* strerror.c: Revert last change. Declare static sys_nerr
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59
60 /* Prototypes for local functions */
61 static void cleanup_sigint_signal_handler (void *dummy);
62 static void initialize_sigint_signal_handler (void);
63 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
64
65 static void handle_remote_sigint (int);
66 static void handle_remote_sigint_twice (int);
67 static void async_remote_interrupt (gdb_client_data);
68 void async_remote_interrupt_twice (gdb_client_data);
69
70 static void build_remote_gdbarch_data (void);
71
72 static void remote_files_info (struct target_ops *ignore);
73
74 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
75 int len, int should_write,
76 struct mem_attrib *attrib,
77 struct target_ops *target);
78
79 static void remote_prepare_to_store (void);
80
81 static void remote_fetch_registers (int regno);
82
83 static void remote_resume (ptid_t ptid, int step,
84 enum target_signal siggnal);
85 static void remote_async_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static int remote_start_remote (struct ui_out *uiout, void *dummy);
88
89 static void remote_open (char *name, int from_tty);
90 static void remote_async_open (char *name, int from_tty);
91
92 static void extended_remote_open (char *name, int from_tty);
93 static void extended_remote_async_open (char *name, int from_tty);
94
95 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
96 int async_p);
97
98 static void remote_close (int quitting);
99
100 static void remote_store_registers (int regno);
101
102 static void remote_mourn (void);
103 static void remote_async_mourn (void);
104
105 static void extended_remote_restart (void);
106
107 static void extended_remote_mourn (void);
108
109 static void extended_remote_create_inferior (char *, char *, char **);
110 static void extended_remote_async_create_inferior (char *, char *, char **);
111
112 static void remote_mourn_1 (struct target_ops *);
113
114 static void remote_send (char *buf, long sizeof_buf);
115
116 static int readchar (int timeout);
117
118 static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120 static ptid_t remote_async_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124 static void remote_async_kill (void);
125
126 static int tohex (int nib);
127
128 static void remote_detach (char *args, int from_tty);
129
130 static void remote_interrupt (int signo);
131
132 static void remote_interrupt_twice (int signo);
133
134 static void interrupt_query (void);
135
136 static void set_thread (int, int);
137
138 static int remote_thread_alive (ptid_t);
139
140 static void get_offsets (void);
141
142 static long read_frame (char *buf, long sizeof_buf);
143
144 static int remote_insert_breakpoint (CORE_ADDR, char *);
145
146 static int remote_remove_breakpoint (CORE_ADDR, char *);
147
148 static int hexnumlen (ULONGEST num);
149
150 static void init_remote_ops (void);
151
152 static void init_extended_remote_ops (void);
153
154 static void init_remote_cisco_ops (void);
155
156 static struct target_ops remote_cisco_ops;
157
158 static void remote_stop (void);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int remote_query (int /*char */ , char *, char *, int *);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, char *bin, int count);
191
192 static int bin2hex (const char *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 void _initialize_remote (void);
205
206 /* Description of the remote protocol. Strictly speaking, when the
207 target is open()ed, remote.c should create a per-target description
208 of the remote protocol using that target's architecture.
209 Unfortunatly, the target stack doesn't include local state. For
210 the moment keep the information in the target's architecture
211 object. Sigh.. */
212
213 struct packet_reg
214 {
215 long offset; /* Offset into G packet. */
216 long regnum; /* GDB's internal register number. */
217 LONGEST pnum; /* Remote protocol register number. */
218 int in_g_packet; /* Always part of G packet. */
219 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
220 /* char *name; == REGISTER_NAME (regnum); at present. */
221 };
222
223 struct remote_state
224 {
225 /* Description of the remote protocol registers. */
226 long sizeof_g_packet;
227
228 /* Description of the remote protocol registers indexed by REGNUM
229 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
230 struct packet_reg *regs;
231
232 /* This is the size (in chars) of the first response to the ``g''
233 packet. It is used as a heuristic when determining the maximum
234 size of memory-read and memory-write packets. A target will
235 typically only reserve a buffer large enough to hold the ``g''
236 packet. The size does not include packet overhead (headers and
237 trailers). */
238 long actual_register_packet_size;
239
240 /* This is the maximum size (in chars) of a non read/write packet.
241 It is also used as a cap on the size of read/write packets. */
242 long remote_packet_size;
243 };
244
245
246 /* Handle for retreving the remote protocol data from gdbarch. */
247 static struct gdbarch_data *remote_gdbarch_data_handle;
248
249 static struct remote_state *
250 get_remote_state (void)
251 {
252 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
253 }
254
255 static void *
256 init_remote_state (struct gdbarch *gdbarch)
257 {
258 int regnum;
259 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
260
261 if (DEPRECATED_REGISTER_BYTES != 0)
262 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
263 else
264 rs->sizeof_g_packet = 0;
265
266 /* Assume a 1:1 regnum<->pnum table. */
267 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
268 struct packet_reg);
269 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
270 {
271 struct packet_reg *r = &rs->regs[regnum];
272 r->pnum = regnum;
273 r->regnum = regnum;
274 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
275 r->in_g_packet = (regnum < NUM_REGS);
276 /* ...name = REGISTER_NAME (regnum); */
277
278 /* Compute packet size by accumulating the size of all registers. */
279 if (DEPRECATED_REGISTER_BYTES == 0)
280 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
281 }
282
283 /* Default maximum number of characters in a packet body. Many
284 remote stubs have a hardwired buffer size of 400 bytes
285 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
286 as the maximum packet-size to ensure that the packet and an extra
287 NUL character can always fit in the buffer. This stops GDB
288 trashing stubs that try to squeeze an extra NUL into what is
289 already a full buffer (As of 1999-12-04 that was most stubs. */
290 rs->remote_packet_size = 400 - 1;
291
292 /* Should rs->sizeof_g_packet needs more space than the
293 default, adjust the size accordingly. Remember that each byte is
294 encoded as two characters. 32 is the overhead for the packet
295 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
296 (``$NN:G...#NN'') is a better guess, the below has been padded a
297 little. */
298 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
299 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
300
301 /* This one is filled in when a ``g'' packet is received. */
302 rs->actual_register_packet_size = 0;
303
304 return rs;
305 }
306
307 static struct packet_reg *
308 packet_reg_from_regnum (struct remote_state *rs, long regnum)
309 {
310 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
311 return NULL;
312 else
313 {
314 struct packet_reg *r = &rs->regs[regnum];
315 gdb_assert (r->regnum == regnum);
316 return r;
317 }
318 }
319
320 static struct packet_reg *
321 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
322 {
323 int i;
324 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
325 {
326 struct packet_reg *r = &rs->regs[i];
327 if (r->pnum == pnum)
328 return r;
329 }
330 return NULL;
331 }
332
333 /* FIXME: graces/2002-08-08: These variables should eventually be
334 bound to an instance of the target object (as in gdbarch-tdep()),
335 when such a thing exists. */
336
337 /* This is set to the data address of the access causing the target
338 to stop for a watchpoint. */
339 static CORE_ADDR remote_watch_data_address;
340
341 /* This is non-zero if taregt stopped for a watchpoint. */
342 static int remote_stopped_by_watchpoint_p;
343
344
345 static struct target_ops remote_ops;
346
347 static struct target_ops extended_remote_ops;
348
349 /* Temporary target ops. Just like the remote_ops and
350 extended_remote_ops, but with asynchronous support. */
351 static struct target_ops remote_async_ops;
352
353 static struct target_ops extended_async_remote_ops;
354
355 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
356 ``forever'' still use the normal timeout mechanism. This is
357 currently used by the ASYNC code to guarentee that target reads
358 during the initial connect always time-out. Once getpkt has been
359 modified to return a timeout indication and, in turn
360 remote_wait()/wait_for_inferior() have gained a timeout parameter
361 this can go away. */
362 static int wait_forever_enabled_p = 1;
363
364
365 /* This variable chooses whether to send a ^C or a break when the user
366 requests program interruption. Although ^C is usually what remote
367 systems expect, and that is the default here, sometimes a break is
368 preferable instead. */
369
370 static int remote_break;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 static struct serial *remote_desc = NULL;
376
377 /* This is set by the target (thru the 'S' message)
378 to denote that the target is in kernel mode. */
379 static int cisco_kernel_mode = 0;
380
381 /* This variable sets the number of bits in an address that are to be
382 sent in a memory ("M" or "m") packet. Normally, after stripping
383 leading zeros, the entire address would be sent. This variable
384 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
385 initial implementation of remote.c restricted the address sent in
386 memory packets to ``host::sizeof long'' bytes - (typically 32
387 bits). Consequently, for 64 bit targets, the upper 32 bits of an
388 address was never sent. Since fixing this bug may cause a break in
389 some remote targets this variable is principly provided to
390 facilitate backward compatibility. */
391
392 static int remote_address_size;
393
394 /* Tempoary to track who currently owns the terminal. See
395 target_async_terminal_* for more details. */
396
397 static int remote_async_terminal_ours_p;
398
399 \f
400 /* User configurable variables for the number of characters in a
401 memory read/write packet. MIN ((rs->remote_packet_size),
402 rs->sizeof_g_packet) is the default. Some targets need smaller
403 values (fifo overruns, et.al.) and some users need larger values
404 (speed up transfers). The variables ``preferred_*'' (the user
405 request), ``current_*'' (what was actually set) and ``forced_*''
406 (Positive - a soft limit, negative - a hard limit). */
407
408 struct memory_packet_config
409 {
410 char *name;
411 long size;
412 int fixed_p;
413 };
414
415 /* Compute the current size of a read/write packet. Since this makes
416 use of ``actual_register_packet_size'' the computation is dynamic. */
417
418 static long
419 get_memory_packet_size (struct memory_packet_config *config)
420 {
421 struct remote_state *rs = get_remote_state ();
422 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
423 law?) that some hosts don't cope very well with large alloca()
424 calls. Eventually the alloca() code will be replaced by calls to
425 xmalloc() and make_cleanups() allowing this restriction to either
426 be lifted or removed. */
427 #ifndef MAX_REMOTE_PACKET_SIZE
428 #define MAX_REMOTE_PACKET_SIZE 16384
429 #endif
430 /* NOTE: 16 is just chosen at random. */
431 #ifndef MIN_REMOTE_PACKET_SIZE
432 #define MIN_REMOTE_PACKET_SIZE 16
433 #endif
434 long what_they_get;
435 if (config->fixed_p)
436 {
437 if (config->size <= 0)
438 what_they_get = MAX_REMOTE_PACKET_SIZE;
439 else
440 what_they_get = config->size;
441 }
442 else
443 {
444 what_they_get = (rs->remote_packet_size);
445 /* Limit the packet to the size specified by the user. */
446 if (config->size > 0
447 && what_they_get > config->size)
448 what_they_get = config->size;
449 /* Limit it to the size of the targets ``g'' response. */
450 if ((rs->actual_register_packet_size) > 0
451 && what_they_get > (rs->actual_register_packet_size))
452 what_they_get = (rs->actual_register_packet_size);
453 }
454 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
455 what_they_get = MAX_REMOTE_PACKET_SIZE;
456 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
457 what_they_get = MIN_REMOTE_PACKET_SIZE;
458 return what_they_get;
459 }
460
461 /* Update the size of a read/write packet. If they user wants
462 something really big then do a sanity check. */
463
464 static void
465 set_memory_packet_size (char *args, struct memory_packet_config *config)
466 {
467 int fixed_p = config->fixed_p;
468 long size = config->size;
469 if (args == NULL)
470 error ("Argument required (integer, `fixed' or `limited').");
471 else if (strcmp (args, "hard") == 0
472 || strcmp (args, "fixed") == 0)
473 fixed_p = 1;
474 else if (strcmp (args, "soft") == 0
475 || strcmp (args, "limit") == 0)
476 fixed_p = 0;
477 else
478 {
479 char *end;
480 size = strtoul (args, &end, 0);
481 if (args == end)
482 error ("Invalid %s (bad syntax).", config->name);
483 #if 0
484 /* Instead of explicitly capping the size of a packet to
485 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
486 instead allowed to set the size to something arbitrarily
487 large. */
488 if (size > MAX_REMOTE_PACKET_SIZE)
489 error ("Invalid %s (too large).", config->name);
490 #endif
491 }
492 /* Extra checks? */
493 if (fixed_p && !config->fixed_p)
494 {
495 if (! query ("The target may not be able to correctly handle a %s\n"
496 "of %ld bytes. Change the packet size? ",
497 config->name, size))
498 error ("Packet size not changed.");
499 }
500 /* Update the config. */
501 config->fixed_p = fixed_p;
502 config->size = size;
503 }
504
505 static void
506 show_memory_packet_size (struct memory_packet_config *config)
507 {
508 printf_filtered ("The %s is %ld. ", config->name, config->size);
509 if (config->fixed_p)
510 printf_filtered ("Packets are fixed at %ld bytes.\n",
511 get_memory_packet_size (config));
512 else
513 printf_filtered ("Packets are limited to %ld bytes.\n",
514 get_memory_packet_size (config));
515 }
516
517 static struct memory_packet_config memory_write_packet_config =
518 {
519 "memory-write-packet-size",
520 };
521
522 static void
523 set_memory_write_packet_size (char *args, int from_tty)
524 {
525 set_memory_packet_size (args, &memory_write_packet_config);
526 }
527
528 static void
529 show_memory_write_packet_size (char *args, int from_tty)
530 {
531 show_memory_packet_size (&memory_write_packet_config);
532 }
533
534 static long
535 get_memory_write_packet_size (void)
536 {
537 return get_memory_packet_size (&memory_write_packet_config);
538 }
539
540 static struct memory_packet_config memory_read_packet_config =
541 {
542 "memory-read-packet-size",
543 };
544
545 static void
546 set_memory_read_packet_size (char *args, int from_tty)
547 {
548 set_memory_packet_size (args, &memory_read_packet_config);
549 }
550
551 static void
552 show_memory_read_packet_size (char *args, int from_tty)
553 {
554 show_memory_packet_size (&memory_read_packet_config);
555 }
556
557 static long
558 get_memory_read_packet_size (void)
559 {
560 struct remote_state *rs = get_remote_state ();
561 long size = get_memory_packet_size (&memory_read_packet_config);
562 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
563 extra buffer size argument before the memory read size can be
564 increased beyond (rs->remote_packet_size). */
565 if (size > (rs->remote_packet_size))
566 size = (rs->remote_packet_size);
567 return size;
568 }
569
570 \f
571 /* Generic configuration support for packets the stub optionally
572 supports. Allows the user to specify the use of the packet as well
573 as allowing GDB to auto-detect support in the remote stub. */
574
575 enum packet_support
576 {
577 PACKET_SUPPORT_UNKNOWN = 0,
578 PACKET_ENABLE,
579 PACKET_DISABLE
580 };
581
582 struct packet_config
583 {
584 char *name;
585 char *title;
586 enum auto_boolean detect;
587 enum packet_support support;
588 };
589
590 /* Analyze a packet's return value and update the packet config
591 accordingly. */
592
593 enum packet_result
594 {
595 PACKET_ERROR,
596 PACKET_OK,
597 PACKET_UNKNOWN
598 };
599
600 static void
601 update_packet_config (struct packet_config *config)
602 {
603 switch (config->detect)
604 {
605 case AUTO_BOOLEAN_TRUE:
606 config->support = PACKET_ENABLE;
607 break;
608 case AUTO_BOOLEAN_FALSE:
609 config->support = PACKET_DISABLE;
610 break;
611 case AUTO_BOOLEAN_AUTO:
612 config->support = PACKET_SUPPORT_UNKNOWN;
613 break;
614 }
615 }
616
617 static void
618 show_packet_config_cmd (struct packet_config *config)
619 {
620 char *support = "internal-error";
621 switch (config->support)
622 {
623 case PACKET_ENABLE:
624 support = "enabled";
625 break;
626 case PACKET_DISABLE:
627 support = "disabled";
628 break;
629 case PACKET_SUPPORT_UNKNOWN:
630 support = "unknown";
631 break;
632 }
633 switch (config->detect)
634 {
635 case AUTO_BOOLEAN_AUTO:
636 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
637 config->name, config->title, support);
638 break;
639 case AUTO_BOOLEAN_TRUE:
640 case AUTO_BOOLEAN_FALSE:
641 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
642 config->name, config->title, support);
643 break;
644 }
645 }
646
647 static void
648 add_packet_config_cmd (struct packet_config *config,
649 char *name,
650 char *title,
651 cmd_sfunc_ftype *set_func,
652 cmd_sfunc_ftype *show_func,
653 struct cmd_list_element **set_remote_list,
654 struct cmd_list_element **show_remote_list,
655 int legacy)
656 {
657 struct cmd_list_element *set_cmd;
658 struct cmd_list_element *show_cmd;
659 char *set_doc;
660 char *show_doc;
661 char *cmd_name;
662 config->name = name;
663 config->title = title;
664 config->detect = AUTO_BOOLEAN_AUTO;
665 config->support = PACKET_SUPPORT_UNKNOWN;
666 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
667 name, title);
668 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
669 name, title);
670 /* set/show TITLE-packet {auto,on,off} */
671 xasprintf (&cmd_name, "%s-packet", title);
672 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
673 &config->detect, set_doc, show_doc,
674 set_func, show_func,
675 set_remote_list, show_remote_list);
676 /* set/show remote NAME-packet {auto,on,off} -- legacy */
677 if (legacy)
678 {
679 char *legacy_name;
680 xasprintf (&legacy_name, "%s-packet", name);
681 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
682 set_remote_list);
683 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
684 show_remote_list);
685 }
686 }
687
688 static enum packet_result
689 packet_ok (const char *buf, struct packet_config *config)
690 {
691 if (buf[0] != '\0')
692 {
693 /* The stub recognized the packet request. Check that the
694 operation succeeded. */
695 switch (config->support)
696 {
697 case PACKET_SUPPORT_UNKNOWN:
698 if (remote_debug)
699 fprintf_unfiltered (gdb_stdlog,
700 "Packet %s (%s) is supported\n",
701 config->name, config->title);
702 config->support = PACKET_ENABLE;
703 break;
704 case PACKET_DISABLE:
705 internal_error (__FILE__, __LINE__,
706 "packet_ok: attempt to use a disabled packet");
707 break;
708 case PACKET_ENABLE:
709 break;
710 }
711 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
712 /* "OK" - definitly OK. */
713 return PACKET_OK;
714 if (buf[0] == 'E'
715 && isxdigit (buf[1]) && isxdigit (buf[2])
716 && buf[3] == '\0')
717 /* "Enn" - definitly an error. */
718 return PACKET_ERROR;
719 /* The packet may or may not be OK. Just assume it is */
720 return PACKET_OK;
721 }
722 else
723 {
724 /* The stub does not support the packet. */
725 switch (config->support)
726 {
727 case PACKET_ENABLE:
728 if (config->detect == AUTO_BOOLEAN_AUTO)
729 /* If the stub previously indicated that the packet was
730 supported then there is a protocol error.. */
731 error ("Protocol error: %s (%s) conflicting enabled responses.",
732 config->name, config->title);
733 else
734 /* The user set it wrong. */
735 error ("Enabled packet %s (%s) not recognized by stub",
736 config->name, config->title);
737 break;
738 case PACKET_SUPPORT_UNKNOWN:
739 if (remote_debug)
740 fprintf_unfiltered (gdb_stdlog,
741 "Packet %s (%s) is NOT supported\n",
742 config->name, config->title);
743 config->support = PACKET_DISABLE;
744 break;
745 case PACKET_DISABLE:
746 break;
747 }
748 return PACKET_UNKNOWN;
749 }
750 }
751
752 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
753 static struct packet_config remote_protocol_qSymbol;
754
755 static void
756 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
757 struct cmd_list_element *c)
758 {
759 update_packet_config (&remote_protocol_qSymbol);
760 }
761
762 static void
763 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
764 struct cmd_list_element *c)
765 {
766 show_packet_config_cmd (&remote_protocol_qSymbol);
767 }
768
769 /* Should we try the 'e' (step over range) request? */
770 static struct packet_config remote_protocol_e;
771
772 static void
773 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
774 struct cmd_list_element *c)
775 {
776 update_packet_config (&remote_protocol_e);
777 }
778
779 static void
780 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
781 struct cmd_list_element *c)
782 {
783 show_packet_config_cmd (&remote_protocol_e);
784 }
785
786
787 /* Should we try the 'E' (step over range / w signal #) request? */
788 static struct packet_config remote_protocol_E;
789
790 static void
791 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
792 struct cmd_list_element *c)
793 {
794 update_packet_config (&remote_protocol_E);
795 }
796
797 static void
798 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
799 struct cmd_list_element *c)
800 {
801 show_packet_config_cmd (&remote_protocol_E);
802 }
803
804
805 /* Should we try the 'P' (set register) request? */
806
807 static struct packet_config remote_protocol_P;
808
809 static void
810 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
811 struct cmd_list_element *c)
812 {
813 update_packet_config (&remote_protocol_P);
814 }
815
816 static void
817 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
818 struct cmd_list_element *c)
819 {
820 show_packet_config_cmd (&remote_protocol_P);
821 }
822
823 /* Should we try one of the 'Z' requests? */
824
825 enum Z_packet_type
826 {
827 Z_PACKET_SOFTWARE_BP,
828 Z_PACKET_HARDWARE_BP,
829 Z_PACKET_WRITE_WP,
830 Z_PACKET_READ_WP,
831 Z_PACKET_ACCESS_WP,
832 NR_Z_PACKET_TYPES
833 };
834
835 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
836
837 /* FIXME: Instead of having all these boiler plate functions, the
838 command callback should include a context argument. */
839
840 static void
841 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
842 struct cmd_list_element *c)
843 {
844 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
845 }
846
847 static void
848 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
849 struct cmd_list_element *c)
850 {
851 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
852 }
853
854 static void
855 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
856 struct cmd_list_element *c)
857 {
858 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
859 }
860
861 static void
862 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
863 struct cmd_list_element *c)
864 {
865 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
866 }
867
868 static void
869 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
870 struct cmd_list_element *c)
871 {
872 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
873 }
874
875 static void
876 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
877 struct cmd_list_element *c)
878 {
879 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
880 }
881
882 static void
883 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
884 struct cmd_list_element *c)
885 {
886 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
887 }
888
889 static void
890 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
891 struct cmd_list_element *c)
892 {
893 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
894 }
895
896 static void
897 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
898 struct cmd_list_element *c)
899 {
900 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
901 }
902
903 static void
904 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
905 struct cmd_list_element *c)
906 {
907 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
908 }
909
910 /* For compatibility with older distributions. Provide a ``set remote
911 Z-packet ...'' command that updates all the Z packet types. */
912
913 static enum auto_boolean remote_Z_packet_detect;
914
915 static void
916 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
917 struct cmd_list_element *c)
918 {
919 int i;
920 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
921 {
922 remote_protocol_Z[i].detect = remote_Z_packet_detect;
923 update_packet_config (&remote_protocol_Z[i]);
924 }
925 }
926
927 static void
928 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
929 struct cmd_list_element *c)
930 {
931 int i;
932 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
933 {
934 show_packet_config_cmd (&remote_protocol_Z[i]);
935 }
936 }
937
938 /* Should we try the 'X' (remote binary download) packet?
