2007-07-03 Ilko Iliev <iliev@ronetix.at>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void remote_files_info (struct target_ops *ignore);
89
90 static void remote_prepare_to_store (struct regcache *regcache);
91
92 static void remote_fetch_registers (struct regcache *regcache, int regno);
93
94 static void remote_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_async_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_open (char *name, int from_tty);
99 static void remote_async_open (char *name, int from_tty);
100
101 static void extended_remote_open (char *name, int from_tty);
102 static void extended_remote_async_open (char *name, int from_tty);
103
104 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
105 int async_p);
106
107 static void remote_close (int quitting);
108
109 static void remote_store_registers (struct regcache *regcache, int regno);
110
111 static void remote_mourn (void);
112 static void remote_async_mourn (void);
113
114 static void extended_remote_restart (void);
115
116 static void extended_remote_mourn (void);
117
118 static void remote_mourn_1 (struct target_ops *);
119
120 static void remote_send (char **buf, long *sizeof_buf_p);
121
122 static int readchar (int timeout);
123
124 static ptid_t remote_wait (ptid_t ptid,
125 struct target_waitstatus *status);
126 static ptid_t remote_async_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128
129 static void remote_kill (void);
130 static void remote_async_kill (void);
131
132 static int tohex (int nib);
133
134 static void remote_detach (char *args, int from_tty);
135
136 static void remote_interrupt (int signo);
137
138 static void remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_thread (int, int);
143
144 static int remote_thread_alive (ptid_t);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (void);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int hexnumstr (char *, ULONGEST);
165
166 static int hexnumnstr (char *, ULONGEST, int);
167
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
169
170 static void print_packet (char *);
171
172 static unsigned long crc32 (unsigned char *, int, unsigned int);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (int currthread);
185
186 static int fromhex (int a);
187
188 static int hex2bin (const char *hex, gdb_byte *bin, int count);
189
190 static int bin2hex (const gdb_byte *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
203 struct cmd_list_element *c);
204
205 static void show_remote_protocol_packet_cmd (struct ui_file *file,
206 int from_tty,
207 struct cmd_list_element *c,
208 const char *value);
209
210 void _initialize_remote (void);
211
212 /* For "set remote" and "show remote". */
213
214 static struct cmd_list_element *remote_set_cmdlist;
215 static struct cmd_list_element *remote_show_cmdlist;
216
217 /* Description of the remote protocol state for the currently
218 connected target. This is per-target state, and independent of the
219 selected architecture. */
220
221 struct remote_state
222 {
223 /* A buffer to use for incoming packets, and its current size. The
224 buffer is grown dynamically for larger incoming packets.
225 Outgoing packets may also be constructed in this buffer.
226 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
227 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
228 packets. */
229 char *buf;
230 long buf_size;
231
232 /* If we negotiated packet size explicitly (and thus can bypass
233 heuristics for the largest packet size that will not overflow
234 a buffer in the stub), this will be set to that packet size.
235 Otherwise zero, meaning to use the guessed size. */
236 long explicit_packet_size;
237 };
238
239 /* This data could be associated with a target, but we do not always
240 have access to the current target when we need it, so for now it is
241 static. This will be fine for as long as only one target is in use
242 at a time. */
243 static struct remote_state remote_state;
244
245 static struct remote_state *
246 get_remote_state_raw (void)
247 {
248 return &remote_state;
249 }
250
251 /* Description of the remote protocol for a given architecture. */
252
253 struct packet_reg
254 {
255 long offset; /* Offset into G packet. */
256 long regnum; /* GDB's internal register number. */
257 LONGEST pnum; /* Remote protocol register number. */
258 int in_g_packet; /* Always part of G packet. */
259 /* long size in bytes; == register_size (current_gdbarch, regnum);
260 at present. */
261 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
262 at present. */
263 };
264
265 struct remote_arch_state
266 {
267 /* Description of the remote protocol registers. */
268 long sizeof_g_packet;
269
270 /* Description of the remote protocol registers indexed by REGNUM
271 (making an array gdbarch_num_regs in size). */
272 struct packet_reg *regs;
273
274 /* This is the size (in chars) of the first response to the ``g''
275 packet. It is used as a heuristic when determining the maximum
276 size of memory-read and memory-write packets. A target will
277 typically only reserve a buffer large enough to hold the ``g''
278 packet. The size does not include packet overhead (headers and
279 trailers). */
280 long actual_register_packet_size;
281
282 /* This is the maximum size (in chars) of a non read/write packet.
283 It is also used as a cap on the size of read/write packets. */
284 long remote_packet_size;
285 };
286
287
288 /* Handle for retreving the remote protocol data from gdbarch. */
289 static struct gdbarch_data *remote_gdbarch_data_handle;
290
291 static struct remote_arch_state *
292 get_remote_arch_state (void)
293 {
294 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
295 }
296
297 /* Fetch the global remote target state. */
298
299 static struct remote_state *
300 get_remote_state (void)
301 {
302 /* Make sure that the remote architecture state has been
303 initialized, because doing so might reallocate rs->buf. Any
304 function which calls getpkt also needs to be mindful of changes
305 to rs->buf, but this call limits the number of places which run
306 into trouble. */
307 get_remote_arch_state ();
308
309 return get_remote_state_raw ();
310 }
311
312 static int
313 compare_pnums (const void *lhs_, const void *rhs_)
314 {
315 const struct packet_reg * const *lhs = lhs_;
316 const struct packet_reg * const *rhs = rhs_;
317
318 if ((*lhs)->pnum < (*rhs)->pnum)
319 return -1;
320 else if ((*lhs)->pnum == (*rhs)->pnum)
321 return 0;
322 else
323 return 1;
324 }
325
326 static void *
327 init_remote_state (struct gdbarch *gdbarch)
328 {
329 int regnum, num_remote_regs, offset;
330 struct remote_state *rs = get_remote_state_raw ();
331 struct remote_arch_state *rsa;
332 struct packet_reg **remote_regs;
333
334 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
335
336 /* Use the architecture to build a regnum<->pnum table, which will be
337 1:1 unless a feature set specifies otherwise. */
338 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
339 gdbarch_num_regs (current_gdbarch),
340 struct packet_reg);
341 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
342 {
343 struct packet_reg *r = &rsa->regs[regnum];
344
345 if (register_size (current_gdbarch, regnum) == 0)
346 /* Do not try to fetch zero-sized (placeholder) registers. */
347 r->pnum = -1;
348 else
349 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
350
351 r->regnum = regnum;
352 }
353
354 /* Define the g/G packet format as the contents of each register
355 with a remote protocol number, in order of ascending protocol
356 number. */
357
358 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
359 * sizeof (struct packet_reg *));
360 for (num_remote_regs = 0, regnum = 0;
361 regnum < gdbarch_num_regs (current_gdbarch);
362 regnum++)
363 if (rsa->regs[regnum].pnum != -1)
364 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
365
366 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
367 compare_pnums);
368
369 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
370 {
371 remote_regs[regnum]->in_g_packet = 1;
372 remote_regs[regnum]->offset = offset;
373 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
374 }
375
376 /* Record the maximum possible size of the g packet - it may turn out
377 to be smaller. */
378 rsa->sizeof_g_packet = offset;
379
380 /* Default maximum number of characters in a packet body. Many
381 remote stubs have a hardwired buffer size of 400 bytes
382 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
383 as the maximum packet-size to ensure that the packet and an extra
384 NUL character can always fit in the buffer. This stops GDB
385 trashing stubs that try to squeeze an extra NUL into what is
386 already a full buffer (As of 1999-12-04 that was most stubs). */
387 rsa->remote_packet_size = 400 - 1;
388
389 /* This one is filled in when a ``g'' packet is received. */
390 rsa->actual_register_packet_size = 0;
391
392 /* Should rsa->sizeof_g_packet needs more space than the
393 default, adjust the size accordingly. Remember that each byte is
394 encoded as two characters. 32 is the overhead for the packet
395 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
396 (``$NN:G...#NN'') is a better guess, the below has been padded a
397 little. */
398 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
399 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
400
401 /* Make sure that the packet buffer is plenty big enough for
402 this architecture. */
403 if (rs->buf_size < rsa->remote_packet_size)
404 {
405 rs->buf_size = 2 * rsa->remote_packet_size;
406 rs->buf = xrealloc (rs->buf, rs->buf_size);
407 }
408
409 return rsa;
410 }
411
412 /* Return the current allowed size of a remote packet. This is
413 inferred from the current architecture, and should be used to
414 limit the length of outgoing packets. */
415 static long
416 get_remote_packet_size (void)
417 {
418 struct remote_state *rs = get_remote_state ();
419 struct remote_arch_state *rsa = get_remote_arch_state ();
420
421 if (rs->explicit_packet_size)
422 return rs->explicit_packet_size;
423
424 return rsa->remote_packet_size;
425 }
426
427 static struct packet_reg *
428 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
429 {
430 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
431 return NULL;
432 else
433 {
434 struct packet_reg *r = &rsa->regs[regnum];
435 gdb_assert (r->regnum == regnum);
436 return r;
437 }
438 }
439
440 static struct packet_reg *
441 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
442 {
443 int i;
444 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
445 {
446 struct packet_reg *r = &rsa->regs[i];
447 if (r->pnum == pnum)
448 return r;
449 }
450 return NULL;
451 }
452
453 /* FIXME: graces/2002-08-08: These variables should eventually be
454 bound to an instance of the target object (as in gdbarch-tdep()),
455 when such a thing exists. */
456
457 /* This is set to the data address of the access causing the target
458 to stop for a watchpoint. */
459 static CORE_ADDR remote_watch_data_address;
460
461 /* This is non-zero if target stopped for a watchpoint. */
462 static int remote_stopped_by_watchpoint_p;
463
464 static struct target_ops remote_ops;
465
466 static struct target_ops extended_remote_ops;
467
468 /* Temporary target ops. Just like the remote_ops and
469 extended_remote_ops, but with asynchronous support. */
470 static struct target_ops remote_async_ops;
471
472 static struct target_ops extended_async_remote_ops;
473
474 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
475 ``forever'' still use the normal timeout mechanism. This is
476 currently used by the ASYNC code to guarentee that target reads
477 during the initial connect always time-out. Once getpkt has been
478 modified to return a timeout indication and, in turn
479 remote_wait()/wait_for_inferior() have gained a timeout parameter
480 this can go away. */
481 static int wait_forever_enabled_p = 1;
482
483
484 /* This variable chooses whether to send a ^C or a break when the user
485 requests program interruption. Although ^C is usually what remote
486 systems expect, and that is the default here, sometimes a break is
487 preferable instead. */
488
489 static int remote_break;
490
491 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
492 remote_open knows that we don't have a file open when the program
493 starts. */
494 static struct serial *remote_desc = NULL;
495
496 /* This variable sets the number of bits in an address that are to be
497 sent in a memory ("M" or "m") packet. Normally, after stripping
498 leading zeros, the entire address would be sent. This variable
499 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
500 initial implementation of remote.c restricted the address sent in
501 memory packets to ``host::sizeof long'' bytes - (typically 32
502 bits). Consequently, for 64 bit targets, the upper 32 bits of an
503 address was never sent. Since fixing this bug may cause a break in
504 some remote targets this variable is principly provided to
505 facilitate backward compatibility. */
506
507 static int remote_address_size;
508
509 /* Tempoary to track who currently owns the terminal. See
510 target_async_terminal_* for more details. */
511
512 static int remote_async_terminal_ours_p;
513
514 \f
515 /* User configurable variables for the number of characters in a
516 memory read/write packet. MIN (rsa->remote_packet_size,
517 rsa->sizeof_g_packet) is the default. Some targets need smaller
518 values (fifo overruns, et.al.) and some users need larger values
519 (speed up transfers). The variables ``preferred_*'' (the user
520 request), ``current_*'' (what was actually set) and ``forced_*''
521 (Positive - a soft limit, negative - a hard limit). */
522
523 struct memory_packet_config
524 {
525 char *name;
526 long size;
527 int fixed_p;
528 };
529
530 /* Compute the current size of a read/write packet. Since this makes
531 use of ``actual_register_packet_size'' the computation is dynamic. */
532
533 static long
534 get_memory_packet_size (struct memory_packet_config *config)
535 {
536 struct remote_state *rs = get_remote_state ();
537 struct remote_arch_state *rsa = get_remote_arch_state ();
538
539 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
540 law?) that some hosts don't cope very well with large alloca()
541 calls. Eventually the alloca() code will be replaced by calls to
542 xmalloc() and make_cleanups() allowing this restriction to either
543 be lifted or removed. */
544 #ifndef MAX_REMOTE_PACKET_SIZE
545 #define MAX_REMOTE_PACKET_SIZE 16384
546 #endif
547 /* NOTE: 20 ensures we can write at least one byte. */
548 #ifndef MIN_REMOTE_PACKET_SIZE
549 #define MIN_REMOTE_PACKET_SIZE 20
550 #endif
551 long what_they_get;
552 if (config->fixed_p)
553 {
554 if (config->size <= 0)
555 what_they_get = MAX_REMOTE_PACKET_SIZE;
556 else
557 what_they_get = config->size;
558 }
559 else
560 {
561 what_they_get = get_remote_packet_size ();
562 /* Limit the packet to the size specified by the user. */
563 if (config->size > 0
564 && what_they_get > config->size)
565 what_they_get = config->size;
566
567 /* Limit it to the size of the targets ``g'' response unless we have
568 permission from the stub to use a larger packet size. */
569 if (rs->explicit_packet_size == 0
570 && rsa->actual_register_packet_size > 0
571 && what_they_get > rsa->actual_register_packet_size)
572 what_they_get = rsa->actual_register_packet_size;
573 }
574 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
575 what_they_get = MAX_REMOTE_PACKET_SIZE;
576 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
577 what_they_get = MIN_REMOTE_PACKET_SIZE;
578
579 /* Make sure there is room in the global buffer for this packet
580 (including its trailing NUL byte). */
581 if (rs->buf_size < what_they_get + 1)
582 {
583 rs->buf_size = 2 * what_they_get;
584 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
585 }
586
587 return what_they_get;
588 }
589
590 /* Update the size of a read/write packet. If they user wants
591 something really big then do a sanity check. */
592
593 static void
594 set_memory_packet_size (char *args, struct memory_packet_config *config)
595 {
596 int fixed_p = config->fixed_p;
597 long size = config->size;
598 if (args == NULL)
599 error (_("Argument required (integer, `fixed' or `limited')."));
600 else if (strcmp (args, "hard") == 0
601 || strcmp (args, "fixed") == 0)
602 fixed_p = 1;
603 else if (strcmp (args, "soft") == 0
604 || strcmp (args, "limit") == 0)
605 fixed_p = 0;
606 else
607 {
608 char *end;
609 size = strtoul (args, &end, 0);
610 if (args == end)
611 error (_("Invalid %s (bad syntax)."), config->name);
612 #if 0
613 /* Instead of explicitly capping the size of a packet to
614 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
615 instead allowed to set the size to something arbitrarily
616 large. */
617 if (size > MAX_REMOTE_PACKET_SIZE)
618 error (_("Invalid %s (too large)."), config->name);
619 #endif
620 }
621 /* Extra checks? */
622 if (fixed_p && !config->fixed_p)
623 {
624 if (! query (_("The target may not be able to correctly handle a %s\n"
625 "of %ld bytes. Change the packet size? "),
626 config->name, size))
627 error (_("Packet size not changed."));
628 }
629 /* Update the config. */
630 config->fixed_p = fixed_p;
631 config->size = size;
632 }
633
634 static void
635 show_memory_packet_size (struct memory_packet_config *config)
636 {
637 printf_filtered (_("The %s is %ld. "), config->name, config->size);
638 if (config->fixed_p)
639 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
640 get_memory_packet_size (config));
641 else
642 printf_filtered (_("Packets are limited to %ld bytes.\n"),
643 get_memory_packet_size (config));
644 }
645
646 static struct memory_packet_config memory_write_packet_config =
647 {
648 "memory-write-packet-size",
649 };
650
651 static void
652 set_memory_write_packet_size (char *args, int from_tty)
653 {
654 set_memory_packet_size (args, &memory_write_packet_config);
655 }
656
657 static void
658 show_memory_write_packet_size (char *args, int from_tty)
659 {
660 show_memory_packet_size (&memory_write_packet_config);
661 }
662
663 static long
664 get_memory_write_packet_size (void)
665 {
666 return get_memory_packet_size (&memory_write_packet_config);
667 }
668
669 static struct memory_packet_config memory_read_packet_config =
670 {
671 "memory-read-packet-size",
672 };
673
674 static void
675 set_memory_read_packet_size (char *args, int from_tty)
676 {
677 set_memory_packet_size (args, &memory_read_packet_config);
678 }
679
680 static void
681 show_memory_read_packet_size (char *args, int from_tty)
682 {
683 show_memory_packet_size (&memory_read_packet_config);
684 }
685
686 static long
687 get_memory_read_packet_size (void)
688 {
689 long size = get_memory_packet_size (&memory_read_packet_config);
690 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
691 extra buffer size argument before the memory read size can be
692 increased beyond this. */
693 if (size > get_remote_packet_size ())
694 size = get_remote_packet_size ();
695 return size;
696 }
697
698 \f
699 /* Generic configuration support for packets the stub optionally
700 supports. Allows the user to specify the use of the packet as well
701 as allowing GDB to auto-detect support in the remote stub. */
702
703 enum packet_support
704 {
705 PACKET_SUPPORT_UNKNOWN = 0,
706 PACKET_ENABLE,
707 PACKET_DISABLE
708 };
709
710 struct packet_config
711 {
712 const char *name;
713 const char *title;
714 enum auto_boolean detect;
715 enum packet_support support;
716 };
717
718 /* Analyze a packet's return value and update the packet config
719 accordingly. */
720
721 enum packet_result
722 {
723 PACKET_ERROR,
724 PACKET_OK,
725 PACKET_UNKNOWN
726 };
727
728 static void
729 update_packet_config (struct packet_config *config)
730 {
731 switch (config->detect)
732 {
733 case AUTO_BOOLEAN_TRUE:
734 config->support = PACKET_ENABLE;
735 break;
736 case AUTO_BOOLEAN_FALSE:
737 config->support = PACKET_DISABLE;
738 break;
739 case AUTO_BOOLEAN_AUTO:
740 config->support = PACKET_SUPPORT_UNKNOWN;
741 break;
742 }
743 }
744
745 static void
746 show_packet_config_cmd (struct packet_config *config)
747 {
748 char *support = "internal-error";
749 switch (config->support)
750 {
751 case PACKET_ENABLE:
752 support = "enabled";
753 break;
754 case PACKET_DISABLE:
755 support = "disabled";
756 break;
757 case PACKET_SUPPORT_UNKNOWN:
758 support = "unknown";
759 break;
760 }
761 switch (config->detect)
762 {
763 case AUTO_BOOLEAN_AUTO:
764 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
765 config->name, support);
766 break;
767 case AUTO_BOOLEAN_TRUE:
768 case AUTO_BOOLEAN_FALSE:
769 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
770 config->name, support);
771 break;
772 }
773 }
774
775 static void
776 add_packet_config_cmd (struct packet_config *config, const char *name,
777 const char *title, int legacy)
778 {
779 char *set_doc;
780 char *show_doc;
781 char *cmd_name;
782
783 config->name = name;
784 config->title = title;
785 config->detect = AUTO_BOOLEAN_AUTO;
786 config->support = PACKET_SUPPORT_UNKNOWN;
787 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
788 name, title);
789 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
790 name, title);
791 /* set/show TITLE-packet {auto,on,off} */
792 cmd_name = xstrprintf ("%s-packet", title);
793 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
794 &config->detect, set_doc, show_doc, NULL, /* help_doc */
795 set_remote_protocol_packet_cmd,
796 show_remote_protocol_packet_cmd,
797 &remote_set_cmdlist, &remote_show_cmdlist);
798 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
799 if (legacy)
800 {
801 char *legacy_name;
802 legacy_name = xstrprintf ("%s-packet", name);
803 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
804 &remote_set_cmdlist);
805 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
806 &remote_show_cmdlist);
807 }
808 }
809
810 static enum packet_result
811 packet_check_result (const char *buf)
812 {
813 if (buf[0] != '\0')
814 {
815 /* The stub recognized the packet request. Check that the
816 operation succeeded. */
817 if (buf[0] == 'E'
818 && isxdigit (buf[1]) && isxdigit (buf[2])
819 && buf[3] == '\0')
820 /* "Enn" - definitly an error. */
821 return PACKET_ERROR;
822
823 /* Always treat "E." as an error. This will be used for
824 more verbose error messages, such as E.memtypes. */
825 if (buf[0] == 'E' && buf[1] == '.')
826 return PACKET_ERROR;
827
828 /* The packet may or may not be OK. Just assume it is. */
829 return PACKET_OK;
830 }
831 else
832 /* The stub does not support the packet. */
833 return PACKET_UNKNOWN;
834 }
835
836 static enum packet_result
837 packet_ok (const char *buf, struct packet_config *config)
838 {
839 enum packet_result result;
840
841 result = packet_check_result (buf);
842 switch (result)
843 {
844 case PACKET_OK:
845 case PACKET_ERROR:
846 /* The stub recognized the packet request. */
847 switch (config->support)
848 {
849 case PACKET_SUPPORT_UNKNOWN:
850 if (remote_debug)
851 fprintf_unfiltered (gdb_stdlog,
852 "Packet %s (%s) is supported\n",
853 config->name, config->title);
854 config->support = PACKET_ENABLE;
855 break;
856 case PACKET_DISABLE:
857 internal_error (__FILE__, __LINE__,
858 _("packet_ok: attempt to use a disabled packet"));
859 break;
860 case PACKET_ENABLE:
861 break;
862 }
863 break;
864 case PACKET_UNKNOWN:
865 /* The stub does not support the packet. */
866 switch (config->support)
867 {
868 case PACKET_ENABLE:
869 if (config->detect == AUTO_BOOLEAN_AUTO)
870 /* If the stub previously indicated that the packet was
871 supported then there is a protocol error.. */
872 error (_("Protocol error: %s (%s) conflicting enabled responses."),
873 config->name, config->title);
874 else
875 /* The user set it wrong. */
876 error (_("Enabled packet %s (%s) not recognized by stub"),
877 config->name, config->title);
878 break;
879 case PACKET_SUPPORT_UNKNOWN:
880 if (remote_debug)
881 fprintf_unfiltered (gdb_stdlog,
882 "Packet %s (%s) is NOT supported\n",
883 config->name, config->title);
884 config->support = PACKET_DISABLE;
885 break;
886 case PACKET_DISABLE:
887 break;
888 }
889 break;
890 }
891
892 return result;
893 }
894
895 enum {
896 PACKET_vCont = 0,
897 PACKET_X,
898 PACKET_qSymbol,
899 PACKET_P,
900 PACKET_p,
901 PACKET_Z0,
902 PACKET_Z1,
903 PACKET_Z2,
904 PACKET_Z3,
905 PACKET_Z4,
906 PACKET_qXfer_auxv,
907 PACKET_qXfer_features,
908 PACKET_qXfer_libraries,
909 PACKET_qXfer_memory_map,
910 PACKET_qXfer_spu_read,
911 PACKET_qXfer_spu_write,
912 PACKET_qGetTLSAddr,
913 PACKET_qSupported,
914 PACKET_QPassSignals,
915 PACKET_MAX
916 };
917
918 static struct packet_config remote_protocol_packets[PACKET_MAX];
919
920 static void
921 set_remote_protocol_packet_cmd (char *args, int from_tty,
922 struct cmd_list_element *c)
923 {
924 struct packet_config *packet;
925
926 for (packet = remote_protocol_packets;
927 packet < &remote_protocol_packets[PACKET_MAX];
928 packet++)
929 {
930 if (&packet->detect == c->var)
931 {
932 update_packet_config (packet);
933 return;
934 }
935 }
936 internal_error (__FILE__, __LINE__, "Could not find config for %s",
937 c->name);
938 }
939
940 static void
941 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
942 struct cmd_list_element *c,
943 const char *value)
944 {
945 struct packet_config *packet;
946
947 for (packet = remote_protocol_packets;
948 packet < &remote_protocol_packets[PACKET_MAX];
949 packet++)
950 {
951 if (&packet->detect == c->var)
952 {
953 show_packet_config_cmd (packet);
954 return;
955 }
956 }
957 internal_error (__FILE__, __LINE__, "Could not find config for %s",
958 c->name);
959 }
960
961 /* Should we try one of the 'Z' requests? */
962
963 enum Z_packet_type
964 {
965 Z_PACKET_SOFTWARE_BP,
966 Z_PACKET_HARDWARE_BP,
967 Z_PACKET_WRITE_WP,
968 Z_PACKET_READ_WP,
969 Z_PACKET_ACCESS_WP,
970 NR_Z_PACKET_TYPES
971 };
972
973 /* For compatibility with older distributions. Provide a ``set remote
974 Z-packet ...'' command that updates all the Z packet types. */
975
976 static enum auto_boolean remote_Z_packet_detect;
977
978 static void
979 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
980 struct cmd_list_element *c)
981 {
982 int i;
983 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
984 {
985 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
986 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
987 }
988 }
989
990 static void
991 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
992 struct cmd_list_element *c,
993 const char *value)
994 {
995 int i;
996 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
997 {
998 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
999 }
1000 }
1001
1002 /* Should we try the 'ThreadInfo' query packet?
