* remote.c (remote_protocol_e, remote_protocol_E): Define.
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbarch.h"
26 #include "gdbcmd.h"
27 #include "regcache.h"
28 #include "gdb_assert.h"
29
30 /*
31 * DATA STRUCTURE
32 *
33 * Here is the actual register cache.
34 */
35
36 /* NOTE: this is a write-through cache. There is no "dirty" bit for
37 recording if the register values have been changed (eg. by the
38 user). Therefore all registers must be written back to the
39 target when appropriate. */
40
41 /* REGISTERS contains the cached register values (in target byte order). */
42
43 char *registers;
44
45 /* REGISTER_VALID is 0 if the register needs to be fetched,
46 1 if it has been fetched, and
47 -1 if the register value was not available.
48 "Not available" means don't try to fetch it again. */
49
50 signed char *register_valid;
51
52 /* The thread/process associated with the current set of registers.
53 For now, -1 is special, and means `no current process'. */
54
55 static int registers_pid = -1;
56
57 /*
58 * FUNCTIONS:
59 */
60
61 /* REGISTER_CACHED()
62
63 Returns 0 if the value is not in the cache (needs fetch).
64 >0 if the value is in the cache.
65 <0 if the value is permanently unavailable (don't ask again). */
66
67 int
68 register_cached (int regnum)
69 {
70 return register_valid[regnum];
71 }
72
73 /* Record that REGNUM's value is cached if STATE is >0, uncached but
74 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
75
76 void
77 set_register_cached (int regnum, int state)
78 {
79 register_valid[regnum] = state;
80 }
81
82 /* REGISTER_CHANGED
83
84 invalidate a single register REGNUM in the cache */
85 void
86 register_changed (int regnum)
87 {
88 set_register_cached (regnum, 0);
89 }
90
91 /* If REGNUM >= 0, return a pointer to register REGNUM's cache buffer area,
92 else return a pointer to the start of the cache buffer. */
93
94 char *
95 register_buffer (int regnum)
96 {
97 if (regnum < 0)
98 return registers;
99 else
100 return &registers[REGISTER_BYTE (regnum)];
101 }
102
103 /* Return whether register REGNUM is a real register. */
104
105 static int
106 real_register (int regnum)
107 {
108 return regnum >= 0 && regnum < NUM_REGS;
109 }
110
111 /* Return whether register REGNUM is a pseudo register. */
112
113 static int
114 pseudo_register (int regnum)
115 {
116 return regnum >= NUM_REGS && regnum < NUM_REGS + NUM_PSEUDO_REGS;
117 }
118
119 /* Fetch register REGNUM into the cache. */
120
121 static void
122 fetch_register (int regnum)
123 {
124 if (real_register (regnum))
125 target_fetch_registers (regnum);
126 else if (pseudo_register (regnum))
127 FETCH_PSEUDO_REGISTER (regnum);
128 }
129
130 /* Write register REGNUM cached value to the target. */
131
132 static void
133 store_register (int regnum)
134 {
135 if (real_register (regnum))
136 target_store_registers (regnum);
137 else if (pseudo_register (regnum))
138 STORE_PSEUDO_REGISTER (regnum);
139 }
140
141 /* Low level examining and depositing of registers.
142
143 The caller is responsible for making sure that the inferior is
144 stopped before calling the fetching routines, or it will get
145 garbage. (a change from GDB version 3, in which the caller got the
146 value from the last stop). */
147
148 /* REGISTERS_CHANGED ()
149
150 Indicate that registers may have changed, so invalidate the cache. */
151
152 void
153 registers_changed (void)
154 {
155 int i;
156
157 registers_pid = -1;
158
159 /* Force cleanup of any alloca areas if using C alloca instead of
160 a builtin alloca. This particular call is used to clean up
161 areas allocated by low level target code which may build up
162 during lengthy interactions between gdb and the target before
163 gdb gives control to the user (ie watchpoints). */
164 alloca (0);
165
166 for (i = 0; i < NUM_REGS; i++)
167 set_register_cached (i, 0);
168
169 /* Assume that if all the hardware regs have changed,
170 then so have the pseudo-registers. */
171 for (i = NUM_REGS; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
172 set_register_cached (i, 0);
173
174 if (registers_changed_hook)
175 registers_changed_hook ();
176 }
177
178 /* REGISTERS_FETCHED ()
179
180 Indicate that all registers have been fetched, so mark them all valid. */
181
182
183 void
184 registers_fetched (void)
185 {
186 int i;
187
188 for (i = 0; i < NUM_REGS; i++)
189 set_register_cached (i, 1);
190 /* Do not assume that the pseudo-regs have also been fetched.