939
940 This variable (available to the user via "set remote X-packet")
941 dictates whether downloads are sent in binary (via the 'X' packet).
942 We assume that the stub can, and attempt to do it. This will be
943 cleared if the stub does not understand it. This switch is still
944 needed, though in cases when the packet is supported in the stub,
945 but the connection does not allow it (i.e., 7-bit serial connection
946 only). */
947
948 static struct packet_config remote_protocol_binary_download;
949
950 /* Should we try the 'ThreadInfo' query packet?
951
952 This variable (NOT available to the user: auto-detect only!)
953 determines whether GDB will use the new, simpler "ThreadInfo"
954 query or the older, more complex syntax for thread queries.
955 This is an auto-detect variable (set to true at each connect,
956 and set to false when the target fails to recognize it). */
957
958 static int use_threadinfo_query;
959 static int use_threadextra_query;
960
961 static void
962 set_remote_protocol_binary_download_cmd (char *args,
963 int from_tty,
964 struct cmd_list_element *c)
965 {
966 update_packet_config (&remote_protocol_binary_download);
967 }
968
969 static void
970 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
971 struct cmd_list_element *c)
972 {
973 show_packet_config_cmd (&remote_protocol_binary_download);
974 }
975
976
977 /* Tokens for use by the asynchronous signal handlers for SIGINT */
978 static void *sigint_remote_twice_token;
979 static void *sigint_remote_token;
980
981 /* These are pointers to hook functions that may be set in order to
982 modify resume/wait behavior for a particular architecture. */
983
984 void (*target_resume_hook) (void);
985 void (*target_wait_loop_hook) (void);
986 \f
987
988
989 /* These are the threads which we last sent to the remote system.
990 -1 for all or -2 for not sent yet. */
991 static int general_thread;
992 static int continue_thread;
993
994 /* Call this function as a result of
995 1) A halt indication (T packet) containing a thread id
996 2) A direct query of currthread
997 3) Successful execution of set thread
998 */
999
1000 static void
1001 record_currthread (int currthread)
1002 {
1003 general_thread = currthread;
1004
1005 /* If this is a new thread, add it to GDB's thread list.
1006 If we leave it up to WFI to do this, bad things will happen. */
1007 if (!in_thread_list (pid_to_ptid (currthread)))
1008 {
1009 add_thread (pid_to_ptid (currthread));
1010 ui_out_text (uiout, "[New ");
1011 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1012 ui_out_text (uiout, "]\n");
1013 }
1014 }
1015
1016 #define MAGIC_NULL_PID 42000
1017
1018 static void
1019 set_thread (int th, int gen)
1020 {
1021 struct remote_state *rs = get_remote_state ();
1022 char *buf = alloca (rs->remote_packet_size);
1023 int state = gen ? general_thread : continue_thread;
1024
1025 if (state == th)
1026 return;
1027
1028 buf[0] = 'H';
1029 buf[1] = gen ? 'g' : 'c';
1030 if (th == MAGIC_NULL_PID)
1031 {
1032 buf[2] = '0';
1033 buf[3] = '\0';
1034 }
1035 else if (th < 0)
1036 sprintf (&buf[2], "-%x", -th);
1037 else
1038 sprintf (&buf[2], "%x", th);
1039 putpkt (buf);
1040 getpkt (buf, (rs->remote_packet_size), 0);
1041 if (gen)
1042 general_thread = th;
1043 else
1044 continue_thread = th;
1045 }
1046 \f
1047 /* Return nonzero if the thread TH is still alive on the remote system. */
1048
1049 static int
1050 remote_thread_alive (ptid_t ptid)
1051 {
1052 int tid = PIDGET (ptid);
1053 char buf[16];
1054
1055 if (tid < 0)
1056 sprintf (buf, "T-%08x", -tid);
1057 else
1058 sprintf (buf, "T%08x", tid);
1059 putpkt (buf);
1060 getpkt (buf, sizeof (buf), 0);
1061 return (buf[0] == 'O' && buf[1] == 'K');
1062 }
1063
1064 /* About these extended threadlist and threadinfo packets. They are
1065 variable length packets but, the fields within them are often fixed
1066 length. They are redundent enough to send over UDP as is the
1067 remote protocol in general. There is a matching unit test module
1068 in libstub. */
1069
1070 #define OPAQUETHREADBYTES 8
1071
1072 /* a 64 bit opaque identifier */
1073 typedef unsigned char threadref[OPAQUETHREADBYTES];
1074
1075 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1076 protocol encoding, and remote.c. it is not particularly changable */
1077
1078 /* Right now, the internal structure is int. We want it to be bigger.
1079 Plan to fix this.
1080 */
1081
1082 typedef int gdb_threadref; /* internal GDB thread reference */
1083
1084 /* gdb_ext_thread_info is an internal GDB data structure which is
1085 equivalint to the reply of the remote threadinfo packet */
1086
1087 struct gdb_ext_thread_info
1088 {
1089 threadref threadid; /* External form of thread reference */
1090 int active; /* Has state interesting to GDB? , regs, stack */
1091 char display[256]; /* Brief state display, name, blocked/syspended */
1092 char shortname[32]; /* To be used to name threads */
1093 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1094 };
1095
1096 /* The volume of remote transfers can be limited by submitting
1097 a mask containing bits specifying the desired information.
1098 Use a union of these values as the 'selection' parameter to
1099 get_thread_info. FIXME: Make these TAG names more thread specific.
1100 */
1101
1102 #define TAG_THREADID 1
1103 #define TAG_EXISTS 2
1104 #define TAG_DISPLAY 4
1105 #define TAG_THREADNAME 8
1106 #define TAG_MOREDISPLAY 16
1107
1108 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1109
1110 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1111
1112 static char *unpack_nibble (char *buf, int *val);
1113
1114 static char *pack_nibble (char *buf, int nibble);
1115
1116 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1117
1118 static char *unpack_byte (char *buf, int *value);
1119
1120 static char *pack_int (char *buf, int value);
1121
1122 static char *unpack_int (char *buf, int *value);
1123
1124 static char *unpack_string (char *src, char *dest, int length);
1125
1126 static char *pack_threadid (char *pkt, threadref * id);
1127
1128 static char *unpack_threadid (char *inbuf, threadref * id);
1129
1130 void int_to_threadref (threadref * id, int value);
1131
1132 static int threadref_to_int (threadref * ref);
1133
1134 static void copy_threadref (threadref * dest, threadref * src);
1135
1136 static int threadmatch (threadref * dest, threadref * src);
1137
1138 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1139
1140 static int remote_unpack_thread_info_response (char *pkt,
1141 threadref * expectedref,
1142 struct gdb_ext_thread_info
1143 *info);
1144
1145
1146 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1147 struct gdb_ext_thread_info *info);
1148
1149 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1150 int selection,
1151 struct gdb_ext_thread_info *info);
1152
1153 static char *pack_threadlist_request (char *pkt, int startflag,
1154 int threadcount,
1155 threadref * nextthread);
1156
1157 static int parse_threadlist_response (char *pkt,
1158 int result_limit,
1159 threadref * original_echo,
1160 threadref * resultlist, int *doneflag);
1161
1162 static int remote_get_threadlist (int startflag,
1163 threadref * nextthread,
1164 int result_limit,
1165 int *done,
1166 int *result_count, threadref * threadlist);
1167
1168 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1169
1170 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1171 void *context, int looplimit);
1172
1173 static int remote_newthread_step (threadref * ref, void *context);
1174
1175 /* encode 64 bits in 16 chars of hex */
1176
1177 static const char hexchars[] = "0123456789abcdef";
1178
1179 static int
1180 ishex (int ch, int *val)
1181 {
1182 if ((ch >= 'a') && (ch <= 'f'))
1183 {
1184 *val = ch - 'a' + 10;
1185 return 1;
1186 }
1187 if ((ch >= 'A') && (ch <= 'F'))
1188 {
1189 *val = ch - 'A' + 10;
1190 return 1;
1191 }
1192 if ((ch >= '0') && (ch <= '9'))
1193 {
1194 *val = ch - '0';
1195 return 1;
1196 }
1197 return 0;
1198 }
1199
1200 static int
1201 stubhex (int ch)
1202 {
1203 if (ch >= 'a' && ch <= 'f')
1204 return ch - 'a' + 10;
1205 if (ch >= '0' && ch <= '9')
1206 return ch - '0';
1207 if (ch >= 'A' && ch <= 'F')
1208 return ch - 'A' + 10;
1209 return -1;
1210 }
1211
1212 static int
1213 stub_unpack_int (char *buff, int fieldlength)
1214 {
1215 int nibble;
1216 int retval = 0;
1217
1218 while (fieldlength)
1219 {
1220 nibble = stubhex (*buff++);
1221 retval |= nibble;
1222 fieldlength--;
1223 if (fieldlength)
1224 retval = retval << 4;
1225 }
1226 return retval;
1227 }
1228
1229 char *
1230 unpack_varlen_hex (char *buff, /* packet to parse */
1231 ULONGEST *result)
1232 {
1233 int nibble;
1234 int retval = 0;
1235
1236 while (ishex (*buff, &nibble))
1237 {
1238 buff++;
1239 retval = retval << 4;
1240 retval |= nibble & 0x0f;
1241 }
1242 *result = retval;
1243 return buff;
1244 }
1245
1246 static char *
1247 unpack_nibble (char *buf, int *val)
1248 {
1249 ishex (*buf++, val);
1250 return buf;
1251 }
1252
1253 static char *
1254 pack_nibble (char *buf, int nibble)
1255 {
1256 *buf++ = hexchars[(nibble & 0x0f)];
1257 return buf;
1258 }
1259
1260 static char *
1261 pack_hex_byte (char *pkt, int byte)
1262 {
1263 *pkt++ = hexchars[(byte >> 4) & 0xf];
1264 *pkt++ = hexchars[(byte & 0xf)];
1265 return pkt;
1266 }
1267
1268 static char *
1269 unpack_byte (char *buf, int *value)
1270 {
1271 *value = stub_unpack_int (buf, 2);
1272 return buf + 2;
1273 }
1274
1275 static char *
1276 pack_int (char *buf, int value)
1277 {
1278 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1279 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1280 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1281 buf = pack_hex_byte (buf, (value & 0xff));
1282 return buf;
1283 }
1284
1285 static char *
1286 unpack_int (char *buf, int *value)
1287 {
1288 *value = stub_unpack_int (buf, 8);
1289 return buf + 8;
1290 }
1291
1292 #if 0 /* currently unused, uncomment when needed */
1293 static char *pack_string (char *pkt, char *string);
1294
1295 static char *
1296 pack_string (char *pkt, char *string)
1297 {
1298 char ch;
1299 int len;
1300
1301 len = strlen (string);
1302 if (len > 200)
1303 len = 200; /* Bigger than most GDB packets, junk??? */
1304 pkt = pack_hex_byte (pkt, len);
1305 while (len-- > 0)
1306 {
1307 ch = *string++;
1308 if ((ch == '\0') || (ch == '#'))
1309 ch = '*'; /* Protect encapsulation */
1310 *pkt++ = ch;
1311 }
1312 return pkt;
1313 }
1314 #endif /* 0 (unused) */
1315
1316 static char *
1317 unpack_string (char *src, char *dest, int length)
1318 {
1319 while (length--)
1320 *dest++ = *src++;
1321 *dest = '\0';
1322 return src;
1323 }
1324
1325 static char *
1326 pack_threadid (char *pkt, threadref *id)
1327 {
1328 char *limit;
1329 unsigned char *altid;
1330
1331 altid = (unsigned char *) id;
1332 limit = pkt + BUF_THREAD_ID_SIZE;
1333 while (pkt < limit)
1334 pkt = pack_hex_byte (pkt, *altid++);
1335 return pkt;
1336 }
1337
1338
1339 static char *
1340 unpack_threadid (char *inbuf, threadref *id)
1341 {
1342 char *altref;
1343 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1344 int x, y;
1345
1346 altref = (char *) id;
1347
1348 while (inbuf < limit)
1349 {
1350 x = stubhex (*inbuf++);
1351 y = stubhex (*inbuf++);
1352 *altref++ = (x << 4) | y;
1353 }
1354 return inbuf;
1355 }
1356
1357 /* Externally, threadrefs are 64 bits but internally, they are still
1358 ints. This is due to a mismatch of specifications. We would like
1359 to use 64bit thread references internally. This is an adapter
1360 function. */
1361
1362 void
1363 int_to_threadref (threadref *id, int value)
1364 {
1365 unsigned char *scan;
1366
1367 scan = (unsigned char *) id;
1368 {
1369 int i = 4;
1370 while (i--)
1371 *scan++ = 0;
1372 }
1373 *scan++ = (value >> 24) & 0xff;
1374 *scan++ = (value >> 16) & 0xff;
1375 *scan++ = (value >> 8) & 0xff;
1376 *scan++ = (value & 0xff);
1377 }
1378
1379 static int
1380 threadref_to_int (threadref *ref)
1381 {
1382 int i, value = 0;
1383 unsigned char *scan;
1384
1385 scan = (char *) ref;
1386 scan += 4;
1387 i = 4;
1388 while (i-- > 0)
1389 value = (value << 8) | ((*scan++) & 0xff);
1390 return value;
1391 }
1392
1393 static void
1394 copy_threadref (threadref *dest, threadref *src)
1395 {
1396 int i;
1397 unsigned char *csrc, *cdest;
1398
1399 csrc = (unsigned char *) src;
1400 cdest = (unsigned char *) dest;
1401 i = 8;
1402 while (i--)
1403 *cdest++ = *csrc++;
1404 }
1405
1406 static int
1407 threadmatch (threadref *dest, threadref *src)
1408 {
1409 /* things are broken right now, so just assume we got a match */
1410 #if 0
1411 unsigned char *srcp, *destp;
1412 int i, result;
1413 srcp = (char *) src;
1414 destp = (char *) dest;
1415
1416 result = 1;
1417 while (i-- > 0)
1418 result &= (*srcp++ == *destp++) ? 1 : 0;
1419 return result;
1420 #endif
1421 return 1;
1422 }
1423
1424 /*
1425 threadid:1, # always request threadid
1426 context_exists:2,
1427 display:4,
1428 unique_name:8,
1429 more_display:16
1430 */
1431
1432 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1433
1434 static char *
1435 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1436 {
1437 *pkt++ = 'q'; /* Info Query */
1438 *pkt++ = 'P'; /* process or thread info */
1439 pkt = pack_int (pkt, mode); /* mode */
1440 pkt = pack_threadid (pkt, id); /* threadid */
1441 *pkt = '\0'; /* terminate */
1442 return pkt;
1443 }
1444
1445 /* These values tag the fields in a thread info response packet */
1446 /* Tagging the fields allows us to request specific fields and to
1447 add more fields as time goes by */
1448
1449 #define TAG_THREADID 1 /* Echo the thread identifier */
1450 #define TAG_EXISTS 2 /* Is this process defined enough to
1451 fetch registers and its stack */
1452 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1453 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1454 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1455 the process */
1456
1457 static int
1458 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1459 struct gdb_ext_thread_info *info)
1460 {
1461 struct remote_state *rs = get_remote_state ();
1462 int mask, length;
1463 unsigned int tag;
1464 threadref ref;
1465 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1466 int retval = 1;
1467
1468 /* info->threadid = 0; FIXME: implement zero_threadref */
1469 info->active = 0;
1470 info->display[0] = '\0';
1471 info->shortname[0] = '\0';
1472 info->more_display[0] = '\0';
1473
1474 /* Assume the characters indicating the packet type have been stripped */
1475 pkt = unpack_int (pkt, &mask); /* arg mask */
1476 pkt = unpack_threadid (pkt, &ref);
1477
1478 if (mask == 0)
1479 warning ("Incomplete response to threadinfo request\n");
1480 if (!threadmatch (&ref, expectedref))
1481 { /* This is an answer to a different request */
1482 warning ("ERROR RMT Thread info mismatch\n");
1483 return 0;
1484 }
1485 copy_threadref (&info->threadid, &ref);
1486
1487 /* Loop on tagged fields , try to bail if somthing goes wrong */
1488
1489 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1490 {
1491 pkt = unpack_int (pkt, &tag); /* tag */
1492 pkt = unpack_byte (pkt, &length); /* length */
1493 if (!(tag & mask)) /* tags out of synch with mask */
1494 {
1495 warning ("ERROR RMT: threadinfo tag mismatch\n");
1496 retval = 0;
1497 break;
1498 }
1499 if (tag == TAG_THREADID)
1500 {
1501 if (length != 16)
1502 {
1503 warning ("ERROR RMT: length of threadid is not 16\n");
1504 retval = 0;
1505 break;
1506 }
1507 pkt = unpack_threadid (pkt, &ref);
1508 mask = mask & ~TAG_THREADID;
1509 continue;
1510 }
1511 if (tag == TAG_EXISTS)
1512 {
1513 info->active = stub_unpack_int (pkt, length);
1514 pkt += length;
1515 mask = mask & ~(TAG_EXISTS);
1516 if (length > 8)
1517 {
1518 warning ("ERROR RMT: 'exists' length too long\n");
1519 retval = 0;
1520 break;
1521 }
1522 continue;
1523 }
1524 if (tag == TAG_THREADNAME)
1525 {
1526 pkt = unpack_string (pkt, &info->shortname[0], length);
1527 mask = mask & ~TAG_THREADNAME;
1528 continue;
1529 }
1530 if (tag == TAG_DISPLAY)
1531 {
1532 pkt = unpack_string (pkt, &info->display[0], length);
1533 mask = mask & ~TAG_DISPLAY;
1534 continue;
1535 }
1536 if (tag == TAG_MOREDISPLAY)
1537 {
1538 pkt = unpack_string (pkt, &info->more_display[0], length);
1539 mask = mask & ~TAG_MOREDISPLAY;
1540 continue;
1541 }
1542 warning ("ERROR RMT: unknown thread info tag\n");
1543 break; /* Not a tag we know about */
1544 }
1545 return retval;
1546 }
1547
1548 static int
1549 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1550 struct gdb_ext_thread_info *info)
1551 {
1552 struct remote_state *rs = get_remote_state ();
1553 int result;
1554 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1555
1556 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1557 putpkt (threadinfo_pkt);
1558 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1559 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1560 info);
1561 return result;
1562 }
1563
1564 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1565 representation of a threadid. */
1566
1567 static int
1568 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1569 struct gdb_ext_thread_info *info)
1570 {
1571 threadref lclref;
1572
1573 int_to_threadref (&lclref, *ref);
1574 return remote_get_threadinfo (&lclref, selection, info);
1575 }
1576
1577 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1578
1579 static char *
1580 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1581 threadref *nextthread)
1582 {
1583 *pkt++ = 'q'; /* info query packet */
1584 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1585 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1586 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1587 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1588 *pkt = '\0';
1589 return pkt;
1590 }
1591
1592 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1593
1594 static int
1595 parse_threadlist_response (char *pkt, int result_limit,
1596 threadref *original_echo, threadref *resultlist,
1597 int *doneflag)
1598 {
1599 struct remote_state *rs = get_remote_state ();
1600 char *limit;
1601 int count, resultcount, done;
1602
1603 resultcount = 0;
1604 /* Assume the 'q' and 'M chars have been stripped. */
1605 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1606 pkt = unpack_byte (pkt, &count); /* count field */
1607 pkt = unpack_nibble (pkt, &done);
1608 /* The first threadid is the argument threadid. */
1609 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1610 while ((count-- > 0) && (pkt < limit))
1611 {
1612 pkt = unpack_threadid (pkt, resultlist++);
1613 if (resultcount++ >= result_limit)
1614 break;
1615 }
1616 if (doneflag)
1617 *doneflag = done;
1618 return resultcount;
1619 }
1620
1621 static int
1622 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1623 int *done, int *result_count, threadref *threadlist)
1624 {
1625 struct remote_state *rs = get_remote_state ();
1626 static threadref echo_nextthread;
1627 char *threadlist_packet = alloca (rs->remote_packet_size);
1628 char *t_response = alloca (rs->remote_packet_size);
1629 int result = 1;
1630
1631 /* Trancate result limit to be smaller than the packet size */
1632 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1633 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1634
1635 pack_threadlist_request (threadlist_packet,
1636 startflag, result_limit, nextthread);
1637 putpkt (threadlist_packet);
1638 getpkt (t_response, (rs->remote_packet_size), 0);
1639
1640 *result_count =
1641 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1642 threadlist, done);
1643
1644 if (!threadmatch (&echo_nextthread, nextthread))
1645 {
1646 /* FIXME: This is a good reason to drop the packet */
1647 /* Possably, there is a duplicate response */
1648 /* Possabilities :
1649 retransmit immediatly - race conditions
1650 retransmit after timeout - yes
1651 exit
1652 wait for packet, then exit
1653 */
1654 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1655 return 0; /* I choose simply exiting */
1656 }
1657 if (*result_count <= 0)
1658 {
1659 if (*done != 1)
1660 {
1661 warning ("RMT ERROR : failed to get remote thread list\n");
1662 result = 0;
1663 }
1664 return result; /* break; */
1665 }
1666 if (*result_count > result_limit)
1667 {
1668 *result_count = 0;
1669 warning ("RMT ERROR: threadlist response longer than requested\n");
1670 return 0;
1671 }
1672 return result;
1673 }
1674
1675 /* This is the interface between remote and threads, remotes upper interface */
1676
1677 /* remote_find_new_threads retrieves the thread list and for each
1678 thread in the list, looks up the thread in GDB's internal list,
1679 ading the thread if it does not already exist. This involves
1680 getting partial thread lists from the remote target so, polling the
1681 quit_flag is required. */
1682
1683
1684 /* About this many threadisds fit in a packet. */
1685
1686 #define MAXTHREADLISTRESULTS 32
1687
1688 static int
1689 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1690 int looplimit)
1691 {
1692 int done, i, result_count;
1693 int startflag = 1;
1694 int result = 1;
1695 int loopcount = 0;
1696 static threadref nextthread;
1697 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1698
1699 done = 0;
1700 while (!done)
1701 {
1702 if (loopcount++ > looplimit)
1703 {
1704 result = 0;
1705 warning ("Remote fetch threadlist -infinite loop-\n");
1706 break;
1707 }
1708 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1709 &done, &result_count, resultthreadlist))
1710 {
1711 result = 0;
1712 break;
1713 }
1714 /* clear for later iterations */
1715 startflag = 0;
1716 /* Setup to resume next batch of thread references, set nextthread. */
1717 if (result_count >= 1)
1718 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1719 i = 0;
1720 while (result_count--)
1721 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1722 break;
1723 }
1724 return result;
1725 }
1726
1727 static int
1728 remote_newthread_step (threadref *ref, void *context)
1729 {
1730 ptid_t ptid;
1731
1732 ptid = pid_to_ptid (threadref_to_int (ref));
1733
1734 if (!in_thread_list (ptid))
1735 add_thread (ptid);
1736 return 1; /* continue iterator */
1737 }
1738
1739 #define CRAZY_MAX_THREADS 1000
1740
1741 static ptid_t
1742 remote_current_thread (ptid_t oldpid)
1743 {
1744 struct remote_state *rs = get_remote_state ();
1745 char *buf = alloca (rs->remote_packet_size);
1746
1747 putpkt ("qC");
1748 getpkt (buf, (rs->remote_packet_size), 0);
1749 if (buf[0] == 'Q' && buf[1] == 'C')
1750 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1751 else
1752 return oldpid;
1753 }
1754
1755 /* Find new threads for info threads command.
