linux-nat: Exploit /proc/<pid>/mem for writing
[deliverable/binutils-gdb.git] / gdb / prologue-value.c
1 /* Prologue value handling for GDB.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "prologue-value.h"
21 #include "regcache.h"
22
23 \f
24 /* Constructors. */
25
26 pv_t
27 pv_unknown (void)
28 {
29 pv_t v = { pvk_unknown, 0, 0 };
30
31 return v;
32 }
33
34
35 pv_t
36 pv_constant (CORE_ADDR k)
37 {
38 pv_t v;
39
40 v.kind = pvk_constant;
41 v.reg = -1; /* for debugging */
42 v.k = k;
43
44 return v;
45 }
46
47
48 pv_t
49 pv_register (int reg, CORE_ADDR k)
50 {
51 pv_t v;
52
53 v.kind = pvk_register;
54 v.reg = reg;
55 v.k = k;
56
57 return v;
58 }
59
60
61 \f
62 /* Arithmetic operations. */
63
64 /* If one of *A and *B is a constant, and the other isn't, swap the
65 values as necessary to ensure that *B is the constant. This can
66 reduce the number of cases we need to analyze in the functions
67 below. */
68 static void
69 constant_last (pv_t *a, pv_t *b)
70 {
71 if (a->kind == pvk_constant
72 && b->kind != pvk_constant)
73 {
74 pv_t temp = *a;
75 *a = *b;
76 *b = temp;
77 }
78 }
79
80
81 pv_t
82 pv_add (pv_t a, pv_t b)
83 {
84 constant_last (&a, &b);
85
86 /* We can add a constant to a register. */
87 if (a.kind == pvk_register
88 && b.kind == pvk_constant)
89 return pv_register (a.reg, a.k + b.k);
90
91 /* We can add a constant to another constant. */
92 else if (a.kind == pvk_constant
93 && b.kind == pvk_constant)
94 return pv_constant (a.k + b.k);
95
96 /* Anything else we don't know how to add. We don't have a
97 representation for, say, the sum of two registers, or a multiple
98 of a register's value (adding a register to itself). */
99 else
100 return pv_unknown ();
101 }
102
103
104 pv_t
105 pv_add_constant (pv_t v, CORE_ADDR k)
106 {
107 /* Rather than thinking of all the cases we can and can't handle,
108 we'll just let pv_add take care of that for us. */
109 return pv_add (v, pv_constant (k));
110 }
111
112
113 pv_t
114 pv_subtract (pv_t a, pv_t b)
