Riscv shared libraries should not export __global_pointer$.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, int needed, int any_count,
2028 int table_size, int *table)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && !any_count)
2041 {
2042 int i;
2043
2044 /* Count how many syscalls are to be caught (table[sysno] != 0). */
2045 for (i = 0; i < table_size; i++)
2046 {
2047 if (table[i] != 0)
2048 n_sysno++;
2049 }
2050 }
2051
2052 if (remote_debug)
2053 {
2054 fprintf_unfiltered (gdb_stdlog,
2055 "remote_set_syscall_catchpoint "
2056 "pid %d needed %d any_count %d n_sysno %d\n",
2057 pid, needed, any_count, n_sysno);
2058 }
2059
2060 std::string built_packet;
2061 if (needed)
2062 {
2063 /* Prepare a packet with the sysno list, assuming max 8+1
2064 characters for a sysno. If the resulting packet size is too
2065 big, fallback on the non-selective packet. */
2066 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2067 built_packet.reserve (maxpktsz);
2068 built_packet = "QCatchSyscalls:1";
2069 if (!any_count)
2070 {
2071 /* Add in catch_packet each syscall to be caught (table[i] != 0). */
2072 for (int i = 0; i < table_size; i++)
2073 {
2074 if (table[i] != 0)
2075 string_appendf (built_packet, ";%x", i);
2076 }
2077 }
2078 if (built_packet.size () > get_remote_packet_size ())
2079 {
2080 /* catch_packet too big. Fallback to less efficient
2081 non selective mode, with GDB doing the filtering. */
2082 catch_packet = "QCatchSyscalls:1";
2083 }
2084 else
2085 catch_packet = built_packet.c_str ();
2086 }
2087 else
2088 catch_packet = "QCatchSyscalls:0";
2089
2090 struct remote_state *rs = get_remote_state ();
2091
2092 putpkt (catch_packet);
2093 getpkt (&rs->buf, &rs->buf_size, 0);
2094 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2095 if (result == PACKET_OK)
2096 return 0;
2097 else
2098 return -1;
2099 }
2100
2101 /* If 'QProgramSignals' is supported, tell the remote stub what
2102 signals it should pass through to the inferior when detaching. */
2103
2104 static void
2105 remote_program_signals (struct target_ops *self,
2106 int numsigs, unsigned char *signals)
2107 {
2108 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2109 {
2110 char *packet, *p;
2111 int count = 0, i;
2112 struct remote_state *rs = get_remote_state ();
2113
2114 gdb_assert (numsigs < 256);
2115 for (i = 0; i < numsigs; i++)
2116 {
2117 if (signals[i])
2118 count++;
2119 }
2120 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2121 strcpy (packet, "QProgramSignals:");
2122 p = packet + strlen (packet);
2123 for (i = 0; i < numsigs; i++)
2124 {
2125 if (signal_pass_state (i))
2126 {
2127 if (i >= 16)
2128 *p++ = tohex (i >> 4);
2129 *p++ = tohex (i & 15);
2130 if (count)
2131 *p++ = ';';
2132 else
2133 break;
2134 count--;
2135 }
2136 }
2137 *p = 0;
2138 if (!rs->last_program_signals_packet
2139 || strcmp (rs->last_program_signals_packet, packet) != 0)
2140 {
2141 putpkt (packet);
2142 getpkt (&rs->buf, &rs->buf_size, 0);
2143 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2144 xfree (rs->last_program_signals_packet);
2145 rs->last_program_signals_packet = packet;
2146 }
2147 else
2148 xfree (packet);
2149 }
2150 }
2151
2152 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2153 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2154 thread. If GEN is set, set the general thread, if not, then set
2155 the step/continue thread. */
2156 static void
2157 set_thread (ptid_t ptid, int gen)
2158 {
2159 struct remote_state *rs = get_remote_state ();
2160 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2161 char *buf = rs->buf;
2162 char *endbuf = rs->buf + get_remote_packet_size ();
2163
2164 if (ptid_equal (state, ptid))
2165 return;
2166
2167 *buf++ = 'H';
2168 *buf++ = gen ? 'g' : 'c';
2169 if (ptid_equal (ptid, magic_null_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, any_thread_ptid))
2172 xsnprintf (buf, endbuf - buf, "0");
2173 else if (ptid_equal (ptid, minus_one_ptid))
2174 xsnprintf (buf, endbuf - buf, "-1");
2175 else
2176 write_ptid (buf, endbuf, ptid);
2177 putpkt (rs->buf);
2178 getpkt (&rs->buf, &rs->buf_size, 0);
2179 if (gen)
2180 rs->general_thread = ptid;
2181 else
2182 rs->continue_thread = ptid;
2183 }
2184
2185 static void
2186 set_general_thread (ptid_t ptid)
2187 {
2188 set_thread (ptid, 1);
2189 }
2190
2191 static void
2192 set_continue_thread (ptid_t ptid)
2193 {
2194 set_thread (ptid, 0);
2195 }
2196
2197 /* Change the remote current process. Which thread within the process
2198 ends up selected isn't important, as long as it is the same process
2199 as what INFERIOR_PTID points to.
2200
2201 This comes from that fact that there is no explicit notion of
2202 "selected process" in the protocol. The selected process for
2203 general operations is the process the selected general thread
2204 belongs to. */
2205
2206 static void
2207 set_general_process (void)
2208 {
2209 struct remote_state *rs = get_remote_state ();
2210
2211 /* If the remote can't handle multiple processes, don't bother. */
2212 if (!remote_multi_process_p (rs))
2213 return;
2214
2215 /* We only need to change the remote current thread if it's pointing
2216 at some other process. */
2217 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2218 set_general_thread (inferior_ptid);
2219 }
2220
2221 \f
2222 /* Return nonzero if this is the main thread that we made up ourselves
2223 to model non-threaded targets as single-threaded. */
2224
2225 static int
2226 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2227 {
2228 if (ptid_equal (ptid, magic_null_ptid))
2229 /* The main thread is always alive. */
2230 return 1;
2231
2232 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2233 /* The main thread is always alive. This can happen after a
2234 vAttach, if the remote side doesn't support
2235 multi-threading. */
2236 return 1;
2237
2238 return 0;
2239 }
2240
2241 /* Return nonzero if the thread PTID is still alive on the remote
2242 system. */
2243
2244 static int
2245 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2246 {
2247 struct remote_state *rs = get_remote_state ();
2248 char *p, *endp;
2249
2250 /* Check if this is a thread that we made up ourselves to model
2251 non-threaded targets as single-threaded. */
2252 if (remote_thread_always_alive (ops, ptid))
2253 return 1;
2254
2255 p = rs->buf;
2256 endp = rs->buf + get_remote_packet_size ();
2257
2258 *p++ = 'T';
2259 write_ptid (p, endp, ptid);
2260
2261 putpkt (rs->buf);
2262 getpkt (&rs->buf, &rs->buf_size, 0);
2263 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2264 }
2265
2266 /* Return a pointer to a thread name if we know it and NULL otherwise.
2267 The thread_info object owns the memory for the name. */
2268
2269 static const char *
2270 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2271 {
2272 if (info->priv != NULL)
2273 return get_remote_thread_info (info)->name.c_str ();
2274
2275 return NULL;
2276 }
2277
2278 /* About these extended threadlist and threadinfo packets. They are
2279 variable length packets but, the fields within them are often fixed
2280 length. They are redundent enough to send over UDP as is the
2281 remote protocol in general. There is a matching unit test module
2282 in libstub. */
2283
2284 /* WARNING: This threadref data structure comes from the remote O.S.,
2285 libstub protocol encoding, and remote.c. It is not particularly
2286 changable. */
2287
2288 /* Right now, the internal structure is int. We want it to be bigger.
2289 Plan to fix this. */
2290
2291 typedef int gdb_threadref; /* Internal GDB thread reference. */
2292
2293 /* gdb_ext_thread_info is an internal GDB data structure which is
2294 equivalent to the reply of the remote threadinfo packet. */
2295
2296 struct gdb_ext_thread_info
2297 {
2298 threadref threadid; /* External form of thread reference. */
2299 int active; /* Has state interesting to GDB?
2300 regs, stack. */
2301 char display[256]; /* Brief state display, name,
2302 blocked/suspended. */
2303 char shortname[32]; /* To be used to name threads. */
2304 char more_display[256]; /* Long info, statistics, queue depth,
2305 whatever. */
2306 };
2307
2308 /* The volume of remote transfers can be limited by submitting
2309 a mask containing bits specifying the desired information.
2310 Use a union of these values as the 'selection' parameter to
2311 get_thread_info. FIXME: Make these TAG names more thread specific. */
2312
2313 #define TAG_THREADID 1
2314 #define TAG_EXISTS 2
2315 #define TAG_DISPLAY 4
2316 #define TAG_THREADNAME 8
2317 #define TAG_MOREDISPLAY 16
2318
2319 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2320
2321 static char *unpack_nibble (char *buf, int *val);
2322
2323 static char *unpack_byte (char *buf, int *value);
2324
2325 static char *pack_int (char *buf, int value);
2326
2327 static char *unpack_int (char *buf, int *value);
2328
2329 static char *unpack_string (char *src, char *dest, int length);
2330
2331 static char *pack_threadid (char *pkt, threadref *id);
2332
2333 static char *unpack_threadid (char *inbuf, threadref *id);
2334
2335 void int_to_threadref (threadref *id, int value);
2336
2337 static int threadref_to_int (threadref *ref);
2338
2339 static void copy_threadref (threadref *dest, threadref *src);
2340
2341 static int threadmatch (threadref *dest, threadref *src);
2342
2343 static char *pack_threadinfo_request (char *pkt, int mode,
2344 threadref *id);
2345
2346 static int remote_unpack_thread_info_response (char *pkt,
2347 threadref *expectedref,
2348 struct gdb_ext_thread_info
2349 *info);
2350
2351
2352 static int remote_get_threadinfo (threadref *threadid,
2353 int fieldset, /*TAG mask */
2354 struct gdb_ext_thread_info *info);
2355
2356 static char *pack_threadlist_request (char *pkt, int startflag,
2357 int threadcount,
2358 threadref *nextthread);
2359
2360 static int parse_threadlist_response (char *pkt,
2361 int result_limit,
2362 threadref *original_echo,
2363 threadref *resultlist,
2364 int *doneflag);
2365
2366 static int remote_get_threadlist (int startflag,
2367 threadref *nextthread,
2368 int result_limit,
2369 int *done,
2370 int *result_count,
2371 threadref *threadlist);
2372
2373 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2374
2375 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2376 void *context, int looplimit);
2377
2378 static int remote_newthread_step (threadref *ref, void *context);
2379
2380
2381 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2382 buffer we're allowed to write to. Returns
2383 BUF+CHARACTERS_WRITTEN. */
2384
2385 static char *
2386 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2387 {
2388 int pid, tid;
2389 struct remote_state *rs = get_remote_state ();
2390
2391 if (remote_multi_process_p (rs))
2392 {
2393 pid = ptid_get_pid (ptid);
2394 if (pid < 0)
2395 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2396 else
2397 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2398 }
2399 tid = ptid_get_lwp (ptid);
2400 if (tid < 0)
2401 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2402 else
2403 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2404
2405 return buf;
2406 }
2407
2408 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2409 last parsed char. Returns null_ptid if no thread id is found, and
2410 throws an error if the thread id has an invalid format. */
2411
2412 static ptid_t
2413 read_ptid (const char *buf, const char **obuf)
2414 {
2415 const char *p = buf;
2416 const char *pp;
2417 ULONGEST pid = 0, tid = 0;
2418
2419 if (*p == 'p')
2420 {
2421 /* Multi-process ptid. */
2422 pp = unpack_varlen_hex (p + 1, &pid);
2423 if (*pp != '.')
2424 error (_("invalid remote ptid: %s"), p);
2425
2426 p = pp;
2427 pp = unpack_varlen_hex (p + 1, &tid);
2428 if (obuf)
2429 *obuf = pp;
2430 return ptid_build (pid, tid, 0);
2431 }
2432
2433 /* No multi-process. Just a tid. */
2434 pp = unpack_varlen_hex (p, &tid);
2435
2436 /* Return null_ptid when no thread id is found. */
2437 if (p == pp)
2438 {
2439 if (obuf)
2440 *obuf = pp;
2441 return null_ptid;
2442 }
2443
2444 /* Since the stub is not sending a process id, then default to
2445 what's in inferior_ptid, unless it's null at this point. If so,
2446 then since there's no way to know the pid of the reported
2447 threads, use the magic number. */
2448 if (ptid_equal (inferior_ptid, null_ptid))
2449 pid = ptid_get_pid (magic_null_ptid);
2450 else
2451 pid = ptid_get_pid (inferior_ptid);
2452
2453 if (obuf)
2454 *obuf = pp;
2455 return ptid_build (pid, tid, 0);
2456 }
2457
2458 static int
2459 stubhex (int ch)
2460 {
2461 if (ch >= 'a' && ch <= 'f')
2462 return ch - 'a' + 10;
2463 if (ch >= '0' && ch <= '9')
2464 return ch - '0';
2465 if (ch >= 'A' && ch <= 'F')
2466 return ch - 'A' + 10;
2467 return -1;
2468 }
2469
2470 static int
2471 stub_unpack_int (char *buff, int fieldlength)
2472 {
2473 int nibble;
2474 int retval = 0;
2475
2476 while (fieldlength)
2477 {
2478 nibble = stubhex (*buff++);
2479 retval |= nibble;
2480 fieldlength--;
2481 if (fieldlength)
2482 retval = retval << 4;
2483 }
2484 return retval;
2485 }
2486
2487 static char *
2488 unpack_nibble (char *buf, int *val)
2489 {
2490 *val = fromhex (*buf++);
2491 return buf;
2492 }
2493
2494 static char *
2495 unpack_byte (char *buf, int *value)
2496 {
2497 *value = stub_unpack_int (buf, 2);
2498 return buf + 2;
2499 }
2500
2501 static char *
2502 pack_int (char *buf, int value)
2503 {
2504 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2505 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2507 buf = pack_hex_byte (buf, (value & 0xff));
2508 return buf;
2509 }
2510
2511 static char *
2512 unpack_int (char *buf, int *value)
2513 {
2514 *value = stub_unpack_int (buf, 8);
2515 return buf + 8;
2516 }
2517
2518 #if 0 /* Currently unused, uncomment when needed. */
2519 static char *pack_string (char *pkt, char *string);
2520
2521 static char *
2522 pack_string (char *pkt, char *string)
2523 {
2524 char ch;
2525 int len;
2526
2527 len = strlen (string);
2528 if (len > 200)
2529 len = 200; /* Bigger than most GDB packets, junk??? */
2530 pkt = pack_hex_byte (pkt, len);
2531 while (len-- > 0)
2532 {
2533 ch = *string++;
2534 if ((ch == '\0') || (ch == '#'))
2535 ch = '*'; /* Protect encapsulation. */
2536 *pkt++ = ch;
2537 }
2538 return pkt;
2539 }
2540 #endif /* 0 (unused) */
2541
2542 static char *
2543 unpack_string (char *src, char *dest, int length)
2544 {
2545 while (length--)
2546 *dest++ = *src++;
2547 *dest = '\0';
2548 return src;
2549 }
2550
2551 static char *
2552 pack_threadid (char *pkt, threadref *id)
2553 {
2554 char *limit;
2555 unsigned char *altid;
2556
2557 altid = (unsigned char *) id;
2558 limit = pkt + BUF_THREAD_ID_SIZE;
2559 while (pkt < limit)
2560 pkt = pack_hex_byte (pkt, *altid++);
2561 return pkt;
2562 }
2563
2564
2565 static char *
2566 unpack_threadid (char *inbuf, threadref *id)
2567 {
2568 char *altref;
2569 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2570 int x, y;
2571
2572 altref = (char *) id;
2573
2574 while (inbuf < limit)
2575 {
2576 x = stubhex (*inbuf++);
2577 y = stubhex (*inbuf++);
2578 *altref++ = (x << 4) | y;
2579 }
2580 return inbuf;
2581 }
2582
2583 /* Externally, threadrefs are 64 bits but internally, they are still
2584 ints. This is due to a mismatch of specifications. We would like
2585 to use 64bit thread references internally. This is an adapter
2586 function. */
2587
2588 void
2589 int_to_threadref (threadref *id, int value)
2590 {
2591 unsigned char *scan;
2592
2593 scan = (unsigned char *) id;
2594 {
2595 int i = 4;
2596 while (i--)
2597 *scan++ = 0;
2598 }
2599 *scan++ = (value >> 24) & 0xff;
2600 *scan++ = (value >> 16) & 0xff;
2601 *scan++ = (value >> 8) & 0xff;
2602 *scan++ = (value & 0xff);
2603 }
2604
2605 static int
2606 threadref_to_int (threadref *ref)
2607 {
2608 int i, value = 0;
2609 unsigned char *scan;
2610
2611 scan = *ref;
2612 scan += 4;
2613 i = 4;
2614 while (i-- > 0)
2615 value = (value << 8) | ((*scan++) & 0xff);
2616 return value;
2617 }
2618
2619 static void
2620 copy_threadref (threadref *dest, threadref *src)
2621 {
2622 int i;
2623 unsigned char *csrc, *cdest;
2624
2625 csrc = (unsigned char *) src;
2626 cdest = (unsigned char *) dest;
2627 i = 8;
2628 while (i--)
2629 *cdest++ = *csrc++;
2630 }
2631
2632 static int
2633 threadmatch (threadref *dest, threadref *src)
2634 {
2635 /* Things are broken right now, so just assume we got a match. */
2636 #if 0
2637 unsigned char *srcp, *destp;
2638 int i, result;
2639 srcp = (char *) src;
2640 destp = (char *) dest;
2641
2642 result = 1;
2643 while (i-- > 0)
2644 result &= (*srcp++ == *destp++) ? 1 : 0;
2645 return result;
2646 #endif
2647 return 1;
2648 }
2649
2650 /*
2651 threadid:1, # always request threadid
2652 context_exists:2,
2653 display:4,
2654 unique_name:8,
2655 more_display:16
2656 */
2657
2658 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2659
2660 static char *
2661 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2662 {
2663 *pkt++ = 'q'; /* Info Query */
2664 *pkt++ = 'P'; /* process or thread info */
2665 pkt = pack_int (pkt, mode); /* mode */
2666 pkt = pack_threadid (pkt, id); /* threadid */
2667 *pkt = '\0'; /* terminate */
2668 return pkt;
2669 }
2670
2671 /* These values tag the fields in a thread info response packet. */
2672 /* Tagging the fields allows us to request specific fields and to
2673 add more fields as time goes by. */
2674
2675 #define TAG_THREADID 1 /* Echo the thread identifier. */
2676 #define TAG_EXISTS 2 /* Is this process defined enough to
2677 fetch registers and its stack? */
2678 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2679 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2680 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2681 the process. */
2682
2683 static int
2684 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2685 struct gdb_ext_thread_info *info)
2686 {
2687 struct remote_state *rs = get_remote_state ();
2688 int mask, length;
2689 int tag;
2690 threadref ref;
2691 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2692 int retval = 1;
2693
2694 /* info->threadid = 0; FIXME: implement zero_threadref. */
2695 info->active = 0;
2696 info->display[0] = '\0';
2697 info->shortname[0] = '\0';
2698 info->more_display[0] = '\0';
2699
2700 /* Assume the characters indicating the packet type have been
2701 stripped. */
2702 pkt = unpack_int (pkt, &mask); /* arg mask */
2703 pkt = unpack_threadid (pkt, &ref);
2704
2705 if (mask == 0)
2706 warning (_("Incomplete response to threadinfo request."));
2707 if (!threadmatch (&ref, expectedref))
2708 { /* This is an answer to a different request. */
2709 warning (_("ERROR RMT Thread info mismatch."));
2710 return 0;
2711 }
2712 copy_threadref (&info->threadid, &ref);
2713
2714 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2715
2716 /* Packets are terminated with nulls. */
2717 while ((pkt < limit) && mask && *pkt)
2718 {
2719 pkt = unpack_int (pkt, &tag); /* tag */
2720 pkt = unpack_byte (pkt, &length); /* length */
2721 if (!(tag & mask)) /* Tags out of synch with mask. */
2722 {
2723 warning (_("ERROR RMT: threadinfo tag mismatch."));
2724 retval = 0;
2725 break;
2726 }
2727 if (tag == TAG_THREADID)
2728 {
2729 if (length != 16)
2730 {
2731 warning (_("ERROR RMT: length of threadid is not 16."));
2732 retval = 0;
2733 break;
2734 }
2735 pkt = unpack_threadid (pkt, &ref);
2736 mask = mask & ~TAG_THREADID;
2737 continue;
2738 }
2739 if (tag == TAG_EXISTS)
2740 {
2741 info->active = stub_unpack_int (pkt, length);
2742 pkt += length;
2743 mask = mask & ~(TAG_EXISTS);
2744 if (length > 8)
2745 {
2746 warning (_("ERROR RMT: 'exists' length too long."));
2747 retval = 0;
2748 break;
2749 }
2750 continue;
2751 }
2752 if (tag == TAG_THREADNAME)
2753 {
2754 pkt = unpack_string (pkt, &info->shortname[0], length);
2755 mask = mask & ~TAG_THREADNAME;
2756 continue;
2757 }
2758 if (tag == TAG_DISPLAY)
2759 {
2760 pkt = unpack_string (pkt, &info->display[0], length);
2761 mask = mask & ~TAG_DISPLAY;
2762 continue;
2763 }
2764 if (tag == TAG_MOREDISPLAY)
2765 {
2766 pkt = unpack_string (pkt, &info->more_display[0], length);
2767 mask = mask & ~TAG_MOREDISPLAY;
2768 continue;
2769 }
2770 warning (_("ERROR RMT: unknown thread info tag."));
2771 break; /* Not a tag we know about. */
2772 }
2773 return retval;
2774 }
2775
2776 static int
2777 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2778 struct gdb_ext_thread_info *info)
2779 {
2780 struct remote_state *rs = get_remote_state ();
2781 int result;
2782
2783 pack_threadinfo_request (rs->buf, fieldset, threadid);
2784 putpkt (rs->buf);
2785 getpkt (&rs->buf, &rs->buf_size, 0);
2786
2787 if (rs->buf[0] == '\0')
2788 return 0;
2789
2790 result = remote_unpack_thread_info_response (rs->buf + 2,
2791 threadid, info);
2792 return result;
2793 }
2794
2795 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2796
2797 static char *
2798 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2799 threadref *nextthread)
2800 {
2801 *pkt++ = 'q'; /* info query packet */
2802 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2803 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2804 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2805 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2806 *pkt = '\0';
2807 return pkt;
2808 }
2809
2810 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2811
2812 static int
2813 parse_threadlist_response (char *pkt, int result_limit,
2814 threadref *original_echo, threadref *resultlist,
2815 int *doneflag)
2816 {
2817 struct remote_state *rs = get_remote_state ();
2818 char *limit;
2819 int count, resultcount, done;
2820
2821 resultcount = 0;
2822 /* Assume the 'q' and 'M chars have been stripped. */
2823 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2824 /* done parse past here */
2825 pkt = unpack_byte (pkt, &count); /* count field */
2826 pkt = unpack_nibble (pkt, &done);
2827 /* The first threadid is the argument threadid. */
2828 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2829 while ((count-- > 0) && (pkt < limit))
2830 {
2831 pkt = unpack_threadid (pkt, resultlist++);
2832 if (resultcount++ >= result_limit)
2833 break;
2834 }
2835 if (doneflag)
2836 *doneflag = done;
2837 return resultcount;
2838 }
2839
2840 /* Fetch the next batch of threads from the remote. Returns -1 if the
2841 qL packet is not supported, 0 on error and 1 on success. */
2842
2843 static int
2844 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2845 int *done, int *result_count, threadref *threadlist)
2846 {
2847 struct remote_state *rs = get_remote_state ();
2848 int result = 1;
2849
2850 /* Trancate result limit to be smaller than the packet size. */
2851 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2852 >= get_remote_packet_size ())
2853 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2854
2855 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2856 putpkt (rs->buf);
2857 getpkt (&rs->buf, &rs->buf_size, 0);
2858 if (*rs->buf == '\0')
2859 {
2860 /* Packet not supported. */
2861 return -1;
2862 }
2863
2864 *result_count =
2865 parse_threadlist_response (rs->buf + 2, result_limit,
2866 &rs->echo_nextthread, threadlist, done);
2867
2868 if (!threadmatch (&rs->echo_nextthread, nextthread))
2869 {
2870 /* FIXME: This is a good reason to drop the packet. */
2871 /* Possably, there is a duplicate response. */
2872 /* Possabilities :
2873 retransmit immediatly - race conditions
2874 retransmit after timeout - yes
2875 exit
2876 wait for packet, then exit
2877 */
2878 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2879 return 0; /* I choose simply exiting. */
2880 }
2881 if (*result_count <= 0)
2882 {
2883 if (*done != 1)
2884 {
2885 warning (_("RMT ERROR : failed to get remote thread list."));
2886 result = 0;
2887 }
2888 return result; /* break; */
2889 }
2890 if (*result_count > result_limit)
2891 {
2892 *result_count = 0;
2893 warning (_("RMT ERROR: threadlist response longer than requested."));
2894 return 0;
2895 }
2896 return result;
2897 }
2898
2899 /* Fetch the list of remote threads, with the qL packet, and call
2900 STEPFUNCTION for each thread found. Stops iterating and returns 1
2901 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2902 STEPFUNCTION returns false. If the packet is not supported,
2903 returns -1. */
2904
2905 static int
2906 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2907 int looplimit)
2908 {
2909 struct remote_state *rs = get_remote_state ();
2910 int done, i, result_count;
2911 int startflag = 1;
2912 int result = 1;
2913 int loopcount = 0;
2914
2915 done = 0;
2916 while (!done)
2917 {
2918 if (loopcount++ > looplimit)
2919 {
2920 result = 0;
2921 warning (_("Remote fetch threadlist -infinite loop-."));
2922 break;
2923 }
2924 result = remote_get_threadlist (startflag, &rs->nextthread,
2925 MAXTHREADLISTRESULTS,
2926 &done, &result_count,
2927 rs->resultthreadlist);
2928 if (result <= 0)
2929 break;
2930 /* Clear for later iterations. */
2931 startflag = 0;
2932 /* Setup to resume next batch of thread references, set nextthread. */
2933 if (result_count >= 1)
2934 copy_threadref (&rs->nextthread,
2935 &rs->resultthreadlist[result_count - 1]);
2936 i = 0;
2937 while (result_count--)
2938 {
2939 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2940 {
2941 result = 0;
2942 break;
2943 }
2944 }
2945 }
2946 return result;
2947 }
2948
2949 /* A thread found on the remote target. */
2950
2951 struct thread_item
2952 {
2953 explicit thread_item (ptid_t ptid_)
2954 : ptid (ptid_)
2955 {}
2956
2957 thread_item (thread_item &&other) = default;
2958 thread_item &operator= (thread_item &&other) = default;
2959
2960 DISABLE_COPY_AND_ASSIGN (thread_item);
2961
2962 /* The thread's PTID. */
2963 ptid_t ptid;
2964
2965 /* The thread's extra info. */
2966 std::string extra;
2967
2968 /* The thread's name. */
2969 std::string name;
2970
2971 /* The core the thread was running on. -1 if not known. */
2972 int core = -1;
2973
2974 /* The thread handle associated with the thread. */
2975 gdb::byte_vector thread_handle;
2976 };
2977
2978 /* Context passed around to the various methods listing remote
2979 threads. As new threads are found, they're added to the ITEMS
2980 vector. */
2981
2982 struct threads_listing_context
2983 {
2984 /* Return true if this object contains an entry for a thread with ptid
2985 PTID. */
2986
2987 bool contains_thread (ptid_t ptid) const
2988 {
2989 auto match_ptid = [&] (const thread_item &item)
2990 {
2991 return item.ptid == ptid;
2992 };
2993
2994 auto it = std::find_if (this->items.begin (),
2995 this->items.end (),
2996 match_ptid);
2997
2998 return it != this->items.end ();
2999 }
3000
3001 /* Remove the thread with ptid PTID. */
3002
3003 void remove_thread (ptid_t ptid)
3004 {
3005 auto match_ptid = [&] (const thread_item &item)
3006 {
3007 return item.ptid == ptid;
3008 };
3009
3010 auto it = std::remove_if (this->items.begin (),
3011 this->items.end (),
3012 match_ptid);
3013
3014 if (it != this->items.end ())
3015 this->items.erase (it);
3016 }
3017
3018 /* The threads found on the remote target. */
3019 std::vector<thread_item> items;
3020 };
3021
3022 static int
3023 remote_newthread_step (threadref *ref, void *data)
3024 {
3025 struct threads_listing_context *context
3026 = (struct threads_listing_context *) data;
3027 int pid = inferior_ptid.pid ();
3028 int lwp = threadref_to_int (ref);
3029 ptid_t ptid (pid, lwp);
3030
3031 context->items.emplace_back (ptid);
3032
3033 return 1; /* continue iterator */
3034 }
3035
3036 #define CRAZY_MAX_THREADS 1000
3037
3038 static ptid_t
3039 remote_current_thread (ptid_t oldpid)
3040 {
3041 struct remote_state *rs = get_remote_state ();
3042
3043 putpkt ("qC");
3044 getpkt (&rs->buf, &rs->buf_size, 0);
3045 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3046 {
3047 const char *obuf;
3048 ptid_t result;
3049
3050 result = read_ptid (&rs->buf[2], &obuf);
3051 if (*obuf != '\0' && remote_debug)
3052 fprintf_unfiltered (gdb_stdlog,
3053 "warning: garbage in qC reply\n");
3054
3055 return result;
3056 }
3057 else
3058 return oldpid;
3059 }
3060
3061 /* List remote threads using the deprecated qL packet. */
3062
3063 static int
3064 remote_get_threads_with_ql (struct target_ops *ops,
3065 struct threads_listing_context *context)
3066 {
3067 if (remote_threadlist_iterator (remote_newthread_step, context,
3068 CRAZY_MAX_THREADS) >= 0)
3069 return 1;
3070
3071 return 0;
3072 }
3073
3074 #if defined(HAVE_LIBEXPAT)
3075
3076 static void
3077 start_thread (struct gdb_xml_parser *parser,
3078 const struct gdb_xml_element *element,
3079 void *user_data, VEC(gdb_xml_value_s) *attributes)
3080 {
3081 struct threads_listing_context *data
3082 = (struct threads_listing_context *) user_data;
3083 struct gdb_xml_value *attr;
3084
3085 char *id = (char *) xml_find_attribute (attributes, "id")->value;
3086 ptid_t ptid = read_ptid (id, NULL);
3087
3088 data->items.emplace_back (ptid);
3089 thread_item &item = data->items.back ();
3090
3091 attr = xml_find_attribute (attributes, "core");
3092 if (attr != NULL)
3093 item.core = *(ULONGEST *) attr->value;
3094
3095 attr = xml_find_attribute (attributes, "name");
3096 if (attr != NULL)
3097 item.name = (const char *) attr->value;
3098
3099 attr = xml_find_attribute (attributes, "handle");
3100 if (attr != NULL)
3101 item.thread_handle = hex2bin ((const char *) attr->value);
3102 }
3103
3104 static void
3105 end_thread (struct gdb_xml_parser *parser,
3106 const struct gdb_xml_element *element,
3107 void *user_data, const char *body_text)
3108 {
3109 struct threads_listing_context *data
3110 = (struct threads_listing_context *) user_data;
3111
3112 if (body_text != NULL && *body_text != '\0')
3113 data->items.back ().extra = body_text;
3114 }
3115
3116 const struct gdb_xml_attribute thread_attributes[] = {
3117 { "id", GDB_XML_AF_NONE, NULL, NULL },
3118 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3119 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3120 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3121 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3122 };
3123
3124 const struct gdb_xml_element thread_children[] = {
3125 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3126 };
3127
3128 const struct gdb_xml_element threads_children[] = {
3129 { "thread", thread_attributes, thread_children,
3130 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3131 start_thread, end_thread },
3132 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3133 };
3134
3135 const struct gdb_xml_element threads_elements[] = {
3136 { "threads", NULL, threads_children,
3137 GDB_XML_EF_NONE, NULL, NULL },
3138 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3139 };
3140
3141 #endif
3142
3143 /* List remote threads using qXfer:threads:read. */
3144
3145 static int
3146 remote_get_threads_with_qxfer (struct target_ops *ops,
3147 struct threads_listing_context *context)
3148 {
3149 #if defined(HAVE_LIBEXPAT)
3150 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3151 {
3152 gdb::unique_xmalloc_ptr<char> xml
3153 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3154
3155 if (xml != NULL && *xml != '\0')
3156 {
3157 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3158 threads_elements, xml.get (), context);
3159 }
3160
3161 return 1;
3162 }
3163 #endif
3164
3165 return 0;
3166 }
3167
3168 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3169
3170 static int
3171 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3172 struct threads_listing_context *context)
3173 {
3174 struct remote_state *rs = get_remote_state ();
3175
3176 if (rs->use_threadinfo_query)
3177 {
3178 const char *bufp;
3179
3180 putpkt ("qfThreadInfo");
3181 getpkt (&rs->buf, &rs->buf_size, 0);
3182 bufp = rs->buf;
3183 if (bufp[0] != '\0') /* q packet recognized */
3184 {
3185 while (*bufp++ == 'm') /* reply contains one or more TID */
3186 {
3187 do
3188 {
3189 ptid_t ptid = read_ptid (bufp, &bufp);
3190 context->items.emplace_back (ptid);
3191 }
3192 while (*bufp++ == ','); /* comma-separated list */
3193 putpkt ("qsThreadInfo");
3194 getpkt (&rs->buf, &rs->buf_size, 0);
3195 bufp = rs->buf;
3196 }
3197 return 1;
3198 }
3199 else
3200 {
3201 /* Packet not recognized. */
3202 rs->use_threadinfo_query = 0;
3203 }
3204 }
3205
3206 return 0;
3207 }
3208
3209 /* Implement the to_update_thread_list function for the remote
3210 targets. */
3211
3212 static void
3213 remote_update_thread_list (struct target_ops *ops)
3214 {
3215 struct threads_listing_context context;
3216 int got_list = 0;
3217
3218 /* We have a few different mechanisms to fetch the thread list. Try
3219 them all, starting with the most preferred one first, falling
3220 back to older methods. */
3221 if (remote_get_threads_with_qxfer (ops, &context)
3222 || remote_get_threads_with_qthreadinfo (ops, &context)
3223 || remote_get_threads_with_ql (ops, &context))
3224 {
3225 int i;
3226 struct thread_info *tp, *tmp;
3227
3228 got_list = 1;
3229
3230 if (context.items.empty ()
3231 && remote_thread_always_alive (ops, inferior_ptid))
3232 {
3233 /* Some targets don't really support threads, but still
3234 reply an (empty) thread list in response to the thread
3235 listing packets, instead of replying "packet not
3236 supported". Exit early so we don't delete the main
3237 thread. */
3238 return;
3239 }
3240
3241 /* CONTEXT now holds the current thread list on the remote
3242 target end. Delete GDB-side threads no longer found on the
3243 target. */
3244 ALL_THREADS_SAFE (tp, tmp)
3245 {
3246 if (!context.contains_thread (tp->ptid))
3247 {
3248 /* Not found. */
3249 delete_thread (tp->ptid);
3250 }
3251 }
3252
3253 /* Remove any unreported fork child threads from CONTEXT so
3254 that we don't interfere with follow fork, which is where
3255 creation of such threads is handled. */
3256 remove_new_fork_children (&context);
3257
3258 /* And now add threads we don't know about yet to our list. */
3259 for (thread_item &item : context.items)
3260 {
3261 if (item.ptid != null_ptid)
3262 {
3263 /* In non-stop mode, we assume new found threads are
3264 executing until proven otherwise with a stop reply.
3265 In all-stop, we can only get here if all threads are
3266 stopped. */
3267 int executing = target_is_non_stop_p () ? 1 : 0;
3268
3269 remote_notice_new_inferior (item.ptid, executing);
3270
3271 remote_thread_info *info = get_remote_thread_info (item.ptid);
3272 info->core = item.core;
3273 info->extra = std::move (item.extra);
3274 info->name = std::move (item.name);
3275 info->thread_handle = std::move (item.thread_handle);
3276 }
3277 }
3278 }
3279
3280 if (!got_list)
3281 {
3282 /* If no thread listing method is supported, then query whether
3283 each known thread is alive, one by one, with the T packet.
3284 If the target doesn't support threads at all, then this is a
3285 no-op. See remote_thread_alive. */
3286 prune_threads ();
3287 }
3288 }
3289
3290 /*
3291 * Collect a descriptive string about the given thread.
3292 * The target may say anything it wants to about the thread
3293 * (typically info about its blocked / runnable state, name, etc.).
3294 * This string will appear in the info threads display.
3295 *
3296 * Optional: targets are not required to implement this function.
3297 */
3298
3299 static const char *
3300 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3301 {
3302 struct remote_state *rs = get_remote_state ();
3303 int result;
3304 int set;
3305 threadref id;
3306 struct gdb_ext_thread_info threadinfo;
3307 static char display_buf[100]; /* arbitrary... */
3308 int n = 0; /* position in display_buf */
3309
3310 if (rs->remote_desc == 0) /* paranoia */
3311 internal_error (__FILE__, __LINE__,
3312 _("remote_threads_extra_info"));
3313
3314 if (ptid_equal (tp->ptid, magic_null_ptid)
3315 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3316 /* This is the main thread which was added by GDB. The remote
3317 server doesn't know about it. */
3318 return NULL;
3319
3320 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3321 {
3322 struct thread_info *info = find_thread_ptid (tp->ptid);
3323
3324 if (info != NULL && info->priv != NULL)
3325 return get_remote_thread_info (info)->extra.c_str ();
3326 else
3327 return NULL;
3328 }
3329
3330 if (rs->use_threadextra_query)
3331 {
3332 char *b = rs->buf;
3333 char *endb = rs->buf + get_remote_packet_size ();
3334
3335 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3336 b += strlen (b);
3337 write_ptid (b, endb, tp->ptid);
3338
3339 putpkt (rs->buf);
3340 getpkt (&rs->buf, &rs->buf_size, 0);
3341 if (rs->buf[0] != 0)
3342 {
3343 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3344 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3345 display_buf [result] = '\0';
3346 return display_buf;
3347 }
3348 }
3349
3350 /* If the above query fails, fall back to the old method. */
3351 rs->use_threadextra_query = 0;
3352 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3353 | TAG_MOREDISPLAY | TAG_DISPLAY;
3354 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3355 if (remote_get_threadinfo (&id, set, &threadinfo))
3356 if (threadinfo.active)
3357 {
3358 if (*threadinfo.shortname)
3359 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3360 " Name: %s,", threadinfo.shortname);
3361 if (*threadinfo.display)
3362 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3363 " State: %s,", threadinfo.display);
3364 if (*threadinfo.more_display)
3365 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3366 " Priority: %s", threadinfo.more_display);
3367
3368 if (n > 0)
3369 {
3370 /* For purely cosmetic reasons, clear up trailing commas. */
3371 if (',' == display_buf[n-1])
3372 display_buf[n-1] = ' ';
3373 return display_buf;
3374 }
3375 }
3376 return NULL;
3377 }
3378 \f
3379
3380 static int
3381 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3382 struct static_tracepoint_marker *marker)
3383 {
3384 struct remote_state *rs = get_remote_state ();
3385 char *p = rs->buf;
3386
3387 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3388 p += strlen (p);
3389 p += hexnumstr (p, addr);
3390 putpkt (rs->buf);
3391 getpkt (&rs->buf, &rs->buf_size, 0);
3392 p = rs->buf;
3393
3394 if (*p == 'E')
3395 error (_("Remote failure reply: %s"), p);
3396
3397 if (*p++ == 'm')
3398 {
3399 parse_static_tracepoint_marker_definition (p, NULL, marker);
3400 return 1;
3401 }
3402
3403 return 0;
3404 }
3405
3406 static VEC(static_tracepoint_marker_p) *
3407 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3408 const char *strid)
3409 {
3410 struct remote_state *rs = get_remote_state ();
3411 VEC(static_tracepoint_marker_p) *markers = NULL;
3412 struct static_tracepoint_marker *marker = NULL;
3413 struct cleanup *old_chain;
3414 const char *p;
3415
3416 /* Ask for a first packet of static tracepoint marker
3417 definition. */
3418 putpkt ("qTfSTM");
3419 getpkt (&rs->buf, &rs->buf_size, 0);
3420 p = rs->buf;
3421 if (*p == 'E')
3422 error (_("Remote failure reply: %s"), p);
3423
3424 old_chain = make_cleanup (free_current_marker, &marker);
3425
3426 while (*p++ == 'm')
3427 {
3428 if (marker == NULL)
3429 marker = XCNEW (struct static_tracepoint_marker);
3430
3431 do
3432 {
3433 parse_static_tracepoint_marker_definition (p, &p, marker);
3434
3435 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3436 {
3437 VEC_safe_push (static_tracepoint_marker_p,
3438 markers, marker);
3439 marker = NULL;
3440 }
3441 else
3442 {
3443 release_static_tracepoint_marker (marker);
3444 memset (marker, 0, sizeof (*marker));
3445 }
3446 }
3447 while (*p++ == ','); /* comma-separated list */
3448 /* Ask for another packet of static tracepoint definition. */
3449 putpkt ("qTsSTM");
3450 getpkt (&rs->buf, &rs->buf_size, 0);
3451 p = rs->buf;
3452 }
3453
3454 do_cleanups (old_chain);
3455 return markers;
3456 }
3457
3458 \f
3459 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3460
3461 static ptid_t
3462 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3463 {
3464 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3465 }
3466 \f
3467
3468 /* Restart the remote side; this is an extended protocol operation. */
3469
3470 static void
3471 extended_remote_restart (void)
3472 {
3473 struct remote_state *rs = get_remote_state ();
3474
3475 /* Send the restart command; for reasons I don't understand the
3476 remote side really expects a number after the "R". */
3477 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3478 putpkt (rs->buf);
3479
3480 remote_fileio_reset ();
3481 }
3482 \f
3483 /* Clean up connection to a remote debugger. */
3484
3485 static void
3486 remote_close (struct target_ops *self)
3487 {
3488 struct remote_state *rs = get_remote_state ();
3489
3490 if (rs->remote_desc == NULL)
3491 return; /* already closed */
3492
3493 /* Make sure we leave stdin registered in the event loop. */
3494 remote_terminal_ours (self);
3495
3496 serial_close (rs->remote_desc);
3497 rs->remote_desc = NULL;
3498
3499 /* We don't have a connection to the remote stub anymore. Get rid
3500 of all the inferiors and their threads we were controlling.
3501 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3502 will be unable to find the thread corresponding to (pid, 0, 0). */
3503 inferior_ptid = null_ptid;
3504 discard_all_inferiors ();
3505
3506 /* We are closing the remote target, so we should discard
3507 everything of this target. */
3508 discard_pending_stop_replies_in_queue (rs);
3509
3510 if (remote_async_inferior_event_token)
3511 delete_async_event_handler (&remote_async_inferior_event_token);
3512
3513 remote_notif_state_xfree (rs->notif_state);
3514
3515 trace_reset_local_state ();
3516 }
3517
3518 /* Query the remote side for the text, data and bss offsets. */
3519
3520 static void
3521 get_offsets (void)
3522 {
3523 struct remote_state *rs = get_remote_state ();
3524 char *buf;
3525 char *ptr;
3526 int lose, num_segments = 0, do_sections, do_segments;
3527 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3528 struct section_offsets *offs;
3529 struct symfile_segment_data *data;
3530
3531 if (symfile_objfile == NULL)
3532 return;
3533
3534 putpkt ("qOffsets");
3535 getpkt (&rs->buf, &rs->buf_size, 0);
3536 buf = rs->buf;
3537
3538 if (buf[0] == '\000')
3539 return; /* Return silently. Stub doesn't support
3540 this command. */
3541 if (buf[0] == 'E')
3542 {
3543 warning (_("Remote failure reply: %s"), buf);
3544 return;
3545 }
3546
3547 /* Pick up each field in turn. This used to be done with scanf, but
3548 scanf will make trouble if CORE_ADDR size doesn't match
3549 conversion directives correctly. The following code will work
3550 with any size of CORE_ADDR. */
3551 text_addr = data_addr = bss_addr = 0;
3552 ptr = buf;
3553 lose = 0;
3554
3555 if (startswith (ptr, "Text="))
3556 {
3557 ptr += 5;
3558 /* Don't use strtol, could lose on big values. */
3559 while (*ptr && *ptr != ';')
3560 text_addr = (text_addr << 4) + fromhex (*ptr++);
3561
3562 if (startswith (ptr, ";Data="))
3563 {
3564 ptr += 6;
3565 while (*ptr && *ptr != ';')
3566 data_addr = (data_addr << 4) + fromhex (*ptr++);
3567 }
3568 else
3569 lose = 1;
3570
3571 if (!lose && startswith (ptr, ";Bss="))
3572 {
3573 ptr += 5;
3574 while (*ptr && *ptr != ';')
3575 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3576
3577 if (bss_addr != data_addr)
3578 warning (_("Target reported unsupported offsets: %s"), buf);
3579 }
3580 else
3581 lose = 1;
3582 }
3583 else if (startswith (ptr, "TextSeg="))
3584 {
3585 ptr += 8;
3586 /* Don't use strtol, could lose on big values. */
3587 while (*ptr && *ptr != ';')
3588 text_addr = (text_addr << 4) + fromhex (*ptr++);
3589 num_segments = 1;
3590
3591 if (startswith (ptr, ";DataSeg="))
3592 {
3593 ptr += 9;
3594 while (*ptr && *ptr != ';')
3595 data_addr = (data_addr << 4) + fromhex (*ptr++);
3596 num_segments++;
3597 }
3598 }
3599 else
3600 lose = 1;
3601
3602 if (lose)
3603 error (_("Malformed response to offset query, %s"), buf);
3604 else if (*ptr != '\0')
3605 warning (_("Target reported unsupported offsets: %s"), buf);
3606
3607 offs = ((struct section_offsets *)
3608 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3609 memcpy (offs, symfile_objfile->section_offsets,
3610 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3611
3612 data = get_symfile_segment_data (symfile_objfile->obfd);
3613 do_segments = (data != NULL);
3614 do_sections = num_segments == 0;
3615
3616 if (num_segments > 0)
3617 {
3618 segments[0] = text_addr;
3619 segments[1] = data_addr;
3620 }
3621 /* If we have two segments, we can still try to relocate everything
3622 by assuming that the .text and .data offsets apply to the whole
3623 text and data segments. Convert the offsets given in the packet
3624 to base addresses for symfile_map_offsets_to_segments. */
3625 else if (data && data->num_segments == 2)
3626 {
3627 segments[0] = data->segment_bases[0] + text_addr;
3628 segments[1] = data->segment_bases[1] + data_addr;
3629 num_segments = 2;
3630 }
3631 /* If the object file has only one segment, assume that it is text
3632 rather than data; main programs with no writable data are rare,
3633 but programs with no code are useless. Of course the code might
3634 have ended up in the data segment... to detect that we would need
3635 the permissions here. */
3636 else if (data && data->num_segments == 1)
3637 {
3638 segments[0] = data->segment_bases[0] + text_addr;
3639 num_segments = 1;
3640 }
3641 /* There's no way to relocate by segment. */
3642 else
3643 do_segments = 0;
3644
3645 if (do_segments)
3646 {
3647 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3648 offs, num_segments, segments);
3649
3650 if (ret == 0 && !do_sections)
3651 error (_("Can not handle qOffsets TextSeg "
3652 "response with this symbol file"));
3653
3654 if (ret > 0)
3655 do_sections = 0;
3656 }
3657
3658 if (data)
3659 free_symfile_segment_data (data);
3660
3661 if (do_sections)
3662 {
3663 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3664
3665 /* This is a temporary kludge to force data and bss to use the
3666 same offsets because that's what nlmconv does now. The real
3667 solution requires changes to the stub and remote.c that I
3668 don't have time to do right now. */
3669
3670 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3671 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3672 }
3673
3674 objfile_relocate (symfile_objfile, offs);
3675 }
3676
3677 /* Send interrupt_sequence to remote target. */
3678 static void
3679 send_interrupt_sequence (void)
3680 {
3681 struct remote_state *rs = get_remote_state ();
3682
3683 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3684 remote_serial_write ("\x03", 1);
3685 else if (interrupt_sequence_mode == interrupt_sequence_break)
3686 serial_send_break (rs->remote_desc);
3687 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3688 {
3689 serial_send_break (rs->remote_desc);
3690 remote_serial_write ("g", 1);
3691 }
3692 else
3693 internal_error (__FILE__, __LINE__,
3694 _("Invalid value for interrupt_sequence_mode: %s."),
3695 interrupt_sequence_mode);
3696 }
3697
3698
3699 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3700 and extract the PTID. Returns NULL_PTID if not found. */
3701
3702 static ptid_t
3703 stop_reply_extract_thread (char *stop_reply)
3704 {
3705 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3706 {
3707 const char *p;
3708
3709 /* Txx r:val ; r:val (...) */
3710 p = &stop_reply[3];
3711
3712 /* Look for "register" named "thread". */
3713 while (*p != '\0')
3714 {
3715 const char *p1;
3716
3717 p1 = strchr (p, ':');
3718 if (p1 == NULL)
3719 return null_ptid;
3720
3721 if (strncmp (p, "thread", p1 - p) == 0)
3722 return read_ptid (++p1, &p);
3723
3724 p1 = strchr (p, ';');
3725 if (p1 == NULL)
3726 return null_ptid;
3727 p1++;
3728
3729 p = p1;
3730 }
3731 }
3732
3733 return null_ptid;
3734 }
3735
3736 /* Determine the remote side's current thread. If we have a stop
3737 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3738 "thread" register we can extract the current thread from. If not,
3739 ask the remote which is the current thread with qC. The former
3740 method avoids a roundtrip. */
3741
3742 static ptid_t
3743 get_current_thread (char *wait_status)
3744 {
3745 ptid_t ptid = null_ptid;
3746
3747 /* Note we don't use remote_parse_stop_reply as that makes use of
3748 the target architecture, which we haven't yet fully determined at
3749 this point. */
3750 if (wait_status != NULL)
3751 ptid = stop_reply_extract_thread (wait_status);
3752 if (ptid_equal (ptid, null_ptid))
3753 ptid = remote_current_thread (inferior_ptid);
3754
3755 return ptid;
3756 }
3757
3758 /* Query the remote target for which is the current thread/process,
3759 add it to our tables, and update INFERIOR_PTID. The caller is
3760 responsible for setting the state such that the remote end is ready
3761 to return the current thread.
