7fb9d181e79b38615142a11b8c850203b36a0ecb
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observer.h"
28 #include "remote.h"
29 #include "valprint.h"
30 #include "regset.h"
31
32 /*
33 * DATA STRUCTURE
34 *
35 * Here is the actual register cache.
36 */
37
38 /* Per-architecture object describing the layout of a register cache.
39 Computed once when the architecture is created. */
40
41 struct gdbarch_data *regcache_descr_handle;
42
43 struct regcache_descr
44 {
45 /* The architecture this descriptor belongs to. */
46 struct gdbarch *gdbarch;
47
48 /* The raw register cache. Each raw (or hard) register is supplied
49 by the target interface. The raw cache should not contain
50 redundant information - if the PC is constructed from two
51 registers then those registers and not the PC lives in the raw
52 cache. */
53 int nr_raw_registers;
54 long sizeof_raw_registers;
55 long sizeof_raw_register_status;
56
57 /* The cooked register space. Each cooked register in the range
58 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
59 register. The remaining [NR_RAW_REGISTERS
60 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
61 both raw registers and memory by the architecture methods
62 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
63 int nr_cooked_registers;
64 long sizeof_cooked_registers;
65 long sizeof_cooked_register_status;
66
67 /* Offset and size (in 8 bit bytes), of each register in the
68 register cache. All registers (including those in the range
69 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
70 offset. */
71 long *register_offset;
72 long *sizeof_register;
73
74 /* Cached table containing the type of each register. */
75 struct type **register_type;
76 };
77
78 static void *
79 init_regcache_descr (struct gdbarch *gdbarch)
80 {
81 int i;
82 struct regcache_descr *descr;
83 gdb_assert (gdbarch != NULL);
84
85 /* Create an initial, zero filled, table. */
86 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
87 descr->gdbarch = gdbarch;
88
89 /* Total size of the register space. The raw registers are mapped
90 directly onto the raw register cache while the pseudo's are
91 either mapped onto raw-registers or memory. */
92 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
93 + gdbarch_num_pseudo_regs (gdbarch);
94 descr->sizeof_cooked_register_status
95 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
96
97 /* Fill in a table of register types. */
98 descr->register_type
99 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
100 struct type *);
101 for (i = 0; i < descr->nr_cooked_registers; i++)
102 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
103
104 /* Construct a strictly RAW register cache. Don't allow pseudo's
105 into the register cache. */
106 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
107 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch);
108
109 /* Lay out the register cache.
110
111 NOTE: cagney/2002-05-22: Only register_type() is used when
112 constructing the register cache. It is assumed that the
113 register's raw size, virtual size and type length are all the
114 same. */
115
116 {
117 long offset = 0;
118
119 descr->sizeof_register
120 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
121 descr->register_offset
122 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
123 for (i = 0; i < descr->nr_raw_registers; i++)
124 {
125 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
126 descr->register_offset[i] = offset;
127 offset += descr->sizeof_register[i];
128 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
129 }
130 /* Set the real size of the raw register cache buffer. */
131 descr->sizeof_raw_registers = offset;
132
133 for (; i < descr->nr_cooked_registers; i++)
134 {
135 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
136 descr->register_offset[i] = offset;
137 offset += descr->sizeof_register[i];
138 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
139 }
140 /* Set the real size of the readonly register cache buffer. */
141 descr->sizeof_cooked_registers = offset;
142 }
143
144 return descr;
145 }
146
147 static struct regcache_descr *
148 regcache_descr (struct gdbarch *gdbarch)
149 {
150 return (struct regcache_descr *) gdbarch_data (gdbarch,
151 regcache_descr_handle);
152 }
153
154 /* Utility functions returning useful register attributes stored in
155 the regcache descr. */
156
157 struct type *
158 register_type (struct gdbarch *gdbarch, int regnum)
159 {
160 struct regcache_descr *descr = regcache_descr (gdbarch);
161
162 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
163 return descr->register_type[regnum];
164 }
165
166 /* Utility functions returning useful register attributes stored in
167 the regcache descr. */
168
169 int
170 register_size (struct gdbarch *gdbarch, int regnum)
171 {
172 struct regcache_descr *descr = regcache_descr (gdbarch);
173 int size;
174
175 gdb_assert (regnum >= 0
176 && regnum < (gdbarch_num_regs (gdbarch)
177 + gdbarch_num_pseudo_regs (gdbarch)));
178 size = descr->sizeof_register[regnum];
179 return size;
180 }
181
182 /* See common/common-regcache.h. */
183
184 int
185 regcache_register_size (const struct regcache *regcache, int n)
186 {
187 return register_size (get_regcache_arch (regcache), n);
188 }
189
190 /* The register cache for storing raw register values. */
191
192 struct regcache
193 {
194 struct regcache_descr *descr;
195
196 /* The address space of this register cache (for registers where it
197 makes sense, like PC or SP). */
198 struct address_space *aspace;
199
200 /* The register buffers. A read-only register cache can hold the
201 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
202 register cache can only hold [0 .. gdbarch_num_regs). */
203 gdb_byte *registers;
204 /* Register cache status. */
205 signed char *register_status;
206 /* Is this a read-only cache? A read-only cache is used for saving
207 the target's register state (e.g, across an inferior function
208 call or just before forcing a function return). A read-only
209 cache can only be updated via the methods regcache_dup() and
210 regcache_cpy(). The actual contents are determined by the
211 reggroup_save and reggroup_restore methods. */
