2004-08-02 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000,
4 2001, 2002, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbarch.h"
27 #include "gdbcmd.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdbcmd.h" /* For maintenanceprintlist. */
33 #include "observer.h"
34
35 /*
36 * DATA STRUCTURE
37 *
38 * Here is the actual register cache.
39 */
40
41 /* Per-architecture object describing the layout of a register cache.
42 Computed once when the architecture is created */
43
44 struct gdbarch_data *regcache_descr_handle;
45
46 struct regcache_descr
47 {
48 /* The architecture this descriptor belongs to. */
49 struct gdbarch *gdbarch;
50
51 /* The raw register cache. Each raw (or hard) register is supplied
52 by the target interface. The raw cache should not contain
53 redundant information - if the PC is constructed from two
54 registers then those regigisters and not the PC lives in the raw
55 cache. */
56 int nr_raw_registers;
57 long sizeof_raw_registers;
58 long sizeof_raw_register_valid_p;
59
60 /* The cooked register space. Each cooked register in the range
61 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
62 register. The remaining [NR_RAW_REGISTERS
63 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
64 both raw registers and memory by the architecture methods
65 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
66 int nr_cooked_registers;
67 long sizeof_cooked_registers;
68 long sizeof_cooked_register_valid_p;
69
70 /* Offset and size (in 8 bit bytes), of reach register in the
71 register cache. All registers (including those in the range
72 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
73 Assigning all registers an offset makes it possible to keep
74 legacy code, such as that found in read_register_bytes() and
75 write_register_bytes() working. */
76 long *register_offset;
77 long *sizeof_register;
78
79 /* Cached table containing the type of each register. */
80 struct type **register_type;
81 };
82
83 static void *
84 init_regcache_descr (struct gdbarch *gdbarch)
85 {
86 int i;
87 struct regcache_descr *descr;
88 gdb_assert (gdbarch != NULL);
89
90 /* Create an initial, zero filled, table. */
91 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
92 descr->gdbarch = gdbarch;
93
94 /* Total size of the register space. The raw registers are mapped
95 directly onto the raw register cache while the pseudo's are
96 either mapped onto raw-registers or memory. */
97 descr->nr_cooked_registers = NUM_REGS + NUM_PSEUDO_REGS;
98 descr->sizeof_cooked_register_valid_p = NUM_REGS + NUM_PSEUDO_REGS;
99
100 /* Fill in a table of register types. */
101 descr->register_type
102 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *);
103 for (i = 0; i < descr->nr_cooked_registers; i++)
104 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
105
106 /* Construct a strictly RAW register cache. Don't allow pseudo's
107 into the register cache. */
108 descr->nr_raw_registers = NUM_REGS;
109
110 /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
111 array. This pretects GDB from erant code that accesses elements
112 of the global register_valid_p[] array in the range [NUM_REGS
113 .. NUM_REGS + NUM_PSEUDO_REGS). */
114 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
115
116 /* Lay out the register cache.
117
118 NOTE: cagney/2002-05-22: Only register_type() is used when
119 constructing the register cache. It is assumed that the
120 register's raw size, virtual size and type length are all the
121 same. */
122
123 {
124 long offset = 0;
125 descr->sizeof_register
126 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
127 descr->register_offset
128 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
129 for (i = 0; i < descr->nr_cooked_registers; i++)
130 {
131 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
132 descr->register_offset[i] = offset;
133 offset += descr->sizeof_register[i];
134 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
135 }
136 /* Set the real size of the register cache buffer. */
137 descr->sizeof_cooked_registers = offset;
138 }
139
140 /* FIXME: cagney/2002-05-22: Should only need to allocate space for
141 the raw registers. Unfortunately some code still accesses the
142 register array directly using the global registers[]. Until that
143 code has been purged, play safe and over allocating the register
144 buffer. Ulgh! */
145 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
146
147 return descr;
148 }
149
150 static struct regcache_descr *
151 regcache_descr (struct gdbarch *gdbarch)
152 {
153 return gdbarch_data (gdbarch, regcache_descr_handle);
154 }
155
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
159 struct type *
160 register_type (struct gdbarch *gdbarch, int regnum)
161 {
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
164 return descr->register_type[regnum];
165 }
166
167 /* Utility functions returning useful register attributes stored in
168 the regcache descr. */
169
170 int
171 register_size (struct gdbarch *gdbarch, int regnum)
172 {
173 struct regcache_descr *descr = regcache_descr (gdbarch);
174 int size;
175 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
176 size = descr->sizeof_register[regnum];
177 return size;
178 }
179
180 /* The register cache for storing raw register values. */
181
182 struct regcache
183 {
184 struct regcache_descr *descr;
185 /* The register buffers. A read-only register cache can hold the
186 full [0 .. NUM_REGS + NUM_PSEUDO_REGS) while a read/write
187 register cache can only hold [0 .. NUM_REGS). */
188 char *registers;
189 char *register_valid_p;
190 /* Is this a read-only cache? A read-only cache is used for saving
191 the target's register state (e.g, across an inferior function
192 call or just before forcing a function return). A read-only
193 cache can only be updated via the methods regcache_dup() and
194 regcache_cpy(). The actual contents are determined by the
195 reggroup_save and reggroup_restore methods. */
196 int readonly_p;
197 };
198
199 struct regcache *
200 regcache_xmalloc (struct gdbarch *gdbarch)
201 {
202 struct regcache_descr *descr;
203 struct regcache *regcache;
204 gdb_assert (gdbarch != NULL);
205 descr = regcache_descr (gdbarch);
206 regcache = XMALLOC (struct regcache);
207 regcache->descr = descr;
208 regcache->registers
