Remove MAX_REGISTER_SIZE from remote.c
[deliverable/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "observer.h"
28 #include "remote.h"
29 #include "valprint.h"
30 #include "regset.h"
31
32 /*
33 * DATA STRUCTURE
34 *
35 * Here is the actual register cache.
36 */
37
38 /* Per-architecture object describing the layout of a register cache.
39 Computed once when the architecture is created. */
40
41 struct gdbarch_data *regcache_descr_handle;
42
43 struct regcache_descr
44 {
45 /* The architecture this descriptor belongs to. */
46 struct gdbarch *gdbarch;
47
48 /* The raw register cache. Each raw (or hard) register is supplied
49 by the target interface. The raw cache should not contain
50 redundant information - if the PC is constructed from two
51 registers then those registers and not the PC lives in the raw
52 cache. */
53 int nr_raw_registers;
54 long sizeof_raw_registers;
55 long sizeof_raw_register_status;
56
57 /* The cooked register space. Each cooked register in the range
58 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
59 register. The remaining [NR_RAW_REGISTERS
60 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
61 both raw registers and memory by the architecture methods
62 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
63 int nr_cooked_registers;
64 long sizeof_cooked_registers;
65 long sizeof_cooked_register_status;
66
67 /* Offset and size (in 8 bit bytes), of each register in the
68 register cache. All registers (including those in the range
69 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
70 offset. */
71 long *register_offset;
72 long *sizeof_register;
73
74 /* Cached table containing the type of each register. */
75 struct type **register_type;
76 };
77
78 static void *
79 init_regcache_descr (struct gdbarch *gdbarch)
80 {
81 int i;
82 struct regcache_descr *descr;
83 gdb_assert (gdbarch != NULL);
84
85 /* Create an initial, zero filled, table. */
86 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
87 descr->gdbarch = gdbarch;
88
89 /* Total size of the register space. The raw registers are mapped
90 directly onto the raw register cache while the pseudo's are
91 either mapped onto raw-registers or memory. */
92 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
93 + gdbarch_num_pseudo_regs (gdbarch);
94 descr->sizeof_cooked_register_status
95 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
96
97 /* Fill in a table of register types. */
98 descr->register_type
99 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
100 struct type *);
101 for (i = 0; i < descr->nr_cooked_registers; i++)
102 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
103
104 /* Construct a strictly RAW register cache. Don't allow pseudo's
105 into the register cache. */
106 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
107 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch);
108
109 /* Lay out the register cache.
110
111 NOTE: cagney/2002-05-22: Only register_type() is used when
112 constructing the register cache. It is assumed that the
113 register's raw size, virtual size and type length are all the
114 same. */
115
116 {
117 long offset = 0;
118
119 descr->sizeof_register
120 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
121 descr->register_offset
122 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
123 for (i = 0; i < descr->nr_raw_registers; i++)
124 {
125 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
126 descr->register_offset[i] = offset;
127 offset += descr->sizeof_register[i];
128 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
129 }
130 /* Set the real size of the raw register cache buffer. */
131 descr->sizeof_raw_registers = offset;
132
133 for (; i < descr->nr_cooked_registers; i++)
134 {
135 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
136 descr->register_offset[i] = offset;
137 offset += descr->sizeof_register[i];
138 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
139 }
140 /* Set the real size of the readonly register cache buffer. */
141 descr->sizeof_cooked_registers = offset;
142 }
143
144 return descr;
145 }
146
147 static struct regcache_descr *
148 regcache_descr (struct gdbarch *gdbarch)
149 {
150 return (struct regcache_descr *) gdbarch_data (gdbarch,
151 regcache_descr_handle);
152 }
153
154 /* Utility functions returning useful register attributes stored in
155 the regcache descr. */
156
157 struct type *
158 register_type (struct gdbarch *gdbarch, int regnum)
159 {
160 struct regcache_descr *descr = regcache_descr (gdbarch);
161
162 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
163 return descr->register_type[regnum];
164 }
165
166 /* Utility functions returning useful register attributes stored in
167 the regcache descr. */
168
169 int
170 register_size (struct gdbarch *gdbarch, int regnum)
171 {
172 struct regcache_descr *descr = regcache_descr (gdbarch);
173 int size;
174
175 gdb_assert (regnum >= 0
176 && regnum < (gdbarch_num_regs (gdbarch)
177 + gdbarch_num_pseudo_regs (gdbarch)));
178 size = descr->sizeof_register[regnum];
179 return size;
180 }
181
182 /* See common/common-regcache.h. */
183
184 int
185 regcache_register_size (const struct regcache *regcache, int n)
186 {
187 return register_size (get_regcache_arch (regcache), n);
188 }
189
190 /* The register cache for storing raw register values. */
191
192 struct regcache
193 {
194 struct regcache_descr *descr;
195
196 /* The address space of this register cache (for registers where it
197 makes sense, like PC or SP). */
198 struct address_space *aspace;
199
200 /* The register buffers. A read-only register cache can hold the
201 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
202 register cache can only hold [0 .. gdbarch_num_regs). */
203 gdb_byte *registers;
204 /* Register cache status. */
205 signed char *register_status;
206 /* Is this a read-only cache? A read-only cache is used for saving
207 the target's register state (e.g, across an inferior function
208 call or just before forcing a function return). A read-only
209 cache can only be updated via the methods regcache_dup() and
210 regcache_cpy(). The actual contents are determined by the
