11539806cdf02420208de857d0df63207648276d
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "observer.h"
41 #include "solib.h"
42 #include "cli/cli-decode.h"
43 #include "cli/cli-setshow.h"
44 #include "target-descriptions.h"
45
46 #include <ctype.h>
47 #include <sys/time.h>
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59 #include "gdb/fileio.h"
60 #include "gdb_stat.h"
61 #include "xml-support.h"
62
63 #include "memory-map.h"
64
65 #include "tracepoint.h"
66 #include "ax.h"
67 #include "ax-gdb.h"
68
69 /* Temp hacks for tracepoint encoding migration. */
70 static char *target_buf;
71 static long target_buf_size;
72 /*static*/ void
73 encode_actions (struct breakpoint *t, struct bp_location *tloc,
74 char ***tdp_actions, char ***stepping_actions);
75
76 /* The size to align memory write packets, when practical. The protocol
77 does not guarantee any alignment, and gdb will generate short
78 writes and unaligned writes, but even as a best-effort attempt this
79 can improve bulk transfers. For instance, if a write is misaligned
80 relative to the target's data bus, the stub may need to make an extra
81 round trip fetching data from the target. This doesn't make a
82 huge difference, but it's easy to do, so we try to be helpful.
83
84 The alignment chosen is arbitrary; usually data bus width is
85 important here, not the possibly larger cache line size. */
86 enum { REMOTE_ALIGN_WRITES = 16 };
87
88 /* Prototypes for local functions. */
89 static void cleanup_sigint_signal_handler (void *dummy);
90 static void initialize_sigint_signal_handler (void);
91 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
92 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
93 int forever);
94
95 static void handle_remote_sigint (int);
96 static void handle_remote_sigint_twice (int);
97 static void async_remote_interrupt (gdb_client_data);
98 void async_remote_interrupt_twice (gdb_client_data);
99
100 static void remote_files_info (struct target_ops *ignore);
101
102 static void remote_prepare_to_store (struct regcache *regcache);
103
104 static void remote_open (char *name, int from_tty);
105
106 static void extended_remote_open (char *name, int from_tty);
107
108 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
109
110 static void remote_close (int quitting);
111
112 static void remote_mourn (struct target_ops *ops);
113
114 static void extended_remote_restart (void);
115
116 static void extended_remote_mourn (struct target_ops *);
117
118 static void remote_mourn_1 (struct target_ops *);
119
120 static void remote_send (char **buf, long *sizeof_buf_p);
121
122 static int readchar (int timeout);
123
124 static void remote_kill (struct target_ops *ops);
125
126 static int tohex (int nib);
127
128 static int remote_can_async_p (void);
129
130 static int remote_is_async_p (void);
131
132 static void remote_async (void (*callback) (enum inferior_event_type event_type,
133 void *context), void *context);
134
135 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
136
137 static void remote_interrupt (int signo);
138
139 static void remote_interrupt_twice (int signo);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (struct ptid ptid);
144 static void set_continue_thread (struct ptid ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (ptid_t);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int hexnumstr (char *, ULONGEST);
165
166 static int hexnumnstr (char *, ULONGEST, int);
167
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
169
170 static void print_packet (char *);
171
172 static void compare_sections_command (char *, int);
173
174 static void packet_command (char *, int);
175
176 static int stub_unpack_int (char *buff, int fieldlength);
177
178 static ptid_t remote_current_thread (ptid_t oldptid);
179
180 static void remote_find_new_threads (void);
181
182 static void record_currthread (ptid_t currthread);
183
184 static int fromhex (int a);
185
186 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
187
188 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
189
190 static int putpkt_binary (char *buf, int cnt);
191
192 static void check_binary_download (CORE_ADDR addr);
193
194 struct packet_config;
195
196 static void show_packet_config_cmd (struct packet_config *config);
197
198 static void update_packet_config (struct packet_config *config);
199
200 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
201 struct cmd_list_element *c);
202
203 static void show_remote_protocol_packet_cmd (struct ui_file *file,
204 int from_tty,
205 struct cmd_list_element *c,
206 const char *value);
207
208 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
209 static ptid_t read_ptid (char *buf, char **obuf);
210
211 static void remote_set_permissions (void);
212
213 struct remote_state;
214 static int remote_get_trace_status (struct trace_status *ts);
215
216 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
217
218 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
219
220 static void remote_query_supported (void);
221
222 static void remote_check_symbols (struct objfile *objfile);
223
224 void _initialize_remote (void);
225
226 struct stop_reply;
227 static struct stop_reply *stop_reply_xmalloc (void);
228 static void stop_reply_xfree (struct stop_reply *);
229 static void do_stop_reply_xfree (void *arg);
230 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
231 static void push_stop_reply (struct stop_reply *);
232 static void remote_get_pending_stop_replies (void);
233 static void discard_pending_stop_replies (int pid);
234 static int peek_stop_reply (ptid_t ptid);
235
236 static void remote_async_inferior_event_handler (gdb_client_data);
237 static void remote_async_get_pending_events_handler (gdb_client_data);
238
239 static void remote_terminal_ours (void);
240
241 static int remote_read_description_p (struct target_ops *target);
242
243 static void remote_console_output (char *msg);
244
245 /* The non-stop remote protocol provisions for one pending stop reply.