212 int readonly_p;
213 /* If this is a read-write cache, which thread's registers is
214 it connected to? */
215 ptid_t ptid;
216 };
217
218 static struct regcache *
219 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace,
220 int readonly_p)
221 {
222 struct regcache_descr *descr;
223 struct regcache *regcache;
224
225 gdb_assert (gdbarch != NULL);
226 descr = regcache_descr (gdbarch);
227 regcache = XNEW (struct regcache);
228 regcache->descr = descr;
229 regcache->readonly_p = readonly_p;
230 if (readonly_p)
231 {
232 regcache->registers
233 = XCNEWVEC (gdb_byte, descr->sizeof_cooked_registers);
234 regcache->register_status
235 = XCNEWVEC (signed char, descr->sizeof_cooked_register_status);
236 }
237 else
238 {
239 regcache->registers
240 = XCNEWVEC (gdb_byte, descr->sizeof_raw_registers);
241 regcache->register_status
242 = XCNEWVEC (signed char, descr->sizeof_raw_register_status);
243 }
244 regcache->aspace = aspace;
245 regcache->ptid = minus_one_ptid;
246 return regcache;
247 }
248
249 struct regcache *
250 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace)
251 {
252 return regcache_xmalloc_1 (gdbarch, aspace, 1);
253 }
254
255 void
256 regcache_xfree (struct regcache *regcache)
257 {
258 if (regcache == NULL)
259 return;
260 xfree (regcache->registers);
261 xfree (regcache->register_status);
262 xfree (regcache);
263 }
264
265 static void
266 do_regcache_xfree (void *data)
267 {
268 regcache_xfree ((struct regcache *) data);
269 }
270
271 struct cleanup *
272 make_cleanup_regcache_xfree (struct regcache *regcache)
273 {
274 return make_cleanup (do_regcache_xfree, regcache);
275 }
276
277 /* Cleanup routines for invalidating a register. */
278
279 struct register_to_invalidate
280 {
281 struct regcache *regcache;
282 int regnum;
283 };
284
285 static void
286 do_regcache_invalidate (void *data)
287 {
288 struct register_to_invalidate *reg = (struct register_to_invalidate *) data;
289
290 regcache_invalidate (reg->regcache, reg->regnum);
291 }
292
293 static struct cleanup *
294 make_cleanup_regcache_invalidate (struct regcache *regcache, int regnum)
295 {
296 struct register_to_invalidate* reg = XNEW (struct register_to_invalidate);
297
298 reg->regcache = regcache;
299 reg->regnum = regnum;
300 return make_cleanup_dtor (do_regcache_invalidate, (void *) reg, xfree);
301 }
302
303 /* Return REGCACHE's architecture. */
304
305 struct gdbarch *
306 get_regcache_arch (const struct regcache *regcache)
307 {
308 return regcache->descr->gdbarch;
309 }
310
311 struct address_space *
312 get_regcache_aspace (const struct regcache *regcache)
313 {
314 return regcache->aspace;
315 }
316
317 /* Return a pointer to register REGNUM's buffer cache. */
318
319 static gdb_byte *
320 register_buffer (const struct regcache *regcache, int regnum)
321 {
322 return regcache->registers + regcache->descr->register_offset[regnum];
323 }
324
325 void
326 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
327 void *src)
328 {
329 struct gdbarch *gdbarch = dst->descr->gdbarch;
330 gdb_byte buf[MAX_REGISTER_SIZE];
331 int regnum;
332
333 /* The DST should be `read-only', if it wasn't then the save would
334 end up trying to write the register values back out to the
335 target. */
336 gdb_assert (dst->readonly_p);
337 /* Clear the dest. */
338 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
339 memset (dst->register_status, 0,
340 dst->descr->sizeof_cooked_register_status);
341 /* Copy over any registers (identified by their membership in the
342 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
343 gdbarch_num_pseudo_regs) range is checked since some architectures need
344 to save/restore `cooked' registers that live in memory. */
345 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
346 {
347 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
348 {
349 enum register_status status = cooked_read (src, regnum, buf);
350
351 if (status == REG_VALID)
352 memcpy (register_buffer (dst, regnum), buf,
353 register_size (gdbarch, regnum));
354 else
355 {
356 gdb_assert (status != REG_UNKNOWN);
357
358 memset (register_buffer (dst, regnum), 0,
359 register_size (gdbarch, regnum));
360 }
361 dst->register_status[regnum] = status;
362 }
363 }
364 }
365
366 static void
367 regcache_restore (struct regcache *dst,
368 regcache_cooked_read_ftype *cooked_read,
369 void *cooked_read_context)
370 {
371 struct gdbarch *gdbarch = dst->descr->gdbarch;
372 gdb_byte buf[MAX_REGISTER_SIZE];
373 int regnum;
374
375 /* The dst had better not be read-only. If it is, the `restore'
376 doesn't make much sense. */
377 gdb_assert (!dst->readonly_p);
378 /* Copy over any registers, being careful to only restore those that
379 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
380 + gdbarch_num_pseudo_regs) range is checked since some architectures need
381 to save/restore `cooked' registers that live in memory. */
382 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
383 {
384 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
385 {
386 enum register_status status;
387
388 status = cooked_read (cooked_read_context, regnum, buf);
389 if (status == REG_VALID)
390 regcache_cooked_write (dst, regnum, buf);
391 }
392 }
393 }
394
395 static enum register_status
396 do_cooked_read (void *src, int regnum, gdb_byte *buf)
397 {
398 struct regcache *regcache = (struct regcache *) src;
399
400 return regcache_cooked_read (regcache, regnum, buf);
401 }
402
403 static void regcache_cpy_no_passthrough (struct regcache *dst,
404 struct regcache *src);
405
406 void
407 regcache_cpy (struct regcache *dst, struct regcache *src)
408 {
409 gdb_assert (src != NULL && dst != NULL);
410 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
411 gdb_assert (src != dst);
412 gdb_assert (src->readonly_p || dst->readonly_p);
413
414 if (!src->readonly_p)
415 regcache_save (dst, do_cooked_read, src);
416 else if (!dst->readonly_p)
417 regcache_restore (dst, do_cooked_read, src);
418 else
419 regcache_cpy_no_passthrough (dst, src);
420 }
421
422 /* Copy/duplicate the contents of a register cache. Unlike regcache_cpy,
423 which is pass-through, this does not go through to the target.
