1bad089f39c7d1c48007e5212b0e71ed7fc974a7
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "gdbcmd.h" /* For maintenanceprintlist. */
30 #include "observer.h"
31 #include "exceptions.h"
32 #include "remote.h"
33
34 /*
35 * DATA STRUCTURE
36 *
37 * Here is the actual register cache.
38 */
39
40 /* Per-architecture object describing the layout of a register cache.
41 Computed once when the architecture is created. */
42
43 struct gdbarch_data *regcache_descr_handle;
44
45 struct regcache_descr
46 {
47 /* The architecture this descriptor belongs to. */
48 struct gdbarch *gdbarch;
49
50 /* The raw register cache. Each raw (or hard) register is supplied
51 by the target interface. The raw cache should not contain
52 redundant information - if the PC is constructed from two
53 registers then those registers and not the PC lives in the raw
54 cache. */
55 int nr_raw_registers;
56 long sizeof_raw_registers;
57 long sizeof_raw_register_status;
58
59 /* The cooked register space. Each cooked register in the range
60 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
61 register. The remaining [NR_RAW_REGISTERS
62 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
63 both raw registers and memory by the architecture methods
64 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
65 int nr_cooked_registers;
66 long sizeof_cooked_registers;
67 long sizeof_cooked_register_status;
68
69 /* Offset and size (in 8 bit bytes), of each register in the
70 register cache. All registers (including those in the range
71 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
72 offset. */
73 long *register_offset;
74 long *sizeof_register;
75
76 /* Cached table containing the type of each register. */
77 struct type **register_type;
78 };
79
80 static void *
81 init_regcache_descr (struct gdbarch *gdbarch)
82 {
83 int i;
84 struct regcache_descr *descr;
85 gdb_assert (gdbarch != NULL);
86
87 /* Create an initial, zero filled, table. */
88 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
89 descr->gdbarch = gdbarch;
90
91 /* Total size of the register space. The raw registers are mapped
92 directly onto the raw register cache while the pseudo's are
93 either mapped onto raw-registers or memory. */
94 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
95 + gdbarch_num_pseudo_regs (gdbarch);
96 descr->sizeof_cooked_register_status
97 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
98
99 /* Fill in a table of register types. */
100 descr->register_type
101 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
102 struct type *);
103 for (i = 0; i < descr->nr_cooked_registers; i++)
104 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
105
106 /* Construct a strictly RAW register cache. Don't allow pseudo's
107 into the register cache. */
108 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
109 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch);
110
111 /* Lay out the register cache.
112
113 NOTE: cagney/2002-05-22: Only register_type() is used when
114 constructing the register cache. It is assumed that the
115 register's raw size, virtual size and type length are all the
116 same. */
117
118 {
119 long offset = 0;
120
121 descr->sizeof_register
122 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
123 descr->register_offset
124 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
125 for (i = 0; i < descr->nr_raw_registers; i++)
126 {
127 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
128 descr->register_offset[i] = offset;
129 offset += descr->sizeof_register[i];
130 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
131 }
132 /* Set the real size of the raw register cache buffer. */
133 descr->sizeof_raw_registers = offset;
134
135 for (; i < descr->nr_cooked_registers; i++)
136 {
137 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
138 descr->register_offset[i] = offset;
139 offset += descr->sizeof_register[i];
140 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
141 }
142 /* Set the real size of the readonly register cache buffer. */
143 descr->sizeof_cooked_registers = offset;
144 }
145
146 return descr;
147 }
148
149 static struct regcache_descr *
150 regcache_descr (struct gdbarch *gdbarch)
151 {
152 return gdbarch_data (gdbarch, regcache_descr_handle);
153 }
154
155 /* Utility functions returning useful register attributes stored in
156 the regcache descr. */
157
158 struct type *
159 register_type (struct gdbarch *gdbarch, int regnum)
160 {
161 struct regcache_descr *descr = regcache_descr (gdbarch);
162
163 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
164 return descr->register_type[regnum];
165 }
166
167 /* Utility functions returning useful register attributes stored in
168 the regcache descr. */
169
170 int
171 register_size (struct gdbarch *gdbarch, int regnum)
172 {
173 struct regcache_descr *descr = regcache_descr (gdbarch);
174 int size;
175
176 gdb_assert (regnum >= 0
177 && regnum < (gdbarch_num_regs (gdbarch)
178 + gdbarch_num_pseudo_regs (gdbarch)));
179 size = descr->sizeof_register[regnum];
180 return size;
181 }
182
183 /* The register cache for storing raw register values. */
184
185 struct regcache
186 {
187 struct regcache_descr *descr;
188
189 /* The address space of this register cache (for registers where it
190 makes sense, like PC or SP). */
191 struct address_space *aspace;
192
193 /* The register buffers. A read-only register cache can hold the
194 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
195 register cache can only hold [0 .. gdbarch_num_regs). */
196 gdb_byte *registers;
197 /* Register cache status. */
198 signed char *register_status;
199 /* Is this a read-only cache? A read-only cache is used for saving
200 the target's register state (e.g, across an inferior function
201 call or just before forcing a function return). A read-only
202 cache can only be updated via the methods regcache_dup() and