211 reggroup_save and reggroup_restore methods. */
212 int readonly_p;
213 /* If this is a read-write cache, which thread's registers is
214 it connected to? */
215 ptid_t ptid;
216 };
217
218 static struct regcache *
219 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace,
220 int readonly_p)
221 {
222 struct regcache_descr *descr;
223 struct regcache *regcache;
224
225 gdb_assert (gdbarch != NULL);
226 descr = regcache_descr (gdbarch);
227 regcache = XNEW (struct regcache);
228 regcache->descr = descr;
229 regcache->readonly_p = readonly_p;
230 if (readonly_p)
231 {
232 regcache->registers
233 = XCNEWVEC (gdb_byte, descr->sizeof_cooked_registers);
234 regcache->register_status
235 = XCNEWVEC (signed char, descr->sizeof_cooked_register_status);
236 }
237 else
238 {
239 regcache->registers
240 = XCNEWVEC (gdb_byte, descr->sizeof_raw_registers);
241 regcache->register_status
242 = XCNEWVEC (signed char, descr->sizeof_raw_register_status);
243 }
244 regcache->aspace = aspace;
245 regcache->ptid = minus_one_ptid;
246 return regcache;
247 }
248
249 struct regcache *
250 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace)
251 {
252 return regcache_xmalloc_1 (gdbarch, aspace, 1);
253 }
254
255 void
256 regcache_xfree (struct regcache *regcache)
257 {
258 if (regcache == NULL)
259 return;
260 xfree (regcache->registers);
261 xfree (regcache->register_status);
262 xfree (regcache);
263 }
264
265 static void
266 do_regcache_xfree (void *data)
267 {
268 regcache_xfree ((struct regcache *) data);
269 }
270
271 struct cleanup *
272 make_cleanup_regcache_xfree (struct regcache *regcache)
273 {
274 return make_cleanup (do_regcache_xfree, regcache);
275 }
276
277 /* Cleanup routines for invalidating a register. */
278
279 struct register_to_invalidate
280 {
281 struct regcache *regcache;
282 int regnum;
283 };
284
285 static void
286 do_regcache_invalidate (void *data)
287 {
288 struct register_to_invalidate *reg = (struct register_to_invalidate *) data;
289
290 regcache_invalidate (reg->regcache, reg->regnum);
291 }
292
293 static struct cleanup *
294 make_cleanup_regcache_invalidate (struct regcache *regcache, int regnum)
295 {
296 struct register_to_invalidate* reg = XNEW (struct register_to_invalidate);
297
298 reg->regcache = regcache;
299 reg->regnum = regnum;
300 return make_cleanup_dtor (do_regcache_invalidate, (void *) reg, xfree);
301 }
302
303 /* Return REGCACHE's architecture. */
304
305 struct gdbarch *
306 get_regcache_arch (const struct regcache *regcache)
307 {
308 return regcache->descr->gdbarch;
309 }
310
311 struct address_space *
312 get_regcache_aspace (const struct regcache *regcache)
313 {
314 return regcache->aspace;
315 }
316
317 /* Return a pointer to register REGNUM's buffer cache. */
318
319 static gdb_byte *
320 register_buffer (const struct regcache *regcache, int regnum)
321 {
322 return regcache->registers + regcache->descr->register_offset[regnum];
323 }
324
325 void
326 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
327 void *src)
328 {
329 struct gdbarch *gdbarch = dst->descr->gdbarch;
330 gdb_byte buf[MAX_REGISTER_SIZE];
331 int regnum;
332
333 /* The DST should be `read-only', if it wasn't then the save would
334 end up trying to write the register values back out to the
335 target. */
336 gdb_assert (dst->readonly_p);
337 /* Clear the dest. */
338 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
339 memset (dst->register_status, 0,
340 dst->descr->sizeof_cooked_register_status);
341 /* Copy over any registers (identified by their membership in the
342 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
343 gdbarch_num_pseudo_regs) range is checked since some architectures need
344 to save/restore `cooked' registers that live in memory. */
345 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
346 {
347 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
348 {
349 enum register_status status = cooked_read (src, regnum, buf);
350
351 if (status == REG_VALID)
352 memcpy (register_buffer (dst, regnum), buf,
353 register_size (gdbarch, regnum));
354 else
355 {
356 gdb_assert (status != REG_UNKNOWN);
357
358 memset (register_buffer (dst, regnum), 0,
359 register_size (gdbarch, regnum));
360 }
361 dst->register_status[regnum] = status;
362 }
363 }
364 }
365
366 static void
367 regcache_restore (struct regcache *dst,
368 regcache_cooked_read_ftype *cooked_read,
369 void *cooked_read_context)
370 {
371 struct gdbarch *gdbarch = dst->descr->gdbarch;
372 gdb_byte buf[MAX_REGISTER_SIZE];
373 int regnum;
374
375 /* The dst had better not be read-only. If it is, the `restore'
376 doesn't make much sense. */
377 gdb_assert (!dst->readonly_p);
378 /* Copy over any registers, being careful to only restore those that
379 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
380 + gdbarch_num_pseudo_regs) range is checked since some architectures need
381 to save/restore `cooked' registers that live in memory. */
382 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
383 {
384 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
385 {
386 enum register_status status;
387
388 status = cooked_read (cooked_read_context, regnum, buf);
389 if (status == REG_VALID)
390 regcache_cooked_write (dst, regnum, buf);
391 }
392 }
393 }
394
395 static enum register_status
396 do_cooked_read (void *src, int regnum, gdb_byte *buf)
397 {
398 struct regcache *regcache = (struct regcache *) src;
399
400 return regcache_cooked_read (regcache, regnum, buf);
401 }
402
403 static void regcache_cpy_no_passthrough (struct regcache *dst,
404 struct regcache *src);
405
406 void
407 regcache_cpy (struct regcache *dst, struct regcache *src)
408 {
409 gdb_assert (src != NULL && dst != NULL);
410 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
411 gdb_assert (src != dst);
412 gdb_assert (src->readonly_p || dst->readonly_p);
413
414 if (!src->readonly_p)
415 regcache_save (dst, do_cooked_read, src);
416 else if (!dst->readonly_p)
417 regcache_restore (dst, do_cooked_read, src);
418 else
419 regcache_cpy_no_passthrough (dst, src);
420 }
421
422 /* Copy/duplicate the contents of a register cache. Unlike regcache_cpy,
423 which is pass-through, this does not go through to the target.