3762
3763 This function is called after handling the '?' or 'vRun' packets,
3764 whose response is a stop reply from which we can also try
3765 extracting the thread. If the target doesn't support the explicit
3766 qC query, we infer the current thread from that stop reply, passed
3767 in in WAIT_STATUS, which may be NULL. */
3768
3769 static void
3770 add_current_inferior_and_thread (char *wait_status)
3771 {
3772 struct remote_state *rs = get_remote_state ();
3773 int fake_pid_p = 0;
3774
3775 inferior_ptid = null_ptid;
3776
3777 /* Now, if we have thread information, update inferior_ptid. */
3778 ptid_t curr_ptid = get_current_thread (wait_status);
3779
3780 if (curr_ptid != null_ptid)
3781 {
3782 if (!remote_multi_process_p (rs))
3783 fake_pid_p = 1;
3784 }
3785 else
3786 {
3787 /* Without this, some commands which require an active target
3788 (such as kill) won't work. This variable serves (at least)
3789 double duty as both the pid of the target process (if it has
3790 such), and as a flag indicating that a target is active. */
3791 curr_ptid = magic_null_ptid;
3792 fake_pid_p = 1;
3793 }
3794
3795 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3796
3797 /* Add the main thread and switch to it. Don't try reading
3798 registers yet, since we haven't fetched the target description
3799 yet. */
3800 thread_info *tp = add_thread_silent (curr_ptid);
3801 switch_to_thread_no_regs (tp);
3802 }
3803
3804 /* Print info about a thread that was found already stopped on
3805 connection. */
3806
3807 static void
3808 print_one_stopped_thread (struct thread_info *thread)
3809 {
3810 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3811
3812 switch_to_thread (thread->ptid);
3813 stop_pc = get_frame_pc (get_current_frame ());
3814 set_current_sal_from_frame (get_current_frame ());
3815
3816 thread->suspend.waitstatus_pending_p = 0;
3817
3818 if (ws->kind == TARGET_WAITKIND_STOPPED)
3819 {
3820 enum gdb_signal sig = ws->value.sig;
3821
3822 if (signal_print_state (sig))
3823 observer_notify_signal_received (sig);
3824 }
3825 observer_notify_normal_stop (NULL, 1);
3826 }
3827
3828 /* Process all initial stop replies the remote side sent in response
3829 to the ? packet. These indicate threads that were already stopped
3830 on initial connection. We mark these threads as stopped and print
3831 their current frame before giving the user the prompt. */
3832
3833 static void
3834 process_initial_stop_replies (int from_tty)
3835 {
3836 int pending_stop_replies = stop_reply_queue_length ();
3837 struct inferior *inf;
3838 struct thread_info *thread;
3839 struct thread_info *selected = NULL;
3840 struct thread_info *lowest_stopped = NULL;
3841 struct thread_info *first = NULL;
3842
3843 /* Consume the initial pending events. */
3844 while (pending_stop_replies-- > 0)
3845 {
3846 ptid_t waiton_ptid = minus_one_ptid;
3847 ptid_t event_ptid;
3848 struct target_waitstatus ws;
3849 int ignore_event = 0;
3850 struct thread_info *thread;
3851
3852 memset (&ws, 0, sizeof (ws));
3853 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3854 if (remote_debug)
3855 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3856
3857 switch (ws.kind)
3858 {
3859 case TARGET_WAITKIND_IGNORE:
3860 case TARGET_WAITKIND_NO_RESUMED:
3861 case TARGET_WAITKIND_SIGNALLED:
3862 case TARGET_WAITKIND_EXITED:
3863 /* We shouldn't see these, but if we do, just ignore. */
3864 if (remote_debug)
3865 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3866 ignore_event = 1;
3867 break;
3868
3869 case TARGET_WAITKIND_EXECD:
3870 xfree (ws.value.execd_pathname);
3871 break;
3872 default:
3873 break;
3874 }
3875
3876 if (ignore_event)
3877 continue;
3878
3879 thread = find_thread_ptid (event_ptid);
3880
3881 if (ws.kind == TARGET_WAITKIND_STOPPED)
3882 {
3883 enum gdb_signal sig = ws.value.sig;
3884
3885 /* Stubs traditionally report SIGTRAP as initial signal,
3886 instead of signal 0. Suppress it. */
3887 if (sig == GDB_SIGNAL_TRAP)
3888 sig = GDB_SIGNAL_0;
3889 thread->suspend.stop_signal = sig;
3890 ws.value.sig = sig;
3891 }
3892
3893 thread->suspend.waitstatus = ws;
3894
3895 if (ws.kind != TARGET_WAITKIND_STOPPED
3896 || ws.value.sig != GDB_SIGNAL_0)
3897 thread->suspend.waitstatus_pending_p = 1;
3898
3899 set_executing (event_ptid, 0);
3900 set_running (event_ptid, 0);
3901 get_remote_thread_info (thread)->vcont_resumed = 0;
3902 }
3903
3904 /* "Notice" the new inferiors before anything related to
3905 registers/memory. */
3906 ALL_INFERIORS (inf)
3907 {
3908 if (inf->pid == 0)
3909 continue;
3910
3911 inf->needs_setup = 1;
3912
3913 if (non_stop)
3914 {
3915 thread = any_live_thread_of_process (inf->pid);
3916 notice_new_inferior (thread->ptid,
3917 thread->state == THREAD_RUNNING,
3918 from_tty);
3919 }
3920 }
3921
3922 /* If all-stop on top of non-stop, pause all threads. Note this
3923 records the threads' stop pc, so must be done after "noticing"
3924 the inferiors. */
3925 if (!non_stop)
3926 {
3927 stop_all_threads ();
3928
3929 /* If all threads of an inferior were already stopped, we
3930 haven't setup the inferior yet. */
3931 ALL_INFERIORS (inf)
3932 {
3933 if (inf->pid == 0)
3934 continue;
3935
3936 if (inf->needs_setup)
3937 {
3938 thread = any_live_thread_of_process (inf->pid);
3939 switch_to_thread_no_regs (thread);
3940 setup_inferior (0);
3941 }
3942 }
3943 }
3944
3945 /* Now go over all threads that are stopped, and print their current
3946 frame. If all-stop, then if there's a signalled thread, pick
3947 that as current. */
3948 ALL_NON_EXITED_THREADS (thread)
3949 {
3950 if (first == NULL)
3951 first = thread;
3952
3953 if (!non_stop)
3954 set_running (thread->ptid, 0);
3955 else if (thread->state != THREAD_STOPPED)
3956 continue;
3957
3958 if (selected == NULL
3959 && thread->suspend.waitstatus_pending_p)
3960 selected = thread;
3961
3962 if (lowest_stopped == NULL
3963 || thread->inf->num < lowest_stopped->inf->num
3964 || thread->per_inf_num < lowest_stopped->per_inf_num)
3965 lowest_stopped = thread;
3966
3967 if (non_stop)
3968 print_one_stopped_thread (thread);
3969 }
3970
3971 /* In all-stop, we only print the status of one thread, and leave
3972 others with their status pending. */
3973 if (!non_stop)
3974 {
3975 thread = selected;
3976 if (thread == NULL)
3977 thread = lowest_stopped;
3978 if (thread == NULL)
3979 thread = first;
3980
3981 print_one_stopped_thread (thread);
3982 }
3983
3984 /* For "info program". */
3985 thread = inferior_thread ();
3986 if (thread->state == THREAD_STOPPED)
3987 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3988 }
3989
3990 /* Start the remote connection and sync state. */
3991
3992 static void
3993 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3994 {
3995 struct remote_state *rs = get_remote_state ();
3996 struct packet_config *noack_config;
3997 char *wait_status = NULL;
3998
3999 /* Signal other parts that we're going through the initial setup,
4000 and so things may not be stable yet. E.g., we don't try to
4001 install tracepoints until we've relocated symbols. Also, a
4002 Ctrl-C before we're connected and synced up can't interrupt the
4003 target. Instead, it offers to drop the (potentially wedged)
4004 connection. */
4005 rs->starting_up = 1;
4006
4007 QUIT;
4008
4009 if (interrupt_on_connect)
4010 send_interrupt_sequence ();
4011
4012 /* Ack any packet which the remote side has already sent. */
4013 remote_serial_write ("+", 1);
4014
4015 /* The first packet we send to the target is the optional "supported
4016 packets" request. If the target can answer this, it will tell us
4017 which later probes to skip. */
4018 remote_query_supported ();
4019
4020 /* If the stub wants to get a QAllow, compose one and send it. */
4021 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4022 remote_set_permissions (target);
4023
4024 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4025 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4026 as a reply to known packet. For packet "vFile:setfs:" it is an
4027 invalid reply and GDB would return error in
4028 remote_hostio_set_filesystem, making remote files access impossible.
4029 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4030 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4031 {
4032 const char v_mustreplyempty[] = "vMustReplyEmpty";
4033
4034 putpkt (v_mustreplyempty);
4035 getpkt (&rs->buf, &rs->buf_size, 0);
4036 if (strcmp (rs->buf, "OK") == 0)
4037 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4038 else if (strcmp (rs->buf, "") != 0)
4039 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4040 rs->buf);
4041 }
4042
4043 /* Next, we possibly activate noack mode.
4044
4045 If the QStartNoAckMode packet configuration is set to AUTO,
4046 enable noack mode if the stub reported a wish for it with
4047 qSupported.
4048
4049 If set to TRUE, then enable noack mode even if the stub didn't
4050 report it in qSupported. If the stub doesn't reply OK, the
4051 session ends with an error.
4052
4053 If FALSE, then don't activate noack mode, regardless of what the
4054 stub claimed should be the default with qSupported. */
4055
4056 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4057 if (packet_config_support (noack_config) != PACKET_DISABLE)
4058 {
4059 putpkt ("QStartNoAckMode");
4060 getpkt (&rs->buf, &rs->buf_size, 0);
4061 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4062 rs->noack_mode = 1;
4063 }
4064
4065 if (extended_p)
4066 {
4067 /* Tell the remote that we are using the extended protocol. */
4068 putpkt ("!");
4069 getpkt (&rs->buf, &rs->buf_size, 0);
4070 }
4071
4072 /* Let the target know which signals it is allowed to pass down to
4073 the program. */
4074 update_signals_program_target ();
4075
4076 /* Next, if the target can specify a description, read it. We do
4077 this before anything involving memory or registers. */
4078 target_find_description ();
4079
4080 /* Next, now that we know something about the target, update the
4081 address spaces in the program spaces. */
4082 update_address_spaces ();
4083
4084 /* On OSs where the list of libraries is global to all
4085 processes, we fetch them early. */
4086 if (gdbarch_has_global_solist (target_gdbarch ()))
4087 solib_add (NULL, from_tty, auto_solib_add);
4088
4089 if (target_is_non_stop_p ())
4090 {
4091 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4092 error (_("Non-stop mode requested, but remote "
4093 "does not support non-stop"));
4094
4095 putpkt ("QNonStop:1");
4096 getpkt (&rs->buf, &rs->buf_size, 0);
4097
4098 if (strcmp (rs->buf, "OK") != 0)
4099 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4100
4101 /* Find about threads and processes the stub is already
4102 controlling. We default to adding them in the running state.
4103 The '?' query below will then tell us about which threads are
4104 stopped. */
4105 remote_update_thread_list (target);
4106 }
4107 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4108 {
4109 /* Don't assume that the stub can operate in all-stop mode.
4110 Request it explicitly. */
4111 putpkt ("QNonStop:0");
4112 getpkt (&rs->buf, &rs->buf_size, 0);
4113
4114 if (strcmp (rs->buf, "OK") != 0)
4115 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4116 }
4117
4118 /* Upload TSVs regardless of whether the target is running or not. The
4119 remote stub, such as GDBserver, may have some predefined or builtin
4120 TSVs, even if the target is not running. */
4121 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4122 {
4123 struct uploaded_tsv *uploaded_tsvs = NULL;
4124
4125 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4126 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4127 }
4128
4129 /* Check whether the target is running now. */
4130 putpkt ("?");
4131 getpkt (&rs->buf, &rs->buf_size, 0);
4132
4133 if (!target_is_non_stop_p ())
4134 {
4135 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4136 {
4137 if (!extended_p)
4138 error (_("The target is not running (try extended-remote?)"));
4139
4140 /* We're connected, but not running. Drop out before we
4141 call start_remote. */
4142 rs->starting_up = 0;
4143 return;
4144 }
4145 else
4146 {
4147 /* Save the reply for later. */
4148 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4149 strcpy (wait_status, rs->buf);
4150 }
4151
4152 /* Fetch thread list. */
4153 target_update_thread_list ();
4154
4155 /* Let the stub know that we want it to return the thread. */
4156 set_continue_thread (minus_one_ptid);
4157
4158 if (thread_count () == 0)
4159 {
4160 /* Target has no concept of threads at all. GDB treats
4161 non-threaded target as single-threaded; add a main
4162 thread. */
4163 add_current_inferior_and_thread (wait_status);
4164 }
4165 else
4166 {
4167 /* We have thread information; select the thread the target
4168 says should be current. If we're reconnecting to a
4169 multi-threaded program, this will ideally be the thread
4170 that last reported an event before GDB disconnected. */
4171 inferior_ptid = get_current_thread (wait_status);
4172 if (ptid_equal (inferior_ptid, null_ptid))
4173 {
4174 /* Odd... The target was able to list threads, but not
4175 tell us which thread was current (no "thread"
4176 register in T stop reply?). Just pick the first
4177 thread in the thread list then. */
4178
4179 if (remote_debug)
4180 fprintf_unfiltered (gdb_stdlog,
4181 "warning: couldn't determine remote "
4182 "current thread; picking first in list.\n");
4183
4184 inferior_ptid = thread_list->ptid;
4185 }
4186 }
4187
4188 /* init_wait_for_inferior should be called before get_offsets in order
4189 to manage `inserted' flag in bp loc in a correct state.
4190 breakpoint_init_inferior, called from init_wait_for_inferior, set
4191 `inserted' flag to 0, while before breakpoint_re_set, called from
4192 start_remote, set `inserted' flag to 1. In the initialization of
4193 inferior, breakpoint_init_inferior should be called first, and then
4194 breakpoint_re_set can be called. If this order is broken, state of
4195 `inserted' flag is wrong, and cause some problems on breakpoint
4196 manipulation. */
4197 init_wait_for_inferior ();
4198
4199 get_offsets (); /* Get text, data & bss offsets. */
4200
4201 /* If we could not find a description using qXfer, and we know
4202 how to do it some other way, try again. This is not
4203 supported for non-stop; it could be, but it is tricky if
4204 there are no stopped threads when we connect. */
4205 if (remote_read_description_p (target)
4206 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4207 {
4208 target_clear_description ();
4209 target_find_description ();
4210 }
4211
4212 /* Use the previously fetched status. */
4213 gdb_assert (wait_status != NULL);
4214 strcpy (rs->buf, wait_status);
4215 rs->cached_wait_status = 1;
4216
4217 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4218 }
4219 else
4220 {
4221 /* Clear WFI global state. Do this before finding about new
4222 threads and inferiors, and setting the current inferior.
4223 Otherwise we would clear the proceed status of the current
4224 inferior when we want its stop_soon state to be preserved
4225 (see notice_new_inferior). */
4226 init_wait_for_inferior ();
4227
4228 /* In non-stop, we will either get an "OK", meaning that there
4229 are no stopped threads at this time; or, a regular stop
4230 reply. In the latter case, there may be more than one thread
4231 stopped --- we pull them all out using the vStopped
4232 mechanism. */
4233 if (strcmp (rs->buf, "OK") != 0)
4234 {
4235 struct notif_client *notif = &notif_client_stop;
4236
4237 /* remote_notif_get_pending_replies acks this one, and gets
4238 the rest out. */
4239 rs->notif_state->pending_event[notif_client_stop.id]
4240 = remote_notif_parse (notif, rs->buf);
4241 remote_notif_get_pending_events (notif);
4242 }
4243
4244 if (thread_count () == 0)
4245 {
4246 if (!extended_p)
4247 error (_("The target is not running (try extended-remote?)"));
4248
4249 /* We're connected, but not running. Drop out before we
4250 call start_remote. */
4251 rs->starting_up = 0;
4252 return;
4253 }
4254
4255 /* In non-stop mode, any cached wait status will be stored in
4256 the stop reply queue. */
4257 gdb_assert (wait_status == NULL);
4258
4259 /* Report all signals during attach/startup. */
4260 remote_pass_signals (target, 0, NULL);
4261
4262 /* If there are already stopped threads, mark them stopped and
4263 report their stops before giving the prompt to the user. */
4264 process_initial_stop_replies (from_tty);
4265
4266 if (target_can_async_p ())
4267 target_async (1);
4268 }
4269
4270 /* If we connected to a live target, do some additional setup. */
4271 if (target_has_execution)
4272 {
4273 if (symfile_objfile) /* No use without a symbol-file. */
4274 remote_check_symbols ();
4275 }
4276
4277 /* Possibly the target has been engaged in a trace run started
4278 previously; find out where things are at. */
4279 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4280 {
4281 struct uploaded_tp *uploaded_tps = NULL;
4282
4283 if (current_trace_status ()->running)
4284 printf_filtered (_("Trace is already running on the target.\n"));
4285
4286 remote_upload_tracepoints (target, &uploaded_tps);
4287
4288 merge_uploaded_tracepoints (&uploaded_tps);
4289 }
4290
4291 /* Possibly the target has been engaged in a btrace record started
4292 previously; find out where things are at. */
4293 remote_btrace_maybe_reopen ();
4294
4295 /* The thread and inferior lists are now synchronized with the
4296 target, our symbols have been relocated, and we're merged the
4297 target's tracepoints with ours. We're done with basic start
4298 up. */
4299 rs->starting_up = 0;
4300
4301 /* Maybe breakpoints are global and need to be inserted now. */
4302 if (breakpoints_should_be_inserted_now ())
4303 insert_breakpoints ();
4304 }
4305
4306 /* Open a connection to a remote debugger.
4307 NAME is the filename used for communication. */
4308
4309 static void
4310 remote_open (const char *name, int from_tty)
4311 {
4312 remote_open_1 (name, from_tty, &remote_ops, 0);
4313 }
4314
4315 /* Open a connection to a remote debugger using the extended
4316 remote gdb protocol. NAME is the filename used for communication. */
4317
4318 static void
4319 extended_remote_open (const char *name, int from_tty)
4320 {
4321 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4322 }
4323
4324 /* Reset all packets back to "unknown support". Called when opening a
4325 new connection to a remote target. */
4326
4327 static void
4328 reset_all_packet_configs_support (void)
4329 {
4330 int i;
4331
4332 for (i = 0; i < PACKET_MAX; i++)
4333 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4334 }
4335
4336 /* Initialize all packet configs. */
4337
4338 static void
4339 init_all_packet_configs (void)
4340 {
4341 int i;
4342
4343 for (i = 0; i < PACKET_MAX; i++)
4344 {
4345 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4346 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4347 }
4348 }
4349
4350 /* Symbol look-up. */
4351
4352 static void
4353 remote_check_symbols (void)
4354 {
4355 struct remote_state *rs = get_remote_state ();
4356 char *msg, *reply, *tmp;
4357 int end;
4358 long reply_size;
4359 struct cleanup *old_chain;
4360
4361 /* The remote side has no concept of inferiors that aren't running
4362 yet, it only knows about running processes. If we're connected
4363 but our current inferior is not running, we should not invite the
4364 remote target to request symbol lookups related to its
4365 (unrelated) current process. */
4366 if (!target_has_execution)
4367 return;
4368
4369 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4370 return;
4371
4372 /* Make sure the remote is pointing at the right process. Note
4373 there's no way to select "no process". */
4374 set_general_process ();
4375
4376 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4377 because we need both at the same time. */
4378 msg = (char *) xmalloc (get_remote_packet_size ());
4379 old_chain = make_cleanup (xfree, msg);
4380 reply = (char *) xmalloc (get_remote_packet_size ());
4381 make_cleanup (free_current_contents, &reply);
4382 reply_size = get_remote_packet_size ();
4383
4384 /* Invite target to request symbol lookups. */
4385
4386 putpkt ("qSymbol::");
4387 getpkt (&reply, &reply_size, 0);
4388 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4389
4390 while (startswith (reply, "qSymbol:"))
4391 {
4392 struct bound_minimal_symbol sym;
4393
4394 tmp = &reply[8];
4395 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4396 msg[end] = '\0';
4397 sym = lookup_minimal_symbol (msg, NULL, NULL);
4398 if (sym.minsym == NULL)
4399 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4400 else
4401 {
4402 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4403 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4404
4405 /* If this is a function address, return the start of code
4406 instead of any data function descriptor. */
4407 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4408 sym_addr,
4409 &current_target);
4410
4411 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4412 phex_nz (sym_addr, addr_size), &reply[8]);
4413 }
4414
4415 putpkt (msg);
4416 getpkt (&reply, &reply_size, 0);
4417 }
4418
4419 do_cleanups (old_chain);
4420 }
4421
4422 static struct serial *
4423 remote_serial_open (const char *name)
4424 {
4425 static int udp_warning = 0;
4426
4427 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4428 of in ser-tcp.c, because it is the remote protocol assuming that the
4429 serial connection is reliable and not the serial connection promising
4430 to be. */
4431 if (!udp_warning && startswith (name, "udp:"))
4432 {
4433 warning (_("The remote protocol may be unreliable over UDP.\n"
4434 "Some events may be lost, rendering further debugging "
4435 "impossible."));
4436 udp_warning = 1;
4437 }
4438
4439 return serial_open (name);
4440 }
4441
4442 /* Inform the target of our permission settings. The permission flags
4443 work without this, but if the target knows the settings, it can do
4444 a couple things. First, it can add its own check, to catch cases
4445 that somehow manage to get by the permissions checks in target
4446 methods. Second, if the target is wired to disallow particular
4447 settings (for instance, a system in the field that is not set up to
4448 be able to stop at a breakpoint), it can object to any unavailable
4449 permissions. */
4450
4451 void
4452 remote_set_permissions (struct target_ops *self)
4453 {
4454 struct remote_state *rs = get_remote_state ();
4455
4456 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4457 "WriteReg:%x;WriteMem:%x;"
4458 "InsertBreak:%x;InsertTrace:%x;"
4459 "InsertFastTrace:%x;Stop:%x",
4460 may_write_registers, may_write_memory,
4461 may_insert_breakpoints, may_insert_tracepoints,
4462 may_insert_fast_tracepoints, may_stop);
4463 putpkt (rs->buf);
4464 getpkt (&rs->buf, &rs->buf_size, 0);
4465
4466 /* If the target didn't like the packet, warn the user. Do not try
4467 to undo the user's settings, that would just be maddening. */
4468 if (strcmp (rs->buf, "OK") != 0)
4469 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4470 }
4471
4472 /* This type describes each known response to the qSupported
4473 packet. */
4474 struct protocol_feature
4475 {
4476 /* The name of this protocol feature. */
4477 const char *name;
4478
4479 /* The default for this protocol feature. */
4480 enum packet_support default_support;
4481
4482 /* The function to call when this feature is reported, or after
4483 qSupported processing if the feature is not supported.
4484 The first argument points to this structure. The second
4485 argument indicates whether the packet requested support be
4486 enabled, disabled, or probed (or the default, if this function
4487 is being called at the end of processing and this feature was
4488 not reported). The third argument may be NULL; if not NULL, it
4489 is a NUL-terminated string taken from the packet following
4490 this feature's name and an equals sign. */
4491 void (*func) (const struct protocol_feature *, enum packet_support,
4492 const char *);
4493
4494 /* The corresponding packet for this feature. Only used if
4495 FUNC is remote_supported_packet. */
4496 int packet;
4497 };
4498
4499 static void
4500 remote_supported_packet (const struct protocol_feature *feature,
4501 enum packet_support support,
4502 const char *argument)
4503 {
4504 if (argument)
4505 {
4506 warning (_("Remote qSupported response supplied an unexpected value for"
4507 " \"%s\"."), feature->name);
4508 return;
4509 }
4510
4511 remote_protocol_packets[feature->packet].support = support;
4512 }
4513
4514 static void
4515 remote_packet_size (const struct protocol_feature *feature,
4516 enum packet_support support, const char *value)
4517 {
4518 struct remote_state *rs = get_remote_state ();
4519
4520 int packet_size;
4521 char *value_end;
4522
4523 if (support != PACKET_ENABLE)
4524 return;
4525
4526 if (value == NULL || *value == '\0')
4527 {
4528 warning (_("Remote target reported \"%s\" without a size."),
4529 feature->name);
4530 return;
4531 }
4532
4533 errno = 0;
4534 packet_size = strtol (value, &value_end, 16);
4535 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4536 {
4537 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4538 feature->name, value);
4539 return;
4540 }
4541
4542 /* Record the new maximum packet size. */
4543 rs->explicit_packet_size = packet_size;
4544 }
4545
4546 static const struct protocol_feature remote_protocol_features[] = {
4547 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4548 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4549 PACKET_qXfer_auxv },
4550 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4551 PACKET_qXfer_exec_file },
4552 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4553 PACKET_qXfer_features },
4554 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4555 PACKET_qXfer_libraries },
4556 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4557 PACKET_qXfer_libraries_svr4 },
4558 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4559 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4560 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4561 PACKET_qXfer_memory_map },
4562 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4563 PACKET_qXfer_spu_read },
4564 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4565 PACKET_qXfer_spu_write },
4566 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4567 PACKET_qXfer_osdata },
4568 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4569 PACKET_qXfer_threads },
4570 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4571 PACKET_qXfer_traceframe_info },
4572 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4573 PACKET_QPassSignals },
4574 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4575 PACKET_QCatchSyscalls },
4576 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4577 PACKET_QProgramSignals },
4578 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4579 PACKET_QSetWorkingDir },
4580 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4581 PACKET_QStartupWithShell },
4582 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4583 PACKET_QEnvironmentHexEncoded },
4584 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4585 PACKET_QEnvironmentReset },
4586 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4587 PACKET_QEnvironmentUnset },
4588 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4589 PACKET_QStartNoAckMode },
4590 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4591 PACKET_multiprocess_feature },
4592 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4593 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4594 PACKET_qXfer_siginfo_read },
4595 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4596 PACKET_qXfer_siginfo_write },
4597 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4598 PACKET_ConditionalTracepoints },
4599 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4600 PACKET_ConditionalBreakpoints },
4601 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4602 PACKET_BreakpointCommands },
4603 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4604 PACKET_FastTracepoints },
4605 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4606 PACKET_StaticTracepoints },
4607 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4608 PACKET_InstallInTrace},
4609 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4610 PACKET_DisconnectedTracing_feature },
4611 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4612 PACKET_bc },
4613 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4614 PACKET_bs },
4615 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4616 PACKET_TracepointSource },
4617 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4618 PACKET_QAllow },
4619 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4620 PACKET_EnableDisableTracepoints_feature },
4621 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4622 PACKET_qXfer_fdpic },
4623 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4624 PACKET_qXfer_uib },
4625 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4626 PACKET_QDisableRandomization },
4627 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4628 { "QTBuffer:size", PACKET_DISABLE,
4629 remote_supported_packet, PACKET_QTBuffer_size},
4630 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4631 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4632 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4633 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4634 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4635 PACKET_qXfer_btrace },
4636 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4637 PACKET_qXfer_btrace_conf },
4638 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4639 PACKET_Qbtrace_conf_bts_size },
4640 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4641 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4642 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4643 PACKET_fork_event_feature },
4644 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4645 PACKET_vfork_event_feature },
4646 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4647 PACKET_exec_event_feature },
4648 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4649 PACKET_Qbtrace_conf_pt_size },
4650 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4651 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4652 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4653 };
4654
4655 static char *remote_support_xml;
4656
4657 /* Register string appended to "xmlRegisters=" in qSupported query. */
4658
4659 void
4660 register_remote_support_xml (const char *xml)
4661 {
4662 #if defined(HAVE_LIBEXPAT)
4663 if (remote_support_xml == NULL)
4664 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4665 else
4666 {
4667 char *copy = xstrdup (remote_support_xml + 13);
4668 char *p = strtok (copy, ",");
4669
4670 do
4671 {
4672 if (strcmp (p, xml) == 0)
4673 {
4674 /* already there */
4675 xfree (copy);
4676 return;
4677 }
4678 }
4679 while ((p = strtok (NULL, ",")) != NULL);
4680 xfree (copy);
4681
4682 remote_support_xml = reconcat (remote_support_xml,
4683 remote_support_xml, ",", xml,
4684 (char *) NULL);
4685 }
4686 #endif
4687 }
4688
4689 static char *
4690 remote_query_supported_append (char *msg, const char *append)
4691 {
4692 if (msg)
4693 return reconcat (msg, msg, ";", append, (char *) NULL);
4694 else
4695 return xstrdup (append);
4696 }
4697
4698 static void
4699 remote_query_supported (void)
4700 {
4701 struct remote_state *rs = get_remote_state ();
4702 char *next;
4703 int i;
4704 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4705
4706 /* The packet support flags are handled differently for this packet
4707 than for most others. We treat an error, a disabled packet, and
4708 an empty response identically: any features which must be reported
4709 to be used will be automatically disabled. An empty buffer
4710 accomplishes this, since that is also the representation for a list
4711 containing no features. */
4712
4713 rs->buf[0] = 0;
4714 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4715 {
4716 char *q = NULL;
4717 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4718
4719 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4720 q = remote_query_supported_append (q, "multiprocess+");
4721
4722 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4723 q = remote_query_supported_append (q, "swbreak+");
4724 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4725 q = remote_query_supported_append (q, "hwbreak+");
4726
4727 q = remote_query_supported_append (q, "qRelocInsn+");
4728
4729 if (packet_set_cmd_state (PACKET_fork_event_feature)
4730 != AUTO_BOOLEAN_FALSE)
4731 q = remote_query_supported_append (q, "fork-events+");
4732 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4733 != AUTO_BOOLEAN_FALSE)
4734 q = remote_query_supported_append (q, "vfork-events+");
4735 if (packet_set_cmd_state (PACKET_exec_event_feature)
4736 != AUTO_BOOLEAN_FALSE)
4737 q = remote_query_supported_append (q, "exec-events+");
4738
4739 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4740 q = remote_query_supported_append (q, "vContSupported+");
4741
4742 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4743 q = remote_query_supported_append (q, "QThreadEvents+");
4744
4745 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4746 q = remote_query_supported_append (q, "no-resumed+");
4747
4748 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4749 the qSupported:xmlRegisters=i386 handling. */
4750 if (remote_support_xml != NULL)
4751 q = remote_query_supported_append (q, remote_support_xml);
4752
4753 q = reconcat (q, "qSupported:", q, (char *) NULL);
4754 putpkt (q);
4755
4756 do_cleanups (old_chain);
4757
4758 getpkt (&rs->buf, &rs->buf_size, 0);
4759
4760 /* If an error occured, warn, but do not return - just reset the
4761 buffer to empty and go on to disable features. */
4762 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4763 == PACKET_ERROR)
4764 {
4765 warning (_("Remote failure reply: %s"), rs->buf);
4766 rs->buf[0] = 0;
4767 }
4768 }
4769
4770 memset (seen, 0, sizeof (seen));
4771
4772 next = rs->buf;
4773 while (*next)
4774 {
4775 enum packet_support is_supported;
4776 char *p, *end, *name_end, *value;
4777
4778 /* First separate out this item from the rest of the packet. If
4779 there's another item after this, we overwrite the separator
4780 (terminated strings are much easier to work with). */
4781 p = next;
4782 end = strchr (p, ';');
4783 if (end == NULL)
4784 {
4785 end = p + strlen (p);
4786 next = end;
4787 }
4788 else
4789 {
4790 *end = '\0';
4791 next = end + 1;
4792
4793 if (end == p)
4794 {
4795 warning (_("empty item in \"qSupported\" response"));
4796 continue;
4797 }
4798 }
4799
4800 name_end = strchr (p, '=');
4801 if (name_end)
4802 {
4803 /* This is a name=value entry. */
4804 is_supported = PACKET_ENABLE;
4805 value = name_end + 1;
4806 *name_end = '\0';
4807 }
4808 else
4809 {
4810 value = NULL;
4811 switch (end[-1])
4812 {
4813 case '+':
4814 is_supported = PACKET_ENABLE;
4815 break;
4816
4817 case '-':
4818 is_supported = PACKET_DISABLE;
4819 break;
4820
4821 case '?':
4822 is_supported = PACKET_SUPPORT_UNKNOWN;
4823 break;
4824
4825 default:
4826 warning (_("unrecognized item \"%s\" "
4827 "in \"qSupported\" response"), p);
4828 continue;
4829 }
4830 end[-1] = '\0';
4831 }
4832
4833 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4834 if (strcmp (remote_protocol_features[i].name, p) == 0)
4835 {
4836 const struct protocol_feature *feature;
4837
4838 seen[i] = 1;
4839 feature = &remote_protocol_features[i];
4840 feature->func (feature, is_supported, value);
4841 break;
4842 }
4843 }
4844
4845 /* If we increased the packet size, make sure to increase the global
4846 buffer size also. We delay this until after parsing the entire
4847 qSupported packet, because this is the same buffer we were
4848 parsing. */
4849 if (rs->buf_size < rs->explicit_packet_size)
4850 {
4851 rs->buf_size = rs->explicit_packet_size;
4852 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4853 }
4854
4855 /* Handle the defaults for unmentioned features. */
4856 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4857 if (!seen[i])
4858 {
4859 const struct protocol_feature *feature;
4860
4861 feature = &remote_protocol_features[i];
4862 feature->func (feature, feature->default_support, NULL);
4863 }
4864 }
4865
4866 /* Serial QUIT handler for the remote serial descriptor.
4867
4868 Defers handling a Ctrl-C until we're done with the current
4869 command/response packet sequence, unless:
4870
4871 - We're setting up the connection. Don't send a remote interrupt
4872 request, as we're not fully synced yet. Quit immediately
4873 instead.
4874
4875 - The target has been resumed in the foreground
4876 (target_terminal::is_ours is false) with a synchronous resume
4877 packet, and we're blocked waiting for the stop reply, thus a
4878 Ctrl-C should be immediately sent to the target.
4879
4880 - We get a second Ctrl-C while still within the same serial read or
4881 write. In that case the serial is seemingly wedged --- offer to
4882 quit/disconnect.
4883
4884 - We see a second Ctrl-C without target response, after having
4885 previously interrupted the target. In that case the target/stub
4886 is probably wedged --- offer to quit/disconnect.
4887 */
4888
4889 static void
4890 remote_serial_quit_handler (void)
4891 {
4892 struct remote_state *rs = get_remote_state ();
4893
4894 if (check_quit_flag ())
4895 {
4896 /* If we're starting up, we're not fully synced yet. Quit
4897 immediately. */
4898 if (rs->starting_up)
4899 quit ();
4900 else if (rs->got_ctrlc_during_io)
4901 {
4902 if (query (_("The target is not responding to GDB commands.\n"
4903 "Stop debugging it? ")))
4904 remote_unpush_and_throw ();
4905 }
4906 /* If ^C has already been sent once, offer to disconnect. */
4907 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4908 interrupt_query ();
4909 /* All-stop protocol, and blocked waiting for stop reply. Send
4910 an interrupt request. */
4911 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4912 target_interrupt (inferior_ptid);
4913 else
4914 rs->got_ctrlc_during_io = 1;
4915 }
4916 }
4917
4918 /* Remove any of the remote.c targets from target stack. Upper targets depend
4919 on it so remove them first. */
4920
4921 static void
4922 remote_unpush_target (void)
4923 {
4924 pop_all_targets_at_and_above (process_stratum);
4925 }
4926
4927 static void
4928 remote_unpush_and_throw (void)
4929 {
4930 remote_unpush_target ();
4931 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4932 }
4933
4934 static void
4935 remote_open_1 (const char *name, int from_tty,
4936 struct target_ops *target, int extended_p)
4937 {
4938 struct remote_state *rs = get_remote_state ();
4939
4940 if (name == 0)
4941 error (_("To open a remote debug connection, you need to specify what\n"
4942 "serial device is attached to the remote system\n"
4943 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4944
4945 /* See FIXME above. */
4946 if (!target_async_permitted)
4947 wait_forever_enabled_p = 1;
4948
4949 /* If we're connected to a running target, target_preopen will kill it.
4950 Ask this question first, before target_preopen has a chance to kill
4951 anything. */
4952 if (rs->remote_desc != NULL && !have_inferiors ())
4953 {
4954 if (from_tty
4955 && !query (_("Already connected to a remote target. Disconnect? ")))
4956 error (_("Still connected."));
4957 }
4958
4959 /* Here the possibly existing remote target gets unpushed. */
4960 target_preopen (from_tty);
4961
4962 /* Make sure we send the passed signals list the next time we resume. */
4963 xfree (rs->last_pass_packet);
4964 rs->last_pass_packet = NULL;
4965
4966 /* Make sure we send the program signals list the next time we
4967 resume. */
4968 xfree (rs->last_program_signals_packet);
4969 rs->last_program_signals_packet = NULL;
4970
4971 remote_fileio_reset ();
4972 reopen_exec_file ();
4973 reread_symbols ();
4974
4975 rs->remote_desc = remote_serial_open (name);
4976 if (!rs->remote_desc)
4977 perror_with_name (name);
4978
4979 if (baud_rate != -1)
4980 {
4981 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4982 {
4983 /* The requested speed could not be set. Error out to
4984 top level after closing remote_desc. Take care to
4985 set remote_desc to NULL to avoid closing remote_desc
4986 more than once. */
4987 serial_close (rs->remote_desc);
4988 rs->remote_desc = NULL;
4989 perror_with_name (name);
4990 }
4991 }
4992
4993 serial_setparity (rs->remote_desc, serial_parity);
4994 serial_raw (rs->remote_desc);
4995
4996 /* If there is something sitting in the buffer we might take it as a
4997 response to a command, which would be bad. */
4998 serial_flush_input (rs->remote_desc);
4999
5000 if (from_tty)
5001 {
5002 puts_filtered ("Remote debugging using ");
5003 puts_filtered (name);
5004 puts_filtered ("\n");
5005 }
5006 push_target (target); /* Switch to using remote target now. */
5007
5008 /* Register extra event sources in the event loop. */
5009 remote_async_inferior_event_token
5010 = create_async_event_handler (remote_async_inferior_event_handler,
5011 NULL);
5012 rs->notif_state = remote_notif_state_allocate ();
5013
5014 /* Reset the target state; these things will be queried either by
5015 remote_query_supported or as they are needed. */
5016 reset_all_packet_configs_support ();
5017 rs->cached_wait_status = 0;
5018 rs->explicit_packet_size = 0;
5019 rs->noack_mode = 0;
5020 rs->extended = extended_p;
5021 rs->waiting_for_stop_reply = 0;
5022 rs->ctrlc_pending_p = 0;
5023 rs->got_ctrlc_during_io = 0;
5024
5025 rs->general_thread = not_sent_ptid;
5026 rs->continue_thread = not_sent_ptid;
5027 rs->remote_traceframe_number = -1;
5028
5029 rs->last_resume_exec_dir = EXEC_FORWARD;
5030
5031 /* Probe for ability to use "ThreadInfo" query, as required. */
5032 rs->use_threadinfo_query = 1;
5033 rs->use_threadextra_query = 1;
5034
5035 readahead_cache_invalidate ();
5036
5037 if (target_async_permitted)
5038 {
5039 /* FIXME: cagney/1999-09-23: During the initial connection it is
5040 assumed that the target is already ready and able to respond to
5041 requests. Unfortunately remote_start_remote() eventually calls
5042 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5043 around this. Eventually a mechanism that allows
5044 wait_for_inferior() to expect/get timeouts will be
5045 implemented. */
5046 wait_forever_enabled_p = 0;
5047 }
5048
5049 /* First delete any symbols previously loaded from shared libraries. */
5050 no_shared_libraries (NULL, 0);
5051
5052 /* Start afresh. */
5053 init_thread_list ();
5054
5055 /* Start the remote connection. If error() or QUIT, discard this
5056 target (we'd otherwise be in an inconsistent state) and then
5057 propogate the error on up the exception chain. This ensures that
5058 the caller doesn't stumble along blindly assuming that the
5059 function succeeded. The CLI doesn't have this problem but other
5060 UI's, such as MI do.
5061
5062 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5063 this function should return an error indication letting the
5064 caller restore the previous state. Unfortunately the command
5065 ``target remote'' is directly wired to this function making that
5066 impossible. On a positive note, the CLI side of this problem has
5067 been fixed - the function set_cmd_context() makes it possible for
5068 all the ``target ....'' commands to share a common callback
5069 function. See cli-dump.c. */
5070 {
5071
5072 TRY
5073 {
5074 remote_start_remote (from_tty, target, extended_p);
5075 }
5076 CATCH (ex, RETURN_MASK_ALL)
5077 {
5078 /* Pop the partially set up target - unless something else did
5079 already before throwing the exception. */
5080 if (rs->remote_desc != NULL)
5081 remote_unpush_target ();
5082 if (target_async_permitted)
5083 wait_forever_enabled_p = 1;
5084 throw_exception (ex);
5085 }
5086 END_CATCH
5087 }
5088
5089 remote_btrace_reset ();
5090
5091 if (target_async_permitted)
5092 wait_forever_enabled_p = 1;
5093 }
5094
5095 /* Detach the specified process. */
5096
5097 static void
5098 remote_detach_pid (int pid)
5099 {
5100 struct remote_state *rs = get_remote_state ();
5101
5102 if (remote_multi_process_p (rs))
5103 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5104 else
5105 strcpy (rs->buf, "D");
5106
5107 putpkt (rs->buf);
5108 getpkt (&rs->buf, &rs->buf_size, 0);
5109
5110 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5111 ;
5112 else if (rs->buf[0] == '\0')
5113 error (_("Remote doesn't know how to detach"));
5114 else
5115 error (_("Can't detach process."));
5116 }
5117
5118 /* This detaches a program to which we previously attached, using
5119 inferior_ptid to identify the process. After this is done, GDB
5120 can be used to debug some other program. We better not have left
5121 any breakpoints in the target program or it'll die when it hits
5122 one. */
5123
5124 static void
5125 remote_detach_1 (const char *args, int from_tty)
5126 {
5127 int pid = ptid_get_pid (inferior_ptid);
5128 struct remote_state *rs = get_remote_state ();
5129 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5130 int is_fork_parent;
5131
5132 if (args)
5133 error (_("Argument given to \"detach\" when remotely debugging."));
5134
5135 if (!target_has_execution)
5136 error (_("No process to detach from."));
5137
5138 target_announce_detach (from_tty);
5139
5140 /* Tell the remote target to detach. */
5141 remote_detach_pid (pid);
5142
5143 /* Exit only if this is the only active inferior. */
5144 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5145 puts_filtered (_("Ending remote debugging.\n"));
5146
5147 /* Check to see if we are detaching a fork parent. Note that if we
5148 are detaching a fork child, tp == NULL. */
5149 is_fork_parent = (tp != NULL
5150 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5151
5152 /* If doing detach-on-fork, we don't mourn, because that will delete
5153 breakpoints that should be available for the followed inferior. */
5154 if (!is_fork_parent)
5155 target_mourn_inferior (inferior_ptid);
5156 else
5157 {
5158 inferior_ptid = null_ptid;
5159 detach_inferior (pid);
5160 }
5161 }
5162
5163 static void
5164 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5165 {
5166 remote_detach_1 (args, from_tty);
5167 }
5168
5169 static void
5170 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5171 {
5172 remote_detach_1 (args, from_tty);
5173 }
5174
5175 /* Target follow-fork function for remote targets. On entry, and
5176 at return, the current inferior is the fork parent.