246 This is where we keep it until it is acknowledged. */
247
248 static struct stop_reply *pending_stop_reply = NULL;
249
250 /* For "remote". */
251
252 static struct cmd_list_element *remote_cmdlist;
253
254 /* For "set remote" and "show remote". */
255
256 static struct cmd_list_element *remote_set_cmdlist;
257 static struct cmd_list_element *remote_show_cmdlist;
258
259 /* Description of the remote protocol state for the currently
260 connected target. This is per-target state, and independent of the
261 selected architecture. */
262
263 struct remote_state
264 {
265 /* A buffer to use for incoming packets, and its current size. The
266 buffer is grown dynamically for larger incoming packets.
267 Outgoing packets may also be constructed in this buffer.
268 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
269 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
270 packets. */
271 char *buf;
272 long buf_size;
273
274 /* If we negotiated packet size explicitly (and thus can bypass
275 heuristics for the largest packet size that will not overflow
276 a buffer in the stub), this will be set to that packet size.
277 Otherwise zero, meaning to use the guessed size. */
278 long explicit_packet_size;
279
280 /* remote_wait is normally called when the target is running and
281 waits for a stop reply packet. But sometimes we need to call it
282 when the target is already stopped. We can send a "?" packet
283 and have remote_wait read the response. Or, if we already have
284 the response, we can stash it in BUF and tell remote_wait to
285 skip calling getpkt. This flag is set when BUF contains a
286 stop reply packet and the target is not waiting. */
287 int cached_wait_status;
288
289 /* True, if in no ack mode. That is, neither GDB nor the stub will
290 expect acks from each other. The connection is assumed to be
291 reliable. */
292 int noack_mode;
293
294 /* True if we're connected in extended remote mode. */
295 int extended;
296
297 /* True if the stub reported support for multi-process
298 extensions. */
299 int multi_process_aware;
300
301 /* True if we resumed the target and we're waiting for the target to
302 stop. In the mean time, we can't start another command/query.