191 Fetching all real regs might not account for all pseudo-regs. */
192 }
193
194 /* read_register_bytes and write_register_bytes are generally a *BAD*
195 idea. They are inefficient because they need to check for partial
196 updates, which can only be done by scanning through all of the
197 registers and seeing if the bytes that are being read/written fall
198 inside of an invalid register. [The main reason this is necessary
199 is that register sizes can vary, so a simple index won't suffice.]
200 It is far better to call read_register_gen and write_register_gen
201 if you want to get at the raw register contents, as it only takes a
202 regnum as an argument, and therefore can't do a partial register
203 update.
204
205 Prior to the recent fixes to check for partial updates, both read
206 and write_register_bytes always checked to see if any registers
207 were stale, and then called target_fetch_registers (-1) to update
208 the whole set. This caused really slowed things down for remote
209 targets. */
210
211 /* Copy INLEN bytes of consecutive data from registers
212 starting with the INREGBYTE'th byte of register data
213 into memory at MYADDR. */
214
215 void
216 read_register_bytes (int in_start, char *in_buf, int in_len)
217 {
218 int in_end = in_start + in_len;
219 int regnum;
220 char *reg_buf = alloca (MAX_REGISTER_RAW_SIZE);
221
222 /* See if we are trying to read bytes from out-of-date registers. If so,
223 update just those registers. */
224
225 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
226 {
227 int reg_start;
228 int reg_end;
229 int reg_len;
230 int start;
231 int end;
232 int byte;
233
234 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
235 continue;
236
237 reg_start = REGISTER_BYTE (regnum);
238 reg_len = REGISTER_RAW_SIZE (regnum);
239 reg_end = reg_start + reg_len;
240
241 if (reg_end <= in_start || in_end <= reg_start)
242 /* The range the user wants to read doesn't overlap with regnum. */
243 continue;
244
245 /* Force the cache to fetch the entire register. */
246 read_register_gen (regnum, reg_buf);
247
248 /* Legacy note: This function, for some reason, allows a NULL
249 input buffer. If the buffer is NULL, the registers are still
250 fetched, just the final transfer is skipped. */
251 if (in_buf == NULL)
252 continue;
253
254 /* start = max (reg_start, in_start) */
255 if (reg_start > in_start)
256 start = reg_start;
257 else
258 start = in_start;
259
260 /* end = min (reg_end, in_end) */
261 if (reg_end < in_end)
262 end = reg_end;
263 else
264 end = in_end;
265
266 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
267 for (byte = start; byte < end; byte++)
268 {
269 in_buf[byte - in_start] = reg_buf[byte - reg_start];
270 }
271 }
272 }
273
274 /* Read register REGNUM into memory at MYADDR, which must be large
275 enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the
276 register is known to be the size of a CORE_ADDR or smaller,
277 read_register can be used instead. */
278
279 static void
280 legacy_read_register_gen (int regnum, char *myaddr)
281 {
282 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
283 if (registers_pid != inferior_pid)
284 {
285 registers_changed ();
286 registers_pid = inferior_pid;
287 }
288
289 if (!register_cached (regnum))
290 fetch_register (regnum);
291
292 memcpy (myaddr, register_buffer (regnum),
293 REGISTER_RAW_SIZE (regnum));
294 }
295
296 void
297 regcache_read (int rawnum, char *buf)
298 {
299 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
300 /* For moment, just use underlying legacy code. Ulgh!!! */
301 legacy_read_register_gen (rawnum, buf);
302 }
303
304 void
305 read_register_gen (int regnum, char *buf)
306 {
307 if (! gdbarch_register_read_p (current_gdbarch))
308 {
309 legacy_read_register_gen (regnum, buf);
310 return;
311 }
312 gdbarch_register_read (current_gdbarch, regnum, buf);
313 }
314
315
316 /* Write register REGNUM at MYADDR to the target. MYADDR points at
317 REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */
318
319 /* Registers we shouldn't try to store. */
320 #if !defined (CANNOT_STORE_REGISTER)
321 #define CANNOT_STORE_REGISTER(regnum) 0
322 #endif
323
324 static void
325 legacy_write_register_gen (int regnum, char *myaddr)
326 {
327 int size;
328 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
329
330 /* On the sparc, writing %g0 is a no-op, so we don't even want to
331 change the registers array if something writes to this register. */
332 if (CANNOT_STORE_REGISTER (regnum))
333 return;
334
335 if (registers_pid != inferior_pid)
336 {
337 registers_changed ();
338 registers_pid = inferior_pid;
339 }
340
341 size = REGISTER_RAW_SIZE (regnum);
342
343 /* If we have a valid copy of the register, and new value == old value,
344 then don't bother doing the actual store. */