5177
5178 Note that although this is currently only used for extended-remote,
5179 it is named remote_follow_fork in anticipation of using it for the
5180 remote target as well. */
5181
5182 static int
5183 remote_follow_fork (struct target_ops *ops, int follow_child,
5184 int detach_fork)
5185 {
5186 struct remote_state *rs = get_remote_state ();
5187 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5188
5189 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5190 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5191 {
5192 /* When following the parent and detaching the child, we detach
5193 the child here. For the case of following the child and
5194 detaching the parent, the detach is done in the target-
5195 independent follow fork code in infrun.c. We can't use
5196 target_detach when detaching an unfollowed child because
5197 the client side doesn't know anything about the child. */
5198 if (detach_fork && !follow_child)
5199 {
5200 /* Detach the fork child. */
5201 ptid_t child_ptid;
5202 pid_t child_pid;
5203
5204 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5205 child_pid = ptid_get_pid (child_ptid);
5206
5207 remote_detach_pid (child_pid);
5208 detach_inferior (child_pid);
5209 }
5210 }
5211 return 0;
5212 }
5213
5214 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5215 in the program space of the new inferior. On entry and at return the
5216 current inferior is the exec'ing inferior. INF is the new exec'd
5217 inferior, which may be the same as the exec'ing inferior unless
5218 follow-exec-mode is "new". */
5219
5220 static void
5221 remote_follow_exec (struct target_ops *ops,
5222 struct inferior *inf, char *execd_pathname)
5223 {
5224 /* We know that this is a target file name, so if it has the "target:"
5225 prefix we strip it off before saving it in the program space. */
5226 if (is_target_filename (execd_pathname))
5227 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5228
5229 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5230 }
5231
5232 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5233
5234 static void
5235 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5236 {
5237 if (args)
5238 error (_("Argument given to \"disconnect\" when remotely debugging."));
5239
5240 /* Make sure we unpush even the extended remote targets. Calling
5241 target_mourn_inferior won't unpush, and remote_mourn won't
5242 unpush if there is more than one inferior left. */
5243 unpush_target (target);
5244 generic_mourn_inferior ();
5245
5246 if (from_tty)
5247 puts_filtered ("Ending remote debugging.\n");
5248 }
5249
5250 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5251 be chatty about it. */
5252
5253 static void
5254 extended_remote_attach (struct target_ops *target, const char *args,
5255 int from_tty)
5256 {
5257 struct remote_state *rs = get_remote_state ();
5258 int pid;
5259 char *wait_status = NULL;
5260
5261 pid = parse_pid_to_attach (args);
5262
5263 /* Remote PID can be freely equal to getpid, do not check it here the same
5264 way as in other targets. */
5265
5266 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5267 error (_("This target does not support attaching to a process"));
5268
5269 if (from_tty)
5270 {
5271 char *exec_file = get_exec_file (0);
5272
5273 if (exec_file)
5274 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5275 target_pid_to_str (pid_to_ptid (pid)));
5276 else
5277 printf_unfiltered (_("Attaching to %s\n"),
5278 target_pid_to_str (pid_to_ptid (pid)));
5279
5280 gdb_flush (gdb_stdout);
5281 }
5282
5283 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5284 putpkt (rs->buf);
5285 getpkt (&rs->buf, &rs->buf_size, 0);
5286
5287 switch (packet_ok (rs->buf,
5288 &remote_protocol_packets[PACKET_vAttach]))
5289 {
5290 case PACKET_OK:
5291 if (!target_is_non_stop_p ())
5292 {
5293 /* Save the reply for later. */
5294 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5295 strcpy (wait_status, rs->buf);
5296 }
5297 else if (strcmp (rs->buf, "OK") != 0)
5298 error (_("Attaching to %s failed with: %s"),
5299 target_pid_to_str (pid_to_ptid (pid)),
5300 rs->buf);
5301 break;
5302 case PACKET_UNKNOWN:
5303 error (_("This target does not support attaching to a process"));
5304 default:
5305 error (_("Attaching to %s failed"),
5306 target_pid_to_str (pid_to_ptid (pid)));
5307 }
5308
5309 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5310
5311 inferior_ptid = pid_to_ptid (pid);
5312
5313 if (target_is_non_stop_p ())
5314 {
5315 struct thread_info *thread;
5316
5317 /* Get list of threads. */
5318 remote_update_thread_list (target);
5319
5320 thread = first_thread_of_process (pid);
5321 if (thread)
5322 inferior_ptid = thread->ptid;
5323 else
5324 inferior_ptid = pid_to_ptid (pid);
5325
5326 /* Invalidate our notion of the remote current thread. */
5327 record_currthread (rs, minus_one_ptid);
5328 }
5329 else
5330 {
5331 /* Now, if we have thread information, update inferior_ptid. */
5332 inferior_ptid = remote_current_thread (inferior_ptid);
5333
5334 /* Add the main thread to the thread list. */
5335 add_thread_silent (inferior_ptid);
5336 }
5337
5338 /* Next, if the target can specify a description, read it. We do
5339 this before anything involving memory or registers. */
5340 target_find_description ();
5341
5342 if (!target_is_non_stop_p ())
5343 {
5344 /* Use the previously fetched status. */
5345 gdb_assert (wait_status != NULL);
5346
5347 if (target_can_async_p ())
5348 {
5349 struct notif_event *reply
5350 = remote_notif_parse (&notif_client_stop, wait_status);
5351
5352 push_stop_reply ((struct stop_reply *) reply);
5353
5354 target_async (1);
5355 }
5356 else
5357 {
5358 gdb_assert (wait_status != NULL);
5359 strcpy (rs->buf, wait_status);
5360 rs->cached_wait_status = 1;
5361 }
5362 }
5363 else
5364 gdb_assert (wait_status == NULL);
5365 }
5366
5367 /* Implementation of the to_post_attach method. */
5368
5369 static void
5370 extended_remote_post_attach (struct target_ops *ops, int pid)
5371 {
5372 /* Get text, data & bss offsets. */
5373 get_offsets ();
5374
5375 /* In certain cases GDB might not have had the chance to start
5376 symbol lookup up until now. This could happen if the debugged
5377 binary is not using shared libraries, the vsyscall page is not
5378 present (on Linux) and the binary itself hadn't changed since the
5379 debugging process was started. */
5380 if (symfile_objfile != NULL)
5381 remote_check_symbols();
5382 }
5383
5384 \f
5385 /* Check for the availability of vCont. This function should also check
5386 the response. */
5387
5388 static void
5389 remote_vcont_probe (struct remote_state *rs)
5390 {
5391 char *buf;
5392
5393 strcpy (rs->buf, "vCont?");
5394 putpkt (rs->buf);
5395 getpkt (&rs->buf, &rs->buf_size, 0);
5396 buf = rs->buf;
5397
5398 /* Make sure that the features we assume are supported. */
5399 if (startswith (buf, "vCont"))
5400 {
5401 char *p = &buf[5];
5402 int support_c, support_C;
5403
5404 rs->supports_vCont.s = 0;
5405 rs->supports_vCont.S = 0;
5406 support_c = 0;
5407 support_C = 0;
5408 rs->supports_vCont.t = 0;
5409 rs->supports_vCont.r = 0;
5410 while (p && *p == ';')
5411 {
5412 p++;
5413 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5414 rs->supports_vCont.s = 1;
5415 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5416 rs->supports_vCont.S = 1;
5417 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5418 support_c = 1;
5419 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5420 support_C = 1;
5421 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5422 rs->supports_vCont.t = 1;
5423 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5424 rs->supports_vCont.r = 1;
5425
5426 p = strchr (p, ';');
5427 }
5428
5429 /* If c, and C are not all supported, we can't use vCont. Clearing
5430 BUF will make packet_ok disable the packet. */
5431 if (!support_c || !support_C)
5432 buf[0] = 0;
5433 }
5434
5435 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5436 }
5437
5438 /* Helper function for building "vCont" resumptions. Write a
5439 resumption to P. ENDP points to one-passed-the-end of the buffer
5440 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5441 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5442 resumed thread should be single-stepped and/or signalled. If PTID
5443 equals minus_one_ptid, then all threads are resumed; if PTID
5444 represents a process, then all threads of the process are resumed;
5445 the thread to be stepped and/or signalled is given in the global
5446 INFERIOR_PTID. */
5447
5448 static char *
5449 append_resumption (char *p, char *endp,
5450 ptid_t ptid, int step, enum gdb_signal siggnal)
5451 {
5452 struct remote_state *rs = get_remote_state ();
5453
5454 if (step && siggnal != GDB_SIGNAL_0)
5455 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5456 else if (step
5457 /* GDB is willing to range step. */
5458 && use_range_stepping
5459 /* Target supports range stepping. */
5460 && rs->supports_vCont.r
5461 /* We don't currently support range stepping multiple
5462 threads with a wildcard (though the protocol allows it,
5463 so stubs shouldn't make an active effort to forbid
5464 it). */
5465 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5466 {
5467 struct thread_info *tp;
5468
5469 if (ptid_equal (ptid, minus_one_ptid))
5470 {
5471 /* If we don't know about the target thread's tid, then
5472 we're resuming magic_null_ptid (see caller). */
5473 tp = find_thread_ptid (magic_null_ptid);
5474 }
5475 else
5476 tp = find_thread_ptid (ptid);
5477 gdb_assert (tp != NULL);
5478
5479 if (tp->control.may_range_step)
5480 {
5481 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5482
5483 p += xsnprintf (p, endp - p, ";r%s,%s",
5484 phex_nz (tp->control.step_range_start,
5485 addr_size),
5486 phex_nz (tp->control.step_range_end,
5487 addr_size));
5488 }
5489 else
5490 p += xsnprintf (p, endp - p, ";s");
5491 }
5492 else if (step)
5493 p += xsnprintf (p, endp - p, ";s");
5494 else if (siggnal != GDB_SIGNAL_0)
5495 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5496 else
5497 p += xsnprintf (p, endp - p, ";c");
5498
5499 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5500 {
5501 ptid_t nptid;
5502
5503 /* All (-1) threads of process. */
5504 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5505
5506 p += xsnprintf (p, endp - p, ":");
5507 p = write_ptid (p, endp, nptid);
5508 }
5509 else if (!ptid_equal (ptid, minus_one_ptid))
5510 {
5511 p += xsnprintf (p, endp - p, ":");
5512 p = write_ptid (p, endp, ptid);
5513 }
5514
5515 return p;
5516 }
5517
5518 /* Clear the thread's private info on resume. */
5519
5520 static void
5521 resume_clear_thread_private_info (struct thread_info *thread)
5522 {
5523 if (thread->priv != NULL)
5524 {
5525 remote_thread_info *priv = get_remote_thread_info (thread);
5526
5527 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5528 priv->watch_data_address = 0;
5529 }
5530 }
5531
5532 /* Append a vCont continue-with-signal action for threads that have a
5533 non-zero stop signal. */
5534
5535 static char *
5536 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5537 {
5538 struct thread_info *thread;
5539
5540 ALL_NON_EXITED_THREADS (thread)
5541 if (ptid_match (thread->ptid, ptid)
5542 && !ptid_equal (inferior_ptid, thread->ptid)
5543 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5544 {
5545 p = append_resumption (p, endp, thread->ptid,
5546 0, thread->suspend.stop_signal);
5547 thread->suspend.stop_signal = GDB_SIGNAL_0;
5548 resume_clear_thread_private_info (thread);
5549 }
5550
5551 return p;
5552 }
5553
5554 /* Set the target running, using the packets that use Hc
5555 (c/s/C/S). */
5556
5557 static void
5558 remote_resume_with_hc (struct target_ops *ops,
5559 ptid_t ptid, int step, enum gdb_signal siggnal)
5560 {
5561 struct remote_state *rs = get_remote_state ();
5562 struct thread_info *thread;
5563 char *buf;
5564
5565 rs->last_sent_signal = siggnal;
5566 rs->last_sent_step = step;
5567
5568 /* The c/s/C/S resume packets use Hc, so set the continue
5569 thread. */
5570 if (ptid_equal (ptid, minus_one_ptid))
5571 set_continue_thread (any_thread_ptid);
5572 else
5573 set_continue_thread (ptid);
5574
5575 ALL_NON_EXITED_THREADS (thread)
5576 resume_clear_thread_private_info (thread);
5577
5578 buf = rs->buf;
5579 if (execution_direction == EXEC_REVERSE)
5580 {
5581 /* We don't pass signals to the target in reverse exec mode. */
5582 if (info_verbose && siggnal != GDB_SIGNAL_0)
5583 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5584 siggnal);
5585
5586 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5587 error (_("Remote reverse-step not supported."));
5588 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5589 error (_("Remote reverse-continue not supported."));
5590
5591 strcpy (buf, step ? "bs" : "bc");
5592 }
5593 else if (siggnal != GDB_SIGNAL_0)
5594 {
5595 buf[0] = step ? 'S' : 'C';
5596 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5597 buf[2] = tohex (((int) siggnal) & 0xf);
5598 buf[3] = '\0';
5599 }
5600 else
5601 strcpy (buf, step ? "s" : "c");
5602
5603 putpkt (buf);
5604 }
5605
5606 /* Resume the remote inferior by using a "vCont" packet. The thread
5607 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5608 resumed thread should be single-stepped and/or signalled. If PTID
5609 equals minus_one_ptid, then all threads are resumed; the thread to
5610 be stepped and/or signalled is given in the global INFERIOR_PTID.
5611 This function returns non-zero iff it resumes the inferior.
5612
5613 This function issues a strict subset of all possible vCont commands
5614 at the moment. */
5615
5616 static int
5617 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5618 {
5619 struct remote_state *rs = get_remote_state ();
5620 char *p;
5621 char *endp;
5622
5623 /* No reverse execution actions defined for vCont. */
5624 if (execution_direction == EXEC_REVERSE)
5625 return 0;
5626
5627 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5628 remote_vcont_probe (rs);
5629
5630 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5631 return 0;
5632
5633 p = rs->buf;
5634 endp = rs->buf + get_remote_packet_size ();
5635
5636 /* If we could generate a wider range of packets, we'd have to worry
5637 about overflowing BUF. Should there be a generic
5638 "multi-part-packet" packet? */
5639
5640 p += xsnprintf (p, endp - p, "vCont");
5641
5642 if (ptid_equal (ptid, magic_null_ptid))
5643 {
5644 /* MAGIC_NULL_PTID means that we don't have any active threads,
5645 so we don't have any TID numbers the inferior will
5646 understand. Make sure to only send forms that do not specify
5647 a TID. */
5648 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5649 }
5650 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5651 {
5652 /* Resume all threads (of all processes, or of a single
5653 process), with preference for INFERIOR_PTID. This assumes
5654 inferior_ptid belongs to the set of all threads we are about
5655 to resume. */
5656 if (step || siggnal != GDB_SIGNAL_0)
5657 {
5658 /* Step inferior_ptid, with or without signal. */
5659 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5660 }
5661
5662 /* Also pass down any pending signaled resumption for other
5663 threads not the current. */
5664 p = append_pending_thread_resumptions (p, endp, ptid);
5665
5666 /* And continue others without a signal. */
5667 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5668 }
5669 else
5670 {
5671 /* Scheduler locking; resume only PTID. */
5672 append_resumption (p, endp, ptid, step, siggnal);
5673 }
5674
5675 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5676 putpkt (rs->buf);
5677
5678 if (target_is_non_stop_p ())
5679 {
5680 /* In non-stop, the stub replies to vCont with "OK". The stop
5681 reply will be reported asynchronously by means of a `%Stop'
5682 notification. */
5683 getpkt (&rs->buf, &rs->buf_size, 0);
5684 if (strcmp (rs->buf, "OK") != 0)
5685 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5686 }
5687
5688 return 1;
5689 }
5690
5691 /* Tell the remote machine to resume. */
5692
5693 static void
5694 remote_resume (struct target_ops *ops,
5695 ptid_t ptid, int step, enum gdb_signal siggnal)
5696 {
5697 struct remote_state *rs = get_remote_state ();
5698
5699 /* When connected in non-stop mode, the core resumes threads
5700 individually. Resuming remote threads directly in target_resume
5701 would thus result in sending one packet per thread. Instead, to
5702 minimize roundtrip latency, here we just store the resume
5703 request; the actual remote resumption will be done in
5704 target_commit_resume / remote_commit_resume, where we'll be able
5705 to do vCont action coalescing. */
5706 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5707 {
5708 remote_thread_info *remote_thr;
5709
5710 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5711 remote_thr = get_remote_thread_info (inferior_ptid);
5712 else
5713 remote_thr = get_remote_thread_info (ptid);
5714
5715 remote_thr->last_resume_step = step;
5716 remote_thr->last_resume_sig = siggnal;
5717 return;
5718 }
5719
5720 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5721 (explained in remote-notif.c:handle_notification) so
5722 remote_notif_process is not called. We need find a place where
5723 it is safe to start a 'vNotif' sequence. It is good to do it
5724 before resuming inferior, because inferior was stopped and no RSP
5725 traffic at that moment. */
5726 if (!target_is_non_stop_p ())
5727 remote_notif_process (rs->notif_state, &notif_client_stop);
5728
5729 rs->last_resume_exec_dir = execution_direction;
5730
5731 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5732 if (!remote_resume_with_vcont (ptid, step, siggnal))
5733 remote_resume_with_hc (ops, ptid, step, siggnal);
5734
5735 /* We are about to start executing the inferior, let's register it
5736 with the event loop. NOTE: this is the one place where all the
5737 execution commands end up. We could alternatively do this in each
5738 of the execution commands in infcmd.c. */
5739 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5740 into infcmd.c in order to allow inferior function calls to work
5741 NOT asynchronously. */
5742 if (target_can_async_p ())
5743 target_async (1);
5744
5745 /* We've just told the target to resume. The remote server will
5746 wait for the inferior to stop, and then send a stop reply. In
5747 the mean time, we can't start another command/query ourselves
5748 because the stub wouldn't be ready to process it. This applies
5749 only to the base all-stop protocol, however. In non-stop (which
5750 only supports vCont), the stub replies with an "OK", and is
5751 immediate able to process further serial input. */
5752 if (!target_is_non_stop_p ())
5753 rs->waiting_for_stop_reply = 1;
5754 }
5755
5756 static void check_pending_events_prevent_wildcard_vcont
5757 (int *may_global_wildcard_vcont);
5758 static int is_pending_fork_parent_thread (struct thread_info *thread);
5759
5760 /* Private per-inferior info for target remote processes. */
5761
5762 struct remote_inferior : public private_inferior
5763 {
5764 /* Whether we can send a wildcard vCont for this process. */
5765 bool may_wildcard_vcont = true;
5766 };
5767
5768 /* Get the remote private inferior data associated to INF. */
5769
5770 static remote_inferior *
5771 get_remote_inferior (inferior *inf)
5772 {
5773 if (inf->priv == NULL)
5774 inf->priv.reset (new remote_inferior);
5775
5776 return static_cast<remote_inferior *> (inf->priv.get ());
5777 }
5778
5779 /* Structure used to track the construction of a vCont packet in the
5780 outgoing packet buffer. This is used to send multiple vCont
5781 packets if we have more actions than would fit a single packet. */
5782
5783 struct vcont_builder
5784 {
5785 /* Pointer to the first action. P points here if no action has been
5786 appended yet. */
5787 char *first_action;
5788
5789 /* Where the next action will be appended. */
5790 char *p;
5791
5792 /* The end of the buffer. Must never write past this. */
5793 char *endp;
5794 };
5795
5796 /* Prepare the outgoing buffer for a new vCont packet. */
5797
5798 static void
5799 vcont_builder_restart (struct vcont_builder *builder)
5800 {
5801 struct remote_state *rs = get_remote_state ();
5802
5803 builder->p = rs->buf;
5804 builder->endp = rs->buf + get_remote_packet_size ();
5805 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5806 builder->first_action = builder->p;
5807 }
5808
5809 /* If the vCont packet being built has any action, send it to the
5810 remote end. */
5811
5812 static void
5813 vcont_builder_flush (struct vcont_builder *builder)
5814 {
5815 struct remote_state *rs;
5816
5817 if (builder->p == builder->first_action)
5818 return;
5819
5820 rs = get_remote_state ();
5821 putpkt (rs->buf);
5822 getpkt (&rs->buf, &rs->buf_size, 0);
5823 if (strcmp (rs->buf, "OK") != 0)
5824 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5825 }
5826
5827 /* The largest action is range-stepping, with its two addresses. This
5828 is more than sufficient. If a new, bigger action is created, it'll
5829 quickly trigger a failed assertion in append_resumption (and we'll
5830 just bump this). */
5831 #define MAX_ACTION_SIZE 200
5832
5833 /* Append a new vCont action in the outgoing packet being built. If
5834 the action doesn't fit the packet along with previous actions, push
5835 what we've got so far to the remote end and start over a new vCont
5836 packet (with the new action). */
5837
5838 static void
5839 vcont_builder_push_action (struct vcont_builder *builder,
5840 ptid_t ptid, int step, enum gdb_signal siggnal)
5841 {
5842 char buf[MAX_ACTION_SIZE + 1];
5843 char *endp;
5844 size_t rsize;
5845
5846 endp = append_resumption (buf, buf + sizeof (buf),
5847 ptid, step, siggnal);
5848
5849 /* Check whether this new action would fit in the vCont packet along
5850 with previous actions. If not, send what we've got so far and
5851 start a new vCont packet. */
5852 rsize = endp - buf;
5853 if (rsize > builder->endp - builder->p)
5854 {
5855 vcont_builder_flush (builder);
5856 vcont_builder_restart (builder);
5857
5858 /* Should now fit. */
5859 gdb_assert (rsize <= builder->endp - builder->p);
5860 }
5861
5862 memcpy (builder->p, buf, rsize);
5863 builder->p += rsize;
5864 *builder->p = '\0';
5865 }
5866
5867 /* to_commit_resume implementation. */
5868
5869 static void
5870 remote_commit_resume (struct target_ops *ops)
5871 {
5872 struct remote_state *rs = get_remote_state ();
5873 struct inferior *inf;
5874 struct thread_info *tp;
5875 int any_process_wildcard;
5876 int may_global_wildcard_vcont;
5877 struct vcont_builder vcont_builder;
5878
5879 /* If connected in all-stop mode, we'd send the remote resume
5880 request directly from remote_resume. Likewise if
5881 reverse-debugging, as there are no defined vCont actions for
5882 reverse execution. */
5883 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5884 return;
5885
5886 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5887 instead of resuming all threads of each process individually.
5888 However, if any thread of a process must remain halted, we can't
5889 send wildcard resumes and must send one action per thread.
5890
5891 Care must be taken to not resume threads/processes the server
5892 side already told us are stopped, but the core doesn't know about
5893 yet, because the events are still in the vStopped notification
5894 queue. For example:
5895
5896 #1 => vCont s:p1.1;c
5897 #2 <= OK
5898 #3 <= %Stopped T05 p1.1
5899 #4 => vStopped
5900 #5 <= T05 p1.2
5901 #6 => vStopped
5902 #7 <= OK
5903 #8 (infrun handles the stop for p1.1 and continues stepping)
5904 #9 => vCont s:p1.1;c
5905
5906 The last vCont above would resume thread p1.2 by mistake, because
5907 the server has no idea that the event for p1.2 had not been
5908 handled yet.
5909
5910 The server side must similarly ignore resume actions for the
5911 thread that has a pending %Stopped notification (and any other
5912 threads with events pending), until GDB acks the notification
5913 with vStopped. Otherwise, e.g., the following case is
5914 mishandled:
5915
5916 #1 => g (or any other packet)
5917 #2 <= [registers]
5918 #3 <= %Stopped T05 p1.2
5919 #4 => vCont s:p1.1;c
5920 #5 <= OK
5921
5922 Above, the server must not resume thread p1.2. GDB can't know
5923 that p1.2 stopped until it acks the %Stopped notification, and
5924 since from GDB's perspective all threads should be running, it
5925 sends a "c" action.
5926
5927 Finally, special care must also be given to handling fork/vfork
5928 events. A (v)fork event actually tells us that two processes
5929 stopped -- the parent and the child. Until we follow the fork,
5930 we must not resume the child. Therefore, if we have a pending
5931 fork follow, we must not send a global wildcard resume action
5932 (vCont;c). We can still send process-wide wildcards though. */
5933
5934 /* Start by assuming a global wildcard (vCont;c) is possible. */
5935 may_global_wildcard_vcont = 1;
5936
5937 /* And assume every process is individually wildcard-able too. */
5938 ALL_NON_EXITED_INFERIORS (inf)
5939 {
5940 remote_inferior *priv = get_remote_inferior (inf);
5941
5942 priv->may_wildcard_vcont = true;
5943 }
5944
5945 /* Check for any pending events (not reported or processed yet) and
5946 disable process and global wildcard resumes appropriately. */
5947 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5948
5949 ALL_NON_EXITED_THREADS (tp)
5950 {
5951 /* If a thread of a process is not meant to be resumed, then we
5952 can't wildcard that process. */
5953 if (!tp->executing)
5954 {
5955 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5956
5957 /* And if we can't wildcard a process, we can't wildcard
5958 everything either. */
5959 may_global_wildcard_vcont = 0;
5960 continue;
5961 }
5962
5963 /* If a thread is the parent of an unfollowed fork, then we
5964 can't do a global wildcard, as that would resume the fork
5965 child. */
5966 if (is_pending_fork_parent_thread (tp))
5967 may_global_wildcard_vcont = 0;
5968 }
5969
5970 /* Now let's build the vCont packet(s). Actions must be appended
5971 from narrower to wider scopes (thread -> process -> global). If
5972 we end up with too many actions for a single packet vcont_builder
5973 flushes the current vCont packet to the remote side and starts a
5974 new one. */
5975 vcont_builder_restart (&vcont_builder);
5976
5977 /* Threads first. */
5978 ALL_NON_EXITED_THREADS (tp)
5979 {
5980 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5981
5982 if (!tp->executing || remote_thr->vcont_resumed)
5983 continue;
5984
5985 gdb_assert (!thread_is_in_step_over_chain (tp));
5986
5987 if (!remote_thr->last_resume_step
5988 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5989 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5990 {
5991 /* We'll send a wildcard resume instead. */
5992 remote_thr->vcont_resumed = 1;
5993 continue;
5994 }
5995
5996 vcont_builder_push_action (&vcont_builder, tp->ptid,
5997 remote_thr->last_resume_step,
5998 remote_thr->last_resume_sig);
5999 remote_thr->vcont_resumed = 1;
6000 }
6001
6002 /* Now check whether we can send any process-wide wildcard. This is
6003 to avoid sending a global wildcard in the case nothing is
6004 supposed to be resumed. */
6005 any_process_wildcard = 0;
6006
6007 ALL_NON_EXITED_INFERIORS (inf)
6008 {
6009 if (get_remote_inferior (inf)->may_wildcard_vcont)
6010 {
6011 any_process_wildcard = 1;
6012 break;
6013 }
6014 }
6015
6016 if (any_process_wildcard)
6017 {
6018 /* If all processes are wildcard-able, then send a single "c"
6019 action, otherwise, send an "all (-1) threads of process"
6020 continue action for each running process, if any. */
6021 if (may_global_wildcard_vcont)
6022 {
6023 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6024 0, GDB_SIGNAL_0);
6025 }
6026 else
6027 {
6028 ALL_NON_EXITED_INFERIORS (inf)
6029 {
6030 if (get_remote_inferior (inf)->may_wildcard_vcont)
6031 {
6032 vcont_builder_push_action (&vcont_builder,
6033 pid_to_ptid (inf->pid),
6034 0, GDB_SIGNAL_0);
6035 }
6036 }
6037 }
6038 }
6039
6040 vcont_builder_flush (&vcont_builder);
6041 }
6042
6043 \f
6044
6045 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6046 thread, all threads of a remote process, or all threads of all
6047 processes. */
6048
6049 static void
6050 remote_stop_ns (ptid_t ptid)
6051 {
6052 struct remote_state *rs = get_remote_state ();
6053 char *p = rs->buf;
6054 char *endp = rs->buf + get_remote_packet_size ();
6055
6056 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6057 remote_vcont_probe (rs);
6058
6059 if (!rs->supports_vCont.t)
6060 error (_("Remote server does not support stopping threads"));
6061
6062 if (ptid_equal (ptid, minus_one_ptid)
6063 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6064 p += xsnprintf (p, endp - p, "vCont;t");
6065 else
6066 {
6067 ptid_t nptid;
6068
6069 p += xsnprintf (p, endp - p, "vCont;t:");
6070
6071 if (ptid_is_pid (ptid))
6072 /* All (-1) threads of process. */
6073 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6074 else
6075 {
6076 /* Small optimization: if we already have a stop reply for
6077 this thread, no use in telling the stub we want this
6078 stopped. */
6079 if (peek_stop_reply (ptid))
6080 return;
6081
6082 nptid = ptid;
6083 }
6084
6085 write_ptid (p, endp, nptid);
6086 }
6087
6088 /* In non-stop, we get an immediate OK reply. The stop reply will
6089 come in asynchronously by notification. */
6090 putpkt (rs->buf);
6091 getpkt (&rs->buf, &rs->buf_size, 0);
6092 if (strcmp (rs->buf, "OK") != 0)
6093 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6094 }
6095
6096 /* All-stop version of target_interrupt. Sends a break or a ^C to
6097 interrupt the remote target. It is undefined which thread of which
6098 process reports the interrupt. */
6099
6100 static void
6101 remote_interrupt_as (void)
6102 {
6103 struct remote_state *rs = get_remote_state ();
6104
6105 rs->ctrlc_pending_p = 1;
6106
6107 /* If the inferior is stopped already, but the core didn't know
6108 about it yet, just ignore the request. The cached wait status
6109 will be collected in remote_wait. */
6110 if (rs->cached_wait_status)
6111 return;
6112
6113 /* Send interrupt_sequence to remote target. */
6114 send_interrupt_sequence ();
6115 }
6116
6117 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6118 the remote target. It is undefined which thread of which process
6119 reports the interrupt. Throws an error if the packet is not
6120 supported by the server. */
6121
6122 static void
6123 remote_interrupt_ns (void)
6124 {
6125 struct remote_state *rs = get_remote_state ();
6126 char *p = rs->buf;
6127 char *endp = rs->buf + get_remote_packet_size ();
6128
6129 xsnprintf (p, endp - p, "vCtrlC");
6130
6131 /* In non-stop, we get an immediate OK reply. The stop reply will
6132 come in asynchronously by notification. */
6133 putpkt (rs->buf);
6134 getpkt (&rs->buf, &rs->buf_size, 0);
6135
6136 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6137 {
6138 case PACKET_OK:
6139 break;
6140 case PACKET_UNKNOWN:
6141 error (_("No support for interrupting the remote target."));
6142 case PACKET_ERROR:
6143 error (_("Interrupting target failed: %s"), rs->buf);
6144 }
6145 }
6146
6147 /* Implement the to_stop function for the remote targets. */
6148
6149 static void
6150 remote_stop (struct target_ops *self, ptid_t ptid)
6151 {
6152 if (remote_debug)
6153 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6154
6155 if (target_is_non_stop_p ())
6156 remote_stop_ns (ptid);
6157 else
6158 {
6159 /* We don't currently have a way to transparently pause the
6160 remote target in all-stop mode. Interrupt it instead. */
6161 remote_interrupt_as ();
6162 }
6163 }
6164
6165 /* Implement the to_interrupt function for the remote targets. */
6166
6167 static void
6168 remote_interrupt (struct target_ops *self, ptid_t ptid)
6169 {
6170 struct remote_state *rs = get_remote_state ();
6171
6172 if (remote_debug)
6173 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6174
6175 if (target_is_non_stop_p ())
6176 remote_interrupt_ns ();
6177 else
6178 remote_interrupt_as ();
6179 }
6180
6181 /* Implement the to_pass_ctrlc function for the remote targets. */
6182
6183 static void
6184 remote_pass_ctrlc (struct target_ops *self)
6185 {
6186 struct remote_state *rs = get_remote_state ();
6187
6188 if (remote_debug)
6189 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6190
6191 /* If we're starting up, we're not fully synced yet. Quit
6192 immediately. */
6193 if (rs->starting_up)
6194 quit ();
6195 /* If ^C has already been sent once, offer to disconnect. */
6196 else if (rs->ctrlc_pending_p)
6197 interrupt_query ();
6198 else
6199 target_interrupt (inferior_ptid);
6200 }
6201
6202 /* Ask the user what to do when an interrupt is received. */
6203
6204 static void
6205 interrupt_query (void)
6206 {
6207 struct remote_state *rs = get_remote_state ();
6208
6209 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6210 {
6211 if (query (_("The target is not responding to interrupt requests.\n"
6212 "Stop debugging it? ")))
6213 {
6214 remote_unpush_target ();
6215 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6216 }
6217 }
6218 else
6219 {
6220 if (query (_("Interrupted while waiting for the program.\n"
6221 "Give up waiting? ")))
6222 quit ();
6223 }
6224 }
6225
6226 /* Enable/disable target terminal ownership. Most targets can use
6227 terminal groups to control terminal ownership. Remote targets are
6228 different in that explicit transfer of ownership to/from GDB/target
6229 is required. */
6230
6231 static void
6232 remote_terminal_inferior (struct target_ops *self)
6233 {
6234 /* NOTE: At this point we could also register our selves as the
6235 recipient of all input. Any characters typed could then be
6236 passed on down to the target. */
6237 }
6238
6239 static void
6240 remote_terminal_ours (struct target_ops *self)
6241 {
6242 }
6243
6244 static void
6245 remote_console_output (char *msg)
6246 {
6247 char *p;
6248
6249 for (p = msg; p[0] && p[1]; p += 2)
6250 {
6251 char tb[2];
6252 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6253
6254 tb[0] = c;
6255 tb[1] = 0;
6256 fputs_unfiltered (tb, gdb_stdtarg);
6257 }
6258 gdb_flush (gdb_stdtarg);
6259 }
6260
6261 DEF_VEC_O(cached_reg_t);
6262
6263 typedef struct stop_reply
6264 {
6265 struct notif_event base;
6266
6267 /* The identifier of the thread about this event */
6268 ptid_t ptid;
6269
6270 /* The remote state this event is associated with. When the remote
6271 connection, represented by a remote_state object, is closed,
6272 all the associated stop_reply events should be released. */
6273 struct remote_state *rs;
6274
6275 struct target_waitstatus ws;
6276
6277 /* The architecture associated with the expedited registers. */
6278 gdbarch *arch;
6279
6280 /* Expedited registers. This makes remote debugging a bit more
6281 efficient for those targets that provide critical registers as
6282 part of their normal status mechanism (as another roundtrip to
6283 fetch them is avoided). */
6284 VEC(cached_reg_t) *regcache;
6285
6286 enum target_stop_reason stop_reason;
6287
6288 CORE_ADDR watch_data_address;
6289
6290 int core;
6291 } *stop_reply_p;
6292
6293 DECLARE_QUEUE_P (stop_reply_p);
6294 DEFINE_QUEUE_P (stop_reply_p);
6295 /* The list of already fetched and acknowledged stop events. This
6296 queue is used for notification Stop, and other notifications
6297 don't need queue for their events, because the notification events
6298 of Stop can't be consumed immediately, so that events should be
6299 queued first, and be consumed by remote_wait_{ns,as} one per
6300 time. Other notifications can consume their events immediately,
6301 so queue is not needed for them. */
6302 static QUEUE (stop_reply_p) *stop_reply_queue;
6303
6304 static void
6305 stop_reply_xfree (struct stop_reply *r)
6306 {
6307 notif_event_xfree ((struct notif_event *) r);
6308 }
6309
6310 /* Return the length of the stop reply queue. */
6311
6312 static int
6313 stop_reply_queue_length (void)
6314 {
6315 return QUEUE_length (stop_reply_p, stop_reply_queue);
6316 }
6317
6318 static void
6319 remote_notif_stop_parse (struct notif_client *self, char *buf,
6320 struct notif_event *event)
6321 {
6322 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6323 }
6324
6325 static void
6326 remote_notif_stop_ack (struct notif_client *self, char *buf,
6327 struct notif_event *event)
6328 {
6329 struct stop_reply *stop_reply = (struct stop_reply *) event;
6330
6331 /* acknowledge */
6332 putpkt (self->ack_command);
6333
6334 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6335 /* We got an unknown stop reply. */
6336 error (_("Unknown stop reply"));
6337
6338 push_stop_reply (stop_reply);
6339 }
6340
6341 static int
6342 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6343 {
6344 /* We can't get pending events in remote_notif_process for
6345 notification stop, and we have to do this in remote_wait_ns
6346 instead. If we fetch all queued events from stub, remote stub
6347 may exit and we have no chance to process them back in
6348 remote_wait_ns. */
6349 mark_async_event_handler (remote_async_inferior_event_token);
6350 return 0;
6351 }
6352
6353 static void
6354 stop_reply_dtr (struct notif_event *event)
6355 {
6356 struct stop_reply *r = (struct stop_reply *) event;
6357 cached_reg_t *reg;
6358 int ix;
6359
6360 for (ix = 0;
6361 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6362 ix++)
6363 xfree (reg->data);
6364
6365 VEC_free (cached_reg_t, r->regcache);
6366 }
6367
6368 static struct notif_event *
6369 remote_notif_stop_alloc_reply (void)
6370 {
6371 /* We cast to a pointer to the "base class". */
6372 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6373
6374 r->dtr = stop_reply_dtr;
6375
6376 return r;
6377 }
6378
6379 /* A client of notification Stop. */
6380
6381 struct notif_client notif_client_stop =
6382 {
6383 "Stop",
6384 "vStopped",
6385 remote_notif_stop_parse,
6386 remote_notif_stop_ack,
6387 remote_notif_stop_can_get_pending_events,
6388 remote_notif_stop_alloc_reply,
6389 REMOTE_NOTIF_STOP,
6390 };
6391
6392 /* A parameter to pass data in and out. */
6393
6394 struct queue_iter_param
6395 {
6396 void *input;
6397 struct stop_reply *output;
6398 };
6399
6400 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6401 the pid of the process that owns the threads we want to check, or
6402 -1 if we want to check all threads. */
6403
6404 static int
6405 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6406 ptid_t thread_ptid)
6407 {
6408 if (ws->kind == TARGET_WAITKIND_FORKED
6409 || ws->kind == TARGET_WAITKIND_VFORKED)
6410 {
6411 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6412 return 1;
6413 }
6414
6415 return 0;
6416 }
6417
6418 /* Return the thread's pending status used to determine whether the
6419 thread is a fork parent stopped at a fork event. */
6420
6421 static struct target_waitstatus *
6422 thread_pending_fork_status (struct thread_info *thread)
6423 {
6424 if (thread->suspend.waitstatus_pending_p)
6425 return &thread->suspend.waitstatus;
6426 else
6427 return &thread->pending_follow;
6428 }
6429
6430 /* Determine if THREAD is a pending fork parent thread. */
6431
6432 static int
6433 is_pending_fork_parent_thread (struct thread_info *thread)
6434 {
6435 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6436 int pid = -1;
6437
6438 return is_pending_fork_parent (ws, pid, thread->ptid);
6439 }
6440
6441 /* Check whether EVENT is a fork event, and if it is, remove the
6442 fork child from the context list passed in DATA. */
6443
6444 static int
6445 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6446 QUEUE_ITER (stop_reply_p) *iter,
6447 stop_reply_p event,
6448 void *data)
6449 {
6450 struct queue_iter_param *param = (struct queue_iter_param *) data;
6451 struct threads_listing_context *context
6452 = (struct threads_listing_context *) param->input;
6453
6454 if (event->ws.kind == TARGET_WAITKIND_FORKED
6455 || event->ws.kind == TARGET_WAITKIND_VFORKED
6456 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6457 context->remove_thread (event->ws.value.related_pid);
6458
6459 return 1;
6460 }
6461
6462 /* If CONTEXT contains any fork child threads that have not been
6463 reported yet, remove them from the CONTEXT list. If such a
6464 thread exists it is because we are stopped at a fork catchpoint
6465 and have not yet called follow_fork, which will set up the
6466 host-side data structures for the new process. */
6467
6468 static void
6469 remove_new_fork_children (struct threads_listing_context *context)
6470 {
6471 struct thread_info * thread;
6472 int pid = -1;
6473 struct notif_client *notif = &notif_client_stop;
6474 struct queue_iter_param param;
6475
6476 /* For any threads stopped at a fork event, remove the corresponding
6477 fork child threads from the CONTEXT list. */
6478 ALL_NON_EXITED_THREADS (thread)
6479 {
6480 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6481
6482 if (is_pending_fork_parent (ws, pid, thread->ptid))
6483 context->remove_thread (ws->value.related_pid);
6484 }
6485
6486 /* Check for any pending fork events (not reported or processed yet)
6487 in process PID and remove those fork child threads from the
6488 CONTEXT list as well. */
6489 remote_notif_get_pending_events (notif);
6490 param.input = context;
6491 param.output = NULL;
6492 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6493 remove_child_of_pending_fork, &param);
6494 }
6495
6496 /* Check whether EVENT would prevent a global or process wildcard
6497 vCont action. */
6498
6499 static int
6500 check_pending_event_prevents_wildcard_vcont_callback
6501 (QUEUE (stop_reply_p) *q,
6502 QUEUE_ITER (stop_reply_p) *iter,
6503 stop_reply_p event,
6504 void *data)
6505 {
6506 struct inferior *inf;
6507 int *may_global_wildcard_vcont = (int *) data;
6508
6509 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6510 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6511 return 1;
6512
6513 if (event->ws.kind == TARGET_WAITKIND_FORKED
6514 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6515 *may_global_wildcard_vcont = 0;
6516
6517 inf = find_inferior_ptid (event->ptid);
6518
6519 /* This may be the first time we heard about this process.
6520 Regardless, we must not do a global wildcard resume, otherwise
6521 we'd resume this process too. */
6522 *may_global_wildcard_vcont = 0;
6523 if (inf != NULL)
6524 get_remote_inferior (inf)->may_wildcard_vcont = false;
6525
6526 return 1;
6527 }
6528
6529 /* Check whether any event pending in the vStopped queue would prevent
6530 a global or process wildcard vCont action. Clear
6531 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6532 and clear the event inferior's may_wildcard_vcont flag if we can't
6533 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6534
6535 static void
6536 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6537 {
6538 struct notif_client *notif = &notif_client_stop;
6539
6540 remote_notif_get_pending_events (notif);
6541 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6542 check_pending_event_prevents_wildcard_vcont_callback,
6543 may_global_wildcard);
6544 }
6545
6546 /* Remove stop replies in the queue if its pid is equal to the given
6547 inferior's pid. */
6548
6549 static int
6550 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6551 QUEUE_ITER (stop_reply_p) *iter,
6552 stop_reply_p event,
6553 void *data)
6554 {
6555 struct queue_iter_param *param = (struct queue_iter_param *) data;
6556 struct inferior *inf = (struct inferior *) param->input;
6557
6558 if (ptid_get_pid (event->ptid) == inf->pid)
6559 {
6560 stop_reply_xfree (event);
6561 QUEUE_remove_elem (stop_reply_p, q, iter);
6562 }
6563
6564 return 1;
6565 }
6566
6567 /* Discard all pending stop replies of inferior INF. */
6568
6569 static void
6570 discard_pending_stop_replies (struct inferior *inf)
6571 {
6572 struct queue_iter_param param;
6573 struct stop_reply *reply;
6574 struct remote_state *rs = get_remote_state ();
6575 struct remote_notif_state *rns = rs->notif_state;
6576
6577 /* This function can be notified when an inferior exists. When the
6578 target is not remote, the notification state is NULL. */
6579 if (rs->remote_desc == NULL)
6580 return;
6581
6582 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6583
6584 /* Discard the in-flight notification. */
6585 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6586 {
6587 stop_reply_xfree (reply);
6588 rns->pending_event[notif_client_stop.id] = NULL;
6589 }
6590
6591 param.input = inf;
6592 param.output = NULL;
6593 /* Discard the stop replies we have already pulled with
6594 vStopped. */
6595 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6596 remove_stop_reply_for_inferior, &param);
6597 }
6598
6599 /* If its remote state is equal to the given remote state,
6600 remove EVENT from the stop reply queue. */
6601
6602 static int
6603 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6604 QUEUE_ITER (stop_reply_p) *iter,
6605 stop_reply_p event,
6606 void *data)
6607 {
6608 struct queue_iter_param *param = (struct queue_iter_param *) data;
6609 struct remote_state *rs = (struct remote_state *) param->input;
6610
6611 if (event->rs == rs)
6612 {
6613 stop_reply_xfree (event);
6614 QUEUE_remove_elem (stop_reply_p, q, iter);
6615 }
6616
6617 return 1;
6618 }
6619
6620 /* Discard the stop replies for RS in stop_reply_queue. */
6621
6622 static void
6623 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6624 {
6625 struct queue_iter_param param;
6626
6627 param.input = rs;
6628 param.output = NULL;
6629 /* Discard the stop replies we have already pulled with
6630 vStopped. */
6631 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6632 remove_stop_reply_of_remote_state, &param);
6633 }
6634
6635 /* A parameter to pass data in and out. */
6636
6637 static int
6638 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6639 QUEUE_ITER (stop_reply_p) *iter,
6640 stop_reply_p event,
6641 void *data)
6642 {
6643 struct queue_iter_param *param = (struct queue_iter_param *) data;
6644 ptid_t *ptid = (ptid_t *) param->input;
6645
6646 if (ptid_match (event->ptid, *ptid))
6647 {
6648 param->output = event;
6649 QUEUE_remove_elem (stop_reply_p, q, iter);
6650 return 0;
6651 }
6652
6653 return 1;
6654 }
6655
6656 /* Remove the first reply in 'stop_reply_queue' which matches
6657 PTID. */
6658
6659 static struct stop_reply *
6660 remote_notif_remove_queued_reply (ptid_t ptid)
6661 {
6662 struct queue_iter_param param;
6663
6664 param.input = &ptid;
6665 param.output = NULL;
6666
6667 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6668 remote_notif_remove_once_on_match, &param);
6669 if (notif_debug)
6670 fprintf_unfiltered (gdb_stdlog,
6671 "notif: discard queued event: 'Stop' in %s\n",
6672 target_pid_to_str (ptid));
6673
6674 return param.output;
6675 }
6676
6677 /* Look for a queued stop reply belonging to PTID. If one is found,
6678 remove it from the queue, and return it. Returns NULL if none is
6679 found. If there are still queued events left to process, tell the
6680 event loop to get back to target_wait soon. */
6681
6682 static struct stop_reply *
6683 queued_stop_reply (ptid_t ptid)
6684 {
6685 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6686
6687 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6688 /* There's still at least an event left. */
6689 mark_async_event_handler (remote_async_inferior_event_token);
6690
6691 return r;
6692 }
6693
6694 /* Push a fully parsed stop reply in the stop reply queue. Since we
6695 know that we now have at least one queued event left to pass to the
6696 core side, tell the event loop to get back to target_wait soon. */
6697
6698 static void
6699 push_stop_reply (struct stop_reply *new_event)
6700 {
6701 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6702
6703 if (notif_debug)
6704 fprintf_unfiltered (gdb_stdlog,
6705 "notif: push 'Stop' %s to queue %d\n",
6706 target_pid_to_str (new_event->ptid),
6707 QUEUE_length (stop_reply_p,
6708 stop_reply_queue));
6709
6710 mark_async_event_handler (remote_async_inferior_event_token);
6711 }
6712
6713 static int
6714 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6715 QUEUE_ITER (stop_reply_p) *iter,
6716 struct stop_reply *event,
6717 void *data)
6718 {
6719 ptid_t *ptid = (ptid_t *) data;
6720
6721 return !(ptid_equal (*ptid, event->ptid)
6722 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6723 }
6724
6725 /* Returns true if we have a stop reply for PTID. */
6726
6727 static int
6728 peek_stop_reply (ptid_t ptid)
6729 {
6730 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6731 stop_reply_match_ptid_and_ws, &ptid);
6732 }
6733
6734 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6735 starting with P and ending with PEND matches PREFIX. */
6736
6737 static int
6738 strprefix (const char *p, const char *pend, const char *prefix)
6739 {
6740 for ( ; p < pend; p++, prefix++)
6741 if (*p != *prefix)
6742 return 0;
6743 return *prefix == '\0';
6744 }
6745
6746 /* Parse the stop reply in BUF. Either the function succeeds, and the
6747 result is stored in EVENT, or throws an error. */
6748
6749 static void
6750 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6751 {
6752 remote_arch_state *rsa = NULL;
6753 ULONGEST addr;
6754 const char *p;
6755 int skipregs = 0;
6756
6757 event->ptid = null_ptid;
6758 event->rs = get_remote_state ();
6759 event->ws.kind = TARGET_WAITKIND_IGNORE;
6760 event->ws.value.integer = 0;
6761 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6762 event->regcache = NULL;
6763 event->core = -1;
6764
6765 switch (buf[0])
6766 {
6767 case 'T': /* Status with PC, SP, FP, ... */
6768 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6769 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6770 ss = signal number
6771 n... = register number
6772 r... = register contents
6773 */
6774
6775 p = &buf[3]; /* after Txx */
6776 while (*p)
6777 {
6778 const char *p1;
6779 int fieldsize;
6780
6781 p1 = strchr (p, ':');
6782 if (p1 == NULL)
6783 error (_("Malformed packet(a) (missing colon): %s\n\
6784 Packet: '%s'\n"),
6785 p, buf);
6786 if (p == p1)
6787 error (_("Malformed packet(a) (missing register number): %s\n\
6788 Packet: '%s'\n"),
6789 p, buf);
6790
6791 /* Some "registers" are actually extended stop information.