209 = XCALLOC (descr->sizeof_raw_registers, char);
210 regcache->register_valid_p
211 = XCALLOC (descr->sizeof_raw_register_valid_p, char);
212 regcache->readonly_p = 1;
213 return regcache;
214 }
215
216 void
217 regcache_xfree (struct regcache *regcache)
218 {
219 if (regcache == NULL)
220 return;
221 xfree (regcache->registers);
222 xfree (regcache->register_valid_p);
223 xfree (regcache);
224 }
225
226 static void
227 do_regcache_xfree (void *data)
228 {
229 regcache_xfree (data);
230 }
231
232 struct cleanup *
233 make_cleanup_regcache_xfree (struct regcache *regcache)
234 {
235 return make_cleanup (do_regcache_xfree, regcache);
236 }
237
238 /* Return REGCACHE's architecture. */
239
240 struct gdbarch *
241 get_regcache_arch (const struct regcache *regcache)
242 {
243 return regcache->descr->gdbarch;
244 }
245
246 /* Return a pointer to register REGNUM's buffer cache. */
247
248 static char *
249 register_buffer (const struct regcache *regcache, int regnum)
250 {
251 return regcache->registers + regcache->descr->register_offset[regnum];
252 }
253
254 void
255 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
256 void *src)
257 {
258 struct gdbarch *gdbarch = dst->descr->gdbarch;
259 char buf[MAX_REGISTER_SIZE];
260 int regnum;
261 /* The DST should be `read-only', if it wasn't then the save would
262 end up trying to write the register values back out to the
263 target. */
264 gdb_assert (dst->readonly_p);
265 /* Clear the dest. */
266 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
267 memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
268 /* Copy over any registers (identified by their membership in the
269 save_reggroup) and mark them as valid. The full [0 .. NUM_REGS +
270 NUM_PSEUDO_REGS) range is checked since some architectures need
271 to save/restore `cooked' registers that live in memory. */
272 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
273 {
274 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
275 {
276 int valid = cooked_read (src, regnum, buf);
277 if (valid)
278 {
279 memcpy (register_buffer (dst, regnum), buf,
280 register_size (gdbarch, regnum));
281 dst->register_valid_p[regnum] = 1;
282 }
283 }
284 }
285 }
286
287 void
288 regcache_restore (struct regcache *dst,
289 regcache_cooked_read_ftype *cooked_read,
290 void *src)
291 {
292 struct gdbarch *gdbarch = dst->descr->gdbarch;
293 char buf[MAX_REGISTER_SIZE];
294 int regnum;
295 /* The dst had better not be read-only. If it is, the `restore'
296 doesn't make much sense. */
297 gdb_assert (!dst->readonly_p);
298 /* Copy over any registers, being careful to only restore those that
299 were both saved and need to be restored. The full [0 .. NUM_REGS
300 + NUM_PSEUDO_REGS) range is checked since some architectures need
301 to save/restore `cooked' registers that live in memory. */
302 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
303 {
304 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
305 {
306 int valid = cooked_read (src, regnum, buf);
307 if (valid)
308 regcache_cooked_write (dst, regnum, buf);
309 }
310 }
311 }
312
313 static int
314 do_cooked_read (void *src, int regnum, void *buf)
315 {
316 struct regcache *regcache = src;
317 if (!regcache->register_valid_p[regnum] && regcache->readonly_p)
318 /* Don't even think about fetching a register from a read-only
319 cache when the register isn't yet valid. There isn't a target
320 from which the register value can be fetched. */
321 return 0;
322 regcache_cooked_read (regcache, regnum, buf);
323 return 1;
324 }
325
326
327 void
328 regcache_cpy (struct regcache *dst, struct regcache *src)
329 {
330 int i;
331 char *buf;
332 gdb_assert (src != NULL && dst != NULL);
333 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
334 gdb_assert (src != dst);
335 gdb_assert (src->readonly_p || dst->readonly_p);
336 if (!src->readonly_p)
337 regcache_save (dst, do_cooked_read, src);
338 else if (!dst->readonly_p)
339 regcache_restore (dst, do_cooked_read, src);
340 else
341 regcache_cpy_no_passthrough (dst, src);
342 }
343
344 void
345 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
346 {
347 int i;
348 gdb_assert (src != NULL && dst != NULL);
349 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
350 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
351 move of data into the current_regcache(). Doing this would be
352 silly - it would mean that valid_p would be completely invalid. */
353 gdb_assert (dst != current_regcache);
354 memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
355 memcpy (dst->register_valid_p, src->register_valid_p,
356 dst->descr->sizeof_raw_register_valid_p);
357 }
358
359 struct regcache *
360 regcache_dup (struct regcache *src)
361 {
362 struct regcache *newbuf;
363 gdb_assert (current_regcache != NULL);
364 newbuf = regcache_xmalloc (src->descr->gdbarch);
365 regcache_cpy (newbuf, src);
366 return newbuf;
367 }
368
369 struct regcache *
370 regcache_dup_no_passthrough (struct regcache *src)
371 {
372 struct regcache *newbuf;
373 gdb_assert (current_regcache != NULL);
374 newbuf = regcache_xmalloc (src->descr->gdbarch);
375 regcache_cpy_no_passthrough (newbuf, src);
376 return newbuf;
377 }
378
379 int
380 regcache_valid_p (struct regcache *regcache, int regnum)
381 {
382 gdb_assert (regcache != NULL);
383 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
384 return regcache->register_valid_p[regnum];
385 }
386
387 char *
388 deprecated_grub_regcache_for_registers (struct regcache *regcache)
389 {
390 return regcache->registers;
391 }
392
393 /* Global structure containing the current regcache. */
394 /* FIXME: cagney/2002-05-11: The two global arrays registers[] and
395 deprecated_register_valid[] currently point into this structure. */
396 struct regcache *current_regcache;
397
398 /* NOTE: this is a write-through cache. There is no "dirty" bit for
399 recording if the register values have been changed (eg. by the
400 user). Therefore all registers must be written back to the
401 target when appropriate. */
402
403 /* REGISTERS contains the cached register values (in target byte order). */
404
405 char *deprecated_registers;
406
407 /* DEPRECATED_REGISTER_VALID is 0 if the register needs to be fetched,
408 1 if it has been fetched, and
409 -1 if the register value was not available.
