* gdbserver/{remote-gutils.c remote-server.c Makefile.in
[deliverable/binutils-gdb.git] / gdb / remote-nindy.c
1 /* Memory-access and commands for remote NINDY process, for GDB.
2 Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Contributed by Intel Corporation. Modified from remote.c by Chris Benenati.
4
5 GDB is distributed in the hope that it will be useful, but WITHOUT ANY
6 WARRANTY. No author or distributor accepts responsibility to anyone
7 for the consequences of using it or for whether it serves any
8 particular purpose or works at all, unless he says so in writing.
9 Refer to the GDB General Public License for full details.
10
11 Everyone is granted permission to copy, modify and redistribute GDB,
12 but only under the conditions described in the GDB General Public
13 License. A copy of this license is supposed to have been given to you
14 along with GDB so you can know your rights and responsibilities. It
15 should be in a file named COPYING. Among other things, the copyright
16 notice and this notice must be preserved on all copies.
17
18 In other words, go ahead and share GDB, but don't try to stop
19 anyone else from sharing it farther. Help stamp out software hoarding!
20 */
21
22 /*
23 Except for the data cache routines, this file bears little resemblence
24 to remote.c. A new (although similar) protocol has been specified, and
25 portions of the code are entirely dependent on having an i80960 with a
26 NINDY ROM monitor at the other end of the line.
27 */
28
29 /*****************************************************************************
30 *
31 * REMOTE COMMUNICATION PROTOCOL BETWEEN GDB960 AND THE NINDY ROM MONITOR.
32 *
33 *
34 * MODES OF OPERATION
35 * ----- -- ---------
36 *
37 * As far as NINDY is concerned, GDB is always in one of two modes: command
38 * mode or passthrough mode.
39 *
40 * In command mode (the default) pre-defined packets containing requests
41 * are sent by GDB to NINDY. NINDY never talks except in reponse to a request.
42 *
43 * Once the the user program is started, GDB enters passthrough mode, to give
44 * the user program access to the terminal. GDB remains in this mode until
45 * NINDY indicates that the program has stopped.
46 *
47 *
48 * PASSTHROUGH MODE
49 * ----------- ----
50 *
51 * GDB writes all input received from the keyboard directly to NINDY, and writes
52 * all characters received from NINDY directly to the monitor.
53 *
54 * Keyboard input is neither buffered nor echoed to the monitor.
55 *
56 * GDB remains in passthrough mode until NINDY sends a single ^P character,
57 * to indicate that the user process has stopped.
58 *
59 * Note:
60 * GDB assumes NINDY performs a 'flushreg' when the user program stops.
61 *
62 *
63 * COMMAND MODE
64 * ------- ----
65 *
66 * All info (except for message ack and nak) is transferred between gdb
67 * and the remote processor in messages of the following format:
68 *
69 * <info>#<checksum>
70 *
71 * where
72 * # is a literal character
73 *
74 * <info> ASCII information; all numeric information is in the
75 * form of hex digits ('0'-'9' and lowercase 'a'-'f').
76 *
77 * <checksum>
78 * is a pair of ASCII hex digits representing an 8-bit
79 * checksum formed by adding together each of the
80 * characters in <info>.
81 *
82 * The receiver of a message always sends a single character to the sender
83 * to indicate that the checksum was good ('+') or bad ('-'); the sender
84 * re-transmits the entire message over until a '+' is received.
85 *
86 * In response to a command NINDY always sends back either data or
87 * a result code of the form "Xnn", where "nn" are hex digits and "X00"
88 * means no errors. (Exceptions: the "s" and "c" commands don't respond.)
89 *
90 * SEE THE HEADER OF THE FILE "gdb.c" IN THE NINDY MONITOR SOURCE CODE FOR A
91 * FULL DESCRIPTION OF LEGAL COMMANDS.
92 *
93 * SEE THE FILE "stop.h" IN THE NINDY MONITOR SOURCE CODE FOR A LIST
94 * OF STOP CODES.