6792 Note if you're adding a new entry here: GDB 7.9 and
6793 earlier assume that all register "numbers" that start
6794 with an hex digit are real register numbers. Make sure
6795 the server only sends such a packet if it knows the
6796 client understands it. */
6797
6798 if (strprefix (p, p1, "thread"))
6799 event->ptid = read_ptid (++p1, &p);
6800 else if (strprefix (p, p1, "syscall_entry"))
6801 {
6802 ULONGEST sysno;
6803
6804 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6805 p = unpack_varlen_hex (++p1, &sysno);
6806 event->ws.value.syscall_number = (int) sysno;
6807 }
6808 else if (strprefix (p, p1, "syscall_return"))
6809 {
6810 ULONGEST sysno;
6811
6812 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6813 p = unpack_varlen_hex (++p1, &sysno);
6814 event->ws.value.syscall_number = (int) sysno;
6815 }
6816 else if (strprefix (p, p1, "watch")
6817 || strprefix (p, p1, "rwatch")
6818 || strprefix (p, p1, "awatch"))
6819 {
6820 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6821 p = unpack_varlen_hex (++p1, &addr);
6822 event->watch_data_address = (CORE_ADDR) addr;
6823 }
6824 else if (strprefix (p, p1, "swbreak"))
6825 {
6826 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6827
6828 /* Make sure the stub doesn't forget to indicate support
6829 with qSupported. */
6830 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6831 error (_("Unexpected swbreak stop reason"));
6832
6833 /* The value part is documented as "must be empty",
6834 though we ignore it, in case we ever decide to make
6835 use of it in a backward compatible way. */
6836 p = strchrnul (p1 + 1, ';');
6837 }
6838 else if (strprefix (p, p1, "hwbreak"))
6839 {
6840 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6841
6842 /* Make sure the stub doesn't forget to indicate support
6843 with qSupported. */
6844 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6845 error (_("Unexpected hwbreak stop reason"));
6846
6847 /* See above. */
6848 p = strchrnul (p1 + 1, ';');
6849 }
6850 else if (strprefix (p, p1, "library"))
6851 {
6852 event->ws.kind = TARGET_WAITKIND_LOADED;
6853 p = strchrnul (p1 + 1, ';');
6854 }
6855 else if (strprefix (p, p1, "replaylog"))
6856 {
6857 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6858 /* p1 will indicate "begin" or "end", but it makes
6859 no difference for now, so ignore it. */
6860 p = strchrnul (p1 + 1, ';');
6861 }
6862 else if (strprefix (p, p1, "core"))
6863 {
6864 ULONGEST c;
6865
6866 p = unpack_varlen_hex (++p1, &c);
6867 event->core = c;
6868 }
6869 else if (strprefix (p, p1, "fork"))
6870 {
6871 event->ws.value.related_pid = read_ptid (++p1, &p);
6872 event->ws.kind = TARGET_WAITKIND_FORKED;
6873 }
6874 else if (strprefix (p, p1, "vfork"))
6875 {
6876 event->ws.value.related_pid = read_ptid (++p1, &p);
6877 event->ws.kind = TARGET_WAITKIND_VFORKED;
6878 }
6879 else if (strprefix (p, p1, "vforkdone"))
6880 {
6881 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6882 p = strchrnul (p1 + 1, ';');
6883 }
6884 else if (strprefix (p, p1, "exec"))
6885 {
6886 ULONGEST ignored;
6887 char pathname[PATH_MAX];
6888 int pathlen;
6889
6890 /* Determine the length of the execd pathname. */
6891 p = unpack_varlen_hex (++p1, &ignored);
6892 pathlen = (p - p1) / 2;
6893
6894 /* Save the pathname for event reporting and for
6895 the next run command. */
6896 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6897 pathname[pathlen] = '\0';
6898
6899 /* This is freed during event handling. */
6900 event->ws.value.execd_pathname = xstrdup (pathname);
6901 event->ws.kind = TARGET_WAITKIND_EXECD;
6902
6903 /* Skip the registers included in this packet, since
6904 they may be for an architecture different from the
6905 one used by the original program. */
6906 skipregs = 1;
6907 }
6908 else if (strprefix (p, p1, "create"))
6909 {
6910 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6911 p = strchrnul (p1 + 1, ';');
6912 }
6913 else
6914 {
6915 ULONGEST pnum;
6916 const char *p_temp;
6917
6918 if (skipregs)
6919 {
6920 p = strchrnul (p1 + 1, ';');
6921 p++;
6922 continue;
6923 }
6924
6925 /* Maybe a real ``P'' register number. */
6926 p_temp = unpack_varlen_hex (p, &pnum);
6927 /* If the first invalid character is the colon, we got a
6928 register number. Otherwise, it's an unknown stop
6929 reason. */
6930 if (p_temp == p1)
6931 {
6932 /* If we haven't parsed the event's thread yet, find
6933 it now, in order to find the architecture of the
6934 reported expedited registers. */
6935 if (event->ptid == null_ptid)
6936 {
6937 const char *thr = strstr (p1 + 1, ";thread:");
6938 if (thr != NULL)
6939 event->ptid = read_ptid (thr + strlen (";thread:"),
6940 NULL);
6941 else
6942 event->ptid = magic_null_ptid;
6943 }
6944
6945 if (rsa == NULL)
6946 {
6947 inferior *inf = (event->ptid == null_ptid
6948 ? NULL
6949 : find_inferior_ptid (event->ptid));
6950 /* If this is the first time we learn anything
6951 about this process, skip the registers
6952 included in this packet, since we don't yet
6953 know which architecture to use to parse them.
6954 We'll determine the architecture later when
6955 we process the stop reply and retrieve the
6956 target description, via
6957 remote_notice_new_inferior ->
6958 post_create_inferior. */
6959 if (inf == NULL)
6960 {
6961 p = strchrnul (p1 + 1, ';');
6962 p++;
6963 continue;
6964 }
6965
6966 event->arch = inf->gdbarch;
6967 rsa = get_remote_arch_state (event->arch);
6968 }
6969
6970 packet_reg *reg
6971 = packet_reg_from_pnum (event->arch, rsa, pnum);
6972 cached_reg_t cached_reg;
6973
6974 if (reg == NULL)
6975 error (_("Remote sent bad register number %s: %s\n\
6976 Packet: '%s'\n"),
6977 hex_string (pnum), p, buf);
6978
6979 cached_reg.num = reg->regnum;
6980 cached_reg.data = (gdb_byte *)
6981 xmalloc (register_size (event->arch, reg->regnum));
6982
6983 p = p1 + 1;
6984 fieldsize = hex2bin (p, cached_reg.data,
6985 register_size (event->arch, reg->regnum));
6986 p += 2 * fieldsize;
6987 if (fieldsize < register_size (event->arch, reg->regnum))
6988 warning (_("Remote reply is too short: %s"), buf);
6989
6990 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6991 }
6992 else
6993 {
6994 /* Not a number. Silently skip unknown optional
6995 info. */
6996 p = strchrnul (p1 + 1, ';');
6997 }
6998 }
6999
7000 if (*p != ';')
7001 error (_("Remote register badly formatted: %s\nhere: %s"),
7002 buf, p);
7003 ++p;
7004 }
7005
7006 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7007 break;
7008
7009 /* fall through */
7010 case 'S': /* Old style status, just signal only. */
7011 {
7012 int sig;
7013
7014 event->ws.kind = TARGET_WAITKIND_STOPPED;
7015 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7016 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7017 event->ws.value.sig = (enum gdb_signal) sig;
7018 else
7019 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7020 }
7021 break;
7022 case 'w': /* Thread exited. */
7023 {
7024 const char *p;
7025 ULONGEST value;
7026
7027 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7028 p = unpack_varlen_hex (&buf[1], &value);
7029 event->ws.value.integer = value;
7030 if (*p != ';')
7031 error (_("stop reply packet badly formatted: %s"), buf);
7032 event->ptid = read_ptid (++p, NULL);
7033 break;
7034 }
7035 case 'W': /* Target exited. */
7036 case 'X':
7037 {
7038 const char *p;
7039 int pid;
7040 ULONGEST value;
7041
7042 /* GDB used to accept only 2 hex chars here. Stubs should
7043 only send more if they detect GDB supports multi-process
7044 support. */
7045 p = unpack_varlen_hex (&buf[1], &value);
7046
7047 if (buf[0] == 'W')
7048 {
7049 /* The remote process exited. */
7050 event->ws.kind = TARGET_WAITKIND_EXITED;
7051 event->ws.value.integer = value;
7052 }
7053 else
7054 {
7055 /* The remote process exited with a signal. */
7056 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7057 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7058 event->ws.value.sig = (enum gdb_signal) value;
7059 else
7060 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7061 }
7062
7063 /* If no process is specified, assume inferior_ptid. */
7064 pid = ptid_get_pid (inferior_ptid);
7065 if (*p == '\0')
7066 ;
7067 else if (*p == ';')
7068 {
7069 p++;
7070
7071 if (*p == '\0')
7072 ;
7073 else if (startswith (p, "process:"))
7074 {
7075 ULONGEST upid;
7076
7077 p += sizeof ("process:") - 1;
7078 unpack_varlen_hex (p, &upid);
7079 pid = upid;
7080 }
7081 else
7082 error (_("unknown stop reply packet: %s"), buf);
7083 }
7084 else
7085 error (_("unknown stop reply packet: %s"), buf);
7086 event->ptid = pid_to_ptid (pid);
7087 }
7088 break;
7089 case 'N':
7090 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7091 event->ptid = minus_one_ptid;
7092 break;
7093 }
7094
7095 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7096 error (_("No process or thread specified in stop reply: %s"), buf);
7097 }
7098
7099 /* When the stub wants to tell GDB about a new notification reply, it
7100 sends a notification (%Stop, for example). Those can come it at
7101 any time, hence, we have to make sure that any pending
7102 putpkt/getpkt sequence we're making is finished, before querying
7103 the stub for more events with the corresponding ack command
7104 (vStopped, for example). E.g., if we started a vStopped sequence
7105 immediately upon receiving the notification, something like this
7106 could happen:
7107
7108 1.1) --> Hg 1
7109 1.2) <-- OK
7110 1.3) --> g
7111 1.4) <-- %Stop
7112 1.5) --> vStopped
7113 1.6) <-- (registers reply to step #1.3)
7114
7115 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7116 query.
7117
7118 To solve this, whenever we parse a %Stop notification successfully,
7119 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7120 doing whatever we were doing:
7121
7122 2.1) --> Hg 1
7123 2.2) <-- OK
7124 2.3) --> g
7125 2.4) <-- %Stop
7126 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7127 2.5) <-- (registers reply to step #2.3)
7128
7129 Eventualy after step #2.5, we return to the event loop, which
7130 notices there's an event on the
7131 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7132 associated callback --- the function below. At this point, we're
7133 always safe to start a vStopped sequence. :
7134
7135 2.6) --> vStopped
7136 2.7) <-- T05 thread:2
7137 2.8) --> vStopped
7138 2.9) --> OK
7139 */
7140
7141 void
7142 remote_notif_get_pending_events (struct notif_client *nc)
7143 {
7144 struct remote_state *rs = get_remote_state ();
7145
7146 if (rs->notif_state->pending_event[nc->id] != NULL)
7147 {
7148 if (notif_debug)
7149 fprintf_unfiltered (gdb_stdlog,
7150 "notif: process: '%s' ack pending event\n",
7151 nc->name);
7152
7153 /* acknowledge */
7154 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7155 rs->notif_state->pending_event[nc->id] = NULL;
7156
7157 while (1)
7158 {
7159 getpkt (&rs->buf, &rs->buf_size, 0);
7160 if (strcmp (rs->buf, "OK") == 0)
7161 break;
7162 else
7163 remote_notif_ack (nc, rs->buf);
7164 }
7165 }
7166 else
7167 {
7168 if (notif_debug)
7169 fprintf_unfiltered (gdb_stdlog,
7170 "notif: process: '%s' no pending reply\n",
7171 nc->name);
7172 }
7173 }
7174
7175 /* Called when it is decided that STOP_REPLY holds the info of the
7176 event that is to be returned to the core. This function always
7177 destroys STOP_REPLY. */
7178
7179 static ptid_t
7180 process_stop_reply (struct stop_reply *stop_reply,
7181 struct target_waitstatus *status)
7182 {
7183 ptid_t ptid;
7184
7185 *status = stop_reply->ws;
7186 ptid = stop_reply->ptid;
7187
7188 /* If no thread/process was reported by the stub, assume the current
7189 inferior. */
7190 if (ptid_equal (ptid, null_ptid))
7191 ptid = inferior_ptid;
7192
7193 if (status->kind != TARGET_WAITKIND_EXITED
7194 && status->kind != TARGET_WAITKIND_SIGNALLED
7195 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7196 {
7197 /* Expedited registers. */
7198 if (stop_reply->regcache)
7199 {
7200 struct regcache *regcache
7201 = get_thread_arch_regcache (ptid, stop_reply->arch);
7202 cached_reg_t *reg;
7203 int ix;
7204
7205 for (ix = 0;
7206 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7207 ix++)
7208 {
7209 regcache_raw_supply (regcache, reg->num, reg->data);
7210 xfree (reg->data);
7211 }
7212
7213 VEC_free (cached_reg_t, stop_reply->regcache);
7214 }
7215
7216 remote_notice_new_inferior (ptid, 0);
7217 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7218 remote_thr->core = stop_reply->core;
7219 remote_thr->stop_reason = stop_reply->stop_reason;
7220 remote_thr->watch_data_address = stop_reply->watch_data_address;
7221 remote_thr->vcont_resumed = 0;
7222 }
7223
7224 stop_reply_xfree (stop_reply);
7225 return ptid;
7226 }
7227
7228 /* The non-stop mode version of target_wait. */
7229
7230 static ptid_t
7231 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7232 {
7233 struct remote_state *rs = get_remote_state ();
7234 struct stop_reply *stop_reply;
7235 int ret;
7236 int is_notif = 0;
7237
7238 /* If in non-stop mode, get out of getpkt even if a
7239 notification is received. */
7240
7241 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7242 0 /* forever */, &is_notif);
7243 while (1)
7244 {
7245 if (ret != -1 && !is_notif)
7246 switch (rs->buf[0])
7247 {
7248 case 'E': /* Error of some sort. */
7249 /* We're out of sync with the target now. Did it continue
7250 or not? We can't tell which thread it was in non-stop,
7251 so just ignore this. */
7252 warning (_("Remote failure reply: %s"), rs->buf);
7253 break;
7254 case 'O': /* Console output. */
7255 remote_console_output (rs->buf + 1);
7256 break;
7257 default:
7258 warning (_("Invalid remote reply: %s"), rs->buf);
7259 break;
7260 }
7261
7262 /* Acknowledge a pending stop reply that may have arrived in the
7263 mean time. */
7264 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7265 remote_notif_get_pending_events (&notif_client_stop);
7266
7267 /* If indeed we noticed a stop reply, we're done. */
7268 stop_reply = queued_stop_reply (ptid);
7269 if (stop_reply != NULL)
7270 return process_stop_reply (stop_reply, status);
7271
7272 /* Still no event. If we're just polling for an event, then
7273 return to the event loop. */
7274 if (options & TARGET_WNOHANG)
7275 {
7276 status->kind = TARGET_WAITKIND_IGNORE;
7277 return minus_one_ptid;
7278 }
7279
7280 /* Otherwise do a blocking wait. */
7281 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7282 1 /* forever */, &is_notif);
7283 }
7284 }
7285
7286 /* Wait until the remote machine stops, then return, storing status in
7287 STATUS just as `wait' would. */
7288
7289 static ptid_t
7290 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7291 {
7292 struct remote_state *rs = get_remote_state ();
7293 ptid_t event_ptid = null_ptid;
7294 char *buf;
7295 struct stop_reply *stop_reply;
7296
7297 again:
7298
7299 status->kind = TARGET_WAITKIND_IGNORE;
7300 status->value.integer = 0;
7301
7302 stop_reply = queued_stop_reply (ptid);
7303 if (stop_reply != NULL)
7304 return process_stop_reply (stop_reply, status);
7305
7306 if (rs->cached_wait_status)
7307 /* Use the cached wait status, but only once. */
7308 rs->cached_wait_status = 0;
7309 else
7310 {
7311 int ret;
7312 int is_notif;
7313 int forever = ((options & TARGET_WNOHANG) == 0
7314 && wait_forever_enabled_p);
7315
7316 if (!rs->waiting_for_stop_reply)
7317 {
7318 status->kind = TARGET_WAITKIND_NO_RESUMED;
7319 return minus_one_ptid;
7320 }
7321
7322 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7323 _never_ wait for ever -> test on target_is_async_p().
7324 However, before we do that we need to ensure that the caller
7325 knows how to take the target into/out of async mode. */
7326 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7327 forever, &is_notif);
7328
7329 /* GDB gets a notification. Return to core as this event is
7330 not interesting. */
7331 if (ret != -1 && is_notif)
7332 return minus_one_ptid;
7333
7334 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7335 return minus_one_ptid;
7336 }
7337
7338 buf = rs->buf;
7339
7340 /* Assume that the target has acknowledged Ctrl-C unless we receive
7341 an 'F' or 'O' packet. */
7342 if (buf[0] != 'F' && buf[0] != 'O')
7343 rs->ctrlc_pending_p = 0;
7344
7345 switch (buf[0])
7346 {
7347 case 'E': /* Error of some sort. */
7348 /* We're out of sync with the target now. Did it continue or
7349 not? Not is more likely, so report a stop. */
7350 rs->waiting_for_stop_reply = 0;
7351
7352 warning (_("Remote failure reply: %s"), buf);
7353 status->kind = TARGET_WAITKIND_STOPPED;
7354 status->value.sig = GDB_SIGNAL_0;
7355 break;
7356 case 'F': /* File-I/O request. */
7357 /* GDB may access the inferior memory while handling the File-I/O
7358 request, but we don't want GDB accessing memory while waiting
7359 for a stop reply. See the comments in putpkt_binary. Set
7360 waiting_for_stop_reply to 0 temporarily. */
7361 rs->waiting_for_stop_reply = 0;
7362 remote_fileio_request (buf, rs->ctrlc_pending_p);
7363 rs->ctrlc_pending_p = 0;
7364 /* GDB handled the File-I/O request, and the target is running
7365 again. Keep waiting for events. */
7366 rs->waiting_for_stop_reply = 1;
7367 break;
7368 case 'N': case 'T': case 'S': case 'X': case 'W':
7369 {
7370 struct stop_reply *stop_reply;
7371
7372 /* There is a stop reply to handle. */
7373 rs->waiting_for_stop_reply = 0;
7374
7375 stop_reply
7376 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7377 rs->buf);
7378
7379 event_ptid = process_stop_reply (stop_reply, status);
7380 break;
7381 }
7382 case 'O': /* Console output. */
7383 remote_console_output (buf + 1);
7384 break;
7385 case '\0':
7386 if (rs->last_sent_signal != GDB_SIGNAL_0)
7387 {
7388 /* Zero length reply means that we tried 'S' or 'C' and the
7389 remote system doesn't support it. */
7390 target_terminal::ours_for_output ();
7391 printf_filtered
7392 ("Can't send signals to this remote system. %s not sent.\n",
7393 gdb_signal_to_name (rs->last_sent_signal));
7394 rs->last_sent_signal = GDB_SIGNAL_0;
7395 target_terminal::inferior ();
7396
7397 strcpy (buf, rs->last_sent_step ? "s" : "c");
7398 putpkt (buf);
7399 break;
7400 }
7401 /* else fallthrough */
7402 default:
7403 warning (_("Invalid remote reply: %s"), buf);
7404 break;
7405 }
7406
7407 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7408 return minus_one_ptid;
7409 else if (status->kind == TARGET_WAITKIND_IGNORE)
7410 {
7411 /* Nothing interesting happened. If we're doing a non-blocking
7412 poll, we're done. Otherwise, go back to waiting. */
7413 if (options & TARGET_WNOHANG)
7414 return minus_one_ptid;
7415 else
7416 goto again;
7417 }
7418 else if (status->kind != TARGET_WAITKIND_EXITED
7419 && status->kind != TARGET_WAITKIND_SIGNALLED)
7420 {
7421 if (!ptid_equal (event_ptid, null_ptid))
7422 record_currthread (rs, event_ptid);
7423 else
7424 event_ptid = inferior_ptid;
7425 }
7426 else
7427 /* A process exit. Invalidate our notion of current thread. */
7428 record_currthread (rs, minus_one_ptid);
7429
7430 return event_ptid;
7431 }
7432
7433 /* Wait until the remote machine stops, then return, storing status in
7434 STATUS just as `wait' would. */
7435
7436 static ptid_t
7437 remote_wait (struct target_ops *ops,
7438 ptid_t ptid, struct target_waitstatus *status, int options)
7439 {
7440 ptid_t event_ptid;
7441
7442 if (target_is_non_stop_p ())
7443 event_ptid = remote_wait_ns (ptid, status, options);
7444 else
7445 event_ptid = remote_wait_as (ptid, status, options);
7446
7447 if (target_is_async_p ())
7448 {
7449 /* If there are are events left in the queue tell the event loop
7450 to return here. */
7451 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7452 mark_async_event_handler (remote_async_inferior_event_token);
7453 }
7454
7455 return event_ptid;
7456 }
7457
7458 /* Fetch a single register using a 'p' packet. */
7459
7460 static int
7461 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7462 {
7463 struct gdbarch *gdbarch = regcache->arch ();
7464 struct remote_state *rs = get_remote_state ();
7465 char *buf, *p;
7466 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7467 int i;
7468
7469 if (packet_support (PACKET_p) == PACKET_DISABLE)
7470 return 0;
7471
7472 if (reg->pnum == -1)
7473 return 0;
7474
7475 p = rs->buf;
7476 *p++ = 'p';
7477 p += hexnumstr (p, reg->pnum);
7478 *p++ = '\0';
7479 putpkt (rs->buf);
7480 getpkt (&rs->buf, &rs->buf_size, 0);
7481
7482 buf = rs->buf;
7483
7484 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7485 {
7486 case PACKET_OK:
7487 break;
7488 case PACKET_UNKNOWN:
7489 return 0;
7490 case PACKET_ERROR:
7491 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7492 gdbarch_register_name (regcache->arch (),
7493 reg->regnum),
7494 buf);
7495 }
7496
7497 /* If this register is unfetchable, tell the regcache. */
7498 if (buf[0] == 'x')
7499 {
7500 regcache_raw_supply (regcache, reg->regnum, NULL);
7501 return 1;
7502 }
7503
7504 /* Otherwise, parse and supply the value. */
7505 p = buf;
7506 i = 0;
7507 while (p[0] != 0)
7508 {
7509 if (p[1] == 0)
7510 error (_("fetch_register_using_p: early buf termination"));
7511
7512 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7513 p += 2;
7514 }
7515 regcache_raw_supply (regcache, reg->regnum, regp);
7516 return 1;
7517 }
7518
7519 /* Fetch the registers included in the target's 'g' packet. */
7520
7521 static int
7522 send_g_packet (void)
7523 {
7524 struct remote_state *rs = get_remote_state ();
7525 int buf_len;
7526
7527 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7528 remote_send (&rs->buf, &rs->buf_size);
7529
7530 /* We can get out of synch in various cases. If the first character
7531 in the buffer is not a hex character, assume that has happened
7532 and try to fetch another packet to read. */
7533 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7534 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7535 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7536 && rs->buf[0] != 'x') /* New: unavailable register value. */
7537 {
7538 if (remote_debug)
7539 fprintf_unfiltered (gdb_stdlog,
7540 "Bad register packet; fetching a new packet\n");
7541 getpkt (&rs->buf, &rs->buf_size, 0);
7542 }
7543
7544 buf_len = strlen (rs->buf);
7545
7546 /* Sanity check the received packet. */
7547 if (buf_len % 2 != 0)
7548 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7549
7550 return buf_len / 2;
7551 }
7552
7553 static void
7554 process_g_packet (struct regcache *regcache)
7555 {
7556 struct gdbarch *gdbarch = regcache->arch ();
7557 struct remote_state *rs = get_remote_state ();
7558 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7559 int i, buf_len;
7560 char *p;
7561 char *regs;
7562
7563 buf_len = strlen (rs->buf);
7564
7565 /* Further sanity checks, with knowledge of the architecture. */
7566 if (buf_len > 2 * rsa->sizeof_g_packet)
7567 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7568 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7569
7570 /* Save the size of the packet sent to us by the target. It is used
7571 as a heuristic when determining the max size of packets that the
7572 target can safely receive. */
7573 if (rsa->actual_register_packet_size == 0)
7574 rsa->actual_register_packet_size = buf_len;
7575
7576 /* If this is smaller than we guessed the 'g' packet would be,
7577 update our records. A 'g' reply that doesn't include a register's
7578 value implies either that the register is not available, or that
7579 the 'p' packet must be used. */
7580 if (buf_len < 2 * rsa->sizeof_g_packet)
7581 {
7582 long sizeof_g_packet = buf_len / 2;
7583
7584 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7585 {
7586 long offset = rsa->regs[i].offset;
7587 long reg_size = register_size (gdbarch, i);
7588
7589 if (rsa->regs[i].pnum == -1)
7590 continue;
7591
7592 if (offset >= sizeof_g_packet)
7593 rsa->regs[i].in_g_packet = 0;
7594 else if (offset + reg_size > sizeof_g_packet)
7595 error (_("Truncated register %d in remote 'g' packet"), i);
7596 else
7597 rsa->regs[i].in_g_packet = 1;
7598 }
7599
7600 /* Looks valid enough, we can assume this is the correct length
7601 for a 'g' packet. It's important not to adjust
7602 rsa->sizeof_g_packet if we have truncated registers otherwise
7603 this "if" won't be run the next time the method is called
7604 with a packet of the same size and one of the internal errors
7605 below will trigger instead. */
7606 rsa->sizeof_g_packet = sizeof_g_packet;
7607 }
7608
7609 regs = (char *) alloca (rsa->sizeof_g_packet);
7610
7611 /* Unimplemented registers read as all bits zero. */
7612 memset (regs, 0, rsa->sizeof_g_packet);
7613
7614 /* Reply describes registers byte by byte, each byte encoded as two
7615 hex characters. Suck them all up, then supply them to the
7616 register cacheing/storage mechanism. */
7617
7618 p = rs->buf;
7619 for (i = 0; i < rsa->sizeof_g_packet; i++)
7620 {
7621 if (p[0] == 0 || p[1] == 0)
7622 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7623 internal_error (__FILE__, __LINE__,
7624 _("unexpected end of 'g' packet reply"));
7625
7626 if (p[0] == 'x' && p[1] == 'x')
7627 regs[i] = 0; /* 'x' */
7628 else
7629 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7630 p += 2;
7631 }
7632
7633 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7634 {
7635 struct packet_reg *r = &rsa->regs[i];
7636 long reg_size = register_size (gdbarch, i);
7637
7638 if (r->in_g_packet)
7639 {
7640 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7641 /* This shouldn't happen - we adjusted in_g_packet above. */
7642 internal_error (__FILE__, __LINE__,
7643 _("unexpected end of 'g' packet reply"));
7644 else if (rs->buf[r->offset * 2] == 'x')
7645 {
7646 gdb_assert (r->offset * 2 < strlen (rs->buf));
7647 /* The register isn't available, mark it as such (at
7648 the same time setting the value to zero). */
7649 regcache_raw_supply (regcache, r->regnum, NULL);
7650 }
7651 else
7652 regcache_raw_supply (regcache, r->regnum,
7653 regs + r->offset);
7654 }
7655 }
7656 }
7657
7658 static void
7659 fetch_registers_using_g (struct regcache *regcache)
7660 {
7661 send_g_packet ();
7662 process_g_packet (regcache);
7663 }
7664
7665 /* Make the remote selected traceframe match GDB's selected
7666 traceframe. */
7667
7668 static void
7669 set_remote_traceframe (void)
7670 {
7671 int newnum;
7672 struct remote_state *rs = get_remote_state ();
7673
7674 if (rs->remote_traceframe_number == get_traceframe_number ())
7675 return;
7676
7677 /* Avoid recursion, remote_trace_find calls us again. */
7678 rs->remote_traceframe_number = get_traceframe_number ();
7679
7680 newnum = target_trace_find (tfind_number,
7681 get_traceframe_number (), 0, 0, NULL);
7682
7683 /* Should not happen. If it does, all bets are off. */
7684 if (newnum != get_traceframe_number ())
7685 warning (_("could not set remote traceframe"));
7686 }
7687
7688 static void
7689 remote_fetch_registers (struct target_ops *ops,
7690 struct regcache *regcache, int regnum)
7691 {
7692 struct gdbarch *gdbarch = regcache->arch ();
7693 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7694 int i;
7695
7696 set_remote_traceframe ();
7697 set_general_thread (regcache_get_ptid (regcache));
7698
7699 if (regnum >= 0)
7700 {
7701 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7702
7703 gdb_assert (reg != NULL);
7704
7705 /* If this register might be in the 'g' packet, try that first -
7706 we are likely to read more than one register. If this is the
7707 first 'g' packet, we might be overly optimistic about its
7708 contents, so fall back to 'p'. */
7709 if (reg->in_g_packet)
7710 {
7711 fetch_registers_using_g (regcache);
7712 if (reg->in_g_packet)
7713 return;
7714 }
7715
7716 if (fetch_register_using_p (regcache, reg))
7717 return;
7718
7719 /* This register is not available. */
7720 regcache_raw_supply (regcache, reg->regnum, NULL);
7721
7722 return;
7723 }
7724
7725 fetch_registers_using_g (regcache);
7726
7727 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7728 if (!rsa->regs[i].in_g_packet)
7729 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7730 {
7731 /* This register is not available. */
7732 regcache_raw_supply (regcache, i, NULL);
7733 }
7734 }
7735
7736 /* Prepare to store registers. Since we may send them all (using a
7737 'G' request), we have to read out the ones we don't want to change
7738 first. */
7739
7740 static void
7741 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7742 {
7743 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7744 int i;
7745
7746 /* Make sure the entire registers array is valid. */
7747 switch (packet_support (PACKET_P))
7748 {
7749 case PACKET_DISABLE:
7750 case PACKET_SUPPORT_UNKNOWN:
7751 /* Make sure all the necessary registers are cached. */
7752 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7753 if (rsa->regs[i].in_g_packet)
7754 regcache_raw_update (regcache, rsa->regs[i].regnum);
7755 break;
7756 case PACKET_ENABLE:
7757 break;
7758 }
7759 }
7760
7761 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7762 packet was not recognized. */
7763
7764 static int
7765 store_register_using_P (const struct regcache *regcache,
7766 struct packet_reg *reg)
7767 {
7768 struct gdbarch *gdbarch = regcache->arch ();
7769 struct remote_state *rs = get_remote_state ();
7770 /* Try storing a single register. */
7771 char *buf = rs->buf;
7772 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7773 char *p;
7774
7775 if (packet_support (PACKET_P) == PACKET_DISABLE)
7776 return 0;
7777
7778 if (reg->pnum == -1)
7779 return 0;
7780
7781 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7782 p = buf + strlen (buf);
7783 regcache_raw_collect (regcache, reg->regnum, regp);
7784 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7785 putpkt (rs->buf);
7786 getpkt (&rs->buf, &rs->buf_size, 0);
7787
7788 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7789 {
7790 case PACKET_OK:
7791 return 1;
7792 case PACKET_ERROR:
7793 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7794 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7795 case PACKET_UNKNOWN:
7796 return 0;
7797 default:
7798 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7799 }
7800 }
7801
7802 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7803 contents of the register cache buffer. FIXME: ignores errors. */
7804
7805 static void
7806 store_registers_using_G (const struct regcache *regcache)
7807 {
7808 struct remote_state *rs = get_remote_state ();
7809 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7810 gdb_byte *regs;
7811 char *p;
7812
7813 /* Extract all the registers in the regcache copying them into a
7814 local buffer. */
7815 {
7816 int i;
7817
7818 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7819 memset (regs, 0, rsa->sizeof_g_packet);
7820 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7821 {
7822 struct packet_reg *r = &rsa->regs[i];
7823
7824 if (r->in_g_packet)
7825 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7826 }
7827 }
7828
7829 /* Command describes registers byte by byte,
7830 each byte encoded as two hex characters. */
7831 p = rs->buf;
7832 *p++ = 'G';
7833 bin2hex (regs, p, rsa->sizeof_g_packet);
7834 putpkt (rs->buf);
7835 getpkt (&rs->buf, &rs->buf_size, 0);
7836 if (packet_check_result (rs->buf) == PACKET_ERROR)
7837 error (_("Could not write registers; remote failure reply '%s'"),
7838 rs->buf);
7839 }
7840
7841 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7842 of the register cache buffer. FIXME: ignores errors. */
7843
7844 static void
7845 remote_store_registers (struct target_ops *ops,
7846 struct regcache *regcache, int regnum)
7847 {
7848 struct gdbarch *gdbarch = regcache->arch ();
7849 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7850 int i;
7851
7852 set_remote_traceframe ();
7853 set_general_thread (regcache_get_ptid (regcache));
7854
7855 if (regnum >= 0)
7856 {
7857 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7858
7859 gdb_assert (reg != NULL);
7860
7861 /* Always prefer to store registers using the 'P' packet if
7862 possible; we often change only a small number of registers.
7863 Sometimes we change a larger number; we'd need help from a
7864 higher layer to know to use 'G'. */
7865 if (store_register_using_P (regcache, reg))
7866 return;
7867
7868 /* For now, don't complain if we have no way to write the
7869 register. GDB loses track of unavailable registers too
7870 easily. Some day, this may be an error. We don't have
7871 any way to read the register, either... */
7872 if (!reg->in_g_packet)
7873 return;
7874
7875 store_registers_using_G (regcache);
7876 return;
7877 }
7878
7879 store_registers_using_G (regcache);
7880
7881 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7882 if (!rsa->regs[i].in_g_packet)
7883 if (!store_register_using_P (regcache, &rsa->regs[i]))
7884 /* See above for why we do not issue an error here. */
7885 continue;
7886 }
7887 \f
7888
7889 /* Return the number of hex digits in num. */
7890
7891 static int
7892 hexnumlen (ULONGEST num)
7893 {
7894 int i;
7895
7896 for (i = 0; num != 0; i++)
7897 num >>= 4;
7898
7899 return std::max (i, 1);
7900 }
7901
7902 /* Set BUF to the minimum number of hex digits representing NUM. */
7903
7904 static int
7905 hexnumstr (char *buf, ULONGEST num)
7906 {
7907 int len = hexnumlen (num);
7908
7909 return hexnumnstr (buf, num, len);
7910 }
7911
7912
7913 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7914
7915 static int
7916 hexnumnstr (char *buf, ULONGEST num, int width)
7917 {
7918 int i;
7919
7920 buf[width] = '\0';
7921
7922 for (i = width - 1; i >= 0; i--)
7923 {
7924 buf[i] = "0123456789abcdef"[(num & 0xf)];
7925 num >>= 4;
7926 }
7927
7928 return width;
7929 }
7930
7931 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7932
7933 static CORE_ADDR
7934 remote_address_masked (CORE_ADDR addr)
7935 {
7936 unsigned int address_size = remote_address_size;
7937
7938 /* If "remoteaddresssize" was not set, default to target address size. */
7939 if (!address_size)
7940 address_size = gdbarch_addr_bit (target_gdbarch ());
7941
7942 if (address_size > 0
7943 && address_size < (sizeof (ULONGEST) * 8))
7944 {
7945 /* Only create a mask when that mask can safely be constructed
7946 in a ULONGEST variable. */
7947 ULONGEST mask = 1;
7948
7949 mask = (mask << address_size) - 1;
7950 addr &= mask;
7951 }
7952 return addr;
7953 }
7954
7955 /* Determine whether the remote target supports binary downloading.
7956 This is accomplished by sending a no-op memory write of zero length
7957 to the target at the specified address. It does not suffice to send
7958 the whole packet, since many stubs strip the eighth bit and
7959 subsequently compute a wrong checksum, which causes real havoc with
7960 remote_write_bytes.
7961
7962 NOTE: This can still lose if the serial line is not eight-bit
7963 clean. In cases like this, the user should clear "remote
7964 X-packet". */
7965
7966 static void
7967 check_binary_download (CORE_ADDR addr)
7968 {
7969 struct remote_state *rs = get_remote_state ();
7970
7971 switch (packet_support (PACKET_X))
7972 {
7973 case PACKET_DISABLE:
7974 break;
7975 case PACKET_ENABLE:
7976 break;
7977 case PACKET_SUPPORT_UNKNOWN:
7978 {
7979 char *p;
7980
7981 p = rs->buf;
7982 *p++ = 'X';
7983 p += hexnumstr (p, (ULONGEST) addr);
7984 *p++ = ',';
7985 p += hexnumstr (p, (ULONGEST) 0);
7986 *p++ = ':';
7987 *p = '\0';
7988
7989 putpkt_binary (rs->buf, (int) (p - rs->buf));
7990 getpkt (&rs->buf, &rs->buf_size, 0);
7991
7992 if (rs->buf[0] == '\0')
7993 {
7994 if (remote_debug)
7995 fprintf_unfiltered (gdb_stdlog,
7996 "binary downloading NOT "
7997 "supported by target\n");
7998 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
7999 }
8000 else
8001 {
8002 if (remote_debug)
8003 fprintf_unfiltered (gdb_stdlog,
8004 "binary downloading supported by target\n");
8005 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8006 }
8007 break;
8008 }
8009 }
8010 }
8011
8012 /* Helper function to resize the payload in order to try to get a good
8013 alignment. We try to write an amount of data such that the next write will
8014 start on an address aligned on REMOTE_ALIGN_WRITES. */
8015
8016 static int
8017 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8018 {
8019 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8020 }
8021
8022 /* Write memory data directly to the remote machine.
8023 This does not inform the data cache; the data cache uses this.
8024 HEADER is the starting part of the packet.
8025 MEMADDR is the address in the remote memory space.
8026 MYADDR is the address of the buffer in our space.
8027 LEN_UNITS is the number of addressable units to write.
8028 UNIT_SIZE is the length in bytes of an addressable unit.
8029 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8030 should send data as binary ('X'), or hex-encoded ('M').
8031
8032 The function creates packet of the form
8033 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8034
8035 where encoding of <DATA> is terminated by PACKET_FORMAT.
8036
8037 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8038 are omitted.
8039
8040 Return the transferred status, error or OK (an
8041 'enum target_xfer_status' value). Save the number of addressable units
8042 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8043
8044 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8045 exchange between gdb and the stub could look like (?? in place of the
8046 checksum):
8047
8048 -> $m1000,4#??
8049 <- aaaabbbbccccdddd
8050
8051 -> $M1000,3:eeeeffffeeee#??
8052 <- OK
8053
8054 -> $m1000,4#??
8055 <- eeeeffffeeeedddd */
8056
8057 static enum target_xfer_status
8058 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8059 const gdb_byte *myaddr, ULONGEST len_units,
8060 int unit_size, ULONGEST *xfered_len_units,
8061 char packet_format, int use_length)
8062 {
8063 struct remote_state *rs = get_remote_state ();
8064 char *p;
8065 char *plen = NULL;
8066 int plenlen = 0;
8067 int todo_units;
8068 int units_written;
8069 int payload_capacity_bytes;
8070 int payload_length_bytes;
8071
8072 if (packet_format != 'X' && packet_format != 'M')
8073 internal_error (__FILE__, __LINE__,
8074 _("remote_write_bytes_aux: bad packet format"));
8075
8076 if (len_units == 0)
8077 return TARGET_XFER_EOF;
8078
8079 payload_capacity_bytes = get_memory_write_packet_size ();
8080
8081 /* The packet buffer will be large enough for the payload;
8082 get_memory_packet_size ensures this. */
8083 rs->buf[0] = '\0';
8084
8085 /* Compute the size of the actual payload by subtracting out the
8086 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8087
8088 payload_capacity_bytes -= strlen ("$,:#NN");
8089 if (!use_length)
8090 /* The comma won't be used. */
8091 payload_capacity_bytes += 1;
8092 payload_capacity_bytes -= strlen (header);
8093 payload_capacity_bytes -= hexnumlen (memaddr);
8094
8095 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8096
8097 strcat (rs->buf, header);
8098 p = rs->buf + strlen (header);
8099
8100 /* Compute a best guess of the number of bytes actually transfered. */
8101 if (packet_format == 'X')
8102 {
8103 /* Best guess at number of bytes that will fit. */
8104 todo_units = std::min (len_units,
8105 (ULONGEST) payload_capacity_bytes / unit_size);
8106 if (use_length)
8107 payload_capacity_bytes -= hexnumlen (todo_units);
8108 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8109 }
8110 else
8111 {
8112 /* Number of bytes that will fit. */
8113 todo_units
8114 = std::min (len_units,
8115 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8116 if (use_length)
8117 payload_capacity_bytes -= hexnumlen (todo_units);
8118 todo_units = std::min (todo_units,
8119 (payload_capacity_bytes / unit_size) / 2);
8120 }
8121
8122 if (todo_units <= 0)
8123 internal_error (__FILE__, __LINE__,
8124 _("minimum packet size too small to write data"));
8125
8126 /* If we already need another packet, then try to align the end
8127 of this packet to a useful boundary. */
8128 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8129 todo_units = align_for_efficient_write (todo_units, memaddr);
8130
8131 /* Append "<memaddr>". */
8132 memaddr = remote_address_masked (memaddr);
8133 p += hexnumstr (p, (ULONGEST) memaddr);
8134
8135 if (use_length)
8136 {
8137 /* Append ",". */
8138 *p++ = ',';
8139
8140 /* Append the length and retain its location and size. It may need to be
8141 adjusted once the packet body has been created. */
8142 plen = p;
8143 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8144 p += plenlen;
8145 }
8146
8147 /* Append ":". */
8148 *p++ = ':';
8149 *p = '\0';
8150
8151 /* Append the packet body. */
8152 if (packet_format == 'X')
8153 {
8154 /* Binary mode. Send target system values byte by byte, in
8155 increasing byte addresses. Only escape certain critical
8156 characters. */
8157 payload_length_bytes =
8158 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8159 &units_written, payload_capacity_bytes);
8160
8161 /* If not all TODO units fit, then we'll need another packet. Make
8162 a second try to keep the end of the packet aligned. Don't do
8163 this if the packet is tiny. */
8164 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8165 {
8166 int new_todo_units;
8167
8168 new_todo_units = align_for_efficient_write (units_written, memaddr);
8169
8170 if (new_todo_units != units_written)
8171 payload_length_bytes =
8172 remote_escape_output (myaddr, new_todo_units, unit_size,
8173 (gdb_byte *) p, &units_written,
8174 payload_capacity_bytes);
8175 }
8176
8177 p += payload_length_bytes;
8178 if (use_length && units_written < todo_units)
8179 {
8180 /* Escape chars have filled up the buffer prematurely,
8181 and we have actually sent fewer units than planned.
