2003-05-08 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000,
4 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbarch.h"
27 #include "gdbcmd.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdbcmd.h" /* For maintenanceprintlist. */
33
34 /*
35 * DATA STRUCTURE
36 *
37 * Here is the actual register cache.
38 */
39
40 /* Per-architecture object describing the layout of a register cache.
41 Computed once when the architecture is created */
42
43 struct gdbarch_data *regcache_descr_handle;
44
45 struct regcache_descr
46 {
47 /* The architecture this descriptor belongs to. */
48 struct gdbarch *gdbarch;
49
50 /* Is this a ``legacy'' register cache? Such caches reserve space
51 for raw and pseudo registers and allow access to both. */
52 int legacy_p;
53
54 /* The raw register cache. This should contain just [0
55 .. NUM_RAW_REGISTERS). However, for older targets, it contains
56 space for the full [0 .. NUM_RAW_REGISTERS +
57 NUM_PSEUDO_REGISTERS). */
58 int nr_raw_registers;
59 long sizeof_raw_registers;
60 long sizeof_raw_register_valid_p;
61
62 /* The cooked register space. Each cooked register in the range
63 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
64 register. The remaining [NR_RAW_REGISTERS
65 .. NR_COOKED_REGISTERS) (a.k.a. pseudo regiters) are mapped onto
66 both raw registers and memory by the architecture methods
67 gdbarch_register_read and gdbarch_register_write. */
68 int nr_cooked_registers;
69 long sizeof_cooked_registers;
70 long sizeof_cooked_register_valid_p;
71
72 /* Offset and size (in 8 bit bytes), of reach register in the
73 register cache. All registers (including those in the range
74 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
75 Assigning all registers an offset makes it possible to keep
76 legacy code, such as that found in read_register_bytes() and
77 write_register_bytes() working. */
78 long *register_offset;
79 long *sizeof_register;
80
81 /* Cached table containing the type of each register. */
82 struct type **register_type;
83 };
84
85 void
86 init_legacy_regcache_descr (struct gdbarch *gdbarch,
87 struct regcache_descr *descr)
88 {
89 int i;
90 /* FIXME: cagney/2002-05-11: gdbarch_data() should take that
91 ``gdbarch'' as a parameter. */
92 gdb_assert (gdbarch != NULL);
93
94 /* FIXME: cagney/2002-05-11: Shouldn't be including pseudo-registers
95 in the register cache. Unfortunatly some architectures still
96 rely on this and the pseudo_register_write() method. */
97 descr->nr_raw_registers = descr->nr_cooked_registers;
98 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
99
100 /* Compute the offset of each register. Legacy architectures define
101 REGISTER_BYTE() so use that. */
102 /* FIXME: cagney/2002-11-07: Instead of using REGISTER_BYTE() this
103 code should, as is done in init_regcache_descr(), compute the
104 offets at runtime. This currently isn't possible as some ISAs
105 define overlapping register regions - see the mess in
106 read_register_bytes() and write_register_bytes() registers. */
107 descr->sizeof_register = XCALLOC (descr->nr_cooked_registers, long);
108 descr->register_offset = XCALLOC (descr->nr_cooked_registers, long);
109 for (i = 0; i < descr->nr_cooked_registers; i++)
110 {
111 /* FIXME: cagney/2001-12-04: This code shouldn't need to use
112 REGISTER_BYTE(). Unfortunatly, legacy code likes to lay the
113 buffer out so that certain registers just happen to overlap.
114 Ulgh! New targets use gdbarch's register read/write and
115 entirely avoid this uglyness. */
116 descr->register_offset[i] = REGISTER_BYTE (i);
117 descr->sizeof_register[i] = REGISTER_RAW_SIZE (i);
118 gdb_assert (MAX_REGISTER_SIZE >= REGISTER_RAW_SIZE (i));
119 gdb_assert (MAX_REGISTER_SIZE >= REGISTER_VIRTUAL_SIZE (i));
120 }
121
122 /* Compute the real size of the register buffer. Start out by
123 trusting REGISTER_BYTES, but then adjust it upwards should that
124 be found to not be sufficient. */
125 /* FIXME: cagney/2002-11-05: Instead of using REGISTER_BYTES, this
126 code should, as is done in init_regcache_descr(), compute the
127 total number of register bytes using the accumulated offsets. */
128 descr->sizeof_cooked_registers = REGISTER_BYTES; /* OK use. */
129 for (i = 0; i < descr->nr_cooked_registers; i++)
130 {
131 long regend;
132 /* Keep extending the buffer so that there is always enough
133 space for all registers. The comparison is necessary since
134 legacy code is free to put registers in random places in the
135 buffer separated by holes. Once REGISTER_BYTE() is killed
136 this can be greatly simplified. */
137 regend = descr->register_offset[i] + descr->sizeof_register[i];
138 if (descr->sizeof_cooked_registers < regend)
139 descr->sizeof_cooked_registers = regend;
140 }
141 /* FIXME: cagney/2002-05-11: Shouldn't be including pseudo-registers
142 in the register cache. Unfortunatly some architectures still
143 rely on this and the pseudo_register_write() method. */
144 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
145 }
146
147 static void *
148 init_regcache_descr (struct gdbarch *gdbarch)
149 {
150 int i;
151 struct regcache_descr *descr;
152 gdb_assert (gdbarch != NULL);
153
154 /* Create an initial, zero filled, table. */
155 descr = XCALLOC (1, struct regcache_descr);
156 descr->gdbarch = gdbarch;
157
158 /* Total size of the register space. The raw registers are mapped
159 directly onto the raw register cache while the pseudo's are
160 either mapped onto raw-registers or memory. */
161 descr->nr_cooked_registers = NUM_REGS + NUM_PSEUDO_REGS;
162 descr->sizeof_cooked_register_valid_p = NUM_REGS + NUM_PSEUDO_REGS;
163
164 /* Fill in a table of register types. */
165 descr->register_type = XCALLOC (descr->nr_cooked_registers,
166 struct type *);
167 for (i = 0; i < descr->nr_cooked_registers; i++)
168 {
169 if (gdbarch_register_type_p (gdbarch))
170 {
171 gdb_assert (!REGISTER_VIRTUAL_TYPE_P ()); /* OK */
172 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
173 }
174 else
175 descr->register_type[i] = REGISTER_VIRTUAL_TYPE (i); /* OK */
176 }
177
178 /* If an old style architecture, fill in the remainder of the
179 register cache descriptor using the register macros. */
180 if (!gdbarch_pseudo_register_read_p (gdbarch)
181 && !gdbarch_pseudo_register_write_p (gdbarch)
182 && !gdbarch_register_type_p (gdbarch))
183 {
184 /* NOTE: cagney/2003-05-02: Don't add a test for REGISTER_BYTE_P
185 to the above. Doing that would cause all the existing
186 architectures to revert back to the legacy regcache
187 mechanisms, and that is not a good thing. Instead just,
188 later, check that the register cache's layout is consistent
189 with REGISTER_BYTE. */
190 descr->legacy_p = 1;
191 init_legacy_regcache_descr (gdbarch, descr);
192 return descr;
193 }
194
195 /* Construct a strictly RAW register cache. Don't allow pseudo's
196 into the register cache. */
197 descr->nr_raw_registers = NUM_REGS;
198
199 /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
200 array. This pretects GDB from erant code that accesses elements
201 of the global register_valid_p[] array in the range [NUM_REGS
202 .. NUM_REGS + NUM_PSEUDO_REGS). */
203 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
204
205 /* Lay out the register cache.