410
411 "Not available" indicates that the target is not not able to supply
412 the register at this state. The register may become available at a
413 later time (after the next resume). This often occures when GDB is
414 manipulating a target that contains only a snapshot of the entire
415 system being debugged - some of the registers in such a system may
416 not have been saved. */
417
418 signed char *deprecated_register_valid;
419
420 /* The thread/process associated with the current set of registers. */
421
422 static ptid_t registers_ptid;
423
424 /*
425 * FUNCTIONS:
426 */
427
428 /* REGISTER_CACHED()
429
430 Returns 0 if the value is not in the cache (needs fetch).
431 >0 if the value is in the cache.
432 <0 if the value is permanently unavailable (don't ask again). */
433
434 int
435 register_cached (int regnum)
436 {
437 return deprecated_register_valid[regnum];
438 }
439
440 /* Record that REGNUM's value is cached if STATE is >0, uncached but
441 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
442
443 void
444 set_register_cached (int regnum, int state)
445 {
446 gdb_assert (regnum >= 0);
447 gdb_assert (regnum < current_regcache->descr->nr_raw_registers);
448 current_regcache->register_valid_p[regnum] = state;
449 }
450
451 /* Observer for the target_changed event. */
452
453 void
454 regcache_observer_target_changed (struct target_ops *target)
455 {
456 registers_changed ();
457 }
458
459 /* Low level examining and depositing of registers.
460
461 The caller is responsible for making sure that the inferior is
462 stopped before calling the fetching routines, or it will get
463 garbage. (a change from GDB version 3, in which the caller got the
464 value from the last stop). */
465
466 /* REGISTERS_CHANGED ()
467
468 Indicate that registers may have changed, so invalidate the cache. */
469
470 void
471 registers_changed (void)
472 {
473 int i;
474
475 registers_ptid = pid_to_ptid (-1);
476
477 /* Force cleanup of any alloca areas if using C alloca instead of
478 a builtin alloca. This particular call is used to clean up
479 areas allocated by low level target code which may build up
480 during lengthy interactions between gdb and the target before
481 gdb gives control to the user (ie watchpoints). */
482 alloca (0);
483
484 for (i = 0; i < current_regcache->descr->nr_raw_registers; i++)
485 set_register_cached (i, 0);
486
487 if (deprecated_registers_changed_hook)
488 deprecated_registers_changed_hook ();
489 }
490
491 /* DEPRECATED_REGISTERS_FETCHED ()
492
493 Indicate that all registers have been fetched, so mark them all valid. */
494
495 /* FIXME: cagney/2001-12-04: This function is DEPRECATED. The target
496 code was blatting the registers[] array and then calling this.
497 Since targets should only be using regcache_raw_supply() the need for
498 this function/hack is eliminated. */
499
500 void
501 deprecated_registers_fetched (void)
502 {
503 int i;
504
505 for (i = 0; i < NUM_REGS; i++)
506 set_register_cached (i, 1);
507 /* Do not assume that the pseudo-regs have also been fetched.
508 Fetching all real regs NEVER accounts for pseudo-regs. */
509 }
510
511 /* deprecated_read_register_bytes and deprecated_write_register_bytes
512 are generally a *BAD* idea. They are inefficient because they need
513 to check for partial updates, which can only be done by scanning
514 through all of the registers and seeing if the bytes that are being
515 read/written fall inside of an invalid register. [The main reason
516 this is necessary is that register sizes can vary, so a simple
517 index won't suffice.] It is far better to call read_register_gen
518 and write_register_gen if you want to get at the raw register
519 contents, as it only takes a regnum as an argument, and therefore
520 can't do a partial register update.
521
522 Prior to the recent fixes to check for partial updates, both read
523 and deprecated_write_register_bytes always checked to see if any
524 registers were stale, and then called target_fetch_registers (-1)
525 to update the whole set. This caused really slowed things down for
526 remote targets. */
527
528 /* Copy INLEN bytes of consecutive data from registers
529 starting with the INREGBYTE'th byte of register data
530 into memory at MYADDR. */
531
532 void
533 deprecated_read_register_bytes (int in_start, char *in_buf, int in_len)
534 {
535 int in_end = in_start + in_len;
536 int regnum;
537 char reg_buf[MAX_REGISTER_SIZE];
538
539 /* See if we are trying to read bytes from out-of-date registers. If so,
540 update just those registers. */
541
542 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
543 {
544 int reg_start;
545 int reg_end;
546 int reg_len;
547 int start;
548 int end;
549 int byte;
550
551 reg_start = DEPRECATED_REGISTER_BYTE (regnum);
552 reg_len = DEPRECATED_REGISTER_RAW_SIZE (regnum);
553 reg_end = reg_start + reg_len;
554
555 if (reg_end <= in_start || in_end <= reg_start)
556 /* The range the user wants to read doesn't overlap with regnum. */
557 continue;
558
559 if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0')
560 /* Force the cache to fetch the entire register. */
561 deprecated_read_register_gen (regnum, reg_buf);
562 else
563 /* Legacy note: even though this register is ``invalid'' we
564 still need to return something. It would appear that some
565 code relies on apparent gaps in the register array also
566 being returned. */
567 /* FIXME: cagney/2001-08-18: This is just silly. It defeats
568 the entire register read/write flow of control. Must
569 resist temptation to return 0xdeadbeef. */
570 memcpy (reg_buf, &deprecated_registers[reg_start], reg_len);
571
572 /* Legacy note: This function, for some reason, allows a NULL
573 input buffer. If the buffer is NULL, the registers are still
574 fetched, just the final transfer is skipped. */
575 if (in_buf == NULL)
576 continue;
577
578 /* start = max (reg_start, in_start) */
579 if (reg_start > in_start)
580 start = reg_start;
581 else
582 start = in_start;
583
584 /* end = min (reg_end, in_end) */
585 if (reg_end < in_end)
586 end = reg_end;
587 else
588 end = in_end;
589
590 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
591 for (byte = start; byte < end; byte++)
592 {
593 in_buf[byte - in_start] = reg_buf[byte - reg_start];
594 }
595 }
596 }
597
598 void
599 regcache_raw_read (struct regcache *regcache, int regnum, void *buf)
600 {
601 gdb_assert (regcache != NULL && buf != NULL);
602 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
603 /* Make certain that the register cache is up-to-date with respect
604 to the current thread. This switching shouldn't be necessary
605 only there is still only one target side register cache. Sigh!