8182 Fix-up the length field of the packet. Use the same
8183 number of characters as before. */
8184 plen += hexnumnstr (plen, (ULONGEST) units_written,
8185 plenlen);
8186 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8187 }
8188 }
8189 else
8190 {
8191 /* Normal mode: Send target system values byte by byte, in
8192 increasing byte addresses. Each byte is encoded as a two hex
8193 value. */
8194 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8195 units_written = todo_units;
8196 }
8197
8198 putpkt_binary (rs->buf, (int) (p - rs->buf));
8199 getpkt (&rs->buf, &rs->buf_size, 0);
8200
8201 if (rs->buf[0] == 'E')
8202 return TARGET_XFER_E_IO;
8203
8204 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8205 send fewer units than we'd planned. */
8206 *xfered_len_units = (ULONGEST) units_written;
8207 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8208 }
8209
8210 /* Write memory data directly to the remote machine.
8211 This does not inform the data cache; the data cache uses this.
8212 MEMADDR is the address in the remote memory space.
8213 MYADDR is the address of the buffer in our space.
8214 LEN is the number of bytes.
8215
8216 Return the transferred status, error or OK (an
8217 'enum target_xfer_status' value). Save the number of bytes
8218 transferred in *XFERED_LEN. Only transfer a single packet. */
8219
8220 static enum target_xfer_status
8221 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8222 int unit_size, ULONGEST *xfered_len)
8223 {
8224 const char *packet_format = NULL;
8225
8226 /* Check whether the target supports binary download. */
8227 check_binary_download (memaddr);
8228
8229 switch (packet_support (PACKET_X))
8230 {
8231 case PACKET_ENABLE:
8232 packet_format = "X";
8233 break;
8234 case PACKET_DISABLE:
8235 packet_format = "M";
8236 break;
8237 case PACKET_SUPPORT_UNKNOWN:
8238 internal_error (__FILE__, __LINE__,
8239 _("remote_write_bytes: bad internal state"));
8240 default:
8241 internal_error (__FILE__, __LINE__, _("bad switch"));
8242 }
8243
8244 return remote_write_bytes_aux (packet_format,
8245 memaddr, myaddr, len, unit_size, xfered_len,
8246 packet_format[0], 1);
8247 }
8248
8249 /* Read memory data directly from the remote machine.
8250 This does not use the data cache; the data cache uses this.
8251 MEMADDR is the address in the remote memory space.
8252 MYADDR is the address of the buffer in our space.
8253 LEN_UNITS is the number of addressable memory units to read..
8254 UNIT_SIZE is the length in bytes of an addressable unit.
8255
8256 Return the transferred status, error or OK (an
8257 'enum target_xfer_status' value). Save the number of bytes
8258 transferred in *XFERED_LEN_UNITS.
8259
8260 See the comment of remote_write_bytes_aux for an example of
8261 memory read/write exchange between gdb and the stub. */
8262
8263 static enum target_xfer_status
8264 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8265 int unit_size, ULONGEST *xfered_len_units)
8266 {
8267 struct remote_state *rs = get_remote_state ();
8268 int buf_size_bytes; /* Max size of packet output buffer. */
8269 char *p;
8270 int todo_units;
8271 int decoded_bytes;
8272
8273 buf_size_bytes = get_memory_read_packet_size ();
8274 /* The packet buffer will be large enough for the payload;
8275 get_memory_packet_size ensures this. */
8276
8277 /* Number of units that will fit. */
8278 todo_units = std::min (len_units,
8279 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8280
8281 /* Construct "m"<memaddr>","<len>". */
8282 memaddr = remote_address_masked (memaddr);
8283 p = rs->buf;
8284 *p++ = 'm';
8285 p += hexnumstr (p, (ULONGEST) memaddr);
8286 *p++ = ',';
8287 p += hexnumstr (p, (ULONGEST) todo_units);
8288 *p = '\0';
8289 putpkt (rs->buf);
8290 getpkt (&rs->buf, &rs->buf_size, 0);
8291 if (rs->buf[0] == 'E'
8292 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8293 && rs->buf[3] == '\0')
8294 return TARGET_XFER_E_IO;
8295 /* Reply describes memory byte by byte, each byte encoded as two hex
8296 characters. */
8297 p = rs->buf;
8298 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8299 /* Return what we have. Let higher layers handle partial reads. */
8300 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8301 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8302 }
8303
8304 /* Using the set of read-only target sections of remote, read live
8305 read-only memory.
8306
8307 For interface/parameters/return description see target.h,
8308 to_xfer_partial. */
8309
8310 static enum target_xfer_status
8311 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8312 ULONGEST memaddr, ULONGEST len,
8313 int unit_size, ULONGEST *xfered_len)
8314 {
8315 struct target_section *secp;
8316 struct target_section_table *table;
8317
8318 secp = target_section_by_addr (ops, memaddr);
8319 if (secp != NULL
8320 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8321 secp->the_bfd_section)
8322 & SEC_READONLY))
8323 {
8324 struct target_section *p;
8325 ULONGEST memend = memaddr + len;
8326
8327 table = target_get_section_table (ops);
8328
8329 for (p = table->sections; p < table->sections_end; p++)
8330 {
8331 if (memaddr >= p->addr)
8332 {
8333 if (memend <= p->endaddr)
8334 {
8335 /* Entire transfer is within this section. */
8336 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8337 xfered_len);
8338 }
8339 else if (memaddr >= p->endaddr)
8340 {
8341 /* This section ends before the transfer starts. */
8342 continue;
8343 }
8344 else
8345 {
8346 /* This section overlaps the transfer. Just do half. */
8347 len = p->endaddr - memaddr;
8348 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8349 xfered_len);
8350 }
8351 }
8352 }
8353 }
8354
8355 return TARGET_XFER_EOF;
8356 }
8357
8358 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8359 first if the requested memory is unavailable in traceframe.
8360 Otherwise, fall back to remote_read_bytes_1. */
8361
8362 static enum target_xfer_status
8363 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8364 gdb_byte *myaddr, ULONGEST len, int unit_size,
8365 ULONGEST *xfered_len)
8366 {
8367 if (len == 0)
8368 return TARGET_XFER_EOF;
8369
8370 if (get_traceframe_number () != -1)
8371 {
8372 std::vector<mem_range> available;
8373
8374 /* If we fail to get the set of available memory, then the
8375 target does not support querying traceframe info, and so we
8376 attempt reading from the traceframe anyway (assuming the
8377 target implements the old QTro packet then). */
8378 if (traceframe_available_memory (&available, memaddr, len))
8379 {
8380 if (available.empty () || available[0].start != memaddr)
8381 {
8382 enum target_xfer_status res;
8383
8384 /* Don't read into the traceframe's available
8385 memory. */
8386 if (!available.empty ())
8387 {
8388 LONGEST oldlen = len;
8389
8390 len = available[0].start - memaddr;
8391 gdb_assert (len <= oldlen);
8392 }
8393
8394 /* This goes through the topmost target again. */
8395 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8396 len, unit_size, xfered_len);
8397 if (res == TARGET_XFER_OK)
8398 return TARGET_XFER_OK;
8399 else
8400 {
8401 /* No use trying further, we know some memory starting
8402 at MEMADDR isn't available. */
8403 *xfered_len = len;
8404 return (*xfered_len != 0) ?
8405 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8406 }
8407 }
8408
8409 /* Don't try to read more than how much is available, in
8410 case the target implements the deprecated QTro packet to
8411 cater for older GDBs (the target's knowledge of read-only
8412 sections may be outdated by now). */
8413 len = available[0].length;
8414 }
8415 }
8416
8417 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8418 }
8419
8420 \f
8421
8422 /* Sends a packet with content determined by the printf format string
8423 FORMAT and the remaining arguments, then gets the reply. Returns
8424 whether the packet was a success, a failure, or unknown. */
8425
8426 static enum packet_result remote_send_printf (const char *format, ...)
8427 ATTRIBUTE_PRINTF (1, 2);
8428
8429 static enum packet_result
8430 remote_send_printf (const char *format, ...)
8431 {
8432 struct remote_state *rs = get_remote_state ();
8433 int max_size = get_remote_packet_size ();
8434 va_list ap;
8435
8436 va_start (ap, format);
8437
8438 rs->buf[0] = '\0';
8439 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8440 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8441
8442 if (putpkt (rs->buf) < 0)
8443 error (_("Communication problem with target."));
8444
8445 rs->buf[0] = '\0';
8446 getpkt (&rs->buf, &rs->buf_size, 0);
8447
8448 return packet_check_result (rs->buf);
8449 }
8450
8451 /* Flash writing can take quite some time. We'll set
8452 effectively infinite timeout for flash operations.
8453 In future, we'll need to decide on a better approach. */
8454 static const int remote_flash_timeout = 1000;
8455
8456 static void
8457 remote_flash_erase (struct target_ops *ops,
8458 ULONGEST address, LONGEST length)
8459 {
8460 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8461 enum packet_result ret;
8462 scoped_restore restore_timeout
8463 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8464
8465 ret = remote_send_printf ("vFlashErase:%s,%s",
8466 phex (address, addr_size),
8467 phex (length, 4));
8468 switch (ret)
8469 {
8470 case PACKET_UNKNOWN:
8471 error (_("Remote target does not support flash erase"));
8472 case PACKET_ERROR:
8473 error (_("Error erasing flash with vFlashErase packet"));
8474 default:
8475 break;
8476 }
8477 }
8478
8479 static enum target_xfer_status
8480 remote_flash_write (struct target_ops *ops, ULONGEST address,
8481 ULONGEST length, ULONGEST *xfered_len,
8482 const gdb_byte *data)
8483 {
8484 scoped_restore restore_timeout
8485 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8486 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8487 xfered_len,'X', 0);
8488 }
8489
8490 static void
8491 remote_flash_done (struct target_ops *ops)
8492 {
8493 int ret;
8494
8495 scoped_restore restore_timeout
8496 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8497
8498 ret = remote_send_printf ("vFlashDone");
8499
8500 switch (ret)
8501 {
8502 case PACKET_UNKNOWN:
8503 error (_("Remote target does not support vFlashDone"));
8504 case PACKET_ERROR:
8505 error (_("Error finishing flash operation"));
8506 default:
8507 break;
8508 }
8509 }
8510
8511 static void
8512 remote_files_info (struct target_ops *ignore)
8513 {
8514 puts_filtered ("Debugging a target over a serial line.\n");
8515 }
8516 \f
8517 /* Stuff for dealing with the packets which are part of this protocol.
8518 See comment at top of file for details. */
8519
8520 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8521 error to higher layers. Called when a serial error is detected.
8522 The exception message is STRING, followed by a colon and a blank,
8523 the system error message for errno at function entry and final dot
8524 for output compatibility with throw_perror_with_name. */
8525
8526 static void
8527 unpush_and_perror (const char *string)
8528 {
8529 int saved_errno = errno;
8530
8531 remote_unpush_target ();
8532 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8533 safe_strerror (saved_errno));
8534 }
8535
8536 /* Read a single character from the remote end. The current quit
8537 handler is overridden to avoid quitting in the middle of packet
8538 sequence, as that would break communication with the remote server.
8539 See remote_serial_quit_handler for more detail. */
8540
8541 static int
8542 readchar (int timeout)
8543 {
8544 int ch;
8545 struct remote_state *rs = get_remote_state ();
8546
8547 {
8548 scoped_restore restore_quit
8549 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8550
8551 rs->got_ctrlc_during_io = 0;
8552
8553 ch = serial_readchar (rs->remote_desc, timeout);
8554
8555 if (rs->got_ctrlc_during_io)
8556 set_quit_flag ();
8557 }
8558
8559 if (ch >= 0)
8560 return ch;
8561
8562 switch ((enum serial_rc) ch)
8563 {
8564 case SERIAL_EOF:
8565 remote_unpush_target ();
8566 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8567 /* no return */
8568 case SERIAL_ERROR:
8569 unpush_and_perror (_("Remote communication error. "
8570 "Target disconnected."));
8571 /* no return */
8572 case SERIAL_TIMEOUT:
8573 break;
8574 }
8575 return ch;
8576 }
8577
8578 /* Wrapper for serial_write that closes the target and throws if
8579 writing fails. The current quit handler is overridden to avoid
8580 quitting in the middle of packet sequence, as that would break
8581 communication with the remote server. See
8582 remote_serial_quit_handler for more detail. */
8583
8584 static void
8585 remote_serial_write (const char *str, int len)
8586 {
8587 struct remote_state *rs = get_remote_state ();
8588
8589 scoped_restore restore_quit
8590 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8591
8592 rs->got_ctrlc_during_io = 0;
8593
8594 if (serial_write (rs->remote_desc, str, len))
8595 {
8596 unpush_and_perror (_("Remote communication error. "
8597 "Target disconnected."));
8598 }
8599
8600 if (rs->got_ctrlc_during_io)
8601 set_quit_flag ();
8602 }
8603
8604 /* Send the command in *BUF to the remote machine, and read the reply
8605 into *BUF. Report an error if we get an error reply. Resize
8606 *BUF using xrealloc if necessary to hold the result, and update
8607 *SIZEOF_BUF. */
8608
8609 static void
8610 remote_send (char **buf,
8611 long *sizeof_buf)
8612 {
8613 putpkt (*buf);
8614 getpkt (buf, sizeof_buf, 0);
8615
8616 if ((*buf)[0] == 'E')
8617 error (_("Remote failure reply: %s"), *buf);
8618 }
8619
8620 /* Return a string representing an escaped version of BUF, of len N.
8621 E.g. \n is converted to \\n, \t to \\t, etc. */
8622
8623 static std::string
8624 escape_buffer (const char *buf, int n)
8625 {
8626 string_file stb;
8627
8628 stb.putstrn (buf, n, '\\');
8629 return std::move (stb.string ());
8630 }
8631
8632 /* Display a null-terminated packet on stdout, for debugging, using C
8633 string notation. */
8634
8635 static void
8636 print_packet (const char *buf)
8637 {
8638 puts_filtered ("\"");
8639 fputstr_filtered (buf, '"', gdb_stdout);
8640 puts_filtered ("\"");
8641 }
8642
8643 int
8644 putpkt (const char *buf)
8645 {
8646 return putpkt_binary (buf, strlen (buf));
8647 }
8648
8649 /* Send a packet to the remote machine, with error checking. The data
8650 of the packet is in BUF. The string in BUF can be at most
8651 get_remote_packet_size () - 5 to account for the $, # and checksum,
8652 and for a possible /0 if we are debugging (remote_debug) and want
8653 to print the sent packet as a string. */
8654
8655 static int
8656 putpkt_binary (const char *buf, int cnt)
8657 {
8658 struct remote_state *rs = get_remote_state ();
8659 int i;
8660 unsigned char csum = 0;
8661 gdb::def_vector<char> data (cnt + 6);
8662 char *buf2 = data.data ();
8663
8664 int ch;
8665 int tcount = 0;
8666 char *p;
8667
8668 /* Catch cases like trying to read memory or listing threads while
8669 we're waiting for a stop reply. The remote server wouldn't be
8670 ready to handle this request, so we'd hang and timeout. We don't
8671 have to worry about this in synchronous mode, because in that
8672 case it's not possible to issue a command while the target is
8673 running. This is not a problem in non-stop mode, because in that
8674 case, the stub is always ready to process serial input. */
8675 if (!target_is_non_stop_p ()
8676 && target_is_async_p ()
8677 && rs->waiting_for_stop_reply)
8678 {
8679 error (_("Cannot execute this command while the target is running.\n"
8680 "Use the \"interrupt\" command to stop the target\n"
8681 "and then try again."));
8682 }
8683
8684 /* We're sending out a new packet. Make sure we don't look at a
8685 stale cached response. */
8686 rs->cached_wait_status = 0;
8687
8688 /* Copy the packet into buffer BUF2, encapsulating it
8689 and giving it a checksum. */
8690
8691 p = buf2;
8692 *p++ = '$';
8693
8694 for (i = 0; i < cnt; i++)
8695 {
8696 csum += buf[i];
8697 *p++ = buf[i];
8698 }
8699 *p++ = '#';
8700 *p++ = tohex ((csum >> 4) & 0xf);
8701 *p++ = tohex (csum & 0xf);
8702
8703 /* Send it over and over until we get a positive ack. */
8704
8705 while (1)
8706 {
8707 int started_error_output = 0;
8708
8709 if (remote_debug)
8710 {
8711 *p = '\0';
8712
8713 int len = (int) (p - buf2);
8714
8715 std::string str
8716 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8717
8718 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8719
8720 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8721 {
8722 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8723 str.length () - REMOTE_DEBUG_MAX_CHAR);
8724 }
8725
8726 fprintf_unfiltered (gdb_stdlog, "...");
8727
8728 gdb_flush (gdb_stdlog);
8729 }
8730 remote_serial_write (buf2, p - buf2);
8731
8732 /* If this is a no acks version of the remote protocol, send the
8733 packet and move on. */
8734 if (rs->noack_mode)
8735 break;
8736
8737 /* Read until either a timeout occurs (-2) or '+' is read.
8738 Handle any notification that arrives in the mean time. */
8739 while (1)
8740 {
8741 ch = readchar (remote_timeout);
8742
8743 if (remote_debug)
8744 {
8745 switch (ch)
8746 {
8747 case '+':
8748 case '-':
8749 case SERIAL_TIMEOUT:
8750 case '$':
8751 case '%':
8752 if (started_error_output)
8753 {
8754 putchar_unfiltered ('\n');
8755 started_error_output = 0;
8756 }
8757 }
8758 }
8759
8760 switch (ch)
8761 {
8762 case '+':
8763 if (remote_debug)
8764 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8765 return 1;
8766 case '-':
8767 if (remote_debug)
8768 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8769 /* FALLTHROUGH */
8770 case SERIAL_TIMEOUT:
8771 tcount++;
8772 if (tcount > 3)
8773 return 0;
8774 break; /* Retransmit buffer. */
8775 case '$':
8776 {
8777 if (remote_debug)
8778 fprintf_unfiltered (gdb_stdlog,
8779 "Packet instead of Ack, ignoring it\n");
8780 /* It's probably an old response sent because an ACK
8781 was lost. Gobble up the packet and ack it so it
8782 doesn't get retransmitted when we resend this
8783 packet. */
8784 skip_frame ();
8785 remote_serial_write ("+", 1);
8786 continue; /* Now, go look for +. */
8787 }
8788
8789 case '%':
8790 {
8791 int val;
8792
8793 /* If we got a notification, handle it, and go back to looking
8794 for an ack. */
8795 /* We've found the start of a notification. Now
8796 collect the data. */
8797 val = read_frame (&rs->buf, &rs->buf_size);
8798 if (val >= 0)
8799 {
8800 if (remote_debug)
8801 {
8802 std::string str = escape_buffer (rs->buf, val);
8803
8804 fprintf_unfiltered (gdb_stdlog,
8805 " Notification received: %s\n",
8806 str.c_str ());
8807 }
8808 handle_notification (rs->notif_state, rs->buf);
8809 /* We're in sync now, rewait for the ack. */
8810 tcount = 0;
8811 }
8812 else
8813 {
8814 if (remote_debug)
8815 {
8816 if (!started_error_output)
8817 {
8818 started_error_output = 1;
8819 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8820 }
8821 fputc_unfiltered (ch & 0177, gdb_stdlog);
8822 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8823 }
8824 }
8825 continue;
8826 }
8827 /* fall-through */
8828 default:
8829 if (remote_debug)
8830 {
8831 if (!started_error_output)
8832 {
8833 started_error_output = 1;
8834 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8835 }
8836 fputc_unfiltered (ch & 0177, gdb_stdlog);
8837 }
8838 continue;
8839 }
8840 break; /* Here to retransmit. */
8841 }
8842
8843 #if 0
8844 /* This is wrong. If doing a long backtrace, the user should be
8845 able to get out next time we call QUIT, without anything as
8846 violent as interrupt_query. If we want to provide a way out of
8847 here without getting to the next QUIT, it should be based on
8848 hitting ^C twice as in remote_wait. */
8849 if (quit_flag)
8850 {
8851 quit_flag = 0;
8852 interrupt_query ();
8853 }
8854 #endif
8855 }
8856
8857 return 0;
8858 }
8859
8860 /* Come here after finding the start of a frame when we expected an
8861 ack. Do our best to discard the rest of this packet. */
8862
8863 static void
8864 skip_frame (void)
8865 {
8866 int c;
8867
8868 while (1)
8869 {
8870 c = readchar (remote_timeout);
8871 switch (c)
8872 {
8873 case SERIAL_TIMEOUT:
8874 /* Nothing we can do. */
8875 return;
8876 case '#':
8877 /* Discard the two bytes of checksum and stop. */
8878 c = readchar (remote_timeout);
8879 if (c >= 0)
8880 c = readchar (remote_timeout);
8881
8882 return;
8883 case '*': /* Run length encoding. */
8884 /* Discard the repeat count. */
8885 c = readchar (remote_timeout);
8886 if (c < 0)
8887 return;
8888 break;
8889 default:
8890 /* A regular character. */
8891 break;
8892 }
8893 }
8894 }
8895
8896 /* Come here after finding the start of the frame. Collect the rest
8897 into *BUF, verifying the checksum, length, and handling run-length
8898 compression. NUL terminate the buffer. If there is not enough room,
8899 expand *BUF using xrealloc.
8900
8901 Returns -1 on error, number of characters in buffer (ignoring the
8902 trailing NULL) on success. (could be extended to return one of the
8903 SERIAL status indications). */
8904
8905 static long
8906 read_frame (char **buf_p,
8907 long *sizeof_buf)
8908 {
8909 unsigned char csum;
8910 long bc;
8911 int c;
8912 char *buf = *buf_p;
8913 struct remote_state *rs = get_remote_state ();
8914
8915 csum = 0;
8916 bc = 0;
8917
8918 while (1)
8919 {
8920 c = readchar (remote_timeout);
8921 switch (c)
8922 {
8923 case SERIAL_TIMEOUT:
8924 if (remote_debug)
8925 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8926 return -1;
8927 case '$':
8928 if (remote_debug)
8929 fputs_filtered ("Saw new packet start in middle of old one\n",
8930 gdb_stdlog);
8931 return -1; /* Start a new packet, count retries. */
8932 case '#':
8933 {
8934 unsigned char pktcsum;
8935 int check_0 = 0;
8936 int check_1 = 0;
8937
8938 buf[bc] = '\0';
8939
8940 check_0 = readchar (remote_timeout);
8941 if (check_0 >= 0)
8942 check_1 = readchar (remote_timeout);
8943
8944 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8945 {
8946 if (remote_debug)
8947 fputs_filtered ("Timeout in checksum, retrying\n",
8948 gdb_stdlog);
8949 return -1;
8950 }
8951 else if (check_0 < 0 || check_1 < 0)
8952 {
8953 if (remote_debug)
8954 fputs_filtered ("Communication error in checksum\n",
8955 gdb_stdlog);
8956 return -1;
8957 }
8958
8959 /* Don't recompute the checksum; with no ack packets we
8960 don't have any way to indicate a packet retransmission
8961 is necessary. */
8962 if (rs->noack_mode)
8963 return bc;
8964
8965 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8966 if (csum == pktcsum)
8967 return bc;
8968
8969 if (remote_debug)
8970 {
8971 std::string str = escape_buffer (buf, bc);
8972
8973 fprintf_unfiltered (gdb_stdlog,
8974 "Bad checksum, sentsum=0x%x, "
8975 "csum=0x%x, buf=%s\n",
8976 pktcsum, csum, str.c_str ());
8977 }
8978 /* Number of characters in buffer ignoring trailing
8979 NULL. */
8980 return -1;
8981 }
8982 case '*': /* Run length encoding. */
8983 {
8984 int repeat;
8985
8986 csum += c;
8987 c = readchar (remote_timeout);
8988 csum += c;
8989 repeat = c - ' ' + 3; /* Compute repeat count. */
8990
8991 /* The character before ``*'' is repeated. */
8992
8993 if (repeat > 0 && repeat <= 255 && bc > 0)
8994 {
8995 if (bc + repeat - 1 >= *sizeof_buf - 1)
8996 {
8997 /* Make some more room in the buffer. */
8998 *sizeof_buf += repeat;
8999 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9000 buf = *buf_p;
9001 }
9002
9003 memset (&buf[bc], buf[bc - 1], repeat);
9004 bc += repeat;
9005 continue;
9006 }
9007
9008 buf[bc] = '\0';
9009 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9010 return -1;
9011 }
9012 default:
9013 if (bc >= *sizeof_buf - 1)
9014 {
9015 /* Make some more room in the buffer. */
9016 *sizeof_buf *= 2;
9017 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9018 buf = *buf_p;
9019 }
9020
9021 buf[bc++] = c;
9022 csum += c;
9023 continue;
9024 }
9025 }
9026 }
9027
9028 /* Read a packet from the remote machine, with error checking, and
9029 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9030 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9031 rather than timing out; this is used (in synchronous mode) to wait
9032 for a target that is is executing user code to stop. */
9033 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9034 don't have to change all the calls to getpkt to deal with the
9035 return value, because at the moment I don't know what the right
9036 thing to do it for those. */
9037 void
9038 getpkt (char **buf,
9039 long *sizeof_buf,
9040 int forever)
9041 {
9042 getpkt_sane (buf, sizeof_buf, forever);
9043 }
9044
9045
9046 /* Read a packet from the remote machine, with error checking, and
9047 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9048 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9049 rather than timing out; this is used (in synchronous mode) to wait
9050 for a target that is is executing user code to stop. If FOREVER ==
9051 0, this function is allowed to time out gracefully and return an
9052 indication of this to the caller. Otherwise return the number of
9053 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9054 enough reason to return to the caller. *IS_NOTIF is an output
9055 boolean that indicates whether *BUF holds a notification or not
9056 (a regular packet). */
9057
9058 static int
9059 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9060 int expecting_notif, int *is_notif)
9061 {
9062 struct remote_state *rs = get_remote_state ();
9063 int c;
9064 int tries;
9065 int timeout;
9066 int val = -1;
9067
9068 /* We're reading a new response. Make sure we don't look at a
9069 previously cached response. */
9070 rs->cached_wait_status = 0;
9071
9072 strcpy (*buf, "timeout");
9073
9074 if (forever)
9075 timeout = watchdog > 0 ? watchdog : -1;
9076 else if (expecting_notif)
9077 timeout = 0; /* There should already be a char in the buffer. If
9078 not, bail out. */
9079 else
9080 timeout = remote_timeout;
9081
9082 #define MAX_TRIES 3
9083
9084 /* Process any number of notifications, and then return when
9085 we get a packet. */
9086 for (;;)
9087 {
9088 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9089 times. */
9090 for (tries = 1; tries <= MAX_TRIES; tries++)
9091 {
9092 /* This can loop forever if the remote side sends us
9093 characters continuously, but if it pauses, we'll get
9094 SERIAL_TIMEOUT from readchar because of timeout. Then
9095 we'll count that as a retry.
9096
9097 Note that even when forever is set, we will only wait
9098 forever prior to the start of a packet. After that, we
9099 expect characters to arrive at a brisk pace. They should
9100 show up within remote_timeout intervals. */
9101 do
9102 c = readchar (timeout);
9103 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9104
9105 if (c == SERIAL_TIMEOUT)
9106 {
9107 if (expecting_notif)
9108 return -1; /* Don't complain, it's normal to not get
9109 anything in this case. */
9110
9111 if (forever) /* Watchdog went off? Kill the target. */
9112 {
9113 remote_unpush_target ();
9114 throw_error (TARGET_CLOSE_ERROR,
9115 _("Watchdog timeout has expired. "
9116 "Target detached."));
9117 }
9118 if (remote_debug)
9119 fputs_filtered ("Timed out.\n", gdb_stdlog);
9120 }
9121 else
9122 {
9123 /* We've found the start of a packet or notification.
9124 Now collect the data. */
9125 val = read_frame (buf, sizeof_buf);
9126 if (val >= 0)
9127 break;
9128 }
9129
9130 remote_serial_write ("-", 1);
9131 }
9132
9133 if (tries > MAX_TRIES)
9134 {
9135 /* We have tried hard enough, and just can't receive the
9136 packet/notification. Give up. */
9137 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9138
9139 /* Skip the ack char if we're in no-ack mode. */
9140 if (!rs->noack_mode)
9141 remote_serial_write ("+", 1);
9142 return -1;
9143 }
9144
9145 /* If we got an ordinary packet, return that to our caller. */
9146 if (c == '$')
9147 {
9148 if (remote_debug)
9149 {
9150 std::string str
9151 = escape_buffer (*buf,
9152 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9153
9154 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9155 str.c_str ());
9156
9157 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9158 {
9159 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9160 str.length () - REMOTE_DEBUG_MAX_CHAR);
9161 }
9162
9163 fprintf_unfiltered (gdb_stdlog, "\n");
9164 }
9165
9166 /* Skip the ack char if we're in no-ack mode. */
9167 if (!rs->noack_mode)
9168 remote_serial_write ("+", 1);
9169 if (is_notif != NULL)
9170 *is_notif = 0;
9171 return val;
9172 }
9173
9174 /* If we got a notification, handle it, and go back to looking
9175 for a packet. */
9176 else
9177 {
9178 gdb_assert (c == '%');
9179
9180 if (remote_debug)
9181 {
9182 std::string str = escape_buffer (*buf, val);
9183
9184 fprintf_unfiltered (gdb_stdlog,
9185 " Notification received: %s\n",
9186 str.c_str ());
9187 }
9188 if (is_notif != NULL)
9189 *is_notif = 1;
9190
9191 handle_notification (rs->notif_state, *buf);
9192
9193 /* Notifications require no acknowledgement. */
9194
9195 if (expecting_notif)
9196 return val;
9197 }
9198 }
9199 }
9200
9201 static int
9202 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9203 {
9204 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9205 }
9206
9207 static int
9208 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9209 int *is_notif)
9210 {
9211 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9212 is_notif);
9213 }
9214
9215 /* Check whether EVENT is a fork event for the process specified
9216 by the pid passed in DATA, and if it is, kill the fork child. */
9217
9218 static int
9219 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9220 QUEUE_ITER (stop_reply_p) *iter,
9221 stop_reply_p event,
9222 void *data)
9223 {
9224 struct queue_iter_param *param = (struct queue_iter_param *) data;
9225 int parent_pid = *(int *) param->input;
9226
9227 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9228 {
9229 struct remote_state *rs = get_remote_state ();
9230 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9231 int res;
9232
9233 res = remote_vkill (child_pid, rs);
9234 if (res != 0)
9235 error (_("Can't kill fork child process %d"), child_pid);
9236 }
9237
9238 return 1;
9239 }
9240
9241 /* Kill any new fork children of process PID that haven't been
9242 processed by follow_fork. */
9243
9244 static void
9245 kill_new_fork_children (int pid, struct remote_state *rs)
9246 {
9247 struct thread_info *thread;
9248 struct notif_client *notif = &notif_client_stop;
9249 struct queue_iter_param param;
9250
9251 /* Kill the fork child threads of any threads in process PID
9252 that are stopped at a fork event. */
9253 ALL_NON_EXITED_THREADS (thread)
9254 {
9255 struct target_waitstatus *ws = &thread->pending_follow;
9256
9257 if (is_pending_fork_parent (ws, pid, thread->ptid))
9258 {
9259 struct remote_state *rs = get_remote_state ();
9260 int child_pid = ptid_get_pid (ws->value.related_pid);
9261 int res;
9262
9263 res = remote_vkill (child_pid, rs);
9264 if (res != 0)
9265 error (_("Can't kill fork child process %d"), child_pid);
9266 }
9267 }
9268
9269 /* Check for any pending fork events (not reported or processed yet)
9270 in process PID and kill those fork child threads as well. */
9271 remote_notif_get_pending_events (notif);
9272 param.input = &pid;
9273 param.output = NULL;
9274 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9275 kill_child_of_pending_fork, &param);
9276 }
9277
9278 \f
9279 /* Target hook to kill the current inferior. */
9280
9281 static void
9282 remote_kill (struct target_ops *ops)
9283 {
9284 int res = -1;
9285 int pid = ptid_get_pid (inferior_ptid);
9286 struct remote_state *rs = get_remote_state ();
9287
9288 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9289 {
9290 /* If we're stopped while forking and we haven't followed yet,
9291 kill the child task. We need to do this before killing the
9292 parent task because if this is a vfork then the parent will
9293 be sleeping. */
9294 kill_new_fork_children (pid, rs);
9295
9296 res = remote_vkill (pid, rs);
9297 if (res == 0)
9298 {
9299 target_mourn_inferior (inferior_ptid);
9300 return;
9301 }
9302 }
9303
9304 /* If we are in 'target remote' mode and we are killing the only
9305 inferior, then we will tell gdbserver to exit and unpush the
9306 target. */
9307 if (res == -1 && !remote_multi_process_p (rs)
9308 && number_of_live_inferiors () == 1)
9309 {
9310 remote_kill_k ();
9311
9312 /* We've killed the remote end, we get to mourn it. If we are
9313 not in extended mode, mourning the inferior also unpushes
9314 remote_ops from the target stack, which closes the remote
9315 connection. */
9316 target_mourn_inferior (inferior_ptid);
9317
9318 return;
9319 }
9320
9321 error (_("Can't kill process"));
9322 }
9323
9324 /* Send a kill request to the target using the 'vKill' packet. */
9325
9326 static int
9327 remote_vkill (int pid, struct remote_state *rs)
9328 {
9329 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9330 return -1;
9331
9332 /* Tell the remote target to detach. */
9333 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9334 putpkt (rs->buf);
9335 getpkt (&rs->buf, &rs->buf_size, 0);
9336
9337 switch (packet_ok (rs->buf,
9338 &remote_protocol_packets[PACKET_vKill]))
9339 {
9340 case PACKET_OK:
9341 return 0;
9342 case PACKET_ERROR:
9343 return 1;
9344 case PACKET_UNKNOWN:
9345 return -1;
9346 default:
9347 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9348 }
9349 }
9350
9351 /* Send a kill request to the target using the 'k' packet. */
9352
9353 static void
9354 remote_kill_k (void)
9355 {
9356 /* Catch errors so the user can quit from gdb even when we
9357 aren't on speaking terms with the remote system. */
9358 TRY
9359 {
9360 putpkt ("k");
9361 }
9362 CATCH (ex, RETURN_MASK_ERROR)
9363 {
9364 if (ex.error == TARGET_CLOSE_ERROR)
9365 {
9366 /* If we got an (EOF) error that caused the target
9367 to go away, then we're done, that's what we wanted.
9368 "k" is susceptible to cause a premature EOF, given
9369 that the remote server isn't actually required to
9370 reply to "k", and it can happen that it doesn't
9371 even get to reply ACK to the "k". */
9372 return;
9373 }
9374
9375 /* Otherwise, something went wrong. We didn't actually kill
9376 the target. Just propagate the exception, and let the
9377 user or higher layers decide what to do. */
9378 throw_exception (ex);
9379 }
9380 END_CATCH
9381 }
9382
9383 static void
9384 remote_mourn (struct target_ops *target)
9385 {
9386 struct remote_state *rs = get_remote_state ();
9387
9388 /* In 'target remote' mode with one inferior, we close the connection. */
9389 if (!rs->extended && number_of_live_inferiors () <= 1)
9390 {
9391 unpush_target (target);
9392
9393 /* remote_close takes care of doing most of the clean up. */
9394 generic_mourn_inferior ();
9395 return;
9396 }
9397
9398 /* In case we got here due to an error, but we're going to stay
9399 connected. */
9400 rs->waiting_for_stop_reply = 0;
9401
9402 /* If the current general thread belonged to the process we just
9403 detached from or has exited, the remote side current general
9404 thread becomes undefined. Considering a case like this:
9405
9406 - We just got here due to a detach.
9407 - The process that we're detaching from happens to immediately
9408 report a global breakpoint being hit in non-stop mode, in the
9409 same thread we had selected before.
9410 - GDB attaches to this process again.
9411 - This event happens to be the next event we handle.
9412
9413 GDB would consider that the current general thread didn't need to
9414 be set on the stub side (with Hg), since for all it knew,
9415 GENERAL_THREAD hadn't changed.
9416
9417 Notice that although in all-stop mode, the remote server always
9418 sets the current thread to the thread reporting the stop event,
9419 that doesn't happen in non-stop mode; in non-stop, the stub *must
9420 not* change the current thread when reporting a breakpoint hit,
9421 due to the decoupling of event reporting and event handling.
9422
9423 To keep things simple, we always invalidate our notion of the
9424 current thread. */
9425 record_currthread (rs, minus_one_ptid);
9426
9427 /* Call common code to mark the inferior as not running. */
9428 generic_mourn_inferior ();
9429
9430 if (!have_inferiors ())
9431 {
9432 if (!remote_multi_process_p (rs))
9433 {
9434 /* Check whether the target is running now - some remote stubs
9435 automatically restart after kill. */
9436 putpkt ("?");
9437 getpkt (&rs->buf, &rs->buf_size, 0);
9438
9439 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9440 {
9441 /* Assume that the target has been restarted. Set
9442 inferior_ptid so that bits of core GDB realizes
9443 there's something here, e.g., so that the user can
9444 say "kill" again. */
9445 inferior_ptid = magic_null_ptid;
9446 }
9447 }
9448 }
9449 }
9450
9451 static int
9452 extended_remote_supports_disable_randomization (struct target_ops *self)
9453 {
9454 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9455 }
9456
9457 static void
9458 extended_remote_disable_randomization (int val)
9459 {
9460 struct remote_state *rs = get_remote_state ();
9461 char *reply;
9462
9463 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9464 val);
9465 putpkt (rs->buf);
9466 reply = remote_get_noisy_reply ();
9467 if (*reply == '\0')
9468 error (_("Target does not support QDisableRandomization."));
9469 if (strcmp (reply, "OK") != 0)
9470 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9471 }
9472
9473 static int
9474 extended_remote_run (const std::string &args)
9475 {
9476 struct remote_state *rs = get_remote_state ();
9477 int len;
9478 const char *remote_exec_file = get_remote_exec_file ();
9479
9480 /* If the user has disabled vRun support, or we have detected that
9481 support is not available, do not try it. */
9482 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9483 return -1;
9484
9485 strcpy (rs->buf, "vRun;");
9486 len = strlen (rs->buf);
9487
9488 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9489 error (_("Remote file name too long for run packet"));
9490 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9491 strlen (remote_exec_file));
9492
9493 if (!args.empty ())
9494 {
9495 int i;
9496
9497 gdb_argv argv (args.c_str ());
9498 for (i = 0; argv[i] != NULL; i++)
9499 {
9500 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9501 error (_("Argument list too long for run packet"));
9502 rs->buf[len++] = ';';
9503 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9504 strlen (argv[i]));
9505 }
9506 }
9507
9508 rs->buf[len++] = '\0';
9509
9510 putpkt (rs->buf);
9511 getpkt (&rs->buf, &rs->buf_size, 0);
9512
9513 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9514 {
9515 case PACKET_OK:
9516 /* We have a wait response. All is well. */
9517 return 0;
9518 case PACKET_UNKNOWN:
9519 return -1;
9520 case PACKET_ERROR:
9521 if (remote_exec_file[0] == '\0')
9522 error (_("Running the default executable on the remote target failed; "
9523 "try \"set remote exec-file\"?"));
9524 else
9525 error (_("Running \"%s\" on the remote target failed"),
9526 remote_exec_file);
9527 default:
9528 gdb_assert_not_reached (_("bad switch"));
9529 }
9530 }
9531
9532 /* Helper function to send set/unset environment packets. ACTION is
9533 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9534 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9535 sent. */
9536
9537 static void
9538 send_environment_packet (struct remote_state *rs,
9539 const char *action,
9540 const char *packet,
9541 const char *value)
9542 {
9543 /* Convert the environment variable to an hex string, which
9544 is the best format to be transmitted over the wire. */
9545 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9546 strlen (value));
9547
9548 xsnprintf (rs->buf, get_remote_packet_size (),
9549 "%s:%s", packet, encoded_value.c_str ());
9550
9551 putpkt (rs->buf);
9552 getpkt (&rs->buf, &rs->buf_size, 0);
9553 if (strcmp (rs->buf, "OK") != 0)
9554 warning (_("Unable to %s environment variable '%s' on remote."),
9555 action, value);
9556 }
9557
9558 /* Helper function to handle the QEnvironment* packets. */
9559
9560 static void
9561 extended_remote_environment_support (struct remote_state *rs)
9562 {
9563 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9564 {
9565 putpkt ("QEnvironmentReset");
9566 getpkt (&rs->buf, &rs->buf_size, 0);
9567 if (strcmp (rs->buf, "OK") != 0)
9568 warning (_("Unable to reset environment on remote."));
9569 }
9570
9571 gdb_environ *e = &current_inferior ()->environment;
9572
9573 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9574 for (const std::string &el : e->user_set_env ())
9575 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9576 el.c_str ());
9577
9578 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9579 for (const std::string &el : e->user_unset_env ())
9580 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9581 }
9582
9583 /* Helper function to set the current working directory for the
9584 inferior in the remote target. */
9585
9586 static void
9587 extended_remote_set_inferior_cwd (struct remote_state *rs)
9588 {
9589 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9590 {
9591 const char *inferior_cwd = get_inferior_cwd ();
9592
9593 if (inferior_cwd != NULL)
9594 {
9595 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9596 strlen (inferior_cwd));
9597
9598 xsnprintf (rs->buf, get_remote_packet_size (),
9599 "QSetWorkingDir:%s", hexpath.c_str ());
9600 }
9601 else
9602 {
9603 /* An empty inferior_cwd means that the user wants us to
9604 reset the remote server's inferior's cwd. */
9605 xsnprintf (rs->buf, get_remote_packet_size (),
9606 "QSetWorkingDir:");
9607 }
9608
9609 putpkt (rs->buf);
9610 getpkt (&rs->buf, &rs->buf_size, 0);
9611 if (packet_ok (rs->buf,
9612 &remote_protocol_packets[PACKET_QSetWorkingDir])
9613 != PACKET_OK)
9614 error (_("\
9615 Remote replied unexpectedly while setting the inferior's working\n\
9616 directory: %s"),
9617 rs->buf);
9618
9619 }
9620 }
9621
9622 /* In the extended protocol we want to be able to do things like
9623 "run" and have them basically work as expected. So we need
9624 a special create_inferior function. We support changing the
9625 executable file and the command line arguments, but not the
9626 environment. */
9627
9628 static void
9629 extended_remote_create_inferior (struct target_ops *ops,
9630 const char *exec_file,
9631 const std::string &args,
9632 char **env, int from_tty)
9633 {
9634 int run_worked;
9635 char *stop_reply;
9636 struct remote_state *rs = get_remote_state ();
9637 const char *remote_exec_file = get_remote_exec_file ();
9638
9639 /* If running asynchronously, register the target file descriptor
9640 with the event loop. */
9641 if (target_can_async_p ())
9642 target_async (1);
9643
9644 /* Disable address space randomization if requested (and supported). */
9645 if (extended_remote_supports_disable_randomization (ops))
9646 extended_remote_disable_randomization (disable_randomization);
9647
9648 /* If startup-with-shell is on, we inform gdbserver to start the
9649 remote inferior using a shell. */
9650 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9651 {
9652 xsnprintf (rs->buf, get_remote_packet_size (),
9653 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9654 putpkt (rs->buf);
9655 getpkt (&rs->buf, &rs->buf_size, 0);
9656 if (strcmp (rs->buf, "OK") != 0)
9657 error (_("\
9658 Remote replied unexpectedly while setting startup-with-shell: %s"),
9659 rs->buf);
9660 }
9661
9662 extended_remote_environment_support (rs);
9663
9664 extended_remote_set_inferior_cwd (rs);
9665
9666 /* Now restart the remote server. */
9667 run_worked = extended_remote_run (args) != -1;
9668 if (!run_worked)
9669 {
9670 /* vRun was not supported. Fail if we need it to do what the
9671 user requested. */
9672 if (remote_exec_file[0])
9673 error (_("Remote target does not support \"set remote exec-file\""));
9674 if (!args.empty ())
9675 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9676
9677 /* Fall back to "R". */
9678 extended_remote_restart ();
9679 }
9680
9681 if (!have_inferiors ())
9682 {
9683 /* Clean up from the last time we ran, before we mark the target
9684 running again. This will mark breakpoints uninserted, and
9685 get_offsets may insert breakpoints. */
9686 init_thread_list ();
9687 init_wait_for_inferior ();
9688 }
9689
9690 /* vRun's success return is a stop reply. */
9691 stop_reply = run_worked ? rs->buf : NULL;
9692 add_current_inferior_and_thread (stop_reply);
9693
9694 /* Get updated offsets, if the stub uses qOffsets. */
9695 get_offsets ();
9696 }
9697 \f
9698
9699 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9700 the list of conditions (in agent expression bytecode format), if any, the
9701 target needs to evaluate. The output is placed into the packet buffer
9702 started from BUF and ended at BUF_END. */
9703
9704 static int
9705 remote_add_target_side_condition (struct gdbarch *gdbarch,
9706 struct bp_target_info *bp_tgt, char *buf,
9707 char *buf_end)
9708 {
9709 if (bp_tgt->conditions.empty ())
9710 return 0;
9711
9712 buf += strlen (buf);
9713 xsnprintf (buf, buf_end - buf, "%s", ";");
9714 buf++;
9715
9716 /* Send conditions to the target. */
9717 for (agent_expr *aexpr : bp_tgt->conditions)
9718 {
9719 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9720 buf += strlen (buf);
9721 for (int i = 0; i < aexpr->len; ++i)
9722 buf = pack_hex_byte (buf, aexpr->buf[i]);
9723 *buf = '\0';
9724 }
9725 return 0;
9726 }
9727
9728 static void
9729 remote_add_target_side_commands (struct gdbarch *gdbarch,
9730 struct bp_target_info *bp_tgt, char *buf)
9731 {
9732 if (bp_tgt->tcommands.empty ())
9733 return;
9734
9735 buf += strlen (buf);
9736
9737 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9738 buf += strlen (buf);
9739
9740 /* Concatenate all the agent expressions that are commands into the
9741 cmds parameter. */
9742 for (agent_expr *aexpr : bp_tgt->tcommands)
9743 {
9744 sprintf (buf, "X%x,", aexpr->len);
9745 buf += strlen (buf);
9746 for (int i = 0; i < aexpr->len; ++i)
9747 buf = pack_hex_byte (buf, aexpr->buf[i]);
9748 *buf = '\0';
9749 }
9750 }
9751
9752 /* Insert a breakpoint. On targets that have software breakpoint
9753 support, we ask the remote target to do the work; on targets
9754 which don't, we insert a traditional memory breakpoint. */
9755
9756 static int
9757 remote_insert_breakpoint (struct target_ops *ops,
9758 struct gdbarch *gdbarch,
9759 struct bp_target_info *bp_tgt)
9760 {
9761 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9762 If it succeeds, then set the support to PACKET_ENABLE. If it
9763 fails, and the user has explicitly requested the Z support then
9764 report an error, otherwise, mark it disabled and go on. */
9765
9766 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9767 {
9768 CORE_ADDR addr = bp_tgt->reqstd_address;
9769 struct remote_state *rs;
9770 char *p, *endbuf;
9771 int bpsize;
9772
9773 /* Make sure the remote is pointing at the right process, if
9774 necessary. */
9775 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9776 set_general_process ();
9777
9778 rs = get_remote_state ();
9779 p = rs->buf;
9780 endbuf = rs->buf + get_remote_packet_size ();
9781
9782 *(p++) = 'Z';
9783 *(p++) = '0';
9784 *(p++) = ',';
9785 addr = (ULONGEST) remote_address_masked (addr);
9786 p += hexnumstr (p, addr);
9787 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9788
9789 if (remote_supports_cond_breakpoints (ops))
9790 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9791
9792 if (remote_can_run_breakpoint_commands (ops))
9793 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9794
9795 putpkt (rs->buf);
9796 getpkt (&rs->buf, &rs->buf_size, 0);
9797
9798 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9799 {
9800 case PACKET_ERROR:
9801 return -1;
9802 case PACKET_OK:
9803 return 0;
9804 case PACKET_UNKNOWN:
9805 break;
9806 }
9807 }
9808
9809 /* If this breakpoint has target-side commands but this stub doesn't
9810 support Z0 packets, throw error. */
9811 if (!bp_tgt->tcommands.empty ())
9812 throw_error (NOT_SUPPORTED_ERROR, _("\
9813 Target doesn't support breakpoints that have target side commands."));
9814
9815 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9816 }
9817
9818 static int
9819 remote_remove_breakpoint (struct target_ops *ops,
9820 struct gdbarch *gdbarch,
9821 struct bp_target_info *bp_tgt,
9822 enum remove_bp_reason reason)
9823 {
9824 CORE_ADDR addr = bp_tgt->placed_address;
9825 struct remote_state *rs = get_remote_state ();
9826
9827 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9828 {
9829 char *p = rs->buf;
9830 char *endbuf = rs->buf + get_remote_packet_size ();
9831
9832 /* Make sure the remote is pointing at the right process, if
9833 necessary. */
9834 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9835 set_general_process ();
9836
9837 *(p++) = 'z';
9838 *(p++) = '0';
9839 *(p++) = ',';
9840
9841 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9842 p += hexnumstr (p, addr);
9843 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9844
9845 putpkt (rs->buf);
9846 getpkt (&rs->buf, &rs->buf_size, 0);
9847
9848 return (rs->buf[0] == 'E');
9849 }
9850
9851 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9852 }
9853
9854 static enum Z_packet_type
9855 watchpoint_to_Z_packet (int type)
9856 {
9857 switch (type)
9858 {
9859 case hw_write:
9860 return Z_PACKET_WRITE_WP;
9861 break;
9862 case hw_read:
9863 return Z_PACKET_READ_WP;
9864 break;
9865 case hw_access:
9866 return Z_PACKET_ACCESS_WP;
9867 break;
9868 default:
9869 internal_error (__FILE__, __LINE__,
9870 _("hw_bp_to_z: bad watchpoint type %d"), type);
9871 }
9872 }
9873
9874 static int
9875 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9876 enum target_hw_bp_type type, struct expression *cond)
9877 {
9878 struct remote_state *rs = get_remote_state ();
9879 char *endbuf = rs->buf + get_remote_packet_size ();
9880 char *p;
9881 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9882
9883 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9884 return 1;
9885
9886 /* Make sure the remote is pointing at the right process, if
9887 necessary. */
9888 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9889 set_general_process ();
9890
9891 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9892 p = strchr (rs->buf, '\0');
9893 addr = remote_address_masked (addr);
9894 p += hexnumstr (p, (ULONGEST) addr);
9895 xsnprintf (p, endbuf - p, ",%x", len);
9896
9897 putpkt (rs->buf);
9898 getpkt (&rs->buf, &rs->buf_size, 0);
9899
9900 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9901 {
9902 case PACKET_ERROR:
9903 return -1;
9904 case PACKET_UNKNOWN:
9905 return 1;
9906 case PACKET_OK:
9907 return 0;
9908 }
9909 internal_error (__FILE__, __LINE__,
9910 _("remote_insert_watchpoint: reached end of function"));
9911 }
9912
9913 static int
9914 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9915 CORE_ADDR start, int length)
9916 {
9917 CORE_ADDR diff = remote_address_masked (addr - start);
9918
9919 return diff < length;
9920 }
9921
9922
9923 static int
9924 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9925 enum target_hw_bp_type type, struct expression *cond)
9926 {
9927 struct remote_state *rs = get_remote_state ();
9928 char *endbuf = rs->buf + get_remote_packet_size ();
9929 char *p;
9930 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9931
9932 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9933 return -1;
9934
9935 /* Make sure the remote is pointing at the right process, if
9936 necessary. */
9937 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9938 set_general_process ();
9939
9940 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9941 p = strchr (rs->buf, '\0');
9942 addr = remote_address_masked (addr);
9943 p += hexnumstr (p, (ULONGEST) addr);
9944 xsnprintf (p, endbuf - p, ",%x", len);
9945 putpkt (rs->buf);
9946 getpkt (&rs->buf, &rs->buf_size, 0);
9947
9948 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9949 {
9950 case PACKET_ERROR:
9951 case PACKET_UNKNOWN:
9952 return -1;
9953 case PACKET_OK:
9954 return 0;
9955 }
9956 internal_error (__FILE__, __LINE__,
9957 _("remote_remove_watchpoint: reached end of function"));
9958 }
9959
9960
9961 int remote_hw_watchpoint_limit = -1;
9962 int remote_hw_watchpoint_length_limit = -1;
9963 int remote_hw_breakpoint_limit = -1;
9964
9965 static int
9966 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9967 CORE_ADDR addr, int len)
9968 {
9969 if (remote_hw_watchpoint_length_limit == 0)
9970 return 0;
9971 else if (remote_hw_watchpoint_length_limit < 0)
9972 return 1;
9973 else if (len <= remote_hw_watchpoint_length_limit)
9974 return 1;
9975 else
9976 return 0;
9977 }
9978
9979 static int
9980 remote_check_watch_resources (struct target_ops *self,
9981 enum bptype type, int cnt, int ot)
9982 {
9983 if (type == bp_hardware_breakpoint)
9984 {
9985 if (remote_hw_breakpoint_limit == 0)
9986 return 0;
9987 else if (remote_hw_breakpoint_limit < 0)
9988 return 1;
9989 else if (cnt <= remote_hw_breakpoint_limit)
9990 return 1;
9991 }
9992 else
9993 {
9994 if (remote_hw_watchpoint_limit == 0)
9995 return 0;
9996 else if (remote_hw_watchpoint_limit < 0)
9997 return 1;
9998 else if (ot)
9999 return -1;
10000 else if (cnt <= remote_hw_watchpoint_limit)
10001 return 1;
10002 }
10003 return -1;
10004 }
10005
10006 /* The to_stopped_by_sw_breakpoint method of target remote. */
10007
10008 static int
10009 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10010 {
10011 struct thread_info *thread = inferior_thread ();
10012
10013 return (thread->priv != NULL
10014 && (get_remote_thread_info (thread)->stop_reason
10015 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10016 }
10017
10018 /* The to_supports_stopped_by_sw_breakpoint method of target
10019 remote. */
10020
10021 static int
10022 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10023 {
10024 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10025 }
10026
10027 /* The to_stopped_by_hw_breakpoint method of target remote. */
10028
10029 static int
10030 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10031 {
10032 struct thread_info *thread = inferior_thread ();
10033
10034 return (thread->priv != NULL
10035 && (get_remote_thread_info (thread)->stop_reason
10036 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10037 }
10038
10039 /* The to_supports_stopped_by_hw_breakpoint method of target
10040 remote. */
10041
10042 static int
10043 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10044 {
10045 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10046 }
10047
10048 static int
10049 remote_stopped_by_watchpoint (struct target_ops *ops)
10050 {
10051 struct thread_info *thread = inferior_thread ();
10052
10053 return (thread->priv != NULL
10054 && (get_remote_thread_info (thread)->stop_reason
10055 == TARGET_STOPPED_BY_WATCHPOINT));
10056 }
10057
10058 static int
10059 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10060 {
10061 struct thread_info *thread = inferior_thread ();
10062
10063 if (thread->priv != NULL
10064 && (get_remote_thread_info (thread)->stop_reason
10065 == TARGET_STOPPED_BY_WATCHPOINT))
10066 {
10067 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10068 return 1;
10069 }
10070
10071 return 0;
10072 }
10073
10074
10075 static int
10076 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10077 struct bp_target_info *bp_tgt)
10078 {
10079 CORE_ADDR addr = bp_tgt->reqstd_address;
10080 struct remote_state *rs;
10081 char *p, *endbuf;
10082 char *message;
10083
10084 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10085 return -1;
10086
10087 /* Make sure the remote is pointing at the right process, if
10088 necessary. */
10089 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10090 set_general_process ();
10091
10092 rs = get_remote_state ();
10093 p = rs->buf;
10094 endbuf = rs->buf + get_remote_packet_size ();
10095
10096 *(p++) = 'Z';
10097 *(p++) = '1';
10098 *(p++) = ',';
10099
10100 addr = remote_address_masked (addr);
10101 p += hexnumstr (p, (ULONGEST) addr);
10102 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10103
10104 if (remote_supports_cond_breakpoints (self))
10105 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10106
10107 if (remote_can_run_breakpoint_commands (self))
10108 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10109
10110 putpkt (rs->buf);
10111 getpkt (&rs->buf, &rs->buf_size, 0);
10112
10113 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10114 {
10115 case PACKET_ERROR:
10116 if (rs->buf[1] == '.')