424 Only values values already in the cache are transferred. The SRC and DST
425 buffers must not overlap. */
426
427 static void
428 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
429 {
430 gdb_assert (src != NULL && dst != NULL);
431 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
432 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
433 move of data into a thread's regcache. Doing this would be silly
434 - it would mean that regcache->register_status would be
435 completely invalid. */
436 gdb_assert (dst->readonly_p && src->readonly_p);
437
438 memcpy (dst->registers, src->registers,
439 dst->descr->sizeof_cooked_registers);
440 memcpy (dst->register_status, src->register_status,
441 dst->descr->sizeof_cooked_register_status);
442 }
443
444 struct regcache *
445 regcache_dup (struct regcache *src)
446 {
447 struct regcache *newbuf;
448
449 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src));
450 regcache_cpy (newbuf, src);
451 return newbuf;
452 }
453
454 enum register_status
455 regcache_register_status (const struct regcache *regcache, int regnum)
456 {
457 gdb_assert (regcache != NULL);
458 gdb_assert (regnum >= 0);
459 if (regcache->readonly_p)
460 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
461 else
462 gdb_assert (regnum < regcache->descr->nr_raw_registers);
463
464 return (enum register_status) regcache->register_status[regnum];
465 }
466
467 void
468 regcache_invalidate (struct regcache *regcache, int regnum)
469 {
470 gdb_assert (regcache != NULL);
471 gdb_assert (regnum >= 0);
472 gdb_assert (!regcache->readonly_p);
473 gdb_assert (regnum < regcache->descr->nr_raw_registers);
474 regcache->register_status[regnum] = REG_UNKNOWN;
475 }
476
477
478 /* Global structure containing the current regcache. */
479
480 /* NOTE: this is a write-through cache. There is no "dirty" bit for
481 recording if the register values have been changed (eg. by the
482 user). Therefore all registers must be written back to the
483 target when appropriate. */
484
485 struct regcache_list
486 {
487 struct regcache *regcache;
488 struct regcache_list *next;
489 };
490
491 static struct regcache_list *current_regcache;
492
493 struct regcache *
494 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
495 struct address_space *aspace)
496 {
497 struct regcache_list *list;
498 struct regcache *new_regcache;
499
500 for (list = current_regcache; list; list = list->next)
501 if (ptid_equal (list->regcache->ptid, ptid)
502 && get_regcache_arch (list->regcache) == gdbarch)
503 return list->regcache;
504
505 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0);
506 new_regcache->ptid = ptid;
507
508 list = XNEW (struct regcache_list);
509 list->regcache = new_regcache;
510 list->next = current_regcache;
511 current_regcache = list;
512
513 return new_regcache;
514 }
515
516 struct regcache *
517 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
518 {
519 struct address_space *aspace;
520
521 /* For the benefit of "maint print registers" & co when debugging an
522 executable, allow dumping the regcache even when there is no
523 thread selected (target_thread_address_space internal-errors if
524 no address space is found). Note that normal user commands will
525 fail higher up on the call stack due to no
526 target_has_registers. */
527 aspace = (ptid_equal (null_ptid, ptid)
528 ? NULL
529 : target_thread_address_space (ptid));
530
531 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
532 }
533
534 static ptid_t current_thread_ptid;
535 static struct gdbarch *current_thread_arch;
536
537 struct regcache *
538 get_thread_regcache (ptid_t ptid)
539 {
540 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
541 {
542 current_thread_ptid = ptid;
543 current_thread_arch = target_thread_architecture (ptid);
544 }
545
546 return get_thread_arch_regcache (ptid, current_thread_arch);
547 }
548
549 struct regcache *
550 get_current_regcache (void)
551 {
552 return get_thread_regcache (inferior_ptid);
553 }
554
555 /* See common/common-regcache.h. */
556
557 struct regcache *
558 get_thread_regcache_for_ptid (ptid_t ptid)
559 {
560 return get_thread_regcache (ptid);
561 }
562
563 /* Observer for the target_changed event. */
564
565 static void
566 regcache_observer_target_changed (struct target_ops *target)
567 {
568 registers_changed ();
569 }
570
571 /* Update global variables old ptids to hold NEW_PTID if they were
572 holding OLD_PTID. */
573 static void
574 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
575 {
576 struct regcache_list *list;
577
578 for (list = current_regcache; list; list = list->next)
579 if (ptid_equal (list->regcache->ptid, old_ptid))
580 list->regcache->ptid = new_ptid;
581 }
582
583 /* Low level examining and depositing of registers.
584
585 The caller is responsible for making sure that the inferior is
586 stopped before calling the fetching routines, or it will get
587 garbage. (a change from GDB version 3, in which the caller got the
588 value from the last stop). */
589
590 /* REGISTERS_CHANGED ()
591
592 Indicate that registers may have changed, so invalidate the cache. */
593
594 void
595 registers_changed_ptid (ptid_t ptid)
596 {
597 struct regcache_list *list, **list_link;
598
599 list = current_regcache;
600 list_link = &current_regcache;
601 while (list)
602 {
603 if (ptid_match (list->regcache->ptid, ptid))
604 {
605 struct regcache_list *dead = list;
606
607 *list_link = list->next;
608 regcache_xfree (list->regcache);
609 list = *list_link;
610 xfree (dead);
611 continue;
612 }
613
614 list_link = &list->next;
615 list = *list_link;
616 }
617
618 if (ptid_match (current_thread_ptid, ptid))
619 {
620 current_thread_ptid = null_ptid;
621 current_thread_arch = NULL;
622 }
623
624 if (ptid_match (inferior_ptid, ptid))
625 {
626 /* We just deleted the regcache of the current thread. Need to
627 forget about any frames we have cached, too. */
628 reinit_frame_cache ();
629 }
630 }
631
632 void
633 registers_changed (void)
634 {
635 registers_changed_ptid (minus_one_ptid);
636
637 /* Force cleanup of any alloca areas if using C alloca instead of
638 a builtin alloca. This particular call is used to clean up
639 areas allocated by low level target code which may build up
640 during lengthy interactions between gdb and the target before
641 gdb gives control to the user (ie watchpoints). */
642 alloca (0);
643 }
644
645 enum register_status
646 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
647 {
648 gdb_assert (regcache != NULL && buf != NULL);
649 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
650 /* Make certain that the register cache is up-to-date with respect
651 to the current thread. This switching shouldn't be necessary
652 only there is still only one target side register cache. Sigh!