1003
1004 This variable (NOT available to the user: auto-detect only!)
1005 determines whether GDB will use the new, simpler "ThreadInfo"
1006 query or the older, more complex syntax for thread queries.
1007 This is an auto-detect variable (set to true at each connect,
1008 and set to false when the target fails to recognize it). */
1009
1010 static int use_threadinfo_query;
1011 static int use_threadextra_query;
1012
1013 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1014 static struct async_signal_handler *sigint_remote_twice_token;
1015 static struct async_signal_handler *sigint_remote_token;
1016
1017 /* These are pointers to hook functions that may be set in order to
1018 modify resume/wait behavior for a particular architecture. */
1019
1020 void (*deprecated_target_resume_hook) (void);
1021 void (*deprecated_target_wait_loop_hook) (void);
1022 \f
1023
1024
1025 /* These are the threads which we last sent to the remote system.
1026 -1 for all or -2 for not sent yet. */
1027 static int general_thread;
1028 static int continue_thread;
1029
1030 /* Call this function as a result of
1031 1) A halt indication (T packet) containing a thread id
1032 2) A direct query of currthread
1033 3) Successful execution of set thread
1034 */
1035
1036 static void
1037 record_currthread (int currthread)
1038 {
1039 general_thread = currthread;
1040
1041 /* If this is a new thread, add it to GDB's thread list.
1042 If we leave it up to WFI to do this, bad things will happen. */
1043 if (!in_thread_list (pid_to_ptid (currthread)))
1044 {
1045 add_thread (pid_to_ptid (currthread));
1046 ui_out_text (uiout, "[New ");
1047 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1048 ui_out_text (uiout, "]\n");
1049 }
1050 }
1051
1052 static char *last_pass_packet;
1053
1054 /* If 'QPassSignals' is supported, tell the remote stub what signals
1055 it can simply pass through to the inferior without reporting. */
1056
1057 static void
1058 remote_pass_signals (void)
1059 {
1060 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1061 {
1062 char *pass_packet, *p;
1063 int numsigs = (int) TARGET_SIGNAL_LAST;
1064 int count = 0, i;
1065
1066 gdb_assert (numsigs < 256);
1067 for (i = 0; i < numsigs; i++)
1068 {
1069 if (signal_stop_state (i) == 0
1070 && signal_print_state (i) == 0
1071 && signal_pass_state (i) == 1)
1072 count++;
1073 }
1074 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1075 strcpy (pass_packet, "QPassSignals:");
1076 p = pass_packet + strlen (pass_packet);
1077 for (i = 0; i < numsigs; i++)
1078 {
1079 if (signal_stop_state (i) == 0
1080 && signal_print_state (i) == 0
1081 && signal_pass_state (i) == 1)
1082 {
1083 if (i >= 16)
1084 *p++ = tohex (i >> 4);
1085 *p++ = tohex (i & 15);
1086 if (count)
1087 *p++ = ';';
1088 else
1089 break;
1090 count--;
1091 }
1092 }
1093 *p = 0;
1094 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1095 {
1096 struct remote_state *rs = get_remote_state ();
1097 char *buf = rs->buf;
1098
1099 putpkt (pass_packet);
1100 getpkt (&rs->buf, &rs->buf_size, 0);
1101 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1102 if (last_pass_packet)
1103 xfree (last_pass_packet);
1104 last_pass_packet = pass_packet;
1105 }
1106 else
1107 xfree (pass_packet);
1108 }
1109 }
1110
1111 #define MAGIC_NULL_PID 42000
1112
1113 static void
1114 set_thread (int th, int gen)
1115 {
1116 struct remote_state *rs = get_remote_state ();
1117 char *buf = rs->buf;
1118 int state = gen ? general_thread : continue_thread;
1119
1120 if (state == th)
1121 return;
1122
1123 buf[0] = 'H';
1124 buf[1] = gen ? 'g' : 'c';
1125 if (th == MAGIC_NULL_PID)
1126 {
1127 buf[2] = '0';
1128 buf[3] = '\0';
1129 }
1130 else if (th < 0)
1131 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1132 else
1133 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1134 putpkt (buf);
1135 getpkt (&rs->buf, &rs->buf_size, 0);
1136 if (gen)
1137 general_thread = th;
1138 else
1139 continue_thread = th;
1140 }
1141 \f
1142 /* Return nonzero if the thread TH is still alive on the remote system. */
1143
1144 static int
1145 remote_thread_alive (ptid_t ptid)
1146 {
1147 struct remote_state *rs = get_remote_state ();
1148 int tid = PIDGET (ptid);
1149
1150 if (tid < 0)
1151 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1152 else
1153 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1154 putpkt (rs->buf);
1155 getpkt (&rs->buf, &rs->buf_size, 0);
1156 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1157 }
1158
1159 /* About these extended threadlist and threadinfo packets. They are
1160 variable length packets but, the fields within them are often fixed
1161 length. They are redundent enough to send over UDP as is the
1162 remote protocol in general. There is a matching unit test module
1163 in libstub. */
1164
1165 #define OPAQUETHREADBYTES 8
1166
1167 /* a 64 bit opaque identifier */
1168 typedef unsigned char threadref[OPAQUETHREADBYTES];
1169
1170 /* WARNING: This threadref data structure comes from the remote O.S.,
1171 libstub protocol encoding, and remote.c. it is not particularly
1172 changable. */
1173
1174 /* Right now, the internal structure is int. We want it to be bigger.
1175 Plan to fix this.
1176 */
1177
1178 typedef int gdb_threadref; /* Internal GDB thread reference. */
1179
1180 /* gdb_ext_thread_info is an internal GDB data structure which is
1181 equivalent to the reply of the remote threadinfo packet. */
1182
1183 struct gdb_ext_thread_info
1184 {
1185 threadref threadid; /* External form of thread reference. */
1186 int active; /* Has state interesting to GDB?
1187 regs, stack. */
1188 char display[256]; /* Brief state display, name,
1189 blocked/suspended. */
1190 char shortname[32]; /* To be used to name threads. */
1191 char more_display[256]; /* Long info, statistics, queue depth,
1192 whatever. */
1193 };
1194
1195 /* The volume of remote transfers can be limited by submitting
1196 a mask containing bits specifying the desired information.
1197 Use a union of these values as the 'selection' parameter to
1198 get_thread_info. FIXME: Make these TAG names more thread specific.
1199 */
1200
1201 #define TAG_THREADID 1
1202 #define TAG_EXISTS 2
1203 #define TAG_DISPLAY 4
1204 #define TAG_THREADNAME 8
1205 #define TAG_MOREDISPLAY 16
1206
1207 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1208
1209 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1210
1211 static char *unpack_nibble (char *buf, int *val);
1212
1213 static char *pack_nibble (char *buf, int nibble);
1214
1215 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1216
1217 static char *unpack_byte (char *buf, int *value);
1218
1219 static char *pack_int (char *buf, int value);
1220
1221 static char *unpack_int (char *buf, int *value);
1222
1223 static char *unpack_string (char *src, char *dest, int length);
1224
1225 static char *pack_threadid (char *pkt, threadref *id);
1226
1227 static char *unpack_threadid (char *inbuf, threadref *id);
1228
1229 void int_to_threadref (threadref *id, int value);
1230
1231 static int threadref_to_int (threadref *ref);
1232
1233 static void copy_threadref (threadref *dest, threadref *src);
1234
1235 static int threadmatch (threadref *dest, threadref *src);
1236
1237 static char *pack_threadinfo_request (char *pkt, int mode,
1238 threadref *id);
1239
1240 static int remote_unpack_thread_info_response (char *pkt,
1241 threadref *expectedref,
1242 struct gdb_ext_thread_info
1243 *info);
1244
1245
1246 static int remote_get_threadinfo (threadref *threadid,
1247 int fieldset, /*TAG mask */
1248 struct gdb_ext_thread_info *info);
1249
1250 static char *pack_threadlist_request (char *pkt, int startflag,
1251 int threadcount,
1252 threadref *nextthread);
1253
1254 static int parse_threadlist_response (char *pkt,
1255 int result_limit,
1256 threadref *original_echo,
1257 threadref *resultlist,
1258 int *doneflag);
1259
1260 static int remote_get_threadlist (int startflag,
1261 threadref *nextthread,
1262 int result_limit,
1263 int *done,
1264 int *result_count,
1265 threadref *threadlist);
1266
1267 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1268
1269 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1270 void *context, int looplimit);
1271
1272 static int remote_newthread_step (threadref *ref, void *context);
1273
1274 /* Encode 64 bits in 16 chars of hex. */
1275
1276 static const char hexchars[] = "0123456789abcdef";
1277
1278 static int
1279 ishex (int ch, int *val)
1280 {
1281 if ((ch >= 'a') && (ch <= 'f'))
1282 {
1283 *val = ch - 'a' + 10;
1284 return 1;
1285 }
1286 if ((ch >= 'A') && (ch <= 'F'))
1287 {
1288 *val = ch - 'A' + 10;
1289 return 1;
1290 }
1291 if ((ch >= '0') && (ch <= '9'))
1292 {
1293 *val = ch - '0';
1294 return 1;
1295 }
1296 return 0;
1297 }
1298
1299 static int
1300 stubhex (int ch)
1301 {
1302 if (ch >= 'a' && ch <= 'f')
1303 return ch - 'a' + 10;
1304 if (ch >= '0' && ch <= '9')
1305 return ch - '0';
1306 if (ch >= 'A' && ch <= 'F')
1307 return ch - 'A' + 10;
1308 return -1;
1309 }
1310
1311 static int
1312 stub_unpack_int (char *buff, int fieldlength)
1313 {
1314 int nibble;
1315 int retval = 0;
1316
1317 while (fieldlength)
1318 {
1319 nibble = stubhex (*buff++);
1320 retval |= nibble;
1321 fieldlength--;
1322 if (fieldlength)
1323 retval = retval << 4;
1324 }
1325 return retval;
1326 }
1327
1328 char *
1329 unpack_varlen_hex (char *buff, /* packet to parse */
1330 ULONGEST *result)
1331 {
1332 int nibble;
1333 ULONGEST retval = 0;
1334
1335 while (ishex (*buff, &nibble))
1336 {
1337 buff++;
1338 retval = retval << 4;
1339 retval |= nibble & 0x0f;
1340 }
1341 *result = retval;
1342 return buff;
1343 }
1344
1345 static char *
1346 unpack_nibble (char *buf, int *val)
1347 {
1348 ishex (*buf++, val);
1349 return buf;
1350 }
1351
1352 static char *
1353 pack_nibble (char *buf, int nibble)
1354 {
1355 *buf++ = hexchars[(nibble & 0x0f)];
1356 return buf;
1357 }
1358
1359 static char *
1360 pack_hex_byte (char *pkt, int byte)
1361 {
1362 *pkt++ = hexchars[(byte >> 4) & 0xf];
1363 *pkt++ = hexchars[(byte & 0xf)];
1364 return pkt;
1365 }
1366
1367 static char *
1368 unpack_byte (char *buf, int *value)
1369 {
1370 *value = stub_unpack_int (buf, 2);
1371 return buf + 2;
1372 }
1373
1374 static char *
1375 pack_int (char *buf, int value)
1376 {
1377 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1378 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1379 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1380 buf = pack_hex_byte (buf, (value & 0xff));
1381 return buf;
1382 }
1383
1384 static char *
1385 unpack_int (char *buf, int *value)
1386 {
1387 *value = stub_unpack_int (buf, 8);
1388 return buf + 8;
1389 }
1390
1391 #if 0 /* Currently unused, uncomment when needed. */
1392 static char *pack_string (char *pkt, char *string);
1393
1394 static char *
1395 pack_string (char *pkt, char *string)
1396 {
1397 char ch;
1398 int len;
1399
1400 len = strlen (string);
1401 if (len > 200)
1402 len = 200; /* Bigger than most GDB packets, junk??? */
1403 pkt = pack_hex_byte (pkt, len);
1404 while (len-- > 0)
1405 {
1406 ch = *string++;
1407 if ((ch == '\0') || (ch == '#'))
1408 ch = '*'; /* Protect encapsulation. */
1409 *pkt++ = ch;
1410 }
1411 return pkt;
1412 }
1413 #endif /* 0 (unused) */
1414
1415 static char *
1416 unpack_string (char *src, char *dest, int length)
1417 {
1418 while (length--)
1419 *dest++ = *src++;
1420 *dest = '\0';
1421 return src;
1422 }
1423
1424 static char *
1425 pack_threadid (char *pkt, threadref *id)
1426 {
1427 char *limit;
1428 unsigned char *altid;
1429
1430 altid = (unsigned char *) id;
1431 limit = pkt + BUF_THREAD_ID_SIZE;
1432 while (pkt < limit)
1433 pkt = pack_hex_byte (pkt, *altid++);
1434 return pkt;
1435 }
1436
1437
1438 static char *
1439 unpack_threadid (char *inbuf, threadref *id)
1440 {
1441 char *altref;
1442 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1443 int x, y;
1444
1445 altref = (char *) id;
1446
1447 while (inbuf < limit)
1448 {
1449 x = stubhex (*inbuf++);
1450 y = stubhex (*inbuf++);
1451 *altref++ = (x << 4) | y;
1452 }
1453 return inbuf;
1454 }
1455
1456 /* Externally, threadrefs are 64 bits but internally, they are still
1457 ints. This is due to a mismatch of specifications. We would like
1458 to use 64bit thread references internally. This is an adapter
1459 function. */
1460
1461 void
1462 int_to_threadref (threadref *id, int value)
1463 {
1464 unsigned char *scan;
1465
1466 scan = (unsigned char *) id;
1467 {
1468 int i = 4;
1469 while (i--)
1470 *scan++ = 0;
1471 }
1472 *scan++ = (value >> 24) & 0xff;
1473 *scan++ = (value >> 16) & 0xff;
1474 *scan++ = (value >> 8) & 0xff;
1475 *scan++ = (value & 0xff);
1476 }
1477
1478 static int
1479 threadref_to_int (threadref *ref)
1480 {
1481 int i, value = 0;
1482 unsigned char *scan;
1483
1484 scan = *ref;
1485 scan += 4;
1486 i = 4;
1487 while (i-- > 0)
1488 value = (value << 8) | ((*scan++) & 0xff);
1489 return value;
1490 }
1491
1492 static void
1493 copy_threadref (threadref *dest, threadref *src)
1494 {
1495 int i;
1496 unsigned char *csrc, *cdest;
1497
1498 csrc = (unsigned char *) src;
1499 cdest = (unsigned char *) dest;
1500 i = 8;
1501 while (i--)
1502 *cdest++ = *csrc++;
1503 }
1504
1505 static int
1506 threadmatch (threadref *dest, threadref *src)
1507 {
1508 /* Things are broken right now, so just assume we got a match. */
1509 #if 0
1510 unsigned char *srcp, *destp;
1511 int i, result;
1512 srcp = (char *) src;
1513 destp = (char *) dest;
1514
1515 result = 1;
1516 while (i-- > 0)
1517 result &= (*srcp++ == *destp++) ? 1 : 0;
1518 return result;
1519 #endif
1520 return 1;
1521 }
1522
1523 /*
1524 threadid:1, # always request threadid
1525 context_exists:2,
1526 display:4,
1527 unique_name:8,
1528 more_display:16
1529 */
1530
1531 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1532
1533 static char *
1534 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1535 {
1536 *pkt++ = 'q'; /* Info Query */
1537 *pkt++ = 'P'; /* process or thread info */
1538 pkt = pack_int (pkt, mode); /* mode */
1539 pkt = pack_threadid (pkt, id); /* threadid */
1540 *pkt = '\0'; /* terminate */
1541 return pkt;
1542 }
1543
1544 /* These values tag the fields in a thread info response packet. */
1545 /* Tagging the fields allows us to request specific fields and to
1546 add more fields as time goes by. */
1547
1548 #define TAG_THREADID 1 /* Echo the thread identifier. */
1549 #define TAG_EXISTS 2 /* Is this process defined enough to
1550 fetch registers and its stack? */
1551 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1552 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1553 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1554 the process. */
1555
1556 static int
1557 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1558 struct gdb_ext_thread_info *info)
1559 {
1560 struct remote_state *rs = get_remote_state ();
1561 int mask, length;
1562 int tag;
1563 threadref ref;
1564 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1565 int retval = 1;
1566
1567 /* info->threadid = 0; FIXME: implement zero_threadref. */
1568 info->active = 0;
1569 info->display[0] = '\0';
1570 info->shortname[0] = '\0';
1571 info->more_display[0] = '\0';
1572
1573 /* Assume the characters indicating the packet type have been
1574 stripped. */
1575 pkt = unpack_int (pkt, &mask); /* arg mask */
1576 pkt = unpack_threadid (pkt, &ref);
1577
1578 if (mask == 0)
1579 warning (_("Incomplete response to threadinfo request."));
1580 if (!threadmatch (&ref, expectedref))
1581 { /* This is an answer to a different request. */
1582 warning (_("ERROR RMT Thread info mismatch."));
1583 return 0;
1584 }
1585 copy_threadref (&info->threadid, &ref);
1586
1587 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1588
1589 /* Packets are terminated with nulls. */
1590 while ((pkt < limit) && mask && *pkt)
1591 {
1592 pkt = unpack_int (pkt, &tag); /* tag */
1593 pkt = unpack_byte (pkt, &length); /* length */
1594 if (!(tag & mask)) /* Tags out of synch with mask. */
1595 {
1596 warning (_("ERROR RMT: threadinfo tag mismatch."));
1597 retval = 0;
1598 break;
1599 }
1600 if (tag == TAG_THREADID)
1601 {
1602 if (length != 16)
1603 {
1604 warning (_("ERROR RMT: length of threadid is not 16."));
1605 retval = 0;
1606 break;
1607 }
1608 pkt = unpack_threadid (pkt, &ref);
1609 mask = mask & ~TAG_THREADID;
1610 continue;
1611 }
1612 if (tag == TAG_EXISTS)
1613 {
1614 info->active = stub_unpack_int (pkt, length);
1615 pkt += length;
1616 mask = mask & ~(TAG_EXISTS);
1617 if (length > 8)
1618 {
1619 warning (_("ERROR RMT: 'exists' length too long."));
1620 retval = 0;
1621 break;
1622 }
1623 continue;
1624 }
1625 if (tag == TAG_THREADNAME)
1626 {
1627 pkt = unpack_string (pkt, &info->shortname[0], length);
1628 mask = mask & ~TAG_THREADNAME;
1629 continue;
1630 }
1631 if (tag == TAG_DISPLAY)
1632 {
1633 pkt = unpack_string (pkt, &info->display[0], length);
1634 mask = mask & ~TAG_DISPLAY;
1635 continue;
1636 }
1637 if (tag == TAG_MOREDISPLAY)
1638 {
1639 pkt = unpack_string (pkt, &info->more_display[0], length);
1640 mask = mask & ~TAG_MOREDISPLAY;
1641 continue;
1642 }
1643 warning (_("ERROR RMT: unknown thread info tag."));
1644 break; /* Not a tag we know about. */
1645 }
1646 return retval;
1647 }
1648
1649 static int
1650 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1651 struct gdb_ext_thread_info *info)
1652 {
1653 struct remote_state *rs = get_remote_state ();
1654 int result;
1655
1656 pack_threadinfo_request (rs->buf, fieldset, threadid);
1657 putpkt (rs->buf);
1658 getpkt (&rs->buf, &rs->buf_size, 0);
1659 result = remote_unpack_thread_info_response (rs->buf + 2,
1660 threadid, info);
1661 return result;
1662 }
1663
1664 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1665
1666 static char *
1667 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1668 threadref *nextthread)
1669 {
1670 *pkt++ = 'q'; /* info query packet */
1671 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1672 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1673 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1674 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1675 *pkt = '\0';
1676 return pkt;
1677 }
1678
1679 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1680
1681 static int
1682 parse_threadlist_response (char *pkt, int result_limit,
1683 threadref *original_echo, threadref *resultlist,
1684 int *doneflag)
1685 {
1686 struct remote_state *rs = get_remote_state ();
1687 char *limit;
1688 int count, resultcount, done;
1689
1690 resultcount = 0;
1691 /* Assume the 'q' and 'M chars have been stripped. */
1692 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1693 /* done parse past here */
1694 pkt = unpack_byte (pkt, &count); /* count field */
1695 pkt = unpack_nibble (pkt, &done);
1696 /* The first threadid is the argument threadid. */
1697 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1698 while ((count-- > 0) && (pkt < limit))
1699 {
1700 pkt = unpack_threadid (pkt, resultlist++);
1701 if (resultcount++ >= result_limit)
1702 break;
1703 }
1704 if (doneflag)
1705 *doneflag = done;
1706 return resultcount;
1707 }
1708
1709 static int
1710 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1711 int *done, int *result_count, threadref *threadlist)
1712 {
1713 struct remote_state *rs = get_remote_state ();
1714 static threadref echo_nextthread;
1715 int result = 1;
1716
1717 /* Trancate result limit to be smaller than the packet size. */
1718 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1719 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1720
1721 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1722 putpkt (rs->buf);
1723 getpkt (&rs->buf, &rs->buf_size, 0);
1724
1725 *result_count =
1726 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1727 threadlist, done);
1728
1729 if (!threadmatch (&echo_nextthread, nextthread))
1730 {
1731 /* FIXME: This is a good reason to drop the packet. */
1732 /* Possably, there is a duplicate response. */
1733 /* Possabilities :
1734 retransmit immediatly - race conditions
1735 retransmit after timeout - yes
1736 exit
1737 wait for packet, then exit
1738 */
1739 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1740 return 0; /* I choose simply exiting. */
1741 }
1742 if (*result_count <= 0)
1743 {
1744 if (*done != 1)
1745 {
1746 warning (_("RMT ERROR : failed to get remote thread list."));
1747 result = 0;
1748 }
1749 return result; /* break; */
1750 }
1751 if (*result_count > result_limit)
1752 {
1753 *result_count = 0;
1754 warning (_("RMT ERROR: threadlist response longer than requested."));
1755 return 0;
1756 }
1757 return result;
1758 }
1759
1760 /* This is the interface between remote and threads, remotes upper
1761 interface. */
1762
1763 /* remote_find_new_threads retrieves the thread list and for each
1764 thread in the list, looks up the thread in GDB's internal list,
1765 ading the thread if it does not already exist. This involves
1766 getting partial thread lists from the remote target so, polling the
1767 quit_flag is required. */
1768
1769
1770 /* About this many threadisds fit in a packet. */
1771
1772 #define MAXTHREADLISTRESULTS 32
1773
1774 static int
1775 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1776 int looplimit)
1777 {
1778 int done, i, result_count;
1779 int startflag = 1;
1780 int result = 1;
1781 int loopcount = 0;
1782 static threadref nextthread;
1783 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1784
1785 done = 0;
1786 while (!done)
1787 {
1788 if (loopcount++ > looplimit)
1789 {
1790 result = 0;
1791 warning (_("Remote fetch threadlist -infinite loop-."));
1792 break;
1793 }
1794 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1795 &done, &result_count, resultthreadlist))
1796 {
1797 result = 0;
1798 break;
1799 }
1800 /* Clear for later iterations. */
1801 startflag = 0;
1802 /* Setup to resume next batch of thread references, set nextthread. */
1803 if (result_count >= 1)
1804 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1805 i = 0;
1806 while (result_count--)
1807 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1808 break;
1809 }
1810 return result;
1811 }
1812
1813 static int
1814 remote_newthread_step (threadref *ref, void *context)
1815 {
1816 ptid_t ptid;
1817
1818 ptid = pid_to_ptid (threadref_to_int (ref));
1819
1820 if (!in_thread_list (ptid))
1821 add_thread (ptid);
1822 return 1; /* continue iterator */
1823 }
1824
1825 #define CRAZY_MAX_THREADS 1000
1826
1827 static ptid_t
1828 remote_current_thread (ptid_t oldpid)
1829 {
1830 struct remote_state *rs = get_remote_state ();
1831
1832 putpkt ("qC");
1833 getpkt (&rs->buf, &rs->buf_size, 0);
1834 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1835 /* Use strtoul here, so we'll correctly parse values whose highest
1836 bit is set. The protocol carries them as a simple series of
1837 hex digits; in the absence of a sign, strtol will see such
1838 values as positive numbers out of range for signed 'long', and
1839 return LONG_MAX to indicate an overflow. */
1840 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1841 else
1842 return oldpid;
1843 }
1844
1845 /* Find new threads for info threads command.