203 regcache_cpy(). The actual contents are determined by the
204 reggroup_save and reggroup_restore methods. */
205 int readonly_p;
206 /* If this is a read-write cache, which thread's registers is
207 it connected to? */
208 ptid_t ptid;
209 };
210
211 static struct regcache *
212 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace,
213 int readonly_p)
214 {
215 struct regcache_descr *descr;
216 struct regcache *regcache;
217
218 gdb_assert (gdbarch != NULL);
219 descr = regcache_descr (gdbarch);
220 regcache = XMALLOC (struct regcache);
221 regcache->descr = descr;
222 regcache->readonly_p = readonly_p;
223 if (readonly_p)
224 {
225 regcache->registers
226 = XCALLOC (descr->sizeof_cooked_registers, gdb_byte);
227 regcache->register_status
228 = XCALLOC (descr->sizeof_cooked_register_status, gdb_byte);
229 }
230 else
231 {
232 regcache->registers
233 = XCALLOC (descr->sizeof_raw_registers, gdb_byte);
234 regcache->register_status
235 = XCALLOC (descr->sizeof_raw_register_status, gdb_byte);
236 }
237 regcache->aspace = aspace;
238 regcache->ptid = minus_one_ptid;
239 return regcache;
240 }
241
242 struct regcache *
243 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace)
244 {
245 return regcache_xmalloc_1 (gdbarch, aspace, 1);
246 }
247
248 void
249 regcache_xfree (struct regcache *regcache)
250 {
251 if (regcache == NULL)
252 return;
253 xfree (regcache->registers);
254 xfree (regcache->register_status);
255 xfree (regcache);
256 }
257
258 static void
259 do_regcache_xfree (void *data)
260 {
261 regcache_xfree (data);
262 }
263
264 struct cleanup *
265 make_cleanup_regcache_xfree (struct regcache *regcache)
266 {
267 return make_cleanup (do_regcache_xfree, regcache);
268 }
269
270 /* Return REGCACHE's architecture. */
271
272 struct gdbarch *
273 get_regcache_arch (const struct regcache *regcache)
274 {
275 return regcache->descr->gdbarch;
276 }
277
278 struct address_space *
279 get_regcache_aspace (const struct regcache *regcache)
280 {
281 return regcache->aspace;
282 }
283
284 /* Return a pointer to register REGNUM's buffer cache. */
285
286 static gdb_byte *
287 register_buffer (const struct regcache *regcache, int regnum)
288 {
289 return regcache->registers + regcache->descr->register_offset[regnum];
290 }
291
292 void
293 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
294 void *src)
295 {
296 struct gdbarch *gdbarch = dst->descr->gdbarch;
297 gdb_byte buf[MAX_REGISTER_SIZE];
298 int regnum;
299
300 /* The DST should be `read-only', if it wasn't then the save would
301 end up trying to write the register values back out to the
302 target. */
303 gdb_assert (dst->readonly_p);
304 /* Clear the dest. */
305 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
306 memset (dst->register_status, 0,
307 dst->descr->sizeof_cooked_register_status);
308 /* Copy over any registers (identified by their membership in the
309 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
310 gdbarch_num_pseudo_regs) range is checked since some architectures need
311 to save/restore `cooked' registers that live in memory. */
312 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
313 {
314 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
315 {
316 enum register_status status = cooked_read (src, regnum, buf);
317
318 if (status == REG_VALID)
319 memcpy (register_buffer (dst, regnum), buf,
320 register_size (gdbarch, regnum));
321 else
322 {
323 gdb_assert (status != REG_UNKNOWN);
324
325 memset (register_buffer (dst, regnum), 0,
326 register_size (gdbarch, regnum));
327 }
328 dst->register_status[regnum] = status;
329 }
330 }
331 }
332
333 static void
334 regcache_restore (struct regcache *dst,
335 regcache_cooked_read_ftype *cooked_read,
336 void *cooked_read_context)
337 {
338 struct gdbarch *gdbarch = dst->descr->gdbarch;
339 gdb_byte buf[MAX_REGISTER_SIZE];
340 int regnum;
341
342 /* The dst had better not be read-only. If it is, the `restore'
343 doesn't make much sense. */
344 gdb_assert (!dst->readonly_p);
345 /* Copy over any registers, being careful to only restore those that
346 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
347 + gdbarch_num_pseudo_regs) range is checked since some architectures need
348 to save/restore `cooked' registers that live in memory. */
349 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
350 {
351 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
352 {
353 enum register_status status;
354
355 status = cooked_read (cooked_read_context, regnum, buf);
356 if (status == REG_VALID)
357 regcache_cooked_write (dst, regnum, buf);
358 }
359 }
360 }
361
362 static enum register_status
363 do_cooked_read (void *src, int regnum, gdb_byte *buf)
364 {
365 struct regcache *regcache = src;
366
367 return regcache_cooked_read (regcache, regnum, buf);
368 }
369
370 void
371 regcache_cpy (struct regcache *dst, struct regcache *src)
372 {
373 gdb_assert (src != NULL && dst != NULL);
374 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
375 gdb_assert (src != dst);
376 gdb_assert (src->readonly_p || dst->readonly_p);
377
378 if (!src->readonly_p)
379 regcache_save (dst, do_cooked_read, src);
380 else if (!dst->readonly_p)
381 regcache_restore (dst, do_cooked_read, src);
382 else
383 regcache_cpy_no_passthrough (dst, src);
384 }
385
386 void
387 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
388 {
389 gdb_assert (src != NULL && dst != NULL);
390 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
391 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
392 move of data into a thread's regcache. Doing this would be silly
393 - it would mean that regcache->register_status would be
394 completely invalid. */
395 gdb_assert (dst->readonly_p && src->readonly_p);
396
397 memcpy (dst->registers, src->registers,
398 dst->descr->sizeof_cooked_registers);
399 memcpy (dst->register_status, src->register_status,