653 On the bright side, at least there is a regcache object. */
654 if (!regcache->readonly_p
655 && regcache_register_status (regcache, regnum) == REG_UNKNOWN)
656 {
657 struct cleanup *old_chain = save_inferior_ptid ();
658
659 inferior_ptid = regcache->ptid;
660 target_fetch_registers (regcache, regnum);
661 do_cleanups (old_chain);
662
663 /* A number of targets can't access the whole set of raw
664 registers (because the debug API provides no means to get at
665 them). */
666 if (regcache->register_status[regnum] == REG_UNKNOWN)
667 regcache->register_status[regnum] = REG_UNAVAILABLE;
668 }
669
670 if (regcache->register_status[regnum] != REG_VALID)
671 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
672 else
673 memcpy (buf, register_buffer (regcache, regnum),
674 regcache->descr->sizeof_register[regnum]);
675
676 return (enum register_status) regcache->register_status[regnum];
677 }
678
679 enum register_status
680 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
681 {
682 gdb_byte *buf;
683 enum register_status status;
684
685 gdb_assert (regcache != NULL);
686 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
687 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
688 status = regcache_raw_read (regcache, regnum, buf);
689 if (status == REG_VALID)
690 *val = extract_signed_integer
691 (buf, regcache->descr->sizeof_register[regnum],
692 gdbarch_byte_order (regcache->descr->gdbarch));
693 else
694 *val = 0;
695 return status;
696 }
697
698 enum register_status
699 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
700 ULONGEST *val)
701 {
702 gdb_byte *buf;
703 enum register_status status;
704
705 gdb_assert (regcache != NULL);
706 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
707 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
708 status = regcache_raw_read (regcache, regnum, buf);
709 if (status == REG_VALID)
710 *val = extract_unsigned_integer
711 (buf, regcache->descr->sizeof_register[regnum],
712 gdbarch_byte_order (regcache->descr->gdbarch));
713 else
714 *val = 0;
715 return status;
716 }
717
718 /* Return the register's value or throw if it's not available. */
719
720 ULONGEST
721 regcache_raw_get_unsigned (struct regcache *regcache, int regnum)
722 {
723 ULONGEST value;
724 enum register_status status;
725
726 status = regcache_raw_read_unsigned (regcache, regnum, &value);
727 if (status == REG_UNAVAILABLE)
728 throw_error (NOT_AVAILABLE_ERROR,
729 _("Register %d is not available"), regnum);
730 return value;
731 }
732
733 void
734 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
735 {
736 gdb_byte *buf;
737
738 gdb_assert (regcache != NULL);
739 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
740 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
741 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
742 gdbarch_byte_order (regcache->descr->gdbarch), val);
743 regcache_raw_write (regcache, regnum, buf);
744 }
745
746 void
747 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
748 ULONGEST val)
749 {
750 gdb_byte *buf;
751
752 gdb_assert (regcache != NULL);
753 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
754 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
755 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
756 gdbarch_byte_order (regcache->descr->gdbarch), val);
757 regcache_raw_write (regcache, regnum, buf);
758 }
759
760 enum register_status
761 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
762 {
763 gdb_assert (regnum >= 0);
764 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
765 if (regnum < regcache->descr->nr_raw_registers)
766 return regcache_raw_read (regcache, regnum, buf);
767 else if (regcache->readonly_p
768 && regcache->register_status[regnum] != REG_UNKNOWN)
769 {
770 /* Read-only register cache, perhaps the cooked value was
771 cached? */
772 if (regcache->register_status[regnum] == REG_VALID)
773 memcpy (buf, register_buffer (regcache, regnum),
774 regcache->descr->sizeof_register[regnum]);
775 else
776 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
777
778 return (enum register_status) regcache->register_status[regnum];
779 }
780 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
781 {
782 struct value *mark, *computed;
783 enum register_status result = REG_VALID;
784
785 mark = value_mark ();
786
787 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
788 regcache, regnum);
789 if (value_entirely_available (computed))
790 memcpy (buf, value_contents_raw (computed),
791 regcache->descr->sizeof_register[regnum]);
792 else
793 {
794 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
795 result = REG_UNAVAILABLE;
796 }
797
798 value_free_to_mark (mark);
799
800 return result;
801 }
802 else
803 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
804 regnum, buf);
805 }
806
807 struct value *
808 regcache_cooked_read_value (struct regcache *regcache, int regnum)
809 {
810 gdb_assert (regnum >= 0);
811 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
812
813 if (regnum < regcache->descr->nr_raw_registers
814 || (regcache->readonly_p
815 && regcache->register_status[regnum] != REG_UNKNOWN)
816 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
817 {
818 struct value *result;
819
820 result = allocate_value (register_type (regcache->descr->gdbarch,
821 regnum));
822 VALUE_LVAL (result) = lval_register;
823 VALUE_REGNUM (result) = regnum;
824
825 /* It is more efficient in general to do this delegation in this
826 direction than in the other one, even though the value-based
827 API is preferred. */
828 if (regcache_cooked_read (regcache, regnum,
829 value_contents_raw (result)) == REG_UNAVAILABLE)