303 The remote server wouldn't be ready to process it, so we'd
304 timeout waiting for a reply that would never come and eventually
305 we'd close the connection. This can happen in asynchronous mode
306 because we allow GDB commands while the target is running. */
307 int waiting_for_stop_reply;
308
309 /* True if the stub reports support for non-stop mode. */
310 int non_stop_aware;
311
312 /* True if the stub reports support for vCont;t. */
313 int support_vCont_t;
314
315 /* True if the stub reports support for conditional tracepoints. */
316 int cond_tracepoints;
317
318 /* True if the stub reports support for fast tracepoints. */
319 int fast_tracepoints;
320
321 /* True if the stub reports support for static tracepoints. */
322 int static_tracepoints;
323
324 /* True if the stub reports support for installing tracepoint while
325 tracing. */
326 int install_in_trace;
327
328 /* True if the stub can continue running a trace while GDB is
329 disconnected. */
330 int disconnected_tracing;
331
332 /* True if the stub reports support for enabling and disabling
333 tracepoints while a trace experiment is running. */
334 int enable_disable_tracepoints;
335
336 /* True if the stub can collect strings using tracenz bytecode. */
337 int string_tracing;
338
339 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
340 responded to that. */
341 int ctrlc_pending_p;
342 };
343
344 /* Private data that we'll store in (struct thread_info)->private. */
345 struct private_thread_info
346 {
347 char *extra;
348 int core;
349 };
350
351 static void
352 free_private_thread_info (struct private_thread_info *info)
353 {
354 xfree (info->extra);
355 xfree (info);
356 }
357
358 /* Returns true if the multi-process extensions are in effect. */
359 static int
360 remote_multi_process_p (struct remote_state *rs)
361 {
362 return rs->multi_process_aware;
363 }
364
365 /* This data could be associated with a target, but we do not always
366 have access to the current target when we need it, so for now it is
367 static. This will be fine for as long as only one target is in use
368 at a time. */
369 static struct remote_state remote_state;
370
371 static struct remote_state *
372 get_remote_state_raw (void)
373 {
374 return &remote_state;
375 }
376
377 /* Description of the remote protocol for a given architecture. */
378
379 struct packet_reg
380 {
381 long offset; /* Offset into G packet. */
382 long regnum; /* GDB's internal register number. */
383 LONGEST pnum; /* Remote protocol register number. */
384 int in_g_packet; /* Always part of G packet. */
385 /* long size in bytes; == register_size (target_gdbarch, regnum);
386 at present. */
387 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
388 at present. */
389 };
390
391 struct remote_arch_state
392 {
393 /* Description of the remote protocol registers. */
394 long sizeof_g_packet;
395
396 /* Description of the remote protocol registers indexed by REGNUM
397 (making an array gdbarch_num_regs in size). */
398 struct packet_reg *regs;
399
400 /* This is the size (in chars) of the first response to the ``g''
401 packet. It is used as a heuristic when determining the maximum
402 size of memory-read and memory-write packets. A target will
403 typically only reserve a buffer large enough to hold the ``g''
404 packet. The size does not include packet overhead (headers and
405 trailers). */
406 long actual_register_packet_size;
407
408 /* This is the maximum size (in chars) of a non read/write packet.
409 It is also used as a cap on the size of read/write packets. */
410 long remote_packet_size;
411 };
412
413 long sizeof_pkt = 2000;
414
415 /* Utility: generate error from an incoming stub packet. */
416 static void
417 trace_error (char *buf)
418 {
419 if (*buf++ != 'E')
420 return; /* not an error msg */
421 switch (*buf)
422 {
423 case '1': /* malformed packet error */
424 if (*++buf == '0') /* general case: */
425 error (_("remote.c: error in outgoing packet."));
426 else
427 error (_("remote.c: error in outgoing packet at field #%ld."),
428 strtol (buf, NULL, 16));
429 case '2':
430 error (_("trace API error 0x%s."), ++buf);
431 default:
432 error (_("Target returns error code '%s'."), buf);
433 }
434 }
435
436 /* Utility: wait for reply from stub, while accepting "O" packets. */
437 static char *
438 remote_get_noisy_reply (char **buf_p,
439 long *sizeof_buf)
440 {
441 do /* Loop on reply from remote stub. */
442 {
443 char *buf;
444
445 QUIT; /* Allow user to bail out with ^C. */
446 getpkt (buf_p, sizeof_buf, 0);
447 buf = *buf_p;
448 if (buf[0] == 'E')
449 trace_error (buf);
450 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
451 {
452 ULONGEST ul;
453 CORE_ADDR from, to, org_to;
454 char *p, *pp;
455 int adjusted_size = 0;
456 volatile struct gdb_exception ex;
457
458 p = buf + strlen ("qRelocInsn:");
459 pp = unpack_varlen_hex (p, &ul);
460 if (*pp != ';')
461 error (_("invalid qRelocInsn packet: %s"), buf);
462 from = ul;
463
464 p = pp + 1;
465 unpack_varlen_hex (p, &ul);
466 to = ul;
467
468 org_to = to;
469
470 TRY_CATCH (ex, RETURN_MASK_ALL)
471 {
472 gdbarch_relocate_instruction (target_gdbarch, &to, from);
473 }
474 if (ex.reason >= 0)
475 {
476 adjusted_size = to - org_to;
477
478 sprintf (buf, "qRelocInsn:%x", adjusted_size);
479 putpkt (buf);
480 }
481 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
482 {
483 /* Propagate memory errors silently back to the target.