1756 * Original version, using John Metzler's thread protocol.
1757 */
1758
1759 static void
1760 remote_find_new_threads (void)
1761 {
1762 remote_threadlist_iterator (remote_newthread_step, 0,
1763 CRAZY_MAX_THREADS);
1764 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1765 inferior_ptid = remote_current_thread (inferior_ptid);
1766 }
1767
1768 /*
1769 * Find all threads for info threads command.
1770 * Uses new thread protocol contributed by Cisco.
1771 * Falls back and attempts to use the older method (above)
1772 * if the target doesn't respond to the new method.
1773 */
1774
1775 static void
1776 remote_threads_info (void)
1777 {
1778 struct remote_state *rs = get_remote_state ();
1779 char *buf = alloca (rs->remote_packet_size);
1780 char *bufp;
1781 int tid;
1782
1783 if (remote_desc == 0) /* paranoia */
1784 error ("Command can only be used when connected to the remote target.");
1785
1786 if (use_threadinfo_query)
1787 {
1788 putpkt ("qfThreadInfo");
1789 bufp = buf;
1790 getpkt (bufp, (rs->remote_packet_size), 0);
1791 if (bufp[0] != '\0') /* q packet recognized */
1792 {
1793 while (*bufp++ == 'm') /* reply contains one or more TID */
1794 {
1795 do
1796 {
1797 tid = strtol (bufp, &bufp, 16);
1798 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1799 add_thread (pid_to_ptid (tid));
1800 }
1801 while (*bufp++ == ','); /* comma-separated list */
1802 putpkt ("qsThreadInfo");
1803 bufp = buf;
1804 getpkt (bufp, (rs->remote_packet_size), 0);
1805 }
1806 return; /* done */
1807 }
1808 }
1809
1810 /* Else fall back to old method based on jmetzler protocol. */
1811 use_threadinfo_query = 0;
1812 remote_find_new_threads ();
1813 return;
1814 }
1815
1816 /*
1817 * Collect a descriptive string about the given thread.
1818 * The target may say anything it wants to about the thread
1819 * (typically info about its blocked / runnable state, name, etc.).
1820 * This string will appear in the info threads display.
1821 *
1822 * Optional: targets are not required to implement this function.
1823 */
1824
1825 static char *
1826 remote_threads_extra_info (struct thread_info *tp)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 int result;
1830 int set;
1831 threadref id;
1832 struct gdb_ext_thread_info threadinfo;
1833 static char display_buf[100]; /* arbitrary... */
1834 char *bufp = alloca (rs->remote_packet_size);
1835 int n = 0; /* position in display_buf */
1836
1837 if (remote_desc == 0) /* paranoia */
1838 internal_error (__FILE__, __LINE__,
1839 "remote_threads_extra_info");
1840
1841 if (use_threadextra_query)
1842 {
1843 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1844 putpkt (bufp);
1845 getpkt (bufp, (rs->remote_packet_size), 0);
1846 if (bufp[0] != 0)
1847 {
1848 n = min (strlen (bufp) / 2, sizeof (display_buf));
1849 result = hex2bin (bufp, display_buf, n);
1850 display_buf [result] = '\0';
1851 return display_buf;
1852 }
1853 }
1854
1855 /* If the above query fails, fall back to the old method. */
1856 use_threadextra_query = 0;
1857 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1858 | TAG_MOREDISPLAY | TAG_DISPLAY;
1859 int_to_threadref (&id, PIDGET (tp->ptid));
1860 if (remote_get_threadinfo (&id, set, &threadinfo))
1861 if (threadinfo.active)
1862 {
1863 if (*threadinfo.shortname)
1864 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1865 if (*threadinfo.display)
1866 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1867 if (*threadinfo.more_display)
1868 n += sprintf(&display_buf[n], " Priority: %s",
1869 threadinfo.more_display);
1870
1871 if (n > 0)
1872 {
1873 /* for purely cosmetic reasons, clear up trailing commas */
1874 if (',' == display_buf[n-1])
1875 display_buf[n-1] = ' ';
1876 return display_buf;
1877 }
1878 }
1879 return NULL;
1880 }
1881
1882 \f
1883
1884 /* Restart the remote side; this is an extended protocol operation. */
1885
1886 static void
1887 extended_remote_restart (void)
1888 {
1889 struct remote_state *rs = get_remote_state ();
1890 char *buf = alloca (rs->remote_packet_size);
1891
1892 /* Send the restart command; for reasons I don't understand the
1893 remote side really expects a number after the "R". */
1894 buf[0] = 'R';
1895 sprintf (&buf[1], "%x", 0);
1896 putpkt (buf);
1897
1898 /* Now query for status so this looks just like we restarted
1899 gdbserver from scratch. */
1900 putpkt ("?");
1901 getpkt (buf, (rs->remote_packet_size), 0);
1902 }
1903 \f
1904 /* Clean up connection to a remote debugger. */
1905
1906 static void
1907 remote_close (int quitting)
1908 {
1909 if (remote_desc)
1910 serial_close (remote_desc);
1911 remote_desc = NULL;
1912 }
1913
1914 /* Query the remote side for the text, data and bss offsets. */
1915
1916 static void
1917 get_offsets (void)
1918 {
1919 struct remote_state *rs = get_remote_state ();
1920 char *buf = alloca (rs->remote_packet_size);
1921 char *ptr;
1922 int lose;
1923 CORE_ADDR text_addr, data_addr, bss_addr;
1924 struct section_offsets *offs;
1925
1926 putpkt ("qOffsets");
1927
1928 getpkt (buf, (rs->remote_packet_size), 0);
1929
1930 if (buf[0] == '\000')
1931 return; /* Return silently. Stub doesn't support
1932 this command. */
1933 if (buf[0] == 'E')
1934 {
1935 warning ("Remote failure reply: %s", buf);
1936 return;
1937 }
1938
1939 /* Pick up each field in turn. This used to be done with scanf, but
1940 scanf will make trouble if CORE_ADDR size doesn't match
1941 conversion directives correctly. The following code will work
1942 with any size of CORE_ADDR. */
1943 text_addr = data_addr = bss_addr = 0;
1944 ptr = buf;
1945 lose = 0;
1946
1947 if (strncmp (ptr, "Text=", 5) == 0)
1948 {
1949 ptr += 5;
1950 /* Don't use strtol, could lose on big values. */
1951 while (*ptr && *ptr != ';')
1952 text_addr = (text_addr << 4) + fromhex (*ptr++);
1953 }
1954 else
1955 lose = 1;
1956
1957 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1958 {
1959 ptr += 6;
1960 while (*ptr && *ptr != ';')
1961 data_addr = (data_addr << 4) + fromhex (*ptr++);
1962 }
1963 else
1964 lose = 1;
1965
1966 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1967 {
1968 ptr += 5;
1969 while (*ptr && *ptr != ';')
1970 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1971 }
1972 else
1973 lose = 1;
1974
1975 if (lose)
1976 error ("Malformed response to offset query, %s", buf);
1977
1978 if (symfile_objfile == NULL)
1979 return;
1980
1981 offs = ((struct section_offsets *)
1982 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1983 memcpy (offs, symfile_objfile->section_offsets,
1984 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1985
1986 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1987
1988 /* This is a temporary kludge to force data and bss to use the same offsets
1989 because that's what nlmconv does now. The real solution requires changes
1990 to the stub and remote.c that I don't have time to do right now. */
1991
1992 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1993 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1994
1995 objfile_relocate (symfile_objfile, offs);
1996 }
1997
1998 /*
1999 * Cisco version of section offsets:
2000 *
2001 * Instead of having GDB query the target for the section offsets,
2002 * Cisco lets the target volunteer the information! It's also in
2003 * a different format, so here are the functions that will decode
2004 * a section offset packet from a Cisco target.
2005 */
2006
2007 /*
2008 * Function: remote_cisco_section_offsets
2009 *
2010 * Returns: zero for success, non-zero for failure
2011 */
2012
2013 static int
2014 remote_cisco_section_offsets (bfd_vma text_addr,
2015 bfd_vma data_addr,
2016 bfd_vma bss_addr,
2017 bfd_signed_vma *text_offs,
2018 bfd_signed_vma *data_offs,
2019 bfd_signed_vma *bss_offs)
2020 {
2021 bfd_vma text_base, data_base, bss_base;
2022 struct minimal_symbol *start;
2023 asection *sect;
2024 bfd *abfd;
2025 int len;
2026
2027 if (symfile_objfile == NULL)
2028 return -1; /* no can do nothin' */
2029
2030 start = lookup_minimal_symbol ("_start", NULL, NULL);
2031 if (start == NULL)
2032 return -1; /* Can't find "_start" symbol */
2033
2034 data_base = bss_base = 0;
2035 text_base = SYMBOL_VALUE_ADDRESS (start);
2036
2037 abfd = symfile_objfile->obfd;
2038 for (sect = abfd->sections;
2039 sect != 0;
2040 sect = sect->next)
2041 {
2042 const char *p = bfd_get_section_name (abfd, sect);
2043 len = strlen (p);
2044 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2045 if (data_base == 0 ||
2046 data_base > bfd_get_section_vma (abfd, sect))
2047 data_base = bfd_get_section_vma (abfd, sect);
2048 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2049 if (bss_base == 0 ||
2050 bss_base > bfd_get_section_vma (abfd, sect))
2051 bss_base = bfd_get_section_vma (abfd, sect);
2052 }
2053 *text_offs = text_addr - text_base;
2054 *data_offs = data_addr - data_base;
2055 *bss_offs = bss_addr - bss_base;
2056 if (remote_debug)
2057 {
2058 char tmp[128];
2059
2060 sprintf (tmp, "VMA: text = 0x");
2061 sprintf_vma (tmp + strlen (tmp), text_addr);
2062 sprintf (tmp + strlen (tmp), " data = 0x");
2063 sprintf_vma (tmp + strlen (tmp), data_addr);
2064 sprintf (tmp + strlen (tmp), " bss = 0x");
2065 sprintf_vma (tmp + strlen (tmp), bss_addr);
2066 fputs_filtered (tmp, gdb_stdlog);
2067 fprintf_filtered (gdb_stdlog,
2068 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2069 paddr_nz (*text_offs),
2070 paddr_nz (*data_offs),
2071 paddr_nz (*bss_offs));
2072 }
2073
2074 return 0;
2075 }
2076
2077 /*
2078 * Function: remote_cisco_objfile_relocate
2079 *
2080 * Relocate the symbol file for a remote target.
2081 */
2082
2083 void
2084 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2085 bfd_signed_vma bss_off)
2086 {
2087 struct section_offsets *offs;
2088
2089 if (text_off != 0 || data_off != 0 || bss_off != 0)
2090 {
2091 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2092 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2093 simple canonical representation for this stuff. */
2094
2095 offs = (struct section_offsets *)
2096 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2097 memcpy (offs, symfile_objfile->section_offsets,
2098 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2099
2100 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2101 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2102 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2103
2104 /* First call the standard objfile_relocate. */
2105 objfile_relocate (symfile_objfile, offs);
2106
2107 /* Now we need to fix up the section entries already attached to
2108 the exec target. These entries will control memory transfers
2109 from the exec file. */
2110
2111 exec_set_section_offsets (text_off, data_off, bss_off);
2112 }
2113 }
2114
2115 /* Stub for catch_errors. */
2116
2117 static int
2118 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2119 {
2120 start_remote (); /* Initialize gdb process mechanisms */
2121 /* NOTE: Return something >=0. A -ve value is reserved for
2122 catch_exceptions. */
2123 return 1;
2124 }
2125
2126 static int
2127 remote_start_remote (struct ui_out *uiout, void *dummy)
2128 {
2129 immediate_quit++; /* Allow user to interrupt it */
2130
2131 /* Ack any packet which the remote side has already sent. */
2132 serial_write (remote_desc, "+", 1);
2133
2134 /* Let the stub know that we want it to return the thread. */
2135 set_thread (-1, 0);
2136
2137 inferior_ptid = remote_current_thread (inferior_ptid);
2138
2139 get_offsets (); /* Get text, data & bss offsets */
2140
2141 putpkt ("?"); /* initiate a query from remote machine */
2142 immediate_quit--;
2143
2144 /* NOTE: See comment above in remote_start_remote_dummy(). This
2145 function returns something >=0. */
2146 return remote_start_remote_dummy (uiout, dummy);
2147 }
2148
2149 /* Open a connection to a remote debugger.
2150 NAME is the filename used for communication. */
2151
2152 static void
2153 remote_open (char *name, int from_tty)
2154 {
2155 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2156 }
2157
2158 /* Just like remote_open, but with asynchronous support. */
2159 static void
2160 remote_async_open (char *name, int from_tty)
2161 {
2162 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2163 }
2164
2165 /* Open a connection to a remote debugger using the extended
2166 remote gdb protocol. NAME is the filename used for communication. */
2167
2168 static void
2169 extended_remote_open (char *name, int from_tty)
2170 {
2171 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2172 0 /* async_p */);
2173 }
2174
2175 /* Just like extended_remote_open, but with asynchronous support. */
2176 static void
2177 extended_remote_async_open (char *name, int from_tty)
2178 {
2179 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2180 1 /*extended_p */, 1 /* async_p */);
2181 }
2182
2183 /* Generic code for opening a connection to a remote target. */
2184
2185 static void
2186 init_all_packet_configs (void)
2187 {
2188 int i;
2189 update_packet_config (&remote_protocol_e);
2190 update_packet_config (&remote_protocol_E);
2191 update_packet_config (&remote_protocol_P);
2192 update_packet_config (&remote_protocol_qSymbol);
2193 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2194 update_packet_config (&remote_protocol_Z[i]);
2195 /* Force remote_write_bytes to check whether target supports binary
2196 downloading. */
2197 update_packet_config (&remote_protocol_binary_download);
2198 }
2199
2200 /* Symbol look-up. */
2201
2202 static void
2203 remote_check_symbols (struct objfile *objfile)
2204 {
2205 struct remote_state *rs = get_remote_state ();
2206 char *msg, *reply, *tmp;
2207 struct minimal_symbol *sym;
2208 int end;
2209
2210 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2211 return;
2212
2213 msg = alloca (rs->remote_packet_size);
2214 reply = alloca (rs->remote_packet_size);
2215
2216 /* Invite target to request symbol lookups. */
2217
2218 putpkt ("qSymbol::");
2219 getpkt (reply, (rs->remote_packet_size), 0);
2220 packet_ok (reply, &remote_protocol_qSymbol);
2221
2222 while (strncmp (reply, "qSymbol:", 8) == 0)
2223 {
2224 tmp = &reply[8];
2225 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2226 msg[end] = '\0';
2227 sym = lookup_minimal_symbol (msg, NULL, NULL);
2228 if (sym == NULL)
2229 sprintf (msg, "qSymbol::%s", &reply[8]);
2230 else
2231 sprintf (msg, "qSymbol:%s:%s",
2232 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2233 &reply[8]);
2234 putpkt (msg);
2235 getpkt (reply, (rs->remote_packet_size), 0);
2236 }
2237 }
2238
2239 static struct serial *
2240 remote_serial_open (char *name)
2241 {
2242 static int udp_warning = 0;
2243
2244 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2245 of in ser-tcp.c, because it is the remote protocol assuming that the
2246 serial connection is reliable and not the serial connection promising
2247 to be. */
2248 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2249 {
2250 warning ("The remote protocol may be unreliable over UDP.");
2251 warning ("Some events may be lost, rendering further debugging "
2252 "impossible.");
2253 udp_warning = 1;
2254 }
2255
2256 return serial_open (name);
2257 }
2258
2259 static void
2260 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2261 int extended_p, int async_p)
2262 {
2263 int ex;
2264 struct remote_state *rs = get_remote_state ();
2265 if (name == 0)
2266 error ("To open a remote debug connection, you need to specify what\n"
2267 "serial device is attached to the remote system\n"
2268 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2269
2270 /* See FIXME above */
2271 if (!async_p)
2272 wait_forever_enabled_p = 1;
2273
2274 target_preopen (from_tty);
2275
2276 unpush_target (target);
2277
2278 remote_desc = remote_serial_open (name);
2279 if (!remote_desc)
2280 perror_with_name (name);
2281
2282 if (baud_rate != -1)
2283 {
2284 if (serial_setbaudrate (remote_desc, baud_rate))
2285 {
2286 serial_close (remote_desc);
2287 perror_with_name (name);
2288 }
2289 }
2290
2291 serial_raw (remote_desc);
2292
2293 /* If there is something sitting in the buffer we might take it as a
2294 response to a command, which would be bad. */
2295 serial_flush_input (remote_desc);
2296
2297 if (from_tty)
2298 {
2299 puts_filtered ("Remote debugging using ");
2300 puts_filtered (name);
2301 puts_filtered ("\n");
2302 }
2303 push_target (target); /* Switch to using remote target now */
2304
2305 init_all_packet_configs ();
2306
2307 general_thread = -2;
2308 continue_thread = -2;
2309
2310 /* Probe for ability to use "ThreadInfo" query, as required. */
2311 use_threadinfo_query = 1;
2312 use_threadextra_query = 1;
2313
2314 /* Without this, some commands which require an active target (such
2315 as kill) won't work. This variable serves (at least) double duty
2316 as both the pid of the target process (if it has such), and as a
2317 flag indicating that a target is active. These functions should
2318 be split out into seperate variables, especially since GDB will
2319 someday have a notion of debugging several processes. */
2320
2321 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2322
2323 if (async_p)
2324 {
2325 /* With this target we start out by owning the terminal. */
2326 remote_async_terminal_ours_p = 1;
2327
2328 /* FIXME: cagney/1999-09-23: During the initial connection it is
2329 assumed that the target is already ready and able to respond to
2330 requests. Unfortunately remote_start_remote() eventually calls
2331 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2332 around this. Eventually a mechanism that allows
2333 wait_for_inferior() to expect/get timeouts will be
2334 implemented. */
2335 wait_forever_enabled_p = 0;
2336 }
2337
2338 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2339 /* First delete any symbols previously loaded from shared libraries. */
2340 no_shared_libraries (NULL, 0);
2341 #endif
2342
2343 /* Start the remote connection. If error() or QUIT, discard this
2344 target (we'd otherwise be in an inconsistent state) and then
2345 propogate the error on up the exception chain. This ensures that
2346 the caller doesn't stumble along blindly assuming that the
2347 function succeeded. The CLI doesn't have this problem but other
2348 UI's, such as MI do.
2349
2350 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2351 this function should return an error indication letting the
2352 caller restore the previous state. Unfortunatly the command
2353 ``target remote'' is directly wired to this function making that
2354 impossible. On a positive note, the CLI side of this problem has
2355 been fixed - the function set_cmd_context() makes it possible for
2356 all the ``target ....'' commands to share a common callback
2357 function. See cli-dump.c. */
2358 ex = catch_exceptions (uiout,
2359 remote_start_remote, NULL,
2360 "Couldn't establish connection to remote"
2361 " target\n",
2362 RETURN_MASK_ALL);
2363 if (ex < 0)
2364 {
2365 pop_target ();
2366 if (async_p)
2367 wait_forever_enabled_p = 1;
2368 throw_exception (ex);
2369 }
2370
2371 if (async_p)
2372 wait_forever_enabled_p = 1;
2373
2374 if (extended_p)
2375 {
2376 /* Tell the remote that we are using the extended protocol. */
2377 char *buf = alloca (rs->remote_packet_size);
2378 putpkt ("!");
2379 getpkt (buf, (rs->remote_packet_size), 0);
2380 }
2381 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2382 /* FIXME: need a master target_open vector from which all
2383 remote_opens can be called, so that stuff like this can
2384 go there. Failing that, the following code must be copied
2385 to the open function for any remote target that wants to
2386 support svr4 shared libraries. */
2387
2388 /* Set up to detect and load shared libraries. */
2389 if (exec_bfd) /* No use without an exec file. */
2390 {
2391 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2392 remote_check_symbols (symfile_objfile);
2393 }
2394 #endif
2395 }
2396
2397 /* This takes a program previously attached to and detaches it. After
2398 this is done, GDB can be used to debug some other program. We
2399 better not have left any breakpoints in the target program or it'll
2400 die when it hits one. */
2401
2402 static void
2403 remote_detach (char *args, int from_tty)
2404 {
2405 struct remote_state *rs = get_remote_state ();
2406 char *buf = alloca (rs->remote_packet_size);
2407
2408 if (args)
2409 error ("Argument given to \"detach\" when remotely debugging.");
2410
2411 /* Tell the remote target to detach. */
2412 strcpy (buf, "D");
2413 remote_send (buf, (rs->remote_packet_size));
2414
2415 /* Unregister the file descriptor from the event loop. */
2416 if (target_is_async_p ())
2417 serial_async (remote_desc, NULL, 0);
2418
2419 target_mourn_inferior ();
2420 if (from_tty)
2421 puts_filtered ("Ending remote debugging.\n");
2422 }
2423
2424 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2425
2426 static void
2427 remote_disconnect (char *args, int from_tty)
2428 {
2429 struct remote_state *rs = get_remote_state ();
2430 char *buf = alloca (rs->remote_packet_size);
2431
2432 if (args)
2433 error ("Argument given to \"detach\" when remotely debugging.");
2434
2435 /* Unregister the file descriptor from the event loop. */
2436 if (target_is_async_p ())
2437 serial_async (remote_desc, NULL, 0);
2438
2439 target_mourn_inferior ();
2440 if (from_tty)
2441 puts_filtered ("Ending remote debugging.\n");
2442 }
2443
2444 /* Convert hex digit A to a number. */
2445
2446 static int
2447 fromhex (int a)
2448 {
2449 if (a >= '0' && a <= '9')
2450 return a - '0';
2451 else if (a >= 'a' && a <= 'f')
2452 return a - 'a' + 10;
2453 else if (a >= 'A' && a <= 'F')
2454 return a - 'A' + 10;
2455 else
2456 error ("Reply contains invalid hex digit %d", a);
2457 }
2458
2459 static int
2460 hex2bin (const char *hex, char *bin, int count)
2461 {
2462 int i;
2463
2464 for (i = 0; i < count; i++)
2465 {
2466 if (hex[0] == 0 || hex[1] == 0)
2467 {
2468 /* Hex string is short, or of uneven length.