10117 {
10118 message = strchr (rs->buf + 2, '.');
10119 if (message)
10120 error (_("Remote failure reply: %s"), message + 1);
10121 }
10122 return -1;
10123 case PACKET_UNKNOWN:
10124 return -1;
10125 case PACKET_OK:
10126 return 0;
10127 }
10128 internal_error (__FILE__, __LINE__,
10129 _("remote_insert_hw_breakpoint: reached end of function"));
10130 }
10131
10132
10133 static int
10134 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10135 struct bp_target_info *bp_tgt)
10136 {
10137 CORE_ADDR addr;
10138 struct remote_state *rs = get_remote_state ();
10139 char *p = rs->buf;
10140 char *endbuf = rs->buf + get_remote_packet_size ();
10141
10142 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10143 return -1;
10144
10145 /* Make sure the remote is pointing at the right process, if
10146 necessary. */
10147 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10148 set_general_process ();
10149
10150 *(p++) = 'z';
10151 *(p++) = '1';
10152 *(p++) = ',';
10153
10154 addr = remote_address_masked (bp_tgt->placed_address);
10155 p += hexnumstr (p, (ULONGEST) addr);
10156 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10157
10158 putpkt (rs->buf);
10159 getpkt (&rs->buf, &rs->buf_size, 0);
10160
10161 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10162 {
10163 case PACKET_ERROR:
10164 case PACKET_UNKNOWN:
10165 return -1;
10166 case PACKET_OK:
10167 return 0;
10168 }
10169 internal_error (__FILE__, __LINE__,
10170 _("remote_remove_hw_breakpoint: reached end of function"));
10171 }
10172
10173 /* Verify memory using the "qCRC:" request. */
10174
10175 static int
10176 remote_verify_memory (struct target_ops *ops,
10177 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10178 {
10179 struct remote_state *rs = get_remote_state ();
10180 unsigned long host_crc, target_crc;
10181 char *tmp;
10182
10183 /* It doesn't make sense to use qCRC if the remote target is
10184 connected but not running. */
10185 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10186 {
10187 enum packet_result result;
10188
10189 /* Make sure the remote is pointing at the right process. */
10190 set_general_process ();
10191
10192 /* FIXME: assumes lma can fit into long. */
10193 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10194 (long) lma, (long) size);
10195 putpkt (rs->buf);
10196
10197 /* Be clever; compute the host_crc before waiting for target
10198 reply. */
10199 host_crc = xcrc32 (data, size, 0xffffffff);
10200
10201 getpkt (&rs->buf, &rs->buf_size, 0);
10202
10203 result = packet_ok (rs->buf,
10204 &remote_protocol_packets[PACKET_qCRC]);
10205 if (result == PACKET_ERROR)
10206 return -1;
10207 else if (result == PACKET_OK)
10208 {
10209 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10210 target_crc = target_crc * 16 + fromhex (*tmp);
10211
10212 return (host_crc == target_crc);
10213 }
10214 }
10215
10216 return simple_verify_memory (ops, data, lma, size);
10217 }
10218
10219 /* compare-sections command
10220
10221 With no arguments, compares each loadable section in the exec bfd
10222 with the same memory range on the target, and reports mismatches.
10223 Useful for verifying the image on the target against the exec file. */
10224
10225 static void
10226 compare_sections_command (const char *args, int from_tty)
10227 {
10228 asection *s;
10229 gdb_byte *sectdata;
10230 const char *sectname;
10231 bfd_size_type size;
10232 bfd_vma lma;
10233 int matched = 0;
10234 int mismatched = 0;
10235 int res;
10236 int read_only = 0;
10237
10238 if (!exec_bfd)
10239 error (_("command cannot be used without an exec file"));
10240
10241 /* Make sure the remote is pointing at the right process. */
10242 set_general_process ();
10243
10244 if (args != NULL && strcmp (args, "-r") == 0)
10245 {
10246 read_only = 1;
10247 args = NULL;
10248 }
10249
10250 for (s = exec_bfd->sections; s; s = s->next)
10251 {
10252 if (!(s->flags & SEC_LOAD))
10253 continue; /* Skip non-loadable section. */
10254
10255 if (read_only && (s->flags & SEC_READONLY) == 0)
10256 continue; /* Skip writeable sections */
10257
10258 size = bfd_get_section_size (s);
10259 if (size == 0)
10260 continue; /* Skip zero-length section. */
10261
10262 sectname = bfd_get_section_name (exec_bfd, s);
10263 if (args && strcmp (args, sectname) != 0)
10264 continue; /* Not the section selected by user. */
10265
10266 matched = 1; /* Do this section. */
10267 lma = s->lma;
10268
10269 gdb::byte_vector sectdata (size);
10270 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10271
10272 res = target_verify_memory (sectdata.data (), lma, size);
10273
10274 if (res == -1)
10275 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10276 paddress (target_gdbarch (), lma),
10277 paddress (target_gdbarch (), lma + size));
10278
10279 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10280 paddress (target_gdbarch (), lma),
10281 paddress (target_gdbarch (), lma + size));
10282 if (res)
10283 printf_filtered ("matched.\n");
10284 else
10285 {
10286 printf_filtered ("MIS-MATCHED!\n");
10287 mismatched++;
10288 }
10289 }
10290 if (mismatched > 0)
10291 warning (_("One or more sections of the target image does not match\n\
10292 the loaded file\n"));
10293 if (args && !matched)
10294 printf_filtered (_("No loaded section named '%s'.\n"), args);
10295 }
10296
10297 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10298 into remote target. The number of bytes written to the remote
10299 target is returned, or -1 for error. */
10300
10301 static enum target_xfer_status
10302 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10303 const char *annex, const gdb_byte *writebuf,
10304 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10305 struct packet_config *packet)
10306 {
10307 int i, buf_len;
10308 ULONGEST n;
10309 struct remote_state *rs = get_remote_state ();
10310 int max_size = get_memory_write_packet_size ();
10311
10312 if (packet->support == PACKET_DISABLE)
10313 return TARGET_XFER_E_IO;
10314
10315 /* Insert header. */
10316 i = snprintf (rs->buf, max_size,
10317 "qXfer:%s:write:%s:%s:",
10318 object_name, annex ? annex : "",
10319 phex_nz (offset, sizeof offset));
10320 max_size -= (i + 1);
10321
10322 /* Escape as much data as fits into rs->buf. */
10323 buf_len = remote_escape_output
10324 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10325
10326 if (putpkt_binary (rs->buf, i + buf_len) < 0
10327 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10328 || packet_ok (rs->buf, packet) != PACKET_OK)
10329 return TARGET_XFER_E_IO;
10330
10331 unpack_varlen_hex (rs->buf, &n);
10332
10333 *xfered_len = n;
10334 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10335 }
10336
10337 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10338 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10339 number of bytes read is returned, or 0 for EOF, or -1 for error.
10340 The number of bytes read may be less than LEN without indicating an
10341 EOF. PACKET is checked and updated to indicate whether the remote
10342 target supports this object. */
10343
10344 static enum target_xfer_status
10345 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10346 const char *annex,
10347 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10348 ULONGEST *xfered_len,
10349 struct packet_config *packet)
10350 {
10351 struct remote_state *rs = get_remote_state ();
10352 LONGEST i, n, packet_len;
10353
10354 if (packet->support == PACKET_DISABLE)
10355 return TARGET_XFER_E_IO;
10356
10357 /* Check whether we've cached an end-of-object packet that matches
10358 this request. */
10359 if (rs->finished_object)
10360 {
10361 if (strcmp (object_name, rs->finished_object) == 0
10362 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10363 && offset == rs->finished_offset)
10364 return TARGET_XFER_EOF;
10365
10366
10367 /* Otherwise, we're now reading something different. Discard
10368 the cache. */
10369 xfree (rs->finished_object);
10370 xfree (rs->finished_annex);
10371 rs->finished_object = NULL;
10372 rs->finished_annex = NULL;
10373 }
10374
10375 /* Request only enough to fit in a single packet. The actual data
10376 may not, since we don't know how much of it will need to be escaped;
10377 the target is free to respond with slightly less data. We subtract
10378 five to account for the response type and the protocol frame. */
10379 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10380 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10381 object_name, annex ? annex : "",
10382 phex_nz (offset, sizeof offset),
10383 phex_nz (n, sizeof n));
10384 i = putpkt (rs->buf);
10385 if (i < 0)
10386 return TARGET_XFER_E_IO;
10387
10388 rs->buf[0] = '\0';
10389 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10390 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10391 return TARGET_XFER_E_IO;
10392
10393 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10394 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10395
10396 /* 'm' means there is (or at least might be) more data after this
10397 batch. That does not make sense unless there's at least one byte
10398 of data in this reply. */
10399 if (rs->buf[0] == 'm' && packet_len == 1)
10400 error (_("Remote qXfer reply contained no data."));
10401
10402 /* Got some data. */
10403 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10404 packet_len - 1, readbuf, n);
10405
10406 /* 'l' is an EOF marker, possibly including a final block of data,
10407 or possibly empty. If we have the final block of a non-empty
10408 object, record this fact to bypass a subsequent partial read. */
10409 if (rs->buf[0] == 'l' && offset + i > 0)
10410 {
10411 rs->finished_object = xstrdup (object_name);
10412 rs->finished_annex = xstrdup (annex ? annex : "");
10413 rs->finished_offset = offset + i;
10414 }
10415
10416 if (i == 0)
10417 return TARGET_XFER_EOF;
10418 else
10419 {
10420 *xfered_len = i;
10421 return TARGET_XFER_OK;
10422 }
10423 }
10424
10425 static enum target_xfer_status
10426 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10427 const char *annex, gdb_byte *readbuf,
10428 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10429 ULONGEST *xfered_len)
10430 {
10431 struct remote_state *rs;
10432 int i;
10433 char *p2;
10434 char query_type;
10435 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10436
10437 set_remote_traceframe ();
10438 set_general_thread (inferior_ptid);
10439
10440 rs = get_remote_state ();
10441
10442 /* Handle memory using the standard memory routines. */
10443 if (object == TARGET_OBJECT_MEMORY)
10444 {
10445 /* If the remote target is connected but not running, we should
10446 pass this request down to a lower stratum (e.g. the executable
10447 file). */
10448 if (!target_has_execution)
10449 return TARGET_XFER_EOF;
10450
10451 if (writebuf != NULL)
10452 return remote_write_bytes (offset, writebuf, len, unit_size,
10453 xfered_len);
10454 else
10455 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10456 xfered_len);
10457 }
10458
10459 /* Handle SPU memory using qxfer packets. */
10460 if (object == TARGET_OBJECT_SPU)
10461 {
10462 if (readbuf)
10463 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10464 xfered_len, &remote_protocol_packets
10465 [PACKET_qXfer_spu_read]);
10466 else
10467 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10468 xfered_len, &remote_protocol_packets
10469 [PACKET_qXfer_spu_write]);
10470 }
10471
10472 /* Handle extra signal info using qxfer packets. */
10473 if (object == TARGET_OBJECT_SIGNAL_INFO)
10474 {
10475 if (readbuf)
10476 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10477 xfered_len, &remote_protocol_packets
10478 [PACKET_qXfer_siginfo_read]);
10479 else
10480 return remote_write_qxfer (ops, "siginfo", annex,
10481 writebuf, offset, len, xfered_len,
10482 &remote_protocol_packets
10483 [PACKET_qXfer_siginfo_write]);
10484 }
10485
10486 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10487 {
10488 if (readbuf)
10489 return remote_read_qxfer (ops, "statictrace", annex,
10490 readbuf, offset, len, xfered_len,
10491 &remote_protocol_packets
10492 [PACKET_qXfer_statictrace_read]);
10493 else
10494 return TARGET_XFER_E_IO;
10495 }
10496
10497 /* Only handle flash writes. */
10498 if (writebuf != NULL)
10499 {
10500 switch (object)
10501 {
10502 case TARGET_OBJECT_FLASH:
10503 return remote_flash_write (ops, offset, len, xfered_len,
10504 writebuf);
10505
10506 default:
10507 return TARGET_XFER_E_IO;
10508 }
10509 }
10510
10511 /* Map pre-existing objects onto letters. DO NOT do this for new
10512 objects!!! Instead specify new query packets. */
10513 switch (object)
10514 {
10515 case TARGET_OBJECT_AVR:
10516 query_type = 'R';
10517 break;
10518
10519 case TARGET_OBJECT_AUXV:
10520 gdb_assert (annex == NULL);
10521 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10522 xfered_len,
10523 &remote_protocol_packets[PACKET_qXfer_auxv]);
10524
10525 case TARGET_OBJECT_AVAILABLE_FEATURES:
10526 return remote_read_qxfer
10527 (ops, "features", annex, readbuf, offset, len, xfered_len,
10528 &remote_protocol_packets[PACKET_qXfer_features]);
10529
10530 case TARGET_OBJECT_LIBRARIES:
10531 return remote_read_qxfer
10532 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10533 &remote_protocol_packets[PACKET_qXfer_libraries]);
10534
10535 case TARGET_OBJECT_LIBRARIES_SVR4:
10536 return remote_read_qxfer
10537 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10538 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10539
10540 case TARGET_OBJECT_MEMORY_MAP:
10541 gdb_assert (annex == NULL);
10542 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10543 xfered_len,
10544 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10545
10546 case TARGET_OBJECT_OSDATA:
10547 /* Should only get here if we're connected. */
10548 gdb_assert (rs->remote_desc);
10549 return remote_read_qxfer
10550 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10551 &remote_protocol_packets[PACKET_qXfer_osdata]);
10552
10553 case TARGET_OBJECT_THREADS:
10554 gdb_assert (annex == NULL);
10555 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10556 xfered_len,
10557 &remote_protocol_packets[PACKET_qXfer_threads]);
10558
10559 case TARGET_OBJECT_TRACEFRAME_INFO:
10560 gdb_assert (annex == NULL);
10561 return remote_read_qxfer
10562 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10563 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10564
10565 case TARGET_OBJECT_FDPIC:
10566 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10567 xfered_len,
10568 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10569
10570 case TARGET_OBJECT_OPENVMS_UIB:
10571 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10572 xfered_len,
10573 &remote_protocol_packets[PACKET_qXfer_uib]);
10574
10575 case TARGET_OBJECT_BTRACE:
10576 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10577 xfered_len,
10578 &remote_protocol_packets[PACKET_qXfer_btrace]);
10579
10580 case TARGET_OBJECT_BTRACE_CONF:
10581 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10582 len, xfered_len,
10583 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10584
10585 case TARGET_OBJECT_EXEC_FILE:
10586 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10587 len, xfered_len,
10588 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10589
10590 default:
10591 return TARGET_XFER_E_IO;
10592 }
10593
10594 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10595 large enough let the caller deal with it. */
10596 if (len < get_remote_packet_size ())
10597 return TARGET_XFER_E_IO;
10598 len = get_remote_packet_size ();
10599
10600 /* Except for querying the minimum buffer size, target must be open. */
10601 if (!rs->remote_desc)
10602 error (_("remote query is only available after target open"));
10603
10604 gdb_assert (annex != NULL);
10605 gdb_assert (readbuf != NULL);
10606
10607 p2 = rs->buf;
10608 *p2++ = 'q';
10609 *p2++ = query_type;
10610
10611 /* We used one buffer char for the remote protocol q command and
10612 another for the query type. As the remote protocol encapsulation
10613 uses 4 chars plus one extra in case we are debugging
10614 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10615 string. */
10616 i = 0;
10617 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10618 {
10619 /* Bad caller may have sent forbidden characters. */
10620 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10621 *p2++ = annex[i];
10622 i++;
10623 }
10624 *p2 = '\0';
10625 gdb_assert (annex[i] == '\0');
10626
10627 i = putpkt (rs->buf);
10628 if (i < 0)
10629 return TARGET_XFER_E_IO;
10630
10631 getpkt (&rs->buf, &rs->buf_size, 0);
10632 strcpy ((char *) readbuf, rs->buf);
10633
10634 *xfered_len = strlen ((char *) readbuf);
10635 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10636 }
10637
10638 /* Implementation of to_get_memory_xfer_limit. */
10639
10640 static ULONGEST
10641 remote_get_memory_xfer_limit (struct target_ops *ops)
10642 {
10643 return get_memory_write_packet_size ();
10644 }
10645
10646 static int
10647 remote_search_memory (struct target_ops* ops,
10648 CORE_ADDR start_addr, ULONGEST search_space_len,
10649 const gdb_byte *pattern, ULONGEST pattern_len,
10650 CORE_ADDR *found_addrp)
10651 {
10652 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10653 struct remote_state *rs = get_remote_state ();
10654 int max_size = get_memory_write_packet_size ();
10655 struct packet_config *packet =
10656 &remote_protocol_packets[PACKET_qSearch_memory];
10657 /* Number of packet bytes used to encode the pattern;
10658 this could be more than PATTERN_LEN due to escape characters. */
10659 int escaped_pattern_len;
10660 /* Amount of pattern that was encodable in the packet. */
10661 int used_pattern_len;
10662 int i;
10663 int found;
10664 ULONGEST found_addr;
10665
10666 /* Don't go to the target if we don't have to.
10667 This is done before checking packet->support to avoid the possibility that
10668 a success for this edge case means the facility works in general. */
10669 if (pattern_len > search_space_len)
10670 return 0;
10671 if (pattern_len == 0)
10672 {
10673 *found_addrp = start_addr;
10674 return 1;
10675 }
10676
10677 /* If we already know the packet isn't supported, fall back to the simple
10678 way of searching memory. */
10679
10680 if (packet_config_support (packet) == PACKET_DISABLE)
10681 {
10682 /* Target doesn't provided special support, fall back and use the
10683 standard support (copy memory and do the search here). */
10684 return simple_search_memory (ops, start_addr, search_space_len,
10685 pattern, pattern_len, found_addrp);
10686 }
10687
10688 /* Make sure the remote is pointing at the right process. */
10689 set_general_process ();
10690
10691 /* Insert header. */
10692 i = snprintf (rs->buf, max_size,
10693 "qSearch:memory:%s;%s;",
10694 phex_nz (start_addr, addr_size),
10695 phex_nz (search_space_len, sizeof (search_space_len)));
10696 max_size -= (i + 1);
10697
10698 /* Escape as much data as fits into rs->buf. */
10699 escaped_pattern_len =
10700 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10701 &used_pattern_len, max_size);
10702
10703 /* Bail if the pattern is too large. */
10704 if (used_pattern_len != pattern_len)
10705 error (_("Pattern is too large to transmit to remote target."));
10706
10707 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10708 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10709 || packet_ok (rs->buf, packet) != PACKET_OK)
10710 {
10711 /* The request may not have worked because the command is not
10712 supported. If so, fall back to the simple way. */
10713 if (packet->support == PACKET_DISABLE)
10714 {
10715 return simple_search_memory (ops, start_addr, search_space_len,
10716 pattern, pattern_len, found_addrp);
10717 }
10718 return -1;
10719 }
10720
10721 if (rs->buf[0] == '0')
10722 found = 0;
10723 else if (rs->buf[0] == '1')
10724 {
10725 found = 1;
10726 if (rs->buf[1] != ',')
10727 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10728 unpack_varlen_hex (rs->buf + 2, &found_addr);
10729 *found_addrp = found_addr;
10730 }
10731 else
10732 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10733
10734 return found;
10735 }
10736
10737 static void
10738 remote_rcmd (struct target_ops *self, const char *command,
10739 struct ui_file *outbuf)
10740 {
10741 struct remote_state *rs = get_remote_state ();
10742 char *p = rs->buf;
10743
10744 if (!rs->remote_desc)
10745 error (_("remote rcmd is only available after target open"));
10746
10747 /* Send a NULL command across as an empty command. */
10748 if (command == NULL)
10749 command = "";
10750
10751 /* The query prefix. */
10752 strcpy (rs->buf, "qRcmd,");
10753 p = strchr (rs->buf, '\0');
10754
10755 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10756 > get_remote_packet_size ())
10757 error (_("\"monitor\" command ``%s'' is too long."), command);
10758
10759 /* Encode the actual command. */
10760 bin2hex ((const gdb_byte *) command, p, strlen (command));
10761
10762 if (putpkt (rs->buf) < 0)
10763 error (_("Communication problem with target."));
10764
10765 /* get/display the response */
10766 while (1)
10767 {
10768 char *buf;
10769
10770 /* XXX - see also remote_get_noisy_reply(). */
10771 QUIT; /* Allow user to bail out with ^C. */
10772 rs->buf[0] = '\0';
10773 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10774 {
10775 /* Timeout. Continue to (try to) read responses.
10776 This is better than stopping with an error, assuming the stub
10777 is still executing the (long) monitor command.
10778 If needed, the user can interrupt gdb using C-c, obtaining
10779 an effect similar to stop on timeout. */
10780 continue;
10781 }
10782 buf = rs->buf;
10783 if (buf[0] == '\0')
10784 error (_("Target does not support this command."));
10785 if (buf[0] == 'O' && buf[1] != 'K')
10786 {
10787 remote_console_output (buf + 1); /* 'O' message from stub. */
10788 continue;
10789 }
10790 if (strcmp (buf, "OK") == 0)
10791 break;
10792 if (strlen (buf) == 3 && buf[0] == 'E'
10793 && isdigit (buf[1]) && isdigit (buf[2]))
10794 {
10795 error (_("Protocol error with Rcmd"));
10796 }
10797 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10798 {
10799 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10800
10801 fputc_unfiltered (c, outbuf);
10802 }
10803 break;
10804 }
10805 }
10806
10807 static std::vector<mem_region>
10808 remote_memory_map (struct target_ops *ops)
10809 {
10810 std::vector<mem_region> result;
10811 gdb::unique_xmalloc_ptr<char> text
10812 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10813
10814 if (text)
10815 result = parse_memory_map (text.get ());
10816
10817 return result;
10818 }
10819
10820 static void
10821 packet_command (const char *args, int from_tty)
10822 {
10823 struct remote_state *rs = get_remote_state ();
10824
10825 if (!rs->remote_desc)
10826 error (_("command can only be used with remote target"));
10827
10828 if (!args)
10829 error (_("remote-packet command requires packet text as argument"));
10830
10831 puts_filtered ("sending: ");
10832 print_packet (args);
10833 puts_filtered ("\n");
10834 putpkt (args);
10835
10836 getpkt (&rs->buf, &rs->buf_size, 0);
10837 puts_filtered ("received: ");
10838 print_packet (rs->buf);
10839 puts_filtered ("\n");
10840 }
10841
10842 #if 0
10843 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10844
10845 static void display_thread_info (struct gdb_ext_thread_info *info);
10846
10847 static void threadset_test_cmd (char *cmd, int tty);
10848
10849 static void threadalive_test (char *cmd, int tty);
10850
10851 static void threadlist_test_cmd (char *cmd, int tty);
10852
10853 int get_and_display_threadinfo (threadref *ref);
10854
10855 static void threadinfo_test_cmd (char *cmd, int tty);
10856
10857 static int thread_display_step (threadref *ref, void *context);
10858
10859 static void threadlist_update_test_cmd (char *cmd, int tty);
10860
10861 static void init_remote_threadtests (void);
10862
10863 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10864
10865 static void
10866 threadset_test_cmd (const char *cmd, int tty)
10867 {
10868 int sample_thread = SAMPLE_THREAD;
10869
10870 printf_filtered (_("Remote threadset test\n"));
10871 set_general_thread (sample_thread);
10872 }
10873
10874
10875 static void
10876 threadalive_test (const char *cmd, int tty)
10877 {
10878 int sample_thread = SAMPLE_THREAD;
10879 int pid = ptid_get_pid (inferior_ptid);
10880 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10881
10882 if (remote_thread_alive (ptid))
10883 printf_filtered ("PASS: Thread alive test\n");
10884 else
10885 printf_filtered ("FAIL: Thread alive test\n");
10886 }
10887
10888 void output_threadid (char *title, threadref *ref);
10889
10890 void
10891 output_threadid (char *title, threadref *ref)
10892 {
10893 char hexid[20];
10894
10895 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10896 hexid[16] = 0;
10897 printf_filtered ("%s %s\n", title, (&hexid[0]));
10898 }
10899
10900 static void
10901 threadlist_test_cmd (const char *cmd, int tty)
10902 {
10903 int startflag = 1;
10904 threadref nextthread;
10905 int done, result_count;
10906 threadref threadlist[3];
10907
10908 printf_filtered ("Remote Threadlist test\n");
10909 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10910 &result_count, &threadlist[0]))
10911 printf_filtered ("FAIL: threadlist test\n");
10912 else
10913 {
10914 threadref *scan = threadlist;
10915 threadref *limit = scan + result_count;
10916
10917 while (scan < limit)
10918 output_threadid (" thread ", scan++);
10919 }
10920 }
10921
10922 void
10923 display_thread_info (struct gdb_ext_thread_info *info)
10924 {
10925 output_threadid ("Threadid: ", &info->threadid);
10926 printf_filtered ("Name: %s\n ", info->shortname);
10927 printf_filtered ("State: %s\n", info->display);
10928 printf_filtered ("other: %s\n\n", info->more_display);
10929 }
10930
10931 int
10932 get_and_display_threadinfo (threadref *ref)
10933 {
10934 int result;
10935 int set;
10936 struct gdb_ext_thread_info threadinfo;
10937
10938 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10939 | TAG_MOREDISPLAY | TAG_DISPLAY;
10940 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10941 display_thread_info (&threadinfo);
10942 return result;
10943 }
10944
10945 static void
10946 threadinfo_test_cmd (const char *cmd, int tty)
10947 {
10948 int athread = SAMPLE_THREAD;
10949 threadref thread;
10950 int set;
10951
10952 int_to_threadref (&thread, athread);
10953 printf_filtered ("Remote Threadinfo test\n");
10954 if (!get_and_display_threadinfo (&thread))
10955 printf_filtered ("FAIL cannot get thread info\n");
10956 }
10957
10958 static int
10959 thread_display_step (threadref *ref, void *context)
10960 {
10961 /* output_threadid(" threadstep ",ref); *//* simple test */
10962 return get_and_display_threadinfo (ref);
10963 }
10964
10965 static void
10966 threadlist_update_test_cmd (const char *cmd, int tty)
10967 {
10968 printf_filtered ("Remote Threadlist update test\n");
10969 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10970 }
10971
10972 static void
10973 init_remote_threadtests (void)
10974 {
10975 add_com ("tlist", class_obscure, threadlist_test_cmd,
10976 _("Fetch and print the remote list of "
10977 "thread identifiers, one pkt only"));
10978 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10979 _("Fetch and display info about one thread"));
10980 add_com ("tset", class_obscure, threadset_test_cmd,
10981 _("Test setting to a different thread"));
10982 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10983 _("Iterate through updating all remote thread info"));
10984 add_com ("talive", class_obscure, threadalive_test,
10985 _(" Remote thread alive test "));
10986 }
10987
10988 #endif /* 0 */
10989
10990 /* Convert a thread ID to a string. Returns the string in a static
10991 buffer. */
10992
10993 static const char *
10994 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10995 {
10996 static char buf[64];
10997 struct remote_state *rs = get_remote_state ();
10998
10999 if (ptid_equal (ptid, null_ptid))
11000 return normal_pid_to_str (ptid);
11001 else if (ptid_is_pid (ptid))
11002 {
11003 /* Printing an inferior target id. */
11004
11005 /* When multi-process extensions are off, there's no way in the
11006 remote protocol to know the remote process id, if there's any
11007 at all. There's one exception --- when we're connected with
11008 target extended-remote, and we manually attached to a process
11009 with "attach PID". We don't record anywhere a flag that
11010 allows us to distinguish that case from the case of
11011 connecting with extended-remote and the stub already being
11012 attached to a process, and reporting yes to qAttached, hence
11013 no smart special casing here. */
11014 if (!remote_multi_process_p (rs))
11015 {
11016 xsnprintf (buf, sizeof buf, "Remote target");
11017 return buf;
11018 }
11019
11020 return normal_pid_to_str (ptid);
11021 }
11022 else
11023 {
11024 if (ptid_equal (magic_null_ptid, ptid))
11025 xsnprintf (buf, sizeof buf, "Thread <main>");
11026 else if (remote_multi_process_p (rs))
11027 if (ptid_get_lwp (ptid) == 0)
11028 return normal_pid_to_str (ptid);
11029 else
11030 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11031 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11032 else
11033 xsnprintf (buf, sizeof buf, "Thread %ld",
11034 ptid_get_lwp (ptid));
11035 return buf;
11036 }
11037 }
11038
11039 /* Get the address of the thread local variable in OBJFILE which is
11040 stored at OFFSET within the thread local storage for thread PTID. */
11041
11042 static CORE_ADDR
11043 remote_get_thread_local_address (struct target_ops *ops,
11044 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11045 {
11046 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11047 {
11048 struct remote_state *rs = get_remote_state ();
11049 char *p = rs->buf;
11050 char *endp = rs->buf + get_remote_packet_size ();
11051 enum packet_result result;
11052
11053 strcpy (p, "qGetTLSAddr:");
11054 p += strlen (p);
11055 p = write_ptid (p, endp, ptid);
11056 *p++ = ',';
11057 p += hexnumstr (p, offset);
11058 *p++ = ',';
11059 p += hexnumstr (p, lm);
11060 *p++ = '\0';
11061
11062 putpkt (rs->buf);
11063 getpkt (&rs->buf, &rs->buf_size, 0);
11064 result = packet_ok (rs->buf,
11065 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11066 if (result == PACKET_OK)
11067 {
11068 ULONGEST result;
11069
11070 unpack_varlen_hex (rs->buf, &result);
11071 return result;
11072 }
11073 else if (result == PACKET_UNKNOWN)
11074 throw_error (TLS_GENERIC_ERROR,
11075 _("Remote target doesn't support qGetTLSAddr packet"));
11076 else
11077 throw_error (TLS_GENERIC_ERROR,
11078 _("Remote target failed to process qGetTLSAddr request"));
11079 }
11080 else
11081 throw_error (TLS_GENERIC_ERROR,
11082 _("TLS not supported or disabled on this target"));
11083 /* Not reached. */
11084 return 0;
11085 }
11086
11087 /* Provide thread local base, i.e. Thread Information Block address.
11088 Returns 1 if ptid is found and thread_local_base is non zero. */
11089
11090 static int
11091 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11092 {
11093 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11094 {
11095 struct remote_state *rs = get_remote_state ();
11096 char *p = rs->buf;
11097 char *endp = rs->buf + get_remote_packet_size ();
11098 enum packet_result result;
11099
11100 strcpy (p, "qGetTIBAddr:");
11101 p += strlen (p);
11102 p = write_ptid (p, endp, ptid);
11103 *p++ = '\0';
11104
11105 putpkt (rs->buf);
11106 getpkt (&rs->buf, &rs->buf_size, 0);
11107 result = packet_ok (rs->buf,
11108 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11109 if (result == PACKET_OK)
11110 {
11111 ULONGEST result;
11112
11113 unpack_varlen_hex (rs->buf, &result);
11114 if (addr)
11115 *addr = (CORE_ADDR) result;
11116 return 1;
11117 }
11118 else if (result == PACKET_UNKNOWN)
11119 error (_("Remote target doesn't support qGetTIBAddr packet"));
11120 else
11121 error (_("Remote target failed to process qGetTIBAddr request"));
11122 }
11123 else
11124 error (_("qGetTIBAddr not supported or disabled on this target"));
11125 /* Not reached. */
11126 return 0;
11127 }
11128
11129 /* Support for inferring a target description based on the current
11130 architecture and the size of a 'g' packet. While the 'g' packet
11131 can have any size (since optional registers can be left off the
11132 end), some sizes are easily recognizable given knowledge of the
11133 approximate architecture. */
11134
11135 struct remote_g_packet_guess
11136 {
11137 int bytes;
11138 const struct target_desc *tdesc;
11139 };
11140 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11141 DEF_VEC_O(remote_g_packet_guess_s);
11142
11143 struct remote_g_packet_data
11144 {
11145 VEC(remote_g_packet_guess_s) *guesses;
11146 };
11147
11148 static struct gdbarch_data *remote_g_packet_data_handle;
11149
11150 static void *
11151 remote_g_packet_data_init (struct obstack *obstack)
11152 {
11153 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11154 }
11155
11156 void
11157 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11158 const struct target_desc *tdesc)
11159 {
11160 struct remote_g_packet_data *data
11161 = ((struct remote_g_packet_data *)
11162 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11163 struct remote_g_packet_guess new_guess, *guess;
11164 int ix;
11165
11166 gdb_assert (tdesc != NULL);
11167
11168 for (ix = 0;
11169 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11170 ix++)
11171 if (guess->bytes == bytes)
11172 internal_error (__FILE__, __LINE__,
11173 _("Duplicate g packet description added for size %d"),
11174 bytes);
11175
11176 new_guess.bytes = bytes;
11177 new_guess.tdesc = tdesc;
11178 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11179 }
11180
11181 /* Return 1 if remote_read_description would do anything on this target
11182 and architecture, 0 otherwise. */
11183
11184 static int
11185 remote_read_description_p (struct target_ops *target)
11186 {
11187 struct remote_g_packet_data *data
11188 = ((struct remote_g_packet_data *)
11189 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11190
11191 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11192 return 1;
11193
11194 return 0;
11195 }
11196
11197 static const struct target_desc *
11198 remote_read_description (struct target_ops *target)
11199 {
11200 struct remote_g_packet_data *data
11201 = ((struct remote_g_packet_data *)
11202 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11203
11204 /* Do not try this during initial connection, when we do not know
11205 whether there is a running but stopped thread. */
11206 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11207 return target->beneath->to_read_description (target->beneath);
11208
11209 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11210 {
11211 struct remote_g_packet_guess *guess;
11212 int ix;
11213 int bytes = send_g_packet ();
11214
11215 for (ix = 0;
11216 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11217 ix++)
11218 if (guess->bytes == bytes)
11219 return guess->tdesc;
11220
11221 /* We discard the g packet. A minor optimization would be to
11222 hold on to it, and fill the register cache once we have selected
11223 an architecture, but it's too tricky to do safely. */
11224 }
11225
11226 return target->beneath->to_read_description (target->beneath);
11227 }
11228
11229 /* Remote file transfer support. This is host-initiated I/O, not
11230 target-initiated; for target-initiated, see remote-fileio.c. */
11231
11232 /* If *LEFT is at least the length of STRING, copy STRING to
11233 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11234 decrease *LEFT. Otherwise raise an error. */
11235
11236 static void
11237 remote_buffer_add_string (char **buffer, int *left, const char *string)
11238 {
11239 int len = strlen (string);
11240
11241 if (len > *left)
11242 error (_("Packet too long for target."));
11243
11244 memcpy (*buffer, string, len);
11245 *buffer += len;
11246 *left -= len;
11247
11248 /* NUL-terminate the buffer as a convenience, if there is
11249 room. */
11250 if (*left)
11251 **buffer = '\0';
11252 }
11253
11254 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11255 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11256 decrease *LEFT. Otherwise raise an error. */
11257
11258 static void
11259 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11260 int len)
11261 {
11262 if (2 * len > *left)
11263 error (_("Packet too long for target."));
11264
11265 bin2hex (bytes, *buffer, len);
11266 *buffer += 2 * len;
11267 *left -= 2 * len;
11268
11269 /* NUL-terminate the buffer as a convenience, if there is
11270 room. */
11271 if (*left)
11272 **buffer = '\0';
11273 }
11274
11275 /* If *LEFT is large enough, convert VALUE to hex and add it to
11276 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11277 decrease *LEFT. Otherwise raise an error. */
11278
11279 static void
11280 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11281 {
11282 int len = hexnumlen (value);
11283
11284 if (len > *left)
11285 error (_("Packet too long for target."));
11286
11287 hexnumstr (*buffer, value);
11288 *buffer += len;
11289 *left -= len;
11290
11291 /* NUL-terminate the buffer as a convenience, if there is
11292 room. */
11293 if (*left)
11294 **buffer = '\0';
11295 }
11296
11297 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11298 value, *REMOTE_ERRNO to the remote error number or zero if none
11299 was included, and *ATTACHMENT to point to the start of the annex
11300 if any. The length of the packet isn't needed here; there may
11301 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11302
11303 Return 0 if the packet could be parsed, -1 if it could not. If
11304 -1 is returned, the other variables may not be initialized. */
11305
11306 static int
11307 remote_hostio_parse_result (char *buffer, int *retcode,
11308 int *remote_errno, char **attachment)
11309 {
11310 char *p, *p2;
11311
11312 *remote_errno = 0;
11313 *attachment = NULL;
11314
11315 if (buffer[0] != 'F')
11316 return -1;
11317
11318 errno = 0;
11319 *retcode = strtol (&buffer[1], &p, 16);
11320 if (errno != 0 || p == &buffer[1])
11321 return -1;
11322
11323 /* Check for ",errno". */
11324 if (*p == ',')
11325 {
11326 errno = 0;
11327 *remote_errno = strtol (p + 1, &p2, 16);
11328 if (errno != 0 || p + 1 == p2)
11329 return -1;
11330 p = p2;
11331 }
11332
11333 /* Check for ";attachment". If there is no attachment, the
11334 packet should end here. */
11335 if (*p == ';')
11336 {
11337 *attachment = p + 1;
11338 return 0;
11339 }
11340 else if (*p == '\0')
11341 return 0;
11342 else
11343 return -1;
11344 }
11345
11346 /* Send a prepared I/O packet to the target and read its response.