206
207 NOTE: cagney/2002-05-22: Only register_type() is used when
208 constructing the register cache. It is assumed that the
209 register's raw size, virtual size and type length are all the
210 same. */
211
212 {
213 long offset = 0;
214 descr->sizeof_register = XCALLOC (descr->nr_cooked_registers, long);
215 descr->register_offset = XCALLOC (descr->nr_cooked_registers, long);
216 for (i = 0; i < descr->nr_cooked_registers; i++)
217 {
218 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
219 descr->register_offset[i] = offset;
220 offset += descr->sizeof_register[i];
221 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
222 }
223 /* Set the real size of the register cache buffer. */
224 descr->sizeof_cooked_registers = offset;
225 }
226
227 /* FIXME: cagney/2002-05-22: Should only need to allocate space for
228 the raw registers. Unfortunatly some code still accesses the
229 register array directly using the global registers[]. Until that
230 code has been purged, play safe and over allocating the register
231 buffer. Ulgh! */
232 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
233
234 /* Sanity check. Confirm that there is agreement between the
235 regcache and the target's redundant REGISTER_BYTE (new targets
236 should not even be defining it). */
237 for (i = 0; i < descr->nr_cooked_registers; i++)
238 {
239 if (REGISTER_BYTE_P ())
240 gdb_assert (descr->register_offset[i] == REGISTER_BYTE (i));
241 #if 0
242 gdb_assert (descr->sizeof_register[i] == REGISTER_RAW_SIZE (i));
243 gdb_assert (descr->sizeof_register[i] == REGISTER_VIRTUAL_SIZE (i));
244 #endif
245 }
246 /* gdb_assert (descr->sizeof_raw_registers == REGISTER_BYTES (i)); */
247
248 return descr;
249 }
250
251 static struct regcache_descr *
252 regcache_descr (struct gdbarch *gdbarch)
253 {
254 return gdbarch_data (gdbarch, regcache_descr_handle);
255 }
256
257 static void
258 xfree_regcache_descr (struct gdbarch *gdbarch, void *ptr)
259 {
260 struct regcache_descr *descr = ptr;
261 if (descr == NULL)
262 return;
263 xfree (descr->register_offset);
264 xfree (descr->sizeof_register);
265 descr->register_offset = NULL;
266 descr->sizeof_register = NULL;
267 xfree (descr);
268 }
269
270 /* Utility functions returning useful register attributes stored in
271 the regcache descr. */
272
273 struct type *
274 register_type (struct gdbarch *gdbarch, int regnum)
275 {
276 struct regcache_descr *descr = regcache_descr (gdbarch);
277 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
278 return descr->register_type[regnum];
279 }
280
281 /* Utility functions returning useful register attributes stored in
282 the regcache descr. */
283
284 int
285 register_size (struct gdbarch *gdbarch, int regnum)
286 {
287 struct regcache_descr *descr = regcache_descr (gdbarch);
288 int size;
289 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
290 size = descr->sizeof_register[regnum];
291 gdb_assert (size == REGISTER_RAW_SIZE (regnum)); /* OK */
292 gdb_assert (size == REGISTER_RAW_SIZE (regnum)); /* OK */
293 return size;
294 }
295
296 /* The register cache for storing raw register values. */
297
298 struct regcache
299 {
300 struct regcache_descr *descr;
301 /* The register buffers. A read-only register cache can hold the
302 full [0 .. NUM_REGS + NUM_PSEUDO_REGS) while a read/write
303 register cache can only hold [0 .. NUM_REGS). */
304 char *registers;
305 char *register_valid_p;
306 /* Is this a read-only cache? A read-only cache is used for saving
307 the target's register state (e.g, across an inferior function
308 call or just before forcing a function return). A read-only
309 cache can only be updated via the methods regcache_dup() and
310 regcache_cpy(). The actual contents are determined by the
311 reggroup_save and reggroup_restore methods. */
312 int readonly_p;
313 };
314
315 struct regcache *
316 regcache_xmalloc (struct gdbarch *gdbarch)
317 {
318 struct regcache_descr *descr;
319 struct regcache *regcache;
320 gdb_assert (gdbarch != NULL);
321 descr = regcache_descr (gdbarch);
322 regcache = XMALLOC (struct regcache);
323 regcache->descr = descr;
324 regcache->registers
325 = XCALLOC (descr->sizeof_raw_registers, char);
326 regcache->register_valid_p
327 = XCALLOC (descr->sizeof_raw_register_valid_p, char);
328 regcache->readonly_p = 1;
329 return regcache;
330 }
331
332 void
333 regcache_xfree (struct regcache *regcache)
334 {
335 if (regcache == NULL)
336 return;
337 xfree (regcache->registers);
338 xfree (regcache->register_valid_p);
339 xfree (regcache);
340 }
341
342 void
343 do_regcache_xfree (void *data)
344 {
345 regcache_xfree (data);
346 }
347
348 struct cleanup *
349 make_cleanup_regcache_xfree (struct regcache *regcache)
350 {
351 return make_cleanup (do_regcache_xfree, regcache);
352 }
353
354 /* Return a pointer to register REGNUM's buffer cache. */
355
356 static char *
357 register_buffer (struct regcache *regcache, int regnum)
358 {
359 return regcache->registers + regcache->descr->register_offset[regnum];
360 }
361
362 void
363 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
364 void *src)
365 {
366 struct gdbarch *gdbarch = dst->descr->gdbarch;
367 char buf[MAX_REGISTER_SIZE];
368 int regnum;
369 /* The DST should be `read-only', if it wasn't then the save would
370 end up trying to write the register values back out to the
371 target. */
372 gdb_assert (dst->readonly_p);
373 /* Clear the dest. */
374 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
375 memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
376 /* Copy over any registers (identified by their membership in the
377 save_reggroup) and mark them as valid. The full [0 .. NUM_REGS +
378 NUM_PSEUDO_REGS) range is checked since some architectures need
379 to save/restore `cooked' registers that live in memory. */
380 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
381 {
382 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
383 {
384 int valid = cooked_read (src, regnum, buf);
385 if (valid)
386 {
387 memcpy (register_buffer (dst, regnum), buf,
388 register_size (gdbarch, regnum));
389 dst->register_valid_p[regnum] = 1;
390 }
391 }
392 }
393 }
394
395 void
396 regcache_restore (struct regcache *dst,
397 regcache_cooked_read_ftype *cooked_read,
398 void *src)
399 {
400 struct gdbarch *gdbarch = dst->descr->gdbarch;
401 char buf[MAX_REGISTER_SIZE];
402 int regnum;
403 /* The dst had better not be read-only. If it is, the `restore'
404 doesn't make much sense. */
405 gdb_assert (!dst->readonly_p);
406 /* Copy over any registers, being careful to only restore those that
407 were both saved and need to be restored. The full [0 .. NUM_REGS
408 + NUM_PSEUDO_REGS) range is checked since some architectures need
409 to save/restore `cooked' registers that live in memory. */
410 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
411 {
412 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
413 {
414 int valid = cooked_read (src, regnum, buf);
415 if (valid)
416 regcache_cooked_write (dst, regnum, buf);
417 }
418 }
419 }
420
421 static int
422 do_cooked_read (void *src, int regnum, void *buf)
423 {
424 struct regcache *regcache = src;
425 if (!regcache_valid_p (regcache, regnum)