95 *
96 ******************************************************************************/
97
98 #include "defs.h"
99 #include <signal.h>
100 #include <sys/types.h>
101 #include <setjmp.h>
102
103 #include "frame.h"
104 #include "inferior.h"
105 #include "target.h"
106 #include "gdbcore.h"
107 #include "command.h"
108 #include "bfd.h"
109 #include "ieee-float.h"
110
111 #include "wait.h"
112 #include <sys/ioctl.h>
113 #include <sys/file.h>
114 #include <ctype.h>
115 #include "nindy-share/ttycntl.h"
116 #include "nindy-share/demux.h"
117 #include "nindy-share/env.h"
118 #include "nindy-share/stop.h"
119
120 extern int unlink();
121 extern char *getenv();
122 extern char *mktemp();
123
124 extern void generic_mourn_inferior ();
125
126 extern struct target_ops nindy_ops;
127 extern jmp_buf to_top_level;
128 extern FILE *instream;
129 extern struct ext_format ext_format_i960; /* i960-tdep.c */
130
131 extern char ninStopWhy ();
132
133 int nindy_initial_brk; /* nonzero if want to send an initial BREAK to nindy */
134 int nindy_old_protocol; /* nonzero if want to use old protocol */
135 char *nindy_ttyname; /* name of tty to talk to nindy on, or null */
136
137 #define DLE '\020' /* Character NINDY sends to indicate user program has
138 * halted. */
139 #define TRUE 1
140 #define FALSE 0
141
142 int nindy_fd = 0; /* Descriptor for I/O to NINDY */
143 static int have_regs = 0; /* 1 iff regs read since i960 last halted */
144 static int regs_changed = 0; /* 1 iff regs were modified since last read */
145
146 extern char *exists();
147
148 static void
149 dcache_flush (), dcache_poke (), dcache_init();
150
151 static int
152 dcache_fetch ();
153
154 static void
155 nindy_fetch_registers PARAMS ((int));
156
157 static void
158 nindy_store_registers PARAMS ((int));
159 \f
160 /* FIXME, we can probably use the normal terminal_inferior stuff here.
161 We have to do terminal_inferior and then set up the passthrough
162 settings initially. Thereafter, terminal_ours and terminal_inferior
163 will automatically swap the settings around for us. */
164
165 /* Restore TTY to normal operation */
166
167 static TTY_STRUCT orig_tty; /* TTY attributes before entering passthrough */
168
169 static void
170 restore_tty()
171 {
172 ioctl( 0, TIOCSETN, &orig_tty );
173 }
174
175
176 /* Recover from ^Z or ^C while remote process is running */
177
178 static void (*old_ctrlc)(); /* Signal handlers before entering passthrough */
179
180 #ifdef SIGTSTP
181 static void (*old_ctrlz)();
182 #endif
183
184 static
185 #ifdef USG
186 void
187 #endif
188 cleanup()
189 {
190 restore_tty();
191 signal(SIGINT, old_ctrlc);
192 #ifdef SIGTSTP
193 signal(SIGTSTP, old_ctrlz);
194 #endif
195 error("\n\nYou may need to reset the 80960 and/or reload your program.\n");
196 }
197 \f
198 /* Clean up anything that needs cleaning when losing control. */
199
200 static char *savename;
201
202 static void
203 nindy_close (quitting)
204 int quitting;
205 {
206 if (nindy_fd)
207 close (nindy_fd);
208 nindy_fd = 0;
209
210 if (savename)
211 free (savename);
212 savename = 0;
213 }
214
215 /* Open a connection to a remote debugger.
216 FIXME, there should be a way to specify the various options that are
217 now specified with gdb command-line options. (baud_rate, old_protocol,
218 and initial_brk) */
219 void
220 nindy_open (name, from_tty)
221 char *name; /* "/dev/ttyXX", "ttyXX", or "XX": tty to be opened */
222 int from_tty;
223 {
224
225 if (!name)
226 error_no_arg ("serial port device name");
227
228 target_preopen (from_tty);
229
230 nindy_close (0);
231
232 have_regs = regs_changed = 0;
233 dcache_init();
234
235 /* Allow user to interrupt the following -- we could hang if
236 * there's no NINDY at the other end of the remote tty.