400 dst->descr->sizeof_cooked_register_status);
401 }
402
403 struct regcache *
404 regcache_dup (struct regcache *src)
405 {
406 struct regcache *newbuf;
407
408 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src));
409 regcache_cpy (newbuf, src);
410 return newbuf;
411 }
412
413 enum register_status
414 regcache_register_status (const struct regcache *regcache, int regnum)
415 {
416 gdb_assert (regcache != NULL);
417 gdb_assert (regnum >= 0);
418 if (regcache->readonly_p)
419 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
420 else
421 gdb_assert (regnum < regcache->descr->nr_raw_registers);
422
423 return regcache->register_status[regnum];
424 }
425
426 void
427 regcache_invalidate (struct regcache *regcache, int regnum)
428 {
429 gdb_assert (regcache != NULL);
430 gdb_assert (regnum >= 0);
431 gdb_assert (!regcache->readonly_p);
432 gdb_assert (regnum < regcache->descr->nr_raw_registers);
433 regcache->register_status[regnum] = REG_UNKNOWN;
434 }
435
436
437 /* Global structure containing the current regcache. */
438
439 /* NOTE: this is a write-through cache. There is no "dirty" bit for
440 recording if the register values have been changed (eg. by the
441 user). Therefore all registers must be written back to the
442 target when appropriate. */
443
444 struct regcache_list
445 {
446 struct regcache *regcache;
447 struct regcache_list *next;
448 };
449
450 static struct regcache_list *current_regcache;
451
452 struct regcache *
453 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
454 struct address_space *aspace)
455 {
456 struct regcache_list *list;
457 struct regcache *new_regcache;
458
459 for (list = current_regcache; list; list = list->next)
460 if (ptid_equal (list->regcache->ptid, ptid)
461 && get_regcache_arch (list->regcache) == gdbarch)
462 return list->regcache;
463
464 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0);
465 new_regcache->ptid = ptid;
466
467 list = xmalloc (sizeof (struct regcache_list));
468 list->regcache = new_regcache;
469 list->next = current_regcache;
470 current_regcache = list;
471
472 return new_regcache;
473 }
474
475 struct regcache *
476 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
477 {
478 struct address_space *aspace;
479
480 /* For the benefit of "maint print registers" & co when debugging an
481 executable, allow dumping the regcache even when there is no
482 thread selected (target_thread_address_space internal-errors if
483 no address space is found). Note that normal user commands will
484 fail higher up on the call stack due to no
485 target_has_registers. */
486 aspace = (ptid_equal (null_ptid, ptid)
487 ? NULL
488 : target_thread_address_space (ptid));
489
490 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
491 }
492
493 static ptid_t current_thread_ptid;
494 static struct gdbarch *current_thread_arch;
495
496 struct regcache *
497 get_thread_regcache (ptid_t ptid)
498 {
499 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
500 {
501 current_thread_ptid = ptid;
502 current_thread_arch = target_thread_architecture (ptid);
503 }
504
505 return get_thread_arch_regcache (ptid, current_thread_arch);
506 }
507
508 struct regcache *
509 get_current_regcache (void)
510 {
511 return get_thread_regcache (inferior_ptid);
512 }
513
514
515 /* Observer for the target_changed event. */
516
517 static void
518 regcache_observer_target_changed (struct target_ops *target)
519 {
520 registers_changed ();
521 }
522
523 /* Update global variables old ptids to hold NEW_PTID if they were
524 holding OLD_PTID. */
525 static void
526 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
527 {
528 struct regcache_list *list;
529
530 for (list = current_regcache; list; list = list->next)
531 if (ptid_equal (list->regcache->ptid, old_ptid))
532 list->regcache->ptid = new_ptid;
533 }
534
535 /* Low level examining and depositing of registers.
536
537 The caller is responsible for making sure that the inferior is
538 stopped before calling the fetching routines, or it will get
539 garbage. (a change from GDB version 3, in which the caller got the
540 value from the last stop). */
541
542 /* REGISTERS_CHANGED ()
543
544 Indicate that registers may have changed, so invalidate the cache. */
545
546 void
547 registers_changed_ptid (ptid_t ptid)
548 {
549 struct regcache_list *list, **list_link;
550
551 list = current_regcache;
552 list_link = &current_regcache;
553 while (list)
554 {
555 if (ptid_match (list->regcache->ptid, ptid))
556 {
557 struct regcache_list *dead = list;
558
559 *list_link = list->next;
560 regcache_xfree (list->regcache);
561 list = *list_link;
562 xfree (dead);
563 continue;
564 }
565
566 list_link = &list->next;
567 list = *list_link;
568 }
569
570 if (ptid_match (current_thread_ptid, ptid))
571 {
572 current_thread_ptid = null_ptid;
573 current_thread_arch = NULL;
574 }
575
576 if (ptid_match (inferior_ptid, ptid))
577 {
578 /* We just deleted the regcache of the current thread. Need to
579 forget about any frames we have cached, too. */
580 reinit_frame_cache ();
581 }
582 }
583
584 void
585 registers_changed (void)
586 {
587 registers_changed_ptid (minus_one_ptid);
588
589 /* Force cleanup of any alloca areas if using C alloca instead of
590 a builtin alloca. This particular call is used to clean up
591 areas allocated by low level target code which may build up
592 during lengthy interactions between gdb and the target before
593 gdb gives control to the user (ie watchpoints). */
594 alloca (0);
595 }
596
597 enum register_status
598 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
599 {
600 gdb_assert (regcache != NULL && buf != NULL);
601 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
602 /* Make certain that the register cache is up-to-date with respect
603 to the current thread. This switching shouldn't be necessary
604 only there is still only one target side register cache. Sigh!
