Create new file regcache.h. Update all uses.
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2 Copyright 1986, 87, 89, 91, 94, 95, 96, 1998, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbarch.h"
27 #include "gdbcmd.h"
28 #include "regcache.h"
29
30 /*
31 * DATA STRUCTURE
32 *
33 * Here is the actual register cache.
34 */
35
36 /* NOTE: this is a write-through cache. There is no "dirty" bit for
37 recording if the register values have been changed (eg. by the
38 user). Therefore all registers must be written back to the
39 target when appropriate. */
40
41 /* REGISTERS contains the cached register values (in target byte order). */
42
43 char *registers;
44
45 /* REGISTER_VALID is 0 if the register needs to be fetched,
46 1 if it has been fetched, and
47 -1 if the register value was not available.
48 "Not available" means don't try to fetch it again. */
49
50 signed char *register_valid;
51
52 /* The thread/process associated with the current set of registers.
53 For now, -1 is special, and means `no current process'. */
54
55 static int registers_pid = -1;
56
57 /*
58 * FUNCTIONS:
59 */
60
61 /* REGISTER_CACHED()
62
63 Returns 0 if the value is not in the cache (needs fetch).
64 >0 if the value is in the cache.
65 <0 if the value is permanently unavailable (don't ask again). */
66
67 int
68 register_cached (int regnum)
69 {
70 return register_valid[regnum];
71 }
72
73 /* Record that REGNUM's value is cached if STATE is >0, uncached but
74 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
75
76 void
77 set_register_cached (int regnum, int state)
78 {
79 register_valid[regnum] = state;
80 }
81
82 /* REGISTER_CHANGED
83
84 invalidate a single register REGNUM in the cache */
85 void
86 register_changed (int regnum)
87 {
88 set_register_cached (regnum, 0);
89 }
90
91 /* If REGNUM >= 0, return a pointer to register REGNUM's cache buffer area,
92 else return a pointer to the start of the cache buffer. */
93
94 char *
95 register_buffer (int regnum)
96 {
97 if (regnum < 0)
98 return registers;
99 else
100 return &registers[REGISTER_BYTE (regnum)];
101 }
102
103 /* Return whether register REGNUM is a real register. */
104
105 static int
106 real_register (int regnum)
107 {
108 return regnum >= 0 && regnum < NUM_REGS;
109 }
110
111 /* Return whether register REGNUM is a pseudo register. */
112
113 static int
114 pseudo_register (int regnum)
115 {
116 return regnum >= NUM_REGS && regnum < NUM_REGS + NUM_PSEUDO_REGS;
117 }
118
119 /* Fetch register REGNUM into the cache. */
120
121 static void
122 fetch_register (int regnum)
123 {
124 if (real_register (regnum))
125 target_fetch_registers (regnum);
126 else if (pseudo_register (regnum))
127 FETCH_PSEUDO_REGISTER (regnum);
128 }
129
130 /* Write register REGNUM cached value to the target. */
131
132 static void
133 store_register (int regnum)
134 {
135 if (real_register (regnum))
136 target_store_registers (regnum);
137 else if (pseudo_register (regnum))
138 STORE_PSEUDO_REGISTER (regnum);
139 }
140
141 /* Low level examining and depositing of registers.
142
143 The caller is responsible for making sure that the inferior is
144 stopped before calling the fetching routines, or it will get
145 garbage. (a change from GDB version 3, in which the caller got the
146 value from the last stop). */
147
148 /* REGISTERS_CHANGED ()
149
150 Indicate that registers may have changed, so invalidate the cache. */
151
152 void
153 registers_changed (void)
154 {
155 int i;
156
157 registers_pid = -1;
158
159 /* Force cleanup of any alloca areas if using C alloca instead of
160 a builtin alloca. This particular call is used to clean up
161 areas allocated by low level target code which may build up
162 during lengthy interactions between gdb and the target before
163 gdb gives control to the user (ie watchpoints). */
164 alloca (0);
165
166 for (i = 0; i < ARCH_NUM_REGS; i++)
167 set_register_cached (i, 0);
168
169 /* Assume that if all the hardware regs have changed,
170 then so have the pseudo-registers. */
171 for (i = NUM_REGS; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
172 set_register_cached (i, 0);
173
174 if (registers_changed_hook)
175 registers_changed_hook ();
176 }
177
178 /* REGISTERS_FETCHED ()
179
180 Indicate that all registers have been fetched, so mark them all valid. */
181
182
183 void
184 registers_fetched (void)
185 {
186 int i;
187
188 for (i = 0; i < ARCH_NUM_REGS; i++)
189 set_register_cached (i, 1);
190 /* Do not assume that the pseudo-regs have also been fetched.