424 Only values values already in the cache are transferred. The SRC and DST
425 buffers must not overlap. */
426
427 static void
428 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
429 {
430 gdb_assert (src != NULL && dst != NULL);
431 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
432 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
433 move of data into a thread's regcache. Doing this would be silly
434 - it would mean that regcache->register_status would be
435 completely invalid. */
436 gdb_assert (dst->readonly_p && src->readonly_p);
437
438 memcpy (dst->registers, src->registers,
439 dst->descr->sizeof_cooked_registers);
440 memcpy (dst->register_status, src->register_status,
441 dst->descr->sizeof_cooked_register_status);
442 }
443
444 struct regcache *
445 regcache_dup (struct regcache *src)
446 {
447 struct regcache *newbuf;
448
449 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src));
450 regcache_cpy (newbuf, src);
451 return newbuf;
452 }
453
454 enum register_status
455 regcache_register_status (const struct regcache *regcache, int regnum)
456 {
457 gdb_assert (regcache != NULL);
458 gdb_assert (regnum >= 0);
459 if (regcache->readonly_p)
460 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
461 else
462 gdb_assert (regnum < regcache->descr->nr_raw_registers);
463
464 return (enum register_status) regcache->register_status[regnum];
465 }
466
467 void
468 regcache_invalidate (struct regcache *regcache, int regnum)
469 {
470 gdb_assert (regcache != NULL);
471 gdb_assert (regnum >= 0);
472 gdb_assert (!regcache->readonly_p);
473 gdb_assert (regnum < regcache->descr->nr_raw_registers);
474 regcache->register_status[regnum] = REG_UNKNOWN;
475 }
476
477
478 /* Global structure containing the current regcache. */
479
480 /* NOTE: this is a write-through cache. There is no "dirty" bit for
481 recording if the register values have been changed (eg. by the
482 user). Therefore all registers must be written back to the
483 target when appropriate. */
484
485 struct regcache_list
486 {
487 struct regcache *regcache;
488 struct regcache_list *next;
489 };
490
491 static struct regcache_list *current_regcache;
492
493 struct regcache *
494 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
495 struct address_space *aspace)
496 {
497 struct regcache_list *list;
498 struct regcache *new_regcache;
499
500 for (list = current_regcache; list; list = list->next)
501 if (ptid_equal (list->regcache->ptid, ptid)
502 && get_regcache_arch (list->regcache) == gdbarch)
503 return list->regcache;
504
505 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0);
506 new_regcache->ptid = ptid;
507
508 list = XNEW (struct regcache_list);
509 list->regcache = new_regcache;
510 list->next = current_regcache;
511 current_regcache = list;
512
513 return new_regcache;
514 }
515
516 struct regcache *
517 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
518 {
519 struct address_space *aspace;
520
521 /* For the benefit of "maint print registers" & co when debugging an
522 executable, allow dumping the regcache even when there is no
523 thread selected (target_thread_address_space internal-errors if
524 no address space is found). Note that normal user commands will
525 fail higher up on the call stack due to no
526 target_has_registers. */
527 aspace = (ptid_equal (null_ptid, ptid)
528 ? NULL
529 : target_thread_address_space (ptid));
530
531 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
532 }
533
534 static ptid_t current_thread_ptid;
535 static struct gdbarch *current_thread_arch;
536
537 struct regcache *
538 get_thread_regcache (ptid_t ptid)
539 {
540 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
541 {
542 current_thread_ptid = ptid;
543 current_thread_arch = target_thread_architecture (ptid);
544 }
545
546 return get_thread_arch_regcache (ptid, current_thread_arch);
547 }
548
549 struct regcache *
550 get_current_regcache (void)
551 {
552 return get_thread_regcache (inferior_ptid);
553 }
554
555 /* See common/common-regcache.h. */
556
557 struct regcache *
558 get_thread_regcache_for_ptid (ptid_t ptid)
559 {
560 return get_thread_regcache (ptid);
561 }
562
563 /* Observer for the target_changed event. */
564
565 static void
566 regcache_observer_target_changed (struct target_ops *target)
567 {
568 registers_changed ();
569 }
570
571 /* Update global variables old ptids to hold NEW_PTID if they were
572 holding OLD_PTID. */
573 static void
574 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
575 {
576 struct regcache_list *list;
577
578 for (list = current_regcache; list; list = list->next)
579 if (ptid_equal (list->regcache->ptid, old_ptid))
580 list->regcache->ptid = new_ptid;
581 }
582
583 /* Low level examining and depositing of registers.
584
585 The caller is responsible for making sure that the inferior is
586 stopped before calling the fetching routines, or it will get
587 garbage. (a change from GDB version 3, in which the caller got the
588 value from the last stop). */
589
590 /* REGISTERS_CHANGED ()
591
592 Indicate that registers may have changed, so invalidate the cache. */
593
594 void
595 registers_changed_ptid (ptid_t ptid)
596 {
597 struct regcache_list *list, **list_link;
598
599 list = current_regcache;
600 list_link = &current_regcache;
601 while (list)
602 {
603 if (ptid_match (list->regcache->ptid, ptid))
604 {
605 struct regcache_list *dead = list;
606
607 *list_link = list->next;
608 regcache_xfree (list->regcache);
609 list = *list_link;
610 xfree (dead);
611 continue;
612 }
613
614 list_link = &list->next;
615 list = *list_link;
616 }
617
618 if (ptid_match (current_thread_ptid, ptid))
619 {
620 current_thread_ptid = null_ptid;
621 current_thread_arch = NULL;
622 }
623
624 if (ptid_match (inferior_ptid, ptid))
625 {
626 /* We just deleted the regcache of the current thread. Need to
627 forget about any frames we have cached, too. */
628 reinit_frame_cache ();
629 }
630 }
631
632 void
633 registers_changed (void)
634 {
635 registers_changed_ptid (minus_one_ptid);
636
637 /* Force cleanup of any alloca areas if using C alloca instead of
638 a builtin alloca. This particular call is used to clean up
639 areas allocated by low level target code which may build up
640 during lengthy interactions between gdb and the target before
641 gdb gives control to the user (ie watchpoints). */
642 alloca (0);
643 }
644
645 void
646 regcache_raw_update (struct regcache *regcache, int regnum)
647 {
648 gdb_assert (regcache != NULL);
649 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
650
651 /* Make certain that the register cache is up-to-date with respect
652 to the current thread. This switching shouldn't be necessary
653 only there is still only one target side register cache. Sigh!