115 {
116 /* This isn't quite the same as negating B and adding it to A, since
117 we don't have a representation for the negation of anything but a
118 constant. For example, we can't negate { pvk_register, R1, 10 },
119 but we do know that { pvk_register, R1, 10 } minus { pvk_register,
120 R1, 5 } is { pvk_constant, <ignored>, 5 }.
121
122 This means, for example, that we could subtract two stack
123 addresses; they're both relative to the original SP. Since the
124 frame pointer is set based on the SP, its value will be the
125 original SP plus some constant (probably zero), so we can use its
126 value just fine, too. */
127
128 constant_last (&a, &b);
129
130 /* We can subtract two constants. */
131 if (a.kind == pvk_constant
132 && b.kind == pvk_constant)
133 return pv_constant (a.k - b.k);
134
135 /* We can subtract a constant from a register. */
136 else if (a.kind == pvk_register
137 && b.kind == pvk_constant)
138 return pv_register (a.reg, a.k - b.k);
139
140 /* We can subtract a register from itself, yielding a constant. */
141 else if (a.kind == pvk_register
142 && b.kind == pvk_register
143 && a.reg == b.reg)
144 return pv_constant (a.k - b.k);
145
146 /* We don't know how to subtract anything else. */
147 else
148 return pv_unknown ();
149 }
150
151
152 pv_t
153 pv_logical_and (pv_t a, pv_t b)
154 {
155 constant_last (&a, &b);
156
157 /* We can 'and' two constants. */
158 if (a.kind == pvk_constant
159 && b.kind == pvk_constant)
160 return pv_constant (a.k & b.k);
161
162 /* We can 'and' anything with the constant zero. */
163 else if (b.kind == pvk_constant
164 && b.k == 0)
165 return pv_constant (0);
166
167 /* We can 'and' anything with ~0. */
168 else if (b.kind == pvk_constant
169 && b.k == ~ (CORE_ADDR) 0)
170 return a;
171
172 /* We can 'and' a register with itself. */
173 else if (a.kind == pvk_register
174 && b.kind == pvk_register
175 && a.reg == b.reg
176 && a.k == b.k)
177 return a;
178
179 /* Otherwise, we don't know. */
180 else
181 return pv_unknown ();
182 }
183
184
185 \f
186 /* Examining prologue values. */
187
188 int
189 pv_is_identical (pv_t a, pv_t b)
190 {
191 if (a.kind != b.kind)
192 return 0;
193
194 switch (a.kind)
195 {
196 case pvk_unknown:
197 return 1;
198 case pvk_constant:
199 return (a.k == b.k);
200 case pvk_register:
201 return (a.reg == b.reg && a.k == b.k);
202 default:
203 gdb_assert_not_reached ("unexpected prologue value kind");
204 }
205 }
206
207
208 int
209 pv_is_constant (pv_t a)
210 {
211 return (a.kind == pvk_constant);
212 }
213
214
215 int
216 pv_is_register (pv_t a, int r)
217 {
218 return (a.kind == pvk_register
219 && a.reg == r);
220 }
221
222
223 int
224 pv_is_register_k (pv_t a, int r, CORE_ADDR k)
225 {
226 return (a.kind == pvk_register
227 && a.reg == r
228 && a.k == k);
229 }
230
231
232 enum pv_boolean
233 pv_is_array_ref (pv_t addr, CORE_ADDR size,
234 pv_t array_addr, CORE_ADDR array_len,
235 CORE_ADDR elt_size,
236 int *i)
237 {
238 /* Note that, since .k is a CORE_ADDR, and CORE_ADDR is unsigned, if
239 addr is *before* the start of the array, then this isn't going to
240 be negative... */
241 pv_t offset = pv_subtract (addr, array_addr);
242
243 if (offset.kind == pvk_constant)
244 {
245 /* This is a rather odd test. We want to know if the SIZE bytes
246 at ADDR don't overlap the array at all, so you'd expect it to
247 be an || expression: "if we're completely before || we're
248 completely after". But with unsigned arithmetic, things are
249 different: since it's a number circle, not a number line, the
250 right values for offset.k are actually one contiguous range. */
251 if (offset.k <= -size
252 && offset.k >= array_len * elt_size)
253 return pv_definite_no;
254 else if (offset.k % elt_size != 0
255 || size != elt_size)
256 return pv_maybe;
257 else
258 {
259 *i = offset.k / elt_size;
260 return pv_definite_yes;
261 }
262 }
263 else
264 return pv_maybe;
265 }
266
267
268 \f
269 /* Areas. */
270
271
272 /* A particular value known to be stored in an area.
273
274 Entries form a ring, sorted by unsigned offset from the area's base
275 register's value. Since entries can straddle the wrap-around point,
276 unsigned offsets form a circle, not a number line, so the list
277 itself is structured the same way --- there is no inherent head.