191 Fetching all real regs might not account for all pseudo-regs. */
192 }
193
194 /* read_register_bytes and write_register_bytes are generally a *BAD*
195 idea. They are inefficient because they need to check for partial
196 updates, which can only be done by scanning through all of the
197 registers and seeing if the bytes that are being read/written fall
198 inside of an invalid register. [The main reason this is necessary
199 is that register sizes can vary, so a simple index won't suffice.]
200 It is far better to call read_register_gen and write_register_gen
201 if you want to get at the raw register contents, as it only takes a
202 regnum as an argument, and therefore can't do a partial register
203 update.
204
205 Prior to the recent fixes to check for partial updates, both read
206 and write_register_bytes always checked to see if any registers
207 were stale, and then called target_fetch_registers (-1) to update
208 the whole set. This caused really slowed things down for remote
209 targets. */
210
211 /* Copy INLEN bytes of consecutive data from registers
212 starting with the INREGBYTE'th byte of register data
213 into memory at MYADDR. */
214
215 void
216 read_register_bytes (int inregbyte, char *myaddr, int inlen)
217 {
218 int inregend = inregbyte + inlen;
219 int regnum;
220
221 if (registers_pid != inferior_pid)
222 {
223 registers_changed ();
224 registers_pid = inferior_pid;
225 }
226
227 /* See if we are trying to read bytes from out-of-date registers. If so,
228 update just those registers. */
229
230 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
231 {
232 int regstart, regend;
233
234 if (register_cached (regnum))
235 continue;
236
237 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
238 continue;
239
240 regstart = REGISTER_BYTE (regnum);
241 regend = regstart + REGISTER_RAW_SIZE (regnum);
242
243 if (regend <= inregbyte || inregend <= regstart)
244 /* The range the user wants to read doesn't overlap with regnum. */
245 continue;
246
247 /* We've found an uncached register where at least one byte will be read.
248 Update it from the target. */
249 fetch_register (regnum);
250
251 if (!register_cached (regnum))
252 {
253 /* Sometimes pseudoregs are never marked valid, so that they
254 will be fetched every time (it can be complicated to know
255 if a pseudoreg is valid, while "fetching" them can be cheap).
256 */
257 if (regnum < NUM_REGS)
258 error ("read_register_bytes: Couldn't update register %d.", regnum);
259 }
260 }
261
262 if (myaddr != NULL)
263 memcpy (myaddr, register_buffer (-1) + inregbyte, inlen);
264 }
265
266 /* Read register REGNUM into memory at MYADDR, which must be large
267 enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the
268 register is known to be the size of a CORE_ADDR or smaller,
269 read_register can be used instead. */
270
271 void
272 read_register_gen (int regnum, char *myaddr)
273 {
274 if (registers_pid != inferior_pid)
275 {
276 registers_changed ();
277 registers_pid = inferior_pid;
278 }
279
280 if (!register_cached (regnum))
281 fetch_register (regnum);
282
283 memcpy (myaddr, register_buffer (regnum),
284 REGISTER_RAW_SIZE (regnum));
285 }
286
287 /* Write register REGNUM at MYADDR to the target. MYADDR points at
288 REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */
289
290 /* Registers we shouldn't try to store. */
291 #if !defined (CANNOT_STORE_REGISTER)
292 #define CANNOT_STORE_REGISTER(regnum) 0
293 #endif
294
295 void
296 write_register_gen (int regnum, char *myaddr)
297 {
298 int size;
299
300 /* On the sparc, writing %g0 is a no-op, so we don't even want to
301 change the registers array if something writes to this register. */
