameter data. */
2424 struct type *param_type = value_type (val_args[i]);
2425 unsigned int param_len = TYPE_LENGTH (param_type);
2426
2427 /* DFP output data. */
2428 struct value *dfp_value = NULL;
2429 gdb_byte *dfp_ptr;
2430 int dfp_len = 16;
2431 gdb_byte dec[16];
2432 struct type *dfp_type = NULL;
2433 char decstr[MAX_DECIMAL_STRING];
2434
2435 /* Points to the end of the string so that we can go back
2436 and check for DFP length modifiers. */
2437 eos = current_substring + strlen (current_substring);
2438
2439 /* Look for the float/double format specifier. */
2440 while (*eos != 'f' && *eos != 'e' && *eos != 'E'
2441 && *eos != 'g' && *eos != 'G')
2442 eos--;
2443
2444 sos = eos;
2445
2446 /* Search for the '%' char and extract the size and type of
2447 the output decimal value based on its modifiers
2448 (%Hf, %Df, %DDf). */
2449 while (*--sos != '%')
2450 {
2451 if (*sos == 'H')
2452 {
2453 dfp_len = 4;
2454 dfp_type = builtin_type (current_gdbarch)->builtin_decfloat;
2455 }
2456 else if (*sos == 'D' && *(sos - 1) == 'D')
2457 {
2458 dfp_len = 16;
2459 dfp_type = builtin_type (current_gdbarch)->builtin_declong;
2460 sos--;
2461 }
2462 else
2463 {
2464 dfp_len = 8;
2465 dfp_type = builtin_type (current_gdbarch)->builtin_decdouble;
2466 }
2467 }
2468
2469 /* Replace %Hf, %Df and %DDf with %s's. */
2470 *++sos = 's';
2471
2472 /* Go through the whole format string and pull the correct
2473 number of chars back to compensate for the change in the
2474 format specifier. */
2475 while (nnull_chars < nargs - i)
2476 {
2477 if (*eos == '\0')
2478 nnull_chars++;
2479
2480 *++sos = *++eos;
2481 }
2482
2483 /* Conversion between different DFP types. */
2484 if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2485 decimal_convert (param_ptr, param_len, dec, dfp_len);
2486 else
2487 /* If this is a non-trivial conversion, just output 0.
2488 A correct converted value can be displayed by explicitly
2489 casting to a DFP type. */
2490 decimal_from_string (dec, dfp_len, "0");
2491
2492 dfp_value = value_from_decfloat (dfp_type, dec);
2493
2494 dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2495
2496 decimal_to_string (dfp_ptr, dfp_len, decstr);
2497
2498 /* Print the DFP value. */
2499 printf_filtered (current_substring, decstr);
2500
2501 break;
2502 #endif
2503 }
2504
2505 case ptr_arg:
2506 {
2507 /* We avoid the host's %p because pointers are too
2508 likely to be the wrong size. The only interesting
2509 modifier for %p is a width; extract that, and then
2510 handle %p as glibc would: %#x or a literal "(nil)". */
2511
2512 char *p, *fmt, *fmt_p;
2513 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2514 long long val = value_as_long (val_args[i]);
2515 #else
2516 long val = value_as_long (val_args[i]);
2517 #endif
2518
2519 fmt = alloca (strlen (current_substring) + 5);
2520
2521 /* Copy up to the leading %. */
2522 p = current_substring;
2523 fmt_p = fmt;
2524 while (*p)
2525 {
2526 int is_percent = (*p == '%');
2527 *fmt_p++ = *p++;
2528 if (is_percent)
2529 {
2530 if (*p == '%')
2531 *fmt_p++ = *p++;
2532 else
2533 break;
2534 }
2535 }
2536
2537 if (val != 0)
2538 *fmt_p++ = '#';
2539
2540 /* Copy any width. */
2541 while (*p >= '0' && *p < '9')
2542 *fmt_p++ = *p++;
2543
2544 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2545 if (val != 0)
2546 {
2547 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2548 *fmt_p++ = 'l';
2549 #endif
2550 *fmt_p++ = 'l';
2551 *fmt_p++ = 'x';
2552 *fmt_p++ = '\0';
2553 printf_filtered (fmt, val);
2554 }
2555 else
2556 {
2557 *fmt_p++ = 's';
2558 *fmt_p++ = '\0';
2559 printf_filtered (fmt, "(nil)");
2560 }
2561
2562 break;
2563 }
2564 default:
2565 internal_error (__FILE__, __LINE__,
2566 _("failed internal consistency check"));
2567 }
2568 /* Skip to the next substring. */
2569 current_substring += strlen (current_substring) + 1;
2570 }
2571 /* Print the portion of the format string after the last argument. */
2572 puts_filtered (last_arg);
2573 }
2574 do_cleanups (old_cleanups);
2575 }
2576
2577 void
2578 _initialize_printcmd (void)
2579 {
2580 struct cmd_list_element *c;
2581
2582 current_display_number = -1;