278 The entry with the lowest offset simply follows the entry with the
279 highest offset. Entries may abut, but never overlap. The area's
280 'entry' pointer points to an arbitrary node in the ring. */
281 struct area_entry
282 {
283 /* Links in the doubly-linked ring. */
284 struct area_entry *prev, *next;
285
286 /* Offset of this entry's address from the value of the base
287 register. */
288 CORE_ADDR offset;
289
290 /* The size of this entry. Note that an entry may wrap around from
291 the end of the address space to the beginning. */
292 CORE_ADDR size;
293
294 /* The value stored here. */
295 pv_t value;
296 };
297
298
299 struct pv_area
300 {
301 /* This area's base register. */
302 int base_reg;
303
304 /* The mask to apply to addresses, to make the wrap-around happen at
305 the right place. */
306 CORE_ADDR addr_mask;
307
308 /* An element of the doubly-linked ring of entries, or zero if we
309 have none. */
310 struct area_entry *entry;
311 };
312
313
314 struct pv_area *
315 make_pv_area (int base_reg, int addr_bit)
316 {
317 struct pv_area *a = XNEW (struct pv_area);
318
319 memset (a, 0, sizeof (*a));
320
321 a->base_reg = base_reg;
322 a->entry = 0;
323
324 /* Remember that shift amounts equal to the type's width are
325 undefined. */
326 a->addr_mask = ((((CORE_ADDR) 1 << (addr_bit - 1)) - 1) << 1) | 1;
327
328 return a;
329 }
330
331
332 /* Delete all entries from AREA. */
333 static void
334 clear_entries (struct pv_area *area)
335 {
336 struct area_entry *e = area->entry;
337
338 if (e)
339 {
340 /* This needs to be a do-while loop, in order to actually
341 process the node being checked for in the terminating
342 condition. */
343 do
344 {
345 struct area_entry *next = e->next;
346
347 xfree (e);
348 e = next;
349 }
350 while (e != area->entry);
351
352 area->entry = 0;
353 }
354 }
355
356
357 void
358 free_pv_area (struct pv_area *area)
359 {
360 clear_entries (area);
361 xfree (area);
362 }
363
364
365 static void
366 do_free_pv_area_cleanup (void *arg)
367 {
368 free_pv_area ((struct pv_area *) arg);
369 }
370
371
372 struct cleanup *
373 make_cleanup_free_pv_area (struct pv_area *area)
374 {
375 return make_cleanup (do_free_pv_area_cleanup, (void *) area);
376 }
377
378
379 int
380 pv_area_store_would_trash (struct pv_area *area, pv_t addr)
381 {
382 /* It may seem odd that pvk_constant appears here --- after all,
383 that's the case where we know the most about the address! But
384 pv_areas are always relative to a register, and we don't know the
385 value of the register, so we can't compare entry addresses to
386 constants. */
387 return (addr.kind == pvk_unknown
388 || addr.kind == pvk_constant
389 || (addr.kind == pvk_register && addr.reg != area->base_reg));
390 }
391
392
393 /* Return a pointer to the first entry we hit in AREA starting at
394 OFFSET and going forward.
395
396 This may return zero, if AREA has no entries.
397
398 And since the entries are a ring, this may return an entry that
399 entirely precedes OFFSET. This is the correct behavior: depending
400 on the sizes involved, we could still overlap such an area, with
401 wrap-around. */
402 static struct area_entry *
403 find_entry (struct pv_area *area, CORE_ADDR offset)
404 {
405 struct area_entry *e = area->entry;
406
407 if (! e)
408 return 0;
409
410 /* If the next entry would be better than the current one, then scan
411 forward. Since we use '<' in this loop, it always terminates.