345
346 if (register_cached (regnum)
347 && memcmp (register_buffer (regnum), myaddr, size) == 0)
348 return;
349
350 if (real_register (regnum))
351 target_prepare_to_store ();
352
353 memcpy (register_buffer (regnum), myaddr, size);
354
355 set_register_cached (regnum, 1);
356 store_register (regnum);
357 }
358
359 void
360 regcache_write (int rawnum, char *buf)
361 {
362 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
363 /* For moment, just use underlying legacy code. Ulgh!!! */
364 legacy_write_register_gen (rawnum, buf);
365 }
366
367 void
368 write_register_gen (int regnum, char *buf)
369 {
370 if (! gdbarch_register_write_p (current_gdbarch))
371 {
372 legacy_write_register_gen (regnum, buf);
373 return;
374 }
375 gdbarch_register_write (current_gdbarch, regnum, buf);
376 }
377
378 /* Copy INLEN bytes of consecutive data from memory at MYADDR
379 into registers starting with the MYREGSTART'th byte of register data. */
380
381 void
382 write_register_bytes (int myregstart, char *myaddr, int inlen)
383 {
384 int myregend = myregstart + inlen;
385 int regnum;
386
387 target_prepare_to_store ();
388
389 /* Scan through the registers updating any that are covered by the
390 range myregstart<=>myregend using write_register_gen, which does
391 nice things like handling threads, and avoiding updates when the
392 new and old contents are the same. */
393
394 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
395 {
396 int regstart, regend;
397
398 regstart = REGISTER_BYTE (regnum);
399 regend = regstart + REGISTER_RAW_SIZE (regnum);
400
401 /* Is this register completely outside the range the user is writing? */
402 if (myregend <= regstart || regend <= myregstart)
403 /* do nothing */ ;
404
405 /* Is this register completely within the range the user is writing? */
406 else if (myregstart <= regstart && regend <= myregend)
407 write_register_gen (regnum, myaddr + (regstart - myregstart));
408
409 /* The register partially overlaps the range being written. */
410 else
411 {
412 char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE);
413 /* What's the overlap between this register's bytes and
414 those the caller wants to write? */
415 int overlapstart = max (regstart, myregstart);
416 int overlapend = min (regend, myregend);
417
418 /* We may be doing a partial update of an invalid register.
419 Update it from the target before scribbling on it. */
420 read_register_gen (regnum, regbuf);
421
422 memcpy (registers + overlapstart,
423 myaddr + (overlapstart - myregstart),
424 overlapend - overlapstart);
425
426 store_register (regnum);
427 }
428 }
429 }
430
431
432 /* Return the contents of register REGNUM as an unsigned integer. */
433
434 ULONGEST
435 read_register (int regnum)
436 {
437 char *buf = alloca (REGISTER_RAW_SIZE (regnum));
438 read_register_gen (regnum, buf);
439 return (extract_unsigned_integer (buf, REGISTER_RAW_SIZE (regnum)));
440 }
441
442 ULONGEST
443 read_register_pid (int regnum, int pid)
444 {
445 int save_pid;
446 CORE_ADDR retval;
447
448 if (pid == inferior_pid)
449 return read_register (regnum);
450
451 save_pid = inferior_pid;
452
453 inferior_pid = pid;
454
455 retval = read_register (regnum);
456
457 inferior_pid = save_pid;
458
459 return retval;
460 }
461
462 /* Return the contents of register REGNUM as a signed integer. */
463
464 LONGEST
465 read_signed_register (int regnum)
466 {
467 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
468 read_register_gen (regnum, buf);
469 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
470 }
471
472 LONGEST
473 read_signed_register_pid (int regnum, int pid)
474 {
475 int save_pid;
476 LONGEST retval;
477
478 if (pid == inferior_pid)
479 return read_signed_register (regnum);
480
481 save_pid = inferior_pid;
482
483 inferior_pid = pid;
484
485 retval = read_signed_register (regnum);
486
487 inferior_pid = save_pid;
488
489 return retval;
490 }
491
492 /* Store VALUE into the raw contents of register number REGNUM. */
493
494 void
495 write_register (int regnum, LONGEST val)
496 {
497 void *buf;
498 int size;
499 size = REGISTER_RAW_SIZE (regnum);
500 buf = alloca (size);
501 store_signed_integer (buf, size, (LONGEST) val);
502 write_register_gen (regnum, buf);
503 }
504
505 void
506 write_register_pid (int regnum, CORE_ADDR val, int pid)
507 {
508 int save_pid;
509
510 if (pid == inferior_pid)
511 {
512 write_register (regnum, val);
513 return;
514 }
515
516 save_pid = inferior_pid;
517
518 inferior_pid = pid;
519
520 write_register (regnum, val);
521
522 inferior_pid = save_pid;
523 }
524
525 /* SUPPLY_REGISTER()
526
527 Record that register REGNUM contains VAL. This is used when the
528 value is obtained from the inferior or core dump, so there is no
529 need to store the value there.