654 On the bright side, at least there is a regcache object. */
655
656 if (!regcache->readonly_p
657 && regcache_register_status (regcache, regnum) == REG_UNKNOWN)
658 {
659 struct cleanup *old_chain = save_inferior_ptid ();
660
661 inferior_ptid = regcache->ptid;
662 target_fetch_registers (regcache, regnum);
663 do_cleanups (old_chain);
664
665 /* A number of targets can't access the whole set of raw
666 registers (because the debug API provides no means to get at
667 them). */
668 if (regcache->register_status[regnum] == REG_UNKNOWN)
669 regcache->register_status[regnum] = REG_UNAVAILABLE;
670 }
671 }
672
673 enum register_status
674 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
675 {
676 gdb_assert (buf != NULL);
677 regcache_raw_update (regcache, regnum);
678
679 if (regcache->register_status[regnum] != REG_VALID)
680 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
681 else
682 memcpy (buf, register_buffer (regcache, regnum),
683 regcache->descr->sizeof_register[regnum]);
684
685 return (enum register_status) regcache->register_status[regnum];
686 }
687
688 enum register_status
689 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
690 {
691 gdb_byte *buf;
692 enum register_status status;
693
694 gdb_assert (regcache != NULL);
695 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
696 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
697 status = regcache_raw_read (regcache, regnum, buf);
698 if (status == REG_VALID)
699 *val = extract_signed_integer
700 (buf, regcache->descr->sizeof_register[regnum],
701 gdbarch_byte_order (regcache->descr->gdbarch));
702 else
703 *val = 0;
704 return status;
705 }
706
707 enum register_status
708 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
709 ULONGEST *val)
710 {
711 gdb_byte *buf;
712 enum register_status status;
713
714 gdb_assert (regcache != NULL);
715 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
716 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
717 status = regcache_raw_read (regcache, regnum, buf);
718 if (status == REG_VALID)
719 *val = extract_unsigned_integer
720 (buf, regcache->descr->sizeof_register[regnum],
721 gdbarch_byte_order (regcache->descr->gdbarch));
722 else
723 *val = 0;
724 return status;
725 }
726
727 void
728 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
729 {
730 gdb_byte *buf;
731
732 gdb_assert (regcache != NULL);
733 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
734 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
735 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
736 gdbarch_byte_order (regcache->descr->gdbarch), val);
737 regcache_raw_write (regcache, regnum, buf);
738 }
739
740 void
741 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
742 ULONGEST val)
743 {
744 gdb_byte *buf;
745
746 gdb_assert (regcache != NULL);
747 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
748 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
749 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
750 gdbarch_byte_order (regcache->descr->gdbarch), val);
751 regcache_raw_write (regcache, regnum, buf);
752 }
753
754 LONGEST
755 regcache_raw_get_signed (struct regcache *regcache, int regnum)
756 {
757 LONGEST value;
758 enum register_status status;
759
760 status = regcache_raw_read_signed (regcache, regnum, &value);
761 if (status == REG_UNAVAILABLE)
762 throw_error (NOT_AVAILABLE_ERROR,
763 _("Register %d is not available"), regnum);
764 return value;
765 }
766
767 enum register_status
768 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
769 {
770 gdb_assert (regnum >= 0);
771 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
772 if (regnum < regcache->descr->nr_raw_registers)
773 return regcache_raw_read (regcache, regnum, buf);
774 else if (regcache->readonly_p
775 && regcache->register_status[regnum] != REG_UNKNOWN)
776 {
777 /* Read-only register cache, perhaps the cooked value was
778 cached? */
779 if (regcache->register_status[regnum] == REG_VALID)
780 memcpy (buf, register_buffer (regcache, regnum),
781 regcache->descr->sizeof_register[regnum]);
782 else
783 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
784
785 return (enum register_status) regcache->register_status[regnum];
786 }
787 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
788 {
789 struct value *mark, *computed;
790 enum register_status result = REG_VALID;
791
792 mark = value_mark ();
793
794 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
795 regcache, regnum);
796 if (value_entirely_available (computed))
797 memcpy (buf, value_contents_raw (computed),
798 regcache->descr->sizeof_register[regnum]);
799 else
800 {
801 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
802 result = REG_UNAVAILABLE;
803 }
804
805 value_free_to_mark (mark);
806
807 return result;
808 }
809 else
810 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
811 regnum, buf);
812 }
813
814 struct value *
815 regcache_cooked_read_value (struct regcache *regcache, int regnum)
816 {
817 gdb_assert (regnum >= 0);
818 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
819
820 if (regnum < regcache->descr->nr_raw_registers
821 || (regcache->readonly_p
822 && regcache->register_status[regnum] != REG_UNKNOWN)
823 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
824 {
825 struct value *result;
826
827 result = allocate_value (register_type (regcache->descr->gdbarch,
828 regnum));
829 VALUE_LVAL (result) = lval_register;
830 VALUE_REGNUM (result) = regnum;
831
832 /* It is more efficient in general to do this delegation in this
833 direction than in the other one, even though the value-based
834 API is preferred. */
835 if (regcache_cooked_read (regcache, regnum,