605 On the bright side, at least there is a regcache object. */
606 if (!regcache->readonly_p
607 && regcache_register_status (regcache, regnum) == REG_UNKNOWN)
608 {
609 struct cleanup *old_chain = save_inferior_ptid ();
610
611 inferior_ptid = regcache->ptid;
612 target_fetch_registers (regcache, regnum);
613 do_cleanups (old_chain);
614
615 /* A number of targets can't access the whole set of raw
616 registers (because the debug API provides no means to get at
617 them). */
618 if (regcache->register_status[regnum] == REG_UNKNOWN)
619 regcache->register_status[regnum] = REG_UNAVAILABLE;
620 }
621
622 if (regcache->register_status[regnum] != REG_VALID)
623 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
624 else
625 memcpy (buf, register_buffer (regcache, regnum),
626 regcache->descr->sizeof_register[regnum]);
627
628 return regcache->register_status[regnum];
629 }
630
631 enum register_status
632 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
633 {
634 gdb_byte *buf;
635 enum register_status status;
636
637 gdb_assert (regcache != NULL);
638 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
639 buf = alloca (regcache->descr->sizeof_register[regnum]);
640 status = regcache_raw_read (regcache, regnum, buf);
641 if (status == REG_VALID)
642 *val = extract_signed_integer
643 (buf, regcache->descr->sizeof_register[regnum],
644 gdbarch_byte_order (regcache->descr->gdbarch));
645 else
646 *val = 0;
647 return status;
648 }
649
650 enum register_status
651 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
652 ULONGEST *val)
653 {
654 gdb_byte *buf;
655 enum register_status status;
656
657 gdb_assert (regcache != NULL);
658 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
659 buf = alloca (regcache->descr->sizeof_register[regnum]);
660 status = regcache_raw_read (regcache, regnum, buf);
661 if (status == REG_VALID)
662 *val = extract_unsigned_integer
663 (buf, regcache->descr->sizeof_register[regnum],
664 gdbarch_byte_order (regcache->descr->gdbarch));
665 else
666 *val = 0;
667 return status;
668 }
669
670 void
671 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
672 {
673 void *buf;
674
675 gdb_assert (regcache != NULL);
676 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
677 buf = alloca (regcache->descr->sizeof_register[regnum]);
678 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
679 gdbarch_byte_order (regcache->descr->gdbarch), val);
680 regcache_raw_write (regcache, regnum, buf);
681 }
682
683 void
684 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
685 ULONGEST val)
686 {
687 void *buf;
688
689 gdb_assert (regcache != NULL);
690 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
691 buf = alloca (regcache->descr->sizeof_register[regnum]);
692 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
693 gdbarch_byte_order (regcache->descr->gdbarch), val);
694 regcache_raw_write (regcache, regnum, buf);
695 }
696
697 enum register_status
698 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
699 {
700 gdb_assert (regnum >= 0);
701 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
702 if (regnum < regcache->descr->nr_raw_registers)
703 return regcache_raw_read (regcache, regnum, buf);
704 else if (regcache->readonly_p
705 && regcache->register_status[regnum] != REG_UNKNOWN)
706 {
707 /* Read-only register cache, perhaps the cooked value was
708 cached? */
709 struct gdbarch *gdbarch = regcache->descr->gdbarch;
710
711 if (regcache->register_status[regnum] == REG_VALID)
712 memcpy (buf, register_buffer (regcache, regnum),
713 regcache->descr->sizeof_register[regnum]);
714 else
715 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
716
717 return regcache->register_status[regnum];
718 }
719 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
720 {
721 struct value *mark, *computed;
722 enum register_status result = REG_VALID;
723
724 mark = value_mark ();
725
726 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
727 regcache, regnum);
728 if (value_entirely_available (computed))
729 memcpy (buf, value_contents_raw (computed),
730 regcache->descr->sizeof_register[regnum]);
731 else
732 {
733 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
734 result = REG_UNAVAILABLE;
735 }
736
737 value_free_to_mark (mark);
738
739 return result;
740 }
741 else
742 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
743 regnum, buf);
744 }
745
746 struct value *
747 regcache_cooked_read_value (struct regcache *regcache, int regnum)
748 {
749 gdb_assert (regnum >= 0);
750 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
751
752 if (regnum < regcache->descr->nr_raw_registers
753 || (regcache->readonly_p
754 && regcache->register_status[regnum] != REG_UNKNOWN)
755 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
756 {
757 struct value *result;
758
759 result = allocate_value (register_type (regcache->descr->gdbarch,
760 regnum));
761 VALUE_LVAL (result) = lval_register;
762 VALUE_REGNUM (result) = regnum;
763
764 /* It is more efficient in general to do this delegation in this