484 The stub may have limited the range of addresses we
485 can write to, for example. */
486 putpkt ("E01");
487 }
488 else
489 {
490 /* Something unexpectedly bad happened. Be verbose so
491 we can tell what, and propagate the error back to the
492 stub, so it doesn't get stuck waiting for a
493 response. */
494 exception_fprintf (gdb_stderr, ex,
495 _("warning: relocating instruction: "));
496 putpkt ("E01");
497 }
498 }
499 else if (buf[0] == 'O' && buf[1] != 'K')
500 remote_console_output (buf + 1); /* 'O' message from stub */
501 else
502 return buf; /* Here's the actual reply. */
503 }
504 while (1);
505 }
506
507 /* Handle for retreving the remote protocol data from gdbarch. */
508 static struct gdbarch_data *remote_gdbarch_data_handle;
509
510 static struct remote_arch_state *
511 get_remote_arch_state (void)
512 {
513 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
514 }
515
516 /* Fetch the global remote target state. */
517
518 static struct remote_state *
519 get_remote_state (void)
520 {
521 /* Make sure that the remote architecture state has been
522 initialized, because doing so might reallocate rs->buf. Any
523 function which calls getpkt also needs to be mindful of changes
524 to rs->buf, but this call limits the number of places which run
525 into trouble. */
526 get_remote_arch_state ();
527
528 return get_remote_state_raw ();
529 }
530
531 static int
532 compare_pnums (const void *lhs_, const void *rhs_)
533 {
534 const struct packet_reg * const *lhs = lhs_;
535 const struct packet_reg * const *rhs = rhs_;
536
537 if ((*lhs)->pnum < (*rhs)->pnum)
538 return -1;
539 else if ((*lhs)->pnum == (*rhs)->pnum)
540 return 0;
541 else
542 return 1;
543 }
544
545 static int
546 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
547 {
548 int regnum, num_remote_regs, offset;
549 struct packet_reg **remote_regs;
550
551 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
552 {
553 struct packet_reg *r = &regs[regnum];
554
555 if (register_size (gdbarch, regnum) == 0)
556 /* Do not try to fetch zero-sized (placeholder) registers. */
557 r->pnum = -1;
558 else
559 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
560
561 r->regnum = regnum;
562 }
563
564 /* Define the g/G packet format as the contents of each register
565 with a remote protocol number, in order of ascending protocol
566 number. */
567
568 remote_regs = alloca (gdbarch_num_regs (gdbarch)
569 * sizeof (struct packet_reg *));
570 for (num_remote_regs = 0, regnum = 0;
571 regnum < gdbarch_num_regs (gdbarch);
572 regnum++)
573 if (regs[regnum].pnum != -1)
574 remote_regs[num_remote_regs++] = &regs[regnum];
575
576 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
577 compare_pnums);
578
579 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
580 {
581 remote_regs[regnum]->in_g_packet = 1;
582 remote_regs[regnum]->offset = offset;
583 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
584 }
585
586 return offset;
587 }
588
589 /* Given the architecture described by GDBARCH, return the remote
590 protocol register's number and the register's offset in the g/G
591 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
592 If the target does not have a mapping for REGNUM, return false,
593 otherwise, return true. */
594
595 int
596 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
597 int *pnum, int *poffset)
598 {
599 int sizeof_g_packet;
600 struct packet_reg *regs;
601 struct cleanup *old_chain;
602
603 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
604
605 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
606 old_chain = make_cleanup (xfree, regs);
607
608 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
609
610 *pnum = regs[regnum].pnum;
611 *poffset = regs[regnum].offset;
612
613 do_cleanups (old_chain);
614
615 return *pnum != -1;
616 }
617
618 static void *
619 init_remote_state (struct gdbarch *gdbarch)
620 {
621 struct remote_state *rs = get_remote_state_raw ();
622 struct remote_arch_state *rsa;
623
624 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
625
626 /* Use the architecture to build a regnum<->pnum table, which will be