1846 * Original version, using John Metzler's thread protocol.
1847 */
1848
1849 static void
1850 remote_find_new_threads (void)
1851 {
1852 remote_threadlist_iterator (remote_newthread_step, 0,
1853 CRAZY_MAX_THREADS);
1854 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1855 inferior_ptid = remote_current_thread (inferior_ptid);
1856 }
1857
1858 /*
1859 * Find all threads for info threads command.
1860 * Uses new thread protocol contributed by Cisco.
1861 * Falls back and attempts to use the older method (above)
1862 * if the target doesn't respond to the new method.
1863 */
1864
1865 static void
1866 remote_threads_info (void)
1867 {
1868 struct remote_state *rs = get_remote_state ();
1869 char *bufp;
1870 int tid;
1871
1872 if (remote_desc == 0) /* paranoia */
1873 error (_("Command can only be used when connected to the remote target."));
1874
1875 if (use_threadinfo_query)
1876 {
1877 putpkt ("qfThreadInfo");
1878 getpkt (&rs->buf, &rs->buf_size, 0);
1879 bufp = rs->buf;
1880 if (bufp[0] != '\0') /* q packet recognized */
1881 {
1882 while (*bufp++ == 'm') /* reply contains one or more TID */
1883 {
1884 do
1885 {
1886 /* Use strtoul here, so we'll correctly parse values
1887 whose highest bit is set. The protocol carries
1888 them as a simple series of hex digits; in the
1889 absence of a sign, strtol will see such values as
1890 positive numbers out of range for signed 'long',
1891 and return LONG_MAX to indicate an overflow. */
1892 tid = strtoul (bufp, &bufp, 16);
1893 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1894 add_thread (pid_to_ptid (tid));
1895 }
1896 while (*bufp++ == ','); /* comma-separated list */
1897 putpkt ("qsThreadInfo");
1898 getpkt (&rs->buf, &rs->buf_size, 0);
1899 bufp = rs->buf;
1900 }
1901 return; /* done */
1902 }
1903 }
1904
1905 /* Else fall back to old method based on jmetzler protocol. */
1906 use_threadinfo_query = 0;
1907 remote_find_new_threads ();
1908 return;
1909 }
1910
1911 /*
1912 * Collect a descriptive string about the given thread.
1913 * The target may say anything it wants to about the thread
1914 * (typically info about its blocked / runnable state, name, etc.).
1915 * This string will appear in the info threads display.
1916 *
1917 * Optional: targets are not required to implement this function.
1918 */
1919
1920 static char *
1921 remote_threads_extra_info (struct thread_info *tp)
1922 {
1923 struct remote_state *rs = get_remote_state ();
1924 int result;
1925 int set;
1926 threadref id;
1927 struct gdb_ext_thread_info threadinfo;
1928 static char display_buf[100]; /* arbitrary... */
1929 int n = 0; /* position in display_buf */
1930
1931 if (remote_desc == 0) /* paranoia */
1932 internal_error (__FILE__, __LINE__,
1933 _("remote_threads_extra_info"));
1934
1935 if (use_threadextra_query)
1936 {
1937 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1938 PIDGET (tp->ptid));
1939 putpkt (rs->buf);
1940 getpkt (&rs->buf, &rs->buf_size, 0);
1941 if (rs->buf[0] != 0)
1942 {
1943 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1944 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1945 display_buf [result] = '\0';
1946 return display_buf;
1947 }
1948 }
1949
1950 /* If the above query fails, fall back to the old method. */
1951 use_threadextra_query = 0;
1952 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1953 | TAG_MOREDISPLAY | TAG_DISPLAY;
1954 int_to_threadref (&id, PIDGET (tp->ptid));
1955 if (remote_get_threadinfo (&id, set, &threadinfo))
1956 if (threadinfo.active)
1957 {
1958 if (*threadinfo.shortname)
1959 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1960 " Name: %s,", threadinfo.shortname);
1961 if (*threadinfo.display)
1962 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1963 " State: %s,", threadinfo.display);
1964 if (*threadinfo.more_display)
1965 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1966 " Priority: %s", threadinfo.more_display);
1967
1968 if (n > 0)
1969 {
1970 /* For purely cosmetic reasons, clear up trailing commas. */
1971 if (',' == display_buf[n-1])
1972 display_buf[n-1] = ' ';
1973 return display_buf;
1974 }
1975 }
1976 return NULL;
1977 }
1978 \f
1979
1980 /* Restart the remote side; this is an extended protocol operation. */
1981
1982 static void
1983 extended_remote_restart (void)
1984 {
1985 struct remote_state *rs = get_remote_state ();
1986
1987 /* Send the restart command; for reasons I don't understand the
1988 remote side really expects a number after the "R". */
1989 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1990 putpkt (rs->buf);
1991
1992 remote_fileio_reset ();
1993
1994 /* Now query for status so this looks just like we restarted
1995 gdbserver from scratch. */
1996 putpkt ("?");
1997 getpkt (&rs->buf, &rs->buf_size, 0);
1998 }
1999 \f
2000 /* Clean up connection to a remote debugger. */
2001
2002 static void
2003 remote_close (int quitting)
2004 {
2005 if (remote_desc)
2006 serial_close (remote_desc);
2007 remote_desc = NULL;
2008 }
2009
2010 /* Query the remote side for the text, data and bss offsets. */
2011
2012 static void
2013 get_offsets (void)
2014 {
2015 struct remote_state *rs = get_remote_state ();
2016 char *buf;
2017 char *ptr;
2018 int lose, num_segments = 0, do_sections, do_segments;
2019 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2020 struct section_offsets *offs;
2021 struct symfile_segment_data *data;
2022
2023 if (symfile_objfile == NULL)
2024 return;
2025
2026 putpkt ("qOffsets");
2027 getpkt (&rs->buf, &rs->buf_size, 0);
2028 buf = rs->buf;
2029
2030 if (buf[0] == '\000')
2031 return; /* Return silently. Stub doesn't support
2032 this command. */
2033 if (buf[0] == 'E')
2034 {
2035 warning (_("Remote failure reply: %s"), buf);
2036 return;
2037 }
2038
2039 /* Pick up each field in turn. This used to be done with scanf, but
2040 scanf will make trouble if CORE_ADDR size doesn't match
2041 conversion directives correctly. The following code will work
2042 with any size of CORE_ADDR. */
2043 text_addr = data_addr = bss_addr = 0;
2044 ptr = buf;
2045 lose = 0;
2046
2047 if (strncmp (ptr, "Text=", 5) == 0)
2048 {
2049 ptr += 5;
2050 /* Don't use strtol, could lose on big values. */
2051 while (*ptr && *ptr != ';')
2052 text_addr = (text_addr << 4) + fromhex (*ptr++);
2053
2054 if (strncmp (ptr, ";Data=", 6) == 0)
2055 {
2056 ptr += 6;
2057 while (*ptr && *ptr != ';')
2058 data_addr = (data_addr << 4) + fromhex (*ptr++);
2059 }
2060 else
2061 lose = 1;
2062
2063 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2064 {
2065 ptr += 5;
2066 while (*ptr && *ptr != ';')
2067 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2068
2069 if (bss_addr != data_addr)
2070 warning (_("Target reported unsupported offsets: %s"), buf);
2071 }
2072 else
2073 lose = 1;
2074 }
2075 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2076 {
2077 ptr += 8;
2078 /* Don't use strtol, could lose on big values. */
2079 while (*ptr && *ptr != ';')
2080 text_addr = (text_addr << 4) + fromhex (*ptr++);
2081 num_segments = 1;
2082
2083 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2084 {
2085 ptr += 9;
2086 while (*ptr && *ptr != ';')
2087 data_addr = (data_addr << 4) + fromhex (*ptr++);
2088 num_segments++;
2089 }
2090 }
2091 else
2092 lose = 1;
2093
2094 if (lose)
2095 error (_("Malformed response to offset query, %s"), buf);
2096 else if (*ptr != '\0')
2097 warning (_("Target reported unsupported offsets: %s"), buf);
2098
2099 offs = ((struct section_offsets *)
2100 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2101 memcpy (offs, symfile_objfile->section_offsets,
2102 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2103
2104 data = get_symfile_segment_data (symfile_objfile->obfd);
2105 do_segments = (data != NULL);
2106 do_sections = num_segments == 0;
2107
2108 /* Text= and Data= specify offsets for the text and data sections,
2109 but symfile_map_offsets_to_segments expects base addresses
2110 instead of offsets. If we have two segments, we can still
2111 try to relocate the whole segments instead of just ".text"
2112 and ".data". */
2113 if (num_segments == 0)
2114 {
2115 do_sections = 1;
2116 if (data == NULL || data->num_segments != 2)
2117 do_segments = 0;
2118 else
2119 {
2120 segments[0] = data->segment_bases[0] + text_addr;
2121 segments[1] = data->segment_bases[1] + data_addr;
2122 }
2123 }
2124 else
2125 {
2126 do_sections = 0;
2127 segments[0] = text_addr;
2128 segments[1] = data_addr;
2129 }
2130
2131 if (do_segments)
2132 {
2133 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2134 offs, num_segments, segments);
2135
2136 if (ret == 0 && !do_sections)
2137 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2138
2139 if (ret > 0)
2140 do_sections = 0;
2141 }
2142
2143 free_symfile_segment_data (data);
2144
2145 if (do_sections)
2146 {
2147 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2148
2149 /* This is a temporary kludge to force data and bss to use the same offsets
2150 because that's what nlmconv does now. The real solution requires changes
2151 to the stub and remote.c that I don't have time to do right now. */
2152
2153 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2154 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2155 }
2156
2157 objfile_relocate (symfile_objfile, offs);
2158 }
2159
2160 /* Stub for catch_exception. */
2161
2162 static void
2163 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2164 {
2165 int from_tty = * (int *) from_tty_p;
2166
2167 immediate_quit++; /* Allow user to interrupt it. */
2168
2169 /* Ack any packet which the remote side has already sent. */
2170 serial_write (remote_desc, "+", 1);
2171
2172 /* Let the stub know that we want it to return the thread. */
2173 set_thread (-1, 0);
2174
2175 inferior_ptid = remote_current_thread (inferior_ptid);
2176
2177 get_offsets (); /* Get text, data & bss offsets. */
2178
2179 putpkt ("?"); /* Initiate a query from remote machine. */
2180 immediate_quit--;
2181
2182 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2183 }
2184
2185 /* Open a connection to a remote debugger.
2186 NAME is the filename used for communication. */
2187
2188 static void
2189 remote_open (char *name, int from_tty)
2190 {
2191 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2192 }
2193
2194 /* Just like remote_open, but with asynchronous support. */
2195 static void
2196 remote_async_open (char *name, int from_tty)
2197 {
2198 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2199 }
2200
2201 /* Open a connection to a remote debugger using the extended
2202 remote gdb protocol. NAME is the filename used for communication. */
2203
2204 static void
2205 extended_remote_open (char *name, int from_tty)
2206 {
2207 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2208 0 /* async_p */);
2209 }
2210
2211 /* Just like extended_remote_open, but with asynchronous support. */
2212 static void
2213 extended_remote_async_open (char *name, int from_tty)
2214 {
2215 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2216 1 /*extended_p */, 1 /* async_p */);
2217 }
2218
2219 /* Generic code for opening a connection to a remote target. */
2220
2221 static void
2222 init_all_packet_configs (void)
2223 {
2224 int i;
2225 for (i = 0; i < PACKET_MAX; i++)
2226 update_packet_config (&remote_protocol_packets[i]);
2227 }
2228
2229 /* Symbol look-up. */
2230
2231 static void
2232 remote_check_symbols (struct objfile *objfile)
2233 {
2234 struct remote_state *rs = get_remote_state ();
2235 char *msg, *reply, *tmp;
2236 struct minimal_symbol *sym;
2237 int end;
2238
2239 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2240 return;
2241
2242 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2243 because we need both at the same time. */
2244 msg = alloca (get_remote_packet_size ());
2245
2246 /* Invite target to request symbol lookups. */
2247
2248 putpkt ("qSymbol::");
2249 getpkt (&rs->buf, &rs->buf_size, 0);
2250 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2251 reply = rs->buf;
2252
2253 while (strncmp (reply, "qSymbol:", 8) == 0)
2254 {
2255 tmp = &reply[8];
2256 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2257 msg[end] = '\0';
2258 sym = lookup_minimal_symbol (msg, NULL, NULL);
2259 if (sym == NULL)
2260 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2261 else
2262 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2263 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2264 &reply[8]);
2265 putpkt (msg);
2266 getpkt (&rs->buf, &rs->buf_size, 0);
2267 reply = rs->buf;
2268 }
2269 }
2270
2271 static struct serial *
2272 remote_serial_open (char *name)
2273 {
2274 static int udp_warning = 0;
2275
2276 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2277 of in ser-tcp.c, because it is the remote protocol assuming that the
2278 serial connection is reliable and not the serial connection promising
2279 to be. */
2280 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2281 {
2282 warning (_("\
2283 The remote protocol may be unreliable over UDP.\n\
2284 Some events may be lost, rendering further debugging impossible."));
2285 udp_warning = 1;
2286 }
2287
2288 return serial_open (name);
2289 }
2290
2291 /* This type describes each known response to the qSupported
2292 packet. */
2293 struct protocol_feature
2294 {
2295 /* The name of this protocol feature. */
2296 const char *name;
2297
2298 /* The default for this protocol feature. */
2299 enum packet_support default_support;
2300
2301 /* The function to call when this feature is reported, or after
2302 qSupported processing if the feature is not supported.
2303 The first argument points to this structure. The second
2304 argument indicates whether the packet requested support be
2305 enabled, disabled, or probed (or the default, if this function
2306 is being called at the end of processing and this feature was
2307 not reported). The third argument may be NULL; if not NULL, it
2308 is a NUL-terminated string taken from the packet following
2309 this feature's name and an equals sign. */
2310 void (*func) (const struct protocol_feature *, enum packet_support,
2311 const char *);
2312
2313 /* The corresponding packet for this feature. Only used if
2314 FUNC is remote_supported_packet. */
2315 int packet;
2316 };
2317
2318 static void
2319 remote_supported_packet (const struct protocol_feature *feature,
2320 enum packet_support support,
2321 const char *argument)
2322 {
2323 if (argument)
2324 {
2325 warning (_("Remote qSupported response supplied an unexpected value for"
2326 " \"%s\"."), feature->name);
2327 return;
2328 }
2329
2330 if (remote_protocol_packets[feature->packet].support
2331 == PACKET_SUPPORT_UNKNOWN)
2332 remote_protocol_packets[feature->packet].support = support;
2333 }
2334
2335 static void
2336 remote_packet_size (const struct protocol_feature *feature,
2337 enum packet_support support, const char *value)
2338 {
2339 struct remote_state *rs = get_remote_state ();
2340
2341 int packet_size;
2342 char *value_end;
2343
2344 if (support != PACKET_ENABLE)
2345 return;
2346
2347 if (value == NULL || *value == '\0')
2348 {
2349 warning (_("Remote target reported \"%s\" without a size."),
2350 feature->name);
2351 return;
2352 }
2353
2354 errno = 0;
2355 packet_size = strtol (value, &value_end, 16);
2356 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2357 {
2358 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2359 feature->name, value);
2360 return;
2361 }
2362
2363 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2364 {
2365 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2366 packet_size, MAX_REMOTE_PACKET_SIZE);
2367 packet_size = MAX_REMOTE_PACKET_SIZE;
2368 }
2369
2370 /* Record the new maximum packet size. */
2371 rs->explicit_packet_size = packet_size;
2372 }
2373
2374 static struct protocol_feature remote_protocol_features[] = {
2375 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2376 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2377 PACKET_qXfer_auxv },
2378 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2379 PACKET_qXfer_features },
2380 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2381 PACKET_qXfer_libraries },
2382 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2383 PACKET_qXfer_memory_map },
2384 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2385 PACKET_qXfer_spu_read },
2386 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2387 PACKET_qXfer_spu_write },
2388 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2389 PACKET_QPassSignals },
2390 };
2391
2392 static void
2393 remote_query_supported (void)
2394 {
2395 struct remote_state *rs = get_remote_state ();
2396 char *next;
2397 int i;
2398 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2399
2400 /* The packet support flags are handled differently for this packet
2401 than for most others. We treat an error, a disabled packet, and
2402 an empty response identically: any features which must be reported
2403 to be used will be automatically disabled. An empty buffer
2404 accomplishes this, since that is also the representation for a list
2405 containing no features. */
2406
2407 rs->buf[0] = 0;
2408 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2409 {
2410 putpkt ("qSupported");
2411 getpkt (&rs->buf, &rs->buf_size, 0);
2412
2413 /* If an error occured, warn, but do not return - just reset the
2414 buffer to empty and go on to disable features. */
2415 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2416 == PACKET_ERROR)
2417 {
2418 warning (_("Remote failure reply: %s"), rs->buf);
2419 rs->buf[0] = 0;
2420 }
2421 }
2422
2423 memset (seen, 0, sizeof (seen));
2424
2425 next = rs->buf;
2426 while (*next)
2427 {
2428 enum packet_support is_supported;
2429 char *p, *end, *name_end, *value;
2430
2431 /* First separate out this item from the rest of the packet. If
2432 there's another item after this, we overwrite the separator
2433 (terminated strings are much easier to work with). */
2434 p = next;
2435 end = strchr (p, ';');
2436 if (end == NULL)
2437 {
2438 end = p + strlen (p);
2439 next = end;
2440 }
2441 else
2442 {
2443 *end = '\0';
2444 next = end + 1;
2445
2446 if (end == p)
2447 {
2448 warning (_("empty item in \"qSupported\" response"));
2449 continue;
2450 }
2451 }
2452
2453 name_end = strchr (p, '=');
2454 if (name_end)
2455 {
2456 /* This is a name=value entry. */
2457 is_supported = PACKET_ENABLE;
2458 value = name_end + 1;
2459 *name_end = '\0';
2460 }
2461 else
2462 {
2463 value = NULL;
2464 switch (end[-1])
2465 {
2466 case '+':
2467 is_supported = PACKET_ENABLE;
2468 break;
2469
2470 case '-':
2471 is_supported = PACKET_DISABLE;
2472 break;
2473
2474 case '?':
2475 is_supported = PACKET_SUPPORT_UNKNOWN;
2476 break;
2477
2478 default:
2479 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2480 continue;
2481 }
2482 end[-1] = '\0';
2483 }
2484
2485 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2486 if (strcmp (remote_protocol_features[i].name, p) == 0)
2487 {
2488 const struct protocol_feature *feature;
2489
2490 seen[i] = 1;
2491 feature = &remote_protocol_features[i];
2492 feature->func (feature, is_supported, value);
2493 break;
2494 }
2495 }
2496
2497 /* If we increased the packet size, make sure to increase the global
2498 buffer size also. We delay this until after parsing the entire
2499 qSupported packet, because this is the same buffer we were
2500 parsing. */
2501 if (rs->buf_size < rs->explicit_packet_size)
2502 {
2503 rs->buf_size = rs->explicit_packet_size;
2504 rs->buf = xrealloc (rs->buf, rs->buf_size);
2505 }
2506
2507 /* Handle the defaults for unmentioned features. */
2508 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2509 if (!seen[i])
2510 {
2511 const struct protocol_feature *feature;
2512
2513 feature = &remote_protocol_features[i];
2514 feature->func (feature, feature->default_support, NULL);
2515 }
2516 }
2517
2518
2519 static void
2520 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2521 int extended_p, int async_p)
2522 {
2523 struct remote_state *rs = get_remote_state ();
2524 if (name == 0)
2525 error (_("To open a remote debug connection, you need to specify what\n"
2526 "serial device is attached to the remote system\n"
2527 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2528
2529 /* See FIXME above. */
2530 if (!async_p)
2531 wait_forever_enabled_p = 1;
2532
2533 target_preopen (from_tty);
2534
2535 unpush_target (target);
2536
2537 /* Make sure we send the passed signals list the next time we resume. */
2538 xfree (last_pass_packet);
2539 last_pass_packet = NULL;
2540
2541 remote_fileio_reset ();
2542 reopen_exec_file ();
2543 reread_symbols ();
2544
2545 remote_desc = remote_serial_open (name);
2546 if (!remote_desc)
2547 perror_with_name (name);
2548
2549 if (baud_rate != -1)
2550 {
2551 if (serial_setbaudrate (remote_desc, baud_rate))
2552 {
2553 /* The requested speed could not be set. Error out to
2554 top level after closing remote_desc. Take care to
2555 set remote_desc to NULL to avoid closing remote_desc
2556 more than once. */
2557 serial_close (remote_desc);
2558 remote_desc = NULL;
2559 perror_with_name (name);
2560 }
2561 }
2562
2563 serial_raw (remote_desc);
2564
2565 /* If there is something sitting in the buffer we might take it as a
2566 response to a command, which would be bad. */
2567 serial_flush_input (remote_desc);
2568
2569 if (from_tty)
2570 {
2571 puts_filtered ("Remote debugging using ");
2572 puts_filtered (name);
2573 puts_filtered ("\n");
2574 }
2575 push_target (target); /* Switch to using remote target now. */
2576
2577 /* Reset the target state; these things will be queried either by
2578 remote_query_supported or as they are needed. */
2579 init_all_packet_configs ();
2580 rs->explicit_packet_size = 0;
2581
2582 general_thread = -2;
2583 continue_thread = -2;
2584
2585 /* Probe for ability to use "ThreadInfo" query, as required. */
2586 use_threadinfo_query = 1;
2587 use_threadextra_query = 1;
2588
2589 /* The first packet we send to the target is the optional "supported
2590 packets" request. If the target can answer this, it will tell us
2591 which later probes to skip. */
2592 remote_query_supported ();
2593
2594 /* Next, if the target can specify a description, read it. We do
2595 this before anything involving memory or registers. */
2596 target_find_description ();
2597
2598 /* Without this, some commands which require an active target (such
2599 as kill) won't work. This variable serves (at least) double duty
2600 as both the pid of the target process (if it has such), and as a
2601 flag indicating that a target is active. These functions should
2602 be split out into seperate variables, especially since GDB will
2603 someday have a notion of debugging several processes. */
2604
2605 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2606
2607 if (async_p)
2608 {
2609 /* With this target we start out by owning the terminal. */
2610 remote_async_terminal_ours_p = 1;
2611
2612 /* FIXME: cagney/1999-09-23: During the initial connection it is
2613 assumed that the target is already ready and able to respond to
2614 requests. Unfortunately remote_start_remote() eventually calls
2615 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2616 around this. Eventually a mechanism that allows
2617 wait_for_inferior() to expect/get timeouts will be
2618 implemented. */
2619 wait_forever_enabled_p = 0;
2620 }
2621
2622 /* First delete any symbols previously loaded from shared libraries. */
2623 no_shared_libraries (NULL, 0);
2624
2625 /* Start the remote connection. If error() or QUIT, discard this
2626 target (we'd otherwise be in an inconsistent state) and then
2627 propogate the error on up the exception chain. This ensures that
2628 the caller doesn't stumble along blindly assuming that the
2629 function succeeded. The CLI doesn't have this problem but other
2630 UI's, such as MI do.
2631
2632 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2633 this function should return an error indication letting the
2634 caller restore the previous state. Unfortunately the command
2635 ``target remote'' is directly wired to this function making that
2636 impossible. On a positive note, the CLI side of this problem has
2637 been fixed - the function set_cmd_context() makes it possible for
2638 all the ``target ....'' commands to share a common callback
2639 function. See cli-dump.c. */
2640 {
2641 struct gdb_exception ex
2642 = catch_exception (uiout, remote_start_remote, &from_tty,
2643 RETURN_MASK_ALL);
2644 if (ex.reason < 0)
2645 {
2646 pop_target ();
2647 if (async_p)
2648 wait_forever_enabled_p = 1;
2649 throw_exception (ex);
2650 }
2651 }
2652
2653 if (async_p)
2654 wait_forever_enabled_p = 1;
2655
2656 if (extended_p)
2657 {
2658 /* Tell the remote that we are using the extended protocol. */
2659 putpkt ("!");
2660 getpkt (&rs->buf, &rs->buf_size, 0);
2661 }
2662
2663 if (exec_bfd) /* No use without an exec file. */
2664 remote_check_symbols (symfile_objfile);
2665 }
2666
2667 /* This takes a program previously attached to and detaches it. After
2668 this is done, GDB can be used to debug some other program. We
2669 better not have left any breakpoints in the target program or it'll
2670 die when it hits one. */
2671
2672 static void
2673 remote_detach (char *args, int from_tty)
2674 {
2675 struct remote_state *rs = get_remote_state ();
2676
2677 if (args)
2678 error (_("Argument given to \"detach\" when remotely debugging."));
2679
2680 /* Tell the remote target to detach. */
2681 strcpy (rs->buf, "D");
2682 putpkt (rs->buf);
2683 getpkt (&rs->buf, &rs->buf_size, 0);
2684
2685 if (rs->buf[0] == 'E')
2686 error (_("Can't detach process."));
2687
2688 /* Unregister the file descriptor from the event loop. */
2689 if (target_is_async_p ())
2690 serial_async (remote_desc, NULL, 0);
2691
2692 target_mourn_inferior ();
2693 if (from_tty)
2694 puts_filtered ("Ending remote debugging.\n");
2695 }
2696
2697 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2698
2699 static void
2700 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2701 {
2702 if (args)
2703 error (_("Argument given to \"detach\" when remotely debugging."));
2704
2705 /* Unregister the file descriptor from the event loop. */
2706 if (target_is_async_p ())
2707 serial_async (remote_desc, NULL, 0);
2708
2709 target_mourn_inferior ();
2710 if (from_tty)
2711 puts_filtered ("Ending remote debugging.\n");
2712 }
2713
2714 /* Convert hex digit A to a number. */
2715
2716 static int
2717 fromhex (int a)
2718 {
2719 if (a >= '0' && a <= '9')
2720 return a - '0';
2721 else if (a >= 'a' && a <= 'f')
2722 return a - 'a' + 10;
2723 else if (a >= 'A' && a <= 'F')
2724 return a - 'A' + 10;
2725 else
2726 error (_("Reply contains invalid hex digit %d"), a);
2727 }
2728
2729 static int
2730 hex2bin (const char *hex, gdb_byte *bin, int count)
2731 {
2732 int i;
2733
2734 for (i = 0; i < count; i++)
2735 {
2736 if (hex[0] == 0 || hex[1] == 0)
2737 {
2738 /* Hex string is short, or of uneven length.