765 direction than in the other one, even though the value-based
766 API is preferred. */
767 if (regcache_cooked_read (regcache, regnum,
768 value_contents_raw (result)) == REG_UNAVAILABLE)
769 mark_value_bytes_unavailable (result, 0,
770 TYPE_LENGTH (value_type (result)));
771
772 return result;
773 }
774 else
775 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
776 regcache, regnum);
777 }
778
779 enum register_status
780 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
781 LONGEST *val)
782 {
783 enum register_status status;
784 gdb_byte *buf;
785
786 gdb_assert (regcache != NULL);
787 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
788 buf = alloca (regcache->descr->sizeof_register[regnum]);
789 status = regcache_cooked_read (regcache, regnum, buf);
790 if (status == REG_VALID)
791 *val = extract_signed_integer
792 (buf, regcache->descr->sizeof_register[regnum],
793 gdbarch_byte_order (regcache->descr->gdbarch));
794 else
795 *val = 0;
796 return status;
797 }
798
799 enum register_status
800 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
801 ULONGEST *val)
802 {
803 enum register_status status;
804 gdb_byte *buf;
805
806 gdb_assert (regcache != NULL);
807 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
808 buf = alloca (regcache->descr->sizeof_register[regnum]);
809 status = regcache_cooked_read (regcache, regnum, buf);
810 if (status == REG_VALID)
811 *val = extract_unsigned_integer
812 (buf, regcache->descr->sizeof_register[regnum],
813 gdbarch_byte_order (regcache->descr->gdbarch));
814 else
815 *val = 0;
816 return status;
817 }
818
819 void
820 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
821 LONGEST val)
822 {
823 void *buf;
824
825 gdb_assert (regcache != NULL);
826 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
827 buf = alloca (regcache->descr->sizeof_register[regnum]);
828 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
829 gdbarch_byte_order (regcache->descr->gdbarch), val);
830 regcache_cooked_write (regcache, regnum, buf);
831 }
832
833 void
834 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
835 ULONGEST val)
836 {
837 void *buf;
838
839 gdb_assert (regcache != NULL);
840 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
841 buf = alloca (regcache->descr->sizeof_register[regnum]);
842 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
843 gdbarch_byte_order (regcache->descr->gdbarch), val);
844 regcache_cooked_write (regcache, regnum, buf);
845 }
846
847 void
848 regcache_raw_write (struct regcache *regcache, int regnum,
849 const gdb_byte *buf)
850 {
851 struct cleanup *old_chain;
852
853 gdb_assert (regcache != NULL && buf != NULL);
854 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
855 gdb_assert (!regcache->readonly_p);
856
857 /* On the sparc, writing %g0 is a no-op, so we don't even want to
858 change the registers array if something writes to this register. */
859 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
860 return;
861
862 /* If we have a valid copy of the register, and new value == old
863 value, then don't bother doing the actual store. */
864 if (regcache_register_status (regcache, regnum) == REG_VALID
865 && (memcmp (register_buffer (regcache, regnum), buf,
866 regcache->descr->sizeof_register[regnum]) == 0))
867 return;
868
869 old_chain = save_inferior_ptid ();
870 inferior_ptid = regcache->ptid;
871
872 target_prepare_to_store (regcache);
873 memcpy (register_buffer (regcache, regnum), buf,
874 regcache->descr->sizeof_register[regnum]);
875 regcache->register_status[regnum] = REG_VALID;
876 target_store_registers (regcache, regnum);
877
878 do_cleanups (old_chain);
879 }
880
881 void
882 regcache_cooked_write (struct regcache *regcache, int regnum,
883 const gdb_byte *buf)
884 {
885 gdb_assert (regnum >= 0);
886 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
887 if (regnum < regcache->descr->nr_raw_registers)
888 regcache_raw_write (regcache, regnum, buf);
889 else
890 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
891 regnum, buf);
892 }
893
894 /* Perform a partial register transfer using a read, modify, write
895 operation. */
896
897 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
898 void *buf);
899 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
900 const void *buf);
901
902 static enum register_status
903 regcache_xfer_part (struct regcache *regcache, int regnum,
904 int offset, int len, void *in, const void *out,
905 enum register_status (*read) (struct regcache *regcache,
906 int regnum,
907 gdb_byte *buf),
908 void (*write) (struct regcache *regcache, int regnum,
909 const gdb_byte *buf))
910 {
911 struct regcache_descr *descr = regcache->descr;
912 gdb_byte reg[MAX_REGISTER_SIZE];
913
914 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
915 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
916 /* Something to do? */
917 if (offset + len == 0)
918 return REG_VALID;
919 /* Read (when needed) ... */
920 if (in != NULL
921 || offset > 0
922 || offset + len < descr->sizeof_register[regnum])
923 {
924 enum register_status status;