302 if (CANNOT_STORE_REGISTER (regnum))
303 return;
304
305 if (registers_pid != inferior_pid)
306 {
307 registers_changed ();
308 registers_pid = inferior_pid;
309 }
310
311 size = REGISTER_RAW_SIZE (regnum);
312
313 /* If we have a valid copy of the register, and new value == old value,
314 then don't bother doing the actual store. */
315
316 if (register_cached (regnum)
317 && memcmp (register_buffer (regnum), myaddr, size) == 0)
318 return;
319
320 if (real_register (regnum))
321 target_prepare_to_store ();
322
323 memcpy (register_buffer (regnum), myaddr, size);
324
325 set_register_cached (regnum, 1);
326 store_register (regnum);
327 }
328
329 /* Copy INLEN bytes of consecutive data from memory at MYADDR
330 into registers starting with the MYREGSTART'th byte of register data. */
331
332 void
333 write_register_bytes (int myregstart, char *myaddr, int inlen)
334 {
335 int myregend = myregstart + inlen;
336 int regnum;
337
338 target_prepare_to_store ();
339
340 /* Scan through the registers updating any that are covered by the
341 range myregstart<=>myregend using write_register_gen, which does
342 nice things like handling threads, and avoiding updates when the
343 new and old contents are the same. */
344
345 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
346 {
347 int regstart, regend;
348
349 regstart = REGISTER_BYTE (regnum);
350 regend = regstart + REGISTER_RAW_SIZE (regnum);
351
352 /* Is this register completely outside the range the user is writing? */
353 if (myregend <= regstart || regend <= myregstart)
354 /* do nothing */ ;
355
356 /* Is this register completely within the range the user is writing? */
357 else if (myregstart <= regstart && regend <= myregend)
358 write_register_gen (regnum, myaddr + (regstart - myregstart));
359
360 /* The register partially overlaps the range being written. */
361 else
362 {
363 char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE);
364 /* What's the overlap between this register's bytes and
365 those the caller wants to write? */
366 int overlapstart = max (regstart, myregstart);
367 int overlapend = min (regend, myregend);
368
369 /* We may be doing a partial update of an invalid register.
370 Update it from the target before scribbling on it. */
371 read_register_gen (regnum, regbuf);
372
373 memcpy (registers + overlapstart,
374 myaddr + (overlapstart - myregstart),
375 overlapend - overlapstart);
376
377 store_register (regnum);
378 }
379 }
380 }
381
382
383 /* Return the contents of register REGNUM as an unsigned integer. */
384
385 ULONGEST
386 read_register (int regnum)
387 {
388 if (registers_pid != inferior_pid)
389 {
390 registers_changed ();
391 registers_pid = inferior_pid;
392 }
393
394 if (!register_cached (regnum))
395 fetch_register (regnum);
396
397 return (extract_unsigned_integer (register_buffer (regnum),
398 REGISTER_RAW_SIZE (regnum)));
399 }
400
401 ULONGEST
402 read_register_pid (int regnum, int pid)
403 {
404 int save_pid;
405 CORE_ADDR retval;
406
407 if (pid == inferior_pid)
408 return read_register (regnum);
409
410 save_pid = inferior_pid;
411
412 inferior_pid = pid;
413
414 retval = read_register (regnum);
415
416 inferior_pid = save_pid;
417
418 return retval;
419 }
420
421 /* Return the contents of register REGNUM as a signed integer. */
422
423 LONGEST
424 read_signed_register (int regnum)
425 {
426 if (registers_pid != inferior_pid)
427 {
428 registers_changed ();
429 registers_pid = inferior_pid;
430 }
431
432 if (!register_cached (regnum))
433 fetch_register (regnum);
434
435 return (extract_signed_integer (register_buffer (regnum),
436 REGISTER_RAW_SIZE (regnum)));
437 }
438
439 LONGEST
440 read_signed_register_pid (int regnum, int pid)