426 && regcache->readonly_p)
427 /* Don't even think about fetching a register from a read-only
428 cache when the register isn't yet valid. There isn't a target
429 from which the register value can be fetched. */
430 return 0;
431 regcache_cooked_read (regcache, regnum, buf);
432 return 1;
433 }
434
435
436 void
437 regcache_cpy (struct regcache *dst, struct regcache *src)
438 {
439 int i;
440 char *buf;
441 gdb_assert (src != NULL && dst != NULL);
442 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
443 gdb_assert (src != dst);
444 gdb_assert (src->readonly_p || dst->readonly_p);
445 if (!src->readonly_p)
446 regcache_save (dst, do_cooked_read, src);
447 else if (!dst->readonly_p)
448 regcache_restore (dst, do_cooked_read, src);
449 else
450 regcache_cpy_no_passthrough (dst, src);
451 }
452
453 void
454 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
455 {
456 int i;
457 gdb_assert (src != NULL && dst != NULL);
458 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
459 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
460 move of data into the current_regcache(). Doing this would be
461 silly - it would mean that valid_p would be completly invalid. */
462 gdb_assert (dst != current_regcache);
463 memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
464 memcpy (dst->register_valid_p, src->register_valid_p,
465 dst->descr->sizeof_raw_register_valid_p);
466 }
467
468 struct regcache *
469 regcache_dup (struct regcache *src)
470 {
471 struct regcache *newbuf;
472 gdb_assert (current_regcache != NULL);
473 newbuf = regcache_xmalloc (src->descr->gdbarch);
474 regcache_cpy (newbuf, src);
475 return newbuf;
476 }
477
478 struct regcache *
479 regcache_dup_no_passthrough (struct regcache *src)
480 {
481 struct regcache *newbuf;
482 gdb_assert (current_regcache != NULL);
483 newbuf = regcache_xmalloc (src->descr->gdbarch);
484 regcache_cpy_no_passthrough (newbuf, src);
485 return newbuf;
486 }
487
488 int
489 regcache_valid_p (struct regcache *regcache, int regnum)
490 {
491 gdb_assert (regcache != NULL);
492 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
493 return regcache->register_valid_p[regnum];
494 }
495
496 char *
497 deprecated_grub_regcache_for_registers (struct regcache *regcache)
498 {
499 return regcache->registers;
500 }
501
502 char *
503 deprecated_grub_regcache_for_register_valid (struct regcache *regcache)
504 {
505 return regcache->register_valid_p;
506 }
507
508 /* Global structure containing the current regcache. */
509 /* FIXME: cagney/2002-05-11: The two global arrays registers[] and
510 deprecated_register_valid[] currently point into this structure. */
511 struct regcache *current_regcache;
512
513 /* NOTE: this is a write-through cache. There is no "dirty" bit for
514 recording if the register values have been changed (eg. by the
515 user). Therefore all registers must be written back to the
516 target when appropriate. */
517
518 /* REGISTERS contains the cached register values (in target byte order). */
519
520 char *deprecated_registers;
521
522 /* DEPRECATED_REGISTER_VALID is 0 if the register needs to be fetched,
523 1 if it has been fetched, and
524 -1 if the register value was not available.
525
526 "Not available" indicates that the target is not not able to supply
527 the register at this state. The register may become available at a
528 later time (after the next resume). This often occures when GDB is
529 manipulating a target that contains only a snapshot of the entire
530 system being debugged - some of the registers in such a system may
531 not have been saved. */
532
533 signed char *deprecated_register_valid;
534
535 /* The thread/process associated with the current set of registers. */
536
537 static ptid_t registers_ptid;
538
539 /*
540 * FUNCTIONS:
541 */
542
543 /* REGISTER_CACHED()
544
545 Returns 0 if the value is not in the cache (needs fetch).
546 >0 if the value is in the cache.
547 <0 if the value is permanently unavailable (don't ask again). */
548
549 int
550 register_cached (int regnum)
551 {
552 return deprecated_register_valid[regnum];
553 }
554
555 /* Record that REGNUM's value is cached if STATE is >0, uncached but
556 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
557
558 void
559 set_register_cached (int regnum, int state)
560 {
561 gdb_assert (regnum >= 0);
562 gdb_assert (regnum < current_regcache->descr->nr_raw_registers);
563 current_regcache->register_valid_p[regnum] = state;
564 }
565
566 /* Return whether register REGNUM is a real register. */
567
568 static int
569 real_register (int regnum)
570 {
571 return regnum >= 0 && regnum < NUM_REGS;
572 }
573
574 /* Low level examining and depositing of registers.
575
576 The caller is responsible for making sure that the inferior is
577 stopped before calling the fetching routines, or it will get
578 garbage. (a change from GDB version 3, in which the caller got the
579 value from the last stop). */
580
581 /* REGISTERS_CHANGED ()
582
583 Indicate that registers may have changed, so invalidate the cache. */
584
585 void
586 registers_changed (void)
587 {
588 int i;
589
590 registers_ptid = pid_to_ptid (-1);
591
592 /* Force cleanup of any alloca areas if using C alloca instead of
593 a builtin alloca. This particular call is used to clean up
594 areas allocated by low level target code which may build up
595 during lengthy interactions between gdb and the target before
596 gdb gives control to the user (ie watchpoints). */
597 alloca (0);
598
599 for (i = 0; i < current_regcache->descr->nr_raw_registers; i++)
600 set_register_cached (i, 0);
601
602 if (registers_changed_hook)
603 registers_changed_hook ();
604 }
605
606 /* DEPRECATED_REGISTERS_FETCHED ()
607
608 Indicate that all registers have been fetched, so mark them all valid. */
609
610 /* NOTE: cagney/2001-12-04: This function does not set valid on the
611 pseudo-register range since pseudo registers are always supplied
612 using supply_register(). */
613 /* FIXME: cagney/2001-12-04: This function is DEPRECATED. The target
614 code was blatting the registers[] array and then calling this.
615 Since targets should only be using supply_register() the need for
616 this function/hack is eliminated. */
617
618 void
619 deprecated_registers_fetched (void)
620 {
621 int i;
622
623 for (i = 0; i < NUM_REGS; i++)
624 set_register_cached (i, 1);
625 /* Do not assume that the pseudo-regs have also been fetched.
626 Fetching all real regs NEVER accounts for pseudo-regs. */
627 }
628
629 /* deprecated_read_register_bytes and deprecated_write_register_bytes
630 are generally a *BAD* idea. They are inefficient because they need
631 to check for partial updates, which can only be done by scanning
632 through all of the registers and seeing if the bytes that are being
633 read/written fall inside of an invalid register. [The main reason
634 this is necessary is that register sizes can vary, so a simple
635 index won't suffice.] It is far better to call read_register_gen
636 and write_register_gen if you want to get at the raw register
637 contents, as it only takes a regnum as an argument, and therefore
638 can't do a partial register update.