2739 Return the count that has been converted so far. */
2740 return i;
2741 }
2742 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2743 hex += 2;
2744 }
2745 return i;
2746 }
2747
2748 /* Convert number NIB to a hex digit. */
2749
2750 static int
2751 tohex (int nib)
2752 {
2753 if (nib < 10)
2754 return '0' + nib;
2755 else
2756 return 'a' + nib - 10;
2757 }
2758
2759 static int
2760 bin2hex (const gdb_byte *bin, char *hex, int count)
2761 {
2762 int i;
2763 /* May use a length, or a nul-terminated string as input. */
2764 if (count == 0)
2765 count = strlen ((char *) bin);
2766
2767 for (i = 0; i < count; i++)
2768 {
2769 *hex++ = tohex ((*bin >> 4) & 0xf);
2770 *hex++ = tohex (*bin++ & 0xf);
2771 }
2772 *hex = 0;
2773 return i;
2774 }
2775 \f
2776 /* Check for the availability of vCont. This function should also check
2777 the response. */
2778
2779 static void
2780 remote_vcont_probe (struct remote_state *rs)
2781 {
2782 char *buf;
2783
2784 strcpy (rs->buf, "vCont?");
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787 buf = rs->buf;
2788
2789 /* Make sure that the features we assume are supported. */
2790 if (strncmp (buf, "vCont", 5) == 0)
2791 {
2792 char *p = &buf[5];
2793 int support_s, support_S, support_c, support_C;
2794
2795 support_s = 0;
2796 support_S = 0;
2797 support_c = 0;
2798 support_C = 0;
2799 while (p && *p == ';')
2800 {
2801 p++;
2802 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2803 support_s = 1;
2804 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2805 support_S = 1;
2806 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2807 support_c = 1;
2808 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2809 support_C = 1;
2810
2811 p = strchr (p, ';');
2812 }
2813
2814 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2815 BUF will make packet_ok disable the packet. */
2816 if (!support_s || !support_S || !support_c || !support_C)
2817 buf[0] = 0;
2818 }
2819
2820 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2821 }
2822
2823 /* Resume the remote inferior by using a "vCont" packet. The thread
2824 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2825 resumed thread should be single-stepped and/or signalled. If PTID's
2826 PID is -1, then all threads are resumed; the thread to be stepped and/or
2827 signalled is given in the global INFERIOR_PTID. This function returns
2828 non-zero iff it resumes the inferior.
2829
2830 This function issues a strict subset of all possible vCont commands at the
2831 moment. */
2832
2833 static int
2834 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2835 {
2836 struct remote_state *rs = get_remote_state ();
2837 int pid = PIDGET (ptid);
2838 char *buf = NULL, *outbuf;
2839 struct cleanup *old_cleanup;
2840
2841 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2842 remote_vcont_probe (rs);
2843
2844 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2845 return 0;
2846
2847 /* If we could generate a wider range of packets, we'd have to worry
2848 about overflowing BUF. Should there be a generic
2849 "multi-part-packet" packet? */
2850
2851 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2852 {
2853 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2854 don't have any PID numbers the inferior will understand. Make sure
2855 to only send forms that do not specify a PID. */
2856 if (step && siggnal != TARGET_SIGNAL_0)
2857 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2858 else if (step)
2859 outbuf = xstrprintf ("vCont;s");
2860 else if (siggnal != TARGET_SIGNAL_0)
2861 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2862 else
2863 outbuf = xstrprintf ("vCont;c");
2864 }
2865 else if (pid == -1)
2866 {
2867 /* Resume all threads, with preference for INFERIOR_PTID. */
2868 if (step && siggnal != TARGET_SIGNAL_0)
2869 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2870 PIDGET (inferior_ptid));
2871 else if (step)
2872 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2873 else if (siggnal != TARGET_SIGNAL_0)
2874 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2875 PIDGET (inferior_ptid));
2876 else
2877 outbuf = xstrprintf ("vCont;c");
2878 }
2879 else
2880 {
2881 /* Scheduler locking; resume only PTID. */
2882 if (step && siggnal != TARGET_SIGNAL_0)
2883 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2884 else if (step)
2885 outbuf = xstrprintf ("vCont;s:%x", pid);
2886 else if (siggnal != TARGET_SIGNAL_0)
2887 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2888 else
2889 outbuf = xstrprintf ("vCont;c:%x", pid);
2890 }
2891
2892 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2893 old_cleanup = make_cleanup (xfree, outbuf);
2894
2895 putpkt (outbuf);
2896
2897 do_cleanups (old_cleanup);
2898
2899 return 1;
2900 }
2901
2902 /* Tell the remote machine to resume. */
2903
2904 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2905
2906 static int last_sent_step;
2907
2908 static void
2909 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2910 {
2911 struct remote_state *rs = get_remote_state ();
2912 char *buf;
2913 int pid = PIDGET (ptid);
2914
2915 last_sent_signal = siggnal;
2916 last_sent_step = step;
2917
2918 /* A hook for when we need to do something at the last moment before
2919 resumption. */
2920 if (deprecated_target_resume_hook)
2921 (*deprecated_target_resume_hook) ();
2922
2923 /* Update the inferior on signals to silently pass, if they've changed. */
2924 remote_pass_signals ();
2925
2926 /* The vCont packet doesn't need to specify threads via Hc. */
2927 if (remote_vcont_resume (ptid, step, siggnal))
2928 return;
2929
2930 /* All other supported resume packets do use Hc, so call set_thread. */
2931 if (pid == -1)
2932 set_thread (0, 0); /* Run any thread. */
2933 else
2934 set_thread (pid, 0); /* Run this thread. */
2935
2936 buf = rs->buf;
2937 if (siggnal != TARGET_SIGNAL_0)
2938 {
2939 buf[0] = step ? 'S' : 'C';
2940 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2941 buf[2] = tohex (((int) siggnal) & 0xf);
2942 buf[3] = '\0';
2943 }
2944 else
2945 strcpy (buf, step ? "s" : "c");
2946
2947 putpkt (buf);
2948 }
2949
2950 /* Same as remote_resume, but with async support. */
2951 static void
2952 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2953 {
2954 remote_resume (ptid, step, siggnal);
2955
2956 /* We are about to start executing the inferior, let's register it
2957 with the event loop. NOTE: this is the one place where all the
2958 execution commands end up. We could alternatively do this in each
2959 of the execution commands in infcmd.c. */
2960 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2961 into infcmd.c in order to allow inferior function calls to work
2962 NOT asynchronously. */
2963 if (target_can_async_p ())
2964 target_async (inferior_event_handler, 0);
2965 /* Tell the world that the target is now executing. */
2966 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2967 this? Instead, should the client of target just assume (for
2968 async targets) that the target is going to start executing? Is
2969 this information already found in the continuation block? */
2970 if (target_is_async_p ())
2971 target_executing = 1;
2972 }
2973 \f
2974
2975 /* Set up the signal handler for SIGINT, while the target is
2976 executing, ovewriting the 'regular' SIGINT signal handler. */
2977 static void
2978 initialize_sigint_signal_handler (void)
2979 {
2980 sigint_remote_token =
2981 create_async_signal_handler (async_remote_interrupt, NULL);
2982 signal (SIGINT, handle_remote_sigint);
2983 }
2984
2985 /* Signal handler for SIGINT, while the target is executing. */
2986 static void
2987 handle_remote_sigint (int sig)
2988 {
2989 signal (sig, handle_remote_sigint_twice);
2990 sigint_remote_twice_token =
2991 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2992 mark_async_signal_handler_wrapper (sigint_remote_token);
2993 }
2994
2995 /* Signal handler for SIGINT, installed after SIGINT has already been
2996 sent once. It will take effect the second time that the user sends
2997 a ^C. */
2998 static void
2999 handle_remote_sigint_twice (int sig)
3000 {
3001 signal (sig, handle_sigint);
3002 sigint_remote_twice_token =
3003 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3004 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3005 }
3006
3007 /* Perform the real interruption of the target execution, in response
3008 to a ^C. */
3009 static void
3010 async_remote_interrupt (gdb_client_data arg)
3011 {
3012 if (remote_debug)
3013 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3014
3015 target_stop ();
3016 }
3017
3018 /* Perform interrupt, if the first attempt did not succeed. Just give
3019 up on the target alltogether. */
3020 void
3021 async_remote_interrupt_twice (gdb_client_data arg)
3022 {
3023 if (remote_debug)
3024 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3025 /* Do something only if the target was not killed by the previous
3026 cntl-C. */
3027 if (target_executing)
3028 {
3029 interrupt_query ();
3030 signal (SIGINT, handle_remote_sigint);
3031 }
3032 }
3033
3034 /* Reinstall the usual SIGINT handlers, after the target has
3035 stopped. */
3036 static void
3037 cleanup_sigint_signal_handler (void *dummy)
3038 {
3039 signal (SIGINT, handle_sigint);
3040 if (sigint_remote_twice_token)
3041 delete_async_signal_handler (&sigint_remote_twice_token);
3042 if (sigint_remote_token)
3043 delete_async_signal_handler (&sigint_remote_token);
3044 }
3045
3046 /* Send ^C to target to halt it. Target will respond, and send us a
3047 packet. */
3048 static void (*ofunc) (int);
3049
3050 /* The command line interface's stop routine. This function is installed
3051 as a signal handler for SIGINT. The first time a user requests a
3052 stop, we call remote_stop to send a break or ^C. If there is no
3053 response from the target (it didn't stop when the user requested it),
3054 we ask the user if he'd like to detach from the target. */
3055 static void
3056 remote_interrupt (int signo)
3057 {
3058 /* If this doesn't work, try more severe steps. */
3059 signal (signo, remote_interrupt_twice);
3060
3061 if (remote_debug)
3062 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3063
3064 target_stop ();
3065 }
3066
3067 /* The user typed ^C twice. */
3068
3069 static void
3070 remote_interrupt_twice (int signo)
3071 {
3072 signal (signo, ofunc);
3073 interrupt_query ();
3074 signal (signo, remote_interrupt);
3075 }
3076
3077 /* This is the generic stop called via the target vector. When a target
3078 interrupt is requested, either by the command line or the GUI, we
3079 will eventually end up here. */
3080 static void
3081 remote_stop (void)
3082 {
3083 /* Send a break or a ^C, depending on user preference. */
3084 if (remote_debug)
3085 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3086
3087 if (remote_break)
3088 serial_send_break (remote_desc);
3089 else
3090 serial_write (remote_desc, "\003", 1);
3091 }
3092
3093 /* Ask the user what to do when an interrupt is received. */
3094
3095 static void
3096 interrupt_query (void)
3097 {
3098 target_terminal_ours ();
3099
3100 if (query ("Interrupted while waiting for the program.\n\
3101 Give up (and stop debugging it)? "))
3102 {
3103 target_mourn_inferior ();
3104 deprecated_throw_reason (RETURN_QUIT);
3105 }
3106
3107 target_terminal_inferior ();
3108 }
3109
3110 /* Enable/disable target terminal ownership. Most targets can use
3111 terminal groups to control terminal ownership. Remote targets are
3112 different in that explicit transfer of ownership to/from GDB/target
3113 is required. */
3114
3115 static void
3116 remote_async_terminal_inferior (void)
3117 {
3118 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3119 sync_execution here. This function should only be called when
3120 GDB is resuming the inferior in the forground. A background
3121 resume (``run&'') should leave GDB in control of the terminal and
3122 consequently should not call this code. */
3123 if (!sync_execution)
3124 return;
3125 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3126 calls target_terminal_*() idenpotent. The event-loop GDB talking
3127 to an asynchronous target with a synchronous command calls this
3128 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3129 stops trying to transfer the terminal to the target when it
3130 shouldn't this guard can go away. */
3131 if (!remote_async_terminal_ours_p)
3132 return;
3133 delete_file_handler (input_fd);
3134 remote_async_terminal_ours_p = 0;
3135 initialize_sigint_signal_handler ();
3136 /* NOTE: At this point we could also register our selves as the
3137 recipient of all input. Any characters typed could then be
3138 passed on down to the target. */
3139 }
3140
3141 static void
3142 remote_async_terminal_ours (void)
3143 {
3144 /* See FIXME in remote_async_terminal_inferior. */
3145 if (!sync_execution)
3146 return;
3147 /* See FIXME in remote_async_terminal_inferior. */
3148 if (remote_async_terminal_ours_p)
3149 return;
3150 cleanup_sigint_signal_handler (NULL);
3151 add_file_handler (input_fd, stdin_event_handler, 0);
3152 remote_async_terminal_ours_p = 1;
3153 }
3154
3155 /* If nonzero, ignore the next kill. */
3156
3157 int kill_kludge;
3158
3159 void
3160 remote_console_output (char *msg)
3161 {
3162 char *p;
3163
3164 for (p = msg; p[0] && p[1]; p += 2)
3165 {
3166 char tb[2];
3167 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3168 tb[0] = c;
3169 tb[1] = 0;
3170 fputs_unfiltered (tb, gdb_stdtarg);
3171 }
3172 gdb_flush (gdb_stdtarg);
3173 }
3174
3175 /* Wait until the remote machine stops, then return,
3176 storing status in STATUS just as `wait' would.
3177 Returns "pid", which in the case of a multi-threaded
3178 remote OS, is the thread-id. */
3179
3180 static ptid_t
3181 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3182 {
3183 struct remote_state *rs = get_remote_state ();
3184 struct remote_arch_state *rsa = get_remote_arch_state ();
3185 ULONGEST thread_num = -1;
3186 ULONGEST addr;
3187 int solibs_changed = 0;
3188
3189 status->kind = TARGET_WAITKIND_EXITED;
3190 status->value.integer = 0;
3191
3192 while (1)
3193 {
3194 char *buf, *p;
3195
3196 ofunc = signal (SIGINT, remote_interrupt);
3197 getpkt (&rs->buf, &rs->buf_size, 1);
3198 signal (SIGINT, ofunc);
3199
3200 buf = rs->buf;
3201
3202 /* This is a hook for when we need to do something (perhaps the
3203 collection of trace data) every time the target stops. */
3204 if (deprecated_target_wait_loop_hook)
3205 (*deprecated_target_wait_loop_hook) ();
3206
3207 remote_stopped_by_watchpoint_p = 0;
3208
3209 switch (buf[0])
3210 {
3211 case 'E': /* Error of some sort. */
3212 warning (_("Remote failure reply: %s"), buf);
3213 continue;
3214 case 'F': /* File-I/O request. */
3215 remote_fileio_request (buf);
3216 continue;
3217 case 'T': /* Status with PC, SP, FP, ... */
3218 {
3219 gdb_byte regs[MAX_REGISTER_SIZE];
3220
3221 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3222 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3223 ss = signal number
3224 n... = register number
3225 r... = register contents
3226 */
3227 p = &buf[3]; /* after Txx */
3228
3229 while (*p)
3230 {
3231 char *p1;
3232 char *p_temp;
3233 int fieldsize;
3234 LONGEST pnum = 0;
3235
3236 /* If the packet contains a register number save it in
3237 pnum and set p1 to point to the character following
3238 it. Otherwise p1 points to p. */
3239
3240 /* If this packet is an awatch packet, don't parse the
3241 'a' as a register number. */
3242
3243 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3244 {
3245 /* Read the ``P'' register number. */
3246 pnum = strtol (p, &p_temp, 16);
3247 p1 = p_temp;
3248 }
3249 else
3250 p1 = p;
3251
3252 if (p1 == p) /* No register number present here. */
3253 {
3254 p1 = strchr (p, ':');
3255 if (p1 == NULL)
3256 error (_("Malformed packet(a) (missing colon): %s\n\
3257 Packet: '%s'\n"),
3258 p, buf);
3259 if (strncmp (p, "thread", p1 - p) == 0)
3260 {
3261 p_temp = unpack_varlen_hex (++p1, &thread_num);
3262 record_currthread (thread_num);
3263 p = p_temp;
3264 }
3265 else if ((strncmp (p, "watch", p1 - p) == 0)
3266 || (strncmp (p, "rwatch", p1 - p) == 0)
3267 || (strncmp (p, "awatch", p1 - p) == 0))
3268 {
3269 remote_stopped_by_watchpoint_p = 1;
3270 p = unpack_varlen_hex (++p1, &addr);
3271 remote_watch_data_address = (CORE_ADDR)addr;
3272 }
3273 else if (strncmp (p, "library", p1 - p) == 0)
3274 {
3275 p1++;
3276 p_temp = p1;
3277 while (*p_temp && *p_temp != ';')
3278 p_temp++;
3279
3280 solibs_changed = 1;
3281 p = p_temp;
3282 }
3283 else
3284 {
3285 /* Silently skip unknown optional info. */
3286 p_temp = strchr (p1 + 1, ';');
3287 if (p_temp)
3288 p = p_temp;
3289 }
3290 }
3291 else
3292 {
3293 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3294 p = p1;
3295
3296 if (*p++ != ':')
3297 error (_("Malformed packet(b) (missing colon): %s\n\
3298 Packet: '%s'\n"),
3299 p, buf);
3300
3301 if (reg == NULL)
3302 error (_("Remote sent bad register number %s: %s\n\
3303 Packet: '%s'\n"),
3304 phex_nz (pnum, 0), p, buf);
3305
3306 fieldsize = hex2bin (p, regs,
3307 register_size (current_gdbarch,
3308 reg->regnum));
3309 p += 2 * fieldsize;
3310 if (fieldsize < register_size (current_gdbarch,
3311 reg->regnum))
3312 warning (_("Remote reply is too short: %s"), buf);
3313 regcache_raw_supply (get_current_regcache (),
3314 reg->regnum, regs);
3315 }
3316
3317 if (*p++ != ';')
3318 error (_("Remote register badly formatted: %s\nhere: %s"),
3319 buf, p);
3320 }
3321 }
3322 /* fall through */
3323 case 'S': /* Old style status, just signal only. */
3324 if (solibs_changed)
3325 status->kind = TARGET_WAITKIND_LOADED;
3326 else
3327 {
3328 status->kind = TARGET_WAITKIND_STOPPED;
3329 status->value.sig = (enum target_signal)
3330 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3331 }
3332
3333 if (buf[3] == 'p')
3334 {
3335 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3336 record_currthread (thread_num);
3337 }
3338 goto got_status;
3339 case 'W': /* Target exited. */
3340 {
3341 /* The remote process exited. */
3342 status->kind = TARGET_WAITKIND_EXITED;
3343 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3344 goto got_status;
3345 }
3346 case 'X':
3347 status->kind = TARGET_WAITKIND_SIGNALLED;
3348 status->value.sig = (enum target_signal)
3349 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3350 kill_kludge = 1;
3351
3352 goto got_status;
3353 case 'O': /* Console output. */
3354 remote_console_output (buf + 1);
3355 continue;
3356 case '\0':
3357 if (last_sent_signal != TARGET_SIGNAL_0)
3358 {
3359 /* Zero length reply means that we tried 'S' or 'C' and
3360 the remote system doesn't support it. */
3361 target_terminal_ours_for_output ();
3362 printf_filtered
3363 ("Can't send signals to this remote system. %s not sent.\n",
3364 target_signal_to_name (last_sent_signal));
3365 last_sent_signal = TARGET_SIGNAL_0;
3366 target_terminal_inferior ();
3367
3368 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3369 putpkt ((char *) buf);
3370 continue;
3371 }
3372 /* else fallthrough */
3373 default:
3374 warning (_("Invalid remote reply: %s"), buf);
3375 continue;
3376 }
3377 }
3378 got_status:
3379 if (thread_num != -1)
3380 {
3381 return pid_to_ptid (thread_num);
3382 }
3383 return inferior_ptid;
3384 }
3385
3386 /* Async version of remote_wait. */
3387 static ptid_t
3388 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3389 {
3390 struct remote_state *rs = get_remote_state ();
3391 struct remote_arch_state *rsa = get_remote_arch_state ();
3392 ULONGEST thread_num = -1;
3393 ULONGEST addr;
3394 int solibs_changed = 0;
3395
3396 status->kind = TARGET_WAITKIND_EXITED;
3397 status->value.integer = 0;
3398
3399 remote_stopped_by_watchpoint_p = 0;
3400
3401 while (1)
3402 {
3403 char *buf, *p;
3404
3405 if (!target_is_async_p ())
3406 ofunc = signal (SIGINT, remote_interrupt);
3407 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3408 _never_ wait for ever -> test on target_is_async_p().