606 On the bright side, at least there is a regcache object. */
607 if (!regcache->readonly_p)
608 {
609 gdb_assert (regcache == current_regcache);
610 if (! ptid_equal (registers_ptid, inferior_ptid))
611 {
612 registers_changed ();
613 registers_ptid = inferior_ptid;
614 }
615 if (!register_cached (regnum))
616 target_fetch_registers (regnum);
617 }
618 /* Copy the value directly into the register cache. */
619 memcpy (buf, register_buffer (regcache, regnum),
620 regcache->descr->sizeof_register[regnum]);
621 }
622
623 void
624 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
625 {
626 char *buf;
627 gdb_assert (regcache != NULL);
628 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
629 buf = alloca (regcache->descr->sizeof_register[regnum]);
630 regcache_raw_read (regcache, regnum, buf);
631 (*val) = extract_signed_integer (buf,
632 regcache->descr->sizeof_register[regnum]);
633 }
634
635 void
636 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
637 ULONGEST *val)
638 {
639 char *buf;
640 gdb_assert (regcache != NULL);
641 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
642 buf = alloca (regcache->descr->sizeof_register[regnum]);
643 regcache_raw_read (regcache, regnum, buf);
644 (*val) = extract_unsigned_integer (buf,
645 regcache->descr->sizeof_register[regnum]);
646 }
647
648 void
649 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
650 {
651 void *buf;
652 gdb_assert (regcache != NULL);
653 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
654 buf = alloca (regcache->descr->sizeof_register[regnum]);
655 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
656 regcache_raw_write (regcache, regnum, buf);
657 }
658
659 void
660 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
661 ULONGEST val)
662 {
663 void *buf;
664 gdb_assert (regcache != NULL);
665 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
666 buf = alloca (regcache->descr->sizeof_register[regnum]);
667 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
668 regcache_raw_write (regcache, regnum, buf);
669 }
670
671 void
672 deprecated_read_register_gen (int regnum, char *buf)
673 {
674 gdb_assert (current_regcache != NULL);
675 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
676 regcache_cooked_read (current_regcache, regnum, buf);
677 }
678
679 void
680 regcache_cooked_read (struct regcache *regcache, int regnum, void *buf)
681 {
682 gdb_assert (regnum >= 0);
683 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
684 if (regnum < regcache->descr->nr_raw_registers)
685 regcache_raw_read (regcache, regnum, buf);
686 else if (regcache->readonly_p
687 && regnum < regcache->descr->nr_cooked_registers
688 && regcache->register_valid_p[regnum])
689 /* Read-only register cache, perhaps the cooked value was cached? */
690 memcpy (buf, register_buffer (regcache, regnum),
691 regcache->descr->sizeof_register[regnum]);
692 else
693 gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
694 regnum, buf);
695 }
696
697 void
698 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
699 LONGEST *val)
700 {
701 char *buf;
702 gdb_assert (regcache != NULL);
703 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
704 buf = alloca (regcache->descr->sizeof_register[regnum]);
705 regcache_cooked_read (regcache, regnum, buf);
706 (*val) = extract_signed_integer (buf,
707 regcache->descr->sizeof_register[regnum]);
708 }
709
710 void
711 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
712 ULONGEST *val)
713 {
714 char *buf;
715 gdb_assert (regcache != NULL);
716 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
717 buf = alloca (regcache->descr->sizeof_register[regnum]);
718 regcache_cooked_read (regcache, regnum, buf);
719 (*val) = extract_unsigned_integer (buf,
720 regcache->descr->sizeof_register[regnum]);
721 }
722
723 void
724 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
725 LONGEST val)
726 {
727 void *buf;
728 gdb_assert (regcache != NULL);
729 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
730 buf = alloca (regcache->descr->sizeof_register[regnum]);
731 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
732 regcache_cooked_write (regcache, regnum, buf);
733 }
734
735 void
736 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
737 ULONGEST val)
738 {
739 void *buf;
740 gdb_assert (regcache != NULL);
741 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
742 buf = alloca (regcache->descr->sizeof_register[regnum]);
743 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
744 regcache_cooked_write (regcache, regnum, buf);
745 }
746
747 void
748 regcache_raw_write (struct regcache *regcache, int regnum, const void *buf)
749 {
750 gdb_assert (regcache != NULL && buf != NULL);
751 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
752 gdb_assert (!regcache->readonly_p);
753
754 /* On the sparc, writing %g0 is a no-op, so we don't even want to
755 change the registers array if something writes to this register. */
756 if (CANNOT_STORE_REGISTER (regnum))
757 return;
758
759 /* Make certain that the correct cache is selected. */
760 gdb_assert (regcache == current_regcache);
761 if (! ptid_equal (registers_ptid, inferior_ptid))
762 {
763 registers_changed ();
764 registers_ptid = inferior_ptid;
765 }
766
767 /* If we have a valid copy of the register, and new value == old
768 value, then don't bother doing the actual store. */