639
640 Prior to the recent fixes to check for partial updates, both read
641 and deprecated_write_register_bytes always checked to see if any
642 registers were stale, and then called target_fetch_registers (-1)
643 to update the whole set. This caused really slowed things down for
644 remote targets. */
645
646 /* Copy INLEN bytes of consecutive data from registers
647 starting with the INREGBYTE'th byte of register data
648 into memory at MYADDR. */
649
650 void
651 deprecated_read_register_bytes (int in_start, char *in_buf, int in_len)
652 {
653 int in_end = in_start + in_len;
654 int regnum;
655 char reg_buf[MAX_REGISTER_SIZE];
656
657 /* See if we are trying to read bytes from out-of-date registers. If so,
658 update just those registers. */
659
660 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
661 {
662 int reg_start;
663 int reg_end;
664 int reg_len;
665 int start;
666 int end;
667 int byte;
668
669 reg_start = REGISTER_BYTE (regnum);
670 reg_len = REGISTER_RAW_SIZE (regnum);
671 reg_end = reg_start + reg_len;
672
673 if (reg_end <= in_start || in_end <= reg_start)
674 /* The range the user wants to read doesn't overlap with regnum. */
675 continue;
676
677 if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0')
678 /* Force the cache to fetch the entire register. */
679 deprecated_read_register_gen (regnum, reg_buf);
680 else
681 /* Legacy note: even though this register is ``invalid'' we
682 still need to return something. It would appear that some
683 code relies on apparent gaps in the register array also
684 being returned. */
685 /* FIXME: cagney/2001-08-18: This is just silly. It defeats
686 the entire register read/write flow of control. Must
687 resist temptation to return 0xdeadbeef. */
688 memcpy (reg_buf, &deprecated_registers[reg_start], reg_len);
689
690 /* Legacy note: This function, for some reason, allows a NULL
691 input buffer. If the buffer is NULL, the registers are still
692 fetched, just the final transfer is skipped. */
693 if (in_buf == NULL)
694 continue;
695
696 /* start = max (reg_start, in_start) */
697 if (reg_start > in_start)
698 start = reg_start;
699 else
700 start = in_start;
701
702 /* end = min (reg_end, in_end) */
703 if (reg_end < in_end)
704 end = reg_end;
705 else
706 end = in_end;
707
708 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
709 for (byte = start; byte < end; byte++)
710 {
711 in_buf[byte - in_start] = reg_buf[byte - reg_start];
712 }
713 }
714 }
715
716 /* Read register REGNUM into memory at MYADDR, which must be large
717 enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the
718 register is known to be the size of a CORE_ADDR or smaller,
719 read_register can be used instead. */
720
721 static void
722 legacy_read_register_gen (int regnum, char *myaddr)
723 {
724 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
725 if (! ptid_equal (registers_ptid, inferior_ptid))
726 {
727 registers_changed ();
728 registers_ptid = inferior_ptid;
729 }
730
731 if (!register_cached (regnum))
732 target_fetch_registers (regnum);
733
734 memcpy (myaddr, register_buffer (current_regcache, regnum),
735 REGISTER_RAW_SIZE (regnum));
736 }
737
738 void
739 regcache_raw_read (struct regcache *regcache, int regnum, void *buf)
740 {
741 gdb_assert (regcache != NULL && buf != NULL);
742 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
743 if (regcache->descr->legacy_p
744 && !regcache->readonly_p)
745 {
746 gdb_assert (regcache == current_regcache);
747 /* For moment, just use underlying legacy code. Ulgh!!! This
748 silently and very indirectly updates the regcache's regcache
749 via the global deprecated_register_valid[]. */
750 legacy_read_register_gen (regnum, buf);
751 return;
752 }
753 /* Make certain that the register cache is up-to-date with respect
754 to the current thread. This switching shouldn't be necessary
755 only there is still only one target side register cache. Sigh!
756 On the bright side, at least there is a regcache object. */
757 if (!regcache->readonly_p)
758 {
759 gdb_assert (regcache == current_regcache);
760 if (! ptid_equal (registers_ptid, inferior_ptid))
761 {
762 registers_changed ();
763 registers_ptid = inferior_ptid;
764 }
765 if (!register_cached (regnum))
766 target_fetch_registers (regnum);
767 }
768 /* Copy the value directly into the register cache. */
769 memcpy (buf, register_buffer (regcache, regnum),
770 regcache->descr->sizeof_register[regnum]);
771 }
772
773 void
774 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
775 {
776 char *buf;
777 gdb_assert (regcache != NULL);
778 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
779 buf = alloca (regcache->descr->sizeof_register[regnum]);
780 regcache_raw_read (regcache, regnum, buf);
781 (*val) = extract_signed_integer (buf,
782 regcache->descr->sizeof_register[regnum]);
783 }
784
785 void
786 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
787 ULONGEST *val)
788 {
789 char *buf;
790 gdb_assert (regcache != NULL);
791 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
792 buf = alloca (regcache->descr->sizeof_register[regnum]);
793 regcache_raw_read (regcache, regnum, buf);
794 (*val) = extract_unsigned_integer (buf,
795 regcache->descr->sizeof_register[regnum]);
796 }
797
798 void
799 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
800 {
801 void *buf;
802 gdb_assert (regcache != NULL);
803 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
804 buf = alloca (regcache->descr->sizeof_register[regnum]);
805 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
806 regcache_raw_write (regcache, regnum, buf);
807 }
808
809 void
810 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
811 ULONGEST val)
812 {
813 void *buf;
814 gdb_assert (regcache != NULL);
815 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
816 buf = alloca (regcache->descr->sizeof_register[regnum]);
817 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
818 regcache_raw_write (regcache, regnum, buf);
819 }
820
821 void
822 deprecated_read_register_gen (int regnum, char *buf)
823 {
824 gdb_assert (current_regcache != NULL);
825 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
826 if (current_regcache->descr->legacy_p)
827 {
828 legacy_read_register_gen (regnum, buf);
829 return;
830 }
831 regcache_cooked_read (current_regcache, regnum, buf);
832 }
833
834 void
835 regcache_cooked_read (struct regcache *regcache, int regnum, void *buf)
836 {
837 gdb_assert (regnum >= 0);
838 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
839 if (regnum < regcache->descr->nr_raw_registers)
840 regcache_raw_read (regcache, regnum, buf);
841 else if (regcache->readonly_p
842 && regnum < regcache->descr->nr_cooked_registers
843 && regcache->register_valid_p[regnum])
844 /* Read-only register cache, perhaphs the cooked value was cached? */