836 value_contents_raw (result)) == REG_UNAVAILABLE)
837 mark_value_bytes_unavailable (result, 0,
838 TYPE_LENGTH (value_type (result)));
839
840 return result;
841 }
842 else
843 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
844 regcache, regnum);
845 }
846
847 enum register_status
848 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
849 LONGEST *val)
850 {
851 enum register_status status;
852 gdb_byte *buf;
853
854 gdb_assert (regcache != NULL);
855 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
856 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
857 status = regcache_cooked_read (regcache, regnum, buf);
858 if (status == REG_VALID)
859 *val = extract_signed_integer
860 (buf, regcache->descr->sizeof_register[regnum],
861 gdbarch_byte_order (regcache->descr->gdbarch));
862 else
863 *val = 0;
864 return status;
865 }
866
867 enum register_status
868 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
869 ULONGEST *val)
870 {
871 enum register_status status;
872 gdb_byte *buf;
873
874 gdb_assert (regcache != NULL);
875 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
876 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
877 status = regcache_cooked_read (regcache, regnum, buf);
878 if (status == REG_VALID)
879 *val = extract_unsigned_integer
880 (buf, regcache->descr->sizeof_register[regnum],
881 gdbarch_byte_order (regcache->descr->gdbarch));
882 else
883 *val = 0;
884 return status;
885 }
886
887 void
888 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
889 LONGEST val)
890 {
891 gdb_byte *buf;
892
893 gdb_assert (regcache != NULL);
894 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
895 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
896 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
897 gdbarch_byte_order (regcache->descr->gdbarch), val);
898 regcache_cooked_write (regcache, regnum, buf);
899 }
900
901 void
902 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
903 ULONGEST val)
904 {
905 gdb_byte *buf;
906
907 gdb_assert (regcache != NULL);
908 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
909 buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]);
910 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
911 gdbarch_byte_order (regcache->descr->gdbarch), val);
912 regcache_cooked_write (regcache, regnum, buf);
913 }
914
915 /* See regcache.h. */
916
917 void
918 regcache_raw_set_cached_value (struct regcache *regcache, int regnum,
919 const gdb_byte *buf)
920 {
921 memcpy (register_buffer (regcache, regnum), buf,
922 regcache->descr->sizeof_register[regnum]);
923 regcache->register_status[regnum] = REG_VALID;
924 }
925
926 void
927 regcache_raw_write (struct regcache *regcache, int regnum,
928 const gdb_byte *buf)
929 {
930 struct cleanup *chain_before_save_inferior;
931 struct cleanup *chain_before_invalidate_register;
932
933 gdb_assert (regcache != NULL && buf != NULL);
934 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
935 gdb_assert (!regcache->readonly_p);
936
937 /* On the sparc, writing %g0 is a no-op, so we don't even want to
938 change the registers array if something writes to this register. */
939 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
940 return;
941
942 /* If we have a valid copy of the register, and new value == old
943 value, then don't bother doing the actual store. */
944 if (regcache_register_status (regcache, regnum) == REG_VALID
945 && (memcmp (register_buffer (regcache, regnum), buf,
946 regcache->descr->sizeof_register[regnum]) == 0))
947 return;
948
949 chain_before_save_inferior = save_inferior_ptid ();
950 inferior_ptid = regcache->ptid;
951
952 target_prepare_to_store (regcache);
953 regcache_raw_set_cached_value (regcache, regnum, buf);
954
955 /* Register a cleanup function for invalidating the register after it is
956 written, in case of a failure. */
957 chain_before_invalidate_register
958 = make_cleanup_regcache_invalidate (regcache, regnum);
959
960 target_store_registers (regcache, regnum);
961
962 /* The target did not throw an error so we can discard invalidating the
963 register and restore the cleanup chain to what it was. */
964 discard_cleanups (chain_before_invalidate_register);
965
966 do_cleanups (chain_before_save_inferior);
967 }
968
969 void
970 regcache_cooked_write (struct regcache *regcache, int regnum,
971 const gdb_byte *buf)
972 {
973 gdb_assert (regnum >= 0);
974 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
975 if (regnum < regcache->descr->nr_raw_registers)
976 regcache_raw_write (regcache, regnum, buf);
977 else
978 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
979 regnum, buf);
980 }
981
982 /* Perform a partial register transfer using a read, modify, write
983 operation. */
984
985 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
986 void *buf);
987 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
988 const void *buf);
989
990 static enum register_status
991 regcache_xfer_part (struct regcache *regcache, int regnum,
992 int offset, int len, void *in, const void *out,
993 enum register_status (*read) (struct regcache *regcache,
994 int regnum,
995 gdb_byte *buf),
996 void (*write) (struct regcache *regcache, int regnum,
997 const gdb_byte *buf))
998 {
999 struct regcache_descr *descr = regcache->descr;
1000 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1001 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1002
1003 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
1004 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
1005 /* Something to do? */
1006 if (offset + len == 0)
1007 return REG_VALID;
1008 /* Read (when needed) ... */
1009 if (in != NULL
1010 || offset > 0
1011 || offset + len < descr->sizeof_register[regnum])