2469 Return the count that has been converted so far. */
2470 return i;
2471 }
2472 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2473 hex += 2;
2474 }
2475 return i;
2476 }
2477
2478 /* Convert number NIB to a hex digit. */
2479
2480 static int
2481 tohex (int nib)
2482 {
2483 if (nib < 10)
2484 return '0' + nib;
2485 else
2486 return 'a' + nib - 10;
2487 }
2488
2489 static int
2490 bin2hex (const char *bin, char *hex, int count)
2491 {
2492 int i;
2493 /* May use a length, or a nul-terminated string as input. */
2494 if (count == 0)
2495 count = strlen (bin);
2496
2497 for (i = 0; i < count; i++)
2498 {
2499 *hex++ = tohex ((*bin >> 4) & 0xf);
2500 *hex++ = tohex (*bin++ & 0xf);
2501 }
2502 *hex = 0;
2503 return i;
2504 }
2505 \f
2506 /* Tell the remote machine to resume. */
2507
2508 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2509
2510 static int last_sent_step;
2511
2512 static void
2513 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2514 {
2515 struct remote_state *rs = get_remote_state ();
2516 char *buf = alloca (rs->remote_packet_size);
2517 int pid = PIDGET (ptid);
2518 char *p;
2519
2520 if (pid == -1)
2521 set_thread (0, 0); /* run any thread */
2522 else
2523 set_thread (pid, 0); /* run this thread */
2524
2525 last_sent_signal = siggnal;
2526 last_sent_step = step;
2527
2528 /* A hook for when we need to do something at the last moment before
2529 resumption. */
2530 if (target_resume_hook)
2531 (*target_resume_hook) ();
2532
2533
2534 /* The s/S/c/C packets do not return status. So if the target does
2535 not support the S or C packets, the debug agent returns an empty
2536 string which is detected in remote_wait(). This protocol defect
2537 is fixed in the e/E packets. */
2538
2539 if (step && step_range_end)
2540 {
2541 /* If the target does not support the 'E' packet, we try the 'S'
2542 packet. Ideally we would fall back to the 'e' packet if that
2543 too is not supported. But that would require another copy of
2544 the code to issue the 'e' packet (and fall back to 's' if not
2545 supported) in remote_wait(). */
2546
2547 if (siggnal != TARGET_SIGNAL_0)
2548 {
2549 if (remote_protocol_E.support != PACKET_DISABLE)
2550 {
2551 p = buf;
2552 *p++ = 'E';
2553 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2554 *p++ = tohex (((int) siggnal) & 0xf);
2555 *p++ = ',';
2556 p += hexnumstr (p, (ULONGEST) step_range_start);
2557 *p++ = ',';
2558 p += hexnumstr (p, (ULONGEST) step_range_end);
2559 *p++ = 0;
2560
2561 putpkt (buf);
2562 getpkt (buf, (rs->remote_packet_size), 0);
2563
2564 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2565 return;
2566 }
2567 }
2568 else
2569 {
2570 if (remote_protocol_e.support != PACKET_DISABLE)
2571 {
2572 p = buf;
2573 *p++ = 'e';
2574 p += hexnumstr (p, (ULONGEST) step_range_start);
2575 *p++ = ',';
2576 p += hexnumstr (p, (ULONGEST) step_range_end);
2577 *p++ = 0;
2578
2579 putpkt (buf);
2580 getpkt (buf, (rs->remote_packet_size), 0);
2581
2582 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2583 return;
2584 }
2585 }
2586 }
2587
2588 if (siggnal != TARGET_SIGNAL_0)
2589 {
2590 buf[0] = step ? 'S' : 'C';
2591 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2592 buf[2] = tohex (((int) siggnal) & 0xf);
2593 buf[3] = '\0';
2594 }
2595 else
2596 strcpy (buf, step ? "s" : "c");
2597
2598 putpkt (buf);
2599 }
2600
2601 /* Same as remote_resume, but with async support. */
2602 static void
2603 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2604 {
2605 struct remote_state *rs = get_remote_state ();
2606 char *buf = alloca (rs->remote_packet_size);
2607 int pid = PIDGET (ptid);
2608 char *p;
2609
2610 if (pid == -1)
2611 set_thread (0, 0); /* run any thread */
2612 else
2613 set_thread (pid, 0); /* run this thread */
2614
2615 last_sent_signal = siggnal;
2616 last_sent_step = step;
2617
2618 /* A hook for when we need to do something at the last moment before
2619 resumption. */
2620 if (target_resume_hook)
2621 (*target_resume_hook) ();
2622
2623 /* The s/S/c/C packets do not return status. So if the target does
2624 not support the S or C packets, the debug agent returns an empty
2625 string which is detected in remote_wait(). This protocol defect
2626 is fixed in the e/E packets. */
2627
2628 if (step && step_range_end)
2629 {
2630 /* If the target does not support the 'E' packet, we try the 'S'
2631 packet. Ideally we would fall back to the 'e' packet if that
2632 too is not supported. But that would require another copy of
2633 the code to issue the 'e' packet (and fall back to 's' if not
2634 supported) in remote_wait(). */
2635
2636 if (siggnal != TARGET_SIGNAL_0)
2637 {
2638 if (remote_protocol_E.support != PACKET_DISABLE)
2639 {
2640 p = buf;
2641 *p++ = 'E';
2642 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2643 *p++ = tohex (((int) siggnal) & 0xf);
2644 *p++ = ',';
2645 p += hexnumstr (p, (ULONGEST) step_range_start);
2646 *p++ = ',';
2647 p += hexnumstr (p, (ULONGEST) step_range_end);
2648 *p++ = 0;
2649
2650 putpkt (buf);
2651 getpkt (buf, (rs->remote_packet_size), 0);
2652
2653 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2654 goto register_event_loop;
2655 }
2656 }
2657 else
2658 {
2659 if (remote_protocol_e.support != PACKET_DISABLE)
2660 {
2661 p = buf;
2662 *p++ = 'e';
2663 p += hexnumstr (p, (ULONGEST) step_range_start);
2664 *p++ = ',';
2665 p += hexnumstr (p, (ULONGEST) step_range_end);
2666 *p++ = 0;
2667
2668 putpkt (buf);
2669 getpkt (buf, (rs->remote_packet_size), 0);
2670
2671 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2672 goto register_event_loop;
2673 }
2674 }
2675 }
2676
2677 if (siggnal != TARGET_SIGNAL_0)
2678 {
2679 buf[0] = step ? 'S' : 'C';
2680 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2681 buf[2] = tohex ((int) siggnal & 0xf);
2682 buf[3] = '\0';
2683 }
2684 else
2685 strcpy (buf, step ? "s" : "c");
2686
2687 putpkt (buf);
2688
2689 register_event_loop:
2690 /* We are about to start executing the inferior, let's register it
2691 with the event loop. NOTE: this is the one place where all the
2692 execution commands end up. We could alternatively do this in each
2693 of the execution commands in infcmd.c.*/
2694 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2695 into infcmd.c in order to allow inferior function calls to work
2696 NOT asynchronously. */
2697 if (event_loop_p && target_can_async_p ())
2698 target_async (inferior_event_handler, 0);
2699 /* Tell the world that the target is now executing. */
2700 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2701 this? Instead, should the client of target just assume (for
2702 async targets) that the target is going to start executing? Is
2703 this information already found in the continuation block? */
2704 if (target_is_async_p ())
2705 target_executing = 1;
2706 }
2707 \f
2708
2709 /* Set up the signal handler for SIGINT, while the target is
2710 executing, ovewriting the 'regular' SIGINT signal handler. */
2711 static void
2712 initialize_sigint_signal_handler (void)
2713 {
2714 sigint_remote_token =
2715 create_async_signal_handler (async_remote_interrupt, NULL);
2716 signal (SIGINT, handle_remote_sigint);
2717 }
2718
2719 /* Signal handler for SIGINT, while the target is executing. */
2720 static void
2721 handle_remote_sigint (int sig)
2722 {
2723 signal (sig, handle_remote_sigint_twice);
2724 sigint_remote_twice_token =
2725 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2726 mark_async_signal_handler_wrapper (sigint_remote_token);
2727 }
2728
2729 /* Signal handler for SIGINT, installed after SIGINT has already been
2730 sent once. It will take effect the second time that the user sends
2731 a ^C. */
2732 static void
2733 handle_remote_sigint_twice (int sig)
2734 {
2735 signal (sig, handle_sigint);
2736 sigint_remote_twice_token =
2737 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2738 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2739 }
2740
2741 /* Perform the real interruption of the target execution, in response
2742 to a ^C. */
2743 static void
2744 async_remote_interrupt (gdb_client_data arg)
2745 {
2746 if (remote_debug)
2747 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2748
2749 target_stop ();
2750 }
2751
2752 /* Perform interrupt, if the first attempt did not succeed. Just give
2753 up on the target alltogether. */
2754 void
2755 async_remote_interrupt_twice (gdb_client_data arg)
2756 {
2757 if (remote_debug)
2758 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2759 /* Do something only if the target was not killed by the previous
2760 cntl-C. */
2761 if (target_executing)
2762 {
2763 interrupt_query ();
2764 signal (SIGINT, handle_remote_sigint);
2765 }
2766 }
2767
2768 /* Reinstall the usual SIGINT handlers, after the target has
2769 stopped. */
2770 static void
2771 cleanup_sigint_signal_handler (void *dummy)
2772 {
2773 signal (SIGINT, handle_sigint);
2774 if (sigint_remote_twice_token)
2775 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2776 if (sigint_remote_token)
2777 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2778 }
2779
2780 /* Send ^C to target to halt it. Target will respond, and send us a
2781 packet. */
2782 static void (*ofunc) (int);
2783
2784 /* The command line interface's stop routine. This function is installed
2785 as a signal handler for SIGINT. The first time a user requests a
2786 stop, we call remote_stop to send a break or ^C. If there is no
2787 response from the target (it didn't stop when the user requested it),
2788 we ask the user if he'd like to detach from the target. */
2789 static void
2790 remote_interrupt (int signo)
2791 {
2792 /* If this doesn't work, try more severe steps. */
2793 signal (signo, remote_interrupt_twice);
2794
2795 if (remote_debug)
2796 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2797
2798 target_stop ();
2799 }
2800
2801 /* The user typed ^C twice. */
2802
2803 static void
2804 remote_interrupt_twice (int signo)
2805 {
2806 signal (signo, ofunc);
2807 interrupt_query ();
2808 signal (signo, remote_interrupt);
2809 }
2810
2811 /* This is the generic stop called via the target vector. When a target
2812 interrupt is requested, either by the command line or the GUI, we
2813 will eventually end up here. */
2814 static void
2815 remote_stop (void)
2816 {
2817 /* Send a break or a ^C, depending on user preference. */
2818 if (remote_debug)
2819 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2820
2821 if (remote_break)
2822 serial_send_break (remote_desc);
2823 else
2824 serial_write (remote_desc, "\003", 1);
2825 }
2826
2827 /* Ask the user what to do when an interrupt is received. */
2828
2829 static void
2830 interrupt_query (void)
2831 {
2832 target_terminal_ours ();
2833
2834 if (query ("Interrupted while waiting for the program.\n\
2835 Give up (and stop debugging it)? "))
2836 {
2837 target_mourn_inferior ();
2838 throw_exception (RETURN_QUIT);
2839 }
2840
2841 target_terminal_inferior ();
2842 }
2843
2844 /* Enable/disable target terminal ownership. Most targets can use
2845 terminal groups to control terminal ownership. Remote targets are
2846 different in that explicit transfer of ownership to/from GDB/target
2847 is required. */
2848
2849 static void
2850 remote_async_terminal_inferior (void)
2851 {
2852 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2853 sync_execution here. This function should only be called when
2854 GDB is resuming the inferior in the forground. A background
2855 resume (``run&'') should leave GDB in control of the terminal and
2856 consequently should not call this code. */
2857 if (!sync_execution)
2858 return;
2859 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2860 calls target_terminal_*() idenpotent. The event-loop GDB talking
2861 to an asynchronous target with a synchronous command calls this
2862 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2863 stops trying to transfer the terminal to the target when it
2864 shouldn't this guard can go away. */
2865 if (!remote_async_terminal_ours_p)
2866 return;
2867 delete_file_handler (input_fd);
2868 remote_async_terminal_ours_p = 0;
2869 initialize_sigint_signal_handler ();
2870 /* NOTE: At this point we could also register our selves as the
2871 recipient of all input. Any characters typed could then be
2872 passed on down to the target. */
2873 }
2874
2875 static void
2876 remote_async_terminal_ours (void)
2877 {
2878 /* See FIXME in remote_async_terminal_inferior. */
2879 if (!sync_execution)
2880 return;
2881 /* See FIXME in remote_async_terminal_inferior. */
2882 if (remote_async_terminal_ours_p)
2883 return;
2884 cleanup_sigint_signal_handler (NULL);
2885 add_file_handler (input_fd, stdin_event_handler, 0);
2886 remote_async_terminal_ours_p = 1;
2887 }
2888
2889 /* If nonzero, ignore the next kill. */
2890
2891 int kill_kludge;
2892
2893 void
2894 remote_console_output (char *msg)
2895 {
2896 char *p;
2897
2898 for (p = msg; p[0] && p[1]; p += 2)
2899 {
2900 char tb[2];
2901 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2902 tb[0] = c;
2903 tb[1] = 0;
2904 fputs_unfiltered (tb, gdb_stdtarg);
2905 }
2906 gdb_flush (gdb_stdtarg);
2907 }
2908
2909 /* Wait until the remote machine stops, then return,
2910 storing status in STATUS just as `wait' would.
2911 Returns "pid", which in the case of a multi-threaded
2912 remote OS, is the thread-id. */
2913
2914 static ptid_t
2915 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2916 {
2917 struct remote_state *rs = get_remote_state ();
2918 unsigned char *buf = alloca (rs->remote_packet_size);
2919 ULONGEST thread_num = -1;
2920 ULONGEST addr;
2921
2922 status->kind = TARGET_WAITKIND_EXITED;
2923 status->value.integer = 0;
2924
2925 while (1)
2926 {
2927 unsigned char *p;
2928
2929 ofunc = signal (SIGINT, remote_interrupt);
2930 getpkt (buf, (rs->remote_packet_size), 1);
2931 signal (SIGINT, ofunc);
2932
2933 /* This is a hook for when we need to do something (perhaps the
2934 collection of trace data) every time the target stops. */
2935 if (target_wait_loop_hook)
2936 (*target_wait_loop_hook) ();
2937
2938 remote_stopped_by_watchpoint_p = 0;
2939
2940 switch (buf[0])
2941 {
2942 case 'E': /* Error of some sort */
2943 warning ("Remote failure reply: %s", buf);
2944 continue;
2945 case 'F': /* File-I/O request */
2946 remote_fileio_request (buf);
2947 continue;
2948 case 'T': /* Status with PC, SP, FP, ... */
2949 {
2950 int i;
2951 char regs[MAX_REGISTER_SIZE];
2952
2953 /* Expedited reply, containing Signal, {regno, reg} repeat */
2954 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2955 ss = signal number
2956 n... = register number
2957 r... = register contents
2958 */
2959 p = &buf[3]; /* after Txx */
2960
2961 while (*p)
2962 {
2963 unsigned char *p1;
2964 char *p_temp;
2965 int fieldsize;
2966 LONGEST pnum = 0;
2967
2968 /* If the packet contains a register number save it in pnum
2969 and set p1 to point to the character following it.
2970 Otherwise p1 points to p. */
2971
2972 /* If this packet is an awatch packet, don't parse the 'a'
2973 as a register number. */
2974
2975 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2976 {
2977 /* Read the ``P'' register number. */
2978 pnum = strtol (p, &p_temp, 16);
2979 p1 = (unsigned char *) p_temp;
2980 }
2981 else
2982 p1 = p;
2983
2984 if (p1 == p) /* No register number present here */
2985 {
2986 p1 = (unsigned char *) strchr (p, ':');
2987 if (p1 == NULL)
2988 warning ("Malformed packet(a) (missing colon): %s\n\
2989 Packet: '%s'\n",
2990 p, buf);
2991 if (strncmp (p, "thread", p1 - p) == 0)
2992 {
2993 p_temp = unpack_varlen_hex (++p1, &thread_num);
2994 record_currthread (thread_num);
2995 p = (unsigned char *) p_temp;
2996 }
2997 else if ((strncmp (p, "watch", p1 - p) == 0)
2998 || (strncmp (p, "rwatch", p1 - p) == 0)
2999 || (strncmp (p, "awatch", p1 - p) == 0))
3000 {
3001 remote_stopped_by_watchpoint_p = 1;
3002 p = unpack_varlen_hex (++p1, &addr);
3003 remote_watch_data_address = (CORE_ADDR)addr;
3004 }
3005 else
3006 {
3007 /* Silently skip unknown optional info. */
3008 p_temp = strchr (p1 + 1, ';');
3009 if (p_temp)
3010 p = (unsigned char *) p_temp;
3011 }
3012 }
3013 else
3014 {
3015 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3016 p = p1;
3017
3018 if (*p++ != ':')
3019 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3020 p, buf);
3021
3022 if (reg == NULL)
3023 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n",
3024 phex_nz (pnum, 0), p, buf);
3025
3026 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3027 p += 2 * fieldsize;
3028 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3029 warning ("Remote reply is too short: %s", buf);
3030 supply_register (reg->regnum, regs);
3031 }
3032
3033 if (*p++ != ';')
3034 error ("Remote register badly formatted: %s\nhere: %s", buf, p);
3035 }
3036 }
3037 /* fall through */
3038 case 'S': /* Old style status, just signal only */
3039 status->kind = TARGET_WAITKIND_STOPPED;
3040 status->value.sig = (enum target_signal)
3041 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3042
3043 if (buf[3] == 'p')
3044 {
3045 /* Export Cisco kernel mode as a convenience variable
3046 (so that it can be used in the GDB prompt if desired). */
3047
3048 if (cisco_kernel_mode == 1)
3049 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3050 value_from_string ("PDEBUG-"));
3051 cisco_kernel_mode = 0;
3052 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3053 record_currthread (thread_num);
3054 }
3055 else if (buf[3] == 'k')
3056 {
3057 /* Export Cisco kernel mode as a convenience variable
3058 (so that it can be used in the GDB prompt if desired). */
3059
3060 if (cisco_kernel_mode == 1)
3061 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3062 value_from_string ("KDEBUG-"));
3063 cisco_kernel_mode = 1;
3064 }
3065 goto got_status;
3066 case 'N': /* Cisco special: status and offsets */
3067 {
3068 bfd_vma text_addr, data_addr, bss_addr;
3069 bfd_signed_vma text_off, data_off, bss_off;
3070 unsigned char *p1;
3071
3072 status->kind = TARGET_WAITKIND_STOPPED;
3073 status->value.sig = (enum target_signal)
3074 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3075
3076 if (symfile_objfile == NULL)
3077 {
3078 warning ("Relocation packet received with no symbol file. \
3079 Packet Dropped");
3080 goto got_status;
3081 }
3082
3083 /* Relocate object file. Buffer format is NAATT;DD;BB
3084 * where AA is the signal number, TT is the new text
3085 * address, DD * is the new data address, and BB is the
3086 * new bss address. */
3087
3088 p = &buf[3];
3089 text_addr = strtoul (p, (char **) &p1, 16);
3090 if (p1 == p || *p1 != ';')
3091 warning ("Malformed relocation packet: Packet '%s'", buf);
3092 p = p1 + 1;
3093 data_addr = strtoul (p, (char **) &p1, 16);
3094 if (p1 == p || *p1 != ';')
3095 warning ("Malformed relocation packet: Packet '%s'", buf);
3096 p = p1 + 1;
3097 bss_addr = strtoul (p, (char **) &p1, 16);
3098 if (p1 == p)
3099 warning ("Malformed relocation packet: Packet '%s'", buf);
3100
3101 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3102 &text_off, &data_off, &bss_off)
3103 == 0)
3104 if (text_off != 0 || data_off != 0 || bss_off != 0)
3105 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3106
3107 goto got_status;
3108 }
3109 case 'W': /* Target exited */
3110 {
3111 /* The remote process exited. */
3112 status->kind = TARGET_WAITKIND_EXITED;
3113 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3114 goto got_status;
3115 }
3116 case 'X':
3117 status->kind = TARGET_WAITKIND_SIGNALLED;
3118 status->value.sig = (enum target_signal)
3119 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3120 kill_kludge = 1;
3121
3122 goto got_status;
3123 case 'O': /* Console output */
3124 remote_console_output (buf + 1);
3125 continue;
3126 case '\0':
3127 if (last_sent_signal != TARGET_SIGNAL_0)
3128 {
3129 /* Zero length reply means that we tried 'S' or 'C' and
3130 the remote system doesn't support it. */
3131 target_terminal_ours_for_output ();
3132 printf_filtered
3133 ("Can't send signals to this remote system. %s not sent.\n",
3134 target_signal_to_name (last_sent_signal));
3135 last_sent_signal = TARGET_SIGNAL_0;
3136 target_terminal_inferior ();
3137
3138 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3139 putpkt ((char *) buf);
3140 continue;
3141 }
3142 /* else fallthrough */
3143 default:
3144 warning ("Invalid remote reply: %s", buf);
3145 continue;
3146 }
3147 }
3148 got_status:
3149 if (thread_num != -1)
3150 {
3151 return pid_to_ptid (thread_num);
3152 }
3153 return inferior_ptid;
3154 }
3155
3156 /* Async version of remote_wait. */
3157 static ptid_t
3158 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3159 {
3160 struct remote_state *rs = get_remote_state ();
3161 unsigned char *buf = alloca (rs->remote_packet_size);
3162 ULONGEST thread_num = -1;
3163 ULONGEST addr;
3164
3165 status->kind = TARGET_WAITKIND_EXITED;
3166 status->value.integer = 0;
3167
3168 remote_stopped_by_watchpoint_p = 0;
3169
3170 while (1)
3171 {
3172 unsigned char *p;
3173
3174 if (!target_is_async_p ())
3175 ofunc = signal (SIGINT, remote_interrupt);
3176 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3177 _never_ wait for ever -> test on target_is_async_p().
3178 However, before we do that we need to ensure that the caller
3179 knows how to take the target into/out of async mode. */
3180 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3181 if (!target_is_async_p ())
3182 signal (SIGINT, ofunc);
3183
3184 /* This is a hook for when we need to do something (perhaps the
3185 collection of trace data) every time the target stops. */
3186 if (target_wait_loop_hook)
3187 (*target_wait_loop_hook) ();
3188
3189 switch (buf[0])
3190 {
3191 case 'E': /* Error of some sort */
3192 warning ("Remote failure reply: %s", buf);
3193 continue;
3194 case 'F': /* File-I/O request */
3195 remote_fileio_request (buf);
3196 continue;
3197 case 'T': /* Status with PC, SP, FP, ... */
3198 {
3199 int i;
3200 char regs[MAX_REGISTER_SIZE];
3201
3202 /* Expedited reply, containing Signal, {regno, reg} repeat */
3203 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3204 ss = signal number
3205 n... = register number
3206 r... = register contents
3207 */
3208 p = &buf[3]; /* after Txx */
3209
3210 while (*p)
3211 {
3212 unsigned char *p1;
3213 char *p_temp;
3214 int fieldsize;
3215 long pnum = 0;
3216
3217 /* If the packet contains a register number, save it in pnum
3218 and set p1 to point to the character following it.