11347 The prepared packet is in the global RS->BUF before this function
11348 is called, and the answer is there when we return.
11349
11350 COMMAND_BYTES is the length of the request to send, which may include
11351 binary data. WHICH_PACKET is the packet configuration to check
11352 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11353 is set to the error number and -1 is returned. Otherwise the value
11354 returned by the function is returned.
11355
11356 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11357 attachment is expected; an error will be reported if there's a
11358 mismatch. If one is found, *ATTACHMENT will be set to point into
11359 the packet buffer and *ATTACHMENT_LEN will be set to the
11360 attachment's length. */
11361
11362 static int
11363 remote_hostio_send_command (int command_bytes, int which_packet,
11364 int *remote_errno, char **attachment,
11365 int *attachment_len)
11366 {
11367 struct remote_state *rs = get_remote_state ();
11368 int ret, bytes_read;
11369 char *attachment_tmp;
11370
11371 if (!rs->remote_desc
11372 || packet_support (which_packet) == PACKET_DISABLE)
11373 {
11374 *remote_errno = FILEIO_ENOSYS;
11375 return -1;
11376 }
11377
11378 putpkt_binary (rs->buf, command_bytes);
11379 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11380
11381 /* If it timed out, something is wrong. Don't try to parse the
11382 buffer. */
11383 if (bytes_read < 0)
11384 {
11385 *remote_errno = FILEIO_EINVAL;
11386 return -1;
11387 }
11388
11389 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11390 {
11391 case PACKET_ERROR:
11392 *remote_errno = FILEIO_EINVAL;
11393 return -1;
11394 case PACKET_UNKNOWN:
11395 *remote_errno = FILEIO_ENOSYS;
11396 return -1;
11397 case PACKET_OK:
11398 break;
11399 }
11400
11401 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11402 &attachment_tmp))
11403 {
11404 *remote_errno = FILEIO_EINVAL;
11405 return -1;
11406 }
11407
11408 /* Make sure we saw an attachment if and only if we expected one. */
11409 if ((attachment_tmp == NULL && attachment != NULL)
11410 || (attachment_tmp != NULL && attachment == NULL))
11411 {
11412 *remote_errno = FILEIO_EINVAL;
11413 return -1;
11414 }
11415
11416 /* If an attachment was found, it must point into the packet buffer;
11417 work out how many bytes there were. */
11418 if (attachment_tmp != NULL)
11419 {
11420 *attachment = attachment_tmp;
11421 *attachment_len = bytes_read - (*attachment - rs->buf);
11422 }
11423
11424 return ret;
11425 }
11426
11427 /* Invalidate the readahead cache. */
11428
11429 static void
11430 readahead_cache_invalidate (void)
11431 {
11432 struct remote_state *rs = get_remote_state ();
11433
11434 rs->readahead_cache.fd = -1;
11435 }
11436
11437 /* Invalidate the readahead cache if it is holding data for FD. */
11438
11439 static void
11440 readahead_cache_invalidate_fd (int fd)
11441 {
11442 struct remote_state *rs = get_remote_state ();
11443
11444 if (rs->readahead_cache.fd == fd)
11445 rs->readahead_cache.fd = -1;
11446 }
11447
11448 /* Set the filesystem remote_hostio functions that take FILENAME
11449 arguments will use. Return 0 on success, or -1 if an error
11450 occurs (and set *REMOTE_ERRNO). */
11451
11452 static int
11453 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11454 {
11455 struct remote_state *rs = get_remote_state ();
11456 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11457 char *p = rs->buf;
11458 int left = get_remote_packet_size () - 1;
11459 char arg[9];
11460 int ret;
11461
11462 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11463 return 0;
11464
11465 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11466 return 0;
11467
11468 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11469
11470 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11471 remote_buffer_add_string (&p, &left, arg);
11472
11473 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11474 remote_errno, NULL, NULL);
11475
11476 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11477 return 0;
11478
11479 if (ret == 0)
11480 rs->fs_pid = required_pid;
11481
11482 return ret;
11483 }
11484
11485 /* Implementation of to_fileio_open. */
11486
11487 static int
11488 remote_hostio_open (struct target_ops *self,
11489 struct inferior *inf, const char *filename,
11490 int flags, int mode, int warn_if_slow,
11491 int *remote_errno)
11492 {
11493 struct remote_state *rs = get_remote_state ();
11494 char *p = rs->buf;
11495 int left = get_remote_packet_size () - 1;
11496
11497 if (warn_if_slow)
11498 {
11499 static int warning_issued = 0;
11500
11501 printf_unfiltered (_("Reading %s from remote target...\n"),
11502 filename);
11503
11504 if (!warning_issued)
11505 {
11506 warning (_("File transfers from remote targets can be slow."
11507 " Use \"set sysroot\" to access files locally"
11508 " instead."));
11509 warning_issued = 1;
11510 }
11511 }
11512
11513 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11514 return -1;
11515
11516 remote_buffer_add_string (&p, &left, "vFile:open:");
11517
11518 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11519 strlen (filename));
11520 remote_buffer_add_string (&p, &left, ",");
11521
11522 remote_buffer_add_int (&p, &left, flags);
11523 remote_buffer_add_string (&p, &left, ",");
11524
11525 remote_buffer_add_int (&p, &left, mode);
11526
11527 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11528 remote_errno, NULL, NULL);
11529 }
11530
11531 /* Implementation of to_fileio_pwrite. */
11532
11533 static int
11534 remote_hostio_pwrite (struct target_ops *self,
11535 int fd, const gdb_byte *write_buf, int len,
11536 ULONGEST offset, int *remote_errno)
11537 {
11538 struct remote_state *rs = get_remote_state ();
11539 char *p = rs->buf;
11540 int left = get_remote_packet_size ();
11541 int out_len;
11542
11543 readahead_cache_invalidate_fd (fd);
11544
11545 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11546
11547 remote_buffer_add_int (&p, &left, fd);
11548 remote_buffer_add_string (&p, &left, ",");
11549
11550 remote_buffer_add_int (&p, &left, offset);
11551 remote_buffer_add_string (&p, &left, ",");
11552
11553 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11554 get_remote_packet_size () - (p - rs->buf));
11555
11556 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11557 remote_errno, NULL, NULL);
11558 }
11559
11560 /* Helper for the implementation of to_fileio_pread. Read the file
11561 from the remote side with vFile:pread. */
11562
11563 static int
11564 remote_hostio_pread_vFile (struct target_ops *self,
11565 int fd, gdb_byte *read_buf, int len,
11566 ULONGEST offset, int *remote_errno)
11567 {
11568 struct remote_state *rs = get_remote_state ();
11569 char *p = rs->buf;
11570 char *attachment;
11571 int left = get_remote_packet_size ();
11572 int ret, attachment_len;
11573 int read_len;
11574
11575 remote_buffer_add_string (&p, &left, "vFile:pread:");
11576
11577 remote_buffer_add_int (&p, &left, fd);
11578 remote_buffer_add_string (&p, &left, ",");
11579
11580 remote_buffer_add_int (&p, &left, len);
11581 remote_buffer_add_string (&p, &left, ",");
11582
11583 remote_buffer_add_int (&p, &left, offset);
11584
11585 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11586 remote_errno, &attachment,
11587 &attachment_len);
11588
11589 if (ret < 0)
11590 return ret;
11591
11592 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11593 read_buf, len);
11594 if (read_len != ret)
11595 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11596
11597 return ret;
11598 }
11599
11600 /* Serve pread from the readahead cache. Returns number of bytes
11601 read, or 0 if the request can't be served from the cache. */
11602
11603 static int
11604 remote_hostio_pread_from_cache (struct remote_state *rs,
11605 int fd, gdb_byte *read_buf, size_t len,
11606 ULONGEST offset)
11607 {
11608 struct readahead_cache *cache = &rs->readahead_cache;
11609
11610 if (cache->fd == fd
11611 && cache->offset <= offset
11612 && offset < cache->offset + cache->bufsize)
11613 {
11614 ULONGEST max = cache->offset + cache->bufsize;
11615
11616 if (offset + len > max)
11617 len = max - offset;
11618
11619 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11620 return len;
11621 }
11622
11623 return 0;
11624 }
11625
11626 /* Implementation of to_fileio_pread. */
11627
11628 static int
11629 remote_hostio_pread (struct target_ops *self,
11630 int fd, gdb_byte *read_buf, int len,
11631 ULONGEST offset, int *remote_errno)
11632 {
11633 int ret;
11634 struct remote_state *rs = get_remote_state ();
11635 struct readahead_cache *cache = &rs->readahead_cache;
11636
11637 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11638 if (ret > 0)
11639 {
11640 cache->hit_count++;
11641
11642 if (remote_debug)
11643 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11644 pulongest (cache->hit_count));
11645 return ret;
11646 }
11647
11648 cache->miss_count++;
11649 if (remote_debug)
11650 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11651 pulongest (cache->miss_count));
11652
11653 cache->fd = fd;
11654 cache->offset = offset;
11655 cache->bufsize = get_remote_packet_size ();
11656 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11657
11658 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11659 cache->offset, remote_errno);
11660 if (ret <= 0)
11661 {
11662 readahead_cache_invalidate_fd (fd);
11663 return ret;
11664 }
11665
11666 cache->bufsize = ret;
11667 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11668 }
11669
11670 /* Implementation of to_fileio_close. */
11671
11672 static int
11673 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11674 {
11675 struct remote_state *rs = get_remote_state ();
11676 char *p = rs->buf;
11677 int left = get_remote_packet_size () - 1;
11678
11679 readahead_cache_invalidate_fd (fd);
11680
11681 remote_buffer_add_string (&p, &left, "vFile:close:");
11682
11683 remote_buffer_add_int (&p, &left, fd);
11684
11685 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11686 remote_errno, NULL, NULL);
11687 }
11688
11689 /* Implementation of to_fileio_unlink. */
11690
11691 static int
11692 remote_hostio_unlink (struct target_ops *self,
11693 struct inferior *inf, const char *filename,
11694 int *remote_errno)
11695 {
11696 struct remote_state *rs = get_remote_state ();
11697 char *p = rs->buf;
11698 int left = get_remote_packet_size () - 1;
11699
11700 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11701 return -1;
11702
11703 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11704
11705 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11706 strlen (filename));
11707
11708 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11709 remote_errno, NULL, NULL);
11710 }
11711
11712 /* Implementation of to_fileio_readlink. */
11713
11714 static char *
11715 remote_hostio_readlink (struct target_ops *self,
11716 struct inferior *inf, const char *filename,
11717 int *remote_errno)
11718 {
11719 struct remote_state *rs = get_remote_state ();
11720 char *p = rs->buf;
11721 char *attachment;
11722 int left = get_remote_packet_size ();
11723 int len, attachment_len;
11724 int read_len;
11725 char *ret;
11726
11727 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11728 return NULL;
11729
11730 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11731
11732 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11733 strlen (filename));
11734
11735 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11736 remote_errno, &attachment,
11737 &attachment_len);
11738
11739 if (len < 0)
11740 return NULL;
11741
11742 ret = (char *) xmalloc (len + 1);
11743
11744 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11745 (gdb_byte *) ret, len);
11746 if (read_len != len)
11747 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11748
11749 ret[len] = '\0';
11750 return ret;
11751 }
11752
11753 /* Implementation of to_fileio_fstat. */
11754
11755 static int
11756 remote_hostio_fstat (struct target_ops *self,
11757 int fd, struct stat *st,
11758 int *remote_errno)
11759 {
11760 struct remote_state *rs = get_remote_state ();
11761 char *p = rs->buf;
11762 int left = get_remote_packet_size ();
11763 int attachment_len, ret;
11764 char *attachment;
11765 struct fio_stat fst;
11766 int read_len;
11767
11768 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11769
11770 remote_buffer_add_int (&p, &left, fd);
11771
11772 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11773 remote_errno, &attachment,
11774 &attachment_len);
11775 if (ret < 0)
11776 {
11777 if (*remote_errno != FILEIO_ENOSYS)
11778 return ret;
11779
11780 /* Strictly we should return -1, ENOSYS here, but when
11781 "set sysroot remote:" was implemented in August 2008
11782 BFD's need for a stat function was sidestepped with
11783 this hack. This was not remedied until March 2015
11784 so we retain the previous behavior to avoid breaking
11785 compatibility.
11786
11787 Note that the memset is a March 2015 addition; older
11788 GDBs set st_size *and nothing else* so the structure
11789 would have garbage in all other fields. This might
11790 break something but retaining the previous behavior
11791 here would be just too wrong. */
11792
11793 memset (st, 0, sizeof (struct stat));
11794 st->st_size = INT_MAX;
11795 return 0;
11796 }
11797
11798 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11799 (gdb_byte *) &fst, sizeof (fst));
11800
11801 if (read_len != ret)
11802 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11803
11804 if (read_len != sizeof (fst))
11805 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11806 read_len, (int) sizeof (fst));
11807
11808 remote_fileio_to_host_stat (&fst, st);
11809
11810 return 0;
11811 }
11812
11813 /* Implementation of to_filesystem_is_local. */
11814
11815 static int
11816 remote_filesystem_is_local (struct target_ops *self)
11817 {
11818 /* Valgrind GDB presents itself as a remote target but works
11819 on the local filesystem: it does not implement remote get
11820 and users are not expected to set a sysroot. To handle
11821 this case we treat the remote filesystem as local if the
11822 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11823 does not support vFile:open. */
11824 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11825 {
11826 enum packet_support ps = packet_support (PACKET_vFile_open);
11827
11828 if (ps == PACKET_SUPPORT_UNKNOWN)
11829 {
11830 int fd, remote_errno;
11831
11832 /* Try opening a file to probe support. The supplied
11833 filename is irrelevant, we only care about whether
11834 the stub recognizes the packet or not. */
11835 fd = remote_hostio_open (self, NULL, "just probing",
11836 FILEIO_O_RDONLY, 0700, 0,
11837 &remote_errno);
11838
11839 if (fd >= 0)
11840 remote_hostio_close (self, fd, &remote_errno);
11841
11842 ps = packet_support (PACKET_vFile_open);
11843 }
11844
11845 if (ps == PACKET_DISABLE)
11846 {
11847 static int warning_issued = 0;
11848
11849 if (!warning_issued)
11850 {
11851 warning (_("remote target does not support file"
11852 " transfer, attempting to access files"
11853 " from local filesystem."));
11854 warning_issued = 1;
11855 }
11856
11857 return 1;
11858 }
11859 }
11860
11861 return 0;
11862 }
11863
11864 static int
11865 remote_fileio_errno_to_host (int errnum)
11866 {
11867 switch (errnum)
11868 {
11869 case FILEIO_EPERM:
11870 return EPERM;
11871 case FILEIO_ENOENT:
11872 return ENOENT;
11873 case FILEIO_EINTR:
11874 return EINTR;
11875 case FILEIO_EIO:
11876 return EIO;
11877 case FILEIO_EBADF:
11878 return EBADF;
11879 case FILEIO_EACCES:
11880 return EACCES;
11881 case FILEIO_EFAULT:
11882 return EFAULT;
11883 case FILEIO_EBUSY:
11884 return EBUSY;
11885 case FILEIO_EEXIST:
11886 return EEXIST;
11887 case FILEIO_ENODEV:
11888 return ENODEV;
11889 case FILEIO_ENOTDIR:
11890 return ENOTDIR;
11891 case FILEIO_EISDIR:
11892 return EISDIR;
11893 case FILEIO_EINVAL:
11894 return EINVAL;
11895 case FILEIO_ENFILE:
11896 return ENFILE;
11897 case FILEIO_EMFILE:
11898 return EMFILE;
11899 case FILEIO_EFBIG:
11900 return EFBIG;
11901 case FILEIO_ENOSPC:
11902 return ENOSPC;
11903 case FILEIO_ESPIPE:
11904 return ESPIPE;
11905 case FILEIO_EROFS:
11906 return EROFS;
11907 case FILEIO_ENOSYS:
11908 return ENOSYS;
11909 case FILEIO_ENAMETOOLONG:
11910 return ENAMETOOLONG;
11911 }
11912 return -1;
11913 }
11914
11915 static char *
11916 remote_hostio_error (int errnum)
11917 {
11918 int host_error = remote_fileio_errno_to_host (errnum);
11919
11920 if (host_error == -1)
11921 error (_("Unknown remote I/O error %d"), errnum);
11922 else
11923 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11924 }
11925
11926 static void
11927 remote_hostio_close_cleanup (void *opaque)
11928 {
11929 int fd = *(int *) opaque;
11930 int remote_errno;
11931
11932 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11933 }
11934
11935 void
11936 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11937 {
11938 struct cleanup *back_to, *close_cleanup;
11939 int retcode, fd, remote_errno, bytes, io_size;
11940 gdb_byte *buffer;
11941 int bytes_in_buffer;
11942 int saw_eof;
11943 ULONGEST offset;
11944 struct remote_state *rs = get_remote_state ();
11945
11946 if (!rs->remote_desc)
11947 error (_("command can only be used with remote target"));
11948
11949 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11950 if (file == NULL)
11951 perror_with_name (local_file);
11952
11953 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11954 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11955 | FILEIO_O_TRUNC),
11956 0700, 0, &remote_errno);
11957 if (fd == -1)
11958 remote_hostio_error (remote_errno);
11959
11960 /* Send up to this many bytes at once. They won't all fit in the
11961 remote packet limit, so we'll transfer slightly fewer. */
11962 io_size = get_remote_packet_size ();
11963 buffer = (gdb_byte *) xmalloc (io_size);
11964 back_to = make_cleanup (xfree, buffer);
11965
11966 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11967
11968 bytes_in_buffer = 0;
11969 saw_eof = 0;
11970 offset = 0;
11971 while (bytes_in_buffer || !saw_eof)
11972 {
11973 if (!saw_eof)
11974 {
11975 bytes = fread (buffer + bytes_in_buffer, 1,
11976 io_size - bytes_in_buffer,
11977 file.get ());
11978 if (bytes == 0)
11979 {
11980 if (ferror (file.get ()))
11981 error (_("Error reading %s."), local_file);
11982 else
11983 {
11984 /* EOF. Unless there is something still in the
11985 buffer from the last iteration, we are done. */
11986 saw_eof = 1;
11987 if (bytes_in_buffer == 0)
11988 break;
11989 }
11990 }
11991 }
11992 else
11993 bytes = 0;
11994
11995 bytes += bytes_in_buffer;
11996 bytes_in_buffer = 0;
11997
11998 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11999 fd, buffer, bytes,
12000 offset, &remote_errno);
12001
12002 if (retcode < 0)
12003 remote_hostio_error (remote_errno);
12004 else if (retcode == 0)
12005 error (_("Remote write of %d bytes returned 0!"), bytes);
12006 else if (retcode < bytes)
12007 {
12008 /* Short write. Save the rest of the read data for the next
12009 write. */
12010 bytes_in_buffer = bytes - retcode;
12011 memmove (buffer, buffer + retcode, bytes_in_buffer);
12012 }
12013
12014 offset += retcode;
12015 }
12016
12017 discard_cleanups (close_cleanup);
12018 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12019 remote_hostio_error (remote_errno);
12020
12021 if (from_tty)
12022 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12023 do_cleanups (back_to);
12024 }
12025
12026 void
12027 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12028 {
12029 struct cleanup *back_to, *close_cleanup;
12030 int fd, remote_errno, bytes, io_size;
12031 gdb_byte *buffer;
12032 ULONGEST offset;
12033 struct remote_state *rs = get_remote_state ();
12034
12035 if (!rs->remote_desc)
12036 error (_("command can only be used with remote target"));
12037
12038 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12039 remote_file, FILEIO_O_RDONLY, 0, 0,
12040 &remote_errno);
12041 if (fd == -1)
12042 remote_hostio_error (remote_errno);
12043
12044 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12045 if (file == NULL)
12046 perror_with_name (local_file);
12047
12048 /* Send up to this many bytes at once. They won't all fit in the
12049 remote packet limit, so we'll transfer slightly fewer. */
12050 io_size = get_remote_packet_size ();
12051 buffer = (gdb_byte *) xmalloc (io_size);
12052 back_to = make_cleanup (xfree, buffer);
12053
12054 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12055
12056 offset = 0;
12057 while (1)
12058 {
12059 bytes = remote_hostio_pread (find_target_at (process_stratum),
12060 fd, buffer, io_size, offset, &remote_errno);
12061 if (bytes == 0)
12062 /* Success, but no bytes, means end-of-file. */
12063 break;
12064 if (bytes == -1)
12065 remote_hostio_error (remote_errno);
12066
12067 offset += bytes;
12068
12069 bytes = fwrite (buffer, 1, bytes, file.get ());
12070 if (bytes == 0)
12071 perror_with_name (local_file);
12072 }
12073
12074 discard_cleanups (close_cleanup);
12075 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12076 remote_hostio_error (remote_errno);
12077
12078 if (from_tty)
12079 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12080 do_cleanups (back_to);
12081 }
12082
12083 void
12084 remote_file_delete (const char *remote_file, int from_tty)
12085 {
12086 int retcode, remote_errno;
12087 struct remote_state *rs = get_remote_state ();
12088
12089 if (!rs->remote_desc)
12090 error (_("command can only be used with remote target"));
12091
12092 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12093 NULL, remote_file, &remote_errno);
12094 if (retcode == -1)
12095 remote_hostio_error (remote_errno);
12096
12097 if (from_tty)
12098 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12099 }
12100
12101 static void
12102 remote_put_command (const char *args, int from_tty)
12103 {
12104 if (args == NULL)
12105 error_no_arg (_("file to put"));
12106
12107 gdb_argv argv (args);
12108 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12109 error (_("Invalid parameters to remote put"));
12110
12111 remote_file_put (argv[0], argv[1], from_tty);
12112 }
12113
12114 static void
12115 remote_get_command (const char *args, int from_tty)
12116 {
12117 if (args == NULL)
12118 error_no_arg (_("file to get"));
12119
12120 gdb_argv argv (args);
12121 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12122 error (_("Invalid parameters to remote get"));
12123
12124 remote_file_get (argv[0], argv[1], from_tty);
12125 }
12126
12127 static void
12128 remote_delete_command (const char *args, int from_tty)
12129 {
12130 if (args == NULL)
12131 error_no_arg (_("file to delete"));
12132
12133 gdb_argv argv (args);
12134 if (argv[0] == NULL || argv[1] != NULL)
12135 error (_("Invalid parameters to remote delete"));
12136
12137 remote_file_delete (argv[0], from_tty);
12138 }
12139
12140 static void
12141 remote_command (const char *args, int from_tty)
12142 {
12143 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12144 }
12145
12146 static int
12147 remote_can_execute_reverse (struct target_ops *self)
12148 {
12149 if (packet_support (PACKET_bs) == PACKET_ENABLE
12150 || packet_support (PACKET_bc) == PACKET_ENABLE)
12151 return 1;
12152 else
12153 return 0;
12154 }
12155
12156 static int
12157 remote_supports_non_stop (struct target_ops *self)
12158 {
12159 return 1;
12160 }
12161
12162 static int
12163 remote_supports_disable_randomization (struct target_ops *self)
12164 {
12165 /* Only supported in extended mode. */
12166 return 0;
12167 }
12168
12169 static int
12170 remote_supports_multi_process (struct target_ops *self)
12171 {
12172 struct remote_state *rs = get_remote_state ();
12173
12174 return remote_multi_process_p (rs);
12175 }
12176
12177 static int
12178 remote_supports_cond_tracepoints (void)
12179 {
12180 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12181 }
12182
12183 static int
12184 remote_supports_cond_breakpoints (struct target_ops *self)
12185 {
12186 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12187 }
12188
12189 static int
12190 remote_supports_fast_tracepoints (void)
12191 {
12192 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12193 }
12194
12195 static int
12196 remote_supports_static_tracepoints (void)
12197 {
12198 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12199 }
12200
12201 static int
12202 remote_supports_install_in_trace (void)
12203 {
12204 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12205 }
12206
12207 static int
12208 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12209 {
12210 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12211 == PACKET_ENABLE);
12212 }
12213
12214 static int
12215 remote_supports_string_tracing (struct target_ops *self)
12216 {
12217 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12218 }
12219
12220 static int
12221 remote_can_run_breakpoint_commands (struct target_ops *self)
12222 {
12223 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12224 }
12225
12226 static void
12227 remote_trace_init (struct target_ops *self)
12228 {
12229 struct remote_state *rs = get_remote_state ();
12230
12231 putpkt ("QTinit");
12232 remote_get_noisy_reply ();
12233 if (strcmp (rs->buf, "OK") != 0)
12234 error (_("Target does not support this command."));
12235 }
12236
12237 /* Recursive routine to walk through command list including loops, and
12238 download packets for each command. */
12239
12240 static void
12241 remote_download_command_source (int num, ULONGEST addr,
12242 struct command_line *cmds)
12243 {
12244 struct remote_state *rs = get_remote_state ();
12245 struct command_line *cmd;
12246
12247 for (cmd = cmds; cmd; cmd = cmd->next)
12248 {
12249 QUIT; /* Allow user to bail out with ^C. */
12250 strcpy (rs->buf, "QTDPsrc:");
12251 encode_source_string (num, addr, "cmd", cmd->line,
12252 rs->buf + strlen (rs->buf),
12253 rs->buf_size - strlen (rs->buf));
12254 putpkt (rs->buf);
12255 remote_get_noisy_reply ();
12256 if (strcmp (rs->buf, "OK"))
12257 warning (_("Target does not support source download."));
12258
12259 if (cmd->control_type == while_control
12260 || cmd->control_type == while_stepping_control)
12261 {
12262 remote_download_command_source (num, addr, *cmd->body_list);
12263
12264 QUIT; /* Allow user to bail out with ^C. */
12265 strcpy (rs->buf, "QTDPsrc:");
12266 encode_source_string (num, addr, "cmd", "end",
12267 rs->buf + strlen (rs->buf),
12268 rs->buf_size - strlen (rs->buf));
12269 putpkt (rs->buf);
12270 remote_get_noisy_reply ();
12271 if (strcmp (rs->buf, "OK"))
12272 warning (_("Target does not support source download."));
12273 }
12274 }
12275 }
12276
12277 static void
12278 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12279 {
12280 #define BUF_SIZE 2048
12281
12282 CORE_ADDR tpaddr;
12283 char addrbuf[40];
12284 char buf[BUF_SIZE];
12285 std::vector<std::string> tdp_actions;
12286 std::vector<std::string> stepping_actions;
12287 char *pkt;
12288 struct breakpoint *b = loc->owner;
12289 struct tracepoint *t = (struct tracepoint *) b;
12290 struct remote_state *rs = get_remote_state ();
12291
12292 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12293
12294 tpaddr = loc->address;
12295 sprintf_vma (addrbuf, tpaddr);
12296 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12297 addrbuf, /* address */
12298 (b->enable_state == bp_enabled ? 'E' : 'D'),
12299 t->step_count, t->pass_count);
12300 /* Fast tracepoints are mostly handled by the target, but we can
12301 tell the target how big of an instruction block should be moved
12302 around. */
12303 if (b->type == bp_fast_tracepoint)
12304 {
12305 /* Only test for support at download time; we may not know
12306 target capabilities at definition time. */
12307 if (remote_supports_fast_tracepoints ())
12308 {
12309 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12310 NULL))
12311 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12312 gdb_insn_length (loc->gdbarch, tpaddr));
12313 else
12314 /* If it passed validation at definition but fails now,
12315 something is very wrong. */
12316 internal_error (__FILE__, __LINE__,
12317 _("Fast tracepoint not "
12318 "valid during download"));
12319 }
12320 else
12321 /* Fast tracepoints are functionally identical to regular
12322 tracepoints, so don't take lack of support as a reason to
12323 give up on the trace run. */
12324 warning (_("Target does not support fast tracepoints, "
12325 "downloading %d as regular tracepoint"), b->number);
12326 }
12327 else if (b->type == bp_static_tracepoint)
12328 {
12329 /* Only test for support at download time; we may not know
12330 target capabilities at definition time. */
12331 if (remote_supports_static_tracepoints ())
12332 {
12333 struct static_tracepoint_marker marker;
12334
12335 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12336 strcat (buf, ":S");
12337 else
12338 error (_("Static tracepoint not valid during download"));
12339 }
12340 else
12341 /* Fast tracepoints are functionally identical to regular
12342 tracepoints, so don't take lack of support as a reason
12343 to give up on the trace run. */
12344 error (_("Target does not support static tracepoints"));
12345 }
12346 /* If the tracepoint has a conditional, make it into an agent
12347 expression and append to the definition. */
12348 if (loc->cond)
12349 {
12350 /* Only test support at download time, we may not know target
12351 capabilities at definition time. */
12352 if (remote_supports_cond_tracepoints ())
12353 {
12354 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12355 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12356 aexpr->len);
12357 pkt = buf + strlen (buf);
12358 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12359 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12360 *pkt = '\0';
12361 }
12362 else
12363 warning (_("Target does not support conditional tracepoints, "
12364 "ignoring tp %d cond"), b->number);
12365 }
12366
12367 if (b->commands || *default_collect)
12368 strcat (buf, "-");
12369 putpkt (buf);
12370 remote_get_noisy_reply ();
12371 if (strcmp (rs->buf, "OK"))
12372 error (_("Target does not support tracepoints."));
12373
12374 /* do_single_steps (t); */
12375 for (auto action_it = tdp_actions.begin ();
12376 action_it != tdp_actions.end (); action_it++)
12377 {
12378 QUIT; /* Allow user to bail out with ^C. */
12379
12380 bool has_more = (action_it != tdp_actions.end ()
12381 || !stepping_actions.empty ());
12382
12383 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12384 b->number, addrbuf, /* address */
12385 action_it->c_str (),
12386 has_more ? '-' : 0);
12387 putpkt (buf);
12388 remote_get_noisy_reply ();
12389 if (strcmp (rs->buf, "OK"))
12390 error (_("Error on target while setting tracepoints."));
12391 }
12392
12393 for (auto action_it = stepping_actions.begin ();
12394 action_it != stepping_actions.end (); action_it++)
12395 {
12396 QUIT; /* Allow user to bail out with ^C. */
12397
12398 bool is_first = action_it == stepping_actions.begin ();
12399 bool has_more = action_it != stepping_actions.end ();
12400
12401 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12402 b->number, addrbuf, /* address */
12403 is_first ? "S" : "",
12404 action_it->c_str (),
12405 has_more ? "-" : "");
12406 putpkt (buf);
12407 remote_get_noisy_reply ();
12408 if (strcmp (rs->buf, "OK"))
12409 error (_("Error on target while setting tracepoints."));
12410 }
12411
12412 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12413 {
12414 if (b->location != NULL)
12415 {
12416 strcpy (buf, "QTDPsrc:");
12417 encode_source_string (b->number, loc->address, "at",
12418 event_location_to_string (b->location.get ()),
12419 buf + strlen (buf), 2048 - strlen (buf));
12420 putpkt (buf);
12421 remote_get_noisy_reply ();
12422 if (strcmp (rs->buf, "OK"))
12423 warning (_("Target does not support source download."));
12424 }
12425 if (b->cond_string)
12426 {
12427 strcpy (buf, "QTDPsrc:");
12428 encode_source_string (b->number, loc->address,
12429 "cond", b->cond_string, buf + strlen (buf),
12430 2048 - strlen (buf));
12431 putpkt (buf);
12432 remote_get_noisy_reply ();
12433 if (strcmp (rs->buf, "OK"))
12434 warning (_("Target does not support source download."));
12435 }
12436 remote_download_command_source (b->number, loc->address,
12437 breakpoint_commands (b));
12438 }
12439 }
12440
12441 static int
12442 remote_can_download_tracepoint (struct target_ops *self)
12443 {
12444 struct remote_state *rs = get_remote_state ();
12445 struct trace_status *ts;
12446 int status;
12447
12448 /* Don't try to install tracepoints until we've relocated our
12449 symbols, and fetched and merged the target's tracepoint list with
12450 ours. */
12451 if (rs->starting_up)
12452 return 0;
12453
12454 ts = current_trace_status ();
12455 status = remote_get_trace_status (self, ts);
12456
12457 if (status == -1 || !ts->running_known || !ts->running)
12458 return 0;
12459
12460 /* If we are in a tracing experiment, but remote stub doesn't support
12461 installing tracepoint in trace, we have to return. */
12462 if (!remote_supports_install_in_trace ())
12463 return 0;
12464
12465 return 1;
12466 }
12467
12468
12469 static void
12470 remote_download_trace_state_variable (struct target_ops *self,
12471 struct trace_state_variable *tsv)
12472 {
12473 struct remote_state *rs = get_remote_state ();
12474 char *p;
12475
12476 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12477 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12478 tsv->builtin);
12479 p = rs->buf + strlen (rs->buf);
12480 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12481 error (_("Trace state variable name too long for tsv definition packet"));
12482 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12483 *p++ = '\0';
12484 putpkt (rs->buf);
12485 remote_get_noisy_reply ();
12486 if (*rs->buf == '\0')
12487 error (_("Target does not support this command."));
12488 if (strcmp (rs->buf, "OK") != 0)
12489 error (_("Error on target while downloading trace state variable."));
12490 }
12491
12492 static void
12493 remote_enable_tracepoint (struct target_ops *self,
12494 struct bp_location *location)
12495 {
12496 struct remote_state *rs = get_remote_state ();
12497 char addr_buf[40];
12498
12499 sprintf_vma (addr_buf, location->address);
12500 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12501 location->owner->number, addr_buf);
12502 putpkt (rs->buf);
12503 remote_get_noisy_reply ();
12504 if (*rs->buf == '\0')
12505 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12506 if (strcmp (rs->buf, "OK") != 0)
12507 error (_("Error on target while enabling tracepoint."));
12508 }
12509
12510 static void
12511 remote_disable_tracepoint (struct target_ops *self,
12512 struct bp_location *location)
12513 {
12514 struct remote_state *rs = get_remote_state ();
12515 char addr_buf[40];
12516
12517 sprintf_vma (addr_buf, location->address);
12518 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12519 location->owner->number, addr_buf);
12520 putpkt (rs->buf);
12521 remote_get_noisy_reply ();
12522 if (*rs->buf == '\0')
12523 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12524 if (strcmp (rs->buf, "OK") != 0)
12525 error (_("Error on target while disabling tracepoint."));
12526 }
12527
12528 static void
12529 remote_trace_set_readonly_regions (struct target_ops *self)
12530 {
12531 asection *s;
12532 bfd *abfd = NULL;
12533 bfd_size_type size;
12534 bfd_vma vma;
12535 int anysecs = 0;
12536 int offset = 0;
12537
12538 if (!exec_bfd)
12539 return; /* No information to give. */
12540
12541 struct remote_state *rs = get_remote_state ();
12542
12543 strcpy (rs->buf, "QTro");
12544 offset = strlen (rs->buf);
12545 for (s = exec_bfd->sections; s; s = s->next)
12546 {
12547 char tmp1[40], tmp2[40];
12548 int sec_length;
12549
12550 if ((s->flags & SEC_LOAD) == 0 ||
12551 /* (s->flags & SEC_CODE) == 0 || */
12552 (s->flags & SEC_READONLY) == 0)
12553 continue;
12554
12555 anysecs = 1;
12556 vma = bfd_get_section_vma (abfd, s);
12557 size = bfd_get_section_size (s);
12558 sprintf_vma (tmp1, vma);
12559 sprintf_vma (tmp2, vma + size);
12560 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12561 if (offset + sec_length + 1 > rs->buf_size)
12562 {
12563 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12564 warning (_("\
12565 Too many sections for read-only sections definition packet."));
12566 break;
12567 }
12568 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12569 tmp1, tmp2);
12570 offset += sec_length;
12571 }
12572 if (anysecs)
12573 {
12574 putpkt (rs->buf);
12575 getpkt (&rs->buf, &rs->buf_size, 0);
12576 }
12577 }
12578
12579 static void
12580 remote_trace_start (struct target_ops *self)
12581 {
12582 struct remote_state *rs = get_remote_state ();
12583
12584 putpkt ("QTStart");
12585 remote_get_noisy_reply ();
12586 if (*rs->buf == '\0')
12587 error (_("Target does not support this command."));
12588 if (strcmp (rs->buf, "OK") != 0)
12589 error (_("Bogus reply from target: %s"), rs->buf);
12590 }
12591
12592 static int
12593 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12594 {
12595 /* Initialize it just to avoid a GCC false warning. */
12596 char *p = NULL;
12597 /* FIXME we need to get register block size some other way. */
12598 extern int trace_regblock_size;
12599 enum packet_result result;
12600 struct remote_state *rs = get_remote_state ();
12601
12602 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12603 return -1;
12604
12605 trace_regblock_size
12606 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12607
12608 putpkt ("qTStatus");
12609
12610 TRY
12611 {
12612 p = remote_get_noisy_reply ();
12613 }
12614 CATCH (ex, RETURN_MASK_ERROR)
12615 {
12616 if (ex.error != TARGET_CLOSE_ERROR)
12617 {
12618 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12619 return -1;
12620 }
12621 throw_exception (ex);
12622 }
12623 END_CATCH
12624
12625 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12626
12627 /* If the remote target doesn't do tracing, flag it. */
12628 if (result == PACKET_UNKNOWN)
12629 return -1;
12630
12631 /* We're working with a live target. */
12632 ts->filename = NULL;
12633
12634 if (*p++ != 'T')
12635 error (_("Bogus trace status reply from target: %s"), rs->buf);
12636
12637 /* Function 'parse_trace_status' sets default value of each field of
12638 'ts' at first, so we don't have to do it here. */
12639 parse_trace_status (p, ts);
12640
12641 return ts->running;
12642 }
12643
12644 static void
12645 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12646 struct uploaded_tp *utp)
12647 {
12648 struct remote_state *rs = get_remote_state ();
12649 char *reply;
12650 struct bp_location *loc;
12651 struct tracepoint *tp = (struct tracepoint *) bp;
12652 size_t size = get_remote_packet_size ();
12653
12654 if (tp)
12655 {
12656 tp->hit_count = 0;
12657 tp->traceframe_usage = 0;
12658 for (loc = tp->loc; loc; loc = loc->next)
12659 {
12660 /* If the tracepoint was never downloaded, don't go asking for
12661 any status. */
12662 if (tp->number_on_target == 0)
12663 continue;
12664 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12665 phex_nz (loc->address, 0));
12666 putpkt (rs->buf);
12667 reply = remote_get_noisy_reply ();
12668 if (reply && *reply)
12669 {
12670 if (*reply == 'V')
12671 parse_tracepoint_status (reply + 1, bp, utp);
12672 }
12673 }
12674 }
12675 else if (utp)
12676 {
12677 utp->hit_count = 0;
12678 utp->traceframe_usage = 0;
12679 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12680 phex_nz (utp->addr, 0));
12681 putpkt (rs->buf);
12682 reply = remote_get_noisy_reply ();
12683 if (reply && *reply)
12684 {
12685 if (*reply == 'V')
12686 parse_tracepoint_status (reply + 1, bp, utp);
12687 }
12688 }
12689 }
12690
12691 static void
12692 remote_trace_stop (struct target_ops *self)
12693 {
12694 struct remote_state *rs = get_remote_state ();
12695
12696 putpkt ("QTStop");
12697 remote_get_noisy_reply ();
12698 if (*rs->buf == '\0')
12699 error (_("Target does not support this command."));
12700 if (strcmp (rs->buf, "OK") != 0)
12701 error (_("Bogus reply from target: %s"), rs->buf);
12702 }
12703
12704 static int
12705 remote_trace_find (struct target_ops *self,
12706 enum trace_find_type type, int num,
12707 CORE_ADDR addr1, CORE_ADDR addr2,
12708 int *tpp)
12709 {
12710 struct remote_state *rs = get_remote_state ();
12711 char *endbuf = rs->buf + get_remote_packet_size ();
12712 char *p, *reply;
12713 int target_frameno = -1, target_tracept = -1;
12714
12715 /* Lookups other than by absolute frame number depend on the current
12716 trace selected, so make sure it is correct on the remote end
12717 first. */
12718 if (type != tfind_number)
12719 set_remote_traceframe ();
12720
12721 p = rs->buf;
12722 strcpy (p, "QTFrame:");
12723 p = strchr (p, '\0');
12724 switch (type)
12725 {
12726 case tfind_number:
12727 xsnprintf (p, endbuf - p, "%x", num);
12728 break;
12729 case tfind_pc:
12730 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12731 break;
12732 case tfind_tp:
12733 xsnprintf (p, endbuf - p, "tdp:%x", num);
12734 break;
12735 case tfind_range:
12736 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12737 phex_nz (addr2, 0));
12738 break;
12739 case tfind_outside:
12740 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12741 phex_nz (addr2, 0));
12742 break;
12743 default:
12744 error (_("Unknown trace find type %d"), type);
12745 }
12746
12747 putpkt (rs->buf);
12748 reply = remote_get_noisy_reply ();
12749 if (*reply == '\0')
12750 error (_("Target does not support this command."));
12751
12752 while (reply && *reply)
12753 switch (*reply)
12754 {
12755 case 'F':
12756 p = ++reply;
12757 target_frameno = (int) strtol (p, &reply, 16);
12758 if (reply == p)
12759 error (_("Unable to parse trace frame number"));
12760 /* Don't update our remote traceframe number cache on failure
12761 to select a remote traceframe. */
12762 if (target_frameno == -1)
12763 return -1;
12764 break;
12765 case 'T':
12766 p = ++reply;
12767 target_tracept = (int) strtol (p, &reply, 16);
12768 if (reply == p)
12769 error (_("Unable to parse tracepoint number"));
12770 break;
12771 case 'O': /* "OK"? */
12772 if (reply[1] == 'K' && reply[2] == '\0')
12773 reply += 2;
12774 else
12775 error (_("Bogus reply from target: %s"), reply);
12776 break;
12777 default:
12778 error (_("Bogus reply from target: %s"), reply);
12779 }
12780 if (tpp)
12781 *tpp = target_tracept;
12782
12783 rs->remote_traceframe_number = target_frameno;
12784 return target_frameno;
12785 }
12786
12787 static int
12788 remote_get_trace_state_variable_value (struct target_ops *self,
12789 int tsvnum, LONGEST *val)
12790 {
12791 struct remote_state *rs = get_remote_state ();
12792 char *reply;
12793 ULONGEST uval;
12794
12795 set_remote_traceframe ();
12796
12797 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12798 putpkt (rs->buf);
12799 reply = remote_get_noisy_reply ();
12800 if (reply && *reply)
12801 {
12802 if (*reply == 'V')
12803 {
12804 unpack_varlen_hex (reply + 1, &uval);
12805 *val = (LONGEST) uval;
12806 return 1;
12807 }
12808 }
12809 return 0;
12810 }
12811
12812 static int
12813 remote_save_trace_data (struct target_ops *self, const char *filename)
12814 {
12815 struct remote_state *rs = get_remote_state ();
12816 char *p, *reply;
12817
12818 p = rs->buf;
12819 strcpy (p, "QTSave:");
12820 p += strlen (p);
12821 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12822 error (_("Remote file name too long for trace save packet"));
12823 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12824 *p++ = '\0';
12825 putpkt (rs->buf);
12826 reply = remote_get_noisy_reply ();
12827 if (*reply == '\0')
12828 error (_("Target does not support this command."));
12829 if (strcmp (reply, "OK") != 0)
12830 error (_("Bogus reply from target: %s"), reply);
12831 return 0;
12832 }
12833
12834 /* This is basically a memory transfer, but needs to be its own packet
12835 because we don't know how the target actually organizes its trace
12836 memory, plus we want to be able to ask for as much as possible, but
12837 not be unhappy if we don't get as much as we ask for. */
12838
12839 static LONGEST
12840 remote_get_raw_trace_data (struct target_ops *self,
12841 gdb_byte *buf, ULONGEST offset, LONGEST len)
12842 {
12843 struct remote_state *rs = get_remote_state ();
12844 char *reply;
12845 char *p;
12846 int rslt;
12847
12848 p = rs->buf;
12849 strcpy (p, "qTBuffer:");
12850 p += strlen (p);
12851 p += hexnumstr (p, offset);
12852 *p++ = ',';
12853 p += hexnumstr (p, len);
12854 *p++ = '\0';
12855
12856 putpkt (rs->buf);
12857 reply = remote_get_noisy_reply ();
12858 if (reply && *reply)
12859 {
12860 /* 'l' by itself means we're at the end of the buffer and
12861 there is nothing more to get. */
12862 if (*reply == 'l')
12863 return 0;
12864
12865 /* Convert the reply into binary. Limit the number of bytes to
12866 convert according to our passed-in buffer size, rather than
12867 what was returned in the packet; if the target is
12868 unexpectedly generous and gives us a bigger reply than we
12869 asked for, we don't want to crash. */
12870 rslt = hex2bin (reply, buf, len);
12871 return rslt;
12872 }
12873
12874 /* Something went wrong, flag as an error. */
12875 return -1;
12876 }
12877
12878 static void
12879 remote_set_disconnected_tracing (struct target_ops *self, int val)
12880 {
12881 struct remote_state *rs = get_remote_state ();
12882
12883 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12884 {
12885 char *reply;
12886
12887 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12888 putpkt (rs->buf);
12889 reply = remote_get_noisy_reply ();
12890 if (*reply == '\0')
12891 error (_("Target does not support this command."));
12892 if (strcmp (reply, "OK") != 0)
12893 error (_("Bogus reply from target: %s"), reply);
12894 }
12895 else if (val)
12896 warning (_("Target does not support disconnected tracing."));
12897 }
12898
12899 static int
12900 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12901 {
12902 struct thread_info *info = find_thread_ptid (ptid);
12903
12904 if (info != NULL && info->priv != NULL)
12905 return get_remote_thread_info (info)->core;
12906
12907 return -1;
12908 }
12909
12910 static void
12911 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12912 {
12913 struct remote_state *rs = get_remote_state ();
12914 char *reply;
12915
12916 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12917 putpkt (rs->buf);
12918 reply = remote_get_noisy_reply ();
12919 if (*reply == '\0')
12920 error (_("Target does not support this command."));
12921 if (strcmp (reply, "OK") != 0)
12922 error (_("Bogus reply from target: %s"), reply);
12923 }
12924
12925 static traceframe_info_up
12926 remote_traceframe_info (struct target_ops *self)
12927 {
12928 gdb::unique_xmalloc_ptr<char> text
12929 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12930 NULL);
12931 if (text != NULL)
12932 return parse_traceframe_info (text.get ());
12933
12934 return NULL;
12935 }
12936
12937 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12938 instruction on which a fast tracepoint may be placed. Returns -1
12939 if the packet is not supported, and 0 if the minimum instruction
12940 length is unknown. */
12941
12942 static int
12943 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12944 {
12945 struct remote_state *rs = get_remote_state ();
12946 char *reply;
12947
12948 /* If we're not debugging a process yet, the IPA can't be
12949 loaded. */
12950 if (!target_has_execution)
12951 return 0;
12952
12953 /* Make sure the remote is pointing at the right process. */
12954 set_general_process ();
12955
12956 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12957 putpkt (rs->buf);
12958 reply = remote_get_noisy_reply ();
12959 if (*reply == '\0')
12960 return -1;
12961 else
12962 {
12963 ULONGEST min_insn_len;
12964
12965 unpack_varlen_hex (reply, &min_insn_len);
12966
12967 return (int) min_insn_len;
12968 }
12969 }
12970
12971 static void
12972 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12973 {
12974 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12975 {
12976 struct remote_state *rs = get_remote_state ();
12977 char *buf = rs->buf;
12978 char *endbuf = rs->buf + get_remote_packet_size ();
12979 enum packet_result result;
12980
12981 gdb_assert (val >= 0 || val == -1);
12982 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12983 /* Send -1 as literal "-1" to avoid host size dependency. */
12984 if (val < 0)
12985 {
12986 *buf++ = '-';
12987 buf += hexnumstr (buf, (ULONGEST) -val);
12988 }
12989 else
12990 buf += hexnumstr (buf, (ULONGEST) val);
12991
12992 putpkt (rs->buf);
12993 remote_get_noisy_reply ();
12994 result = packet_ok (rs->buf,
12995 &remote_protocol_packets[PACKET_QTBuffer_size]);
12996
12997 if (result != PACKET_OK)
12998 warning (_("Bogus reply from target: %s"), rs->buf);
12999 }
13000 }
13001
13002 static int
13003 remote_set_trace_notes (struct target_ops *self,
13004 const char *user, const char *notes,
13005 const char *stop_notes)
13006 {
13007 struct remote_state *rs = get_remote_state ();
13008 char *reply;
13009 char *buf = rs->buf;
13010 char *endbuf = rs->buf + get_remote_packet_size ();
13011 int nbytes;
13012
13013 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13014 if (user)
13015 {
13016 buf += xsnprintf (buf, endbuf - buf, "user:");
13017 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13018 buf += 2 * nbytes;
13019 *buf++ = ';';
13020 }
13021 if (notes)
13022 {
13023 buf += xsnprintf (buf, endbuf - buf, "notes:");
13024 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13025 buf += 2 * nbytes;
13026 *buf++ = ';';
13027 }
13028 if (stop_notes)
13029 {
13030 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13031 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13032 buf += 2 * nbytes;
13033 *buf++ = ';';
13034 }
13035 /* Ensure the buffer is terminated. */
13036 *buf = '\0';
13037
13038 putpkt (rs->buf);
13039 reply = remote_get_noisy_reply ();
13040 if (*reply == '\0')
13041 return 0;
13042
13043 if (strcmp (reply, "OK") != 0)
13044 error (_("Bogus reply from target: %s"), reply);
13045
13046 return 1;
13047 }
13048
13049 static int
13050 remote_use_agent (struct target_ops *self, int use)
13051 {
13052 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13053 {
13054 struct remote_state *rs = get_remote_state ();
13055
13056 /* If the stub supports QAgent. */
13057 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13058 putpkt (rs->buf);
13059 getpkt (&rs->buf, &rs->buf_size, 0);
13060
13061 if (strcmp (rs->buf, "OK") == 0)
13062 {
13063 use_agent = use;
13064 return 1;
13065 }
13066 }
13067
13068 return 0;
13069 }
13070
13071 static int
13072 remote_can_use_agent (struct target_ops *self)
13073 {
13074 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13075 }
13076
13077 struct btrace_target_info
13078 {
13079 /* The ptid of the traced thread. */
13080 ptid_t ptid;
13081
13082 /* The obtained branch trace configuration. */
13083 struct btrace_config conf;
13084 };
13085
13086 /* Reset our idea of our target's btrace configuration. */
13087
13088 static void
13089 remote_btrace_reset (void)
13090 {
13091 struct remote_state *rs = get_remote_state ();
13092
13093 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13094 }
13095
13096 /* Check whether the target supports branch tracing. */
13097
13098 static int
13099 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13100 {
13101 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13102 return 0;
13103 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13104 return 0;
13105
13106 switch (format)
13107 {
13108 case BTRACE_FORMAT_NONE:
13109 return 0;
13110
13111 case BTRACE_FORMAT_BTS:
13112 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13113
13114 case BTRACE_FORMAT_PT:
13115 /* The trace is decoded on the host. Even if our target supports it,
13116 we still need to have libipt to decode the trace. */
13117 #if defined (HAVE_LIBIPT)
13118 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13119 #else /* !defined (HAVE_LIBIPT) */
13120 return 0;
13121 #endif /* !defined (HAVE_LIBIPT) */
13122 }
13123
13124 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13125 }
13126
13127 /* Synchronize the configuration with the target. */
13128
13129 static void
13130 btrace_sync_conf (const struct btrace_config *conf)
13131 {
13132 struct packet_config *packet;
13133 struct remote_state *rs;
13134 char *buf, *pos, *endbuf;
13135
13136 rs = get_remote_state ();
13137 buf = rs->buf;
13138 endbuf = buf + get_remote_packet_size ();
13139
13140 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13141 if (packet_config_support (packet) == PACKET_ENABLE
13142 && conf->bts.size != rs->btrace_config.bts.size)
13143 {
13144 pos = buf;
13145 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13146 conf->bts.size);
13147
13148 putpkt (buf);
13149 getpkt (&buf, &rs->buf_size, 0);
13150
13151 if (packet_ok (buf, packet) == PACKET_ERROR)
13152 {
13153 if (buf[0] == 'E' && buf[1] == '.')