1012 {
1013 enum register_status status;
1014
1015 gdb_assert (read != NULL);
1016 status = read (regcache, regnum, reg);
1017 if (status != REG_VALID)
1018 return status;
1019 }
1020 /* ... modify ... */
1021 if (in != NULL)
1022 memcpy (in, reg + offset, len);
1023 if (out != NULL)
1024 memcpy (reg + offset, out, len);
1025 /* ... write (when needed). */
1026 if (out != NULL)
1027 {
1028 gdb_assert (write != NULL);
1029 write (regcache, regnum, reg);
1030 }
1031
1032 return REG_VALID;
1033 }
1034
1035 enum register_status
1036 regcache_raw_read_part (struct regcache *regcache, int regnum,
1037 int offset, int len, gdb_byte *buf)
1038 {
1039 struct regcache_descr *descr = regcache->descr;
1040
1041 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1042 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1043 regcache_raw_read, regcache_raw_write);
1044 }
1045
1046 void
1047 regcache_raw_write_part (struct regcache *regcache, int regnum,
1048 int offset, int len, const gdb_byte *buf)
1049 {
1050 struct regcache_descr *descr = regcache->descr;
1051
1052 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
1053 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1054 regcache_raw_read, regcache_raw_write);
1055 }
1056
1057 enum register_status
1058 regcache_cooked_read_part (struct regcache *regcache, int regnum,
1059 int offset, int len, gdb_byte *buf)
1060 {
1061 struct regcache_descr *descr = regcache->descr;
1062
1063 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1064 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
1065 regcache_cooked_read, regcache_cooked_write);
1066 }
1067
1068 void
1069 regcache_cooked_write_part (struct regcache *regcache, int regnum,
1070 int offset, int len, const gdb_byte *buf)
1071 {
1072 struct regcache_descr *descr = regcache->descr;
1073
1074 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
1075 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
1076 regcache_cooked_read, regcache_cooked_write);
1077 }
1078
1079 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1080
1081 void
1082 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1083 {
1084 void *regbuf;
1085 size_t size;
1086
1087 gdb_assert (regcache != NULL);
1088 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1089 gdb_assert (!regcache->readonly_p);
1090
1091 regbuf = register_buffer (regcache, regnum);
1092 size = regcache->descr->sizeof_register[regnum];
1093
1094 if (buf)
1095 {
1096 memcpy (regbuf, buf, size);
1097 regcache->register_status[regnum] = REG_VALID;
1098 }
1099 else
1100 {
1101 /* This memset not strictly necessary, but better than garbage
1102 in case the register value manages to escape somewhere (due
1103 to a bug, no less). */
1104 memset (regbuf, 0, size);
1105 regcache->register_status[regnum] = REG_UNAVAILABLE;
1106 }
1107 }
1108
1109 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1110
1111 void
1112 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1113 {
1114 const void *regbuf;
1115 size_t size;
1116
1117 gdb_assert (regcache != NULL && buf != NULL);
1118 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1119
1120 regbuf = register_buffer (regcache, regnum);
1121 size = regcache->descr->sizeof_register[regnum];
1122 memcpy (buf, regbuf, size);
1123 }
1124
1125 /* Transfer a single or all registers belonging to a certain register
1126 set to or from a buffer. This is the main worker function for
1127 regcache_supply_regset and regcache_collect_regset. */
1128
1129 static void
1130 regcache_transfer_regset (const struct regset *regset,
1131 const struct regcache *regcache,
1132 struct regcache *out_regcache,
1133 int regnum, const void *in_buf,
1134 void *out_buf, size_t size)
1135 {
1136 const struct regcache_map_entry *map;
1137 int offs = 0, count;
1138
1139 for (map = (const struct regcache_map_entry *) regset->regmap;
1140 (count = map->count) != 0;
1141 map++)
1142 {
1143 int regno = map->regno;
1144 int slot_size = map->size;
1145
1146 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1147 slot_size = regcache->descr->sizeof_register[regno];
1148
1149 if (regno == REGCACHE_MAP_SKIP
1150 || (regnum != -1
1151 && (regnum < regno || regnum >= regno + count)))
1152 offs += count * slot_size;
1153
1154 else if (regnum == -1)
1155 for (; count--; regno++, offs += slot_size)
1156 {
1157 if (offs + slot_size > size)
1158 break;
1159
1160 if (out_buf)
1161 regcache_raw_collect (regcache, regno,
1162 (gdb_byte *) out_buf + offs);
1163 else
1164 regcache_raw_supply (out_regcache, regno, in_buf
1165 ? (const gdb_byte *) in_buf + offs
1166 : NULL);
1167 }
1168 else
1169 {
1170 /* Transfer a single register and return. */
1171 offs += (regnum - regno) * slot_size;
1172 if (offs + slot_size > size)
1173 return;
1174
1175 if (out_buf)
1176 regcache_raw_collect (regcache, regnum,
1177 (gdb_byte *) out_buf + offs);
1178 else
1179 regcache_raw_supply (out_regcache, regnum, in_buf
1180 ? (const gdb_byte *) in_buf + offs
1181 : NULL);
1182 return;
1183 }
1184 }
1185 }
1186
1187 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1188 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1189 If BUF is NULL, set the register(s) to "unavailable" status. */
1190
1191 void
1192 regcache_supply_regset (const struct regset *regset,
1193 struct regcache *regcache,
1194 int regnum, const void *buf, size_t size)
1195 {
1196 regcache_transfer_regset (regset, regcache, regcache, regnum,
1197 buf, NULL, size);
1198 }
1199
1200 /* Collect register REGNUM from REGCACHE to BUF, using the register
1201 map in REGSET. If REGNUM is -1, do this for all registers in
1202 REGSET. */
1203
1204 void
1205 regcache_collect_regset (const struct regset *regset,