3219 Otherwise p1 points to p. */
3220
3221 /* If this packet is an awatch packet, don't parse the 'a'
3222 as a register number. */
3223
3224 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3225 {
3226 /* Read the register number. */
3227 pnum = strtol (p, &p_temp, 16);
3228 p1 = (unsigned char *) p_temp;
3229 }
3230 else
3231 p1 = p;
3232
3233 if (p1 == p) /* No register number present here */
3234 {
3235 p1 = (unsigned char *) strchr (p, ':');
3236 if (p1 == NULL)
3237 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n",
3238 p, buf);
3239 if (strncmp (p, "thread", p1 - p) == 0)
3240 {
3241 p_temp = unpack_varlen_hex (++p1, &thread_num);
3242 record_currthread (thread_num);
3243 p = (unsigned char *) p_temp;
3244 }
3245 else if ((strncmp (p, "watch", p1 - p) == 0)
3246 || (strncmp (p, "rwatch", p1 - p) == 0)
3247 || (strncmp (p, "awatch", p1 - p) == 0))
3248 {
3249 remote_stopped_by_watchpoint_p = 1;
3250 p = unpack_varlen_hex (++p1, &addr);
3251 remote_watch_data_address = (CORE_ADDR)addr;
3252 }
3253 else
3254 {
3255 /* Silently skip unknown optional info. */
3256 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3257 if (p_temp)
3258 p = p_temp;
3259 }
3260 }
3261
3262 else
3263 {
3264 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3265 p = p1;
3266 if (*p++ != ':')
3267 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3268 p, buf);
3269
3270 if (reg == NULL)
3271 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n",
3272 pnum, p, buf);
3273
3274 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3275 p += 2 * fieldsize;
3276 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3277 warning ("Remote reply is too short: %s", buf);
3278 supply_register (reg->regnum, regs);
3279 }
3280
3281 if (*p++ != ';')
3282 error ("Remote register badly formatted: %s\nhere: %s",
3283 buf, p);
3284 }
3285 }
3286 /* fall through */
3287 case 'S': /* Old style status, just signal only */
3288 status->kind = TARGET_WAITKIND_STOPPED;
3289 status->value.sig = (enum target_signal)
3290 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3291
3292 if (buf[3] == 'p')
3293 {
3294 /* Export Cisco kernel mode as a convenience variable
3295 (so that it can be used in the GDB prompt if desired). */
3296
3297 if (cisco_kernel_mode == 1)
3298 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3299 value_from_string ("PDEBUG-"));
3300 cisco_kernel_mode = 0;
3301 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3302 record_currthread (thread_num);
3303 }
3304 else if (buf[3] == 'k')
3305 {
3306 /* Export Cisco kernel mode as a convenience variable
3307 (so that it can be used in the GDB prompt if desired). */
3308
3309 if (cisco_kernel_mode == 1)
3310 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3311 value_from_string ("KDEBUG-"));
3312 cisco_kernel_mode = 1;
3313 }
3314 goto got_status;
3315 case 'N': /* Cisco special: status and offsets */
3316 {
3317 bfd_vma text_addr, data_addr, bss_addr;
3318 bfd_signed_vma text_off, data_off, bss_off;
3319 unsigned char *p1;
3320
3321 status->kind = TARGET_WAITKIND_STOPPED;
3322 status->value.sig = (enum target_signal)
3323 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3324
3325 if (symfile_objfile == NULL)
3326 {
3327 warning ("Relocation packet recieved with no symbol file. \
3328 Packet Dropped");
3329 goto got_status;
3330 }
3331
3332 /* Relocate object file. Buffer format is NAATT;DD;BB
3333 * where AA is the signal number, TT is the new text
3334 * address, DD * is the new data address, and BB is the
3335 * new bss address. */
3336
3337 p = &buf[3];
3338 text_addr = strtoul (p, (char **) &p1, 16);
3339 if (p1 == p || *p1 != ';')
3340 warning ("Malformed relocation packet: Packet '%s'", buf);
3341 p = p1 + 1;
3342 data_addr = strtoul (p, (char **) &p1, 16);
3343 if (p1 == p || *p1 != ';')
3344 warning ("Malformed relocation packet: Packet '%s'", buf);
3345 p = p1 + 1;
3346 bss_addr = strtoul (p, (char **) &p1, 16);
3347 if (p1 == p)
3348 warning ("Malformed relocation packet: Packet '%s'", buf);
3349
3350 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3351 &text_off, &data_off, &bss_off)
3352 == 0)
3353 if (text_off != 0 || data_off != 0 || bss_off != 0)
3354 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3355
3356 goto got_status;
3357 }
3358 case 'W': /* Target exited */
3359 {
3360 /* The remote process exited. */
3361 status->kind = TARGET_WAITKIND_EXITED;
3362 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3363 goto got_status;
3364 }
3365 case 'X':
3366 status->kind = TARGET_WAITKIND_SIGNALLED;
3367 status->value.sig = (enum target_signal)
3368 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3369 kill_kludge = 1;
3370
3371 goto got_status;
3372 case 'O': /* Console output */
3373 remote_console_output (buf + 1);
3374 /* Return immediately to the event loop. The event loop will
3375 still be waiting on the inferior afterwards. */
3376 status->kind = TARGET_WAITKIND_IGNORE;
3377 goto got_status;
3378 case '\0':
3379 if (last_sent_signal != TARGET_SIGNAL_0)
3380 {
3381 /* Zero length reply means that we tried 'S' or 'C' and
3382 the remote system doesn't support it. */
3383 target_terminal_ours_for_output ();
3384 printf_filtered
3385 ("Can't send signals to this remote system. %s not sent.\n",
3386 target_signal_to_name (last_sent_signal));
3387 last_sent_signal = TARGET_SIGNAL_0;
3388 target_terminal_inferior ();
3389
3390 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3391 putpkt ((char *) buf);
3392 continue;
3393 }
3394 /* else fallthrough */
3395 default:
3396 warning ("Invalid remote reply: %s", buf);
3397 continue;
3398 }
3399 }
3400 got_status:
3401 if (thread_num != -1)
3402 {
3403 return pid_to_ptid (thread_num);
3404 }
3405 return inferior_ptid;
3406 }
3407
3408 /* Number of bytes of registers this stub implements. */
3409
3410 static int register_bytes_found;
3411
3412 /* Read the remote registers into the block REGS. */
3413 /* Currently we just read all the registers, so we don't use regnum. */
3414
3415 static void
3416 remote_fetch_registers (int regnum)
3417 {
3418 struct remote_state *rs = get_remote_state ();
3419 char *buf = alloca (rs->remote_packet_size);
3420 int i;
3421 char *p;
3422 char *regs = alloca (rs->sizeof_g_packet);
3423
3424 set_thread (PIDGET (inferior_ptid), 1);
3425
3426 if (regnum >= 0)
3427 {
3428 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3429 gdb_assert (reg != NULL);
3430 if (!reg->in_g_packet)
3431 internal_error (__FILE__, __LINE__,
3432 "Attempt to fetch a non G-packet register when this "
3433 "remote.c does not support the p-packet.");
3434 }
3435
3436 sprintf (buf, "g");
3437 remote_send (buf, (rs->remote_packet_size));
3438
3439 /* Save the size of the packet sent to us by the target. Its used
3440 as a heuristic when determining the max size of packets that the
3441 target can safely receive. */
3442 if ((rs->actual_register_packet_size) == 0)
3443 (rs->actual_register_packet_size) = strlen (buf);
3444
3445 /* Unimplemented registers read as all bits zero. */
3446 memset (regs, 0, rs->sizeof_g_packet);
3447
3448 /* We can get out of synch in various cases. If the first character
3449 in the buffer is not a hex character, assume that has happened
3450 and try to fetch another packet to read. */
3451 while ((buf[0] < '0' || buf[0] > '9')
3452 && (buf[0] < 'a' || buf[0] > 'f')
3453 && buf[0] != 'x') /* New: unavailable register value */
3454 {
3455 if (remote_debug)
3456 fprintf_unfiltered (gdb_stdlog,
3457 "Bad register packet; fetching a new packet\n");
3458 getpkt (buf, (rs->remote_packet_size), 0);
3459 }
3460
3461 /* Reply describes registers byte by byte, each byte encoded as two
3462 hex characters. Suck them all up, then supply them to the
3463 register cacheing/storage mechanism. */
3464
3465 p = buf;
3466 for (i = 0; i < rs->sizeof_g_packet; i++)
3467 {
3468 if (p[0] == 0)
3469 break;
3470 if (p[1] == 0)
3471 {
3472 warning ("Remote reply is of odd length: %s", buf);
3473 /* Don't change register_bytes_found in this case, and don't
3474 print a second warning. */
3475 goto supply_them;
3476 }
3477 if (p[0] == 'x' && p[1] == 'x')
3478 regs[i] = 0; /* 'x' */
3479 else
3480 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3481 p += 2;
3482 }
3483
3484 if (i != register_bytes_found)
3485 {
3486 register_bytes_found = i;
3487 if (REGISTER_BYTES_OK_P ()
3488 && !REGISTER_BYTES_OK (i))
3489 warning ("Remote reply is too short: %s", buf);
3490 }
3491
3492 supply_them:
3493 {
3494 int i;
3495 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3496 {
3497 struct packet_reg *r = &rs->regs[i];
3498 if (r->in_g_packet)
3499 {
3500 supply_register (r->regnum, regs + r->offset);
3501 if (buf[r->offset * 2] == 'x')
3502 set_register_cached (i, -1);
3503 }
3504 }
3505 }
3506 }
3507
3508 /* Prepare to store registers. Since we may send them all (using a
3509 'G' request), we have to read out the ones we don't want to change
3510 first. */
3511
3512 static void
3513 remote_prepare_to_store (void)
3514 {
3515 struct remote_state *rs = get_remote_state ();
3516 int i;
3517 char buf[MAX_REGISTER_SIZE];
3518
3519 /* Make sure the entire registers array is valid. */
3520 switch (remote_protocol_P.support)
3521 {
3522 case PACKET_DISABLE:
3523 case PACKET_SUPPORT_UNKNOWN:
3524 /* Make sure all the necessary registers are cached. */
3525 for (i = 0; i < NUM_REGS; i++)
3526 if (rs->regs[i].in_g_packet)
3527 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3528 break;
3529 case PACKET_ENABLE:
3530 break;
3531 }
3532 }
3533
3534 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3535 packet was not recognized. */
3536
3537 static int
3538 store_register_using_P (int regnum)
3539 {
3540 struct remote_state *rs = get_remote_state ();
3541 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3542 /* Try storing a single register. */
3543 char *buf = alloca (rs->remote_packet_size);
3544 char regp[MAX_REGISTER_SIZE];
3545 char *p;
3546 int i;
3547
3548 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3549 p = buf + strlen (buf);
3550 regcache_collect (reg->regnum, regp);
3551 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3552 remote_send (buf, rs->remote_packet_size);
3553
3554 return buf[0] != '\0';
3555 }
3556
3557
3558 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3559 of the register cache buffer. FIXME: ignores errors. */
3560
3561 static void
3562 remote_store_registers (int regnum)
3563 {
3564 struct remote_state *rs = get_remote_state ();
3565 char *buf;
3566 char *regs;
3567 int i;
3568 char *p;
3569
3570 set_thread (PIDGET (inferior_ptid), 1);
3571
3572 if (regnum >= 0)
3573 {
3574 switch (remote_protocol_P.support)
3575 {
3576 case PACKET_DISABLE:
3577 break;
3578 case PACKET_ENABLE:
3579 if (store_register_using_P (regnum))
3580 return;
3581 else
3582 error ("Protocol error: P packet not recognized by stub");
3583 case PACKET_SUPPORT_UNKNOWN:
3584 if (store_register_using_P (regnum))
3585 {
3586 /* The stub recognized the 'P' packet. Remember this. */
3587 remote_protocol_P.support = PACKET_ENABLE;
3588 return;
3589 }
3590 else
3591 {
3592 /* The stub does not support the 'P' packet. Use 'G'
3593 instead, and don't try using 'P' in the future (it
3594 will just waste our time). */
3595 remote_protocol_P.support = PACKET_DISABLE;
3596 break;
3597 }
3598 }
3599 }
3600
3601 /* Extract all the registers in the regcache copying them into a
3602 local buffer. */
3603 {
3604 int i;
3605 regs = alloca (rs->sizeof_g_packet);
3606 memset (regs, rs->sizeof_g_packet, 0);
3607 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3608 {
3609 struct packet_reg *r = &rs->regs[i];
3610 if (r->in_g_packet)
3611 regcache_collect (r->regnum, regs + r->offset);
3612 }
3613 }
3614
3615 /* Command describes registers byte by byte,
3616 each byte encoded as two hex characters. */
3617 buf = alloca (rs->remote_packet_size);
3618 p = buf;
3619 *p++ = 'G';
3620 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3621 bin2hex (regs, p, register_bytes_found);
3622 remote_send (buf, (rs->remote_packet_size));
3623 }
3624 \f
3625
3626 /* Return the number of hex digits in num. */
3627
3628 static int
3629 hexnumlen (ULONGEST num)
3630 {
3631 int i;
3632
3633 for (i = 0; num != 0; i++)
3634 num >>= 4;
3635
3636 return max (i, 1);
3637 }
3638
3639 /* Set BUF to the minimum number of hex digits representing NUM. */
3640
3641 static int
3642 hexnumstr (char *buf, ULONGEST num)
3643 {
3644 int len = hexnumlen (num);
3645 return hexnumnstr (buf, num, len);
3646 }
3647
3648
3649 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3650
3651 static int
3652 hexnumnstr (char *buf, ULONGEST num, int width)
3653 {
3654 int i;
3655
3656 buf[width] = '\0';
3657
3658 for (i = width - 1; i >= 0; i--)
3659 {
3660 buf[i] = "0123456789abcdef"[(num & 0xf)];
3661 num >>= 4;
3662 }
3663
3664 return width;
3665 }
3666
3667 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3668
3669 static CORE_ADDR
3670 remote_address_masked (CORE_ADDR addr)
3671 {
3672 if (remote_address_size > 0
3673 && remote_address_size < (sizeof (ULONGEST) * 8))
3674 {
3675 /* Only create a mask when that mask can safely be constructed
3676 in a ULONGEST variable. */
3677 ULONGEST mask = 1;
3678 mask = (mask << remote_address_size) - 1;
3679 addr &= mask;
3680 }
3681 return addr;
3682 }
3683
3684 /* Determine whether the remote target supports binary downloading.
3685 This is accomplished by sending a no-op memory write of zero length
3686 to the target at the specified address. It does not suffice to send
3687 the whole packet, since many stubs strip the eighth bit and subsequently
3688 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3689
3690 NOTE: This can still lose if the serial line is not eight-bit
3691 clean. In cases like this, the user should clear "remote
3692 X-packet". */
3693
3694 static void
3695 check_binary_download (CORE_ADDR addr)
3696 {
3697 struct remote_state *rs = get_remote_state ();
3698 switch (remote_protocol_binary_download.support)
3699 {
3700 case PACKET_DISABLE:
3701 break;
3702 case PACKET_ENABLE:
3703 break;
3704 case PACKET_SUPPORT_UNKNOWN:
3705 {
3706 char *buf = alloca (rs->remote_packet_size);
3707 char *p;
3708
3709 p = buf;
3710 *p++ = 'X';
3711 p += hexnumstr (p, (ULONGEST) addr);
3712 *p++ = ',';
3713 p += hexnumstr (p, (ULONGEST) 0);
3714 *p++ = ':';
3715 *p = '\0';
3716
3717 putpkt_binary (buf, (int) (p - buf));
3718 getpkt (buf, (rs->remote_packet_size), 0);
3719
3720 if (buf[0] == '\0')
3721 {
3722 if (remote_debug)
3723 fprintf_unfiltered (gdb_stdlog,
3724 "binary downloading NOT suppported by target\n");
3725 remote_protocol_binary_download.support = PACKET_DISABLE;
3726 }
3727 else
3728 {
3729 if (remote_debug)
3730 fprintf_unfiltered (gdb_stdlog,
3731 "binary downloading suppported by target\n");
3732 remote_protocol_binary_download.support = PACKET_ENABLE;
3733 }
3734 break;
3735 }
3736 }
3737 }
3738
3739 /* Write memory data directly to the remote machine.
3740 This does not inform the data cache; the data cache uses this.
3741 MEMADDR is the address in the remote memory space.
3742 MYADDR is the address of the buffer in our space.
3743 LEN is the number of bytes.
3744
3745 Returns number of bytes transferred, or 0 (setting errno) for
3746 error. Only transfer a single packet. */
3747
3748 int
3749 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3750 {
3751 unsigned char *buf;
3752 unsigned char *p;
3753 unsigned char *plen;
3754 long sizeof_buf;
3755 int plenlen;
3756 int todo;
3757 int nr_bytes;
3758 int payload_size;
3759 unsigned char *payload_start;
3760
3761 /* Verify that the target can support a binary download. */
3762 check_binary_download (memaddr);
3763
3764 /* Compute the size, and then allocate space for the largest
3765 possible packet. Include space for an extra trailing NUL. */
3766 sizeof_buf = get_memory_write_packet_size () + 1;
3767 buf = alloca (sizeof_buf);
3768
3769 /* Compute the size of the actual payload by subtracting out the
3770 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3771 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3772 + hexnumlen (memaddr)
3773 + hexnumlen (len)));
3774
3775 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3776
3777 /* Append "[XM]". Compute a best guess of the number of bytes
3778 actually transfered. */
3779 p = buf;
3780 switch (remote_protocol_binary_download.support)
3781 {
3782 case PACKET_ENABLE:
3783 *p++ = 'X';
3784 /* Best guess at number of bytes that will fit. */
3785 todo = min (len, payload_size);
3786 break;
3787 case PACKET_DISABLE:
3788 *p++ = 'M';
3789 /* num bytes that will fit */
3790 todo = min (len, payload_size / 2);
3791 break;
3792 case PACKET_SUPPORT_UNKNOWN:
3793 internal_error (__FILE__, __LINE__,
3794 "remote_write_bytes: bad internal state");
3795 default:
3796 internal_error (__FILE__, __LINE__, "bad switch");
3797 }
3798
3799 /* Append "<memaddr>". */
3800 memaddr = remote_address_masked (memaddr);
3801 p += hexnumstr (p, (ULONGEST) memaddr);
3802
3803 /* Append ",". */
3804 *p++ = ',';
3805
3806 /* Append <len>. Retain the location/size of <len>. It may need to
3807 be adjusted once the packet body has been created. */
3808 plen = p;
3809 plenlen = hexnumstr (p, (ULONGEST) todo);
3810 p += plenlen;
3811
3812 /* Append ":". */
3813 *p++ = ':';
3814 *p = '\0';
3815
3816 /* Append the packet body. */
3817 payload_start = p;
3818 switch (remote_protocol_binary_download.support)
3819 {
3820 case PACKET_ENABLE:
3821 /* Binary mode. Send target system values byte by byte, in
3822 increasing byte addresses. Only escape certain critical
3823 characters. */
3824 for (nr_bytes = 0;
3825 (nr_bytes < todo) && (p - payload_start) < payload_size;
3826 nr_bytes++)
3827 {
3828 switch (myaddr[nr_bytes] & 0xff)
3829 {
3830 case '$':
3831 case '#':
3832 case 0x7d:
3833 /* These must be escaped */
3834 *p++ = 0x7d;
3835 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3836 break;
3837 default:
3838 *p++ = myaddr[nr_bytes] & 0xff;
3839 break;
3840 }
3841 }
3842 if (nr_bytes < todo)
3843 {
3844 /* Escape chars have filled up the buffer prematurely,
3845 and we have actually sent fewer bytes than planned.
3846 Fix-up the length field of the packet. Use the same
3847 number of characters as before. */
3848 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3849 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3850 }
3851 break;
3852 case PACKET_DISABLE:
3853 /* Normal mode: Send target system values byte by byte, in
3854 increasing byte addresses. Each byte is encoded as a two hex
3855 value. */
3856 nr_bytes = bin2hex (myaddr, p, todo);
3857 p += 2 * nr_bytes;
3858 break;
3859 case PACKET_SUPPORT_UNKNOWN:
3860 internal_error (__FILE__, __LINE__,
3861 "remote_write_bytes: bad internal state");
3862 default:
3863 internal_error (__FILE__, __LINE__, "bad switch");
3864 }
3865
3866 putpkt_binary (buf, (int) (p - buf));
3867 getpkt (buf, sizeof_buf, 0);
3868
3869 if (buf[0] == 'E')
3870 {
3871 /* There is no correspondance between what the remote protocol
3872 uses for errors and errno codes. We would like a cleaner way
3873 of representing errors (big enough to include errno codes,
3874 bfd_error codes, and others). But for now just return EIO. */
3875 errno = EIO;
3876 return 0;
3877 }
3878
3879 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3880 bytes than we'd planned. */
3881 return nr_bytes;
3882 }
3883
3884 /* Read memory data directly from the remote machine.
3885 This does not use the data cache; the data cache uses this.
3886 MEMADDR is the address in the remote memory space.
3887 MYADDR is the address of the buffer in our space.
3888 LEN is the number of bytes.
3889
3890 Returns number of bytes transferred, or 0 for error. */
3891
3892 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3893 remote targets) shouldn't attempt to read the entire buffer.