845 memcpy (buf, register_buffer (regcache, regnum),
846 regcache->descr->sizeof_register[regnum]);
847 else
848 gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
849 regnum, buf);
850 }
851
852 void
853 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
854 LONGEST *val)
855 {
856 char *buf;
857 gdb_assert (regcache != NULL);
858 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
859 buf = alloca (regcache->descr->sizeof_register[regnum]);
860 regcache_cooked_read (regcache, regnum, buf);
861 (*val) = extract_signed_integer (buf,
862 regcache->descr->sizeof_register[regnum]);
863 }
864
865 void
866 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
867 ULONGEST *val)
868 {
869 char *buf;
870 gdb_assert (regcache != NULL);
871 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
872 buf = alloca (regcache->descr->sizeof_register[regnum]);
873 regcache_cooked_read (regcache, regnum, buf);
874 (*val) = extract_unsigned_integer (buf,
875 regcache->descr->sizeof_register[regnum]);
876 }
877
878 void
879 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
880 LONGEST val)
881 {
882 void *buf;
883 gdb_assert (regcache != NULL);
884 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
885 buf = alloca (regcache->descr->sizeof_register[regnum]);
886 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
887 regcache_cooked_write (regcache, regnum, buf);
888 }
889
890 void
891 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
892 ULONGEST val)
893 {
894 void *buf;
895 gdb_assert (regcache != NULL);
896 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
897 buf = alloca (regcache->descr->sizeof_register[regnum]);
898 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
899 regcache_cooked_write (regcache, regnum, buf);
900 }
901
902 /* Write register REGNUM at MYADDR to the target. MYADDR points at
903 REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */
904
905 static void
906 legacy_write_register_gen (int regnum, const void *myaddr)
907 {
908 int size;
909 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
910
911 /* On the sparc, writing %g0 is a no-op, so we don't even want to
912 change the registers array if something writes to this register. */
913 if (CANNOT_STORE_REGISTER (regnum))
914 return;
915
916 if (! ptid_equal (registers_ptid, inferior_ptid))
917 {
918 registers_changed ();
919 registers_ptid = inferior_ptid;
920 }
921
922 size = REGISTER_RAW_SIZE (regnum);
923
924 if (real_register (regnum))
925 {
926 /* If we have a valid copy of the register, and new value == old
927 value, then don't bother doing the actual store. */
928 if (register_cached (regnum)
929 && (memcmp (register_buffer (current_regcache, regnum), myaddr, size)
930 == 0))
931 return;
932 else
933 target_prepare_to_store ();
934 }
935
936 memcpy (register_buffer (current_regcache, regnum), myaddr, size);
937
938 set_register_cached (regnum, 1);
939 target_store_registers (regnum);
940 }
941
942 void
943 regcache_raw_write (struct regcache *regcache, int regnum, const void *buf)
944 {
945 gdb_assert (regcache != NULL && buf != NULL);
946 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
947 gdb_assert (!regcache->readonly_p);
948
949 if (regcache->descr->legacy_p)
950 {
951 /* For moment, just use underlying legacy code. Ulgh!!! This
952 silently and very indirectly updates the regcache's buffers
953 via the globals deprecated_register_valid[] and registers[]. */
954 gdb_assert (regcache == current_regcache);
955 legacy_write_register_gen (regnum, buf);
956 return;
957 }
958
959 /* On the sparc, writing %g0 is a no-op, so we don't even want to
960 change the registers array if something writes to this register. */
961 if (CANNOT_STORE_REGISTER (regnum))
962 return;
963
964 /* Make certain that the correct cache is selected. */
965 gdb_assert (regcache == current_regcache);
966 if (! ptid_equal (registers_ptid, inferior_ptid))
967 {
968 registers_changed ();
969 registers_ptid = inferior_ptid;
970 }
971
972 /* If we have a valid copy of the register, and new value == old
973 value, then don't bother doing the actual store. */
974 if (regcache_valid_p (regcache, regnum)
975 && (memcmp (register_buffer (regcache, regnum), buf,
976 regcache->descr->sizeof_register[regnum]) == 0))
977 return;
978
979 target_prepare_to_store ();
980 memcpy (register_buffer (regcache, regnum), buf,
981 regcache->descr->sizeof_register[regnum]);
982 regcache->register_valid_p[regnum] = 1;
983 target_store_registers (regnum);
984 }
985
986 void
987 deprecated_write_register_gen (int regnum, char *buf)
988 {
989 gdb_assert (current_regcache != NULL);
990 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
991 if (current_regcache->descr->legacy_p)
992 {
993 legacy_write_register_gen (regnum, buf);
994 return;
995 }
996 regcache_cooked_write (current_regcache, regnum, buf);
997 }
998
999 void
1000 regcache_cooked_write (struct regcache *regcache, int regnum, const void *buf)
1001 {
1002 gdb_assert (regnum >= 0);
1003 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
1004 if (regnum < regcache->descr->nr_raw_registers)
1005 regcache_raw_write (regcache, regnum, buf);
1006 else
1007 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
1008 regnum, buf);
1009 }
1010
1011 /* Copy INLEN bytes of consecutive data from memory at MYADDR
1012 into registers starting with the MYREGSTART'th byte of register data. */
1013
1014 void
1015 deprecated_write_register_bytes (int myregstart, char *myaddr, int inlen)
1016 {
1017 int myregend = myregstart + inlen;
1018 int regnum;
1019
1020 target_prepare_to_store ();
1021
1022 /* Scan through the registers updating any that are covered by the
1023 range myregstart<=>myregend using write_register_gen, which does
1024 nice things like handling threads, and avoiding updates when the
1025 new and old contents are the same. */
1026
1027 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
1028 {
1029 int regstart, regend;
1030
1031 regstart = REGISTER_BYTE (regnum);
1032 regend = regstart + REGISTER_RAW_SIZE (regnum);
1033
1034 /* Is this register completely outside the range the user is writing? */
1035 if (myregend <= regstart || regend <= myregstart)
1036 /* do nothing */ ;
1037
1038 /* Is this register completely within the range the user is writing? */
1039 else if (myregstart <= regstart && regend <= myregend)
1040 deprecated_write_register_gen (regnum, myaddr + (regstart - myregstart));
1041
1042 /* The register partially overlaps the range being written. */
1043 else
1044 {
1045 char regbuf[MAX_REGISTER_SIZE];
1046 /* What's the overlap between this register's bytes and
1047 those the caller wants to write? */
1048 int overlapstart = max (regstart, myregstart);
1049 int overlapend = min (regend, myregend);
1050
1051 /* We may be doing a partial update of an invalid register.