441 {
442 int save_pid;
443 LONGEST retval;
444
445 if (pid == inferior_pid)
446 return read_signed_register (regnum);
447
448 save_pid = inferior_pid;
449
450 inferior_pid = pid;
451
452 retval = read_signed_register (regnum);
453
454 inferior_pid = save_pid;
455
456 return retval;
457 }
458
459 /* Store VALUE into the raw contents of register number REGNUM. */
460
461 void
462 write_register (int regnum, LONGEST val)
463 {
464 PTR buf;
465 int size;
466
467 /* On the sparc, writing %g0 is a no-op, so we don't even want to
468 change the registers array if something writes to this register. */
469 if (CANNOT_STORE_REGISTER (regnum))
470 return;
471
472 if (registers_pid != inferior_pid)
473 {
474 registers_changed ();
475 registers_pid = inferior_pid;
476 }
477
478 size = REGISTER_RAW_SIZE (regnum);
479 buf = alloca (size);
480 store_signed_integer (buf, size, (LONGEST) val);
481
482 /* If we have a valid copy of the register, and new value == old value,
483 then don't bother doing the actual store. */
484
485 if (register_cached (regnum)
486 && memcmp (register_buffer (regnum), buf, size) == 0)
487 return;
488
489 if (real_register (regnum))
490 target_prepare_to_store ();
491
492 memcpy (register_buffer (regnum), buf, size);
493
494 set_register_cached (regnum, 1);
495 store_register (regnum);
496 }
497
498 void
499 write_register_pid (int regnum, CORE_ADDR val, int pid)
500 {
501 int save_pid;
502
503 if (pid == inferior_pid)
504 {
505 write_register (regnum, val);
506 return;
507 }
508
509 save_pid = inferior_pid;
510
511 inferior_pid = pid;
512
513 write_register (regnum, val);
514
515 inferior_pid = save_pid;
516 }
517
518 /* SUPPLY_REGISTER()
519
520 Record that register REGNUM contains VAL. This is used when the
521 value is obtained from the inferior or core dump, so there is no
522 need to store the value there.
523
524 If VAL is a NULL pointer, then it's probably an unsupported register.
525 We just set its value to all zeros. We might want to record this
526 fact, and report it to the users of read_register and friends. */
527
528 void
529 supply_register (int regnum, char *val)
530 {
531 #if 1
532 if (registers_pid != inferior_pid)
533 {
534 registers_changed ();
535 registers_pid = inferior_pid;
536 }
537 #endif
538
539 set_register_cached (regnum, 1);
540 if (val)
541 memcpy (register_buffer (regnum), val,
542 REGISTER_RAW_SIZE (regnum));
543 else
544 memset (register_buffer (regnum), '\000',
545 REGISTER_RAW_SIZE (regnum));
546
547 /* On some architectures, e.g. HPPA, there are a few stray bits in
548 some registers, that the rest of the code would like to ignore. */
549
550 #ifdef CLEAN_UP_REGISTER_VALUE
551 CLEAN_UP_REGISTER_VALUE (regnum, register_buffer (regnum));
552 #endif
553 }
554
555 /* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc.
556 Special handling for registers PC, SP, and FP. */
557
558 /* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(),
559 read_pc_pid(), read_pc(), generic_target_write_pc(),
560 write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(),
561 generic_target_write_sp(), write_sp(), generic_target_read_fp(),
562 read_fp(), generic_target_write_fp(), write_fp will eventually be
563 moved out of the reg-cache into either frame.[hc] or to the
564 multi-arch framework. The are not part of the raw register cache. */
565
566 /* This routine is getting awfully cluttered with #if's. It's probably
567 time to turn this into READ_PC and define it in the tm.h file.
568 Ditto for write_pc.
569
570 1999-06-08: The following were re-written so that it assumes the
571 existence of a TARGET_READ_PC et.al. macro. A default generic
572 version of that macro is made available where needed.