3409 However, before we do that we need to ensure that the caller
3410 knows how to take the target into/out of async mode. */
3411 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3412 if (!target_is_async_p ())
3413 signal (SIGINT, ofunc);
3414
3415 buf = rs->buf;
3416
3417 /* This is a hook for when we need to do something (perhaps the
3418 collection of trace data) every time the target stops. */
3419 if (deprecated_target_wait_loop_hook)
3420 (*deprecated_target_wait_loop_hook) ();
3421
3422 switch (buf[0])
3423 {
3424 case 'E': /* Error of some sort. */
3425 warning (_("Remote failure reply: %s"), buf);
3426 continue;
3427 case 'F': /* File-I/O request. */
3428 remote_fileio_request (buf);
3429 continue;
3430 case 'T': /* Status with PC, SP, FP, ... */
3431 {
3432 gdb_byte regs[MAX_REGISTER_SIZE];
3433
3434 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3435 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3436 ss = signal number
3437 n... = register number
3438 r... = register contents
3439 */
3440 p = &buf[3]; /* after Txx */
3441
3442 while (*p)
3443 {
3444 char *p1;
3445 char *p_temp;
3446 int fieldsize;
3447 long pnum = 0;
3448
3449 /* If the packet contains a register number, save it
3450 in pnum and set p1 to point to the character
3451 following it. Otherwise p1 points to p. */
3452
3453 /* If this packet is an awatch packet, don't parse the 'a'
3454 as a register number. */
3455
3456 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3457 {
3458 /* Read the register number. */
3459 pnum = strtol (p, &p_temp, 16);
3460 p1 = p_temp;
3461 }
3462 else
3463 p1 = p;
3464
3465 if (p1 == p) /* No register number present here. */
3466 {
3467 p1 = strchr (p, ':');
3468 if (p1 == NULL)
3469 error (_("Malformed packet(a) (missing colon): %s\n\
3470 Packet: '%s'\n"),
3471 p, buf);
3472 if (strncmp (p, "thread", p1 - p) == 0)
3473 {
3474 p_temp = unpack_varlen_hex (++p1, &thread_num);
3475 record_currthread (thread_num);
3476 p = p_temp;
3477 }
3478 else if ((strncmp (p, "watch", p1 - p) == 0)
3479 || (strncmp (p, "rwatch", p1 - p) == 0)
3480 || (strncmp (p, "awatch", p1 - p) == 0))
3481 {
3482 remote_stopped_by_watchpoint_p = 1;
3483 p = unpack_varlen_hex (++p1, &addr);
3484 remote_watch_data_address = (CORE_ADDR)addr;
3485 }
3486 else if (strncmp (p, "library", p1 - p) == 0)
3487 {
3488 p1++;
3489 p_temp = p1;
3490 while (*p_temp && *p_temp != ';')
3491 p_temp++;
3492
3493 solibs_changed = 1;
3494 p = p_temp;
3495 }
3496 else
3497 {
3498 /* Silently skip unknown optional info. */
3499 p_temp = strchr (p1 + 1, ';');
3500 if (p_temp)
3501 p = p_temp;
3502 }
3503 }
3504
3505 else
3506 {
3507 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3508 p = p1;
3509 if (*p++ != ':')
3510 error (_("Malformed packet(b) (missing colon): %s\n\
3511 Packet: '%s'\n"),
3512 p, buf);
3513
3514 if (reg == NULL)
3515 error (_("Remote sent bad register number %ld: %s\n\
3516 Packet: '%s'\n"),
3517 pnum, p, buf);
3518
3519 fieldsize = hex2bin (p, regs,
3520 register_size (current_gdbarch,
3521 reg->regnum));
3522 p += 2 * fieldsize;
3523 if (fieldsize < register_size (current_gdbarch,
3524 reg->regnum))
3525 warning (_("Remote reply is too short: %s"), buf);
3526 regcache_raw_supply (get_current_regcache (),
3527 reg->regnum, regs);
3528 }
3529
3530 if (*p++ != ';')
3531 error (_("Remote register badly formatted: %s\nhere: %s"),
3532 buf, p);
3533 }
3534 }
3535 /* fall through */
3536 case 'S': /* Old style status, just signal only. */
3537 if (solibs_changed)
3538 status->kind = TARGET_WAITKIND_LOADED;
3539 else
3540 {
3541 status->kind = TARGET_WAITKIND_STOPPED;
3542 status->value.sig = (enum target_signal)
3543 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3544 }
3545
3546 if (buf[3] == 'p')
3547 {
3548 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3549 record_currthread (thread_num);
3550 }
3551 goto got_status;
3552 case 'W': /* Target exited. */
3553 {
3554 /* The remote process exited. */
3555 status->kind = TARGET_WAITKIND_EXITED;
3556 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3557 goto got_status;
3558 }
3559 case 'X':
3560 status->kind = TARGET_WAITKIND_SIGNALLED;
3561 status->value.sig = (enum target_signal)
3562 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3563 kill_kludge = 1;
3564
3565 goto got_status;
3566 case 'O': /* Console output. */
3567 remote_console_output (buf + 1);
3568 /* Return immediately to the event loop. The event loop will
3569 still be waiting on the inferior afterwards. */
3570 status->kind = TARGET_WAITKIND_IGNORE;
3571 goto got_status;
3572 case '\0':
3573 if (last_sent_signal != TARGET_SIGNAL_0)
3574 {
3575 /* Zero length reply means that we tried 'S' or 'C' and
3576 the remote system doesn't support it. */
3577 target_terminal_ours_for_output ();
3578 printf_filtered
3579 ("Can't send signals to this remote system. %s not sent.\n",
3580 target_signal_to_name (last_sent_signal));
3581 last_sent_signal = TARGET_SIGNAL_0;
3582 target_terminal_inferior ();
3583
3584 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3585 putpkt ((char *) buf);
3586 continue;
3587 }
3588 /* else fallthrough */
3589 default:
3590 warning (_("Invalid remote reply: %s"), buf);
3591 continue;
3592 }
3593 }
3594 got_status:
3595 if (thread_num != -1)
3596 {
3597 return pid_to_ptid (thread_num);
3598 }
3599 return inferior_ptid;
3600 }
3601
3602 /* Fetch a single register using a 'p' packet. */
3603
3604 static int
3605 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3606 {
3607 struct remote_state *rs = get_remote_state ();
3608 char *buf, *p;
3609 char regp[MAX_REGISTER_SIZE];
3610 int i;
3611
3612 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3613 return 0;
3614
3615 if (reg->pnum == -1)
3616 return 0;
3617
3618 p = rs->buf;
3619 *p++ = 'p';
3620 p += hexnumstr (p, reg->pnum);
3621 *p++ = '\0';
3622 remote_send (&rs->buf, &rs->buf_size);
3623
3624 buf = rs->buf;
3625
3626 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3627 {
3628 case PACKET_OK:
3629 break;
3630 case PACKET_UNKNOWN:
3631 return 0;
3632 case PACKET_ERROR:
3633 error (_("Could not fetch register \"%s\""),
3634 gdbarch_register_name (current_gdbarch, reg->regnum));
3635 }
3636
3637 /* If this register is unfetchable, tell the regcache. */
3638 if (buf[0] == 'x')
3639 {
3640 regcache_raw_supply (regcache, reg->regnum, NULL);
3641 return 1;
3642 }
3643
3644 /* Otherwise, parse and supply the value. */
3645 p = buf;
3646 i = 0;
3647 while (p[0] != 0)
3648 {
3649 if (p[1] == 0)
3650 error (_("fetch_register_using_p: early buf termination"));
3651
3652 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3653 p += 2;
3654 }
3655 regcache_raw_supply (regcache, reg->regnum, regp);
3656 return 1;
3657 }
3658
3659 /* Fetch the registers included in the target's 'g' packet. */
3660
3661 static int
3662 send_g_packet (void)
3663 {
3664 struct remote_state *rs = get_remote_state ();
3665 int i, buf_len;
3666 char *p;
3667 char *regs;
3668
3669 sprintf (rs->buf, "g");
3670 remote_send (&rs->buf, &rs->buf_size);
3671
3672 /* We can get out of synch in various cases. If the first character
3673 in the buffer is not a hex character, assume that has happened
3674 and try to fetch another packet to read. */
3675 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3676 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3677 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3678 && rs->buf[0] != 'x') /* New: unavailable register value. */
3679 {
3680 if (remote_debug)
3681 fprintf_unfiltered (gdb_stdlog,
3682 "Bad register packet; fetching a new packet\n");
3683 getpkt (&rs->buf, &rs->buf_size, 0);
3684 }
3685
3686 buf_len = strlen (rs->buf);
3687
3688 /* Sanity check the received packet. */
3689 if (buf_len % 2 != 0)
3690 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3691
3692 return buf_len / 2;
3693 }
3694
3695 static void
3696 process_g_packet (struct regcache *regcache)
3697 {
3698 struct remote_state *rs = get_remote_state ();
3699 struct remote_arch_state *rsa = get_remote_arch_state ();
3700 int i, buf_len;
3701 char *p;
3702 char *regs;
3703
3704 buf_len = strlen (rs->buf);
3705
3706 /* Further sanity checks, with knowledge of the architecture. */
3707 if (buf_len > 2 * rsa->sizeof_g_packet)
3708 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3709
3710 /* Save the size of the packet sent to us by the target. It is used
3711 as a heuristic when determining the max size of packets that the
3712 target can safely receive. */
3713 if (rsa->actual_register_packet_size == 0)
3714 rsa->actual_register_packet_size = buf_len;
3715
3716 /* If this is smaller than we guessed the 'g' packet would be,
3717 update our records. A 'g' reply that doesn't include a register's
3718 value implies either that the register is not available, or that
3719 the 'p' packet must be used. */
3720 if (buf_len < 2 * rsa->sizeof_g_packet)
3721 {
3722 rsa->sizeof_g_packet = buf_len / 2;
3723
3724 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3725 {
3726 if (rsa->regs[i].pnum == -1)
3727 continue;
3728
3729 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3730 rsa->regs[i].in_g_packet = 0;
3731 else
3732 rsa->regs[i].in_g_packet = 1;
3733 }
3734 }
3735
3736 regs = alloca (rsa->sizeof_g_packet);
3737
3738 /* Unimplemented registers read as all bits zero. */
3739 memset (regs, 0, rsa->sizeof_g_packet);
3740
3741 /* Reply describes registers byte by byte, each byte encoded as two
3742 hex characters. Suck them all up, then supply them to the
3743 register cacheing/storage mechanism. */
3744
3745 p = rs->buf;
3746 for (i = 0; i < rsa->sizeof_g_packet; i++)
3747 {
3748 if (p[0] == 0 || p[1] == 0)
3749 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3750 internal_error (__FILE__, __LINE__,
3751 "unexpected end of 'g' packet reply");
3752
3753 if (p[0] == 'x' && p[1] == 'x')
3754 regs[i] = 0; /* 'x' */
3755 else
3756 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3757 p += 2;
3758 }
3759
3760 {
3761 int i;
3762 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3763 {
3764 struct packet_reg *r = &rsa->regs[i];
3765 if (r->in_g_packet)
3766 {
3767 if (r->offset * 2 >= strlen (rs->buf))
3768 /* This shouldn't happen - we adjusted in_g_packet above. */
3769 internal_error (__FILE__, __LINE__,
3770 "unexpected end of 'g' packet reply");
3771 else if (rs->buf[r->offset * 2] == 'x')
3772 {
3773 gdb_assert (r->offset * 2 < strlen (rs->buf));
3774 /* The register isn't available, mark it as such (at
3775 the same time setting the value to zero). */
3776 regcache_raw_supply (regcache, r->regnum, NULL);
3777 }
3778 else
3779 regcache_raw_supply (regcache, r->regnum,
3780 regs + r->offset);
3781 }
3782 }
3783 }
3784 }
3785
3786 static void
3787 fetch_registers_using_g (struct regcache *regcache)
3788 {
3789 send_g_packet ();
3790 process_g_packet (regcache);
3791 }
3792
3793 static void
3794 remote_fetch_registers (struct regcache *regcache, int regnum)
3795 {
3796 struct remote_state *rs = get_remote_state ();
3797 struct remote_arch_state *rsa = get_remote_arch_state ();
3798 int i;
3799
3800 set_thread (PIDGET (inferior_ptid), 1);
3801
3802 if (regnum >= 0)
3803 {
3804 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3805 gdb_assert (reg != NULL);
3806
3807 /* If this register might be in the 'g' packet, try that first -
3808 we are likely to read more than one register. If this is the
3809 first 'g' packet, we might be overly optimistic about its
3810 contents, so fall back to 'p'. */
3811 if (reg->in_g_packet)
3812 {
3813 fetch_registers_using_g (regcache);
3814 if (reg->in_g_packet)
3815 return;
3816 }
3817
3818 if (fetch_register_using_p (regcache, reg))
3819 return;
3820
3821 /* This register is not available. */
3822 regcache_raw_supply (regcache, reg->regnum, NULL);
3823
3824 return;
3825 }
3826
3827 fetch_registers_using_g (regcache);
3828
3829 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3830 if (!rsa->regs[i].in_g_packet)
3831 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3832 {
3833 /* This register is not available. */
3834 regcache_raw_supply (regcache, i, NULL);
3835 }
3836 }
3837
3838 /* Prepare to store registers. Since we may send them all (using a
3839 'G' request), we have to read out the ones we don't want to change
3840 first. */
3841
3842 static void
3843 remote_prepare_to_store (struct regcache *regcache)
3844 {
3845 struct remote_arch_state *rsa = get_remote_arch_state ();
3846 int i;
3847 gdb_byte buf[MAX_REGISTER_SIZE];
3848
3849 /* Make sure the entire registers array is valid. */
3850 switch (remote_protocol_packets[PACKET_P].support)
3851 {
3852 case PACKET_DISABLE:
3853 case PACKET_SUPPORT_UNKNOWN:
3854 /* Make sure all the necessary registers are cached. */
3855 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3856 if (rsa->regs[i].in_g_packet)
3857 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3858 break;
3859 case PACKET_ENABLE:
3860 break;
3861 }
3862 }
3863
3864 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3865 packet was not recognized. */
3866
3867 static int
3868 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3869 {
3870 struct remote_state *rs = get_remote_state ();
3871 struct remote_arch_state *rsa = get_remote_arch_state ();
3872 /* Try storing a single register. */
3873 char *buf = rs->buf;
3874 gdb_byte regp[MAX_REGISTER_SIZE];
3875 char *p;
3876
3877 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3878 return 0;
3879
3880 if (reg->pnum == -1)
3881 return 0;
3882
3883 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3884 p = buf + strlen (buf);
3885 regcache_raw_collect (regcache, reg->regnum, regp);
3886 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3887 remote_send (&rs->buf, &rs->buf_size);
3888
3889 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3890 {
3891 case PACKET_OK:
3892 return 1;
3893 case PACKET_ERROR:
3894 error (_("Could not write register \"%s\""),
3895 gdbarch_register_name (current_gdbarch, reg->regnum));
3896 case PACKET_UNKNOWN:
3897 return 0;
3898 default:
3899 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3900 }
3901 }
3902
3903 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3904 contents of the register cache buffer. FIXME: ignores errors. */
3905
3906 static void
3907 store_registers_using_G (const struct regcache *regcache)
3908 {
3909 struct remote_state *rs = get_remote_state ();
3910 struct remote_arch_state *rsa = get_remote_arch_state ();
3911 gdb_byte *regs;
3912 char *p;
3913
3914 /* Extract all the registers in the regcache copying them into a
3915 local buffer. */
3916 {
3917 int i;
3918 regs = alloca (rsa->sizeof_g_packet);
3919 memset (regs, 0, rsa->sizeof_g_packet);
3920 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3921 {
3922 struct packet_reg *r = &rsa->regs[i];
3923 if (r->in_g_packet)
3924 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3925 }
3926 }
3927
3928 /* Command describes registers byte by byte,
3929 each byte encoded as two hex characters. */
3930 p = rs->buf;
3931 *p++ = 'G';
3932 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3933 updated. */
3934 bin2hex (regs, p, rsa->sizeof_g_packet);
3935 remote_send (&rs->buf, &rs->buf_size);
3936 }
3937
3938 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3939 of the register cache buffer. FIXME: ignores errors. */
3940
3941 static void
3942 remote_store_registers (struct regcache *regcache, int regnum)
3943 {
3944 struct remote_state *rs = get_remote_state ();
3945 struct remote_arch_state *rsa = get_remote_arch_state ();
3946 int i;
3947
3948 set_thread (PIDGET (inferior_ptid), 1);
3949
3950 if (regnum >= 0)
3951 {
3952 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3953 gdb_assert (reg != NULL);
3954
3955 /* Always prefer to store registers using the 'P' packet if
3956 possible; we often change only a small number of registers.
3957 Sometimes we change a larger number; we'd need help from a
3958 higher layer to know to use 'G'. */
3959 if (store_register_using_P (regcache, reg))
3960 return;
3961
3962 /* For now, don't complain if we have no way to write the
3963 register. GDB loses track of unavailable registers too
3964 easily. Some day, this may be an error. We don't have
3965 any way to read the register, either... */
3966 if (!reg->in_g_packet)
3967 return;
3968
3969 store_registers_using_G (regcache);
3970 return;
3971 }
3972
3973 store_registers_using_G (regcache);
3974
3975 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3976 if (!rsa->regs[i].in_g_packet)
3977 if (!store_register_using_P (regcache, &rsa->regs[i]))
3978 /* See above for why we do not issue an error here. */
3979 continue;
3980 }
3981 \f
3982
3983 /* Return the number of hex digits in num. */
3984
3985 static int
3986 hexnumlen (ULONGEST num)
3987 {
3988 int i;
3989
3990 for (i = 0; num != 0; i++)
3991 num >>= 4;
3992
3993 return max (i, 1);
3994 }
3995
3996 /* Set BUF to the minimum number of hex digits representing NUM. */
3997
3998 static int
3999 hexnumstr (char *buf, ULONGEST num)
4000 {
4001 int len = hexnumlen (num);
4002 return hexnumnstr (buf, num, len);
4003 }
4004
4005
4006 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4007
4008 static int
4009 hexnumnstr (char *buf, ULONGEST num, int width)
4010 {
4011 int i;
4012
4013 buf[width] = '\0';
4014
4015 for (i = width - 1; i >= 0; i--)
4016 {
4017 buf[i] = "0123456789abcdef"[(num & 0xf)];
4018 num >>= 4;
4019 }
4020
4021 return width;
4022 }
4023
4024 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4025
4026 static CORE_ADDR
4027 remote_address_masked (CORE_ADDR addr)
4028 {
4029 int address_size = remote_address_size;
4030 /* If "remoteaddresssize" was not set, default to target address size. */
4031 if (!address_size)
4032 address_size = gdbarch_addr_bit (current_gdbarch);
4033
4034 if (address_size > 0
4035 && address_size < (sizeof (ULONGEST) * 8))
4036 {
4037 /* Only create a mask when that mask can safely be constructed
4038 in a ULONGEST variable. */
4039 ULONGEST mask = 1;
4040 mask = (mask << address_size) - 1;
4041 addr &= mask;
4042 }
4043 return addr;
4044 }
4045
4046 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4047 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4048 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4049 (which may be more than *OUT_LEN due to escape characters). The
4050 total number of bytes in the output buffer will be at most
4051 OUT_MAXLEN. */
4052
4053 static int
4054 remote_escape_output (const gdb_byte *buffer, int len,
4055 gdb_byte *out_buf, int *out_len,
4056 int out_maxlen)
4057 {
4058 int input_index, output_index;
4059
4060 output_index = 0;
4061 for (input_index = 0; input_index < len; input_index++)
4062 {
4063 gdb_byte b = buffer[input_index];
4064
4065 if (b == '$' || b == '#' || b == '}')
4066 {
4067 /* These must be escaped. */
4068 if (output_index + 2 > out_maxlen)
4069 break;
4070 out_buf[output_index++] = '}';
4071 out_buf[output_index++] = b ^ 0x20;
4072 }
4073 else
4074 {
4075 if (output_index + 1 > out_maxlen)
4076 break;
4077 out_buf[output_index++] = b;
4078 }
4079 }
4080
4081 *out_len = input_index;
4082 return output_index;
4083 }
4084
4085 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4086 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4087 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4088
4089 This function reverses remote_escape_output. It allows more
4090 escaped characters than that function does, in particular because
4091 '*' must be escaped to avoid the run-length encoding processing
4092 in reading packets. */
4093
4094 static int
4095 remote_unescape_input (const gdb_byte *buffer, int len,
4096 gdb_byte *out_buf, int out_maxlen)
4097 {
4098 int input_index, output_index;
4099 int escaped;
4100
4101 output_index = 0;
4102 escaped = 0;
4103 for (input_index = 0; input_index < len; input_index++)
4104 {
4105 gdb_byte b = buffer[input_index];
4106
4107 if (output_index + 1 > out_maxlen)
4108 {
4109 warning (_("Received too much data from remote target;"
4110 " ignoring overflow."));
4111 return output_index;
4112 }
4113
4114 if (escaped)
4115 {
4116 out_buf[output_index++] = b ^ 0x20;
4117 escaped = 0;
4118 }
4119 else if (b == '}')
4120 escaped = 1;
4121 else
4122 out_buf[output_index++] = b;
4123 }
4124
4125 if (escaped)
4126 error (_("Unmatched escape character in target response."));
4127
4128 return output_index;
4129 }
4130
4131 /* Determine whether the remote target supports binary downloading.
4132 This is accomplished by sending a no-op memory write of zero length
4133 to the target at the specified address. It does not suffice to send
4134 the whole packet, since many stubs strip the eighth bit and
4135 subsequently compute a wrong checksum, which causes real havoc with
4136 remote_write_bytes.
4137
4138 NOTE: This can still lose if the serial line is not eight-bit
4139 clean. In cases like this, the user should clear "remote
4140 X-packet". */
4141
4142 static void
4143 check_binary_download (CORE_ADDR addr)
4144 {
4145 struct remote_state *rs = get_remote_state ();
4146
4147 switch (remote_protocol_packets[PACKET_X].support)
4148 {
4149 case PACKET_DISABLE:
4150 break;
4151 case PACKET_ENABLE:
4152 break;
4153 case PACKET_SUPPORT_UNKNOWN:
4154 {
4155 char *p;
4156
4157 p = rs->buf;
4158 *p++ = 'X';
4159 p += hexnumstr (p, (ULONGEST) addr);
4160 *p++ = ',';
4161 p += hexnumstr (p, (ULONGEST) 0);
4162 *p++ = ':';
4163 *p = '\0';
4164
4165 putpkt_binary (rs->buf, (int) (p - rs->buf));
4166 getpkt (&rs->buf, &rs->buf_size, 0);
4167
4168 if (rs->buf[0] == '\0')
4169 {
4170 if (remote_debug)
4171 fprintf_unfiltered (gdb_stdlog,
4172 "binary downloading NOT suppported by target\n");
4173 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4174 }
4175 else
4176 {
4177 if (remote_debug)
4178 fprintf_unfiltered (gdb_stdlog,
4179 "binary downloading suppported by target\n");
4180 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4181 }
4182 break;
4183 }
4184 }
4185 }
4186
4187 /* Write memory data directly to the remote machine.
4188 This does not inform the data cache; the data cache uses this.
4189 HEADER is the starting part of the packet.
4190 MEMADDR is the address in the remote memory space.
4191 MYADDR is the address of the buffer in our space.
4192 LEN is the number of bytes.
4193 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4194 should send data as binary ('X'), or hex-encoded ('M').
4195
4196 The function creates packet of the form
4197 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4198
4199 where encoding of <DATA> is termined by PACKET_FORMAT.
4200
4201 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4202 are omitted.
4203
4204 Returns the number of bytes transferred, or 0 (setting errno) for
4205 error. Only transfer a single packet. */
4206
4207 static int
4208 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4209 const gdb_byte *myaddr, int len,
4210 char packet_format, int use_length)
4211 {
4212 struct remote_state *rs = get_remote_state ();
4213 char *p;
4214 char *plen = NULL;
4215 int plenlen = 0;
4216 int todo;
4217 int nr_bytes;
4218 int payload_size;
4219 int payload_length;
4220 int header_length;
4221
4222 if (packet_format != 'X' && packet_format != 'M')
4223 internal_error (__FILE__, __LINE__,
4224 "remote_write_bytes_aux: bad packet format");
4225
4226 if (len <= 0)
4227 return 0;
4228
4229 payload_size = get_memory_write_packet_size ();
4230
4231 /* The packet buffer will be large enough for the payload;
4232 get_memory_packet_size ensures this. */
4233 rs->buf[0] = '\0';
4234
4235 /* Compute the size of the actual payload by subtracting out the
4236 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4237 */
4238 payload_size -= strlen ("$,:#NN");
4239 if (!use_length)
4240 /* The comma won't be used. */
4241 payload_size += 1;
4242 header_length = strlen (header);
4243 payload_size -= header_length;
4244 payload_size -= hexnumlen (memaddr);
4245
4246 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4247
4248 strcat (rs->buf, header);
4249 p = rs->buf + strlen (header);
4250
4251 /* Compute a best guess of the number of bytes actually transfered. */
4252 if (packet_format == 'X')
4253 {
4254 /* Best guess at number of bytes that will fit. */
4255 todo = min (len, payload_size);
4256 if (use_length)
4257 payload_size -= hexnumlen (todo);
4258 todo = min (todo, payload_size);
4259 }
4260 else
4261 {
4262 /* Num bytes that will fit. */
4263 todo = min (len, payload_size / 2);
4264 if (use_length)
4265 payload_size -= hexnumlen (todo);
4266 todo = min (todo, payload_size / 2);
4267 }
4268
4269 if (todo <= 0)
4270 internal_error (__FILE__, __LINE__,
4271 _("minumum packet size too small to write data"));
4272
4273 /* If we already need another packet, then try to align the end
4274 of this packet to a useful boundary. */
4275 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4276 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4277
4278 /* Append "<memaddr>". */
4279 memaddr = remote_address_masked (memaddr);
4280 p += hexnumstr (p, (ULONGEST) memaddr);
4281
4282 if (use_length)
4283 {
4284 /* Append ",". */
4285 *p++ = ',';
4286
4287 /* Append <len>. Retain the location/size of <len>. It may need to
4288 be adjusted once the packet body has been created. */
4289 plen = p;
4290 plenlen = hexnumstr (p, (ULONGEST) todo);
4291 p += plenlen;
4292 }
4293
4294 /* Append ":". */
4295 *p++ = ':';
4296 *p = '\0';
4297
4298 /* Append the packet body. */
4299 if (packet_format == 'X')
4300 {
4301 /* Binary mode. Send target system values byte by byte, in
4302 increasing byte addresses. Only escape certain critical
4303 characters. */
4304 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4305 payload_size);
4306
4307 /* If not all TODO bytes fit, then we'll need another packet. Make
4308 a second try to keep the end of the packet aligned. Don't do
4309 this if the packet is tiny. */
4310 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4311 {
4312 int new_nr_bytes;
4313
4314 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4315 - memaddr);
4316 if (new_nr_bytes != nr_bytes)
4317 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4318 p, &nr_bytes,
4319 payload_size);
4320 }
4321
4322 p += payload_length;
4323 if (use_length && nr_bytes < todo)
4324 {
4325 /* Escape chars have filled up the buffer prematurely,
4326 and we have actually sent fewer bytes than planned.