1052 Update it from the target before scribbling on it. */
1053 deprecated_read_register_gen (regnum, regbuf);
1054
1055 memcpy (&deprecated_registers[overlapstart],
1056 myaddr + (overlapstart - myregstart),
1057 overlapend - overlapstart);
1058
1059 target_store_registers (regnum);
1060 }
1061 }
1062 }
1063
1064 /* Perform a partial register transfer using a read, modify, write
1065 operation. */
1066
1067 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
1068 void *buf);
1069 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
1070 const void *buf);
1071
1072 void
1073 regcache_xfer_part (struct regcache *regcache, int regnum,
1074 int offset, int len, void *in, const void *out,
1075 regcache_read_ftype *read, regcache_write_ftype *write)
1076 {
1077 struct regcache_descr *descr = regcache->descr;
1078 bfd_byte reg[MAX_REGISTER_SIZE];
1079 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
1080 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
1081 /* Something to do? */
1082 if (offset + len == 0)
1083 return;
1084 /* Read (when needed) ... */
1085 if (in != NULL
1086 || offset > 0
1087 || offset + len < descr->sizeof_register[regnum])
1088 {
1089 gdb_assert (read != NULL);
1090 read (regcache, regnum, reg);
1091 }
1092 /* ... modify ... */
1093 if (in != NULL)
1094 memcpy (in, reg + offset, len);
1095 if (out != NULL)
1096 memcpy (reg + offset, out, len);
1097 /* ... write (when needed). */
1098 if (out != NULL)
1099 {
1100 gdb_assert (write != NULL);
1101 write (regcache, regnum, reg);
1102 }
1103 }
1104
1105 void
1106 regcache_raw_read_part (struct regcache *regcache, int regnum,
1107 int offset, int len, void *buf)
1108 {
1109 struct regcache_descr *descr = regcache->descr;
1110 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1111 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1112 regcache_raw_read, regcache_raw_write);
1113 }
1114
1115 void
1116 regcache_raw_write_part (struct regcache *regcache, int regnum,
1117 int offset, int len, const void *buf)
1118 {
1119 struct regcache_descr *descr = regcache->descr;
1120 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1121 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1122 regcache_raw_read, regcache_raw_write);
1123 }
1124
1125 void
1126 regcache_cooked_read_part (struct regcache *regcache, int regnum,
1127 int offset, int len, void *buf)
1128 {
1129 struct regcache_descr *descr = regcache->descr;
1130 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1131 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1132 regcache_cooked_read, regcache_cooked_write);
1133 }
1134
1135 void
1136 regcache_cooked_write_part (struct regcache *regcache, int regnum,
1137 int offset, int len, const void *buf)
1138 {
1139 struct regcache_descr *descr = regcache->descr;
1140 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1141 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1142 regcache_cooked_read, regcache_cooked_write);
1143 }
1144
1145 /* Hack to keep code that view the register buffer as raw bytes
1146 working. */
1147
1148 int
1149 register_offset_hack (struct gdbarch *gdbarch, int regnum)
1150 {
1151 struct regcache_descr *descr = regcache_descr (gdbarch);
1152 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1153 return descr->register_offset[regnum];
1154 }
1155
1156 /* Return the contents of register REGNUM as an unsigned integer. */
1157
1158 ULONGEST
1159 read_register (int regnum)
1160 {
1161 char *buf = alloca (REGISTER_RAW_SIZE (regnum));
1162 deprecated_read_register_gen (regnum, buf);
1163 return (extract_unsigned_integer (buf, REGISTER_RAW_SIZE (regnum)));
1164 }
1165
1166 ULONGEST
1167 read_register_pid (int regnum, ptid_t ptid)
1168 {
1169 ptid_t save_ptid;
1170 int save_pid;
1171 CORE_ADDR retval;
1172
1173 if (ptid_equal (ptid, inferior_ptid))
1174 return read_register (regnum);
1175
1176 save_ptid = inferior_ptid;
1177
1178 inferior_ptid = ptid;
1179
1180 retval = read_register (regnum);
1181
1182 inferior_ptid = save_ptid;
1183
1184 return retval;
1185 }
1186
1187 /* Store VALUE into the raw contents of register number REGNUM. */
1188
1189 void
1190 write_register (int regnum, LONGEST val)
1191 {
1192 void *buf;
1193 int size;
1194 size = REGISTER_RAW_SIZE (regnum);
1195 buf = alloca (size);
1196 store_signed_integer (buf, size, (LONGEST) val);
1197 deprecated_write_register_gen (regnum, buf);
1198 }
1199
1200 void
1201 write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
1202 {
1203 ptid_t save_ptid;
1204
1205 if (ptid_equal (ptid, inferior_ptid))
1206 {
1207 write_register (regnum, val);
1208 return;
1209 }
1210
1211 save_ptid = inferior_ptid;
1212
1213 inferior_ptid = ptid;
1214
1215 write_register (regnum, val);
1216
1217 inferior_ptid = save_ptid;
1218 }
1219
1220 /* SUPPLY_REGISTER()
1221
1222 Record that register REGNUM contains VAL. This is used when the
1223 value is obtained from the inferior or core dump, so there is no
1224 need to store the value there.
1225
1226 If VAL is a NULL pointer, then it's probably an unsupported register.
1227 We just set its value to all zeros. We might want to record this
1228 fact, and report it to the users of read_register and friends. */
1229
1230 void
1231 supply_register (int regnum, const void *val)
1232 {
1233 #if 1
1234 if (! ptid_equal (registers_ptid, inferior_ptid))
1235 {
1236 registers_changed ();
1237 registers_ptid = inferior_ptid;
1238 }
1239 #endif
1240
1241 set_register_cached (regnum, 1);
1242 if (val)
1243 memcpy (register_buffer (current_regcache, regnum), val,
1244 REGISTER_RAW_SIZE (regnum));
1245 else
1246 memset (register_buffer (current_regcache, regnum), '\000',
1247 REGISTER_RAW_SIZE (regnum));
1248
1249 /* On some architectures, e.g. HPPA, there are a few stray bits in
1250 some registers, that the rest of the code would like to ignore. */
1251
1252 /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is
1253 going to be deprecated. Instead architectures will leave the raw
1254 register value as is and instead clean things up as they pass
1255 through the method gdbarch_pseudo_register_read() clean up the
1256 values. */
1257
1258 #ifdef DEPRECATED_CLEAN_UP_REGISTER_VALUE
1259 DEPRECATED_CLEAN_UP_REGISTER_VALUE \
1260 (regnum, register_buffer (current_regcache, regnum));
1261 #endif
1262 }
1263
1264 void
1265 regcache_collect (int regnum, void *buf)
1266 {
1267 memcpy (buf, register_buffer (current_regcache, regnum),
1268 REGISTER_RAW_SIZE (regnum));
1269 }
1270
1271
1272 /* read_pc, write_pc, read_sp, deprecated_read_fp, etc. Special
1273 handling for registers PC, SP, and FP. */
1274
1275 /* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(),
1276 read_pc_pid(), read_pc(), generic_target_write_pc(),
1277 write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(),
1278 generic_target_write_sp(), and deprecated_read_fp(), will
1279 eventually be moved out of the reg-cache into either frame.[hc] or
1280 to the multi-arch framework. The are not part of the raw register
1281 cache. */
1282
1283 /* This routine is getting awfully cluttered with #if's. It's probably
1284 time to turn this into READ_PC and define it in the tm.h file.
1285 Ditto for write_pc.
1286
1287 1999-06-08: The following were re-written so that it assumes the
1288 existence of a TARGET_READ_PC et.al. macro. A default generic
1289 version of that macro is made available where needed.