573
574 Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
575 by the multi-arch framework, it will eventually be possible to
576 eliminate the intermediate read_pc_pid(). The client would call
577 TARGET_READ_PC directly. (cagney). */
578
579 CORE_ADDR
580 generic_target_read_pc (int pid)
581 {
582 #ifdef PC_REGNUM
583 if (PC_REGNUM >= 0)
584 {
585 CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
586 return pc_val;
587 }
588 #endif
589 internal_error (__FILE__, __LINE__,
590 "generic_target_read_pc");
591 return 0;
592 }
593
594 CORE_ADDR
595 read_pc_pid (int pid)
596 {
597 int saved_inferior_pid;
598 CORE_ADDR pc_val;
599
600 /* In case pid != inferior_pid. */
601 saved_inferior_pid = inferior_pid;
602 inferior_pid = pid;
603
604 pc_val = TARGET_READ_PC (pid);
605
606 inferior_pid = saved_inferior_pid;
607 return pc_val;
608 }
609
610 CORE_ADDR
611 read_pc (void)
612 {
613 return read_pc_pid (inferior_pid);
614 }
615
616 void
617 generic_target_write_pc (CORE_ADDR pc, int pid)
618 {
619 #ifdef PC_REGNUM
620 if (PC_REGNUM >= 0)
621 write_register_pid (PC_REGNUM, pc, pid);
622 if (NPC_REGNUM >= 0)
623 write_register_pid (NPC_REGNUM, pc + 4, pid);
624 if (NNPC_REGNUM >= 0)
625 write_register_pid (NNPC_REGNUM, pc + 8, pid);
626 #else
627 internal_error (__FILE__, __LINE__,
628 "generic_target_write_pc");
629 #endif
630 }
631
632 void
633 write_pc_pid (CORE_ADDR pc, int pid)
634 {
635 int saved_inferior_pid;
636
637 /* In case pid != inferior_pid. */
638 saved_inferior_pid = inferior_pid;
639 inferior_pid = pid;
640
641 TARGET_WRITE_PC (pc, pid);
642
643 inferior_pid = saved_inferior_pid;
644 }
645
646 void
647 write_pc (CORE_ADDR pc)
648 {
649 write_pc_pid (pc, inferior_pid);
650 }
651
652 /* Cope with strage ways of getting to the stack and frame pointers */
653
654 CORE_ADDR
655 generic_target_read_sp (void)
656 {
657 #ifdef SP_REGNUM
658 if (SP_REGNUM >= 0)
659 return read_register (SP_REGNUM);
660 #endif
661 internal_error (__FILE__, __LINE__,
662 "generic_target_read_sp");
663 }
664
665 CORE_ADDR
666 read_sp (void)
667 {
668 return TARGET_READ_SP ();
669 }
670
671 void
672 generic_target_write_sp (CORE_ADDR val)
673 {
674 #ifdef SP_REGNUM
675 if (SP_REGNUM >= 0)
676 {
677 write_register (SP_REGNUM, val);
678 return;
679 }
680 #endif
681 internal_error (__FILE__, __LINE__,
682 "generic_target_write_sp");
683 }
684
685 void
686 write_sp (CORE_ADDR val)
687 {
688 TARGET_WRITE_SP (val);
689 }
690
691 CORE_ADDR
692 generic_target_read_fp (void)
693 {
694 #ifdef FP_REGNUM
695 if (FP_REGNUM >= 0)
696 return read_register (FP_REGNUM);
697 #endif
698 internal_error (__FILE__, __LINE__,
699 "generic_target_read_fp");
700 }
701
702 CORE_ADDR
703 read_fp (void)
704 {
705 return TARGET_READ_FP ();
706 }
707
708 void
709 generic_target_write_fp (CORE_ADDR val)
710 {
711 #ifdef FP_REGNUM
712 if (FP_REGNUM >= 0)
713 {
714 write_register (FP_REGNUM, val);
715 return;
716 }
717 #endif
718 internal_error (__FILE__, __LINE__,
719 "generic_target_write_fp");
720 }
721
722 void
723 write_fp (CORE_ADDR val)
724 {
725 TARGET_WRITE_FP (val);
726 }
727
728 /* ARGSUSED */
729 static void
730 reg_flush_command (char *command, int from_tty)
731 {
732 /* Force-flush the register cache. */
733 registers_changed ();
734 if (from_tty)
735 printf_filtered ("Register cache flushed.\n");
736 }
737
738
739 static void
740 build_regcache (void)
741 {
742 /* We allocate some extra slop since we do a lot of memcpy's around
743 `registers', and failing-soft is better than failing hard. */
744 int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
745 int sizeof_register_valid =
746 (NUM_REGS + NUM_PSEUDO_REGS) * sizeof (*register_valid);
747 registers = xmalloc (sizeof_registers);
748 memset (registers, 0, sizeof_registers);
749 register_valid = xmalloc (sizeof_register_valid);
750 memset (register_valid, 0, sizeof_register_valid);
751 }
752
753 void
754 _initialize_regcache (void)
755 {
756 build_regcache ();
757
758 register_gdbarch_swap (&registers, sizeof (registers), NULL);
759 register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
760 register_gdbarch_swap (NULL, 0, build_regcache);
761
762 add_com ("flushregs", class_maintenance, reg_flush_command,
763 "Force gdb to flush its register cache (maintainer command)");
764 }
This page took 0.052554 seconds and 5 git commands to generate.