769 if (regcache_valid_p (regcache, regnum)
770 && (memcmp (register_buffer (regcache, regnum), buf,
771 regcache->descr->sizeof_register[regnum]) == 0))
772 return;
773
774 target_prepare_to_store ();
775 memcpy (register_buffer (regcache, regnum), buf,
776 regcache->descr->sizeof_register[regnum]);
777 regcache->register_valid_p[regnum] = 1;
778 target_store_registers (regnum);
779 }
780
781 void
782 deprecated_write_register_gen (int regnum, char *buf)
783 {
784 gdb_assert (current_regcache != NULL);
785 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
786 regcache_cooked_write (current_regcache, regnum, buf);
787 }
788
789 void
790 regcache_cooked_write (struct regcache *regcache, int regnum, const void *buf)
791 {
792 gdb_assert (regnum >= 0);
793 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
794 if (regnum < regcache->descr->nr_raw_registers)
795 regcache_raw_write (regcache, regnum, buf);
796 else
797 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
798 regnum, buf);
799 }
800
801 /* Copy INLEN bytes of consecutive data from memory at MYADDR
802 into registers starting with the MYREGSTART'th byte of register data. */
803
804 void
805 deprecated_write_register_bytes (int myregstart, char *myaddr, int inlen)
806 {
807 int myregend = myregstart + inlen;
808 int regnum;
809
810 target_prepare_to_store ();
811
812 /* Scan through the registers updating any that are covered by the
813 range myregstart<=>myregend using write_register_gen, which does
814 nice things like handling threads, and avoiding updates when the
815 new and old contents are the same. */
816
817 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
818 {
819 int regstart, regend;
820
821 regstart = DEPRECATED_REGISTER_BYTE (regnum);
822 regend = regstart + DEPRECATED_REGISTER_RAW_SIZE (regnum);
823
824 /* Is this register completely outside the range the user is writing? */
825 if (myregend <= regstart || regend <= myregstart)
826 /* do nothing */ ;
827
828 /* Is this register completely within the range the user is writing? */
829 else if (myregstart <= regstart && regend <= myregend)
830 deprecated_write_register_gen (regnum, myaddr + (regstart - myregstart));
831
832 /* The register partially overlaps the range being written. */
833 else
834 {
835 char regbuf[MAX_REGISTER_SIZE];
836 /* What's the overlap between this register's bytes and
837 those the caller wants to write? */
838 int overlapstart = max (regstart, myregstart);
839 int overlapend = min (regend, myregend);
840
841 /* We may be doing a partial update of an invalid register.
842 Update it from the target before scribbling on it. */
843 deprecated_read_register_gen (regnum, regbuf);
844
845 memcpy (&deprecated_registers[overlapstart],
846 myaddr + (overlapstart - myregstart),
847 overlapend - overlapstart);
848
849 target_store_registers (regnum);
850 }
851 }
852 }
853
854 /* Perform a partial register transfer using a read, modify, write
855 operation. */
856
857 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
858 void *buf);
859 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
860 const void *buf);
861
862 static void
863 regcache_xfer_part (struct regcache *regcache, int regnum,
864 int offset, int len, void *in, const void *out,
865 regcache_read_ftype *read, regcache_write_ftype *write)
866 {
867 struct regcache_descr *descr = regcache->descr;
868 bfd_byte reg[MAX_REGISTER_SIZE];
869 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
870 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
871 /* Something to do? */
872 if (offset + len == 0)
873 return;
874 /* Read (when needed) ... */
875 if (in != NULL
876 || offset > 0
877 || offset + len < descr->sizeof_register[regnum])
878 {
879 gdb_assert (read != NULL);
880 read (regcache, regnum, reg);
881 }
882 /* ... modify ... */
883 if (in != NULL)
884 memcpy (in, reg + offset, len);
885 if (out != NULL)
886 memcpy (reg + offset, out, len);
887 /* ... write (when needed). */
888 if (out != NULL)
889 {
890 gdb_assert (write != NULL);
891 write (regcache, regnum, reg);
892 }
893 }
894
895 void
896 regcache_raw_read_part (struct regcache *regcache, int regnum,
897 int offset, int len, void *buf)
898 {
899 struct regcache_descr *descr = regcache->descr;
900 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
901 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
902 regcache_raw_read, regcache_raw_write);
903 }
904
905 void
906 regcache_raw_write_part (struct regcache *regcache, int regnum,
907 int offset, int len, const void *buf)
908 {
909 struct regcache_descr *descr = regcache->descr;
910 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
911 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
912 regcache_raw_read, regcache_raw_write);
913 }
914
915 void
916 regcache_cooked_read_part (struct regcache *regcache, int regnum,
917 int offset, int len, void *buf)
918 {
919 struct regcache_descr *descr = regcache->descr;
920 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
921 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
922 regcache_cooked_read, regcache_cooked_write);
923 }
924
925 void
926 regcache_cooked_write_part (struct regcache *regcache, int regnum,
927 int offset, int len, const void *buf)
928 {
929 struct regcache_descr *descr = regcache->descr;
930 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