1206 const struct regcache *regcache,
1207 int regnum, void *buf, size_t size)
1208 {
1209 regcache_transfer_regset (regset, regcache, NULL, regnum,
1210 NULL, buf, size);
1211 }
1212
1213
1214 /* Special handling for register PC. */
1215
1216 CORE_ADDR
1217 regcache_read_pc (struct regcache *regcache)
1218 {
1219 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1220
1221 CORE_ADDR pc_val;
1222
1223 if (gdbarch_read_pc_p (gdbarch))
1224 pc_val = gdbarch_read_pc (gdbarch, regcache);
1225 /* Else use per-frame method on get_current_frame. */
1226 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1227 {
1228 ULONGEST raw_val;
1229
1230 if (regcache_cooked_read_unsigned (regcache,
1231 gdbarch_pc_regnum (gdbarch),
1232 &raw_val) == REG_UNAVAILABLE)
1233 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1234
1235 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1236 }
1237 else
1238 internal_error (__FILE__, __LINE__,
1239 _("regcache_read_pc: Unable to find PC"));
1240 return pc_val;
1241 }
1242
1243 void
1244 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1245 {
1246 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1247
1248 if (gdbarch_write_pc_p (gdbarch))
1249 gdbarch_write_pc (gdbarch, regcache, pc);
1250 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1251 regcache_cooked_write_unsigned (regcache,
1252 gdbarch_pc_regnum (gdbarch), pc);
1253 else
1254 internal_error (__FILE__, __LINE__,
1255 _("regcache_write_pc: Unable to update PC"));
1256
1257 /* Writing the PC (for instance, from "load") invalidates the
1258 current frame. */
1259 reinit_frame_cache ();
1260 }
1261
1262
1263 static void
1264 reg_flush_command (char *command, int from_tty)
1265 {
1266 /* Force-flush the register cache. */
1267 registers_changed ();
1268 if (from_tty)
1269 printf_filtered (_("Register cache flushed.\n"));
1270 }
1271
1272 enum regcache_dump_what
1273 {
1274 regcache_dump_none, regcache_dump_raw,
1275 regcache_dump_cooked, regcache_dump_groups,
1276 regcache_dump_remote
1277 };
1278
1279 static void
1280 regcache_dump (struct regcache *regcache, struct ui_file *file,
1281 enum regcache_dump_what what_to_dump)
1282 {
1283 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1284 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1285 int regnum;
1286 int footnote_nr = 0;
1287 int footnote_register_size = 0;
1288 int footnote_register_offset = 0;
1289 int footnote_register_type_name_null = 0;
1290 long register_offset = 0;
1291 gdb_byte buf[MAX_REGISTER_SIZE];
1292
1293 #if 0
1294 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1295 regcache->descr->nr_raw_registers);
1296 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1297 regcache->descr->nr_cooked_registers);
1298 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1299 regcache->descr->sizeof_raw_registers);
1300 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n",
1301 regcache->descr->sizeof_raw_register_status);
1302 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
1303 gdbarch_num_regs (gdbarch));
1304 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
1305 gdbarch_num_pseudo_regs (gdbarch));
1306 #endif
1307
1308 gdb_assert (regcache->descr->nr_cooked_registers
1309 == (gdbarch_num_regs (gdbarch)
1310 + gdbarch_num_pseudo_regs (gdbarch)));
1311
1312 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1313 {
1314 /* Name. */
1315 if (regnum < 0)
1316 fprintf_unfiltered (file, " %-10s", "Name");
1317 else
1318 {
1319 const char *p = gdbarch_register_name (gdbarch, regnum);
1320
1321 if (p == NULL)
1322 p = "";
1323 else if (p[0] == '\0')
1324 p = "''";
1325 fprintf_unfiltered (file, " %-10s", p);
1326 }
1327
1328 /* Number. */
1329 if (regnum < 0)
1330 fprintf_unfiltered (file, " %4s", "Nr");
1331 else
1332 fprintf_unfiltered (file, " %4d", regnum);
1333
1334 /* Relative number. */
1335 if (regnum < 0)
1336 fprintf_unfiltered (file, " %4s", "Rel");
1337 else if (regnum < gdbarch_num_regs (gdbarch))
1338 fprintf_unfiltered (file, " %4d", regnum);
1339 else
1340 fprintf_unfiltered (file, " %4d",
1341 (regnum - gdbarch_num_regs (gdbarch)));
1342
1343 /* Offset. */
1344 if (regnum < 0)
1345 fprintf_unfiltered (file, " %6s ", "Offset");
1346 else
1347 {
1348 fprintf_unfiltered (file, " %6ld",
1349 regcache->descr->register_offset[regnum]);
1350 if (register_offset != regcache->descr->register_offset[regnum]
1351 || (regnum > 0
1352 && (regcache->descr->register_offset[regnum]
1353 != (regcache->descr->register_offset[regnum - 1]
1354 + regcache->descr->sizeof_register[regnum - 1])))
1355 )
1356 {
1357 if (!footnote_register_offset)
1358 footnote_register_offset = ++footnote_nr;
1359 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1360 }
1361 else
1362 fprintf_unfiltered (file, " ");
1363 register_offset = (regcache->descr->register_offset[regnum]
1364 + regcache->descr->sizeof_register[regnum]);
1365 }
1366
1367 /* Size. */
1368 if (regnum < 0)
1369 fprintf_unfiltered (file, " %5s ", "Size");
1370 else
1371 fprintf_unfiltered (file, " %5ld",
1372 regcache->descr->sizeof_register[regnum]);
1373
1374 /* Type. */
1375 {
1376 const char *t;
1377
1378 if (regnum < 0)
1379 t = "Type";
1380 else
1381 {
1382 static const char blt[] = "builtin_type";
1383
1384 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1385 if (t == NULL)
1386 {
1387 char *n;
1388
1389 if (!footnote_register_type_name_null)
1390 footnote_register_type_name_null = ++footnote_nr;
1391 n = xstrprintf ("*%d", footnote_register_type_name_null);
1392 make_cleanup (xfree, n);
1393 t = n;
1394 }
1395 /* Chop a leading builtin_type. */
1396 if (startswith (t, blt))
1397 t += strlen (blt);
1398 }
1399 fprintf_unfiltered (file, " %-15s", t);
1400 }
1401