237 */
238 immediate_quit++;
239 nindy_fd = ninConnect( name, baud_rate? baud_rate: "9600",
240 nindy_initial_brk, !from_tty, nindy_old_protocol );
241 immediate_quit--;
242
243 if ( nindy_fd < 0 ){
244 nindy_fd = 0;
245 error( "Can't open tty '%s'", name );
246 }
247
248 savename = savestring (name, strlen (name));
249 push_target (&nindy_ops);
250 target_fetch_registers(-1);
251 }
252
253 /* User-initiated quit of nindy operations. */
254
255 static void
256 nindy_detach (name, from_tty)
257 char *name;
258 int from_tty;
259 {
260 if (name)
261 error ("Too many arguments");
262 pop_target ();
263 }
264
265 static void
266 nindy_files_info ()
267 {
268 printf("\tAttached to %s at %s bps%s%s.\n", savename,
269 baud_rate? baud_rate: "9600",
270 nindy_old_protocol? " in old protocol": "",
271 nindy_initial_brk? " with initial break": "");
272 }
273 \f
274 /******************************************************************************
275 * remote_load:
276 * Download an object file to the remote system by invoking the "comm960"
277 * utility. We look for "comm960" in $G960BIN, $G960BASE/bin, and
278 * DEFAULT_BASE/bin/HOST/bin where
279 * DEFAULT_BASE is defined in env.h, and
280 * HOST must be defined on the compiler invocation line.
281 ******************************************************************************/
282
283 static void
284 nindy_load( filename, from_tty )
285 char *filename;
286 int from_tty;
287 {
288 asection *s;
289 /* Can't do unix style forking on a VMS system, so we'll use bfd to do
290 all the work for us
291 */
292
293 bfd *file = bfd_openr(filename,0);
294 if (!file)
295 {
296 perror_with_name(filename);
297 return;
298 }
299
300 if (!bfd_check_format(file, bfd_object))
301 {
302 error("can't prove it's an object file\n");
303 return;
304 }
305
306 for ( s = file->sections; s; s=s->next)
307 {
308 if (s->flags & SEC_LOAD)
309 {
310 char *buffer = xmalloc(s->_raw_size);
311 bfd_get_section_contents(file, s, buffer, 0, s->_raw_size);
312 printf("Loading section %s, size %x vma %x\n",
313 s->name,
314 s->_raw_size,
315 s->vma);
316 ninMemPut(s->vma, buffer, s->_raw_size);
317 free(buffer);
318 }
319 }
320 bfd_close(file);
321 }
322
323 /* Return the number of characters in the buffer before the first DLE character.
324 */
325
326 static
327 int
328 non_dle( buf, n )
329 char *buf; /* Character buffer; NOT '\0'-terminated */
330 int n; /* Number of characters in buffer */
331 {
332 int i;
333
334 for ( i = 0; i < n; i++ ){
335 if ( buf[i] == DLE ){
336 break;
337 }
338 }
339 return i;
340 }
341 \f
342 /* Tell the remote machine to resume. */
343
344 void
345 nindy_resume (step, siggnal)
346 int step, siggnal;
347 {
348 if (siggnal != 0 && siggnal != stop_signal)
349 error ("Can't send signals to remote NINDY targets.");
350
351 dcache_flush();
352 if ( regs_changed ){
353 nindy_store_registers (-1);
354 regs_changed = 0;
355 }
356 have_regs = 0;
357 ninGo( step );
358 }
359
360 /* Wait until the remote machine stops. While waiting, operate in passthrough
361 * mode; i.e., pass everything NINDY sends to stdout, and everything from
362 * stdin to NINDY.
363 *
364 * Return to caller, storing status in 'status' just as `wait' would.