3894 Instead it should read a single packet worth of data and then
3895 return the byte size of that packet to the caller. The caller (its
3896 caller and its callers caller ;-) already contains code for
3897 handling partial reads. */
3898
3899 int
3900 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3901 {
3902 char *buf;
3903 int max_buf_size; /* Max size of packet output buffer */
3904 long sizeof_buf;
3905 int origlen;
3906
3907 /* Create a buffer big enough for this packet. */
3908 max_buf_size = get_memory_read_packet_size ();
3909 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3910 buf = alloca (sizeof_buf);
3911
3912 origlen = len;
3913 while (len > 0)
3914 {
3915 char *p;
3916 int todo;
3917 int i;
3918
3919 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3920
3921 /* construct "m"<memaddr>","<len>" */
3922 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3923 memaddr = remote_address_masked (memaddr);
3924 p = buf;
3925 *p++ = 'm';
3926 p += hexnumstr (p, (ULONGEST) memaddr);
3927 *p++ = ',';
3928 p += hexnumstr (p, (ULONGEST) todo);
3929 *p = '\0';
3930
3931 putpkt (buf);
3932 getpkt (buf, sizeof_buf, 0);
3933
3934 if (buf[0] == 'E'
3935 && isxdigit (buf[1]) && isxdigit (buf[2])
3936 && buf[3] == '\0')
3937 {
3938 /* There is no correspondance between what the remote protocol uses
3939 for errors and errno codes. We would like a cleaner way of
3940 representing errors (big enough to include errno codes, bfd_error
3941 codes, and others). But for now just return EIO. */
3942 errno = EIO;
3943 return 0;
3944 }
3945
3946 /* Reply describes memory byte by byte,
3947 each byte encoded as two hex characters. */
3948
3949 p = buf;
3950 if ((i = hex2bin (p, myaddr, todo)) < todo)
3951 {
3952 /* Reply is short. This means that we were able to read
3953 only part of what we wanted to. */
3954 return i + (origlen - len);
3955 }
3956 myaddr += todo;
3957 memaddr += todo;
3958 len -= todo;
3959 }
3960 return origlen;
3961 }
3962 \f
3963 /* Read or write LEN bytes from inferior memory at MEMADDR,
3964 transferring to or from debugger address BUFFER. Write to inferior if
3965 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3966 for error. TARGET is unused. */
3967
3968 static int
3969 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3970 int should_write, struct mem_attrib *attrib,
3971 struct target_ops *target)
3972 {
3973 CORE_ADDR targ_addr;
3974 int targ_len;
3975 int res;
3976
3977 /* Should this be the selected frame? */
3978 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3979 mem_addr, mem_len,
3980 &targ_addr, &targ_len);
3981 if (targ_len <= 0)
3982 return 0;
3983
3984 if (should_write)
3985 res = remote_write_bytes (targ_addr, buffer, targ_len);
3986 else
3987 res = remote_read_bytes (targ_addr, buffer, targ_len);
3988
3989 return res;
3990 }
3991
3992
3993 #if 0
3994 /* Enable after 4.12. */
3995
3996 void
3997 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3998 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3999 CORE_ADDR *addr_found, char *data_found)
4000 {
4001 if (increment == -4 && len == 4)
4002 {
4003 long mask_long, data_long;
4004 long data_found_long;
4005 CORE_ADDR addr_we_found;
4006 char *buf = alloca (rs->remote_packet_size);
4007 long returned_long[2];
4008 char *p;
4009
4010 mask_long = extract_unsigned_integer (mask, len);
4011 data_long = extract_unsigned_integer (data, len);
4012 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
4013 putpkt (buf);
4014 getpkt (buf, (rs->remote_packet_size), 0);
4015 if (buf[0] == '\0')
4016 {
4017 /* The stub doesn't support the 't' request. We might want to
4018 remember this fact, but on the other hand the stub could be
4019 switched on us. Maybe we should remember it only until
4020 the next "target remote". */
4021 generic_search (len, data, mask, startaddr, increment, lorange,
4022 hirange, addr_found, data_found);
4023 return;
4024 }
4025
4026 if (buf[0] == 'E')
4027 /* There is no correspondance between what the remote protocol uses
4028 for errors and errno codes. We would like a cleaner way of
4029 representing errors (big enough to include errno codes, bfd_error
4030 codes, and others). But for now just use EIO. */
4031 memory_error (EIO, startaddr);
4032 p = buf;
4033 addr_we_found = 0;
4034 while (*p != '\0' && *p != ',')
4035 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4036 if (*p == '\0')
4037 error ("Protocol error: short return for search");
4038
4039 data_found_long = 0;
4040 while (*p != '\0' && *p != ',')
4041 data_found_long = (data_found_long << 4) + fromhex (*p++);
4042 /* Ignore anything after this comma, for future extensions. */
4043
4044 if (addr_we_found < lorange || addr_we_found >= hirange)
4045 {
4046 *addr_found = 0;
4047 return;
4048 }
4049
4050 *addr_found = addr_we_found;
4051 *data_found = store_unsigned_integer (data_we_found, len);
4052 return;
4053 }
4054 generic_search (len, data, mask, startaddr, increment, lorange,
4055 hirange, addr_found, data_found);
4056 }
4057 #endif /* 0 */
4058 \f
4059 static void
4060 remote_files_info (struct target_ops *ignore)
4061 {
4062 puts_filtered ("Debugging a target over a serial line.\n");
4063 }
4064 \f
4065 /* Stuff for dealing with the packets which are part of this protocol.
4066 See comment at top of file for details. */
4067
4068 /* Read a single character from the remote end, masking it down to 7 bits. */
4069
4070 static int
4071 readchar (int timeout)
4072 {
4073 int ch;
4074
4075 ch = serial_readchar (remote_desc, timeout);
4076
4077 if (ch >= 0)
4078 return (ch & 0x7f);
4079
4080 switch ((enum serial_rc) ch)
4081 {
4082 case SERIAL_EOF:
4083 target_mourn_inferior ();
4084 error ("Remote connection closed");
4085 /* no return */
4086 case SERIAL_ERROR:
4087 perror_with_name ("Remote communication error");
4088 /* no return */
4089 case SERIAL_TIMEOUT:
4090 break;
4091 }
4092 return ch;
4093 }
4094
4095 /* Send the command in BUF to the remote machine, and read the reply
4096 into BUF. Report an error if we get an error reply. */
4097
4098 static void
4099 remote_send (char *buf,
4100 long sizeof_buf)
4101 {
4102 putpkt (buf);
4103 getpkt (buf, sizeof_buf, 0);
4104
4105 if (buf[0] == 'E')
4106 error ("Remote failure reply: %s", buf);
4107 }
4108
4109 /* Display a null-terminated packet on stdout, for debugging, using C
4110 string notation. */
4111
4112 static void
4113 print_packet (char *buf)
4114 {
4115 puts_filtered ("\"");
4116 fputstr_filtered (buf, '"', gdb_stdout);
4117 puts_filtered ("\"");
4118 }
4119
4120 int
4121 putpkt (char *buf)
4122 {
4123 return putpkt_binary (buf, strlen (buf));
4124 }
4125
4126 /* Send a packet to the remote machine, with error checking. The data
4127 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4128 to account for the $, # and checksum, and for a possible /0 if we are
4129 debugging (remote_debug) and want to print the sent packet as a string */
4130
4131 static int
4132 putpkt_binary (char *buf, int cnt)
4133 {
4134 struct remote_state *rs = get_remote_state ();
4135 int i;
4136 unsigned char csum = 0;
4137 char *buf2 = alloca (cnt + 6);
4138 long sizeof_junkbuf = (rs->remote_packet_size);
4139 char *junkbuf = alloca (sizeof_junkbuf);
4140
4141 int ch;
4142 int tcount = 0;
4143 char *p;
4144
4145 /* Copy the packet into buffer BUF2, encapsulating it
4146 and giving it a checksum. */
4147
4148 p = buf2;
4149 *p++ = '$';
4150
4151 for (i = 0; i < cnt; i++)
4152 {
4153 csum += buf[i];
4154 *p++ = buf[i];
4155 }
4156 *p++ = '#';
4157 *p++ = tohex ((csum >> 4) & 0xf);
4158 *p++ = tohex (csum & 0xf);
4159
4160 /* Send it over and over until we get a positive ack. */
4161
4162 while (1)
4163 {
4164 int started_error_output = 0;
4165
4166 if (remote_debug)
4167 {
4168 *p = '\0';
4169 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4170 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4171 fprintf_unfiltered (gdb_stdlog, "...");
4172 gdb_flush (gdb_stdlog);
4173 }
4174 if (serial_write (remote_desc, buf2, p - buf2))
4175 perror_with_name ("putpkt: write failed");
4176
4177 /* read until either a timeout occurs (-2) or '+' is read */
4178 while (1)
4179 {
4180 ch = readchar (remote_timeout);
4181
4182 if (remote_debug)
4183 {
4184 switch (ch)
4185 {
4186 case '+':
4187 case '-':
4188 case SERIAL_TIMEOUT:
4189 case '$':
4190 if (started_error_output)
4191 {
4192 putchar_unfiltered ('\n');
4193 started_error_output = 0;
4194 }
4195 }
4196 }
4197
4198 switch (ch)
4199 {
4200 case '+':
4201 if (remote_debug)
4202 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4203 return 1;
4204 case '-':
4205 if (remote_debug)
4206 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4207 case SERIAL_TIMEOUT:
4208 tcount++;
4209 if (tcount > 3)
4210 return 0;
4211 break; /* Retransmit buffer */
4212 case '$':
4213 {
4214 if (remote_debug)
4215 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4216 /* It's probably an old response, and we're out of sync.
4217 Just gobble up the packet and ignore it. */
4218 read_frame (junkbuf, sizeof_junkbuf);
4219 continue; /* Now, go look for + */
4220 }
4221 default:
4222 if (remote_debug)
4223 {
4224 if (!started_error_output)
4225 {
4226 started_error_output = 1;
4227 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4228 }
4229 fputc_unfiltered (ch & 0177, gdb_stdlog);
4230 }
4231 continue;
4232 }
4233 break; /* Here to retransmit */
4234 }
4235
4236 #if 0
4237 /* This is wrong. If doing a long backtrace, the user should be
4238 able to get out next time we call QUIT, without anything as
4239 violent as interrupt_query. If we want to provide a way out of
4240 here without getting to the next QUIT, it should be based on
4241 hitting ^C twice as in remote_wait. */
4242 if (quit_flag)
4243 {
4244 quit_flag = 0;
4245 interrupt_query ();
4246 }
4247 #endif
4248 }
4249 }
4250
4251 static int remote_cisco_mode;
4252
4253 /* Come here after finding the start of the frame. Collect the rest
4254 into BUF, verifying the checksum, length, and handling run-length
4255 compression. No more than sizeof_buf-1 characters are read so that
4256 the buffer can be NUL terminated.
4257
4258 Returns -1 on error, number of characters in buffer (ignoring the
4259 trailing NULL) on success. (could be extended to return one of the
4260 SERIAL status indications). */
4261
4262 static long
4263 read_frame (char *buf,
4264 long sizeof_buf)
4265 {
4266 unsigned char csum;
4267 long bc;
4268 int c;
4269
4270 csum = 0;
4271 bc = 0;
4272
4273 while (1)
4274 {
4275 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4276 c = readchar (remote_timeout);
4277 switch (c)
4278 {
4279 case SERIAL_TIMEOUT:
4280 if (remote_debug)
4281 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4282 return -1;
4283 case '$':
4284 if (remote_debug)
4285 fputs_filtered ("Saw new packet start in middle of old one\n",
4286 gdb_stdlog);
4287 return -1; /* Start a new packet, count retries */
4288 case '#':
4289 {
4290 unsigned char pktcsum;
4291 int check_0 = 0;
4292 int check_1 = 0;
4293
4294 buf[bc] = '\0';
4295
4296 check_0 = readchar (remote_timeout);
4297 if (check_0 >= 0)
4298 check_1 = readchar (remote_timeout);
4299
4300 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4301 {
4302 if (remote_debug)
4303 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4304 return -1;
4305 }
4306 else if (check_0 < 0 || check_1 < 0)
4307 {
4308 if (remote_debug)
4309 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4310 return -1;
4311 }
4312
4313 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4314 if (csum == pktcsum)
4315 return bc;
4316
4317 if (remote_debug)
4318 {
4319 fprintf_filtered (gdb_stdlog,
4320 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4321 pktcsum, csum);
4322 fputs_filtered (buf, gdb_stdlog);
4323 fputs_filtered ("\n", gdb_stdlog);
4324 }
4325 /* Number of characters in buffer ignoring trailing
4326 NUL. */
4327 return -1;
4328 }
4329 case '*': /* Run length encoding */
4330 {
4331 int repeat;
4332 csum += c;
4333
4334 if (remote_cisco_mode == 0)
4335 {
4336 c = readchar (remote_timeout);
4337 csum += c;
4338 repeat = c - ' ' + 3; /* Compute repeat count */
4339 }
4340 else
4341 {
4342 /* Cisco's run-length encoding variant uses two
4343 hex chars to represent the repeat count. */
4344
4345 c = readchar (remote_timeout);
4346 csum += c;
4347 repeat = fromhex (c) << 4;
4348 c = readchar (remote_timeout);
4349 csum += c;
4350 repeat += fromhex (c);
4351 }
4352
4353 /* The character before ``*'' is repeated. */
4354
4355 if (repeat > 0 && repeat <= 255
4356 && bc > 0
4357 && bc + repeat - 1 < sizeof_buf - 1)
4358 {
4359 memset (&buf[bc], buf[bc - 1], repeat);
4360 bc += repeat;
4361 continue;
4362 }
4363
4364 buf[bc] = '\0';
4365 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4366 puts_filtered (buf);
4367 puts_filtered ("\n");
4368 return -1;
4369 }
4370 default:
4371 if (bc < sizeof_buf - 1)
4372 {
4373 buf[bc++] = c;
4374 csum += c;
4375 continue;
4376 }
4377
4378 buf[bc] = '\0';
4379 puts_filtered ("Remote packet too long: ");
4380 puts_filtered (buf);
4381 puts_filtered ("\n");
4382
4383 return -1;
4384 }
4385 }
4386 }
4387
4388 /* Read a packet from the remote machine, with error checking, and
4389 store it in BUF. If FOREVER, wait forever rather than timing out;
4390 this is used (in synchronous mode) to wait for a target that is is
4391 executing user code to stop. */
4392 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4393 don't have to change all the calls to getpkt to deal with the
4394 return value, because at the moment I don't know what the right
4395 thing to do it for those. */
4396 void
4397 getpkt (char *buf,
4398 long sizeof_buf,
4399 int forever)
4400 {
4401 int timed_out;
4402
4403 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4404 }
4405
4406
4407 /* Read a packet from the remote machine, with error checking, and
4408 store it in BUF. If FOREVER, wait forever rather than timing out;
4409 this is used (in synchronous mode) to wait for a target that is is
4410 executing user code to stop. If FOREVER == 0, this function is
4411 allowed to time out gracefully and return an indication of this to
4412 the caller. */
4413 static int
4414 getpkt_sane (char *buf,
4415 long sizeof_buf,
4416 int forever)
4417 {
4418 int c;
4419 int tries;
4420 int timeout;
4421 int val;
4422
4423 strcpy (buf, "timeout");
4424
4425 if (forever)
4426 {
4427 timeout = watchdog > 0 ? watchdog : -1;
4428 }
4429
4430 else
4431 timeout = remote_timeout;
4432
4433 #define MAX_TRIES 3
4434
4435 for (tries = 1; tries <= MAX_TRIES; tries++)
4436 {
4437 /* This can loop forever if the remote side sends us characters
4438 continuously, but if it pauses, we'll get a zero from readchar
4439 because of timeout. Then we'll count that as a retry. */
4440
4441 /* Note that we will only wait forever prior to the start of a packet.
4442 After that, we expect characters to arrive at a brisk pace. They
4443 should show up within remote_timeout intervals. */
4444
4445 do
4446 {
4447 c = readchar (timeout);
4448
4449 if (c == SERIAL_TIMEOUT)
4450 {
4451 if (forever) /* Watchdog went off? Kill the target. */
4452 {
4453 QUIT;
4454 target_mourn_inferior ();
4455 error ("Watchdog has expired. Target detached.\n");
4456 }
4457 if (remote_debug)
4458 fputs_filtered ("Timed out.\n", gdb_stdlog);
4459 goto retry;
4460 }
4461 }
4462 while (c != '$');
4463
4464 /* We've found the start of a packet, now collect the data. */
4465
4466 val = read_frame (buf, sizeof_buf);
4467
4468 if (val >= 0)
4469 {
4470 if (remote_debug)
4471 {
4472 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4473 fputstr_unfiltered (buf, 0, gdb_stdlog);
4474 fprintf_unfiltered (gdb_stdlog, "\n");
4475 }
4476 serial_write (remote_desc, "+", 1);
4477 return 0;
4478 }
4479
4480 /* Try the whole thing again. */
4481 retry:
4482 serial_write (remote_desc, "-", 1);
4483 }
4484
4485 /* We have tried hard enough, and just can't receive the packet. Give up. */
4486
4487 printf_unfiltered ("Ignoring packet error, continuing...\n");
4488 serial_write (remote_desc, "+", 1);
4489 return 1;
4490 }
4491 \f
4492 static void
4493 remote_kill (void)
4494 {
4495 /* For some mysterious reason, wait_for_inferior calls kill instead of
4496 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4497 if (kill_kludge)
4498 {
4499 kill_kludge = 0;
4500 target_mourn_inferior ();
4501 return;
4502 }
4503
4504 /* Use catch_errors so the user can quit from gdb even when we aren't on
4505 speaking terms with the remote system. */
4506 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4507
4508 /* Don't wait for it to die. I'm not really sure it matters whether
4509 we do or not. For the existing stubs, kill is a noop. */
4510 target_mourn_inferior ();
4511 }
4512
4513 /* Async version of remote_kill. */
4514 static void
4515 remote_async_kill (void)
4516 {
4517 /* Unregister the file descriptor from the event loop. */
4518 if (target_is_async_p ())
4519 serial_async (remote_desc, NULL, 0);
4520
4521 /* For some mysterious reason, wait_for_inferior calls kill instead of
4522 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4523 if (kill_kludge)
4524 {
4525 kill_kludge = 0;
4526 target_mourn_inferior ();
4527 return;
4528 }
4529
4530 /* Use catch_errors so the user can quit from gdb even when we aren't on
4531 speaking terms with the remote system. */
4532 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4533
4534 /* Don't wait for it to die. I'm not really sure it matters whether
4535 we do or not. For the existing stubs, kill is a noop. */
4536 target_mourn_inferior ();
4537 }
4538
4539 static void
4540 remote_mourn (void)
4541 {
4542 remote_mourn_1 (&remote_ops);
4543 }
4544
4545 static void
4546 remote_async_mourn (void)
4547 {
4548 remote_mourn_1 (&remote_async_ops);
4549 }
4550
4551 static void
4552 extended_remote_mourn (void)
4553 {
4554 /* We do _not_ want to mourn the target like this; this will
4555 remove the extended remote target from the target stack,
4556 and the next time the user says "run" it'll fail.
4557
4558 FIXME: What is the right thing to do here? */
4559 #if 0
4560 remote_mourn_1 (&extended_remote_ops);
4561 #endif
4562 }
4563
4564 /* Worker function for remote_mourn. */
4565 static void
4566 remote_mourn_1 (struct target_ops *target)
4567 {
4568 unpush_target (target);
4569 generic_mourn_inferior ();
4570 }
4571
4572 /* In the extended protocol we want to be able to do things like
4573 "run" and have them basically work as expected. So we need
4574 a special create_inferior function.
4575
4576 FIXME: One day add support for changing the exec file
4577 we're debugging, arguments and an environment. */
4578
4579 static void
4580 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4581 {
4582 /* Rip out the breakpoints; we'll reinsert them after restarting
4583 the remote server. */
4584 remove_breakpoints ();
4585
4586 /* Now restart the remote server. */
4587 extended_remote_restart ();
4588
4589 /* Now put the breakpoints back in. This way we're safe if the
4590 restart function works via a unix fork on the remote side. */
4591 insert_breakpoints ();
4592
4593 /* Clean up from the last time we were running. */
4594 clear_proceed_status ();
4595
4596 /* Let the remote process run. */
4597 proceed (-1, TARGET_SIGNAL_0, 0);
4598 }
4599
4600 /* Async version of extended_remote_create_inferior. */
4601 static void
4602 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4603 {
4604 /* Rip out the breakpoints; we'll reinsert them after restarting
4605 the remote server. */
4606 remove_breakpoints ();
4607
4608 /* If running asynchronously, register the target file descriptor
4609 with the event loop. */
4610 if (event_loop_p && target_can_async_p ())
4611 target_async (inferior_event_handler, 0);
4612
4613 /* Now restart the remote server. */
4614 extended_remote_restart ();
4615
4616 /* Now put the breakpoints back in. This way we're safe if the
4617 restart function works via a unix fork on the remote side. */
4618 insert_breakpoints ();
4619
4620 /* Clean up from the last time we were running. */
4621 clear_proceed_status ();
4622
4623 /* Let the remote process run. */
4624 proceed (-1, TARGET_SIGNAL_0, 0);
4625 }
4626 \f
4627
4628 /* On some machines, e.g. 68k, we may use a different breakpoint
4629 instruction than other targets; in those use
4630 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4631 Also, bi-endian targets may define
4632 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4633 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4634 just call the standard routines that are in mem-break.c. */
4635
4636 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4637 target should use an identical BREAKPOINT_FROM_PC. As for native,
4638 the ARCH-OS-tdep.c code can override the default. */
4639
4640 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4641 #define DEPRECATED_REMOTE_BREAKPOINT
4642 #endif
4643
4644 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4645
4646 /* If the target isn't bi-endian, just pretend it is. */
4647 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4648 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4649 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4650 #endif
4651
4652 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4653 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4654
4655 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4656
4657 /* Insert a breakpoint on targets that don't have any better
4658 breakpoint support. We read the contents of the target location
4659 and stash it, then overwrite it with a breakpoint instruction.
4660 ADDR is the target location in the target machine. CONTENTS_CACHE
4661 is a pointer to memory allocated for saving the target contents.