925
926 gdb_assert (read != NULL);
927 status = read (regcache, regnum, reg);
928 if (status != REG_VALID)
929 return status;
930 }
931 /* ... modify ... */
932 if (in != NULL)
933 memcpy (in, reg + offset, len);
934 if (out != NULL)
935 memcpy (reg + offset, out, len);
936 /* ... write (when needed). */
937 if (out != NULL)
938 {
939 gdb_assert (write != NULL);
940 write (regcache, regnum, reg);
941 }
942
943 return REG_VALID;
944 }
945
946 enum register_status
947 regcache_raw_read_part (struct regcache *regcache, int regnum,
948 int offset, int len, gdb_byte *buf)
949 {
950 struct regcache_descr *descr = regcache->descr;
951
952 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
953 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
954 regcache_raw_read, regcache_raw_write);
955 }
956
957 void
958 regcache_raw_write_part (struct regcache *regcache, int regnum,
959 int offset, int len, const gdb_byte *buf)
960 {
961 struct regcache_descr *descr = regcache->descr;
962
963 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
964 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
965 regcache_raw_read, regcache_raw_write);
966 }
967
968 enum register_status
969 regcache_cooked_read_part (struct regcache *regcache, int regnum,
970 int offset, int len, gdb_byte *buf)
971 {
972 struct regcache_descr *descr = regcache->descr;
973
974 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
975 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
976 regcache_cooked_read, regcache_cooked_write);
977 }
978
979 void
980 regcache_cooked_write_part (struct regcache *regcache, int regnum,
981 int offset, int len, const gdb_byte *buf)
982 {
983 struct regcache_descr *descr = regcache->descr;
984
985 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
986 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
987 regcache_cooked_read, regcache_cooked_write);
988 }
989
990 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
991
992 void
993 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
994 {
995 void *regbuf;
996 size_t size;
997
998 gdb_assert (regcache != NULL);
999 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1000 gdb_assert (!regcache->readonly_p);
1001
1002 regbuf = register_buffer (regcache, regnum);
1003 size = regcache->descr->sizeof_register[regnum];
1004
1005 if (buf)
1006 {
1007 memcpy (regbuf, buf, size);
1008 regcache->register_status[regnum] = REG_VALID;
1009 }
1010 else
1011 {
1012 /* This memset not strictly necessary, but better than garbage
1013 in case the register value manages to escape somewhere (due
1014 to a bug, no less). */
1015 memset (regbuf, 0, size);
1016 regcache->register_status[regnum] = REG_UNAVAILABLE;
1017 }
1018 }
1019
1020 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1021
1022 void
1023 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1024 {
1025 const void *regbuf;
1026 size_t size;
1027
1028 gdb_assert (regcache != NULL && buf != NULL);
1029 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1030
1031 regbuf = register_buffer (regcache, regnum);
1032 size = regcache->descr->sizeof_register[regnum];
1033 memcpy (buf, regbuf, size);
1034 }
1035
1036
1037 /* Special handling for register PC. */
1038
1039 CORE_ADDR
1040 regcache_read_pc (struct regcache *regcache)
1041 {
1042 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1043
1044 CORE_ADDR pc_val;
1045
1046 if (gdbarch_read_pc_p (gdbarch))
1047 pc_val = gdbarch_read_pc (gdbarch, regcache);
1048 /* Else use per-frame method on get_current_frame. */
1049 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1050 {
1051 ULONGEST raw_val;
1052
1053 if (regcache_cooked_read_unsigned (regcache,
1054 gdbarch_pc_regnum (gdbarch),
1055 &raw_val) == REG_UNAVAILABLE)
1056 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1057
1058 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1059 }
1060 else
1061 internal_error (__FILE__, __LINE__,
1062 _("regcache_read_pc: Unable to find PC"));
1063 return pc_val;
1064 }
1065
1066 void
1067 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1068 {
1069 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1070
1071 if (gdbarch_write_pc_p (gdbarch))
1072 gdbarch_write_pc (gdbarch, regcache, pc);
1073 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1074 regcache_cooked_write_unsigned (regcache,
1075 gdbarch_pc_regnum (gdbarch), pc);
1076 else
1077 internal_error (__FILE__, __LINE__,
1078 _("regcache_write_pc: Unable to update PC"));
1079
1080 /* Writing the PC (for instance, from "load") invalidates the
1081 current frame. */
1082 reinit_frame_cache ();
1083 }
1084
1085
1086 static void
1087 reg_flush_command (char *command, int from_tty)
1088 {
1089 /* Force-flush the register cache. */
1090 registers_changed ();
1091 if (from_tty)
1092 printf_filtered (_("Register cache flushed.\n"));
1093 }
1094
1095 static void
1096 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
1097 const unsigned char *buf, long len)
1098 {
1099 int i;
1100
1101 switch (endian)
1102 {
1103 case BFD_ENDIAN_BIG:
1104 for (i = 0; i < len; i++)
1105 fprintf_unfiltered (file, "%02x", buf[i]);
1106 break;
1107 case BFD_ENDIAN_LITTLE:
1108 for (i = len - 1; i >= 0; i--)
1109 fprintf_unfiltered (file, "%02x", buf[i]);
1110 break;
1111 default:
1112 internal_error (__FILE__, __LINE__, _("Bad switch"));
1113 }
1114 }
1115
1116 enum regcache_dump_what
1117 {
1118 regcache_dump_none, regcache_dump_raw,
1119 regcache_dump_cooked, regcache_dump_groups,
1120 regcache_dump_remote
1121 };
1122
1123 static void
1124 regcache_dump (struct regcache *regcache, struct ui_file *file,
1125 enum regcache_dump_what what_to_dump)
1126 {
1127 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1128 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1129 int regnum;
1130 int footnote_nr = 0;
1131 int footnote_register_size = 0;
1132 int footnote_register_offset = 0;
1133 int footnote_register_type_name_null = 0;
1134 long register_offset = 0;
1135 unsigned char buf[MAX_REGISTER_SIZE];
1136
1137 #if 0
1138 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1139 regcache->descr->nr_raw_registers);
1140 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1141 regcache->descr->nr_cooked_registers);
1142 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1143 regcache->descr->sizeof_raw_registers);
1144 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n",
1145 regcache->descr->sizeof_raw_register_status);
1146 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
1147 gdbarch_num_regs (gdbarch));
1148 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
1149 gdbarch_num_pseudo_regs (gdbarch));
1150 #endif
1151
1152 gdb_assert (regcache->descr->nr_cooked_registers
1153 == (gdbarch_num_regs (gdbarch)
1154 + gdbarch_num_pseudo_regs (gdbarch)));
1155
1156 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1157 {
1158 /* Name. */
1159 if (regnum < 0)
1160 fprintf_unfiltered (file, " %-10s", "Name");
1161 else
1162 {
1163 const char *p = gdbarch_register_name (gdbarch, regnum);
1164
1165 if (p == NULL)
1166 p = "";
1167 else if (p[0] == '\0')
1168 p = "''";
1169 fprintf_unfiltered (file, " %-10s", p);
1170 }
1171
1172 /* Number. */
1173 if (regnum < 0)
1174 fprintf_unfiltered (file, " %4s", "Nr");
1175 else
1176 fprintf_unfiltered (file, " %4d", regnum);
1177
1178 /* Relative number. */
1179 if (regnum < 0)
1180 fprintf_unfiltered (file, " %4s", "Rel");
1181 else if (regnum < gdbarch_num_regs (gdbarch))
1182 fprintf_unfiltered (file, " %4d", regnum);
1183 else
1184 fprintf_unfiltered (file, " %4d",
1185 (regnum - gdbarch_num_regs (gdbarch)));
1186
1187 /* Offset. */
1188 if (regnum < 0)
1189 fprintf_unfiltered (file, " %6s ", "Offset");
1190 else
1191 {
1192 fprintf_unfiltered (file, " %6ld",
1193 regcache->descr->register_offset[regnum]);
1194 if (register_offset != regcache->descr->register_offset[regnum]
1195 || (regnum > 0
1196 && (regcache->descr->register_offset[regnum]
1197 != (regcache->descr->register_offset[regnum - 1]
1198 + regcache->descr->sizeof_register[regnum - 1])))
1199 )
1200 {
1201 if (!footnote_register_offset)
1202 footnote_register_offset = ++footnote_nr;
1203 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1204 }
1205 else
1206 fprintf_unfiltered (file, " ");
1207 register_offset = (regcache->descr->register_offset[regnum]
1208 + regcache->descr->sizeof_register[regnum]);
1209 }
1210
1211 /* Size. */
1212 if (regnum < 0)
1213 fprintf_unfiltered (file, " %5s ", "Size");
1214 else
1215 fprintf_unfiltered (file, " %5ld",
1216 regcache->descr->sizeof_register[regnum]);
1217
1218 /* Type. */
1219 {
1220 const char *t;
1221
1222 if (regnum < 0)
1223 t = "Type";
1224 else
1225 {
1226 static const char blt[] = "builtin_type";
1227
1228 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1229 if (t == NULL)
1230 {
1231 char *n;
1232
1233 if (!footnote_register_type_name_null)
1234 footnote_register_type_name_null = ++footnote_nr;
1235 n = xstrprintf ("*%d", footnote_register_type_name_null);
1236 make_cleanup (xfree, n);
1237 t = n;
1238 }
1239 /* Chop a leading builtin_type. */
1240 if (strncmp (t, blt, strlen (blt)) == 0)
1241 t += strlen (blt);
1242 }
1243 fprintf_unfiltered (file, " %-15s", t);
1244 }
1245
1246 /* Leading space always present. */
1247 fprintf_unfiltered (file, " ");
1248
1249 /* Value, raw. */
1250 if (what_to_dump == regcache_dump_raw)
1251 {
1252 if (regnum < 0)
1253 fprintf_unfiltered (file, "Raw value");
1254 else if (regnum >= regcache->descr->nr_raw_registers)
1255 fprintf_unfiltered (file, "<cooked>");
1256 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN)
1257 fprintf_unfiltered (file, "<invalid>");
1258 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE)
1259 fprintf_unfiltered (file, "<unavailable>");
1260 else
1261 {
1262 regcache_raw_read (regcache, regnum, buf);
1263 fprintf_unfiltered (file, "0x");
1264 dump_endian_bytes (file,
1265 gdbarch_byte_order (gdbarch), buf,
1266 regcache->descr->sizeof_register[regnum]);
1267 }
1268 }
1269
1270 /* Value, cooked. */
1271 if (what_to_dump == regcache_dump_cooked)
1272 {
1273 if (regnum < 0)