931 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
932 regcache_cooked_read, regcache_cooked_write);
933 }
934
935 /* Hack to keep code that view the register buffer as raw bytes
936 working. */
937
938 int
939 register_offset_hack (struct gdbarch *gdbarch, int regnum)
940 {
941 struct regcache_descr *descr = regcache_descr (gdbarch);
942 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
943 return descr->register_offset[regnum];
944 }
945
946 /* Return the contents of register REGNUM as an unsigned integer. */
947
948 ULONGEST
949 read_register (int regnum)
950 {
951 char *buf = alloca (DEPRECATED_REGISTER_RAW_SIZE (regnum));
952 deprecated_read_register_gen (regnum, buf);
953 return (extract_unsigned_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum)));
954 }
955
956 ULONGEST
957 read_register_pid (int regnum, ptid_t ptid)
958 {
959 ptid_t save_ptid;
960 int save_pid;
961 CORE_ADDR retval;
962
963 if (ptid_equal (ptid, inferior_ptid))
964 return read_register (regnum);
965
966 save_ptid = inferior_ptid;
967
968 inferior_ptid = ptid;
969
970 retval = read_register (regnum);
971
972 inferior_ptid = save_ptid;
973
974 return retval;
975 }
976
977 /* Store VALUE into the raw contents of register number REGNUM. */
978
979 void
980 write_register (int regnum, LONGEST val)
981 {
982 void *buf;
983 int size;
984 size = DEPRECATED_REGISTER_RAW_SIZE (regnum);
985 buf = alloca (size);
986 store_signed_integer (buf, size, (LONGEST) val);
987 deprecated_write_register_gen (regnum, buf);
988 }
989
990 void
991 write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
992 {
993 ptid_t save_ptid;
994
995 if (ptid_equal (ptid, inferior_ptid))
996 {
997 write_register (regnum, val);
998 return;
999 }
1000
1001 save_ptid = inferior_ptid;
1002
1003 inferior_ptid = ptid;
1004
1005 write_register (regnum, val);
1006
1007 inferior_ptid = save_ptid;
1008 }
1009
1010 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1011
1012 void
1013 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1014 {
1015 void *regbuf;
1016 size_t size;
1017
1018 gdb_assert (regcache != NULL);
1019 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1020 gdb_assert (!regcache->readonly_p);
1021
1022 /* FIXME: kettenis/20030828: It shouldn't be necessary to handle
1023 CURRENT_REGCACHE specially here. */
1024 if (regcache == current_regcache
1025 && !ptid_equal (registers_ptid, inferior_ptid))
1026 {
1027 registers_changed ();
1028 registers_ptid = inferior_ptid;
1029 }
1030
1031 regbuf = register_buffer (regcache, regnum);
1032 size = regcache->descr->sizeof_register[regnum];
1033
1034 if (buf)
1035 memcpy (regbuf, buf, size);
1036 else
1037 memset (regbuf, 0, size);
1038
1039 /* Mark the register as cached. */
1040 regcache->register_valid_p[regnum] = 1;
1041 }
1042
1043 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1044
1045 void
1046 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1047 {
1048 const void *regbuf;
1049 size_t size;
1050
1051 gdb_assert (regcache != NULL && buf != NULL);
1052 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1053
1054 regbuf = register_buffer (regcache, regnum);
1055 size = regcache->descr->sizeof_register[regnum];
1056 memcpy (buf, regbuf, size);
1057 }
1058
1059
1060 /* read_pc, write_pc, read_sp, deprecated_read_fp, etc. Special
1061 handling for registers PC, SP, and FP. */
1062
1063 /* NOTE: cagney/2001-02-18: The functions read_pc_pid(), read_pc(),
1064 read_sp(), and deprecated_read_fp(), will eventually be replaced by
1065 per-frame methods. Instead of relying on the global INFERIOR_PTID,
1066 they will use the contextual information provided by the FRAME.
1067 These functions do not belong in the register cache. */
1068
1069 /* NOTE: cagney/2003-06-07: The functions generic_target_write_pc(),
1070 write_pc_pid(), write_pc(), and deprecated_read_fp(), all need to
1071 be replaced by something that does not rely on global state. But
1072 what? */
1073
1074 CORE_ADDR
1075 read_pc_pid (ptid_t ptid)
1076 {
1077 ptid_t saved_inferior_ptid;
1078 CORE_ADDR pc_val;
1079
1080 /* In case ptid != inferior_ptid. */
1081 saved_inferior_ptid = inferior_ptid;
1082 inferior_ptid = ptid;
1083
1084 if (TARGET_READ_PC_P ())
1085 pc_val = TARGET_READ_PC (ptid);
1086 /* Else use per-frame method on get_current_frame. */
1087 else if (PC_REGNUM >= 0)
1088 {
1089 CORE_ADDR raw_val = read_register_pid (PC_REGNUM, ptid);
1090 pc_val = ADDR_BITS_REMOVE (raw_val);
1091 }
1092 else
1093 internal_error (__FILE__, __LINE__, "read_pc_pid: Unable to find PC");
1094
1095 inferior_ptid = saved_inferior_ptid;
1096 return pc_val;
1097 }
1098
1099 CORE_ADDR
1100 read_pc (void)
1101 {
1102 return read_pc_pid (inferior_ptid);
1103 }
1104
1105 void
1106 generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
1107 {
1108 if (PC_REGNUM >= 0)
1109 write_register_pid (PC_REGNUM, pc, ptid);
1110 else
1111 internal_error (__FILE__, __LINE__,
1112 "generic_target_write_pc");
1113 }
1114
1115 void
1116 write_pc_pid (CORE_ADDR pc, ptid_t ptid)
1117 {
1118 ptid_t saved_inferior_ptid;
1119
1120 /* In case ptid != inferior_ptid. */
1121 saved_inferior_ptid = inferior_ptid;
1122 inferior_ptid = ptid;
1123
1124 TARGET_WRITE_PC (pc, ptid);
1125
1126 inferior_ptid = saved_inferior_ptid;
1127 }
1128
1129 void
1130 write_pc (CORE_ADDR pc)
1131 {