1290
1291 Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
1292 by the multi-arch framework, it will eventually be possible to
1293 eliminate the intermediate read_pc_pid(). The client would call
1294 TARGET_READ_PC directly. (cagney). */
1295
1296 CORE_ADDR
1297 generic_target_read_pc (ptid_t ptid)
1298 {
1299 #ifdef PC_REGNUM
1300 if (PC_REGNUM >= 0)
1301 {
1302 CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, ptid));
1303 return pc_val;
1304 }
1305 #endif
1306 internal_error (__FILE__, __LINE__,
1307 "generic_target_read_pc");
1308 return 0;
1309 }
1310
1311 CORE_ADDR
1312 read_pc_pid (ptid_t ptid)
1313 {
1314 ptid_t saved_inferior_ptid;
1315 CORE_ADDR pc_val;
1316
1317 /* In case ptid != inferior_ptid. */
1318 saved_inferior_ptid = inferior_ptid;
1319 inferior_ptid = ptid;
1320
1321 pc_val = TARGET_READ_PC (ptid);
1322
1323 inferior_ptid = saved_inferior_ptid;
1324 return pc_val;
1325 }
1326
1327 CORE_ADDR
1328 read_pc (void)
1329 {
1330 return read_pc_pid (inferior_ptid);
1331 }
1332
1333 void
1334 generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
1335 {
1336 #ifdef PC_REGNUM
1337 if (PC_REGNUM >= 0)
1338 write_register_pid (PC_REGNUM, pc, ptid);
1339 if (NPC_REGNUM >= 0)
1340 write_register_pid (NPC_REGNUM, pc + 4, ptid);
1341 #else
1342 internal_error (__FILE__, __LINE__,
1343 "generic_target_write_pc");
1344 #endif
1345 }
1346
1347 void
1348 write_pc_pid (CORE_ADDR pc, ptid_t ptid)
1349 {
1350 ptid_t saved_inferior_ptid;
1351
1352 /* In case ptid != inferior_ptid. */
1353 saved_inferior_ptid = inferior_ptid;
1354 inferior_ptid = ptid;
1355
1356 TARGET_WRITE_PC (pc, ptid);
1357
1358 inferior_ptid = saved_inferior_ptid;
1359 }
1360
1361 void
1362 write_pc (CORE_ADDR pc)
1363 {
1364 write_pc_pid (pc, inferior_ptid);
1365 }
1366
1367 /* Cope with strage ways of getting to the stack and frame pointers */
1368
1369 CORE_ADDR
1370 generic_target_read_sp (void)
1371 {
1372 #ifdef SP_REGNUM
1373 if (SP_REGNUM >= 0)
1374 return read_register (SP_REGNUM);
1375 #endif
1376 internal_error (__FILE__, __LINE__,
1377 "generic_target_read_sp");
1378 }
1379
1380 CORE_ADDR
1381 read_sp (void)
1382 {
1383 return TARGET_READ_SP ();
1384 }
1385
1386 void
1387 generic_target_write_sp (CORE_ADDR val)
1388 {
1389 #ifdef SP_REGNUM
1390 if (SP_REGNUM >= 0)
1391 {
1392 write_register (SP_REGNUM, val);
1393 return;
1394 }
1395 #endif
1396 internal_error (__FILE__, __LINE__,
1397 "generic_target_write_sp");
1398 }
1399
1400 CORE_ADDR
1401 deprecated_read_fp (void)
1402 {
1403 if (DEPRECATED_TARGET_READ_FP_P ())
1404 return DEPRECATED_TARGET_READ_FP ();
1405 else if (DEPRECATED_FP_REGNUM >= 0)
1406 return read_register (DEPRECATED_FP_REGNUM);
1407 else
1408 internal_error (__FILE__, __LINE__, "deprecated_read_fp");
1409 }
1410
1411 /* ARGSUSED */
1412 static void
1413 reg_flush_command (char *command, int from_tty)
1414 {
1415 /* Force-flush the register cache. */
1416 registers_changed ();
1417 if (from_tty)
1418 printf_filtered ("Register cache flushed.\n");
1419 }
1420
1421 static void
1422 build_regcache (void)
1423 {
1424 current_regcache = regcache_xmalloc (current_gdbarch);
1425 current_regcache->readonly_p = 0;
1426 deprecated_registers = deprecated_grub_regcache_for_registers (current_regcache);
1427 deprecated_register_valid = deprecated_grub_regcache_for_register_valid (current_regcache);
1428 }
1429
1430 static void
1431 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
1432 const unsigned char *buf, long len)
1433 {
1434 int i;
1435 switch (endian)
1436 {
1437 case BFD_ENDIAN_BIG:
1438 for (i = 0; i < len; i++)
1439 fprintf_unfiltered (file, "%02x", buf[i]);
1440 break;
1441 case BFD_ENDIAN_LITTLE:
1442 for (i = len - 1; i >= 0; i--)
1443 fprintf_unfiltered (file, "%02x", buf[i]);
1444 break;
1445 default:
1446 internal_error (__FILE__, __LINE__, "Bad switch");
1447 }
1448 }
1449
1450 enum regcache_dump_what
1451 {
1452 regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
1453 };
1454
1455 static void
1456 regcache_dump (struct regcache *regcache, struct ui_file *file,
1457 enum regcache_dump_what what_to_dump)
1458 {
1459 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1460 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1461 struct reggroup *const *groups = reggroups (gdbarch);
1462 int regnum;
1463 int footnote_nr = 0;
1464 int footnote_register_size = 0;
1465 int footnote_register_offset = 0;
1466 int footnote_register_type_name_null = 0;
1467 long register_offset = 0;
1468 unsigned char buf[MAX_REGISTER_SIZE];
1469
1470 #if 0
1471 fprintf_unfiltered (file, "legacy_p %d\n", regcache->descr->legacy_p);
1472 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1473 regcache->descr->nr_raw_registers);
1474 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1475 regcache->descr->nr_cooked_registers);
1476 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1477 regcache->descr->sizeof_raw_registers);
1478 fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
1479 regcache->descr->sizeof_raw_register_valid_p);
1480 fprintf_unfiltered (file, "NUM_REGS %d\n", NUM_REGS);
1481 fprintf_unfiltered (file, "NUM_PSEUDO_REGS %d\n", NUM_PSEUDO_REGS);
1482 #endif
1483
1484 gdb_assert (regcache->descr->nr_cooked_registers
1485 == (NUM_REGS + NUM_PSEUDO_REGS));
1486
1487 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1488 {
1489 /* Name. */
1490 if (regnum < 0)
1491 fprintf_unfiltered (file, " %-10s", "Name");
1492 else
1493 {
1494 const char *p = REGISTER_NAME (regnum);
1495 if (p == NULL)
1496 p = "";
1497 else if (p[0] == '\0')
1498 p = "''";
1499 fprintf_unfiltered (file, " %-10s", p);
1500 }
1501
1502 /* Number. */
1503 if (regnum < 0)
1504 fprintf_unfiltered (file, " %4s", "Nr");
1505 else
1506 fprintf_unfiltered (file, " %4d", regnum);
1507
1508 /* Relative number. */
1509 if (regnum < 0)
1510 fprintf_unfiltered (file, " %4s", "Rel");
1511 else if (regnum < NUM_REGS)
1512 fprintf_unfiltered (file, " %4d", regnum);
1513 else
1514 fprintf_unfiltered (file, " %4d", (regnum - NUM_REGS));
1515
1516 /* Offset. */
1517 if (regnum < 0)
1518 fprintf_unfiltered (file, " %6s ", "Offset");
1519 else
1520 {
1521 fprintf_unfiltered (file, " %6ld",
1522 regcache->descr->register_offset[regnum]);
1523 if (register_offset != regcache->descr->register_offset[regnum]
1524 || register_offset != REGISTER_BYTE (regnum)
1525 || (regnum > 0
1526 && (regcache->descr->register_offset[regnum]
1527 != (regcache->descr->register_offset[regnum - 1]