13154 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13155 else
13156 error (_("Failed to configure the BTS buffer size."));
13157 }
13158
13159 rs->btrace_config.bts.size = conf->bts.size;
13160 }
13161
13162 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13163 if (packet_config_support (packet) == PACKET_ENABLE
13164 && conf->pt.size != rs->btrace_config.pt.size)
13165 {
13166 pos = buf;
13167 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13168 conf->pt.size);
13169
13170 putpkt (buf);
13171 getpkt (&buf, &rs->buf_size, 0);
13172
13173 if (packet_ok (buf, packet) == PACKET_ERROR)
13174 {
13175 if (buf[0] == 'E' && buf[1] == '.')
13176 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13177 else
13178 error (_("Failed to configure the trace buffer size."));
13179 }
13180
13181 rs->btrace_config.pt.size = conf->pt.size;
13182 }
13183 }
13184
13185 /* Read the current thread's btrace configuration from the target and
13186 store it into CONF. */
13187
13188 static void
13189 btrace_read_config (struct btrace_config *conf)
13190 {
13191 gdb::unique_xmalloc_ptr<char> xml
13192 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13193 if (xml != NULL)
13194 parse_xml_btrace_conf (conf, xml.get ());
13195 }
13196
13197 /* Maybe reopen target btrace. */
13198
13199 static void
13200 remote_btrace_maybe_reopen (void)
13201 {
13202 struct remote_state *rs = get_remote_state ();
13203 struct thread_info *tp;
13204 int btrace_target_pushed = 0;
13205 int warned = 0;
13206
13207 scoped_restore_current_thread restore_thread;
13208
13209 ALL_NON_EXITED_THREADS (tp)
13210 {
13211 set_general_thread (tp->ptid);
13212
13213 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13214 btrace_read_config (&rs->btrace_config);
13215
13216 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13217 continue;
13218
13219 #if !defined (HAVE_LIBIPT)
13220 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13221 {
13222 if (!warned)
13223 {
13224 warned = 1;
13225 warning (_("GDB does not support Intel Processor Trace. "
13226 "\"record\" will not work in this session."));
13227 }
13228
13229 continue;
13230 }
13231 #endif /* !defined (HAVE_LIBIPT) */
13232
13233 /* Push target, once, but before anything else happens. This way our
13234 changes to the threads will be cleaned up by unpushing the target
13235 in case btrace_read_config () throws. */
13236 if (!btrace_target_pushed)
13237 {
13238 btrace_target_pushed = 1;
13239 record_btrace_push_target ();
13240 printf_filtered (_("Target is recording using %s.\n"),
13241 btrace_format_string (rs->btrace_config.format));
13242 }
13243
13244 tp->btrace.target = XCNEW (struct btrace_target_info);
13245 tp->btrace.target->ptid = tp->ptid;
13246 tp->btrace.target->conf = rs->btrace_config;
13247 }
13248 }
13249
13250 /* Enable branch tracing. */
13251
13252 static struct btrace_target_info *
13253 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13254 const struct btrace_config *conf)
13255 {
13256 struct btrace_target_info *tinfo = NULL;
13257 struct packet_config *packet = NULL;
13258 struct remote_state *rs = get_remote_state ();
13259 char *buf = rs->buf;
13260 char *endbuf = rs->buf + get_remote_packet_size ();
13261
13262 switch (conf->format)
13263 {
13264 case BTRACE_FORMAT_BTS:
13265 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13266 break;
13267
13268 case BTRACE_FORMAT_PT:
13269 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13270 break;
13271 }
13272
13273 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13274 error (_("Target does not support branch tracing."));
13275
13276 btrace_sync_conf (conf);
13277
13278 set_general_thread (ptid);
13279
13280 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13281 putpkt (rs->buf);
13282 getpkt (&rs->buf, &rs->buf_size, 0);
13283
13284 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13285 {
13286 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13287 error (_("Could not enable branch tracing for %s: %s"),
13288 target_pid_to_str (ptid), rs->buf + 2);
13289 else
13290 error (_("Could not enable branch tracing for %s."),
13291 target_pid_to_str (ptid));
13292 }
13293
13294 tinfo = XCNEW (struct btrace_target_info);
13295 tinfo->ptid = ptid;
13296
13297 /* If we fail to read the configuration, we lose some information, but the
13298 tracing itself is not impacted. */
13299 TRY
13300 {
13301 btrace_read_config (&tinfo->conf);
13302 }
13303 CATCH (err, RETURN_MASK_ERROR)
13304 {
13305 if (err.message != NULL)
13306 warning ("%s", err.message);
13307 }
13308 END_CATCH
13309
13310 return tinfo;
13311 }
13312
13313 /* Disable branch tracing. */
13314
13315 static void
13316 remote_disable_btrace (struct target_ops *self,
13317 struct btrace_target_info *tinfo)
13318 {
13319 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13320 struct remote_state *rs = get_remote_state ();
13321 char *buf = rs->buf;
13322 char *endbuf = rs->buf + get_remote_packet_size ();
13323
13324 if (packet_config_support (packet) != PACKET_ENABLE)
13325 error (_("Target does not support branch tracing."));
13326
13327 set_general_thread (tinfo->ptid);
13328
13329 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13330 putpkt (rs->buf);
13331 getpkt (&rs->buf, &rs->buf_size, 0);
13332
13333 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13334 {
13335 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13336 error (_("Could not disable branch tracing for %s: %s"),
13337 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13338 else
13339 error (_("Could not disable branch tracing for %s."),
13340 target_pid_to_str (tinfo->ptid));
13341 }
13342
13343 xfree (tinfo);
13344 }
13345
13346 /* Teardown branch tracing. */
13347
13348 static void
13349 remote_teardown_btrace (struct target_ops *self,
13350 struct btrace_target_info *tinfo)
13351 {
13352 /* We must not talk to the target during teardown. */
13353 xfree (tinfo);
13354 }
13355
13356 /* Read the branch trace. */
13357
13358 static enum btrace_error
13359 remote_read_btrace (struct target_ops *self,
13360 struct btrace_data *btrace,
13361 struct btrace_target_info *tinfo,
13362 enum btrace_read_type type)
13363 {
13364 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13365 const char *annex;
13366
13367 if (packet_config_support (packet) != PACKET_ENABLE)
13368 error (_("Target does not support branch tracing."));
13369
13370 #if !defined(HAVE_LIBEXPAT)
13371 error (_("Cannot process branch tracing result. XML parsing not supported."));
13372 #endif
13373
13374 switch (type)
13375 {
13376 case BTRACE_READ_ALL:
13377 annex = "all";
13378 break;
13379 case BTRACE_READ_NEW:
13380 annex = "new";
13381 break;
13382 case BTRACE_READ_DELTA:
13383 annex = "delta";
13384 break;
13385 default:
13386 internal_error (__FILE__, __LINE__,
13387 _("Bad branch tracing read type: %u."),
13388 (unsigned int) type);
13389 }
13390
13391 gdb::unique_xmalloc_ptr<char> xml
13392 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13393 if (xml == NULL)
13394 return BTRACE_ERR_UNKNOWN;
13395
13396 parse_xml_btrace (btrace, xml.get ());
13397
13398 return BTRACE_ERR_NONE;
13399 }
13400
13401 static const struct btrace_config *
13402 remote_btrace_conf (struct target_ops *self,
13403 const struct btrace_target_info *tinfo)
13404 {
13405 return &tinfo->conf;
13406 }
13407
13408 static int
13409 remote_augmented_libraries_svr4_read (struct target_ops *self)
13410 {
13411 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13412 == PACKET_ENABLE);
13413 }
13414
13415 /* Implementation of to_load. */
13416
13417 static void
13418 remote_load (struct target_ops *self, const char *name, int from_tty)
13419 {
13420 generic_load (name, from_tty);
13421 }
13422
13423 /* Accepts an integer PID; returns a string representing a file that
13424 can be opened on the remote side to get the symbols for the child
13425 process. Returns NULL if the operation is not supported. */
13426
13427 static char *
13428 remote_pid_to_exec_file (struct target_ops *self, int pid)
13429 {
13430 static gdb::unique_xmalloc_ptr<char> filename;
13431 struct inferior *inf;
13432 char *annex = NULL;
13433
13434 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13435 return NULL;
13436
13437 inf = find_inferior_pid (pid);
13438 if (inf == NULL)
13439 internal_error (__FILE__, __LINE__,
13440 _("not currently attached to process %d"), pid);
13441
13442 if (!inf->fake_pid_p)
13443 {
13444 const int annex_size = 9;
13445
13446 annex = (char *) alloca (annex_size);
13447 xsnprintf (annex, annex_size, "%x", pid);
13448 }
13449
13450 filename = target_read_stralloc (&current_target,
13451 TARGET_OBJECT_EXEC_FILE, annex);
13452
13453 return filename.get ();
13454 }
13455
13456 /* Implement the to_can_do_single_step target_ops method. */
13457
13458 static int
13459 remote_can_do_single_step (struct target_ops *ops)
13460 {
13461 /* We can only tell whether target supports single step or not by
13462 supported s and S vCont actions if the stub supports vContSupported
13463 feature. If the stub doesn't support vContSupported feature,
13464 we have conservatively to think target doesn't supports single
13465 step. */
13466 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13467 {
13468 struct remote_state *rs = get_remote_state ();
13469
13470 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13471 remote_vcont_probe (rs);
13472
13473 return rs->supports_vCont.s && rs->supports_vCont.S;
13474 }
13475 else
13476 return 0;
13477 }
13478
13479 /* Implementation of the to_execution_direction method for the remote
13480 target. */
13481
13482 static enum exec_direction_kind
13483 remote_execution_direction (struct target_ops *self)
13484 {
13485 struct remote_state *rs = get_remote_state ();
13486
13487 return rs->last_resume_exec_dir;
13488 }
13489
13490 /* Return pointer to the thread_info struct which corresponds to
13491 THREAD_HANDLE (having length HANDLE_LEN). */
13492
13493 static struct thread_info *
13494 remote_thread_handle_to_thread_info (struct target_ops *ops,
13495 const gdb_byte *thread_handle,
13496 int handle_len,
13497 struct inferior *inf)
13498 {
13499 struct thread_info *tp;
13500
13501 ALL_NON_EXITED_THREADS (tp)
13502 {
13503 remote_thread_info *priv = get_remote_thread_info (tp);
13504
13505 if (tp->inf == inf && priv != NULL)
13506 {
13507 if (handle_len != priv->thread_handle.size ())
13508 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13509 handle_len, priv->thread_handle.size ());
13510 if (memcmp (thread_handle, priv->thread_handle.data (),
13511 handle_len) == 0)
13512 return tp;
13513 }
13514 }
13515
13516 return NULL;
13517 }
13518
13519 static void
13520 init_remote_ops (void)
13521 {
13522 remote_ops.to_shortname = "remote";
13523 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13524 remote_ops.to_doc =
13525 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13526 Specify the serial device it is connected to\n\
13527 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13528 remote_ops.to_open = remote_open;
13529 remote_ops.to_close = remote_close;
13530 remote_ops.to_detach = remote_detach;
13531 remote_ops.to_disconnect = remote_disconnect;
13532 remote_ops.to_resume = remote_resume;
13533 remote_ops.to_commit_resume = remote_commit_resume;
13534 remote_ops.to_wait = remote_wait;
13535 remote_ops.to_fetch_registers = remote_fetch_registers;
13536 remote_ops.to_store_registers = remote_store_registers;
13537 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13538 remote_ops.to_files_info = remote_files_info;
13539 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13540 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13541 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13542 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13543 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13544 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13545 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13546 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13547 remote_ops.to_watchpoint_addr_within_range =
13548 remote_watchpoint_addr_within_range;
13549 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13550 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13551 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13552 remote_ops.to_region_ok_for_hw_watchpoint
13553 = remote_region_ok_for_hw_watchpoint;
13554 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13555 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13556 remote_ops.to_kill = remote_kill;
13557 remote_ops.to_load = remote_load;
13558 remote_ops.to_mourn_inferior = remote_mourn;
13559 remote_ops.to_pass_signals = remote_pass_signals;
13560 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13561 remote_ops.to_program_signals = remote_program_signals;
13562 remote_ops.to_thread_alive = remote_thread_alive;
13563 remote_ops.to_thread_name = remote_thread_name;
13564 remote_ops.to_update_thread_list = remote_update_thread_list;
13565 remote_ops.to_pid_to_str = remote_pid_to_str;
13566 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13567 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13568 remote_ops.to_stop = remote_stop;
13569 remote_ops.to_interrupt = remote_interrupt;
13570 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13571 remote_ops.to_xfer_partial = remote_xfer_partial;
13572 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13573 remote_ops.to_rcmd = remote_rcmd;
13574 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13575 remote_ops.to_log_command = serial_log_command;
13576 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13577 remote_ops.to_stratum = process_stratum;
13578 remote_ops.to_has_all_memory = default_child_has_all_memory;
13579 remote_ops.to_has_memory = default_child_has_memory;
13580 remote_ops.to_has_stack = default_child_has_stack;
13581 remote_ops.to_has_registers = default_child_has_registers;
13582 remote_ops.to_has_execution = default_child_has_execution;
13583 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13584 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13585 remote_ops.to_magic = OPS_MAGIC;
13586 remote_ops.to_memory_map = remote_memory_map;
13587 remote_ops.to_flash_erase = remote_flash_erase;
13588 remote_ops.to_flash_done = remote_flash_done;
13589 remote_ops.to_read_description = remote_read_description;
13590 remote_ops.to_search_memory = remote_search_memory;
13591 remote_ops.to_can_async_p = remote_can_async_p;
13592 remote_ops.to_is_async_p = remote_is_async_p;
13593 remote_ops.to_async = remote_async;
13594 remote_ops.to_thread_events = remote_thread_events;
13595 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13596 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13597 remote_ops.to_terminal_ours = remote_terminal_ours;
13598 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13599 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13600 remote_ops.to_supports_disable_randomization
13601 = remote_supports_disable_randomization;
13602 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13603 remote_ops.to_fileio_open = remote_hostio_open;
13604 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13605 remote_ops.to_fileio_pread = remote_hostio_pread;
13606 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13607 remote_ops.to_fileio_close = remote_hostio_close;
13608 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13609 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13610 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13611 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13612 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13613 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13614 remote_ops.to_trace_init = remote_trace_init;
13615 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13616 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13617 remote_ops.to_download_trace_state_variable
13618 = remote_download_trace_state_variable;
13619 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13620 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13621 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13622 remote_ops.to_trace_start = remote_trace_start;
13623 remote_ops.to_get_trace_status = remote_get_trace_status;
13624 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13625 remote_ops.to_trace_stop = remote_trace_stop;
13626 remote_ops.to_trace_find = remote_trace_find;
13627 remote_ops.to_get_trace_state_variable_value
13628 = remote_get_trace_state_variable_value;
13629 remote_ops.to_save_trace_data = remote_save_trace_data;
13630 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13631 remote_ops.to_upload_trace_state_variables
13632 = remote_upload_trace_state_variables;
13633 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13634 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13635 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13636 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13637 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13638 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13639 remote_ops.to_core_of_thread = remote_core_of_thread;
13640 remote_ops.to_verify_memory = remote_verify_memory;
13641 remote_ops.to_get_tib_address = remote_get_tib_address;
13642 remote_ops.to_set_permissions = remote_set_permissions;
13643 remote_ops.to_static_tracepoint_marker_at
13644 = remote_static_tracepoint_marker_at;
13645 remote_ops.to_static_tracepoint_markers_by_strid
13646 = remote_static_tracepoint_markers_by_strid;
13647 remote_ops.to_traceframe_info = remote_traceframe_info;
13648 remote_ops.to_use_agent = remote_use_agent;
13649 remote_ops.to_can_use_agent = remote_can_use_agent;
13650 remote_ops.to_supports_btrace = remote_supports_btrace;
13651 remote_ops.to_enable_btrace = remote_enable_btrace;
13652 remote_ops.to_disable_btrace = remote_disable_btrace;
13653 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13654 remote_ops.to_read_btrace = remote_read_btrace;
13655 remote_ops.to_btrace_conf = remote_btrace_conf;
13656 remote_ops.to_augmented_libraries_svr4_read =
13657 remote_augmented_libraries_svr4_read;
13658 remote_ops.to_follow_fork = remote_follow_fork;
13659 remote_ops.to_follow_exec = remote_follow_exec;
13660 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13661 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13662 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13663 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13664 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13665 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13666 remote_ops.to_execution_direction = remote_execution_direction;
13667 remote_ops.to_thread_handle_to_thread_info =
13668 remote_thread_handle_to_thread_info;
13669 }
13670
13671 /* Set up the extended remote vector by making a copy of the standard
13672 remote vector and adding to it. */
13673
13674 static void
13675 init_extended_remote_ops (void)
13676 {
13677 extended_remote_ops = remote_ops;
13678
13679 extended_remote_ops.to_shortname = "extended-remote";
13680 extended_remote_ops.to_longname =
13681 "Extended remote serial target in gdb-specific protocol";
13682 extended_remote_ops.to_doc =
13683 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13684 Specify the serial device it is connected to (e.g. /dev/ttya).";
13685 extended_remote_ops.to_open = extended_remote_open;
13686 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13687 extended_remote_ops.to_detach = extended_remote_detach;
13688 extended_remote_ops.to_attach = extended_remote_attach;
13689 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13690 extended_remote_ops.to_supports_disable_randomization
13691 = extended_remote_supports_disable_randomization;
13692 }
13693
13694 static int
13695 remote_can_async_p (struct target_ops *ops)
13696 {
13697 struct remote_state *rs = get_remote_state ();
13698
13699 /* We don't go async if the user has explicitly prevented it with the
13700 "maint set target-async" command. */
13701 if (!target_async_permitted)
13702 return 0;
13703
13704 /* We're async whenever the serial device is. */
13705 return serial_can_async_p (rs->remote_desc);
13706 }
13707
13708 static int
13709 remote_is_async_p (struct target_ops *ops)
13710 {
13711 struct remote_state *rs = get_remote_state ();
13712
13713 if (!target_async_permitted)
13714 /* We only enable async when the user specifically asks for it. */
13715 return 0;
13716
13717 /* We're async whenever the serial device is. */
13718 return serial_is_async_p (rs->remote_desc);
13719 }
13720
13721 /* Pass the SERIAL event on and up to the client. One day this code
13722 will be able to delay notifying the client of an event until the
13723 point where an entire packet has been received. */
13724
13725 static serial_event_ftype remote_async_serial_handler;
13726
13727 static void
13728 remote_async_serial_handler (struct serial *scb, void *context)
13729 {
13730 /* Don't propogate error information up to the client. Instead let
13731 the client find out about the error by querying the target. */
13732 inferior_event_handler (INF_REG_EVENT, NULL);
13733 }
13734
13735 static void
13736 remote_async_inferior_event_handler (gdb_client_data data)
13737 {
13738 inferior_event_handler (INF_REG_EVENT, NULL);
13739 }
13740
13741 static void
13742 remote_async (struct target_ops *ops, int enable)
13743 {
13744 struct remote_state *rs = get_remote_state ();
13745
13746 if (enable)
13747 {
13748 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13749
13750 /* If there are pending events in the stop reply queue tell the
13751 event loop to process them. */
13752 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13753 mark_async_event_handler (remote_async_inferior_event_token);
13754 /* For simplicity, below we clear the pending events token
13755 without remembering whether it is marked, so here we always
13756 mark it. If there's actually no pending notification to
13757 process, this ends up being a no-op (other than a spurious
13758 event-loop wakeup). */
13759 if (target_is_non_stop_p ())
13760 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13761 }
13762 else
13763 {
13764 serial_async (rs->remote_desc, NULL, NULL);
13765 /* If the core is disabling async, it doesn't want to be
13766 disturbed with target events. Clear all async event sources
13767 too. */
13768 clear_async_event_handler (remote_async_inferior_event_token);
13769 if (target_is_non_stop_p ())
13770 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13771 }
13772 }
13773
13774 /* Implementation of the to_thread_events method. */
13775
13776 static void
13777 remote_thread_events (struct target_ops *ops, int enable)
13778 {
13779 struct remote_state *rs = get_remote_state ();
13780 size_t size = get_remote_packet_size ();
13781
13782 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13783 return;
13784
13785 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13786 putpkt (rs->buf);
13787 getpkt (&rs->buf, &rs->buf_size, 0);
13788
13789 switch (packet_ok (rs->buf,
13790 &remote_protocol_packets[PACKET_QThreadEvents]))
13791 {
13792 case PACKET_OK:
13793 if (strcmp (rs->buf, "OK") != 0)
13794 error (_("Remote refused setting thread events: %s"), rs->buf);
13795 break;
13796 case PACKET_ERROR:
13797 warning (_("Remote failure reply: %s"), rs->buf);
13798 break;
13799 case PACKET_UNKNOWN:
13800 break;
13801 }
13802 }
13803
13804 static void
13805 set_remote_cmd (const char *args, int from_tty)
13806 {
13807 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13808 }
13809
13810 static void
13811 show_remote_cmd (const char *args, int from_tty)
13812 {
13813 /* We can't just use cmd_show_list here, because we want to skip
13814 the redundant "show remote Z-packet" and the legacy aliases. */
13815 struct cmd_list_element *list = remote_show_cmdlist;
13816 struct ui_out *uiout = current_uiout;
13817
13818 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13819 for (; list != NULL; list = list->next)
13820 if (strcmp (list->name, "Z-packet") == 0)
13821 continue;
13822 else if (list->type == not_set_cmd)
13823 /* Alias commands are exactly like the original, except they
13824 don't have the normal type. */
13825 continue;
13826 else
13827 {
13828 ui_out_emit_tuple option_emitter (uiout, "option");
13829
13830 uiout->field_string ("name", list->name);
13831 uiout->text (": ");
13832 if (list->type == show_cmd)
13833 do_show_command (NULL, from_tty, list);
13834 else
13835 cmd_func (list, NULL, from_tty);
13836 }
13837 }
13838
13839
13840 /* Function to be called whenever a new objfile (shlib) is detected. */
13841 static void
13842 remote_new_objfile (struct objfile *objfile)
13843 {
13844 struct remote_state *rs = get_remote_state ();
13845
13846 if (rs->remote_desc != 0) /* Have a remote connection. */
13847 remote_check_symbols ();
13848 }
13849
13850 /* Pull all the tracepoints defined on the target and create local
13851 data structures representing them. We don't want to create real
13852 tracepoints yet, we don't want to mess up the user's existing
13853 collection. */
13854
13855 static int
13856 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13857 {
13858 struct remote_state *rs = get_remote_state ();
13859 char *p;
13860
13861 /* Ask for a first packet of tracepoint definition. */
13862 putpkt ("qTfP");
13863 getpkt (&rs->buf, &rs->buf_size, 0);
13864 p = rs->buf;
13865 while (*p && *p != 'l')
13866 {
13867 parse_tracepoint_definition (p, utpp);
13868 /* Ask for another packet of tracepoint definition. */
13869 putpkt ("qTsP");
13870 getpkt (&rs->buf, &rs->buf_size, 0);
13871 p = rs->buf;
13872 }
13873 return 0;
13874 }
13875
13876 static int
13877 remote_upload_trace_state_variables (struct target_ops *self,
13878 struct uploaded_tsv **utsvp)
13879 {
13880 struct remote_state *rs = get_remote_state ();
13881 char *p;
13882
13883 /* Ask for a first packet of variable definition. */
13884 putpkt ("qTfV");
13885 getpkt (&rs->buf, &rs->buf_size, 0);
13886 p = rs->buf;
13887 while (*p && *p != 'l')
13888 {
13889 parse_tsv_definition (p, utsvp);
13890 /* Ask for another packet of variable definition. */
13891 putpkt ("qTsV");
13892 getpkt (&rs->buf, &rs->buf_size, 0);
13893 p = rs->buf;
13894 }
13895 return 0;
13896 }
13897
13898 /* The "set/show range-stepping" show hook. */
13899
13900 static void
13901 show_range_stepping (struct ui_file *file, int from_tty,
13902 struct cmd_list_element *c,
13903 const char *value)
13904 {
13905 fprintf_filtered (file,
13906 _("Debugger's willingness to use range stepping "
13907 "is %s.\n"), value);
13908 }
13909
13910 /* The "set/show range-stepping" set hook. */
13911
13912 static void
13913 set_range_stepping (const char *ignore_args, int from_tty,
13914 struct cmd_list_element *c)
13915 {
13916 struct remote_state *rs = get_remote_state ();
13917
13918 /* Whene enabling, check whether range stepping is actually
13919 supported by the target, and warn if not. */
13920 if (use_range_stepping)
13921 {
13922 if (rs->remote_desc != NULL)
13923 {
13924 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13925 remote_vcont_probe (rs);
13926
13927 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13928 && rs->supports_vCont.r)
13929 return;
13930 }
13931
13932 warning (_("Range stepping is not supported by the current target"));
13933 }
13934 }
13935
13936 void
13937 _initialize_remote (void)
13938 {
13939 struct cmd_list_element *cmd;
13940 const char *cmd_name;
13941
13942 /* architecture specific data */
13943 remote_gdbarch_data_handle =
13944 gdbarch_data_register_post_init (init_remote_state);
13945 remote_g_packet_data_handle =
13946 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13947
13948 remote_pspace_data
13949 = register_program_space_data_with_cleanup (NULL,
13950 remote_pspace_data_cleanup);
13951
13952 /* Initialize the per-target state. At the moment there is only one
13953 of these, not one per target. Only one target is active at a
13954 time. */
13955 remote_state = new_remote_state ();
13956
13957 init_remote_ops ();
13958 add_target (&remote_ops);
13959
13960 init_extended_remote_ops ();
13961 add_target (&extended_remote_ops);
13962
13963 /* Hook into new objfile notification. */
13964 observer_attach_new_objfile (remote_new_objfile);
13965 /* We're no longer interested in notification events of an inferior
13966 when it exits. */
13967 observer_attach_inferior_exit (discard_pending_stop_replies);
13968
13969 #if 0
13970 init_remote_threadtests ();
13971 #endif
13972
13973 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13974 /* set/show remote ... */
13975
13976 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13977 Remote protocol specific variables\n\
13978 Configure various remote-protocol specific variables such as\n\
13979 the packets being used"),
13980 &remote_set_cmdlist, "set remote ",
13981 0 /* allow-unknown */, &setlist);
13982 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13983 Remote protocol specific variables\n\
13984 Configure various remote-protocol specific variables such as\n\
13985 the packets being used"),
13986 &remote_show_cmdlist, "show remote ",
13987 0 /* allow-unknown */, &showlist);
13988
13989 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13990 Compare section data on target to the exec file.\n\
13991 Argument is a single section name (default: all loaded sections).\n\
13992 To compare only read-only loaded sections, specify the -r option."),
13993 &cmdlist);
13994
13995 add_cmd ("packet", class_maintenance, packet_command, _("\
13996 Send an arbitrary packet to a remote target.\n\
13997 maintenance packet TEXT\n\
13998 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13999 this command sends the string TEXT to the inferior, and displays the\n\
14000 response packet. GDB supplies the initial `$' character, and the\n\
14001 terminating `#' character and checksum."),
14002 &maintenancelist);
14003
14004 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14005 Set whether to send break if interrupted."), _("\
14006 Show whether to send break if interrupted."), _("\
14007 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14008 set_remotebreak, show_remotebreak,
14009 &setlist, &showlist);
14010 cmd_name = "remotebreak";
14011 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14012 deprecate_cmd (cmd, "set remote interrupt-sequence");
14013 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14014 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14015 deprecate_cmd (cmd, "show remote interrupt-sequence");
14016
14017 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14018 interrupt_sequence_modes, &interrupt_sequence_mode,
14019 _("\
14020 Set interrupt sequence to remote target."), _("\
14021 Show interrupt sequence to remote target."), _("\
14022 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14023 NULL, show_interrupt_sequence,
14024 &remote_set_cmdlist,
14025 &remote_show_cmdlist);
14026
14027 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14028 &interrupt_on_connect, _("\
14029 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14030 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14031 If set, interrupt sequence is sent to remote target."),
14032 NULL, NULL,
14033 &remote_set_cmdlist, &remote_show_cmdlist);
14034
14035 /* Install commands for configuring memory read/write packets. */
14036
14037 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14038 Set the maximum number of bytes per memory write packet (deprecated)."),
14039 &setlist);
14040 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14041 Show the maximum number of bytes per memory write packet (deprecated)."),
14042 &showlist);
14043 add_cmd ("memory-write-packet-size", no_class,
14044 set_memory_write_packet_size, _("\
14045 Set the maximum number of bytes per memory-write packet.\n\
14046 Specify the number of bytes in a packet or 0 (zero) for the\n\
14047 default packet size. The actual limit is further reduced\n\
14048 dependent on the target. Specify ``fixed'' to disable the\n\
14049 further restriction and ``limit'' to enable that restriction."),
14050 &remote_set_cmdlist);
14051 add_cmd ("memory-read-packet-size", no_class,
14052 set_memory_read_packet_size, _("\
14053 Set the maximum number of bytes per memory-read packet.\n\
14054 Specify the number of bytes in a packet or 0 (zero) for the\n\
14055 default packet size. The actual limit is further reduced\n\
14056 dependent on the target. Specify ``fixed'' to disable the\n\
14057 further restriction and ``limit'' to enable that restriction."),
14058 &remote_set_cmdlist);
14059 add_cmd ("memory-write-packet-size", no_class,
14060 show_memory_write_packet_size,
14061 _("Show the maximum number of bytes per memory-write packet."),
14062 &remote_show_cmdlist);
14063 add_cmd ("memory-read-packet-size", no_class,
14064 show_memory_read_packet_size,
14065 _("Show the maximum number of bytes per memory-read packet."),
14066 &remote_show_cmdlist);
14067
14068 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14069 &remote_hw_watchpoint_limit, _("\
14070 Set the maximum number of target hardware watchpoints."), _("\
14071 Show the maximum number of target hardware watchpoints."), _("\
14072 Specify a negative limit for unlimited."),
14073 NULL, NULL, /* FIXME: i18n: The maximum
14074 number of target hardware
14075 watchpoints is %s. */
14076 &remote_set_cmdlist, &remote_show_cmdlist);
14077 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14078 &remote_hw_watchpoint_length_limit, _("\
14079 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14080 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14081 Specify a negative limit for unlimited."),
14082 NULL, NULL, /* FIXME: i18n: The maximum
14083 length (in bytes) of a target
14084 hardware watchpoint is %s. */
14085 &remote_set_cmdlist, &remote_show_cmdlist);
14086 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14087 &remote_hw_breakpoint_limit, _("\
14088 Set the maximum number of target hardware breakpoints."), _("\
14089 Show the maximum number of target hardware breakpoints."), _("\
14090 Specify a negative limit for unlimited."),
14091 NULL, NULL, /* FIXME: i18n: The maximum
14092 number of target hardware
14093 breakpoints is %s. */
14094 &remote_set_cmdlist, &remote_show_cmdlist);
14095
14096 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14097 &remote_address_size, _("\
14098 Set the maximum size of the address (in bits) in a memory packet."), _("\
14099 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14100 NULL,
14101 NULL, /* FIXME: i18n: */
14102 &setlist, &showlist);
14103
14104 init_all_packet_configs ();
14105
14106 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14107 "X", "binary-download", 1);
14108
14109 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14110 "vCont", "verbose-resume", 0);
14111
14112 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14113 "QPassSignals", "pass-signals", 0);
14114
14115 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14116 "QCatchSyscalls", "catch-syscalls", 0);
14117
14118 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14119 "QProgramSignals", "program-signals", 0);
14120
14121 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14122 "QSetWorkingDir", "set-working-dir", 0);
14123
14124 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14125 "QStartupWithShell", "startup-with-shell", 0);
14126
14127 add_packet_config_cmd (&remote_protocol_packets
14128 [PACKET_QEnvironmentHexEncoded],
14129 "QEnvironmentHexEncoded", "environment-hex-encoded",
14130 0);
14131
14132 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14133 "QEnvironmentReset", "environment-reset",
14134 0);
14135
14136 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14137 "QEnvironmentUnset", "environment-unset",
14138 0);
14139
14140 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14141 "qSymbol", "symbol-lookup", 0);
14142
14143 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14144 "P", "set-register", 1);
14145
14146 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14147 "p", "fetch-register", 1);
14148
14149 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14150 "Z0", "software-breakpoint", 0);
14151
14152 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14153 "Z1", "hardware-breakpoint", 0);
14154
14155 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14156 "Z2", "write-watchpoint", 0);
14157
14158 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14159 "Z3", "read-watchpoint", 0);
14160
14161 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14162 "Z4", "access-watchpoint", 0);
14163
14164 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14165 "qXfer:auxv:read", "read-aux-vector", 0);
14166
14167 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14168 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14169
14170 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14171 "qXfer:features:read", "target-features", 0);
14172
14173 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14174 "qXfer:libraries:read", "library-info", 0);
14175
14176 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14177 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14178
14179 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14180 "qXfer:memory-map:read", "memory-map", 0);
14181
14182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14183 "qXfer:spu:read", "read-spu-object", 0);
14184
14185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14186 "qXfer:spu:write", "write-spu-object", 0);
14187
14188 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14189 "qXfer:osdata:read", "osdata", 0);
14190
14191 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14192 "qXfer:threads:read", "threads", 0);
14193
14194 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14195 "qXfer:siginfo:read", "read-siginfo-object", 0);
14196
14197 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14198 "qXfer:siginfo:write", "write-siginfo-object", 0);
14199
14200 add_packet_config_cmd
14201 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14202 "qXfer:traceframe-info:read", "traceframe-info", 0);
14203
14204 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14205 "qXfer:uib:read", "unwind-info-block", 0);
14206
14207 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14208 "qGetTLSAddr", "get-thread-local-storage-address",
14209 0);
14210
14211 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14212 "qGetTIBAddr", "get-thread-information-block-address",
14213 0);
14214
14215 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14216 "bc", "reverse-continue", 0);
14217
14218 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14219 "bs", "reverse-step", 0);
14220
14221 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14222 "qSupported", "supported-packets", 0);
14223
14224 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14225 "qSearch:memory", "search-memory", 0);
14226
14227 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14228 "qTStatus", "trace-status", 0);
14229
14230 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14231 "vFile:setfs", "hostio-setfs", 0);
14232
14233 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14234 "vFile:open", "hostio-open", 0);
14235
14236 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14237 "vFile:pread", "hostio-pread", 0);
14238
14239 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14240 "vFile:pwrite", "hostio-pwrite", 0);
14241
14242 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14243 "vFile:close", "hostio-close", 0);
14244
14245 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14246 "vFile:unlink", "hostio-unlink", 0);
14247
14248 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14249 "vFile:readlink", "hostio-readlink", 0);
14250
14251 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14252 "vFile:fstat", "hostio-fstat", 0);
14253
14254 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14255 "vAttach", "attach", 0);
14256
14257 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14258 "vRun", "run", 0);
14259
14260 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14261 "QStartNoAckMode", "noack", 0);
14262
14263 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14264 "vKill", "kill", 0);
14265
14266 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14267 "qAttached", "query-attached", 0);
14268
14269 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14270 "ConditionalTracepoints",
14271 "conditional-tracepoints", 0);
14272
14273 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14274 "ConditionalBreakpoints",
14275 "conditional-breakpoints", 0);
14276
14277 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14278 "BreakpointCommands",
14279 "breakpoint-commands", 0);
14280
14281 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14282 "FastTracepoints", "fast-tracepoints", 0);
14283
14284 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14285 "TracepointSource", "TracepointSource", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14288 "QAllow", "allow", 0);
14289
14290 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14291 "StaticTracepoints", "static-tracepoints", 0);
14292
14293 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14294 "InstallInTrace", "install-in-trace", 0);
14295
14296 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14297 "qXfer:statictrace:read", "read-sdata-object", 0);
14298
14299 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14300 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14303 "QDisableRandomization", "disable-randomization", 0);
14304
14305 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14306 "QAgent", "agent", 0);
14307
14308 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14309 "QTBuffer:size", "trace-buffer-size", 0);
14310
14311 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14312 "Qbtrace:off", "disable-btrace", 0);
14313
14314 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14315 "Qbtrace:bts", "enable-btrace-bts", 0);
14316
14317 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14318 "Qbtrace:pt", "enable-btrace-pt", 0);
14319
14320 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14321 "qXfer:btrace", "read-btrace", 0);
14322
14323 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14324 "qXfer:btrace-conf", "read-btrace-conf", 0);
14325
14326 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14327 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14328
14329 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14330 "multiprocess-feature", "multiprocess-feature", 0);
14331
14332 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14333 "swbreak-feature", "swbreak-feature", 0);
14334
14335 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14336 "hwbreak-feature", "hwbreak-feature", 0);
14337
14338 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14339 "fork-event-feature", "fork-event-feature", 0);
14340
14341 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14342 "vfork-event-feature", "vfork-event-feature", 0);
14343
14344 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14345 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14346
14347 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14348 "vContSupported", "verbose-resume-supported", 0);
14349
14350 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14351 "exec-event-feature", "exec-event-feature", 0);
14352
14353 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14354 "vCtrlC", "ctrl-c", 0);
14355
14356 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14357 "QThreadEvents", "thread-events", 0);
14358
14359 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14360 "N stop reply", "no-resumed-stop-reply", 0);
14361
14362 /* Assert that we've registered "set remote foo-packet" commands
14363 for all packet configs. */
14364 {
14365 int i;
14366
14367 for (i = 0; i < PACKET_MAX; i++)
14368 {
14369 /* Ideally all configs would have a command associated. Some
14370 still don't though. */
14371 int excepted;
14372
14373 switch (i)
14374 {
14375 case PACKET_QNonStop:
14376 case PACKET_EnableDisableTracepoints_feature:
14377 case PACKET_tracenz_feature:
14378 case PACKET_DisconnectedTracing_feature:
14379 case PACKET_augmented_libraries_svr4_read_feature:
14380 case PACKET_qCRC:
14381 /* Additions to this list need to be well justified:
14382 pre-existing packets are OK; new packets are not. */
14383 excepted = 1;
14384 break;
14385 default:
14386 excepted = 0;
14387 break;
14388 }
14389
14390 /* This catches both forgetting to add a config command, and
14391 forgetting to remove a packet from the exception list. */
14392 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14393 }
14394 }
14395
14396 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14397 Z sub-packet has its own set and show commands, but users may
14398 have sets to this variable in their .gdbinit files (or in their
14399 documentation). */
14400 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14401 &remote_Z_packet_detect, _("\
14402 Set use of remote protocol `Z' packets"), _("\
14403 Show use of remote protocol `Z' packets "), _("\
14404 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14405 packets."),
14406 set_remote_protocol_Z_packet_cmd,
14407 show_remote_protocol_Z_packet_cmd,
14408 /* FIXME: i18n: Use of remote protocol
14409 `Z' packets is %s. */
14410 &remote_set_cmdlist, &remote_show_cmdlist);
14411
14412 add_prefix_cmd ("remote", class_files, remote_command, _("\
14413 Manipulate files on the remote system\n\
14414 Transfer files to and from the remote target system."),
14415 &remote_cmdlist, "remote ",
14416 0 /* allow-unknown */, &cmdlist);
14417
14418 add_cmd ("put", class_files, remote_put_command,
14419 _("Copy a local file to the remote system."),
14420 &remote_cmdlist);
14421
14422 add_cmd ("get", class_files, remote_get_command,
14423 _("Copy a remote file to the local system."),
14424 &remote_cmdlist);
14425
14426 add_cmd ("delete", class_files, remote_delete_command,
14427 _("Delete a remote file."),
14428 &remote_cmdlist);
14429
14430 add_setshow_string_noescape_cmd ("exec-file", class_files,
14431 &remote_exec_file_var, _("\
14432 Set the remote pathname for \"run\""), _("\
14433 Show the remote pathname for \"run\""), NULL,
14434 set_remote_exec_file,
14435 show_remote_exec_file,
14436 &remote_set_cmdlist,
14437 &remote_show_cmdlist);
14438
14439 add_setshow_boolean_cmd ("range-stepping", class_run,
14440 &use_range_stepping, _("\
14441 Enable or disable range stepping."), _("\
14442 Show whether target-assisted range stepping is enabled."), _("\
14443 If on, and the target supports it, when stepping a source line, GDB\n\
14444 tells the target to step the corresponding range of addresses itself instead\n\
14445 of issuing multiple single-steps. This speeds up source level\n\
14446 stepping. If off, GDB always issues single-steps, even if range\n\
14447 stepping is supported by the target. The default is on."),
14448 set_range_stepping,
14449 show_range_stepping,
14450 &setlist,
14451 &showlist);
14452
14453 /* Eventually initialize fileio. See fileio.c */
14454 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14455
14456 /* Take advantage of the fact that the TID field is not used, to tag
14457 special ptids with it set to != 0. */
14458 magic_null_ptid = ptid_build (42000, -1, 1);
14459 not_sent_ptid = ptid_build (42000, -2, 1);
14460 any_thread_ptid = ptid_build (42000, 0, 1);
14461 }
This page took 0.328419 seconds and 4 git commands to generate.