365 */
366
367 static int
368 nindy_wait( status )
369 WAITTYPE *status;
370 {
371 DEMUX_DECL; /* OS-dependent data needed by DEMUX... macros */
372 char buf[500]; /* FIXME, what is "500" here? */
373 int i, n;
374 unsigned char stop_exit;
375 unsigned char stop_code;
376 TTY_STRUCT tty;
377 long ip_value, fp_value, sp_value; /* Reg values from stop */
378
379
380 WSETEXIT( (*status), 0 );
381
382 /* OPERATE IN PASSTHROUGH MODE UNTIL NINDY SENDS A DLE CHARACTER */
383
384 /* Save current tty attributes, set up signals to restore them.
385 */
386 ioctl( 0, TIOCGETP, &orig_tty );
387 old_ctrlc = signal( SIGINT, cleanup );
388 #ifdef SIGTSTP
389 old_ctrlz = signal( SIGTSTP, cleanup );
390 #endif
391
392 /* Pass input from keyboard to NINDY as it arrives.
393 * NINDY will interpret <CR> and perform echo.
394 */
395 tty = orig_tty;
396 TTY_NINDYTERM( tty );
397 ioctl( 0, TIOCSETN, &tty );
398
399 while ( 1 ){
400 /* Go to sleep until there's something for us on either
401 * the remote port or stdin.
402 */
403
404 DEMUX_WAIT( nindy_fd );
405
406 /* Pass input through to correct place */
407
408 n = DEMUX_READ( 0, buf, sizeof(buf) );
409 if ( n ){ /* Input on stdin */
410 write( nindy_fd, buf, n );
411 }
412
413 n = DEMUX_READ( nindy_fd, buf, sizeof(buf) );
414 if ( n ){ /* Input on remote */
415 /* Write out any characters in buffer preceding DLE */
416 i = non_dle( buf, n );
417 if ( i > 0 ){
418 write( 1, buf, i );
419 }
420
421 if ( i != n ){
422 /* There *was* a DLE in the buffer */
423 stop_exit = ninStopWhy( &stop_code,
424 &ip_value, &fp_value, &sp_value);
425 if ( !stop_exit && (stop_code==STOP_SRQ) ){
426 immediate_quit++;
427 ninSrq();
428 immediate_quit--;
429 } else {
430 /* Get out of loop */
431 supply_register (IP_REGNUM,
432 (char *)&ip_value);
433 supply_register (FP_REGNUM,
434 (char *)&fp_value);
435 supply_register (SP_REGNUM,
436 (char *)&sp_value);
437 break;
438 }
439 }
440 }
441 }
442
443 signal( SIGINT, old_ctrlc );
444 #ifdef SIGTSTP
445 signal( SIGTSTP, old_ctrlz );
446 #endif
447 restore_tty();
448
449 if ( stop_exit ){ /* User program exited */
450 WSETEXIT( (*status), stop_code );
451 } else { /* Fault or trace */
452 switch (stop_code){
453 case STOP_GDB_BPT:
454 case TRACE_STEP:
455 /* Make it look like a VAX trace trap */
456 stop_code = SIGTRAP;
457 break;
458 default:
459 /* The target is not running Unix, and its
460 faults/traces do not map nicely into Unix signals.