4327 Fix-up the length field of the packet. Use the same
4328 number of characters as before. */
4329 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4330 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4331 }
4332 }
4333 else
4334 {
4335 /* Normal mode: Send target system values byte by byte, in
4336 increasing byte addresses. Each byte is encoded as a two hex
4337 value. */
4338 nr_bytes = bin2hex (myaddr, p, todo);
4339 p += 2 * nr_bytes;
4340 }
4341
4342 putpkt_binary (rs->buf, (int) (p - rs->buf));
4343 getpkt (&rs->buf, &rs->buf_size, 0);
4344
4345 if (rs->buf[0] == 'E')
4346 {
4347 /* There is no correspondance between what the remote protocol
4348 uses for errors and errno codes. We would like a cleaner way
4349 of representing errors (big enough to include errno codes,
4350 bfd_error codes, and others). But for now just return EIO. */
4351 errno = EIO;
4352 return 0;
4353 }
4354
4355 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4356 fewer bytes than we'd planned. */
4357 return nr_bytes;
4358 }
4359
4360 /* Write memory data directly to the remote machine.
4361 This does not inform the data cache; the data cache uses this.
4362 MEMADDR is the address in the remote memory space.
4363 MYADDR is the address of the buffer in our space.
4364 LEN is the number of bytes.
4365
4366 Returns number of bytes transferred, or 0 (setting errno) for
4367 error. Only transfer a single packet. */
4368
4369 int
4370 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4371 {
4372 char *packet_format = 0;
4373
4374 /* Check whether the target supports binary download. */
4375 check_binary_download (memaddr);
4376
4377 switch (remote_protocol_packets[PACKET_X].support)
4378 {
4379 case PACKET_ENABLE:
4380 packet_format = "X";
4381 break;
4382 case PACKET_DISABLE:
4383 packet_format = "M";
4384 break;
4385 case PACKET_SUPPORT_UNKNOWN:
4386 internal_error (__FILE__, __LINE__,
4387 _("remote_write_bytes: bad internal state"));
4388 default:
4389 internal_error (__FILE__, __LINE__, _("bad switch"));
4390 }
4391
4392 return remote_write_bytes_aux (packet_format,
4393 memaddr, myaddr, len, packet_format[0], 1);
4394 }
4395
4396 /* Read memory data directly from the remote machine.
4397 This does not use the data cache; the data cache uses this.
4398 MEMADDR is the address in the remote memory space.
4399 MYADDR is the address of the buffer in our space.
4400 LEN is the number of bytes.
4401
4402 Returns number of bytes transferred, or 0 for error. */
4403
4404 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4405 remote targets) shouldn't attempt to read the entire buffer.
4406 Instead it should read a single packet worth of data and then
4407 return the byte size of that packet to the caller. The caller (its
4408 caller and its callers caller ;-) already contains code for
4409 handling partial reads. */
4410
4411 int
4412 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4413 {
4414 struct remote_state *rs = get_remote_state ();
4415 int max_buf_size; /* Max size of packet output buffer. */
4416 int origlen;
4417
4418 if (len <= 0)
4419 return 0;
4420
4421 max_buf_size = get_memory_read_packet_size ();
4422 /* The packet buffer will be large enough for the payload;
4423 get_memory_packet_size ensures this. */
4424
4425 origlen = len;
4426 while (len > 0)
4427 {
4428 char *p;
4429 int todo;
4430 int i;
4431
4432 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4433
4434 /* construct "m"<memaddr>","<len>" */
4435 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4436 memaddr = remote_address_masked (memaddr);
4437 p = rs->buf;
4438 *p++ = 'm';
4439 p += hexnumstr (p, (ULONGEST) memaddr);
4440 *p++ = ',';
4441 p += hexnumstr (p, (ULONGEST) todo);
4442 *p = '\0';
4443
4444 putpkt (rs->buf);
4445 getpkt (&rs->buf, &rs->buf_size, 0);
4446
4447 if (rs->buf[0] == 'E'
4448 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4449 && rs->buf[3] == '\0')
4450 {
4451 /* There is no correspondance between what the remote
4452 protocol uses for errors and errno codes. We would like
4453 a cleaner way of representing errors (big enough to
4454 include errno codes, bfd_error codes, and others). But
4455 for now just return EIO. */
4456 errno = EIO;
4457 return 0;
4458 }
4459
4460 /* Reply describes memory byte by byte,
4461 each byte encoded as two hex characters. */
4462
4463 p = rs->buf;
4464 if ((i = hex2bin (p, myaddr, todo)) < todo)
4465 {
4466 /* Reply is short. This means that we were able to read
4467 only part of what we wanted to. */
4468 return i + (origlen - len);
4469 }
4470 myaddr += todo;
4471 memaddr += todo;
4472 len -= todo;
4473 }
4474 return origlen;
4475 }
4476 \f
4477 /* Read or write LEN bytes from inferior memory at MEMADDR,
4478 transferring to or from debugger address BUFFER. Write to inferior
4479 if SHOULD_WRITE is nonzero. Returns length of data written or
4480 read; 0 for error. TARGET is unused. */
4481
4482 static int
4483 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4484 int should_write, struct mem_attrib *attrib,
4485 struct target_ops *target)
4486 {
4487 int res;
4488
4489 if (should_write)
4490 res = remote_write_bytes (mem_addr, buffer, mem_len);
4491 else
4492 res = remote_read_bytes (mem_addr, buffer, mem_len);
4493
4494 return res;
4495 }
4496
4497 /* Sends a packet with content determined by the printf format string
4498 FORMAT and the remaining arguments, then gets the reply. Returns
4499 whether the packet was a success, a failure, or unknown. */
4500
4501 enum packet_result
4502 remote_send_printf (const char *format, ...)
4503 {
4504 struct remote_state *rs = get_remote_state ();
4505 int max_size = get_remote_packet_size ();
4506
4507 va_list ap;
4508 va_start (ap, format);
4509
4510 rs->buf[0] = '\0';
4511 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4512 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4513
4514 if (putpkt (rs->buf) < 0)
4515 error (_("Communication problem with target."));
4516
4517 rs->buf[0] = '\0';
4518 getpkt (&rs->buf, &rs->buf_size, 0);
4519
4520 return packet_check_result (rs->buf);
4521 }
4522
4523 static void
4524 restore_remote_timeout (void *p)
4525 {
4526 int value = *(int *)p;
4527 remote_timeout = value;
4528 }
4529
4530 /* Flash writing can take quite some time. We'll set
4531 effectively infinite timeout for flash operations.
4532 In future, we'll need to decide on a better approach. */
4533 static const int remote_flash_timeout = 1000;
4534
4535 static void
4536 remote_flash_erase (struct target_ops *ops,
4537 ULONGEST address, LONGEST length)
4538 {
4539 int saved_remote_timeout = remote_timeout;
4540 enum packet_result ret;
4541
4542 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4543 &saved_remote_timeout);
4544 remote_timeout = remote_flash_timeout;
4545
4546 ret = remote_send_printf ("vFlashErase:%s,%s",
4547 paddr (address),
4548 phex (length, 4));
4549 switch (ret)
4550 {
4551 case PACKET_UNKNOWN:
4552 error (_("Remote target does not support flash erase"));
4553 case PACKET_ERROR:
4554 error (_("Error erasing flash with vFlashErase packet"));
4555 default:
4556 break;
4557 }
4558
4559 do_cleanups (back_to);
4560 }
4561
4562 static LONGEST
4563 remote_flash_write (struct target_ops *ops,
4564 ULONGEST address, LONGEST length,
4565 const gdb_byte *data)
4566 {
4567 int saved_remote_timeout = remote_timeout;
4568 int ret;
4569 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4570 &saved_remote_timeout);
4571
4572 remote_timeout = remote_flash_timeout;
4573 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4574 do_cleanups (back_to);
4575
4576 return ret;
4577 }
4578
4579 static void
4580 remote_flash_done (struct target_ops *ops)
4581 {
4582 int saved_remote_timeout = remote_timeout;
4583 int ret;
4584 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4585 &saved_remote_timeout);
4586
4587 remote_timeout = remote_flash_timeout;
4588 ret = remote_send_printf ("vFlashDone");
4589 do_cleanups (back_to);
4590
4591 switch (ret)
4592 {
4593 case PACKET_UNKNOWN:
4594 error (_("Remote target does not support vFlashDone"));
4595 case PACKET_ERROR:
4596 error (_("Error finishing flash operation"));
4597 default:
4598 break;
4599 }
4600 }
4601
4602 static void
4603 remote_files_info (struct target_ops *ignore)
4604 {
4605 puts_filtered ("Debugging a target over a serial line.\n");
4606 }
4607 \f
4608 /* Stuff for dealing with the packets which are part of this protocol.
4609 See comment at top of file for details. */
4610
4611 /* Read a single character from the remote end. */
4612
4613 static int
4614 readchar (int timeout)
4615 {
4616 int ch;
4617
4618 ch = serial_readchar (remote_desc, timeout);
4619
4620 if (ch >= 0)
4621 return ch;
4622
4623 switch ((enum serial_rc) ch)
4624 {
4625 case SERIAL_EOF:
4626 target_mourn_inferior ();
4627 error (_("Remote connection closed"));
4628 /* no return */
4629 case SERIAL_ERROR:
4630 perror_with_name (_("Remote communication error"));
4631 /* no return */
4632 case SERIAL_TIMEOUT:
4633 break;
4634 }
4635 return ch;
4636 }
4637
4638 /* Send the command in *BUF to the remote machine, and read the reply
4639 into *BUF. Report an error if we get an error reply. Resize
4640 *BUF using xrealloc if necessary to hold the result, and update
4641 *SIZEOF_BUF. */
4642
4643 static void
4644 remote_send (char **buf,
4645 long *sizeof_buf)
4646 {
4647 putpkt (*buf);
4648 getpkt (buf, sizeof_buf, 0);
4649
4650 if ((*buf)[0] == 'E')
4651 error (_("Remote failure reply: %s"), *buf);
4652 }
4653
4654 /* Display a null-terminated packet on stdout, for debugging, using C
4655 string notation. */
4656
4657 static void
4658 print_packet (char *buf)
4659 {
4660 puts_filtered ("\"");
4661 fputstr_filtered (buf, '"', gdb_stdout);
4662 puts_filtered ("\"");
4663 }
4664
4665 int
4666 putpkt (char *buf)
4667 {
4668 return putpkt_binary (buf, strlen (buf));
4669 }
4670
4671 /* Send a packet to the remote machine, with error checking. The data
4672 of the packet is in BUF. The string in BUF can be at most
4673 get_remote_packet_size () - 5 to account for the $, # and checksum,
4674 and for a possible /0 if we are debugging (remote_debug) and want
4675 to print the sent packet as a string. */
4676
4677 static int
4678 putpkt_binary (char *buf, int cnt)
4679 {
4680 int i;
4681 unsigned char csum = 0;
4682 char *buf2 = alloca (cnt + 6);
4683
4684 int ch;
4685 int tcount = 0;
4686 char *p;
4687
4688 /* Copy the packet into buffer BUF2, encapsulating it
4689 and giving it a checksum. */
4690
4691 p = buf2;
4692 *p++ = '$';
4693
4694 for (i = 0; i < cnt; i++)
4695 {
4696 csum += buf[i];
4697 *p++ = buf[i];
4698 }
4699 *p++ = '#';
4700 *p++ = tohex ((csum >> 4) & 0xf);
4701 *p++ = tohex (csum & 0xf);
4702
4703 /* Send it over and over until we get a positive ack. */
4704
4705 while (1)
4706 {
4707 int started_error_output = 0;
4708
4709 if (remote_debug)
4710 {
4711 *p = '\0';
4712 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4713 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4714 fprintf_unfiltered (gdb_stdlog, "...");
4715 gdb_flush (gdb_stdlog);
4716 }
4717 if (serial_write (remote_desc, buf2, p - buf2))
4718 perror_with_name (_("putpkt: write failed"));
4719
4720 /* Read until either a timeout occurs (-2) or '+' is read. */
4721 while (1)
4722 {
4723 ch = readchar (remote_timeout);
4724
4725 if (remote_debug)
4726 {
4727 switch (ch)
4728 {
4729 case '+':
4730 case '-':
4731 case SERIAL_TIMEOUT:
4732 case '$':
4733 if (started_error_output)
4734 {
4735 putchar_unfiltered ('\n');
4736 started_error_output = 0;
4737 }
4738 }
4739 }
4740
4741 switch (ch)
4742 {
4743 case '+':
4744 if (remote_debug)
4745 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4746 return 1;
4747 case '-':
4748 if (remote_debug)
4749 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4750 case SERIAL_TIMEOUT:
4751 tcount++;
4752 if (tcount > 3)
4753 return 0;
4754 break; /* Retransmit buffer. */
4755 case '$':
4756 {
4757 if (remote_debug)
4758 fprintf_unfiltered (gdb_stdlog,
4759 "Packet instead of Ack, ignoring it\n");
4760 /* It's probably an old response sent because an ACK
4761 was lost. Gobble up the packet and ack it so it
4762 doesn't get retransmitted when we resend this
4763 packet. */
4764 skip_frame ();
4765 serial_write (remote_desc, "+", 1);
4766 continue; /* Now, go look for +. */
4767 }
4768 default:
4769 if (remote_debug)
4770 {
4771 if (!started_error_output)
4772 {
4773 started_error_output = 1;
4774 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4775 }
4776 fputc_unfiltered (ch & 0177, gdb_stdlog);
4777 }
4778 continue;
4779 }
4780 break; /* Here to retransmit. */
4781 }
4782
4783 #if 0
4784 /* This is wrong. If doing a long backtrace, the user should be
4785 able to get out next time we call QUIT, without anything as
4786 violent as interrupt_query. If we want to provide a way out of
4787 here without getting to the next QUIT, it should be based on
4788 hitting ^C twice as in remote_wait. */
4789 if (quit_flag)
4790 {
4791 quit_flag = 0;
4792 interrupt_query ();
4793 }
4794 #endif
4795 }
4796 }
4797
4798 /* Come here after finding the start of a frame when we expected an
4799 ack. Do our best to discard the rest of this packet. */
4800
4801 static void
4802 skip_frame (void)
4803 {
4804 int c;
4805
4806 while (1)
4807 {
4808 c = readchar (remote_timeout);
4809 switch (c)
4810 {
4811 case SERIAL_TIMEOUT:
4812 /* Nothing we can do. */
4813 return;
4814 case '#':
4815 /* Discard the two bytes of checksum and stop. */
4816 c = readchar (remote_timeout);
4817 if (c >= 0)
4818 c = readchar (remote_timeout);
4819
4820 return;
4821 case '*': /* Run length encoding. */
4822 /* Discard the repeat count. */
4823 c = readchar (remote_timeout);
4824 if (c < 0)
4825 return;
4826 break;
4827 default:
4828 /* A regular character. */
4829 break;
4830 }
4831 }
4832 }
4833
4834 /* Come here after finding the start of the frame. Collect the rest
4835 into *BUF, verifying the checksum, length, and handling run-length
4836 compression. NUL terminate the buffer. If there is not enough room,
4837 expand *BUF using xrealloc.
4838
4839 Returns -1 on error, number of characters in buffer (ignoring the
4840 trailing NULL) on success. (could be extended to return one of the
4841 SERIAL status indications). */
4842
4843 static long
4844 read_frame (char **buf_p,
4845 long *sizeof_buf)
4846 {
4847 unsigned char csum;
4848 long bc;
4849 int c;
4850 char *buf = *buf_p;
4851
4852 csum = 0;
4853 bc = 0;
4854
4855 while (1)
4856 {
4857 c = readchar (remote_timeout);
4858 switch (c)
4859 {
4860 case SERIAL_TIMEOUT:
4861 if (remote_debug)
4862 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4863 return -1;
4864 case '$':
4865 if (remote_debug)
4866 fputs_filtered ("Saw new packet start in middle of old one\n",
4867 gdb_stdlog);
4868 return -1; /* Start a new packet, count retries. */
4869 case '#':
4870 {
4871 unsigned char pktcsum;
4872 int check_0 = 0;
4873 int check_1 = 0;
4874
4875 buf[bc] = '\0';
4876
4877 check_0 = readchar (remote_timeout);
4878 if (check_0 >= 0)
4879 check_1 = readchar (remote_timeout);
4880
4881 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4882 {
4883 if (remote_debug)
4884 fputs_filtered ("Timeout in checksum, retrying\n",
4885 gdb_stdlog);
4886 return -1;
4887 }
4888 else if (check_0 < 0 || check_1 < 0)
4889 {
4890 if (remote_debug)
4891 fputs_filtered ("Communication error in checksum\n",
4892 gdb_stdlog);
4893 return -1;
4894 }
4895
4896 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4897 if (csum == pktcsum)
4898 return bc;
4899
4900 if (remote_debug)
4901 {
4902 fprintf_filtered (gdb_stdlog,
4903 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4904 pktcsum, csum);
4905 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4906 fputs_filtered ("\n", gdb_stdlog);
4907 }
4908 /* Number of characters in buffer ignoring trailing
4909 NULL. */
4910 return -1;
4911 }
4912 case '*': /* Run length encoding. */
4913 {
4914 int repeat;
4915 csum += c;
4916
4917 c = readchar (remote_timeout);
4918 csum += c;
4919 repeat = c - ' ' + 3; /* Compute repeat count. */
4920
4921 /* The character before ``*'' is repeated. */
4922
4923 if (repeat > 0 && repeat <= 255 && bc > 0)
4924 {
4925 if (bc + repeat - 1 >= *sizeof_buf - 1)
4926 {
4927 /* Make some more room in the buffer. */
4928 *sizeof_buf += repeat;
4929 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4930 buf = *buf_p;
4931 }
4932
4933 memset (&buf[bc], buf[bc - 1], repeat);
4934 bc += repeat;
4935 continue;
4936 }
4937
4938 buf[bc] = '\0';
4939 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4940 return -1;
4941 }
4942 default:
4943 if (bc >= *sizeof_buf - 1)
4944 {
4945 /* Make some more room in the buffer. */
4946 *sizeof_buf *= 2;
4947 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4948 buf = *buf_p;
4949 }
4950
4951 buf[bc++] = c;
4952 csum += c;
4953 continue;
4954 }
4955 }
4956 }
4957
4958 /* Read a packet from the remote machine, with error checking, and
4959 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4960 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4961 rather than timing out; this is used (in synchronous mode) to wait
4962 for a target that is is executing user code to stop. */
4963 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4964 don't have to change all the calls to getpkt to deal with the
4965 return value, because at the moment I don't know what the right
4966 thing to do it for those. */
4967 void
4968 getpkt (char **buf,
4969 long *sizeof_buf,
4970 int forever)
4971 {
4972 int timed_out;
4973
4974 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4975 }
4976
4977
4978 /* Read a packet from the remote machine, with error checking, and
4979 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4980 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4981 rather than timing out; this is used (in synchronous mode) to wait
4982 for a target that is is executing user code to stop. If FOREVER ==
4983 0, this function is allowed to time out gracefully and return an
4984 indication of this to the caller. Otherwise return the number
4985 of bytes read. */
4986 static int
4987 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4988 {
4989 int c;
4990 int tries;
4991 int timeout;
4992 int val;
4993
4994 strcpy (*buf, "timeout");
4995
4996 if (forever)
4997 {
4998 timeout = watchdog > 0 ? watchdog : -1;
4999 }
5000
5001 else
5002 timeout = remote_timeout;
5003
5004 #define MAX_TRIES 3
5005
5006 for (tries = 1; tries <= MAX_TRIES; tries++)
5007 {
5008 /* This can loop forever if the remote side sends us characters
5009 continuously, but if it pauses, we'll get a zero from
5010 readchar because of timeout. Then we'll count that as a
5011 retry. */
5012
5013 /* Note that we will only wait forever prior to the start of a
5014 packet. After that, we expect characters to arrive at a
5015 brisk pace. They should show up within remote_timeout
5016 intervals. */
5017
5018 do
5019 {
5020 c = readchar (timeout);
5021
5022 if (c == SERIAL_TIMEOUT)
5023 {
5024 if (forever) /* Watchdog went off? Kill the target. */
5025 {
5026 QUIT;
5027 target_mourn_inferior ();
5028 error (_("Watchdog has expired. Target detached."));
5029 }
5030 if (remote_debug)
5031 fputs_filtered ("Timed out.\n", gdb_stdlog);
5032 goto retry;
5033 }
5034 }
5035 while (c != '$');
5036
5037 /* We've found the start of a packet, now collect the data. */
5038
5039 val = read_frame (buf, sizeof_buf);
5040
5041 if (val >= 0)
5042 {
5043 if (remote_debug)
5044 {
5045 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5046 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5047 fprintf_unfiltered (gdb_stdlog, "\n");
5048 }
5049 serial_write (remote_desc, "+", 1);
5050 return val;
5051 }
5052
5053 /* Try the whole thing again. */
5054 retry:
5055 serial_write (remote_desc, "-", 1);
5056 }
5057
5058 /* We have tried hard enough, and just can't receive the packet.
5059 Give up. */
5060
5061 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5062 serial_write (remote_desc, "+", 1);
5063 return -1;
5064 }
5065 \f
5066 static void
5067 remote_kill (void)
5068 {
5069 /* For some mysterious reason, wait_for_inferior calls kill instead of
5070 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5071 if (kill_kludge)
5072 {
5073 kill_kludge = 0;
5074 target_mourn_inferior ();
5075 return;
5076 }
5077
5078 /* Use catch_errors so the user can quit from gdb even when we aren't on
5079 speaking terms with the remote system. */
5080 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5081
5082 /* Don't wait for it to die. I'm not really sure it matters whether
5083 we do or not. For the existing stubs, kill is a noop. */
5084 target_mourn_inferior ();
5085 }
5086
5087 /* Async version of remote_kill. */
5088 static void
5089 remote_async_kill (void)
5090 {
5091 /* Unregister the file descriptor from the event loop. */
5092 if (target_is_async_p ())
5093 serial_async (remote_desc, NULL, 0);
5094
5095 /* For some mysterious reason, wait_for_inferior calls kill instead of
5096 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5097 if (kill_kludge)
5098 {
5099 kill_kludge = 0;
5100 target_mourn_inferior ();
5101 return;
5102 }
5103
5104 /* Use catch_errors so the user can quit from gdb even when we
5105 aren't on speaking terms with the remote system. */
5106 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5107
5108 /* Don't wait for it to die. I'm not really sure it matters whether
5109 we do or not. For the existing stubs, kill is a noop. */
5110 target_mourn_inferior ();
5111 }
5112
5113 static void
5114 remote_mourn (void)
5115 {
5116 remote_mourn_1 (&remote_ops);
5117 }
5118
5119 static void
5120 remote_async_mourn (void)
5121 {
5122 remote_mourn_1 (&remote_async_ops);
5123 }
5124
5125 static void
5126 extended_remote_mourn (void)
5127 {
5128 /* We do _not_ want to mourn the target like this; this will
5129 remove the extended remote target from the target stack,
5130 and the next time the user says "run" it'll fail.
5131
5132 FIXME: What is the right thing to do here? */
5133 #if 0
5134 remote_mourn_1 (&extended_remote_ops);
5135 #endif
5136 }
5137
5138 /* Worker function for remote_mourn. */
5139 static void
5140 remote_mourn_1 (struct target_ops *target)
5141 {
5142 unpush_target (target);
5143 generic_mourn_inferior ();
5144 }
5145
5146 /* In the extended protocol we want to be able to do things like
5147 "run" and have them basically work as expected. So we need
5148 a special create_inferior function.