1402 /* Leading space always present. */
1403 fprintf_unfiltered (file, " ");
1404
1405 /* Value, raw. */
1406 if (what_to_dump == regcache_dump_raw)
1407 {
1408 if (regnum < 0)
1409 fprintf_unfiltered (file, "Raw value");
1410 else if (regnum >= regcache->descr->nr_raw_registers)
1411 fprintf_unfiltered (file, "<cooked>");
1412 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN)
1413 fprintf_unfiltered (file, "<invalid>");
1414 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE)
1415 fprintf_unfiltered (file, "<unavailable>");
1416 else
1417 {
1418 regcache_raw_read (regcache, regnum, buf);
1419 print_hex_chars (file, buf,
1420 regcache->descr->sizeof_register[regnum],
1421 gdbarch_byte_order (gdbarch));
1422 }
1423 }
1424
1425 /* Value, cooked. */
1426 if (what_to_dump == regcache_dump_cooked)
1427 {
1428 if (regnum < 0)
1429 fprintf_unfiltered (file, "Cooked value");
1430 else
1431 {
1432 enum register_status status;
1433
1434 status = regcache_cooked_read (regcache, regnum, buf);
1435 if (status == REG_UNKNOWN)
1436 fprintf_unfiltered (file, "<invalid>");
1437 else if (status == REG_UNAVAILABLE)
1438 fprintf_unfiltered (file, "<unavailable>");
1439 else
1440 print_hex_chars (file, buf,
1441 regcache->descr->sizeof_register[regnum],
1442 gdbarch_byte_order (gdbarch));
1443 }
1444 }
1445
1446 /* Group members. */
1447 if (what_to_dump == regcache_dump_groups)
1448 {
1449 if (regnum < 0)
1450 fprintf_unfiltered (file, "Groups");
1451 else
1452 {
1453 const char *sep = "";
1454 struct reggroup *group;
1455
1456 for (group = reggroup_next (gdbarch, NULL);
1457 group != NULL;
1458 group = reggroup_next (gdbarch, group))
1459 {
1460 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1461 {
1462 fprintf_unfiltered (file,
1463 "%s%s", sep, reggroup_name (group));
1464 sep = ",";
1465 }
1466 }
1467 }
1468 }
1469
1470 /* Remote packet configuration. */
1471 if (what_to_dump == regcache_dump_remote)
1472 {
1473 if (regnum < 0)
1474 {
1475 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1476 }
1477 else if (regnum < regcache->descr->nr_raw_registers)
1478 {
1479 int pnum, poffset;
1480
1481 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum,
1482 &pnum, &poffset))
1483 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1484 }
1485 }
1486
1487 fprintf_unfiltered (file, "\n");
1488 }
1489
1490 if (footnote_register_size)
1491 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1492 footnote_register_size);
1493 if (footnote_register_offset)
1494 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1495 footnote_register_offset);
1496 if (footnote_register_type_name_null)
1497 fprintf_unfiltered (file,
1498 "*%d: Register type's name NULL.\n",
1499 footnote_register_type_name_null);
1500 do_cleanups (cleanups);
1501 }
1502
1503 static void
1504 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1505 {
1506 if (args == NULL)
1507 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1508 else
1509 {
1510 stdio_file file;
1511
1512 if (!file.open (args, "w"))
1513 perror_with_name (_("maintenance print architecture"));
1514 regcache_dump (get_current_regcache (), &file, what_to_dump);
1515 }
1516 }
1517
1518 static void
1519 maintenance_print_registers (char *args, int from_tty)
1520 {
1521 regcache_print (args, regcache_dump_none);
1522 }
1523
1524 static void
1525 maintenance_print_raw_registers (char *args, int from_tty)
1526 {
1527 regcache_print (args, regcache_dump_raw);
1528 }
1529
1530 static void
1531 maintenance_print_cooked_registers (char *args, int from_tty)
1532 {
1533 regcache_print (args, regcache_dump_cooked);
1534 }
1535
1536 static void
1537 maintenance_print_register_groups (char *args, int from_tty)
1538 {
1539 regcache_print (args, regcache_dump_groups);
1540 }
1541
1542 static void
1543 maintenance_print_remote_registers (char *args, int from_tty)
1544 {
1545 regcache_print (args, regcache_dump_remote);
1546 }
1547
1548 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1549
1550 void
1551 _initialize_regcache (void)
1552 {
1553 regcache_descr_handle
1554 = gdbarch_data_register_post_init (init_regcache_descr);
1555
1556 observer_attach_target_changed (regcache_observer_target_changed);
1557 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1558
1559 add_com ("flushregs", class_maintenance, reg_flush_command,
1560 _("Force gdb to flush its register cache (maintainer command)"));
1561
1562 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1563 _("Print the internal register configuration.\n"
1564 "Takes an optional file parameter."), &maintenanceprintlist);
1565 add_cmd ("raw-registers", class_maintenance,
1566 maintenance_print_raw_registers,
1567 _("Print the internal register configuration "
1568 "including raw values.\n"
1569 "Takes an optional file parameter."), &maintenanceprintlist);
1570 add_cmd ("cooked-registers", class_maintenance,
1571 maintenance_print_cooked_registers,
1572 _("Print the internal register configuration "
1573 "including cooked values.\n"
1574 "Takes an optional file parameter."), &maintenanceprintlist);
1575 add_cmd ("register-groups", class_maintenance,
1576 maintenance_print_register_groups,
1577 _("Print the internal register configuration "
1578 "including each register's group.\n"
1579 "Takes an optional file parameter."),
1580 &maintenanceprintlist);
1581 add_cmd ("remote-registers", class_maintenance,
1582 maintenance_print_remote_registers, _("\
1583 Print the internal register configuration including each register's\n\
1584 remote register number and buffer offset in the g/G packets.\n\
1585 Takes an optional file parameter."),
1586 &maintenanceprintlist);
1587
1588 }
This page took 0.061093 seconds and 5 git commands to generate.