461 Make sure they do not get confused with Unix signals
462 by numbering them with values higher than the highest
463 legal Unix signal. code in i960_print_fault(),
464 called via PRINT_RANDOM_SIGNAL, will interpret the
465 value. */
466 stop_code += NSIG;
467 break;
468 }
469 WSETSTOP( (*status), stop_code );
470 }
471 return inferior_pid;
472 }
473
474 /* Read the remote registers into the block REGS. */
475
476 /* This is the block that ninRegsGet and ninRegsPut handles. */
477 struct nindy_regs {
478 char local_regs[16 * 4];
479 char global_regs[16 * 4];
480 char pcw_acw[2 * 4];
481 char ip[4];
482 char tcw[4];
483 char fp_as_double[4 * 8];
484 };
485
486 static void
487 nindy_fetch_registers(regno)
488 int regno;
489 {
490 struct nindy_regs nindy_regs;
491 int regnum, inv;
492 double dub;
493
494 immediate_quit++;
495 ninRegsGet( (char *) &nindy_regs );
496 immediate_quit--;
497
498 bcopy (nindy_regs.local_regs, &registers[REGISTER_BYTE (R0_REGNUM)], 16*4);
499 bcopy (nindy_regs.global_regs, &registers[REGISTER_BYTE (G0_REGNUM)], 16*4);
500 bcopy (nindy_regs.pcw_acw, &registers[REGISTER_BYTE (PCW_REGNUM)], 2*4);
501 bcopy (nindy_regs.ip, &registers[REGISTER_BYTE (IP_REGNUM)], 1*4);
502 bcopy (nindy_regs.tcw, &registers[REGISTER_BYTE (TCW_REGNUM)], 1*4);
503 for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 4; regnum++) {
504 dub = unpack_double (builtin_type_double,
505 &nindy_regs.fp_as_double[8 * (regnum - FP0_REGNUM)],
506 &inv);
507 /* dub now in host byte order */
508 double_to_ieee_extended (&ext_format_i960, &dub,
509 &registers[REGISTER_BYTE (regnum)]);
510 }
511
512 registers_fetched ();
513 }
514
515 static void
516 nindy_prepare_to_store()
517 {
518 /* Fetch all regs if they aren't already here. */
519 read_register_bytes (0, NULL, REGISTER_BYTES);
520 }
521
522 static void
523 nindy_store_registers(regno)
524 int regno;
525 {
526 struct nindy_regs nindy_regs;
527 int regnum, inv;
528 double dub;
529
530 bcopy (&registers[REGISTER_BYTE (R0_REGNUM)], nindy_regs.local_regs, 16*4);
531 bcopy (&registers[REGISTER_BYTE (G0_REGNUM)], nindy_regs.global_regs, 16*4);
532 bcopy (&registers[REGISTER_BYTE (PCW_REGNUM)], nindy_regs.pcw_acw, 2*4);
533 bcopy (&registers[REGISTER_BYTE (IP_REGNUM)], nindy_regs.ip, 1*4);
534 bcopy (&registers[REGISTER_BYTE (TCW_REGNUM)], nindy_regs.tcw, 1*4);
535 /* Float regs. Only works on IEEE_FLOAT hosts. FIXME! */
536 for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 4; regnum++) {
537 ieee_extended_to_double (&ext_format_i960,
538 &registers[REGISTER_BYTE (regnum)], &dub);
539 /* dub now in host byte order */
540 /* FIXME-someday, the arguments to unpack_double are backward.
541 It expects a target double and returns a host; we pass the opposite.
542 This mostly works but not quite. */
543 dub = unpack_double (builtin_type_double, (char *)&dub, &inv);
544 /* dub now in target byte order */
545 bcopy ((char *)&dub, &nindy_regs.fp_as_double[8 * (regnum - FP0_REGNUM)],
546 8);
547 }
548
549 immediate_quit++;
550 ninRegsPut( (char *) &nindy_regs );
551 immediate_quit--;
552 }
553
554 /* Read a word from remote address ADDR and return it.
555 * This goes through the data cache.
556 */
557 int
558 nindy_fetch_word (addr)
559 CORE_ADDR addr;
560 {
561 return dcache_fetch (addr);
562 }
563
564 /* Write a word WORD into remote address ADDR.
565 This goes through the data cache. */
566
567 void
568 nindy_store_word (addr, word)
569 CORE_ADDR addr;
570 int word;
571 {
572 dcache_poke (addr, word);