830 mark_value_bytes_unavailable (result, 0,
831 TYPE_LENGTH (value_type (result)));
832
833 return result;
834 }
835 else
836 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
837 regcache, regnum);
838 }
839
840 enum register_status
841 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
842 LONGEST *val)
843 {
844 enum register_status status;
845 gdb_byte *buf;
846
847 gdb_assert (regcache != NULL);
848 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
849 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
850 status = regcache_cooked_read (regcache, regnum, buf);
851 if (status == REG_VALID)
852 *val = extract_signed_integer
853 (buf, regcache->descr->sizeof_register[regnum],
854 gdbarch_byte_order (regcache->descr->gdbarch));
855 else
856 *val = 0;
857 return status;
858 }
859
860 enum register_status
861 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
862 ULONGEST *val)
863 {
864 enum register_status status;
865 gdb_byte *buf;
866
867 gdb_assert (regcache != NULL);
868 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
869 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
870 status = regcache_cooked_read (regcache, regnum, buf);
871 if (status == REG_VALID)
872 *val = extract_unsigned_integer
873 (buf, regcache->descr->sizeof_register[regnum],
874 gdbarch_byte_order (regcache->descr->gdbarch));
875 else
876 *val = 0;
877 return status;
878 }
879
880 void
881 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
882 LONGEST val)
883 {
884 gdb_byte *buf;
885
886 gdb_assert (regcache != NULL);
887 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
888 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
889 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
890 gdbarch_byte_order (regcache->descr->gdbarch), val);
891 regcache_cooked_write (regcache, regnum, buf);
892 }
893
894 void
895 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
896 ULONGEST val)
897 {
898 gdb_byte *buf;
899
900 gdb_assert (regcache != NULL);
901 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
902 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
903 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
904 gdbarch_byte_order (regcache->descr->gdbarch), val);
905 regcache_cooked_write (regcache, regnum, buf);
906 }
907
908 void
909 regcache_raw_write (struct regcache *regcache, int regnum,
910 const gdb_byte *buf)
911 {
912 struct cleanup *chain_before_save_inferior;
913 struct cleanup *chain_before_invalidate_register;
914
915 gdb_assert (regcache != NULL && buf != NULL);
916 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
917 gdb_assert (!regcache->readonly_p);
918
919 /* On the sparc, writing %g0 is a no-op, so we don't even want to
920 change the registers array if something writes to this register. */
921 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
922 return;
923
924 /* If we have a valid copy of the register, and new value == old
925 value, then don't bother doing the actual store. */
926 if (regcache_register_status (regcache, regnum) == REG_VALID
927 && (memcmp (register_buffer (regcache, regnum), buf,
928 regcache->descr->sizeof_register[regnum]) == 0))
929 return;
930
931 chain_before_save_inferior = save_inferior_ptid ();
932 inferior_ptid = regcache->ptid;
933
934 target_prepare_to_store (regcache);
935 memcpy (register_buffer (regcache, regnum), buf,
936 regcache->descr->sizeof_register[regnum]);
937 regcache->register_status[regnum] = REG_VALID;
938
939 /* Register a cleanup function for invalidating the register after it is
940 written, in case of a failure. */
941 chain_before_invalidate_register
942 = make_cleanup_regcache_invalidate (regcache, regnum);
943
944 target_store_registers (regcache, regnum);
945
946 /* The target did not throw an error so we can discard invalidating the
947 register and restore the cleanup chain to what it was. */
948 discard_cleanups (chain_before_invalidate_register);
949
950 do_cleanups (chain_before_save_inferior);
951 }
952
953 void
954 regcache_cooked_write (struct regcache *regcache, int regnum,
955 const gdb_byte *buf)
956 {
957 gdb_assert (regnum >= 0);
958 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
959 if (regnum < regcache->descr->nr_raw_registers)
960 regcache_raw_write (regcache, regnum, buf);
961 else
962 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
963 regnum, buf);
964 }
965
966 /* Perform a partial register transfer using a read, modify, write
967 operation. */
968
969 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
970 void *buf);
971 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
972 const void *buf);
973
974 static enum register_status
975 regcache_xfer_part (struct regcache *regcache, int regnum,
976 int offset, int len, void *in, const void *out,
977 enum register_status (*read) (struct regcache *regcache,
978 int regnum,
979 gdb_byte *buf),
980 void (*write) (struct regcache *regcache, int regnum,
981 const gdb_byte *buf))
982 {
983 struct regcache_descr *descr = regcache->descr;
984 gdb_byte reg[MAX_REGISTER_SIZE];
985
986 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
987 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
988 /* Something to do? */
989 if (offset + len == 0)
990 return REG_VALID;
991 /* Read (when needed) ... */
992 if (in != NULL
993 || offset > 0
994 || offset + len < descr->sizeof_register[regnum])
995 {
996 enum register_status status;
997
998 gdb_assert (read != NULL);
999 status = read (regcache, regnum, reg);
1000 if (status != REG_VALID)
1001 return status;
1002 }
1003 /* ... modify ... */
1004 if (in != NULL)
1005 memcpy (in, reg + offset, len);
1006 if (out != NULL)