1132 write_pc_pid (pc, inferior_ptid);
1133 }
1134
1135 /* Cope with strage ways of getting to the stack and frame pointers */
1136
1137 CORE_ADDR
1138 read_sp (void)
1139 {
1140 if (TARGET_READ_SP_P ())
1141 return TARGET_READ_SP ();
1142 else if (gdbarch_unwind_sp_p (current_gdbarch))
1143 return get_frame_sp (get_current_frame ());
1144 else if (SP_REGNUM >= 0)
1145 /* Try SP_REGNUM last: this makes all sorts of [wrong] assumptions
1146 about the architecture so put it at the end. */
1147 return read_register (SP_REGNUM);
1148 internal_error (__FILE__, __LINE__, "read_sp: Unable to find SP");
1149 }
1150
1151 void
1152 deprecated_write_sp (CORE_ADDR val)
1153 {
1154 gdb_assert (SP_REGNUM >= 0);
1155 write_register (SP_REGNUM, val);
1156 }
1157
1158 CORE_ADDR
1159 deprecated_read_fp (void)
1160 {
1161 if (DEPRECATED_TARGET_READ_FP_P ())
1162 return DEPRECATED_TARGET_READ_FP ();
1163 else if (DEPRECATED_FP_REGNUM >= 0)
1164 return read_register (DEPRECATED_FP_REGNUM);
1165 else
1166 internal_error (__FILE__, __LINE__, "deprecated_read_fp");
1167 }
1168
1169 static void
1170 reg_flush_command (char *command, int from_tty)
1171 {
1172 /* Force-flush the register cache. */
1173 registers_changed ();
1174 if (from_tty)
1175 printf_filtered ("Register cache flushed.\n");
1176 }
1177
1178 static void
1179 build_regcache (void)
1180 {
1181 current_regcache = regcache_xmalloc (current_gdbarch);
1182 current_regcache->readonly_p = 0;
1183 deprecated_registers = deprecated_grub_regcache_for_registers (current_regcache);
1184 deprecated_register_valid = current_regcache->register_valid_p;
1185 }
1186
1187 static void
1188 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
1189 const unsigned char *buf, long len)
1190 {
1191 int i;
1192 switch (endian)
1193 {
1194 case BFD_ENDIAN_BIG:
1195 for (i = 0; i < len; i++)
1196 fprintf_unfiltered (file, "%02x", buf[i]);
1197 break;
1198 case BFD_ENDIAN_LITTLE:
1199 for (i = len - 1; i >= 0; i--)
1200 fprintf_unfiltered (file, "%02x", buf[i]);
1201 break;
1202 default:
1203 internal_error (__FILE__, __LINE__, "Bad switch");
1204 }
1205 }
1206
1207 enum regcache_dump_what
1208 {
1209 regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
1210 };
1211
1212 static void
1213 regcache_dump (struct regcache *regcache, struct ui_file *file,
1214 enum regcache_dump_what what_to_dump)
1215 {
1216 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1217 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1218 int regnum;
1219 int footnote_nr = 0;
1220 int footnote_register_size = 0;
1221 int footnote_register_offset = 0;
1222 int footnote_register_type_name_null = 0;
1223 long register_offset = 0;
1224 unsigned char buf[MAX_REGISTER_SIZE];
1225
1226 #if 0
1227 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1228 regcache->descr->nr_raw_registers);
1229 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1230 regcache->descr->nr_cooked_registers);
1231 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1232 regcache->descr->sizeof_raw_registers);
1233 fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
1234 regcache->descr->sizeof_raw_register_valid_p);
1235 fprintf_unfiltered (file, "NUM_REGS %d\n", NUM_REGS);
1236 fprintf_unfiltered (file, "NUM_PSEUDO_REGS %d\n", NUM_PSEUDO_REGS);
1237 #endif
1238
1239 gdb_assert (regcache->descr->nr_cooked_registers
1240 == (NUM_REGS + NUM_PSEUDO_REGS));
1241
1242 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1243 {
1244 /* Name. */
1245 if (regnum < 0)
1246 fprintf_unfiltered (file, " %-10s", "Name");
1247 else
1248 {
1249 const char *p = REGISTER_NAME (regnum);
1250 if (p == NULL)
1251 p = "";
1252 else if (p[0] == '\0')
1253 p = "''";
1254 fprintf_unfiltered (file, " %-10s", p);
1255 }
1256
1257 /* Number. */
1258 if (regnum < 0)
1259 fprintf_unfiltered (file, " %4s", "Nr");
1260 else
1261 fprintf_unfiltered (file, " %4d", regnum);
1262
1263 /* Relative number. */
1264 if (regnum < 0)
1265 fprintf_unfiltered (file, " %4s", "Rel");
1266 else if (regnum < NUM_REGS)
1267 fprintf_unfiltered (file, " %4d", regnum);
1268 else
1269 fprintf_unfiltered (file, " %4d", (regnum - NUM_REGS));
1270
1271 /* Offset. */
1272 if (regnum < 0)
1273 fprintf_unfiltered (file, " %6s ", "Offset");
1274 else
1275 {
1276 fprintf_unfiltered (file, " %6ld",
1277 regcache->descr->register_offset[regnum]);
1278 if (register_offset != regcache->descr->register_offset[regnum]
1279 || register_offset != DEPRECATED_REGISTER_BYTE (regnum)
1280 || (regnum > 0
1281 && (regcache->descr->register_offset[regnum]
1282 != (regcache->descr->register_offset[regnum - 1]
1283 + regcache->descr->sizeof_register[regnum - 1])))
1284 )
1285 {
1286 if (!footnote_register_offset)
1287 footnote_register_offset = ++footnote_nr;
1288 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1289 }
1290 else
1291 fprintf_unfiltered (file, " ");
1292 register_offset = (regcache->descr->register_offset[regnum]
1293 + regcache->descr->sizeof_register[regnum]);
1294 }
1295
1296 /* Size. */
1297 if (regnum < 0)
1298 fprintf_unfiltered (file, " %5s ", "Size");
1299 else
1300 fprintf_unfiltered (file, " %5ld",
1301 regcache->descr->sizeof_register[regnum]);
1302
1303 /* Type. */
1304 {
1305 const char *t;
1306 if (regnum < 0)
1307 t = "Type";
1308 else
1309 {
1310 static const char blt[] = "builtin_type";