1528 + regcache->descr->sizeof_register[regnum - 1])))
1529 )
1530 {
1531 if (!footnote_register_offset)
1532 footnote_register_offset = ++footnote_nr;
1533 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1534 }
1535 else
1536 fprintf_unfiltered (file, " ");
1537 register_offset = (regcache->descr->register_offset[regnum]
1538 + regcache->descr->sizeof_register[regnum]);
1539 }
1540
1541 /* Size. */
1542 if (regnum < 0)
1543 fprintf_unfiltered (file, " %5s ", "Size");
1544 else
1545 {
1546 fprintf_unfiltered (file, " %5ld",
1547 regcache->descr->sizeof_register[regnum]);
1548 if ((regcache->descr->sizeof_register[regnum]
1549 != REGISTER_RAW_SIZE (regnum))
1550 || (regcache->descr->sizeof_register[regnum]
1551 != REGISTER_VIRTUAL_SIZE (regnum))
1552 || (regcache->descr->sizeof_register[regnum]
1553 != TYPE_LENGTH (register_type (regcache->descr->gdbarch,
1554 regnum)))
1555 )
1556 {
1557 if (!footnote_register_size)
1558 footnote_register_size = ++footnote_nr;
1559 fprintf_unfiltered (file, "*%d", footnote_register_size);
1560 }
1561 else
1562 fprintf_unfiltered (file, " ");
1563 }
1564
1565 /* Type. */
1566 {
1567 const char *t;
1568 if (regnum < 0)
1569 t = "Type";
1570 else
1571 {
1572 static const char blt[] = "builtin_type";
1573 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1574 if (t == NULL)
1575 {
1576 char *n;
1577 if (!footnote_register_type_name_null)
1578 footnote_register_type_name_null = ++footnote_nr;
1579 xasprintf (&n, "*%d", footnote_register_type_name_null);
1580 make_cleanup (xfree, n);
1581 t = n;
1582 }
1583 /* Chop a leading builtin_type. */
1584 if (strncmp (t, blt, strlen (blt)) == 0)
1585 t += strlen (blt);
1586 }
1587 fprintf_unfiltered (file, " %-15s", t);
1588 }
1589
1590 /* Leading space always present. */
1591 fprintf_unfiltered (file, " ");
1592
1593 /* Value, raw. */
1594 if (what_to_dump == regcache_dump_raw)
1595 {
1596 if (regnum < 0)
1597 fprintf_unfiltered (file, "Raw value");
1598 else if (regnum >= regcache->descr->nr_raw_registers)
1599 fprintf_unfiltered (file, "<cooked>");
1600 else if (!regcache_valid_p (regcache, regnum))
1601 fprintf_unfiltered (file, "<invalid>");
1602 else
1603 {
1604 regcache_raw_read (regcache, regnum, buf);
1605 fprintf_unfiltered (file, "0x");
1606 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
1607 REGISTER_RAW_SIZE (regnum));
1608 }
1609 }
1610
1611 /* Value, cooked. */
1612 if (what_to_dump == regcache_dump_cooked)
1613 {
1614 if (regnum < 0)
1615 fprintf_unfiltered (file, "Cooked value");
1616 else
1617 {
1618 regcache_cooked_read (regcache, regnum, buf);
1619 fprintf_unfiltered (file, "0x");
1620 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
1621 REGISTER_VIRTUAL_SIZE (regnum));
1622 }
1623 }
1624
1625 /* Group members. */
1626 if (what_to_dump == regcache_dump_groups)
1627 {
1628 if (regnum < 0)
1629 fprintf_unfiltered (file, "Groups");
1630 else
1631 {
1632 int i;
1633 const char *sep = "";
1634 for (i = 0; groups[i] != NULL; i++)
1635 {
1636 if (gdbarch_register_reggroup_p (gdbarch, regnum, groups[i]))
1637 {
1638 fprintf_unfiltered (file, "%s%s", sep, reggroup_name (groups[i]));
1639 sep = ",";
1640 }
1641 }
1642 }
1643 }
1644
1645 fprintf_unfiltered (file, "\n");
1646 }
1647
1648 if (footnote_register_size)
1649 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1650 footnote_register_size);
1651 if (footnote_register_offset)
1652 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1653 footnote_register_offset);
1654 if (footnote_register_type_name_null)
1655 fprintf_unfiltered (file,
1656 "*%d: Register type's name NULL.\n",
1657 footnote_register_type_name_null);
1658 do_cleanups (cleanups);
1659 }
1660
1661 static void
1662 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1663 {
1664 if (args == NULL)
1665 regcache_dump (current_regcache, gdb_stdout, what_to_dump);
1666 else
1667 {
1668 struct ui_file *file = gdb_fopen (args, "w");
1669 if (file == NULL)
1670 perror_with_name ("maintenance print architecture");
1671 regcache_dump (current_regcache, file, what_to_dump);
1672 ui_file_delete (file);
1673 }
1674 }
1675
1676 static void
1677 maintenance_print_registers (char *args, int from_tty)
1678 {
1679 regcache_print (args, regcache_dump_none);
1680 }
1681
1682 static void
1683 maintenance_print_raw_registers (char *args, int from_tty)
1684 {
1685 regcache_print (args, regcache_dump_raw);
1686 }
1687
1688 static void
1689 maintenance_print_cooked_registers (char *args, int from_tty)
1690 {
1691 regcache_print (args, regcache_dump_cooked);
1692 }
1693
1694 static void
1695 maintenance_print_register_groups (char *args, int from_tty)
1696 {
1697 regcache_print (args, regcache_dump_groups);
1698 }
1699
1700 void
1701 _initialize_regcache (void)
1702 {
1703 regcache_descr_handle = register_gdbarch_data (init_regcache_descr,
1704 xfree_regcache_descr);
1705 REGISTER_GDBARCH_SWAP (current_regcache);
1706 register_gdbarch_swap (&deprecated_registers, sizeof (deprecated_registers), NULL);
1707 register_gdbarch_swap (&deprecated_register_valid, sizeof (deprecated_register_valid), NULL);
1708 register_gdbarch_swap (NULL, 0, build_regcache);
1709
1710 add_com ("flushregs", class_maintenance, reg_flush_command,
1711 "Force gdb to flush its register cache (maintainer command)");
1712
1713 /* Initialize the thread/process associated with the current set of
1714 registers. For now, -1 is special, and means `no current process'. */
1715 registers_ptid = pid_to_ptid (-1);
1716
1717 add_cmd ("registers", class_maintenance,
1718 maintenance_print_registers,
1719 "Print the internal register configuration.\
1720 Takes an optional file parameter.",
1721 &maintenanceprintlist);
1722 add_cmd ("raw-registers", class_maintenance,
1723 maintenance_print_raw_registers,
1724 "Print the internal register configuration including raw values.\
1725 Takes an optional file parameter.",
1726 &maintenanceprintlist);
1727 add_cmd ("cooked-registers", class_maintenance,
1728 maintenance_print_cooked_registers,
1729 "Print the internal register configuration including cooked values.\
1730 Takes an optional file parameter.",
1731 &maintenanceprintlist);
1732 add_cmd ("register-groups", class_maintenance,
1733 maintenance_print_register_groups,
1734 "Print the internal register configuration including each register's group.\
1735 Takes an optional file parameter.",
1736 &maintenanceprintlist);
1737
1738 }
This page took 0.064951 seconds and 4 git commands to generate.