1007 memcpy (reg + offset, out, len);
1008 /* ... write (when needed). */
1009 if (out != NULL)
1010 {
1011 gdb_assert (write != NULL);
1012 write (regcache, regnum, reg);
1013 }
1014
1015 return REG_VALID;
1016 }
1017
1018 enum register_status
1019 regcache_raw_read_part (struct regcache *regcache, int regnum,
1020 int offset, int len, gdb_byte *buf)
1021 {
1022 struct regcache_descr *descr = regcache->descr;
1023
1024 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1025 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1026 regcache_raw_read, regcache_raw_write);
1027 }
1028
1029 void
1030 regcache_raw_write_part (struct regcache *regcache, int regnum,
1031 int offset, int len, const gdb_byte *buf)
1032 {
1033 struct regcache_descr *descr = regcache->descr;
1034
1035 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1036 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1037 regcache_raw_read, regcache_raw_write);
1038 }
1039
1040 enum register_status
1041 regcache_cooked_read_part (struct regcache *regcache, int regnum,
1042 int offset, int len, gdb_byte *buf)
1043 {
1044 struct regcache_descr *descr = regcache->descr;
1045
1046 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1047 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1048 regcache_cooked_read, regcache_cooked_write);
1049 }
1050
1051 void
1052 regcache_cooked_write_part (struct regcache *regcache, int regnum,
1053 int offset, int len, const gdb_byte *buf)
1054 {
1055 struct regcache_descr *descr = regcache->descr;
1056
1057 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1058 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1059 regcache_cooked_read, regcache_cooked_write);
1060 }
1061
1062 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1063
1064 void
1065 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1066 {
1067 void *regbuf;
1068 size_t size;
1069
1070 gdb_assert (regcache != NULL);
1071 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1072 gdb_assert (!regcache->readonly_p);
1073
1074 regbuf = register_buffer (regcache, regnum);
1075 size = regcache->descr->sizeof_register[regnum];
1076
1077 if (buf)
1078 {
1079 memcpy (regbuf, buf, size);
1080 regcache->register_status[regnum] = REG_VALID;
1081 }
1082 else
1083 {
1084 /* This memset not strictly necessary, but better than garbage
1085 in case the register value manages to escape somewhere (due
1086 to a bug, no less). */
1087 memset (regbuf, 0, size);
1088 regcache->register_status[regnum] = REG_UNAVAILABLE;
1089 }
1090 }
1091
1092 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1093
1094 void
1095 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1096 {
1097 const void *regbuf;
1098 size_t size;
1099
1100 gdb_assert (regcache != NULL && buf != NULL);
1101 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1102
1103 regbuf = register_buffer (regcache, regnum);
1104 size = regcache->descr->sizeof_register[regnum];
1105 memcpy (buf, regbuf, size);
1106 }
1107
1108 /* Transfer a single or all registers belonging to a certain register
1109 set to or from a buffer. This is the main worker function for
1110 regcache_supply_regset and regcache_collect_regset. */
1111
1112 static void
1113 regcache_transfer_regset (const struct regset *regset,
1114 const struct regcache *regcache,
1115 struct regcache *out_regcache,
1116 int regnum, const void *in_buf,
1117 void *out_buf, size_t size)
1118 {
1119 const struct regcache_map_entry *map;
1120 int offs = 0, count;
1121
1122 for (map = (const struct regcache_map_entry *) regset->regmap;
1123 (count = map->count) != 0;
1124 map++)
1125 {
1126 int regno = map->regno;
1127 int slot_size = map->size;
1128
1129 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1130 slot_size = regcache->descr->sizeof_register[regno];
1131
1132 if (regno == REGCACHE_MAP_SKIP
1133 || (regnum != -1
1134 && (regnum < regno || regnum >= regno + count)))
1135 offs += count * slot_size;
1136
1137 else if (regnum == -1)
1138 for (; count--; regno++, offs += slot_size)
1139 {
1140 if (offs + slot_size > size)
1141 break;
1142
1143 if (out_buf)
1144 regcache_raw_collect (regcache, regno,
1145 (gdb_byte *) out_buf + offs);
1146 else
1147 regcache_raw_supply (out_regcache, regno, in_buf
1148 ? (const gdb_byte *) in_buf + offs
1149 : NULL);
1150 }
1151 else
1152 {
1153 /* Transfer a single register and return. */
1154 offs += (regnum - regno) * slot_size;
1155 if (offs + slot_size > size)
1156 return;
1157
1158 if (out_buf)
1159 regcache_raw_collect (regcache, regnum,
1160 (gdb_byte *) out_buf + offs);
1161 else
1162 regcache_raw_supply (out_regcache, regnum, in_buf
1163 ? (const gdb_byte *) in_buf + offs
1164 : NULL);
1165 return;
1166 }
1167 }
1168 }
1169
1170 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1171 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1172 If BUF is NULL, set the register(s) to "unavailable" status. */
1173
1174 void
1175 regcache_supply_regset (const struct regset *regset,
1176 struct regcache *regcache,
1177 int regnum, const void *buf, size_t size)
1178 {
1179 regcache_transfer_regset (regset, regcache, regcache, regnum,
1180 buf, NULL, size);
1181 }
1182
1183 /* Collect register REGNUM from REGCACHE to BUF, using the register
1184 map in REGSET. If REGNUM is -1, do this for all registers in
1185 REGSET. */
1186
1187 void
1188 regcache_collect_regset (const struct regset *regset,
1189 const struct regcache *regcache,
1190 int regnum, void *buf, size_t size)
1191 {
1192 regcache_transfer_regset (regset, regcache, NULL, regnum,
1193 NULL, buf, size);
1194 }
1195
1196
1197 /* Special handling for register PC. */
1198
1199 CORE_ADDR