5149
5150 FIXME: One day add support for changing the exec file
5151 we're debugging, arguments and an environment. */
5152
5153 static void
5154 extended_remote_create_inferior (char *exec_file, char *args,
5155 char **env, int from_tty)
5156 {
5157 /* Rip out the breakpoints; we'll reinsert them after restarting
5158 the remote server. */
5159 remove_breakpoints ();
5160
5161 /* Now restart the remote server. */
5162 extended_remote_restart ();
5163
5164 /* NOTE: We don't need to recheck for a target description here; but
5165 if we gain the ability to switch the remote executable we may
5166 need to, if for instance we are running a process which requested
5167 different emulated hardware from the operating system. A
5168 concrete example of this is ARM GNU/Linux, where some binaries
5169 will have a legacy FPA coprocessor emulated and others may have
5170 access to a hardware VFP unit. */
5171
5172 /* Now put the breakpoints back in. This way we're safe if the
5173 restart function works via a unix fork on the remote side. */
5174 insert_breakpoints ();
5175
5176 /* Clean up from the last time we were running. */
5177 clear_proceed_status ();
5178 }
5179
5180 /* Async version of extended_remote_create_inferior. */
5181 static void
5182 extended_remote_async_create_inferior (char *exec_file, char *args,
5183 char **env, int from_tty)
5184 {
5185 /* Rip out the breakpoints; we'll reinsert them after restarting
5186 the remote server. */
5187 remove_breakpoints ();
5188
5189 /* If running asynchronously, register the target file descriptor
5190 with the event loop. */
5191 if (target_can_async_p ())
5192 target_async (inferior_event_handler, 0);
5193
5194 /* Now restart the remote server. */
5195 extended_remote_restart ();
5196
5197 /* NOTE: We don't need to recheck for a target description here; but
5198 if we gain the ability to switch the remote executable we may
5199 need to, if for instance we are running a process which requested
5200 different emulated hardware from the operating system. A
5201 concrete example of this is ARM GNU/Linux, where some binaries
5202 will have a legacy FPA coprocessor emulated and others may have
5203 access to a hardware VFP unit. */
5204
5205 /* Now put the breakpoints back in. This way we're safe if the
5206 restart function works via a unix fork on the remote side. */
5207 insert_breakpoints ();
5208
5209 /* Clean up from the last time we were running. */
5210 clear_proceed_status ();
5211 }
5212 \f
5213
5214 /* Insert a breakpoint. On targets that have software breakpoint
5215 support, we ask the remote target to do the work; on targets
5216 which don't, we insert a traditional memory breakpoint. */
5217
5218 static int
5219 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5220 {
5221 CORE_ADDR addr = bp_tgt->placed_address;
5222 struct remote_state *rs = get_remote_state ();
5223
5224 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5225 If it succeeds, then set the support to PACKET_ENABLE. If it
5226 fails, and the user has explicitly requested the Z support then
5227 report an error, otherwise, mark it disabled and go on. */
5228
5229 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5230 {
5231 char *p = rs->buf;
5232
5233 *(p++) = 'Z';
5234 *(p++) = '0';
5235 *(p++) = ',';
5236 gdbarch_breakpoint_from_pc
5237 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5238 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5239 p += hexnumstr (p, addr);
5240 sprintf (p, ",%d", bp_tgt->placed_size);
5241
5242 putpkt (rs->buf);
5243 getpkt (&rs->buf, &rs->buf_size, 0);
5244
5245 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5246 {
5247 case PACKET_ERROR:
5248 return -1;
5249 case PACKET_OK:
5250 return 0;
5251 case PACKET_UNKNOWN:
5252 break;
5253 }
5254 }
5255
5256 return memory_insert_breakpoint (bp_tgt);
5257 }
5258
5259 static int
5260 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5261 {
5262 CORE_ADDR addr = bp_tgt->placed_address;
5263 struct remote_state *rs = get_remote_state ();
5264 int bp_size;
5265
5266 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5267 {
5268 char *p = rs->buf;
5269
5270 *(p++) = 'z';
5271 *(p++) = '0';
5272 *(p++) = ',';
5273
5274 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5275 p += hexnumstr (p, addr);
5276 sprintf (p, ",%d", bp_tgt->placed_size);
5277
5278 putpkt (rs->buf);
5279 getpkt (&rs->buf, &rs->buf_size, 0);
5280
5281 return (rs->buf[0] == 'E');
5282 }
5283
5284 return memory_remove_breakpoint (bp_tgt);
5285 }
5286
5287 static int
5288 watchpoint_to_Z_packet (int type)
5289 {
5290 switch (type)
5291 {
5292 case hw_write:
5293 return Z_PACKET_WRITE_WP;
5294 break;
5295 case hw_read:
5296 return Z_PACKET_READ_WP;
5297 break;
5298 case hw_access:
5299 return Z_PACKET_ACCESS_WP;
5300 break;
5301 default:
5302 internal_error (__FILE__, __LINE__,
5303 _("hw_bp_to_z: bad watchpoint type %d"), type);
5304 }
5305 }
5306
5307 static int
5308 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5309 {
5310 struct remote_state *rs = get_remote_state ();
5311 char *p;
5312 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5313
5314 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5315 return -1;
5316
5317 sprintf (rs->buf, "Z%x,", packet);
5318 p = strchr (rs->buf, '\0');
5319 addr = remote_address_masked (addr);
5320 p += hexnumstr (p, (ULONGEST) addr);
5321 sprintf (p, ",%x", len);
5322
5323 putpkt (rs->buf);
5324 getpkt (&rs->buf, &rs->buf_size, 0);
5325
5326 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5327 {
5328 case PACKET_ERROR:
5329 case PACKET_UNKNOWN:
5330 return -1;
5331 case PACKET_OK:
5332 return 0;
5333 }
5334 internal_error (__FILE__, __LINE__,
5335 _("remote_insert_watchpoint: reached end of function"));
5336 }
5337
5338
5339 static int
5340 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5341 {
5342 struct remote_state *rs = get_remote_state ();
5343 char *p;
5344 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5345
5346 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5347 return -1;
5348
5349 sprintf (rs->buf, "z%x,", packet);
5350 p = strchr (rs->buf, '\0');
5351 addr = remote_address_masked (addr);
5352 p += hexnumstr (p, (ULONGEST) addr);
5353 sprintf (p, ",%x", len);
5354 putpkt (rs->buf);
5355 getpkt (&rs->buf, &rs->buf_size, 0);
5356
5357 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5358 {
5359 case PACKET_ERROR:
5360 case PACKET_UNKNOWN:
5361 return -1;
5362 case PACKET_OK:
5363 return 0;
5364 }
5365 internal_error (__FILE__, __LINE__,
5366 _("remote_remove_watchpoint: reached end of function"));
5367 }
5368
5369
5370 int remote_hw_watchpoint_limit = -1;
5371 int remote_hw_breakpoint_limit = -1;
5372
5373 static int
5374 remote_check_watch_resources (int type, int cnt, int ot)
5375 {
5376 if (type == bp_hardware_breakpoint)
5377 {
5378 if (remote_hw_breakpoint_limit == 0)
5379 return 0;
5380 else if (remote_hw_breakpoint_limit < 0)
5381 return 1;
5382 else if (cnt <= remote_hw_breakpoint_limit)
5383 return 1;
5384 }
5385 else
5386 {
5387 if (remote_hw_watchpoint_limit == 0)
5388 return 0;
5389 else if (remote_hw_watchpoint_limit < 0)
5390 return 1;
5391 else if (ot)
5392 return -1;
5393 else if (cnt <= remote_hw_watchpoint_limit)
5394 return 1;
5395 }
5396 return -1;
5397 }
5398
5399 static int
5400 remote_stopped_by_watchpoint (void)
5401 {
5402 return remote_stopped_by_watchpoint_p;
5403 }
5404
5405 extern int stepped_after_stopped_by_watchpoint;
5406
5407 static int
5408 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5409 {
5410 int rc = 0;
5411 if (remote_stopped_by_watchpoint ()
5412 || stepped_after_stopped_by_watchpoint)
5413 {
5414 *addr_p = remote_watch_data_address;
5415 rc = 1;
5416 }
5417
5418 return rc;
5419 }
5420
5421
5422 static int
5423 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5424 {
5425 CORE_ADDR addr;
5426 struct remote_state *rs = get_remote_state ();
5427 char *p = rs->buf;
5428
5429 /* The length field should be set to the size of a breakpoint
5430 instruction, even though we aren't inserting one ourselves. */
5431
5432 gdbarch_breakpoint_from_pc
5433 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5434
5435 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5436 return -1;
5437
5438 *(p++) = 'Z';
5439 *(p++) = '1';
5440 *(p++) = ',';
5441
5442 addr = remote_address_masked (bp_tgt->placed_address);
5443 p += hexnumstr (p, (ULONGEST) addr);
5444 sprintf (p, ",%x", bp_tgt->placed_size);
5445
5446 putpkt (rs->buf);
5447 getpkt (&rs->buf, &rs->buf_size, 0);
5448
5449 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5450 {
5451 case PACKET_ERROR:
5452 case PACKET_UNKNOWN:
5453 return -1;
5454 case PACKET_OK:
5455 return 0;
5456 }
5457 internal_error (__FILE__, __LINE__,
5458 _("remote_insert_hw_breakpoint: reached end of function"));
5459 }
5460
5461
5462 static int
5463 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5464 {
5465 CORE_ADDR addr;
5466 struct remote_state *rs = get_remote_state ();
5467 char *p = rs->buf;
5468
5469 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5470 return -1;
5471
5472 *(p++) = 'z';
5473 *(p++) = '1';
5474 *(p++) = ',';
5475
5476 addr = remote_address_masked (bp_tgt->placed_address);
5477 p += hexnumstr (p, (ULONGEST) addr);
5478 sprintf (p, ",%x", bp_tgt->placed_size);
5479
5480 putpkt (rs->buf);
5481 getpkt (&rs->buf, &rs->buf_size, 0);
5482
5483 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5484 {
5485 case PACKET_ERROR:
5486 case PACKET_UNKNOWN:
5487 return -1;
5488 case PACKET_OK:
5489 return 0;
5490 }
5491 internal_error (__FILE__, __LINE__,
5492 _("remote_remove_hw_breakpoint: reached end of function"));
5493 }
5494
5495 /* Some targets are only capable of doing downloads, and afterwards
5496 they switch to the remote serial protocol. This function provides
5497 a clean way to get from the download target to the remote target.
5498 It's basically just a wrapper so that we don't have to expose any
5499 of the internal workings of remote.c.
5500
5501 Prior to calling this routine, you should shutdown the current
5502 target code, else you will get the "A program is being debugged
5503 already..." message. Usually a call to pop_target() suffices. */
5504
5505 void
5506 push_remote_target (char *name, int from_tty)
5507 {
5508 printf_filtered (_("Switching to remote protocol\n"));
5509 remote_open (name, from_tty);
5510 }
5511
5512 /* Table used by the crc32 function to calcuate the checksum. */
5513
5514 static unsigned long crc32_table[256] =
5515 {0, 0};
5516
5517 static unsigned long
5518 crc32 (unsigned char *buf, int len, unsigned int crc)
5519 {
5520 if (!crc32_table[1])
5521 {
5522 /* Initialize the CRC table and the decoding table. */
5523 int i, j;
5524 unsigned int c;
5525
5526 for (i = 0; i < 256; i++)
5527 {
5528 for (c = i << 24, j = 8; j > 0; --j)
5529 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5530 crc32_table[i] = c;
5531 }
5532 }
5533
5534 while (len--)
5535 {
5536 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5537 buf++;
5538 }
5539 return crc;
5540 }
5541
5542 /* compare-sections command
5543
5544 With no arguments, compares each loadable section in the exec bfd
5545 with the same memory range on the target, and reports mismatches.
5546 Useful for verifying the image on the target against the exec file.
5547 Depends on the target understanding the new "qCRC:" request. */
5548
5549 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5550 target method (target verify memory) and generic version of the
5551 actual command. This will allow other high-level code (especially
5552 generic_load()) to make use of this target functionality. */
5553
5554 static void
5555 compare_sections_command (char *args, int from_tty)
5556 {
5557 struct remote_state *rs = get_remote_state ();
5558 asection *s;
5559 unsigned long host_crc, target_crc;
5560 extern bfd *exec_bfd;
5561 struct cleanup *old_chain;
5562 char *tmp;
5563 char *sectdata;
5564 const char *sectname;
5565 bfd_size_type size;
5566 bfd_vma lma;
5567 int matched = 0;
5568 int mismatched = 0;
5569
5570 if (!exec_bfd)
5571 error (_("command cannot be used without an exec file"));
5572 if (!current_target.to_shortname ||
5573 strcmp (current_target.to_shortname, "remote") != 0)
5574 error (_("command can only be used with remote target"));
5575
5576 for (s = exec_bfd->sections; s; s = s->next)
5577 {
5578 if (!(s->flags & SEC_LOAD))
5579 continue; /* skip non-loadable section */
5580
5581 size = bfd_get_section_size (s);
5582 if (size == 0)
5583 continue; /* skip zero-length section */
5584
5585 sectname = bfd_get_section_name (exec_bfd, s);
5586 if (args && strcmp (args, sectname) != 0)
5587 continue; /* not the section selected by user */
5588
5589 matched = 1; /* do this section */
5590 lma = s->lma;
5591 /* FIXME: assumes lma can fit into long. */
5592 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5593 (long) lma, (long) size);
5594 putpkt (rs->buf);
5595
5596 /* Be clever; compute the host_crc before waiting for target
5597 reply. */
5598 sectdata = xmalloc (size);
5599 old_chain = make_cleanup (xfree, sectdata);
5600 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5601 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5602
5603 getpkt (&rs->buf, &rs->buf_size, 0);
5604 if (rs->buf[0] == 'E')
5605 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5606 sectname, paddr (lma), paddr (lma + size));
5607 if (rs->buf[0] != 'C')
5608 error (_("remote target does not support this operation"));
5609
5610 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5611 target_crc = target_crc * 16 + fromhex (*tmp);
5612
5613 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5614 sectname, paddr (lma), paddr (lma + size));
5615 if (host_crc == target_crc)
5616 printf_filtered ("matched.\n");
5617 else
5618 {
5619 printf_filtered ("MIS-MATCHED!\n");
5620 mismatched++;
5621 }
5622
5623 do_cleanups (old_chain);
5624 }
5625 if (mismatched > 0)
5626 warning (_("One or more sections of the remote executable does not match\n\
5627 the loaded file\n"));
5628 if (args && !matched)
5629 printf_filtered (_("No loaded section named '%s'.\n"), args);
5630 }
5631
5632 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5633 into remote target. The number of bytes written to the remote
5634 target is returned, or -1 for error. */
5635
5636 static LONGEST
5637 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5638 const char *annex, const gdb_byte *writebuf,
5639 ULONGEST offset, LONGEST len,
5640 struct packet_config *packet)
5641 {
5642 int i, buf_len;
5643 ULONGEST n;
5644 gdb_byte *wbuf;
5645 struct remote_state *rs = get_remote_state ();
5646 int max_size = get_memory_write_packet_size ();
5647
5648 if (packet->support == PACKET_DISABLE)
5649 return -1;
5650
5651 /* Insert header. */
5652 i = snprintf (rs->buf, max_size,
5653 "qXfer:%s:write:%s:%s:",
5654 object_name, annex ? annex : "",
5655 phex_nz (offset, sizeof offset));
5656 max_size -= (i + 1);
5657
5658 /* Escape as much data as fits into rs->buf. */
5659 buf_len = remote_escape_output
5660 (writebuf, len, (rs->buf + i), &max_size, max_size);
5661
5662 if (putpkt_binary (rs->buf, i + buf_len) < 0
5663 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5664 || packet_ok (rs->buf, packet) != PACKET_OK)
5665 return -1;
5666
5667 unpack_varlen_hex (rs->buf, &n);
5668 return n;
5669 }
5670
5671 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5672 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5673 number of bytes read is returned, or 0 for EOF, or -1 for error.
5674 The number of bytes read may be less than LEN without indicating an
5675 EOF. PACKET is checked and updated to indicate whether the remote
5676 target supports this object. */
5677
5678 static LONGEST
5679 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5680 const char *annex,
5681 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5682 struct packet_config *packet)
5683 {
5684 static char *finished_object;
5685 static char *finished_annex;
5686 static ULONGEST finished_offset;
5687
5688 struct remote_state *rs = get_remote_state ();
5689 unsigned int total = 0;
5690 LONGEST i, n, packet_len;
5691
5692 if (packet->support == PACKET_DISABLE)
5693 return -1;
5694
5695 /* Check whether we've cached an end-of-object packet that matches
5696 this request. */
5697 if (finished_object)
5698 {
5699 if (strcmp (object_name, finished_object) == 0
5700 && strcmp (annex ? annex : "", finished_annex) == 0
5701 && offset == finished_offset)
5702 return 0;
5703
5704 /* Otherwise, we're now reading something different. Discard
5705 the cache. */
5706 xfree (finished_object);
5707 xfree (finished_annex);
5708 finished_object = NULL;
5709 finished_annex = NULL;
5710 }
5711
5712 /* Request only enough to fit in a single packet. The actual data
5713 may not, since we don't know how much of it will need to be escaped;
5714 the target is free to respond with slightly less data. We subtract
5715 five to account for the response type and the protocol frame. */
5716 n = min (get_remote_packet_size () - 5, len);
5717 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5718 object_name, annex ? annex : "",
5719 phex_nz (offset, sizeof offset),
5720 phex_nz (n, sizeof n));
5721 i = putpkt (rs->buf);
5722 if (i < 0)
5723 return -1;
5724
5725 rs->buf[0] = '\0';
5726 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5727 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5728 return -1;
5729
5730 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5731 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5732
5733 /* 'm' means there is (or at least might be) more data after this
5734 batch. That does not make sense unless there's at least one byte
5735 of data in this reply. */
5736 if (rs->buf[0] == 'm' && packet_len == 1)
5737 error (_("Remote qXfer reply contained no data."));
5738
5739 /* Got some data. */
5740 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5741
5742 /* 'l' is an EOF marker, possibly including a final block of data,
5743 or possibly empty. If we have the final block of a non-empty
5744 object, record this fact to bypass a subsequent partial read. */
5745 if (rs->buf[0] == 'l' && offset + i > 0)
5746 {
5747 finished_object = xstrdup (object_name);
5748 finished_annex = xstrdup (annex ? annex : "");
5749 finished_offset = offset + i;
5750 }
5751
5752 return i;
5753 }
5754
5755 static LONGEST
5756 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5757 const char *annex, gdb_byte *readbuf,
5758 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5759 {
5760 struct remote_state *rs = get_remote_state ();
5761 int i;
5762 char *p2;
5763 char query_type;
5764
5765 /* Handle memory using the standard memory routines. */
5766 if (object == TARGET_OBJECT_MEMORY)
5767 {
5768 int xfered;
5769 errno = 0;
5770
5771 if (writebuf != NULL)
5772 xfered = remote_write_bytes (offset, writebuf, len);
5773 else
5774 xfered = remote_read_bytes (offset, readbuf, len);
5775
5776 if (xfered > 0)
5777 return xfered;
5778 else if (xfered == 0 && errno == 0)
5779 return 0;
5780 else
5781 return -1;
5782 }
5783
5784 /* Handle SPU memory using qxfer packets. */
5785 if (object == TARGET_OBJECT_SPU)
5786 {
5787 if (readbuf)
5788 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5789 &remote_protocol_packets
5790 [PACKET_qXfer_spu_read]);
5791 else
5792 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5793 &remote_protocol_packets
5794 [PACKET_qXfer_spu_write]);
5795 }
5796
5797 /* Only handle flash writes. */
5798 if (writebuf != NULL)
5799 {
5800 LONGEST xfered;
5801
5802 switch (object)
5803 {
5804 case TARGET_OBJECT_FLASH:
5805 xfered = remote_flash_write (ops, offset, len, writebuf);
5806
5807 if (xfered > 0)
5808 return xfered;
5809 else if (xfered == 0 && errno == 0)
5810 return 0;
5811 else
5812 return -1;
5813
5814 default:
5815 return -1;
5816 }
5817 }
5818
5819 /* Map pre-existing objects onto letters. DO NOT do this for new
5820 objects!!! Instead specify new query packets. */
5821 switch (object)
5822 {
5823 case TARGET_OBJECT_AVR:
5824 query_type = 'R';
5825 break;
5826
5827 case TARGET_OBJECT_AUXV:
5828 gdb_assert (annex == NULL);
5829 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5830 &remote_protocol_packets[PACKET_qXfer_auxv]);
5831
5832 case TARGET_OBJECT_AVAILABLE_FEATURES:
5833 return remote_read_qxfer
5834 (ops, "features", annex, readbuf, offset, len,
5835 &remote_protocol_packets[PACKET_qXfer_features]);
5836
5837 case TARGET_OBJECT_LIBRARIES:
5838 return remote_read_qxfer
5839 (ops, "libraries", annex, readbuf, offset, len,
5840 &remote_protocol_packets[PACKET_qXfer_libraries]);
5841
5842 case TARGET_OBJECT_MEMORY_MAP:
5843 gdb_assert (annex == NULL);
5844 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5845 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5846
5847 default:
5848 return -1;
5849 }
5850
5851 /* Note: a zero OFFSET and LEN can be used to query the minimum
5852 buffer size. */
5853 if (offset == 0 && len == 0)
5854 return (get_remote_packet_size ());
5855 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5856 large enough let the caller deal with it. */
5857 if (len < get_remote_packet_size ())
5858 return -1;
5859 len = get_remote_packet_size ();
5860
5861 /* Except for querying the minimum buffer size, target must be open. */
5862 if (!remote_desc)
5863 error (_("remote query is only available after target open"));
5864
5865 gdb_assert (annex != NULL);
5866 gdb_assert (readbuf != NULL);
5867
5868 p2 = rs->buf;
5869 *p2++ = 'q';
5870 *p2++ = query_type;
5871
5872 /* We used one buffer char for the remote protocol q command and
5873 another for the query type. As the remote protocol encapsulation
5874 uses 4 chars plus one extra in case we are debugging
5875 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5876 string. */
5877 i = 0;
5878 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5879 {
5880 /* Bad caller may have sent forbidden characters. */
5881 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5882 *p2++ = annex[i];
5883 i++;
5884 }
5885 *p2 = '\0';
5886 gdb_assert (annex[i] == '\0');
5887
5888 i = putpkt (rs->buf);
5889 if (i < 0)
5890 return i;
5891
5892 getpkt (&rs->buf, &rs->buf_size, 0);
5893 strcpy ((char *) readbuf, rs->buf);
5894
5895 return strlen ((char *) readbuf);
5896 }
5897
5898 static void
5899 remote_rcmd (char *command,
5900 struct ui_file *outbuf)
5901 {
5902 struct remote_state *rs = get_remote_state ();
5903 char *p = rs->buf;
5904
5905 if (!remote_desc)
5906 error (_("remote rcmd is only available after target open"));
5907
5908 /* Send a NULL command across as an empty command. */
5909 if (command == NULL)
5910 command = "";
5911
5912 /* The query prefix. */
5913 strcpy (rs->buf, "qRcmd,");
5914 p = strchr (rs->buf, '\0');
5915
5916 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5917 error (_("\"monitor\" command ``%s'' is too long."), command);
5918
5919 /* Encode the actual command. */
5920 bin2hex ((gdb_byte *) command, p, 0);
5921
5922 if (putpkt (rs->buf) < 0)
5923 error (_("Communication problem with target."));
5924
5925 /* get/display the response */
5926 while (1)
5927 {
5928 char *buf;
5929
5930 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5931 rs->buf[0] = '\0';
5932 getpkt (&rs->buf, &rs->buf_size, 0);
5933 buf = rs->buf;
5934 if (buf[0] == '\0')
5935 error (_("Target does not support this command."));
5936 if (buf[0] == 'O' && buf[1] != 'K')
5937 {
5938 remote_console_output (buf + 1); /* 'O' message from stub. */
5939 continue;
5940 }
5941 if (strcmp (buf, "OK") == 0)
5942 break;
5943 if (strlen (buf) == 3 && buf[0] == 'E'
5944 && isdigit (buf[1]) && isdigit (buf[2]))
5945 {
5946 error (_("Protocol error with Rcmd"));
5947 }
5948 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5949 {
5950 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5951 fputc_unfiltered (c, outbuf);
5952 }
5953 break;
5954 }
5955 }
5956
5957 static VEC(mem_region_s) *
5958 remote_memory_map (struct target_ops *ops)
5959 {
5960 VEC(mem_region_s) *result = NULL;
5961 char *text = target_read_stralloc (&current_target,
5962 TARGET_OBJECT_MEMORY_MAP, NULL);
5963
5964 if (text)
5965 {
5966 struct cleanup *back_to = make_cleanup (xfree, text);
5967 result = parse_memory_map (text);
5968 do_cleanups (back_to);
5969 }
5970
5971 return result;
5972 }
5973
5974 static void
5975 packet_command (char *args, int from_tty)
5976 {
5977 struct remote_state *rs = get_remote_state ();
5978
5979 if (!remote_desc)
5980 error (_("command can only be used with remote target"));
5981
5982 if (!args)
5983 error (_("remote-packet command requires packet text as argument"));
5984
5985 puts_filtered ("sending: ");
5986 print_packet (args);
5987 puts_filtered ("\n");
5988 putpkt (args);
5989
5990 getpkt (&rs->buf, &rs->buf_size, 0);
5991 puts_filtered ("received: ");
5992 print_packet (rs->buf);
5993 puts_filtered ("\n");
5994 }
5995
5996 #if 0
5997 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5998
5999 static void display_thread_info (struct gdb_ext_thread_info *info);
6000
6001 static void threadset_test_cmd (char *cmd, int tty);
6002
6003 static void threadalive_test (char *cmd, int tty);
6004
6005 static void threadlist_test_cmd (char *cmd, int tty);
6006
6007 int get_and_display_threadinfo (threadref *ref);
6008
6009 static void threadinfo_test_cmd (char *cmd, int tty);
6010
6011 static int thread_display_step (threadref *ref, void *context);
6012
6013 static void threadlist_update_test_cmd (char *cmd, int tty);
6014
6015 static void init_remote_threadtests (void);
6016
6017 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6018
6019 static void
6020 threadset_test_cmd (char *cmd, int tty)
6021 {
6022 int sample_thread = SAMPLE_THREAD;
6023
6024 printf_filtered (_("Remote threadset test\n"));