2583
2584 observer_attach_solib_unloaded (clear_dangling_display_expressions);
2585
2586 add_info ("address", address_info,
2587 _("Describe where symbol SYM is stored."));
2588
2589 add_info ("symbol", sym_info, _("\
2590 Describe what symbol is at location ADDR.\n\
2591 Only for symbols with fixed locations (global or static scope)."));
2592
2593 add_com ("x", class_vars, x_command, _("\
2594 Examine memory: x/FMT ADDRESS.\n\
2595 ADDRESS is an expression for the memory address to examine.\n\
2596 FMT is a repeat count followed by a format letter and a size letter.\n\
2597 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2598 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n\
2599 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2600 The specified number of objects of the specified size are printed\n\
2601 according to the format.\n\n\
2602 Defaults for format and size letters are those previously used.\n\
2603 Default count is 1. Default address is following last thing printed\n\
2604 with this command or \"print\"."));
2605
2606 #if 0
2607 add_com ("whereis", class_vars, whereis_command,
2608 _("Print line number and file of definition of variable."));
2609 #endif
2610
2611 add_info ("display", display_info, _("\
2612 Expressions to display when program stops, with code numbers."));
2613
2614 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2615 Cancel some expressions to be displayed when program stops.\n\
2616 Arguments are the code numbers of the expressions to stop displaying.\n\
2617 No argument means cancel all automatic-display expressions.\n\
2618 \"delete display\" has the same effect as this command.\n\
2619 Do \"info display\" to see current list of code numbers."),
2620 &cmdlist);
2621
2622 add_com ("display", class_vars, display_command, _("\
2623 Print value of expression EXP each time the program stops.\n\
2624 /FMT may be used before EXP as in the \"print\" command.\n\
2625 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2626 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2627 and examining is done as in the \"x\" command.\n\n\
2628 With no argument, display all currently requested auto-display expressions.\n\
2629 Use \"undisplay\" to cancel display requests previously made."));
2630
2631 add_cmd ("display", class_vars, enable_display, _("\
2632 Enable some expressions to be displayed when program stops.\n\
2633 Arguments are the code numbers of the expressions to resume displaying.\n\
2634 No argument means enable all automatic-display expressions.\n\
2635 Do \"info display\" to see current list of code numbers."), &enablelist);
2636
2637 add_cmd ("display", class_vars, disable_display_command, _("\
2638 Disable some expressions to be displayed when program stops.\n\
2639 Arguments are the code numbers of the expressions to stop displaying.\n\
2640 No argument means disable all automatic-display expressions.\n\
2641 Do \"info display\" to see current list of code numbers."), &disablelist);
2642
2643 add_cmd ("display", class_vars, undisplay_command, _("\
2644 Cancel some expressions to be displayed when program stops.\n\
2645 Arguments are the code numbers of the expressions to stop displaying.\n\
2646 No argument means cancel all automatic-display expressions.\n\
2647 Do \"info display\" to see current list of code numbers."), &deletelist);
2648
2649 add_com ("printf", class_vars, printf_command, _("\
2650 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2651 This is useful for formatted output in user-defined commands."));
2652
2653 add_com ("output", class_vars, output_command, _("\
2654 Like \"print\" but don't put in value history and don't print newline.\n\
2655 This is useful in user-defined commands."));
2656
2657 add_prefix_cmd ("set", class_vars, set_command, _("\
2658 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2659 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2660 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2661 with $), a register (a few standard names starting with $), or an actual\n\
2662 variable in the program being debugged. EXP is any valid expression.\n\