4662 It is guaranteed by the caller to be long enough to save the number
4663 of bytes returned by BREAKPOINT_FROM_PC. */
4664
4665 static int
4666 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4667 {
4668 struct remote_state *rs = get_remote_state ();
4669 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4670 int val;
4671 #endif
4672 int bp_size;
4673
4674 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4675 If it succeeds, then set the support to PACKET_ENABLE. If it
4676 fails, and the user has explicitly requested the Z support then
4677 report an error, otherwise, mark it disabled and go on. */
4678
4679 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4680 {
4681 char *buf = alloca (rs->remote_packet_size);
4682 char *p = buf;
4683
4684 addr = remote_address_masked (addr);
4685 *(p++) = 'Z';
4686 *(p++) = '0';
4687 *(p++) = ',';
4688 p += hexnumstr (p, (ULONGEST) addr);
4689 BREAKPOINT_FROM_PC (&addr, &bp_size);
4690 sprintf (p, ",%d", bp_size);
4691
4692 putpkt (buf);
4693 getpkt (buf, (rs->remote_packet_size), 0);
4694
4695 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4696 {
4697 case PACKET_ERROR:
4698 return -1;
4699 case PACKET_OK:
4700 return 0;
4701 case PACKET_UNKNOWN:
4702 break;
4703 }
4704 }
4705
4706 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4707 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4708
4709 if (val == 0)
4710 {
4711 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4712 val = target_write_memory (addr, (char *) big_break_insn,
4713 sizeof big_break_insn);
4714 else
4715 val = target_write_memory (addr, (char *) little_break_insn,
4716 sizeof little_break_insn);
4717 }
4718
4719 return val;
4720 #else
4721 return memory_insert_breakpoint (addr, contents_cache);
4722 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4723 }
4724
4725 static int
4726 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4727 {
4728 struct remote_state *rs = get_remote_state ();
4729 int bp_size;
4730
4731 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4732 {
4733 char *buf = alloca (rs->remote_packet_size);
4734 char *p = buf;
4735
4736 *(p++) = 'z';
4737 *(p++) = '0';
4738 *(p++) = ',';
4739
4740 addr = remote_address_masked (addr);
4741 p += hexnumstr (p, (ULONGEST) addr);
4742 BREAKPOINT_FROM_PC (&addr, &bp_size);
4743 sprintf (p, ",%d", bp_size);
4744
4745 putpkt (buf);
4746 getpkt (buf, (rs->remote_packet_size), 0);
4747
4748 return (buf[0] == 'E');
4749 }
4750
4751 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4752 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4753 #else
4754 return memory_remove_breakpoint (addr, contents_cache);
4755 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4756 }
4757
4758 static int
4759 watchpoint_to_Z_packet (int type)
4760 {
4761 switch (type)
4762 {
4763 case hw_write:
4764 return 2;
4765 break;
4766 case hw_read:
4767 return 3;
4768 break;
4769 case hw_access:
4770 return 4;
4771 break;
4772 default:
4773 internal_error (__FILE__, __LINE__,
4774 "hw_bp_to_z: bad watchpoint type %d", type);
4775 }
4776 }
4777
4778 static int
4779 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4780 {
4781 struct remote_state *rs = get_remote_state ();
4782 char *buf = alloca (rs->remote_packet_size);
4783 char *p;
4784 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4785
4786 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4787 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4788 remote_protocol_Z[packet].name,
4789 remote_protocol_Z[packet].title);
4790
4791 sprintf (buf, "Z%x,", packet);
4792 p = strchr (buf, '\0');
4793 addr = remote_address_masked (addr);
4794 p += hexnumstr (p, (ULONGEST) addr);
4795 sprintf (p, ",%x", len);
4796
4797 putpkt (buf);
4798 getpkt (buf, (rs->remote_packet_size), 0);
4799
4800 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4801 {
4802 case PACKET_ERROR:
4803 case PACKET_UNKNOWN:
4804 return -1;
4805 case PACKET_OK:
4806 return 0;
4807 }
4808 internal_error (__FILE__, __LINE__,
4809 "remote_insert_watchpoint: reached end of function");
4810 }
4811
4812
4813 static int
4814 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4815 {
4816 struct remote_state *rs = get_remote_state ();
4817 char *buf = alloca (rs->remote_packet_size);
4818 char *p;
4819 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4820
4821 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4822 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4823 remote_protocol_Z[packet].name,
4824 remote_protocol_Z[packet].title);
4825
4826 sprintf (buf, "z%x,", packet);
4827 p = strchr (buf, '\0');
4828 addr = remote_address_masked (addr);
4829 p += hexnumstr (p, (ULONGEST) addr);
4830 sprintf (p, ",%x", len);
4831 putpkt (buf);
4832 getpkt (buf, (rs->remote_packet_size), 0);
4833
4834 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4835 {
4836 case PACKET_ERROR:
4837 case PACKET_UNKNOWN:
4838 return -1;
4839 case PACKET_OK:
4840 return 0;
4841 }
4842 internal_error (__FILE__, __LINE__,
4843 "remote_remove_watchpoint: reached end of function");
4844 }
4845
4846
4847 int remote_hw_watchpoint_limit = -1;
4848 int remote_hw_breakpoint_limit = -1;
4849
4850 static int
4851 remote_check_watch_resources (int type, int cnt, int ot)
4852 {
4853 if (type == bp_hardware_breakpoint)
4854 {
4855 if (remote_hw_breakpoint_limit == 0)
4856 return 0;
4857 else if (remote_hw_breakpoint_limit < 0)
4858 return 1;
4859 else if (cnt <= remote_hw_breakpoint_limit)
4860 return 1;
4861 }
4862 else
4863 {
4864 if (remote_hw_watchpoint_limit == 0)
4865 return 0;
4866 else if (remote_hw_watchpoint_limit < 0)
4867 return 1;
4868 else if (ot)
4869 return -1;
4870 else if (cnt <= remote_hw_watchpoint_limit)
4871 return 1;
4872 }
4873 return -1;
4874 }
4875
4876 static int
4877 remote_stopped_by_watchpoint (void)
4878 {
4879 return remote_stopped_by_watchpoint_p;
4880 }
4881
4882 static CORE_ADDR
4883 remote_stopped_data_address (void)
4884 {
4885 if (remote_stopped_by_watchpoint ())
4886 return remote_watch_data_address;
4887 return (CORE_ADDR)0;
4888 }
4889
4890
4891 static int
4892 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4893 {
4894 int len = 0;
4895 struct remote_state *rs = get_remote_state ();
4896 char *buf = alloca (rs->remote_packet_size);
4897 char *p = buf;
4898
4899 /* The length field should be set to the size of a breakpoint
4900 instruction. */
4901
4902 BREAKPOINT_FROM_PC (&addr, &len);
4903
4904 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4905 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4906 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4907 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4908
4909 *(p++) = 'Z';
4910 *(p++) = '1';
4911 *(p++) = ',';
4912
4913 addr = remote_address_masked (addr);
4914 p += hexnumstr (p, (ULONGEST) addr);
4915 sprintf (p, ",%x", len);
4916
4917 putpkt (buf);
4918 getpkt (buf, (rs->remote_packet_size), 0);
4919
4920 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4921 {
4922 case PACKET_ERROR:
4923 case PACKET_UNKNOWN:
4924 return -1;
4925 case PACKET_OK:
4926 return 0;
4927 }
4928 internal_error (__FILE__, __LINE__,
4929 "remote_insert_hw_breakpoint: reached end of function");
4930 }
4931
4932
4933 static int
4934 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4935 {
4936 int len;
4937 struct remote_state *rs = get_remote_state ();
4938 char *buf = alloca (rs->remote_packet_size);
4939 char *p = buf;
4940
4941 /* The length field should be set to the size of a breakpoint
4942 instruction. */
4943
4944 BREAKPOINT_FROM_PC (&addr, &len);
4945
4946 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4947 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4948 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4949 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4950
4951 *(p++) = 'z';
4952 *(p++) = '1';
4953 *(p++) = ',';
4954
4955 addr = remote_address_masked (addr);
4956 p += hexnumstr (p, (ULONGEST) addr);
4957 sprintf (p, ",%x", len);
4958
4959 putpkt(buf);
4960 getpkt (buf, (rs->remote_packet_size), 0);
4961
4962 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4963 {
4964 case PACKET_ERROR:
4965 case PACKET_UNKNOWN:
4966 return -1;
4967 case PACKET_OK:
4968 return 0;
4969 }
4970 internal_error (__FILE__, __LINE__,
4971 "remote_remove_hw_breakpoint: reached end of function");
4972 }
4973
4974 /* Some targets are only capable of doing downloads, and afterwards
4975 they switch to the remote serial protocol. This function provides
4976 a clean way to get from the download target to the remote target.
4977 It's basically just a wrapper so that we don't have to expose any
4978 of the internal workings of remote.c.
4979
4980 Prior to calling this routine, you should shutdown the current
4981 target code, else you will get the "A program is being debugged
4982 already..." message. Usually a call to pop_target() suffices. */
4983
4984 void
4985 push_remote_target (char *name, int from_tty)
4986 {
4987 printf_filtered ("Switching to remote protocol\n");
4988 remote_open (name, from_tty);
4989 }
4990
4991 /* Table used by the crc32 function to calcuate the checksum. */
4992
4993 static unsigned long crc32_table[256] =
4994 {0, 0};
4995
4996 static unsigned long
4997 crc32 (unsigned char *buf, int len, unsigned int crc)
4998 {
4999 if (!crc32_table[1])
5000 {
5001 /* Initialize the CRC table and the decoding table. */
5002 int i, j;
5003 unsigned int c;
5004
5005 for (i = 0; i < 256; i++)
5006 {
5007 for (c = i << 24, j = 8; j > 0; --j)
5008 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5009 crc32_table[i] = c;
5010 }
5011 }
5012
5013 while (len--)
5014 {
5015 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5016 buf++;
5017 }
5018 return crc;
5019 }
5020
5021 /* compare-sections command
5022
5023 With no arguments, compares each loadable section in the exec bfd
5024 with the same memory range on the target, and reports mismatches.
5025 Useful for verifying the image on the target against the exec file.
5026 Depends on the target understanding the new "qCRC:" request. */
5027
5028 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5029 target method (target verify memory) and generic version of the
5030 actual command. This will allow other high-level code (especially
5031 generic_load()) to make use of this target functionality. */
5032
5033 static void
5034 compare_sections_command (char *args, int from_tty)
5035 {
5036 struct remote_state *rs = get_remote_state ();
5037 asection *s;
5038 unsigned long host_crc, target_crc;
5039 extern bfd *exec_bfd;
5040 struct cleanup *old_chain;
5041 char *tmp;
5042 char *sectdata;
5043 const char *sectname;
5044 char *buf = alloca (rs->remote_packet_size);
5045 bfd_size_type size;
5046 bfd_vma lma;
5047 int matched = 0;
5048 int mismatched = 0;
5049
5050 if (!exec_bfd)
5051 error ("command cannot be used without an exec file");
5052 if (!current_target.to_shortname ||
5053 strcmp (current_target.to_shortname, "remote") != 0)
5054 error ("command can only be used with remote target");
5055
5056 for (s = exec_bfd->sections; s; s = s->next)
5057 {
5058 if (!(s->flags & SEC_LOAD))
5059 continue; /* skip non-loadable section */
5060
5061 size = bfd_get_section_size_before_reloc (s);
5062 if (size == 0)
5063 continue; /* skip zero-length section */
5064
5065 sectname = bfd_get_section_name (exec_bfd, s);
5066 if (args && strcmp (args, sectname) != 0)
5067 continue; /* not the section selected by user */
5068
5069 matched = 1; /* do this section */
5070 lma = s->lma;
5071 /* FIXME: assumes lma can fit into long */
5072 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5073 putpkt (buf);
5074
5075 /* be clever; compute the host_crc before waiting for target reply */
5076 sectdata = xmalloc (size);
5077 old_chain = make_cleanup (xfree, sectdata);
5078 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5079 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5080
5081 getpkt (buf, (rs->remote_packet_size), 0);
5082 if (buf[0] == 'E')
5083 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5084 sectname, paddr (lma), paddr (lma + size));
5085 if (buf[0] != 'C')
5086 error ("remote target does not support this operation");
5087
5088 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5089 target_crc = target_crc * 16 + fromhex (*tmp);
5090
5091 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5092 sectname, paddr (lma), paddr (lma + size));
5093 if (host_crc == target_crc)
5094 printf_filtered ("matched.\n");
5095 else
5096 {
5097 printf_filtered ("MIS-MATCHED!\n");
5098 mismatched++;
5099 }
5100
5101 do_cleanups (old_chain);
5102 }
5103 if (mismatched > 0)
5104 warning ("One or more sections of the remote executable does not match\n\
5105 the loaded file\n");
5106 if (args && !matched)
5107 printf_filtered ("No loaded section named '%s'.\n", args);
5108 }
5109
5110 static int
5111 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5112 {
5113 struct remote_state *rs = get_remote_state ();
5114 int i;
5115 char *buf2 = alloca (rs->remote_packet_size);
5116 char *p2 = &buf2[0];
5117
5118 if (!bufsiz)
5119 error ("null pointer to remote bufer size specified");
5120
5121 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5122 the caller know and return what the minimum size is */
5123 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5124 if (*bufsiz < (rs->remote_packet_size))
5125 {
5126 *bufsiz = (rs->remote_packet_size);
5127 return -1;
5128 }
5129
5130 /* except for querying the minimum buffer size, target must be open */
5131 if (!remote_desc)
5132 error ("remote query is only available after target open");
5133
5134 /* we only take uppercase letters as query types, at least for now */
5135 if ((query_type < 'A') || (query_type > 'Z'))
5136 error ("invalid remote query type");
5137
5138 if (!buf)
5139 error ("null remote query specified");
5140
5141 if (!outbuf)
5142 error ("remote query requires a buffer to receive data");
5143
5144 outbuf[0] = '\0';
5145
5146 *p2++ = 'q';
5147 *p2++ = query_type;
5148
5149 /* we used one buffer char for the remote protocol q command and another
5150 for the query type. As the remote protocol encapsulation uses 4 chars
5151 plus one extra in case we are debugging (remote_debug),
5152 we have PBUFZIZ - 7 left to pack the query string */
5153 i = 0;
5154 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5155 {
5156 /* bad caller may have sent forbidden characters */
5157 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5158 error ("illegal characters in query string");
5159
5160 *p2++ = buf[i];
5161 i++;
5162 }
5163 *p2 = buf[i];
5164
5165 if (buf[i])
5166 error ("query larger than available buffer");
5167
5168 i = putpkt (buf2);
5169 if (i < 0)
5170 return i;
5171
5172 getpkt (outbuf, *bufsiz, 0);
5173
5174 return 0;
5175 }
5176
5177 static void
5178 remote_rcmd (char *command,
5179 struct ui_file *outbuf)
5180 {
5181 struct remote_state *rs = get_remote_state ();
5182 int i;
5183 char *buf = alloca (rs->remote_packet_size);
5184 char *p = buf;
5185
5186 if (!remote_desc)
5187 error ("remote rcmd is only available after target open");
5188
5189 /* Send a NULL command across as an empty command */
5190 if (command == NULL)
5191 command = "";
5192
5193 /* The query prefix */
5194 strcpy (buf, "qRcmd,");
5195 p = strchr (buf, '\0');
5196
5197 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5198 error ("\"monitor\" command ``%s'' is too long\n", command);
5199
5200 /* Encode the actual command */
5201 bin2hex (command, p, 0);
5202
5203 if (putpkt (buf) < 0)
5204 error ("Communication problem with target\n");
5205
5206 /* get/display the response */
5207 while (1)
5208 {
5209 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5210 buf[0] = '\0';
5211 getpkt (buf, (rs->remote_packet_size), 0);
5212 if (buf[0] == '\0')
5213 error ("Target does not support this command\n");
5214 if (buf[0] == 'O' && buf[1] != 'K')
5215 {
5216 remote_console_output (buf + 1); /* 'O' message from stub */
5217 continue;
5218 }
5219 if (strcmp (buf, "OK") == 0)
5220 break;
5221 if (strlen (buf) == 3 && buf[0] == 'E'
5222 && isdigit (buf[1]) && isdigit (buf[2]))
5223 {
5224 error ("Protocol error with Rcmd");
5225 }
5226 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5227 {
5228 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5229 fputc_unfiltered (c, outbuf);
5230 }
5231 break;
5232 }
5233 }
5234
5235 static void
5236 packet_command (char *args, int from_tty)
5237 {
5238 struct remote_state *rs = get_remote_state ();
5239 char *buf = alloca (rs->remote_packet_size);
5240
5241 if (!remote_desc)
5242 error ("command can only be used with remote target");
5243
5244 if (!args)
5245 error ("remote-packet command requires packet text as argument");
5246
5247 puts_filtered ("sending: ");
5248 print_packet (args);
5249 puts_filtered ("\n");
5250 putpkt (args);
5251
5252 getpkt (buf, (rs->remote_packet_size), 0);
5253 puts_filtered ("received: ");
5254 print_packet (buf);
5255 puts_filtered ("\n");
5256 }
5257
5258 #if 0
5259 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5260
5261 static void display_thread_info (struct gdb_ext_thread_info *info);
5262
5263 static void threadset_test_cmd (char *cmd, int tty);
5264
5265 static void threadalive_test (char *cmd, int tty);
5266
5267 static void threadlist_test_cmd (char *cmd, int tty);
5268
5269 int get_and_display_threadinfo (threadref * ref);
5270
5271 static void threadinfo_test_cmd (char *cmd, int tty);
5272
5273 static int thread_display_step (threadref * ref, void *context);
5274
5275 static void threadlist_update_test_cmd (char *cmd, int tty);
5276
5277 static void init_remote_threadtests (void);
5278
5279 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5280
5281 static void
5282 threadset_test_cmd (char *cmd, int tty)
5283 {
5284 int sample_thread = SAMPLE_THREAD;
5285
5286 printf_filtered ("Remote threadset test\n");
5287 set_thread (sample_thread, 1);
5288 }
5289
5290
5291 static void
5292 threadalive_test (char *cmd, int tty)
5293 {
5294 int sample_thread = SAMPLE_THREAD;
5295
5296 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5297 printf_filtered ("PASS: Thread alive test\n");
5298 else
5299 printf_filtered ("FAIL: Thread alive test\n");
5300 }
5301
5302 void output_threadid (char *title, threadref * ref);
5303
5304 void
5305 output_threadid (char *title, threadref *ref)
5306 {
5307 char hexid[20];
5308
5309 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5310 hexid[16] = 0;
5311 printf_filtered ("%s %s\n", title, (&hexid[0]));
5312 }
5313
5314 static void
5315 threadlist_test_cmd (char *cmd, int tty)
5316 {
5317 int startflag = 1;
5318 threadref nextthread;
5319 int done, result_count;
5320 threadref threadlist[3];
5321
5322 printf_filtered ("Remote Threadlist test\n");
5323 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5324 &result_count, &threadlist[0]))
5325 printf_filtered ("FAIL: threadlist test\n");
5326 else
5327 {
5328 threadref *scan = threadlist;
5329 threadref *limit = scan + result_count;
5330
5331 while (scan < limit)
5332 output_threadid (" thread ", scan++);
5333 }
5334 }
5335
5336 void
5337 display_thread_info (struct gdb_ext_thread_info *info)
5338 {
5339 output_threadid ("Threadid: ", &info->threadid);
5340 printf_filtered ("Name: %s\n ", info->shortname);
5341 printf_filtered ("State: %s\n", info->display);
5342 printf_filtered ("other: %s\n\n", info->more_display);
5343 }
5344
5345 int
5346 get_and_display_threadinfo (threadref *ref)
5347 {
5348 int result;
5349 int set;
5350 struct gdb_ext_thread_info threadinfo;
5351
5352 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5353 | TAG_MOREDISPLAY | TAG_DISPLAY;
5354 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5355 display_thread_info (&threadinfo);
5356 return result;
5357 }
5358
5359 static void
5360 threadinfo_test_cmd (char *cmd, int tty)
5361 {
5362 int athread = SAMPLE_THREAD;
5363 threadref thread;
5364 int set;
5365
5366 int_to_threadref (&thread, athread);
5367 printf_filtered ("Remote Threadinfo test\n");
5368 if (!get_and_display_threadinfo (&thread))
5369 printf_filtered ("FAIL cannot get thread info\n");
5370 }
5371
5372 static int
5373 thread_display_step (threadref *ref, void *context)
5374 {
5375 /* output_threadid(" threadstep ",ref); *//* simple test */
5376 return get_and_display_threadinfo (ref);
5377 }
5378
5379 static void
5380 threadlist_update_test_cmd (char *cmd, int tty)
5381 {
5382 printf_filtered ("Remote Threadlist update test\n");
5383 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5384 }
5385
5386 static void
5387 init_remote_threadtests (void)
5388 {
5389 add_com ("tlist", class_obscure, threadlist_test_cmd,
5390 "Fetch and print the remote list of thread identifiers, one pkt only");
5391 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5392 "Fetch and display info about one thread");
5393 add_com ("tset", class_obscure, threadset_test_cmd,
5394 "Test setting to a different thread");
5395 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5396 "Iterate through updating all remote thread info");
5397 add_com ("talive", class_obscure, threadalive_test,
5398 " Remote thread alive test ");
5399 }
5400
5401 #endif /* 0 */
5402
5403 /* Convert a thread ID to a string. Returns the string in a static
5404 buffer. */
5405
5406 static char *
5407 remote_pid_to_str (ptid_t ptid)
5408 {
5409 static char buf[30];
5410
5411 sprintf (buf, "Thread %d", PIDGET (ptid));
5412 return buf;
5413 }
5414
5415 static void
5416 init_remote_ops (void)
5417 {
5418 remote_ops.to_shortname = "remote";
5419 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5420 remote_ops.to_doc =
5421 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5422 Specify the serial device it is connected to\n\
5423 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5424 remote_ops.to_open = remote_open;
5425 remote_ops.to_close = remote_close;
5426 remote_ops.to_detach = remote_detach;
5427 remote_ops.to_disconnect = remote_disconnect;
5428 remote_ops.to_resume = remote_resume;
5429 remote_ops.to_wait = remote_wait;
5430 remote_ops.to_fetch_registers = remote_fetch_registers;
5431 remote_ops.to_store_registers = remote_store_registers;
5432 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5433 remote_ops.to_xfer_memory = remote_xfer_memory;
5434 remote_ops.to_files_info = remote_files_info;
5435 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5436 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5437 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5438 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5439 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5440 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5441 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5442 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5443 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5444 remote_ops.to_kill = remote_kill;
5445 remote_ops.to_load = generic_load;
5446 remote_ops.to_mourn_inferior = remote_mourn;
5447 remote_ops.to_thread_alive = remote_thread_alive;
5448 remote_ops.to_find_new_threads = remote_threads_info;
5449 remote_ops.to_pid_to_str = remote_pid_to_str;
5450 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5451 remote_ops.to_stop = remote_stop;
5452 remote_ops.to_query = remote_query;
5453 remote_ops.to_rcmd = remote_rcmd;
5454 remote_ops.to_stratum = process_stratum;
5455 remote_ops.to_has_all_memory = 1;
5456 remote_ops.to_has_memory = 1;
5457 remote_ops.to_has_stack = 1;
5458 remote_ops.to_has_registers = 1;
5459 remote_ops.to_has_execution = 1;
5460 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5461 remote_ops.to_magic = OPS_MAGIC;
5462 }
5463
5464 /* Set up the extended remote vector by making a copy of the standard
5465 remote vector and adding to it. */
5466
5467 static void
5468 init_extended_remote_ops (void)
5469 {
5470 extended_remote_ops = remote_ops;
5471
5472 extended_remote_ops.to_shortname = "extended-remote";
5473 extended_remote_ops.to_longname =
5474 "Extended remote serial target in gdb-specific protocol";
5475 extended_remote_ops.to_doc =
5476 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5477 Specify the serial device it is connected to (e.g. /dev/ttya).",
5478 extended_remote_ops.to_open = extended_remote_open;
5479 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5480 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5481 }
5482
5483 /*
5484 * Command: info remote-process
5485 *
5486 * This implements Cisco's version of the "info proc" command.
5487 *
5488 * This query allows the target stub to return an arbitrary string
5489 * (or strings) giving arbitrary information about the target process.
5490 * This is optional; the target stub isn't required to implement it.