573 }
574
575 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
576 to debugger memory starting at MYADDR. Copy to inferior if
577 WRITE is nonzero. Returns the length copied.
578
579 This is stolen almost directly from infptrace.c's child_xfer_memory,
580 which also deals with a word-oriented memory interface. Sometime,
581 FIXME, rewrite this to not use the word-oriented routines. */
582
583 int
584 nindy_xfer_inferior_memory(memaddr, myaddr, len, write, target)
585 CORE_ADDR memaddr;
586 char *myaddr;
587 int len;
588 int write;
589 struct target_ops *target; /* ignored */
590 {
591 register int i;
592 /* Round starting address down to longword boundary. */
593 register CORE_ADDR addr = memaddr & - sizeof (int);
594 /* Round ending address up; get number of longwords that makes. */
595 register int count
596 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
597 /* Allocate buffer of that many longwords. */
598 register int *buffer = (int *) alloca (count * sizeof (int));
599
600 if (write)
601 {
602 /* Fill start and end extra bytes of buffer with existing memory data. */
603
604 if (addr != memaddr || len < (int)sizeof (int)) {
605 /* Need part of initial word -- fetch it. */
606 buffer[0] = nindy_fetch_word (addr);
607 }
608
609 if (count > 1) /* FIXME, avoid if even boundary */
610 {
611 buffer[count - 1]
612 = nindy_fetch_word (addr + (count - 1) * sizeof (int));
613 }
614
615 /* Copy data to be written over corresponding part of buffer */
616
617 bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
618
619 /* Write the entire buffer. */
620
621 for (i = 0; i < count; i++, addr += sizeof (int))
622 {
623 errno = 0;
624 nindy_store_word (addr, buffer[i]);
625 if (errno)
626 return 0;
627 }
628 }
629 else
630 {
631 /* Read all the longwords */
632 for (i = 0; i < count; i++, addr += sizeof (int))
633 {
634 errno = 0;
635 buffer[i] = nindy_fetch_word (addr);
636 if (errno)
637 return 0;
638 QUIT;
639 }
640
641 /* Copy appropriate bytes out of the buffer. */
642 bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
643 }
644 return len;
645 }
646 \f
647 /* The data cache records all the data read from the remote machine
648 since the last time it stopped.
649
650 Each cache block holds 16 bytes of data
651 starting at a multiple-of-16 address. */
652
653 #define DCACHE_SIZE 64 /* Number of cache blocks */
654
655 struct dcache_block {
656 struct dcache_block *next, *last;
657 unsigned int addr; /* Address for which data is recorded. */
658 int data[4];
659 };
660
661 struct dcache_block dcache_free, dcache_valid;
662
663 /* Free all the data cache blocks, thus discarding all cached data. */
664 static
665 void
666 dcache_flush ()
667 {
668 register struct dcache_block *db;
669
670 while ((db = dcache_valid.next) != &dcache_valid)
671 {
672 remque (db);
673 insque (db, &dcache_free);
674 }
675 }
676
677 /*
678 * If addr is present in the dcache, return the address of the block
679 * containing it.
680 */
681 static
682 struct dcache_block *
683 dcache_hit (addr)
684 unsigned int addr;
685 {
686 register struct dcache_block *db;
687
688 if (addr & 3)
689 abort ();
690
691 /* Search all cache blocks for one that is at this address. */
692 db = dcache_valid.next;
693 while (db != &dcache_valid)
694 {
695 if ((addr & 0xfffffff0) == db->addr)
696 return db;
697 db = db->next;
698 }
699 return NULL;
700 }
701
702 /* Return the int data at address ADDR in dcache block DC. */
703 static
704 int
705 dcache_value (db, addr)
706 struct dcache_block *db;
707 unsigned int addr;
708 {
709 if (addr & 3)
710 abort ();
711 return (db->data[(addr>>2)&3]);
712 }
713
714 /* Get a free cache block, put or keep it on the valid list,
715 and return its address. The caller should store into the block
716 the address and data that it describes, then remque it from the
717 free list and insert it into the valid list. This procedure
718 prevents errors from creeping in if a ninMemGet is interrupted