1311 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1312 if (t == NULL)
1313 {
1314 char *n;
1315 if (!footnote_register_type_name_null)
1316 footnote_register_type_name_null = ++footnote_nr;
1317 n = xstrprintf ("*%d", footnote_register_type_name_null);
1318 make_cleanup (xfree, n);
1319 t = n;
1320 }
1321 /* Chop a leading builtin_type. */
1322 if (strncmp (t, blt, strlen (blt)) == 0)
1323 t += strlen (blt);
1324 }
1325 fprintf_unfiltered (file, " %-15s", t);
1326 }
1327
1328 /* Leading space always present. */
1329 fprintf_unfiltered (file, " ");
1330
1331 /* Value, raw. */
1332 if (what_to_dump == regcache_dump_raw)
1333 {
1334 if (regnum < 0)
1335 fprintf_unfiltered (file, "Raw value");
1336 else if (regnum >= regcache->descr->nr_raw_registers)
1337 fprintf_unfiltered (file, "<cooked>");
1338 else if (!regcache_valid_p (regcache, regnum))
1339 fprintf_unfiltered (file, "<invalid>");
1340 else
1341 {
1342 regcache_raw_read (regcache, regnum, buf);
1343 fprintf_unfiltered (file, "0x");
1344 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
1345 regcache->descr->sizeof_register[regnum]);
1346 }
1347 }
1348
1349 /* Value, cooked. */
1350 if (what_to_dump == regcache_dump_cooked)
1351 {
1352 if (regnum < 0)
1353 fprintf_unfiltered (file, "Cooked value");
1354 else
1355 {
1356 regcache_cooked_read (regcache, regnum, buf);
1357 fprintf_unfiltered (file, "0x");
1358 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
1359 regcache->descr->sizeof_register[regnum]);
1360 }
1361 }
1362
1363 /* Group members. */
1364 if (what_to_dump == regcache_dump_groups)
1365 {
1366 if (regnum < 0)
1367 fprintf_unfiltered (file, "Groups");
1368 else
1369 {
1370 const char *sep = "";
1371 struct reggroup *group;
1372 for (group = reggroup_next (gdbarch, NULL);
1373 group != NULL;
1374 group = reggroup_next (gdbarch, group))
1375 {
1376 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1377 {
1378 fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group));
1379 sep = ",";
1380 }
1381 }
1382 }
1383 }
1384
1385 fprintf_unfiltered (file, "\n");
1386 }
1387
1388 if (footnote_register_size)
1389 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1390 footnote_register_size);
1391 if (footnote_register_offset)
1392 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1393 footnote_register_offset);
1394 if (footnote_register_type_name_null)
1395 fprintf_unfiltered (file,
1396 "*%d: Register type's name NULL.\n",
1397 footnote_register_type_name_null);
1398 do_cleanups (cleanups);
1399 }
1400
1401 static void
1402 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1403 {
1404 if (args == NULL)
1405 regcache_dump (current_regcache, gdb_stdout, what_to_dump);
1406 else
1407 {
1408 struct ui_file *file = gdb_fopen (args, "w");
1409 if (file == NULL)
1410 perror_with_name ("maintenance print architecture");
1411 regcache_dump (current_regcache, file, what_to_dump);
1412 ui_file_delete (file);
1413 }
1414 }
1415
1416 static void
1417 maintenance_print_registers (char *args, int from_tty)
1418 {
1419 regcache_print (args, regcache_dump_none);
1420 }
1421
1422 static void
1423 maintenance_print_raw_registers (char *args, int from_tty)
1424 {
1425 regcache_print (args, regcache_dump_raw);
1426 }
1427
1428 static void
1429 maintenance_print_cooked_registers (char *args, int from_tty)
1430 {
1431 regcache_print (args, regcache_dump_cooked);
1432 }
1433
1434 static void
1435 maintenance_print_register_groups (char *args, int from_tty)
1436 {
1437 regcache_print (args, regcache_dump_groups);
1438 }
1439
1440 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1441
1442 void
1443 _initialize_regcache (void)
1444 {
1445 regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr);
1446 DEPRECATED_REGISTER_GDBARCH_SWAP (current_regcache);
1447 DEPRECATED_REGISTER_GDBARCH_SWAP (deprecated_registers);
1448 DEPRECATED_REGISTER_GDBARCH_SWAP (deprecated_register_valid);
1449 deprecated_register_gdbarch_swap (NULL, 0, build_regcache);
1450
1451 observer_attach_target_changed (regcache_observer_target_changed);
1452
1453 add_com ("flushregs", class_maintenance, reg_flush_command,
1454 "Force gdb to flush its register cache (maintainer command)");
1455
1456 /* Initialize the thread/process associated with the current set of
1457 registers. For now, -1 is special, and means `no current process'. */
1458 registers_ptid = pid_to_ptid (-1);
1459
1460 add_cmd ("registers", class_maintenance,
1461 maintenance_print_registers,
1462 "Print the internal register configuration.\
1463 Takes an optional file parameter.",
1464 &maintenanceprintlist);
1465 add_cmd ("raw-registers", class_maintenance,
1466 maintenance_print_raw_registers,
1467 "Print the internal register configuration including raw values.\
1468 Takes an optional file parameter.",
1469 &maintenanceprintlist);
1470 add_cmd ("cooked-registers", class_maintenance,
1471 maintenance_print_cooked_registers,
1472 "Print the internal register configuration including cooked values.\
1473 Takes an optional file parameter.",
1474 &maintenanceprintlist);
1475 add_cmd ("register-groups", class_maintenance,
1476 maintenance_print_register_groups,
1477 "Print the internal register configuration including each register's group.\
1478 Takes an optional file parameter.",
1479 &maintenanceprintlist);
1480
1481 }
This page took 0.08055 seconds and 4 git commands to generate.