6025 set_thread (sample_thread, 1);
6026 }
6027
6028
6029 static void
6030 threadalive_test (char *cmd, int tty)
6031 {
6032 int sample_thread = SAMPLE_THREAD;
6033
6034 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6035 printf_filtered ("PASS: Thread alive test\n");
6036 else
6037 printf_filtered ("FAIL: Thread alive test\n");
6038 }
6039
6040 void output_threadid (char *title, threadref *ref);
6041
6042 void
6043 output_threadid (char *title, threadref *ref)
6044 {
6045 char hexid[20];
6046
6047 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6048 hexid[16] = 0;
6049 printf_filtered ("%s %s\n", title, (&hexid[0]));
6050 }
6051
6052 static void
6053 threadlist_test_cmd (char *cmd, int tty)
6054 {
6055 int startflag = 1;
6056 threadref nextthread;
6057 int done, result_count;
6058 threadref threadlist[3];
6059
6060 printf_filtered ("Remote Threadlist test\n");
6061 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6062 &result_count, &threadlist[0]))
6063 printf_filtered ("FAIL: threadlist test\n");
6064 else
6065 {
6066 threadref *scan = threadlist;
6067 threadref *limit = scan + result_count;
6068
6069 while (scan < limit)
6070 output_threadid (" thread ", scan++);
6071 }
6072 }
6073
6074 void
6075 display_thread_info (struct gdb_ext_thread_info *info)
6076 {
6077 output_threadid ("Threadid: ", &info->threadid);
6078 printf_filtered ("Name: %s\n ", info->shortname);
6079 printf_filtered ("State: %s\n", info->display);
6080 printf_filtered ("other: %s\n\n", info->more_display);
6081 }
6082
6083 int
6084 get_and_display_threadinfo (threadref *ref)
6085 {
6086 int result;
6087 int set;
6088 struct gdb_ext_thread_info threadinfo;
6089
6090 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6091 | TAG_MOREDISPLAY | TAG_DISPLAY;
6092 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6093 display_thread_info (&threadinfo);
6094 return result;
6095 }
6096
6097 static void
6098 threadinfo_test_cmd (char *cmd, int tty)
6099 {
6100 int athread = SAMPLE_THREAD;
6101 threadref thread;
6102 int set;
6103
6104 int_to_threadref (&thread, athread);
6105 printf_filtered ("Remote Threadinfo test\n");
6106 if (!get_and_display_threadinfo (&thread))
6107 printf_filtered ("FAIL cannot get thread info\n");
6108 }
6109
6110 static int
6111 thread_display_step (threadref *ref, void *context)
6112 {
6113 /* output_threadid(" threadstep ",ref); *//* simple test */
6114 return get_and_display_threadinfo (ref);
6115 }
6116
6117 static void
6118 threadlist_update_test_cmd (char *cmd, int tty)
6119 {
6120 printf_filtered ("Remote Threadlist update test\n");
6121 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6122 }
6123
6124 static void
6125 init_remote_threadtests (void)
6126 {
6127 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6128 Fetch and print the remote list of thread identifiers, one pkt only"));
6129 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6130 _("Fetch and display info about one thread"));
6131 add_com ("tset", class_obscure, threadset_test_cmd,
6132 _("Test setting to a different thread"));
6133 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6134 _("Iterate through updating all remote thread info"));
6135 add_com ("talive", class_obscure, threadalive_test,
6136 _(" Remote thread alive test "));
6137 }
6138
6139 #endif /* 0 */
6140
6141 /* Convert a thread ID to a string. Returns the string in a static
6142 buffer. */
6143
6144 static char *
6145 remote_pid_to_str (ptid_t ptid)
6146 {
6147 static char buf[32];
6148
6149 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6150 return buf;
6151 }
6152
6153 /* Get the address of the thread local variable in OBJFILE which is
6154 stored at OFFSET within the thread local storage for thread PTID. */
6155
6156 static CORE_ADDR
6157 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6158 {
6159 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6160 {
6161 struct remote_state *rs = get_remote_state ();
6162 char *p = rs->buf;
6163 enum packet_result result;
6164
6165 strcpy (p, "qGetTLSAddr:");
6166 p += strlen (p);
6167 p += hexnumstr (p, PIDGET (ptid));
6168 *p++ = ',';
6169 p += hexnumstr (p, offset);
6170 *p++ = ',';
6171 p += hexnumstr (p, lm);
6172 *p++ = '\0';
6173
6174 putpkt (rs->buf);
6175 getpkt (&rs->buf, &rs->buf_size, 0);
6176 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6177 if (result == PACKET_OK)
6178 {
6179 ULONGEST result;
6180
6181 unpack_varlen_hex (rs->buf, &result);
6182 return result;
6183 }
6184 else if (result == PACKET_UNKNOWN)
6185 throw_error (TLS_GENERIC_ERROR,
6186 _("Remote target doesn't support qGetTLSAddr packet"));
6187 else
6188 throw_error (TLS_GENERIC_ERROR,
6189 _("Remote target failed to process qGetTLSAddr request"));
6190 }
6191 else
6192 throw_error (TLS_GENERIC_ERROR,
6193 _("TLS not supported or disabled on this target"));
6194 /* Not reached. */
6195 return 0;
6196 }
6197
6198 /* Support for inferring a target description based on the current
6199 architecture and the size of a 'g' packet. While the 'g' packet
6200 can have any size (since optional registers can be left off the
6201 end), some sizes are easily recognizable given knowledge of the
6202 approximate architecture. */
6203
6204 struct remote_g_packet_guess
6205 {
6206 int bytes;
6207 const struct target_desc *tdesc;
6208 };
6209 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6210 DEF_VEC_O(remote_g_packet_guess_s);
6211
6212 struct remote_g_packet_data
6213 {
6214 VEC(remote_g_packet_guess_s) *guesses;
6215 };
6216
6217 static struct gdbarch_data *remote_g_packet_data_handle;
6218
6219 static void *
6220 remote_g_packet_data_init (struct obstack *obstack)
6221 {
6222 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6223 }
6224
6225 void
6226 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6227 const struct target_desc *tdesc)
6228 {
6229 struct remote_g_packet_data *data
6230 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6231 struct remote_g_packet_guess new_guess, *guess;
6232 int ix;
6233
6234 gdb_assert (tdesc != NULL);
6235
6236 for (ix = 0;
6237 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6238 ix++)
6239 if (guess->bytes == bytes)
6240 internal_error (__FILE__, __LINE__,
6241 "Duplicate g packet description added for size %d",
6242 bytes);
6243
6244 new_guess.bytes = bytes;
6245 new_guess.tdesc = tdesc;
6246 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6247 }
6248
6249 static const struct target_desc *
6250 remote_read_description (struct target_ops *target)
6251 {
6252 struct remote_g_packet_data *data
6253 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6254
6255 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6256 {
6257 struct remote_g_packet_guess *guess;
6258 int ix;
6259 int bytes = send_g_packet ();
6260
6261 for (ix = 0;
6262 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6263 ix++)
6264 if (guess->bytes == bytes)
6265 return guess->tdesc;
6266
6267 /* We discard the g packet. A minor optimization would be to
6268 hold on to it, and fill the register cache once we have selected
6269 an architecture, but it's too tricky to do safely. */
6270 }
6271
6272 return NULL;
6273 }
6274
6275 static void
6276 init_remote_ops (void)
6277 {
6278 remote_ops.to_shortname = "remote";
6279 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6280 remote_ops.to_doc =
6281 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6282 Specify the serial device it is connected to\n\
6283 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6284 remote_ops.to_open = remote_open;
6285 remote_ops.to_close = remote_close;
6286 remote_ops.to_detach = remote_detach;
6287 remote_ops.to_disconnect = remote_disconnect;
6288 remote_ops.to_resume = remote_resume;
6289 remote_ops.to_wait = remote_wait;
6290 remote_ops.to_fetch_registers = remote_fetch_registers;
6291 remote_ops.to_store_registers = remote_store_registers;
6292 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6293 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6294 remote_ops.to_files_info = remote_files_info;
6295 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6296 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6297 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6298 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6299 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6300 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6301 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6302 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6303 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6304 remote_ops.to_kill = remote_kill;
6305 remote_ops.to_load = generic_load;
6306 remote_ops.to_mourn_inferior = remote_mourn;
6307 remote_ops.to_thread_alive = remote_thread_alive;
6308 remote_ops.to_find_new_threads = remote_threads_info;
6309 remote_ops.to_pid_to_str = remote_pid_to_str;
6310 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6311 remote_ops.to_stop = remote_stop;
6312 remote_ops.to_xfer_partial = remote_xfer_partial;
6313 remote_ops.to_rcmd = remote_rcmd;
6314 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6315 remote_ops.to_stratum = process_stratum;
6316 remote_ops.to_has_all_memory = 1;
6317 remote_ops.to_has_memory = 1;
6318 remote_ops.to_has_stack = 1;
6319 remote_ops.to_has_registers = 1;
6320 remote_ops.to_has_execution = 1;
6321 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6322 remote_ops.to_magic = OPS_MAGIC;
6323 remote_ops.to_memory_map = remote_memory_map;
6324 remote_ops.to_flash_erase = remote_flash_erase;
6325 remote_ops.to_flash_done = remote_flash_done;
6326 remote_ops.to_read_description = remote_read_description;
6327 }
6328
6329 /* Set up the extended remote vector by making a copy of the standard
6330 remote vector and adding to it. */
6331
6332 static void
6333 init_extended_remote_ops (void)
6334 {
6335 extended_remote_ops = remote_ops;
6336
6337 extended_remote_ops.to_shortname = "extended-remote";
6338 extended_remote_ops.to_longname =
6339 "Extended remote serial target in gdb-specific protocol";
6340 extended_remote_ops.to_doc =
6341 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6342 Specify the serial device it is connected to (e.g. /dev/ttya).",
6343 extended_remote_ops.to_open = extended_remote_open;
6344 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6345 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6346 }
6347
6348 static int
6349 remote_can_async_p (void)
6350 {
6351 /* We're async whenever the serial device is. */
6352 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6353 }
6354
6355 static int
6356 remote_is_async_p (void)
6357 {
6358 /* We're async whenever the serial device is. */
6359 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6360 }
6361
6362 /* Pass the SERIAL event on and up to the client. One day this code
6363 will be able to delay notifying the client of an event until the
6364 point where an entire packet has been received. */
6365
6366 static void (*async_client_callback) (enum inferior_event_type event_type,
6367 void *context);
6368 static void *async_client_context;
6369 static serial_event_ftype remote_async_serial_handler;
6370
6371 static void
6372 remote_async_serial_handler (struct serial *scb, void *context)
6373 {
6374 /* Don't propogate error information up to the client. Instead let
6375 the client find out about the error by querying the target. */
6376 async_client_callback (INF_REG_EVENT, async_client_context);
6377 }
6378
6379 static void
6380 remote_async (void (*callback) (enum inferior_event_type event_type,
6381 void *context), void *context)
6382 {
6383 if (current_target.to_async_mask_value == 0)
6384 internal_error (__FILE__, __LINE__,
6385 _("Calling remote_async when async is masked"));
6386
6387 if (callback != NULL)
6388 {
6389 serial_async (remote_desc, remote_async_serial_handler, NULL);
6390 async_client_callback = callback;
6391 async_client_context = context;
6392 }
6393 else
6394 serial_async (remote_desc, NULL, NULL);
6395 }
6396
6397 /* Target async and target extended-async.
6398
6399 This are temporary targets, until it is all tested. Eventually
6400 async support will be incorporated int the usual 'remote'
6401 target. */
6402
6403 static void
6404 init_remote_async_ops (void)
6405 {
6406 remote_async_ops.to_shortname = "async";
6407 remote_async_ops.to_longname =
6408 "Remote serial target in async version of the gdb-specific protocol";
6409 remote_async_ops.to_doc =
6410 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6411 Specify the serial device it is connected to (e.g. /dev/ttya).";
6412 remote_async_ops.to_open = remote_async_open;
6413 remote_async_ops.to_close = remote_close;
6414 remote_async_ops.to_detach = remote_detach;
6415 remote_async_ops.to_disconnect = remote_disconnect;
6416 remote_async_ops.to_resume = remote_async_resume;
6417 remote_async_ops.to_wait = remote_async_wait;
6418 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6419 remote_async_ops.to_store_registers = remote_store_registers;
6420 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6421 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6422 remote_async_ops.to_files_info = remote_files_info;
6423 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6424 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6425 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6426 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6427 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6428 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6429 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6430 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6431 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6432 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6433 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6434 remote_async_ops.to_kill = remote_async_kill;
6435 remote_async_ops.to_load = generic_load;
6436 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6437 remote_async_ops.to_thread_alive = remote_thread_alive;
6438 remote_async_ops.to_find_new_threads = remote_threads_info;
6439 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6440 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6441 remote_async_ops.to_stop = remote_stop;
6442 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6443 remote_async_ops.to_rcmd = remote_rcmd;
6444 remote_async_ops.to_stratum = process_stratum;
6445 remote_async_ops.to_has_all_memory = 1;
6446 remote_async_ops.to_has_memory = 1;
6447 remote_async_ops.to_has_stack = 1;
6448 remote_async_ops.to_has_registers = 1;
6449 remote_async_ops.to_has_execution = 1;
6450 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6451 remote_async_ops.to_can_async_p = remote_can_async_p;
6452 remote_async_ops.to_is_async_p = remote_is_async_p;
6453 remote_async_ops.to_async = remote_async;
6454 remote_async_ops.to_async_mask_value = 1;
6455 remote_async_ops.to_magic = OPS_MAGIC;
6456 remote_async_ops.to_memory_map = remote_memory_map;
6457 remote_async_ops.to_flash_erase = remote_flash_erase;
6458 remote_async_ops.to_flash_done = remote_flash_done;
6459 remote_async_ops.to_read_description = remote_read_description;
6460 }
6461
6462 /* Set up the async extended remote vector by making a copy of the standard
6463 remote vector and adding to it. */
6464
6465 static void
6466 init_extended_async_remote_ops (void)
6467 {
6468 extended_async_remote_ops = remote_async_ops;
6469
6470 extended_async_remote_ops.to_shortname = "extended-async";
6471 extended_async_remote_ops.to_longname =
6472 "Extended remote serial target in async gdb-specific protocol";
6473 extended_async_remote_ops.to_doc =
6474 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6475 Specify the serial device it is connected to (e.g. /dev/ttya).",
6476 extended_async_remote_ops.to_open = extended_remote_async_open;
6477 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6478 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6479 }
6480
6481 static void
6482 set_remote_cmd (char *args, int from_tty)
6483 {
6484 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6485 }
6486
6487 static void
6488 show_remote_cmd (char *args, int from_tty)
6489 {
6490 /* We can't just use cmd_show_list here, because we want to skip
6491 the redundant "show remote Z-packet" and the legacy aliases. */
6492 struct cleanup *showlist_chain;
6493 struct cmd_list_element *list = remote_show_cmdlist;
6494
6495 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6496 for (; list != NULL; list = list->next)
6497 if (strcmp (list->name, "Z-packet") == 0)
6498 continue;
6499 else if (list->type == not_set_cmd)
6500 /* Alias commands are exactly like the original, except they
6501 don't have the normal type. */
6502 continue;
6503 else
6504 {
6505 struct cleanup *option_chain
6506 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6507 ui_out_field_string (uiout, "name", list->name);
6508 ui_out_text (uiout, ": ");
6509 if (list->type == show_cmd)
6510 do_setshow_command ((char *) NULL, from_tty, list);
6511 else
6512 cmd_func (list, NULL, from_tty);
6513 /* Close the tuple. */
6514 do_cleanups (option_chain);
6515 }
6516
6517 /* Close the tuple. */
6518 do_cleanups (showlist_chain);
6519 }
6520
6521
6522 /* Function to be called whenever a new objfile (shlib) is detected. */
6523 static void
6524 remote_new_objfile (struct objfile *objfile)
6525 {
6526 if (remote_desc != 0) /* Have a remote connection. */
6527 remote_check_symbols (objfile);
6528 }
6529
6530 void
6531 _initialize_remote (void)
6532 {
6533 struct remote_state *rs;
6534
6535 /* architecture specific data */
6536 remote_gdbarch_data_handle =
6537 gdbarch_data_register_post_init (init_remote_state);
6538 remote_g_packet_data_handle =
6539 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6540
6541 /* Initialize the per-target state. At the moment there is only one
6542 of these, not one per target. Only one target is active at a
6543 time. The default buffer size is unimportant; it will be expanded
6544 whenever a larger buffer is needed. */
6545 rs = get_remote_state_raw ();
6546 rs->buf_size = 400;
6547 rs->buf = xmalloc (rs->buf_size);
6548
6549 init_remote_ops ();
6550 add_target (&remote_ops);
6551
6552 init_extended_remote_ops ();
6553 add_target (&extended_remote_ops);
6554
6555 init_remote_async_ops ();
6556 add_target (&remote_async_ops);
6557
6558 init_extended_async_remote_ops ();
6559 add_target (&extended_async_remote_ops);
6560
6561 /* Hook into new objfile notification. */
6562 observer_attach_new_objfile (remote_new_objfile);
6563
6564 #if 0
6565 init_remote_threadtests ();
6566 #endif
6567
6568 /* set/show remote ... */
6569
6570 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6571 Remote protocol specific variables\n\
6572 Configure various remote-protocol specific variables such as\n\
6573 the packets being used"),
6574 &remote_set_cmdlist, "set remote ",
6575 0 /* allow-unknown */, &setlist);
6576 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6577 Remote protocol specific variables\n\
6578 Configure various remote-protocol specific variables such as\n\
6579 the packets being used"),
6580 &remote_show_cmdlist, "show remote ",
6581 0 /* allow-unknown */, &showlist);
6582
6583 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6584 Compare section data on target to the exec file.\n\
6585 Argument is a single section name (default: all loaded sections)."),
6586 &cmdlist);
6587
6588 add_cmd ("packet", class_maintenance, packet_command, _("\
6589 Send an arbitrary packet to a remote target.\n\
6590 maintenance packet TEXT\n\
6591 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6592 this command sends the string TEXT to the inferior, and displays the\n\
6593 response packet. GDB supplies the initial `$' character, and the\n\
6594 terminating `#' character and checksum."),
6595 &maintenancelist);
6596
6597 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6598 Set whether to send break if interrupted."), _("\
6599 Show whether to send break if interrupted."), _("\
6600 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6601 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6602 &setlist, &showlist);
6603
6604 /* Install commands for configuring memory read/write packets. */
6605
6606 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6607 Set the maximum number of bytes per memory write packet (deprecated)."),
6608 &setlist);
6609 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6610 Show the maximum number of bytes per memory write packet (deprecated)."),
6611 &showlist);
6612 add_cmd ("memory-write-packet-size", no_class,
6613 set_memory_write_packet_size, _("\
6614 Set the maximum number of bytes per memory-write packet.\n\
6615 Specify the number of bytes in a packet or 0 (zero) for the\n\
6616 default packet size. The actual limit is further reduced\n\
6617 dependent on the target. Specify ``fixed'' to disable the\n\
6618 further restriction and ``limit'' to enable that restriction."),
6619 &remote_set_cmdlist);
6620 add_cmd ("memory-read-packet-size", no_class,
6621 set_memory_read_packet_size, _("\
6622 Set the maximum number of bytes per memory-read packet.\n\
6623 Specify the number of bytes in a packet or 0 (zero) for the\n\
6624 default packet size. The actual limit is further reduced\n\
6625 dependent on the target. Specify ``fixed'' to disable the\n\
6626 further restriction and ``limit'' to enable that restriction."),
6627 &remote_set_cmdlist);
6628 add_cmd ("memory-write-packet-size", no_class,
6629 show_memory_write_packet_size,
6630 _("Show the maximum number of bytes per memory-write packet."),
6631 &remote_show_cmdlist);
6632 add_cmd ("memory-read-packet-size", no_class,
6633 show_memory_read_packet_size,
6634 _("Show the maximum number of bytes per memory-read packet."),
6635 &remote_show_cmdlist);
6636
6637 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6638 &remote_hw_watchpoint_limit, _("\
6639 Set the maximum number of target hardware watchpoints."), _("\
6640 Show the maximum number of target hardware watchpoints."), _("\
6641 Specify a negative limit for unlimited."),
6642 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6643 &remote_set_cmdlist, &remote_show_cmdlist);
6644 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6645 &remote_hw_breakpoint_limit, _("\
6646 Set the maximum number of target hardware breakpoints."), _("\
6647 Show the maximum number of target hardware breakpoints."), _("\
6648 Specify a negative limit for unlimited."),
6649 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6650 &remote_set_cmdlist, &remote_show_cmdlist);
6651
6652 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6653 &remote_address_size, _("\
6654 Set the maximum size of the address (in bits) in a memory packet."), _("\
6655 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6656 NULL,
6657 NULL, /* FIXME: i18n: */
6658 &setlist, &showlist);
6659
6660 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6661 "X", "binary-download", 1);
6662
6663 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6664 "vCont", "verbose-resume", 0);
6665
6666 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6667 "QPassSignals", "pass-signals", 0);
6668
6669 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6670 "qSymbol", "symbol-lookup", 0);
6671
6672 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6673 "P", "set-register", 1);
6674
6675 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6676 "p", "fetch-register", 1);
6677
6678 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6679 "Z0", "software-breakpoint", 0);
6680
6681 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6682 "Z1", "hardware-breakpoint", 0);
6683
6684 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6685 "Z2", "write-watchpoint", 0);
6686
6687 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6688 "Z3", "read-watchpoint", 0);
6689
6690 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6691 "Z4", "access-watchpoint", 0);
6692
6693 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6694 "qXfer:auxv:read", "read-aux-vector", 0);
6695
6696 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6697 "qXfer:features:read", "target-features", 0);
6698
6699 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
6700 "qXfer:libraries:read", "library-info", 0);
6701
6702 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6703 "qXfer:memory-map:read", "memory-map", 0);
6704
6705 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6706 "qXfer:spu:read", "read-spu-object", 0);
6707
6708 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6709 "qXfer:spu:write", "write-spu-object", 0);
6710
6711 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6712 "qGetTLSAddr", "get-thread-local-storage-address",
6713 0);
6714
6715 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6716 "qSupported", "supported-packets", 0);
6717
6718 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6719 Z sub-packet has its own set and show commands, but users may
6720 have sets to this variable in their .gdbinit files (or in their
6721 documentation). */
6722 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6723 &remote_Z_packet_detect, _("\
6724 Set use of remote protocol `Z' packets"), _("\
6725 Show use of remote protocol `Z' packets "), _("\
6726 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6727 packets."),
6728 set_remote_protocol_Z_packet_cmd,
6729 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6730 &remote_set_cmdlist, &remote_show_cmdlist);
6731
6732 /* Eventually initialize fileio. See fileio.c */
6733 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6734 }
This page took 0.177618 seconds and 4 git commands to generate.