719 (which used to put garbage blocks in the valid list...). */
720 static
721 struct dcache_block *
722 dcache_alloc ()
723 {
724 register struct dcache_block *db;
725
726 if ((db = dcache_free.next) == &dcache_free)
727 {
728 /* If we can't get one from the free list, take last valid and put
729 it on the free list. */
730 db = dcache_valid.last;
731 remque (db);
732 insque (db, &dcache_free);
733 }
734
735 remque (db);
736 insque (db, &dcache_valid);
737 return (db);
738 }
739
740 /* Return the contents of the word at address ADDR in the remote machine,
741 using the data cache. */
742 static
743 int
744 dcache_fetch (addr)
745 CORE_ADDR addr;
746 {
747 register struct dcache_block *db;
748
749 db = dcache_hit (addr);
750 if (db == 0)
751 {
752 db = dcache_alloc ();
753 immediate_quit++;
754 ninMemGet(addr & ~0xf, (unsigned char *)db->data, 16);
755 immediate_quit--;
756 db->addr = addr & ~0xf;
757 remque (db); /* Off the free list */
758 insque (db, &dcache_valid); /* On the valid list */
759 }
760 return (dcache_value (db, addr));
761 }
762
763 /* Write the word at ADDR both in the data cache and in the remote machine. */
764 static void
765 dcache_poke (addr, data)
766 CORE_ADDR addr;
767 int data;
768 {
769 register struct dcache_block *db;
770
771 /* First make sure the word is IN the cache. DB is its cache block. */
772 db = dcache_hit (addr);
773 if (db == 0)
774 {
775 db = dcache_alloc ();
776 immediate_quit++;
777 ninMemGet(addr & ~0xf, (unsigned char *)db->data, 16);
778 immediate_quit--;
779 db->addr = addr & ~0xf;
780 remque (db); /* Off the free list */
781 insque (db, &dcache_valid); /* On the valid list */
782 }
783
784 /* Modify the word in the cache. */
785 db->data[(addr>>2)&3] = data;
786
787 /* Send the changed word. */
788 immediate_quit++;
789 ninMemPut(addr, (unsigned char *)&data, 4);
790 immediate_quit--;
791 }
792
793 /* The cache itself. */
794 struct dcache_block the_cache[DCACHE_SIZE];
795
796 /* Initialize the data cache. */
797 static void
798 dcache_init ()
799 {
800 register i;
801 register struct dcache_block *db;
802
803 db = the_cache;
804 dcache_free.next = dcache_free.last = &dcache_free;
805 dcache_valid.next = dcache_valid.last = &dcache_valid;
806 for (i=0;i<DCACHE_SIZE;i++,db++)
807 insque (db, &dcache_free);
808 }
809
810
811 static void
812 nindy_create_inferior (execfile, args, env)
813 char *execfile;
814 char *args;
815 char **env;
816 {
817 int entry_pt;
818 int pid;
819
820 if (args && *args)
821 error ("Can't pass arguments to remote NINDY process");
822
823 if (execfile == 0 || exec_bfd == 0)
824 error ("No exec file specified");
825
826 entry_pt = (int) bfd_get_start_address (exec_bfd);
827
828 pid = 42;
829
830 #ifdef CREATE_INFERIOR_HOOK
831 CREATE_INFERIOR_HOOK (pid);
832 #endif
833
834 /* The "process" (board) is already stopped awaiting our commands, and
835 the program is already downloaded. We just set its PC and go. */
836
837 inferior_pid = pid; /* Needed for wait_for_inferior below */
838
839 clear_proceed_status ();
840
841 /* Tell wait_for_inferior that we've started a new process. */
842 init_wait_for_inferior ();
843
844 /* Set up the "saved terminal modes" of the inferior
845 based on what modes we are starting it with. */
846 target_terminal_init ();
847
848 /* Install inferior's terminal modes. */
849 target_terminal_inferior ();
850
851 /* insert_step_breakpoint (); FIXME, do we need this? */
852 proceed ((CORE_ADDR)entry_pt, -1, 0); /* Let 'er rip... */
853 }
854
855 static void
856 reset_command(args, from_tty)
857 char *args;
858 int from_tty;
859 {
860 if ( !nindy_fd ){
861 error( "No target system to reset -- use 'target nindy' command.");
862 }
863 if ( query("Really reset the target system?",0,0) ){
864 send_break( nindy_fd );
865 tty_flush( nindy_fd );
866 }
867 }
868
869 void
870 nindy_kill (args, from_tty)
871 char *args;
872 int from_tty;
873 {
874 return; /* Ignore attempts to kill target system */
875 }
876
877 /* Clean up when a program exits.