5491 *
5492 * Syntax: qfProcessInfo request first string
5493 * qsProcessInfo request subsequent string
5494 * reply: 'O'<hex-encoded-string>
5495 * 'l' last reply (empty)
5496 */
5497
5498 static void
5499 remote_info_process (char *args, int from_tty)
5500 {
5501 struct remote_state *rs = get_remote_state ();
5502 char *buf = alloca (rs->remote_packet_size);
5503
5504 if (remote_desc == 0)
5505 error ("Command can only be used when connected to the remote target.");
5506
5507 putpkt ("qfProcessInfo");
5508 getpkt (buf, (rs->remote_packet_size), 0);
5509 if (buf[0] == 0)
5510 return; /* Silently: target does not support this feature. */
5511
5512 if (buf[0] == 'E')
5513 error ("info proc: target error.");
5514
5515 while (buf[0] == 'O') /* Capitol-O packet */
5516 {
5517 remote_console_output (&buf[1]);
5518 putpkt ("qsProcessInfo");
5519 getpkt (buf, (rs->remote_packet_size), 0);
5520 }
5521 }
5522
5523 /*
5524 * Target Cisco
5525 */
5526
5527 static void
5528 remote_cisco_open (char *name, int from_tty)
5529 {
5530 int ex;
5531 if (name == 0)
5532 error ("To open a remote debug connection, you need to specify what \n"
5533 "device is attached to the remote system (e.g. host:port).");
5534
5535 /* See FIXME above */
5536 wait_forever_enabled_p = 1;
5537
5538 target_preopen (from_tty);
5539
5540 unpush_target (&remote_cisco_ops);
5541
5542 remote_desc = remote_serial_open (name);
5543 if (!remote_desc)
5544 perror_with_name (name);
5545
5546 /*
5547 * If a baud rate was specified on the gdb command line it will
5548 * be greater than the initial value of -1. If it is, use it otherwise
5549 * default to 9600
5550 */
5551
5552 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5553 if (serial_setbaudrate (remote_desc, baud_rate))
5554 {
5555 serial_close (remote_desc);
5556 perror_with_name (name);
5557 }
5558
5559 serial_raw (remote_desc);
5560
5561 /* If there is something sitting in the buffer we might take it as a
5562 response to a command, which would be bad. */
5563 serial_flush_input (remote_desc);
5564
5565 if (from_tty)
5566 {
5567 puts_filtered ("Remote debugging using ");
5568 puts_filtered (name);
5569 puts_filtered ("\n");
5570 }
5571
5572 remote_cisco_mode = 1;
5573
5574 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5575
5576 init_all_packet_configs ();
5577
5578 general_thread = -2;
5579 continue_thread = -2;
5580
5581 /* Probe for ability to use "ThreadInfo" query, as required. */
5582 use_threadinfo_query = 1;
5583 use_threadextra_query = 1;
5584
5585 /* Without this, some commands which require an active target (such
5586 as kill) won't work. This variable serves (at least) double duty
5587 as both the pid of the target process (if it has such), and as a
5588 flag indicating that a target is active. These functions should
5589 be split out into seperate variables, especially since GDB will
5590 someday have a notion of debugging several processes. */
5591 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5592
5593 /* Start the remote connection; if error, discard this target. See
5594 the comments in remote_open_1() for further details such as the
5595 need to re-throw the exception. */
5596 ex = catch_exceptions (uiout,
5597 remote_start_remote_dummy, NULL,
5598 "Couldn't establish connection to remote"
5599 " target\n",
5600 RETURN_MASK_ALL);
5601 if (ex < 0)
5602 {
5603 pop_target ();
5604 throw_exception (ex);
5605 }
5606 }
5607
5608 static void
5609 remote_cisco_close (int quitting)
5610 {
5611 remote_cisco_mode = 0;
5612 remote_close (quitting);
5613 }
5614
5615 static void
5616 remote_cisco_mourn (void)
5617 {
5618 remote_mourn_1 (&remote_cisco_ops);
5619 }
5620
5621 enum
5622 {
5623 READ_MORE,
5624 FATAL_ERROR,
5625 ENTER_DEBUG,
5626 DISCONNECT_TELNET
5627 }
5628 minitelnet_return;
5629
5630 /* Shared between readsocket() and readtty(). The size is arbitrary,
5631 however all targets are known to support a 400 character packet. */
5632 static char tty_input[400];
5633
5634 static int escape_count;
5635 static int echo_check;
5636 extern int quit_flag;
5637
5638 static int
5639 readsocket (void)
5640 {
5641 int data;
5642
5643 /* Loop until the socket doesn't have any more data */
5644
5645 while ((data = readchar (0)) >= 0)
5646 {
5647 /* Check for the escape sequence */
5648 if (data == '|')
5649 {
5650 /* If this is the fourth escape, get out */
5651 if (++escape_count == 4)
5652 {
5653 return ENTER_DEBUG;
5654 }
5655 else
5656 { /* This is a '|', but not the fourth in a row.
5657 Continue without echoing it. If it isn't actually
5658 one of four in a row, it'll be echoed later. */
5659 continue;
5660 }
5661 }
5662 else
5663 /* Not a '|' */
5664 {
5665 /* Ensure any pending '|'s are flushed. */
5666
5667 for (; escape_count > 0; escape_count--)
5668 putchar ('|');
5669 }
5670
5671 if (data == '\r') /* If this is a return character, */
5672 continue; /* - just supress it. */
5673
5674 if (echo_check != -1) /* Check for echo of user input. */
5675 {
5676 if (tty_input[echo_check] == data)
5677 {
5678 gdb_assert (echo_check <= sizeof (tty_input));
5679 echo_check++; /* Character matched user input: */
5680 continue; /* Continue without echoing it. */
5681 }
5682 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5683 { /* End of the line (and of echo checking). */
5684 echo_check = -1; /* No more echo supression */
5685 continue; /* Continue without echoing. */
5686 }
5687 else
5688 { /* Failed check for echo of user input.
5689 We now have some suppressed output to flush! */
5690 int j;
5691
5692 for (j = 0; j < echo_check; j++)
5693 putchar (tty_input[j]);
5694 echo_check = -1;
5695 }
5696 }
5697 putchar (data); /* Default case: output the char. */
5698 }
5699
5700 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5701 return READ_MORE; /* Try to read some more */
5702 else
5703 return FATAL_ERROR; /* Trouble, bail out */
5704 }
5705
5706 static int
5707 readtty (void)
5708 {
5709 int tty_bytecount;
5710
5711 /* First, read a buffer full from the terminal */
5712 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5713 if (tty_bytecount == -1)
5714 {
5715 perror ("readtty: read failed");
5716 return FATAL_ERROR;
5717 }
5718
5719 /* Remove a quoted newline. */
5720 if (tty_input[tty_bytecount - 1] == '\n' &&
5721 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5722 {
5723 tty_input[--tty_bytecount] = 0; /* remove newline */
5724 tty_input[--tty_bytecount] = 0; /* remove backslash */
5725 }
5726
5727 /* Turn trailing newlines into returns */
5728 if (tty_input[tty_bytecount - 1] == '\n')
5729 tty_input[tty_bytecount - 1] = '\r';
5730
5731 /* If the line consists of a ~, enter debugging mode. */
5732 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5733 return ENTER_DEBUG;
5734
5735 /* Make this a zero terminated string and write it out */
5736 tty_input[tty_bytecount] = 0;
5737 if (serial_write (remote_desc, tty_input, tty_bytecount))
5738 {
5739 perror_with_name ("readtty: write failed");
5740 return FATAL_ERROR;
5741 }
5742
5743 return READ_MORE;
5744 }
5745
5746 static int
5747 minitelnet (void)
5748 {
5749 fd_set input; /* file descriptors for select */
5750 int tablesize; /* max number of FDs for select */
5751 int status;
5752 int quit_count = 0;
5753
5754 escape_count = 0;
5755 echo_check = -1;
5756
5757 tablesize = 8 * sizeof (input);
5758
5759 for (;;)
5760 {
5761 /* Check for anything from our socket - doesn't block. Note that
5762 this must be done *before* the select as there may be
5763 buffered I/O waiting to be processed. */
5764
5765 if ((status = readsocket ()) == FATAL_ERROR)
5766 {
5767 error ("Debugging terminated by communications error");
5768 }
5769 else if (status != READ_MORE)
5770 {
5771 return (status);
5772 }
5773
5774 fflush (stdout); /* Flush output before blocking */
5775
5776 /* Now block on more socket input or TTY input */
5777
5778 FD_ZERO (&input);
5779 FD_SET (fileno (stdin), &input);
5780 FD_SET (deprecated_serial_fd (remote_desc), &input);
5781
5782 status = select (tablesize, &input, 0, 0, 0);
5783 if ((status == -1) && (errno != EINTR))
5784 {
5785 error ("Communications error on select %d", errno);
5786 }
5787
5788 /* Handle Control-C typed */
5789
5790 if (quit_flag)
5791 {
5792 if ((++quit_count) == 2)
5793 {
5794 if (query ("Interrupt GDB? "))
5795 {
5796 printf_filtered ("Interrupted by user.\n");
5797 throw_exception (RETURN_QUIT);
5798 }
5799 quit_count = 0;
5800 }
5801 quit_flag = 0;
5802
5803 if (remote_break)
5804 serial_send_break (remote_desc);
5805 else
5806 serial_write (remote_desc, "\003", 1);
5807
5808 continue;
5809 }
5810
5811 /* Handle console input */
5812
5813 if (FD_ISSET (fileno (stdin), &input))
5814 {
5815 quit_count = 0;
5816 echo_check = 0;
5817 status = readtty ();
5818 if (status == READ_MORE)
5819 continue;
5820
5821 return status; /* telnet session ended */
5822 }
5823 }
5824 }
5825
5826 static ptid_t
5827 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5828 {
5829 if (minitelnet () != ENTER_DEBUG)
5830 {
5831 error ("Debugging session terminated by protocol error");
5832 }
5833 putpkt ("?");
5834 return remote_wait (ptid, status);
5835 }
5836
5837 static void
5838 init_remote_cisco_ops (void)
5839 {
5840 remote_cisco_ops.to_shortname = "cisco";
5841 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5842 remote_cisco_ops.to_doc =
5843 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5844 Specify the serial device it is connected to (e.g. host:2020).";
5845 remote_cisco_ops.to_open = remote_cisco_open;
5846 remote_cisco_ops.to_close = remote_cisco_close;
5847 remote_cisco_ops.to_detach = remote_detach;
5848 remote_cisco_ops.to_disconnect = remote_disconnect;
5849 remote_cisco_ops.to_resume = remote_resume;
5850 remote_cisco_ops.to_wait = remote_cisco_wait;
5851 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5852 remote_cisco_ops.to_store_registers = remote_store_registers;
5853 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5854 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5855 remote_cisco_ops.to_files_info = remote_files_info;
5856 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5857 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5858 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5859 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5860 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5861 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5862 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5863 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5864 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5865 remote_cisco_ops.to_kill = remote_kill;
5866 remote_cisco_ops.to_load = generic_load;
5867 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5868 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5869 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5870 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5871 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5872 remote_cisco_ops.to_stratum = process_stratum;
5873 remote_cisco_ops.to_has_all_memory = 1;
5874 remote_cisco_ops.to_has_memory = 1;
5875 remote_cisco_ops.to_has_stack = 1;
5876 remote_cisco_ops.to_has_registers = 1;
5877 remote_cisco_ops.to_has_execution = 1;
5878 remote_cisco_ops.to_magic = OPS_MAGIC;
5879 }
5880
5881 static int
5882 remote_can_async_p (void)
5883 {
5884 /* We're async whenever the serial device is. */
5885 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5886 }
5887
5888 static int
5889 remote_is_async_p (void)
5890 {
5891 /* We're async whenever the serial device is. */
5892 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5893 }
5894
5895 /* Pass the SERIAL event on and up to the client. One day this code
5896 will be able to delay notifying the client of an event until the
5897 point where an entire packet has been received. */
5898
5899 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5900 static void *async_client_context;
5901 static serial_event_ftype remote_async_serial_handler;
5902
5903 static void
5904 remote_async_serial_handler (struct serial *scb, void *context)
5905 {
5906 /* Don't propogate error information up to the client. Instead let
5907 the client find out about the error by querying the target. */
5908 async_client_callback (INF_REG_EVENT, async_client_context);
5909 }
5910
5911 static void
5912 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5913 {
5914 if (current_target.to_async_mask_value == 0)
5915 internal_error (__FILE__, __LINE__,
5916 "Calling remote_async when async is masked");
5917
5918 if (callback != NULL)
5919 {
5920 serial_async (remote_desc, remote_async_serial_handler, NULL);
5921 async_client_callback = callback;
5922 async_client_context = context;
5923 }
5924 else
5925 serial_async (remote_desc, NULL, NULL);
5926 }
5927
5928 /* Target async and target extended-async.
5929
5930 This are temporary targets, until it is all tested. Eventually
5931 async support will be incorporated int the usual 'remote'
5932 target. */
5933
5934 static void
5935 init_remote_async_ops (void)
5936 {
5937 remote_async_ops.to_shortname = "async";
5938 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5939 remote_async_ops.to_doc =
5940 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5941 Specify the serial device it is connected to (e.g. /dev/ttya).";
5942 remote_async_ops.to_open = remote_async_open;
5943 remote_async_ops.to_close = remote_close;
5944 remote_async_ops.to_detach = remote_detach;
5945 remote_async_ops.to_disconnect = remote_disconnect;
5946 remote_async_ops.to_resume = remote_async_resume;
5947 remote_async_ops.to_wait = remote_async_wait;
5948 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5949 remote_async_ops.to_store_registers = remote_store_registers;
5950 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5951 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5952 remote_async_ops.to_files_info = remote_files_info;
5953 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5954 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5955 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5956 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5957 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5958 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5959 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5960 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5961 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5962 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5963 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5964 remote_async_ops.to_kill = remote_async_kill;
5965 remote_async_ops.to_load = generic_load;
5966 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5967 remote_async_ops.to_thread_alive = remote_thread_alive;
5968 remote_async_ops.to_find_new_threads = remote_threads_info;
5969 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5970 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5971 remote_async_ops.to_stop = remote_stop;
5972 remote_async_ops.to_query = remote_query;
5973 remote_async_ops.to_rcmd = remote_rcmd;
5974 remote_async_ops.to_stratum = process_stratum;
5975 remote_async_ops.to_has_all_memory = 1;
5976 remote_async_ops.to_has_memory = 1;
5977 remote_async_ops.to_has_stack = 1;
5978 remote_async_ops.to_has_registers = 1;
5979 remote_async_ops.to_has_execution = 1;
5980 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5981 remote_async_ops.to_can_async_p = remote_can_async_p;
5982 remote_async_ops.to_is_async_p = remote_is_async_p;
5983 remote_async_ops.to_async = remote_async;
5984 remote_async_ops.to_async_mask_value = 1;
5985 remote_async_ops.to_magic = OPS_MAGIC;
5986 }
5987
5988 /* Set up the async extended remote vector by making a copy of the standard
5989 remote vector and adding to it. */
5990
5991 static void
5992 init_extended_async_remote_ops (void)
5993 {
5994 extended_async_remote_ops = remote_async_ops;
5995
5996 extended_async_remote_ops.to_shortname = "extended-async";
5997 extended_async_remote_ops.to_longname =
5998 "Extended remote serial target in async gdb-specific protocol";
5999 extended_async_remote_ops.to_doc =
6000 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6001 Specify the serial device it is connected to (e.g. /dev/ttya).",
6002 extended_async_remote_ops.to_open = extended_remote_async_open;
6003 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6004 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6005 }
6006
6007 static void
6008 set_remote_cmd (char *args, int from_tty)
6009 {
6010 }
6011
6012 static void
6013 show_remote_cmd (char *args, int from_tty)
6014 {
6015 /* FIXME: cagney/2002-06-15: This function should iterate over
6016 remote_show_cmdlist for a list of sub commands to show. */
6017 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
6018 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
6019 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
6020 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
6021 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
6022 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
6023 }
6024
6025 static void
6026 build_remote_gdbarch_data (void)
6027 {
6028 remote_address_size = TARGET_ADDR_BIT;
6029 }
6030
6031 /* Saved pointer to previous owner of the new_objfile event. */
6032 static void (*remote_new_objfile_chain) (struct objfile *);
6033
6034 /* Function to be called whenever a new objfile (shlib) is detected. */
6035 static void
6036 remote_new_objfile (struct objfile *objfile)
6037 {
6038 if (remote_desc != 0) /* Have a remote connection */
6039 {
6040 remote_check_symbols (objfile);
6041 }
6042 /* Call predecessor on chain, if any. */
6043 if (remote_new_objfile_chain != 0 &&
6044 remote_desc == 0)
6045 remote_new_objfile_chain (objfile);
6046 }
6047
6048 void
6049 _initialize_remote (void)
6050 {
6051 static struct cmd_list_element *remote_set_cmdlist;
6052 static struct cmd_list_element *remote_show_cmdlist;
6053 struct cmd_list_element *tmpcmd;
6054
6055 /* architecture specific data */
6056 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state);
6057
6058 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6059 that the remote protocol has been initialized. */
6060 register_gdbarch_swap (&remote_address_size,
6061 sizeof (&remote_address_size), NULL);
6062 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6063
6064 init_remote_ops ();
6065 add_target (&remote_ops);
6066
6067 init_extended_remote_ops ();
6068 add_target (&extended_remote_ops);
6069
6070 init_remote_async_ops ();
6071 add_target (&remote_async_ops);
6072
6073 init_extended_async_remote_ops ();
6074 add_target (&extended_async_remote_ops);
6075
6076 init_remote_cisco_ops ();
6077 add_target (&remote_cisco_ops);
6078
6079 /* Hook into new objfile notification. */
6080 remote_new_objfile_chain = target_new_objfile_hook;
6081 target_new_objfile_hook = remote_new_objfile;
6082
6083 #if 0
6084 init_remote_threadtests ();
6085 #endif
6086
6087 /* set/show remote ... */
6088
6089 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6090 Remote protocol specific variables\n\
6091 Configure various remote-protocol specific variables such as\n\
6092 the packets being used",
6093 &remote_set_cmdlist, "set remote ",
6094 0/*allow-unknown*/, &setlist);
6095 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6096 Remote protocol specific variables\n\
6097 Configure various remote-protocol specific variables such as\n\
6098 the packets being used",
6099 &remote_show_cmdlist, "show remote ",
6100 0/*allow-unknown*/, &showlist);
6101
6102 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6103 "Compare section data on target to the exec file.\n\
6104 Argument is a single section name (default: all loaded sections).",
6105 &cmdlist);
6106
6107 add_cmd ("packet", class_maintenance, packet_command,
6108 "Send an arbitrary packet to a remote target.\n\
6109 maintenance packet TEXT\n\
6110 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6111 this command sends the string TEXT to the inferior, and displays the\n\
6112 response packet. GDB supplies the initial `$' character, and the\n\
6113 terminating `#' character and checksum.",
6114 &maintenancelist);
6115
6116 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6117 "Set whether to send break if interrupted.\n",
6118 "Show whether to send break if interrupted.\n",
6119 NULL, NULL,
6120 &setlist, &showlist);
6121
6122 /* Install commands for configuring memory read/write packets. */
6123
6124 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6125 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6126 &setlist);
6127 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6128 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6129 &showlist);
6130 add_cmd ("memory-write-packet-size", no_class,
6131 set_memory_write_packet_size,
6132 "Set the maximum number of bytes per memory-write packet.\n"
6133 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6134 "default packet size. The actual limit is further reduced\n"
6135 "dependent on the target. Specify ``fixed'' to disable the\n"
6136 "further restriction and ``limit'' to enable that restriction\n",
6137 &remote_set_cmdlist);
6138 add_cmd ("memory-read-packet-size", no_class,
6139 set_memory_read_packet_size,
6140 "Set the maximum number of bytes per memory-read packet.\n"
6141 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6142 "default packet size. The actual limit is further reduced\n"
6143 "dependent on the target. Specify ``fixed'' to disable the\n"
6144 "further restriction and ``limit'' to enable that restriction\n",
6145 &remote_set_cmdlist);
6146 add_cmd ("memory-write-packet-size", no_class,
6147 show_memory_write_packet_size,
6148 "Show the maximum number of bytes per memory-write packet.\n",
6149 &remote_show_cmdlist);
6150 add_cmd ("memory-read-packet-size", no_class,
6151 show_memory_read_packet_size,
6152 "Show the maximum number of bytes per memory-read packet.\n",
6153 &remote_show_cmdlist);
6154
6155 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
6156 var_zinteger, &remote_hw_watchpoint_limit, "\
6157 Set the maximum number of target hardware watchpoints.\n\
6158 Specify a negative limit for unlimited.", "\
6159 Show the maximum number of target hardware watchpoints.\n",
6160 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6161 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
6162 var_zinteger, &remote_hw_breakpoint_limit, "\
6163 Set the maximum number of target hardware breakpoints.\n\
6164 Specify a negative limit for unlimited.", "\
6165 Show the maximum number of target hardware breakpoints.\n",
6166 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6167
6168 add_show_from_set
6169 (add_set_cmd ("remoteaddresssize", class_obscure,
6170 var_integer, (char *) &remote_address_size,
6171 "Set the maximum size of the address (in bits) \
6172 in a memory packet.\n",
6173 &setlist),
6174 &showlist);
6175
6176 add_packet_config_cmd (&remote_protocol_binary_download,
6177 "X", "binary-download",
6178 set_remote_protocol_binary_download_cmd,
6179 show_remote_protocol_binary_download_cmd,
6180 &remote_set_cmdlist, &remote_show_cmdlist,
6181 1);
6182 #if 0
6183 /* XXXX - should ``set remotebinarydownload'' be retained for
6184 compatibility. */
6185 add_show_from_set
6186 (add_set_cmd ("remotebinarydownload", no_class,
6187 var_boolean, (char *) &remote_binary_download,
6188 "Set binary downloads.\n", &setlist),
6189 &showlist);
6190 #endif
6191
6192 add_info ("remote-process", remote_info_process,
6193 "Query the remote system for process info.");
6194
6195 add_packet_config_cmd (&remote_protocol_qSymbol,
6196 "qSymbol", "symbol-lookup",
6197 set_remote_protocol_qSymbol_packet_cmd,
6198 show_remote_protocol_qSymbol_packet_cmd,
6199 &remote_set_cmdlist, &remote_show_cmdlist,
6200 0);
6201
6202 add_packet_config_cmd (&remote_protocol_e,
6203 "e", "step-over-range",
6204 set_remote_protocol_e_packet_cmd,
6205 show_remote_protocol_e_packet_cmd,
6206 &remote_set_cmdlist, &remote_show_cmdlist,
6207 0);
6208 /* Disable by default. The ``e'' packet has nasty interactions with
6209 the threading code - it relies on global state. */
6210 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6211 update_packet_config (&remote_protocol_e);
6212
6213 add_packet_config_cmd (&remote_protocol_E,
6214 "E", "step-over-range-w-signal",
6215 set_remote_protocol_E_packet_cmd,
6216 show_remote_protocol_E_packet_cmd,
6217 &remote_set_cmdlist, &remote_show_cmdlist,
6218 0);
6219 /* Disable by default. The ``e'' packet has nasty interactions with
6220 the threading code - it relies on global state. */
6221 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6222 update_packet_config (&remote_protocol_E);
6223
6224 add_packet_config_cmd (&remote_protocol_P,
6225 "P", "set-register",
6226 set_remote_protocol_P_packet_cmd,
6227 show_remote_protocol_P_packet_cmd,
6228 &remote_set_cmdlist, &remote_show_cmdlist,
6229 1);
6230
6231 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6232 "Z0", "software-breakpoint",
6233 set_remote_protocol_Z_software_bp_packet_cmd,
6234 show_remote_protocol_Z_software_bp_packet_cmd,
6235 &remote_set_cmdlist, &remote_show_cmdlist,
6236 0);
6237
6238 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6239 "Z1", "hardware-breakpoint",
6240 set_remote_protocol_Z_hardware_bp_packet_cmd,
6241 show_remote_protocol_Z_hardware_bp_packet_cmd,
6242 &remote_set_cmdlist, &remote_show_cmdlist,
6243 0);
6244
6245 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6246 "Z2", "write-watchpoint",
6247 set_remote_protocol_Z_write_wp_packet_cmd,
6248 show_remote_protocol_Z_write_wp_packet_cmd,
6249 &remote_set_cmdlist, &remote_show_cmdlist,
6250 0);
6251
6252 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6253 "Z3", "read-watchpoint",
6254 set_remote_protocol_Z_read_wp_packet_cmd,
6255 show_remote_protocol_Z_read_wp_packet_cmd,
6256 &remote_set_cmdlist, &remote_show_cmdlist,
6257 0);
6258
6259 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6260 "Z4", "access-watchpoint",
6261 set_remote_protocol_Z_access_wp_packet_cmd,
6262 show_remote_protocol_Z_access_wp_packet_cmd,
6263 &remote_set_cmdlist, &remote_show_cmdlist,
6264 0);
6265
6266 /* Keep the old ``set remote Z-packet ...'' working. */
6267 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6268 &remote_Z_packet_detect, "\
6269 Set use of remote protocol `Z' packets",
6270 "Show use of remote protocol `Z' packets ",
6271 set_remote_protocol_Z_packet_cmd,
6272 show_remote_protocol_Z_packet_cmd,
6273 &remote_set_cmdlist, &remote_show_cmdlist);
6274
6275 /* Eventually initialize fileio. See fileio.c */
6276 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6277 }
This page took 0.162823 seconds and 4 git commands to generate.