2663 Use \"set variable\" for variables with names identical to set subcommands.\n\
2664 \n\
2665 With a subcommand, this command modifies parts of the gdb environment.\n\
2666 You can see these environment settings with the \"show\" command."),
2667 &setlist, "set ", 1, &cmdlist);
2668 if (dbx_commands)
2669 add_com ("assign", class_vars, set_command, _("\
2670 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2671 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2672 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2673 with $), a register (a few standard names starting with $), or an actual\n\
2674 variable in the program being debugged. EXP is any valid expression.\n\
2675 Use \"set variable\" for variables with names identical to set subcommands.\n\
2676 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2677 You can see these environment settings with the \"show\" command."));
2678
2679 /* "call" is the same as "set", but handy for dbx users to call fns. */
2680 c = add_com ("call", class_vars, call_command, _("\
2681 Call a function in the program.\n\
2682 The argument is the function name and arguments, in the notation of the\n\
2683 current working language. The result is printed and saved in the value\n\
2684 history, if it is not void."));
2685 set_cmd_completer (c, expression_completer);
2686
2687 add_cmd ("variable", class_vars, set_command, _("\
2688 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2689 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2690 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2691 with $), a register (a few standard names starting with $), or an actual\n\
2692 variable in the program being debugged. EXP is any valid expression.\n\
2693 This may usually be abbreviated to simply \"set\"."),
2694 &setlist);
2695
2696 c = add_com ("print", class_vars, print_command, _("\
2697 Print value of expression EXP.\n\
2698 Variables accessible are those of the lexical environment of the selected\n\
2699 stack frame, plus all those whose scope is global or an entire file.\n\
2700 \n\
2701 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2702 $$NUM refers to NUM'th value back from the last one.\n\
2703 Names starting with $ refer to registers (with the values they would have\n\
2704 if the program were to return to the stack frame now selected, restoring\n\
2705 all registers saved by frames farther in) or else to debugger\n\
2706 \"convenience\" variables (any such name not a known register).\n\
2707 Use assignment expressions to give values to convenience variables.\n\
2708 \n\
2709 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2710 @ is a binary operator for treating consecutive data objects\n\
2711 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2712 element is FOO, whose second element is stored in the space following\n\
2713 where FOO is stored, etc. FOO must be an expression whose value\n\
2714 resides in memory.\n\
2715 \n\
2716 EXP may be preceded with /FMT, where FMT is a format letter\n\
2717 but no count or size letter (see \"x\" command)."));
2718 set_cmd_completer (c, expression_completer);
2719 add_com_alias ("p", "print", class_vars, 1);
2720
2721 c = add_com ("inspect", class_vars, inspect_command, _("\
2722 Same as \"print\" command, except that if you are running in the epoch\n\
2723 environment, the value is printed in its own window."));
2724 set_cmd_completer (c, expression_completer);
2725
2726 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2727 &max_symbolic_offset, _("\
2728 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2729 Show the largest offset that will be printed in <symbol+1234> form."), NULL,
2730 NULL,
2731 show_max_symbolic_offset,
2732 &setprintlist, &showprintlist);
2733 add_setshow_boolean_cmd ("symbol-filename", no_class,
2734 &print_symbol_filename, _("\
2735 Set printing of source filename and line number with <symbol>."), _("\
2736 Show printing of source filename and line number with <symbol>."), NULL,
2737 NULL,
2738 show_print_symbol_filename,
2739 &setprintlist, &showprintlist);
2740 }
This page took 0.082088 seconds and 5 git commands to generate.