1274 fprintf_unfiltered (file, "Cooked value");
1275 else
1276 {
1277 enum register_status status;
1278
1279 status = regcache_cooked_read (regcache, regnum, buf);
1280 if (status == REG_UNKNOWN)
1281 fprintf_unfiltered (file, "<invalid>");
1282 else if (status == REG_UNAVAILABLE)
1283 fprintf_unfiltered (file, "<unavailable>");
1284 else
1285 {
1286 fprintf_unfiltered (file, "0x");
1287 dump_endian_bytes (file,
1288 gdbarch_byte_order (gdbarch), buf,
1289 regcache->descr->sizeof_register[regnum]);
1290 }
1291 }
1292 }
1293
1294 /* Group members. */
1295 if (what_to_dump == regcache_dump_groups)
1296 {
1297 if (regnum < 0)
1298 fprintf_unfiltered (file, "Groups");
1299 else
1300 {
1301 const char *sep = "";
1302 struct reggroup *group;
1303
1304 for (group = reggroup_next (gdbarch, NULL);
1305 group != NULL;
1306 group = reggroup_next (gdbarch, group))
1307 {
1308 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1309 {
1310 fprintf_unfiltered (file,
1311 "%s%s", sep, reggroup_name (group));
1312 sep = ",";
1313 }
1314 }
1315 }
1316 }
1317
1318 /* Remote packet configuration. */
1319 if (what_to_dump == regcache_dump_remote)
1320 {
1321 if (regnum < 0)
1322 {
1323 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1324 }
1325 else if (regnum < regcache->descr->nr_raw_registers)
1326 {
1327 int pnum, poffset;
1328
1329 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum,
1330 &pnum, &poffset))
1331 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1332 }
1333 }
1334
1335 fprintf_unfiltered (file, "\n");
1336 }
1337
1338 if (footnote_register_size)
1339 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1340 footnote_register_size);
1341 if (footnote_register_offset)
1342 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1343 footnote_register_offset);
1344 if (footnote_register_type_name_null)
1345 fprintf_unfiltered (file,
1346 "*%d: Register type's name NULL.\n",
1347 footnote_register_type_name_null);
1348 do_cleanups (cleanups);
1349 }
1350
1351 static void
1352 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1353 {
1354 if (args == NULL)
1355 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1356 else
1357 {
1358 struct cleanup *cleanups;
1359 struct ui_file *file = gdb_fopen (args, "w");
1360
1361 if (file == NULL)
1362 perror_with_name (_("maintenance print architecture"));
1363 cleanups = make_cleanup_ui_file_delete (file);
1364 regcache_dump (get_current_regcache (), file, what_to_dump);
1365 do_cleanups (cleanups);
1366 }
1367 }
1368
1369 static void
1370 maintenance_print_registers (char *args, int from_tty)
1371 {
1372 regcache_print (args, regcache_dump_none);
1373 }
1374
1375 static void
1376 maintenance_print_raw_registers (char *args, int from_tty)
1377 {
1378 regcache_print (args, regcache_dump_raw);
1379 }
1380
1381 static void
1382 maintenance_print_cooked_registers (char *args, int from_tty)
1383 {
1384 regcache_print (args, regcache_dump_cooked);
1385 }
1386
1387 static void
1388 maintenance_print_register_groups (char *args, int from_tty)
1389 {
1390 regcache_print (args, regcache_dump_groups);
1391 }
1392
1393 static void
1394 maintenance_print_remote_registers (char *args, int from_tty)
1395 {
1396 regcache_print (args, regcache_dump_remote);
1397 }
1398
1399 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1400
1401 void
1402 _initialize_regcache (void)
1403 {
1404 regcache_descr_handle
1405 = gdbarch_data_register_post_init (init_regcache_descr);
1406
1407 observer_attach_target_changed (regcache_observer_target_changed);
1408 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1409
1410 add_com ("flushregs", class_maintenance, reg_flush_command,
1411 _("Force gdb to flush its register cache (maintainer command)"));
1412
1413 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1414 _("Print the internal register configuration.\n"
1415 "Takes an optional file parameter."), &maintenanceprintlist);
1416 add_cmd ("raw-registers", class_maintenance,
1417 maintenance_print_raw_registers,
1418 _("Print the internal register configuration "
1419 "including raw values.\n"
1420 "Takes an optional file parameter."), &maintenanceprintlist);
1421 add_cmd ("cooked-registers", class_maintenance,
1422 maintenance_print_cooked_registers,
1423 _("Print the internal register configuration "
1424 "including cooked values.\n"
1425 "Takes an optional file parameter."), &maintenanceprintlist);
1426 add_cmd ("register-groups", class_maintenance,
1427 maintenance_print_register_groups,
1428 _("Print the internal register configuration "
1429 "including each register's group.\n"
1430 "Takes an optional file parameter."),
1431 &maintenanceprintlist);
1432 add_cmd ("remote-registers", class_maintenance,
1433 maintenance_print_remote_registers, _("\
1434 Print the internal register configuration including each register's\n\
1435 remote register number and buffer offset in the g/G packets.\n\
1436 Takes an optional file parameter."),
1437 &maintenanceprintlist);
1438
1439 }
This page took 0.057939 seconds and 4 git commands to generate.