530
531 If VAL is a NULL pointer, then it's probably an unsupported register.
532 We just set its value to all zeros. We might want to record this
533 fact, and report it to the users of read_register and friends. */
534
535 void
536 supply_register (int regnum, char *val)
537 {
538 #if 1
539 if (registers_pid != inferior_pid)
540 {
541 registers_changed ();
542 registers_pid = inferior_pid;
543 }
544 #endif
545
546 set_register_cached (regnum, 1);
547 if (val)
548 memcpy (register_buffer (regnum), val,
549 REGISTER_RAW_SIZE (regnum));
550 else
551 memset (register_buffer (regnum), '\000',
552 REGISTER_RAW_SIZE (regnum));
553
554 /* On some architectures, e.g. HPPA, there are a few stray bits in
555 some registers, that the rest of the code would like to ignore. */
556
557 /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is
558 going to be deprecated. Instead architectures will leave the raw
559 register value as is and instead clean things up as they pass
560 through the method gdbarch_register_read() clean up the
561 values. */
562
563 #ifdef CLEAN_UP_REGISTER_VALUE
564 CLEAN_UP_REGISTER_VALUE (regnum, register_buffer (regnum));
565 #endif
566 }
567
568 /* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc.
569 Special handling for registers PC, SP, and FP. */
570
571 /* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(),
572 read_pc_pid(), read_pc(), generic_target_write_pc(),
573 write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(),
574 generic_target_write_sp(), write_sp(), generic_target_read_fp(),
575 read_fp(), generic_target_write_fp(), write_fp will eventually be
576 moved out of the reg-cache into either frame.[hc] or to the
577 multi-arch framework. The are not part of the raw register cache. */
578
579 /* This routine is getting awfully cluttered with #if's. It's probably
580 time to turn this into READ_PC and define it in the tm.h file.
581 Ditto for write_pc.
582
583 1999-06-08: The following were re-written so that it assumes the
584 existence of a TARGET_READ_PC et.al. macro. A default generic
585 version of that macro is made available where needed.