1200 regcache_read_pc (struct regcache *regcache)
1201 {
1202 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1203
1204 CORE_ADDR pc_val;
1205
1206 if (gdbarch_read_pc_p (gdbarch))
1207 pc_val = gdbarch_read_pc (gdbarch, regcache);
1208 /* Else use per-frame method on get_current_frame. */
1209 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1210 {
1211 ULONGEST raw_val;
1212
1213 if (regcache_cooked_read_unsigned (regcache,
1214 gdbarch_pc_regnum (gdbarch),
1215 &raw_val) == REG_UNAVAILABLE)
1216 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1217
1218 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1219 }
1220 else
1221 internal_error (__FILE__, __LINE__,
1222 _("regcache_read_pc: Unable to find PC"));
1223 return pc_val;
1224 }
1225
1226 void
1227 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1228 {
1229 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1230
1231 if (gdbarch_write_pc_p (gdbarch))
1232 gdbarch_write_pc (gdbarch, regcache, pc);
1233 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1234 regcache_cooked_write_unsigned (regcache,
1235 gdbarch_pc_regnum (gdbarch), pc);
1236 else
1237 internal_error (__FILE__, __LINE__,
1238 _("regcache_write_pc: Unable to update PC"));
1239
1240 /* Writing the PC (for instance, from "load") invalidates the
1241 current frame. */
1242 reinit_frame_cache ();
1243 }
1244
1245
1246 static void
1247 reg_flush_command (char *command, int from_tty)
1248 {
1249 /* Force-flush the register cache. */
1250 registers_changed ();
1251 if (from_tty)
1252 printf_filtered (_("Register cache flushed.\n"));
1253 }
1254
1255 enum regcache_dump_what
1256 {
1257 regcache_dump_none, regcache_dump_raw,
1258 regcache_dump_cooked, regcache_dump_groups,
1259 regcache_dump_remote
1260 };
1261
1262 static void
1263 regcache_dump (struct regcache *regcache, struct ui_file *file,
1264 enum regcache_dump_what what_to_dump)
1265 {
1266 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1267 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1268 int regnum;
1269 int footnote_nr = 0;
1270 int footnote_register_size = 0;
1271 int footnote_register_offset = 0;
1272 int footnote_register_type_name_null = 0;
1273 long register_offset = 0;
1274 gdb_byte buf[MAX_REGISTER_SIZE];
1275
1276 #if 0
1277 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1278 regcache->descr->nr_raw_registers);
1279 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1280 regcache->descr->nr_cooked_registers);
1281 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1282 regcache->descr->sizeof_raw_registers);
1283 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n",
1284 regcache->descr->sizeof_raw_register_status);
1285 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
1286 gdbarch_num_regs (gdbarch));
1287 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
1288 gdbarch_num_pseudo_regs (gdbarch));
1289 #endif
1290
1291 gdb_assert (regcache->descr->nr_cooked_registers
1292 == (gdbarch_num_regs (gdbarch)
1293 + gdbarch_num_pseudo_regs (gdbarch)));
1294
1295 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1296 {
1297 /* Name. */
1298 if (regnum < 0)
1299 fprintf_unfiltered (file, " %-10s", "Name");
1300 else
1301 {
1302 const char *p = gdbarch_register_name (gdbarch, regnum);
1303
1304 if (p == NULL)
1305 p = "";
1306 else if (p[0] == '\0')
1307 p = "''";
1308 fprintf_unfiltered (file, " %-10s", p);
1309 }
1310
1311 /* Number. */
1312 if (regnum < 0)
1313 fprintf_unfiltered (file, " %4s", "Nr");
1314 else
1315 fprintf_unfiltered (file, " %4d", regnum);
1316
1317 /* Relative number. */
1318 if (regnum < 0)
1319 fprintf_unfiltered (file, " %4s", "Rel");
1320 else if (regnum < gdbarch_num_regs (gdbarch))
1321 fprintf_unfiltered (file, " %4d", regnum);
1322 else
1323 fprintf_unfiltered (file, " %4d",
1324 (regnum - gdbarch_num_regs (gdbarch)));
1325
1326 /* Offset. */
1327 if (regnum < 0)
1328 fprintf_unfiltered (file, " %6s ", "Offset");
1329 else
1330 {
1331 fprintf_unfiltered (file, " %6ld",
1332 regcache->descr->register_offset[regnum]);
1333 if (register_offset != regcache->descr->register_offset[regnum]
1334 || (regnum > 0
1335 && (regcache->descr->register_offset[regnum]
1336 != (regcache->descr->register_offset[regnum - 1]
1337 + regcache->descr->sizeof_register[regnum - 1])))
1338 )
1339 {
1340 if (!footnote_register_offset)
1341 footnote_register_offset = ++footnote_nr;
1342 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1343 }
1344 else
1345 fprintf_unfiltered (file, " ");
1346 register_offset = (regcache->descr->register_offset[regnum]
1347 + regcache->descr->sizeof_register[regnum]);
1348 }
1349
1350 /* Size. */
1351 if (regnum < 0)
1352 fprintf_unfiltered (file, " %5s ", "Size");
1353 else
1354 fprintf_unfiltered (file, " %5ld",
1355 regcache->descr->sizeof_register[regnum]);
1356
1357 /* Type. */
1358 {
1359 const char *t;
1360
1361 if (regnum < 0)
1362 t = "Type";
1363 else
1364 {
1365 static const char blt[] = "builtin_type";
1366
1367 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1368 if (t == NULL)
1369 {
1370 char *n;
1371
1372 if (!footnote_register_type_name_null)
1373 footnote_register_type_name_null = ++footnote_nr;
1374 n = xstrprintf ("*%d", footnote_register_type_name_null);
1375 make_cleanup (xfree, n);
1376 t = n;
1377 }
1378 /* Chop a leading builtin_type. */
1379 if (startswith (t, blt))
1380 t += strlen (blt);
1381 }
1382 fprintf_unfiltered (file, " %-15s", t);
1383 }
1384
1385 /* Leading space always present. */
1386 fprintf_unfiltered (file, " ");
1387
1388 /* Value, raw. */
1389 if (what_to_dump == regcache_dump_raw)
1390 {
1391 if (regnum < 0)