412
413 Note that, even setting aside the addr_mask stuff, we must not
414 simplify this, in high school algebra fashion, to
415 (e->next->offset < e->offset), because of the way < interacts
416 with wrap-around. We have to subtract offset from both sides to
417 make sure both things we're comparing are on the same side of the
418 discontinuity. */
419 while (((e->next->offset - offset) & area->addr_mask)
420 < ((e->offset - offset) & area->addr_mask))
421 e = e->next;
422
423 /* If the previous entry would be better than the current one, then
424 scan backwards. */
425 while (((e->prev->offset - offset) & area->addr_mask)
426 < ((e->offset - offset) & area->addr_mask))
427 e = e->prev;
428
429 /* In case there's some locality to the searches, set the area's
430 pointer to the entry we've found. */
431 area->entry = e;
432
433 return e;
434 }
435
436
437 /* Return non-zero if the SIZE bytes at OFFSET would overlap ENTRY;
438 return zero otherwise. AREA is the area to which ENTRY belongs. */
439 static int
440 overlaps (struct pv_area *area,
441 struct area_entry *entry,
442 CORE_ADDR offset,
443 CORE_ADDR size)
444 {
445 /* Think carefully about wrap-around before simplifying this. */
446 return (((entry->offset - offset) & area->addr_mask) < size
447 || ((offset - entry->offset) & area->addr_mask) < entry->size);
448 }
449
450
451 void
452 pv_area_store (struct pv_area *area,
453 pv_t addr,
454 CORE_ADDR size,
455 pv_t value)
456 {
457 /* Remove any (potentially) overlapping entries. */
458 if (pv_area_store_would_trash (area, addr))
459 clear_entries (area);
460 else
461 {
462 CORE_ADDR offset = addr.k;
463 struct area_entry *e = find_entry (area, offset);
464
465 /* Delete all entries that we would overlap. */
466 while (e && overlaps (area, e, offset, size))
467 {
468 struct area_entry *next = (e->next == e) ? 0 : e->next;
469
470 e->prev->next = e->next;
471 e->next->prev = e->prev;
472
473 xfree (e);
474 e = next;
475 }
476
477 /* Move the area's pointer to the next remaining entry. This
478 will also zero the pointer if we've deleted all the entries. */
479 area->entry = e;
480 }
481
482 /* Now, there are no entries overlapping us, and area->entry is
483 either zero or pointing at the closest entry after us. We can
484 just insert ourselves before that.
485
486 But if we're storing an unknown value, don't bother --- that's
487 the default. */
488 if (value.kind == pvk_unknown)
489 return;
490 else
491 {
492 CORE_ADDR offset = addr.k;
493 struct area_entry *e = XNEW (struct area_entry);
494
495 e->offset = offset;
496 e->size = size;
497 e->value = value;
498
499 if (area->entry)
500 {
501 e->prev = area->entry->prev;
502 e->next = area->entry;
503 e->prev->next = e->next->prev = e;
504 }
505 else
506 {
507 e->prev = e->next = e;
508 area->entry = e;
509 }
510 }
511 }
512
513
514 pv_t
515 pv_area_fetch (struct pv_area *area, pv_t addr, CORE_ADDR size)
516 {
517 /* If we have no entries, or we can't decide how ADDR relates to the
518 entries we do have, then the value is unknown. */
519 if (! area->entry
520 || pv_area_store_would_trash (area, addr))
521 return pv_unknown ();
522 else
523 {
524 CORE_ADDR offset = addr.k;
525 struct area_entry *e = find_entry (area, offset);
526
527 /* If this entry exactly matches what we're looking for, then
528 we're set. Otherwise, say it's unknown. */
529 if (e->offset == offset && e->size == size)
530 return e->value;
531 else
532 return pv_unknown ();
533 }
534 }
535
536
537 int
538 pv_area_find_reg (struct pv_area *area,
539 struct gdbarch *gdbarch,
540 int reg,
541 CORE_ADDR *offset_p)
542 {
543 struct area_entry *e = area->entry;
544
545 if (e)
546 do
547 {
548 if (e->value.kind == pvk_register
549 && e->value.reg == reg
550 && e->value.k == 0
551 && e->size == register_size (gdbarch, reg))
552 {
553 if (offset_p)
554 *offset_p = e->offset;
555 return 1;
556 }
557
558 e = e->next;
559 }
560 while (e != area->entry);
561
562 return 0;
563 }
564
565
566 void
567 pv_area_scan (struct pv_area *area,
568 void (*func) (void *closure,
569 pv_t addr,
570 CORE_ADDR size,
571 pv_t value),
572 void *closure)
573 {
574 struct area_entry *e = area->entry;
575 pv_t addr;
576
577 addr.kind = pvk_register;
578 addr.reg = area->base_reg;
579
580 if (e)
581 do
582 {
583 addr.k = e->offset;
584 func (closure, addr, e->size, e->value);
585 e = e->next;
586 }
587 while (e != area->entry);
588 }
This page took 0.119473 seconds and 4 git commands to generate.