586
587 Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
588 by the multi-arch framework, it will eventually be possible to
589 eliminate the intermediate read_pc_pid(). The client would call
590 TARGET_READ_PC directly. (cagney). */
591
592 CORE_ADDR
593 generic_target_read_pc (int pid)
594 {
595 #ifdef PC_REGNUM
596 if (PC_REGNUM >= 0)
597 {
598 CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
599 return pc_val;
600 }
601 #endif
602 internal_error (__FILE__, __LINE__,
603 "generic_target_read_pc");
604 return 0;
605 }
606
607 CORE_ADDR
608 read_pc_pid (int pid)
609 {
610 int saved_inferior_pid;
611 CORE_ADDR pc_val;
612
613 /* In case pid != inferior_pid. */
614 saved_inferior_pid = inferior_pid;
615 inferior_pid = pid;
616
617 pc_val = TARGET_READ_PC (pid);
618
619 inferior_pid = saved_inferior_pid;
620 return pc_val;
621 }
622
623 CORE_ADDR
624 read_pc (void)
625 {
626 return read_pc_pid (inferior_pid);
627 }
628
629 void
630 generic_target_write_pc (CORE_ADDR pc, int pid)
631 {
632 #ifdef PC_REGNUM
633 if (PC_REGNUM >= 0)
634 write_register_pid (PC_REGNUM, pc, pid);
635 if (NPC_REGNUM >= 0)
636 write_register_pid (NPC_REGNUM, pc + 4, pid);
637 if (NNPC_REGNUM >= 0)
638 write_register_pid (NNPC_REGNUM, pc + 8, pid);
639 #else
640 internal_error (__FILE__, __LINE__,
641 "generic_target_write_pc");
642 #endif
643 }
644
645 void
646 write_pc_pid (CORE_ADDR pc, int pid)
647 {
648 int saved_inferior_pid;
649
650 /* In case pid != inferior_pid. */
651 saved_inferior_pid = inferior_pid;
652 inferior_pid = pid;
653
654 TARGET_WRITE_PC (pc, pid);
655
656 inferior_pid = saved_inferior_pid;
657 }
658
659 void
660 write_pc (CORE_ADDR pc)
661 {
662 write_pc_pid (pc, inferior_pid);
663 }
664
665 /* Cope with strage ways of getting to the stack and frame pointers */
666
667 CORE_ADDR
668 generic_target_read_sp (void)
669 {
670 #ifdef SP_REGNUM
671 if (SP_REGNUM >= 0)
672 return read_register (SP_REGNUM);
673 #endif
674 internal_error (__FILE__, __LINE__,
675 "generic_target_read_sp");
676 }
677
678 CORE_ADDR
679 read_sp (void)
680 {
681 return TARGET_READ_SP ();
682 }
683
684 void
685 generic_target_write_sp (CORE_ADDR val)
686 {
687 #ifdef SP_REGNUM
688 if (SP_REGNUM >= 0)
689 {
690 write_register (SP_REGNUM, val);
691 return;
692 }
693 #endif
694 internal_error (__FILE__, __LINE__,
695 "generic_target_write_sp");
696 }
697
698 void
699 write_sp (CORE_ADDR val)
700 {
701 TARGET_WRITE_SP (val);
702 }
703
704 CORE_ADDR
705 generic_target_read_fp (void)
706 {
707 #ifdef FP_REGNUM
708 if (FP_REGNUM >= 0)
709 return read_register (FP_REGNUM);
710 #endif
711 internal_error (__FILE__, __LINE__,
712 "generic_target_read_fp");
713 }
714
715 CORE_ADDR
716 read_fp (void)
717 {
718 return TARGET_READ_FP ();
719 }
720
721 void
722 generic_target_write_fp (CORE_ADDR val)
723 {
724 #ifdef FP_REGNUM
725 if (FP_REGNUM >= 0)
726 {
727 write_register (FP_REGNUM, val);
728 return;
729 }
730 #endif
731 internal_error (__FILE__, __LINE__,
732 "generic_target_write_fp");
733 }
734
735 void
736 write_fp (CORE_ADDR val)
737 {
738 TARGET_WRITE_FP (val);
739 }
740
741 /* ARGSUSED */
742 static void
743 reg_flush_command (char *command, int from_tty)
744 {
745 /* Force-flush the register cache. */
746 registers_changed ();
747 if (from_tty)
748 printf_filtered ("Register cache flushed.\n");
749 }
750
751
752 static void
753 build_regcache (void)
754 {
755 /* We allocate some extra slop since we do a lot of memcpy's around
756 `registers', and failing-soft is better than failing hard. */
757 int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
758 int sizeof_register_valid =
759 (NUM_REGS + NUM_PSEUDO_REGS) * sizeof (*register_valid);
760 registers = xmalloc (sizeof_registers);
761 memset (registers, 0, sizeof_registers);
762 register_valid = xmalloc (sizeof_register_valid);
763 memset (register_valid, 0, sizeof_register_valid);
764 }
765
766 void
767 _initialize_regcache (void)
768 {
769 build_regcache ();
770
771 register_gdbarch_swap (&registers, sizeof (registers), NULL);
772 register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
773 register_gdbarch_swap (NULL, 0, build_regcache);
774
775 add_com ("flushregs", class_maintenance, reg_flush_command,
776 "Force gdb to flush its register cache (maintainer command)");
777 }
This page took 0.053635 seconds and 4 git commands to generate.