1392 fprintf_unfiltered (file, "Raw value");
1393 else if (regnum >= regcache->descr->nr_raw_registers)
1394 fprintf_unfiltered (file, "<cooked>");
1395 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN)
1396 fprintf_unfiltered (file, "<invalid>");
1397 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE)
1398 fprintf_unfiltered (file, "<unavailable>");
1399 else
1400 {
1401 regcache_raw_read (regcache, regnum, buf);
1402 print_hex_chars (file, buf,
1403 regcache->descr->sizeof_register[regnum],
1404 gdbarch_byte_order (gdbarch));
1405 }
1406 }
1407
1408 /* Value, cooked. */
1409 if (what_to_dump == regcache_dump_cooked)
1410 {
1411 if (regnum < 0)
1412 fprintf_unfiltered (file, "Cooked value");
1413 else
1414 {
1415 enum register_status status;
1416
1417 status = regcache_cooked_read (regcache, regnum, buf);
1418 if (status == REG_UNKNOWN)
1419 fprintf_unfiltered (file, "<invalid>");
1420 else if (status == REG_UNAVAILABLE)
1421 fprintf_unfiltered (file, "<unavailable>");
1422 else
1423 print_hex_chars (file, buf,
1424 regcache->descr->sizeof_register[regnum],
1425 gdbarch_byte_order (gdbarch));
1426 }
1427 }
1428
1429 /* Group members. */
1430 if (what_to_dump == regcache_dump_groups)
1431 {
1432 if (regnum < 0)
1433 fprintf_unfiltered (file, "Groups");
1434 else
1435 {
1436 const char *sep = "";
1437 struct reggroup *group;
1438
1439 for (group = reggroup_next (gdbarch, NULL);
1440 group != NULL;
1441 group = reggroup_next (gdbarch, group))
1442 {
1443 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1444 {
1445 fprintf_unfiltered (file,
1446 "%s%s", sep, reggroup_name (group));
1447 sep = ",";
1448 }
1449 }
1450 }
1451 }
1452
1453 /* Remote packet configuration. */
1454 if (what_to_dump == regcache_dump_remote)
1455 {
1456 if (regnum < 0)
1457 {
1458 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1459 }
1460 else if (regnum < regcache->descr->nr_raw_registers)
1461 {
1462 int pnum, poffset;
1463
1464 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum,
1465 &pnum, &poffset))
1466 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1467 }
1468 }
1469
1470 fprintf_unfiltered (file, "\n");
1471 }
1472
1473 if (footnote_register_size)
1474 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1475 footnote_register_size);
1476 if (footnote_register_offset)
1477 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1478 footnote_register_offset);
1479 if (footnote_register_type_name_null)
1480 fprintf_unfiltered (file,
1481 "*%d: Register type's name NULL.\n",
1482 footnote_register_type_name_null);
1483 do_cleanups (cleanups);
1484 }
1485
1486 static void
1487 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1488 {
1489 if (args == NULL)
1490 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1491 else
1492 {
1493 struct cleanup *cleanups;
1494 struct ui_file *file = gdb_fopen (args, "w");
1495
1496 if (file == NULL)
1497 perror_with_name (_("maintenance print architecture"));
1498 cleanups = make_cleanup_ui_file_delete (file);
1499 regcache_dump (get_current_regcache (), file, what_to_dump);
1500 do_cleanups (cleanups);
1501 }
1502 }
1503
1504 static void
1505 maintenance_print_registers (char *args, int from_tty)
1506 {
1507 regcache_print (args, regcache_dump_none);
1508 }
1509
1510 static void
1511 maintenance_print_raw_registers (char *args, int from_tty)
1512 {
1513 regcache_print (args, regcache_dump_raw);
1514 }
1515
1516 static void
1517 maintenance_print_cooked_registers (char *args, int from_tty)
1518 {
1519 regcache_print (args, regcache_dump_cooked);
1520 }
1521
1522 static void
1523 maintenance_print_register_groups (char *args, int from_tty)
1524 {
1525 regcache_print (args, regcache_dump_groups);
1526 }
1527
1528 static void
1529 maintenance_print_remote_registers (char *args, int from_tty)
1530 {
1531 regcache_print (args, regcache_dump_remote);
1532 }
1533
1534 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1535
1536 void
1537 _initialize_regcache (void)
1538 {
1539 regcache_descr_handle
1540 = gdbarch_data_register_post_init (init_regcache_descr);
1541
1542 observer_attach_target_changed (regcache_observer_target_changed);
1543 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1544
1545 add_com ("flushregs", class_maintenance, reg_flush_command,
1546 _("Force gdb to flush its register cache (maintainer command)"));
1547
1548 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1549 _("Print the internal register configuration.\n"
1550 "Takes an optional file parameter."), &maintenanceprintlist);
1551 add_cmd ("raw-registers", class_maintenance,
1552 maintenance_print_raw_registers,
1553 _("Print the internal register configuration "
1554 "including raw values.\n"
1555 "Takes an optional file parameter."), &maintenanceprintlist);
1556 add_cmd ("cooked-registers", class_maintenance,
1557 maintenance_print_cooked_registers,
1558 _("Print the internal register configuration "
1559 "including cooked values.\n"
1560 "Takes an optional file parameter."), &maintenanceprintlist);
1561 add_cmd ("register-groups", class_maintenance,
1562 maintenance_print_register_groups,
1563 _("Print the internal register configuration "
1564 "including each register's group.\n"
1565 "Takes an optional file parameter."),
1566 &maintenanceprintlist);
1567 add_cmd ("remote-registers", class_maintenance,
1568 maintenance_print_remote_registers, _("\
1569 Print the internal register configuration including each register's\n\
1570 remote register number and buffer offset in the g/G packets.\n\
1571 Takes an optional file parameter."),
1572 &maintenanceprintlist);
1573
1574 }
This page took 0.061084 seconds and 4 git commands to generate.