878
879 The program actually lives on in the remote processor's RAM, and may be
880 run again without a download. Don't leave it full of breakpoint
881 instructions. */
882
883 void
884 nindy_mourn_inferior ()
885 {
886 remove_breakpoints ();
887 unpush_target (&nindy_ops);
888 generic_mourn_inferior (); /* Do all the proper things now */
889 }
890 \f
891 /* This routine is run as a hook, just before the main command loop is
892 entered. If gdb is configured for the i960, but has not had its
893 nindy target specified yet, this will loop prompting the user to do so.
894
895 Unlike the loop provided by Intel, we actually let the user get out
896 of this with a RETURN. This is useful when e.g. simply examining
897 an i960 object file on the host system. */
898
899 void
900 nindy_before_main_loop ()
901 {
902 char ttyname[100];
903 char *p, *p2;
904
905 setjmp(to_top_level);
906 while (current_target != &nindy_ops) { /* remote tty not specified yet */
907 if ( instream == stdin ){
908 printf("\nAttach /dev/ttyNN -- specify NN, or \"quit\" to quit: ");
909 fflush( stdout );
910 }
911 fgets( ttyname, sizeof(ttyname)-1, stdin );
912
913 /* Strip leading and trailing whitespace */
914 for ( p = ttyname; isspace(*p); p++ ){
915 ;
916 }
917 if ( *p == '\0' ){
918 return; /* User just hit spaces or return, wants out */
919 }
920 for ( p2= p; !isspace(*p2) && (*p2 != '\0'); p2++ ){
921 ;
922 }
923 *p2= '\0';
924 if ( STREQ("quit",p) ){
925 exit(1);
926 }
927
928 nindy_open( p, 1 );
929
930 /* Now that we have a tty open for talking to the remote machine,
931 download the executable file if one was specified. */
932 if ( !setjmp(to_top_level) && exec_bfd ) {
933 target_load (bfd_get_filename (exec_bfd), 1);
934 }
935 }
936 }
937 \f
938 /* Define the target subroutine names */
939
940 struct target_ops nindy_ops = {
941 "nindy", "Remote serial target in i960 NINDY-specific protocol",
942 "Use a remote i960 system running NINDY connected by a serial line.\n\
943 Specify the name of the device the serial line is connected to.\n\
944 The speed (baud rate), whether to use the old NINDY protocol,\n\
945 and whether to send a break on startup, are controlled by options\n\
946 specified when you started GDB.",
947 nindy_open, nindy_close,
948 0,
949 nindy_detach,
950 nindy_resume,
951 nindy_wait,
952 nindy_fetch_registers, nindy_store_registers,
953 nindy_prepare_to_store,
954 nindy_xfer_inferior_memory, nindy_files_info,
955 0, 0, /* insert_breakpoint, remove_breakpoint, */
956 0, 0, 0, 0, 0, /* Terminal crud */
957 nindy_kill,
958 nindy_load,
959 0, /* lookup_symbol */
960 nindy_create_inferior,
961 nindy_mourn_inferior,
962 0, /* can_run */
963 0, /* notice_signals */
964 process_stratum, 0, /* next */
965 1, 1, 1, 1, 1, /* all mem, mem, stack, regs, exec */
966 0, 0, /* Section pointers */
967 OPS_MAGIC, /* Always the last thing */
968 };
969
970 void
971 _initialize_nindy ()
972 {
973 add_target (&nindy_ops);
974 add_com ("reset", class_obscure, reset_command,
975 "Send a 'break' to the remote target system.\n\
976 Only useful if the target has been equipped with a circuit\n\
977 to perform a hard reset when a break is detected.");
978 }
This page took 0.061547 seconds and 4 git commands to generate.