627 1:1 unless a feature set specifies otherwise. */
628 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
629 gdbarch_num_regs (gdbarch),
630 struct packet_reg);
631
632 /* Record the maximum possible size of the g packet - it may turn out
633 to be smaller. */
634 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
635
636 /* Default maximum number of characters in a packet body. Many
637 remote stubs have a hardwired buffer size of 400 bytes
638 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
639 as the maximum packet-size to ensure that the packet and an extra
640 NUL character can always fit in the buffer. This stops GDB
641 trashing stubs that try to squeeze an extra NUL into what is
642 already a full buffer (As of 1999-12-04 that was most stubs). */
643 rsa->remote_packet_size = 400 - 1;
644
645 /* This one is filled in when a ``g'' packet is received. */
646 rsa->actual_register_packet_size = 0;
647
648 /* Should rsa->sizeof_g_packet needs more space than the
649 default, adjust the size accordingly. Remember that each byte is
650 encoded as two characters. 32 is the overhead for the packet
651 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
652 (``$NN:G...#NN'') is a better guess, the below has been padded a
653 little. */
654 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
655 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
656
657 /* Make sure that the packet buffer is plenty big enough for
658 this architecture. */
659 if (rs->buf_size < rsa->remote_packet_size)
660 {
661 rs->buf_size = 2 * rsa->remote_packet_size;
662 rs->buf = xrealloc (rs->buf, rs->buf_size);
663 }
664
665 return rsa;
666 }
667
668 /* Return the current allowed size of a remote packet. This is
669 inferred from the current architecture, and should be used to
670 limit the length of outgoing packets. */
671 static long
672 get_remote_packet_size (void)
673 {
674 struct remote_state *rs = get_remote_state ();
675 struct remote_arch_state *rsa = get_remote_arch_state ();
676
677 if (rs->explicit_packet_size)
678 return rs->explicit_packet_size;
679
680 return rsa->remote_packet_size;
681 }
682
683 static struct packet_reg *
684 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
685 {
686 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
687 return NULL;
688 else
689 {
690 struct packet_reg *r = &rsa->regs[regnum];
691
692 gdb_assert (r->regnum == regnum);
693 return r;
694 }
695 }
696
697 static struct packet_reg *
698 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
699 {
700 int i;
701
702 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
703 {
704 struct packet_reg *r = &rsa->regs[i];
705
706 if (r->pnum == pnum)
707 return r;
708 }
709 return NULL;
710 }
711
712 /* FIXME: graces/2002-08-08: These variables should eventually be
713 bound to an instance of the target object (as in gdbarch-tdep()),
714 when such a thing exists. */
715
716 /* This is set to the data address of the access causing the target
717 to stop for a watchpoint. */
718 static CORE_ADDR remote_watch_data_address;
719
720 /* This is non-zero if target stopped for a watchpoint. */
721 static int remote_stopped_by_watchpoint_p;
722
723 static struct target_ops remote_ops;
724
725 static struct target_ops extended_remote_ops;
726
727 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
728 ``forever'' still use the normal timeout mechanism. This is
729 currently used by the ASYNC code to guarentee that target reads
730 during the initial connect always time-out. Once getpkt has been
731 modified to return a timeout indication and, in turn
732 remote_wait()/wait_for_inferior() have gained a timeout parameter
733 this can go away. */
734 static int wait_forever_enabled_p = 1;
735
736 /* Allow the user to specify what sequence to send to the remote
737 when he requests a program interruption: Although ^C is usually
738 what remote systems expect (this is the default, here), it is
739 sometimes preferable to send a break. On other systems such
740 as the Linux kernel, a break followed by g, which is Magic SysRq g
741 is required in order to interrupt the execution. */
742 const char interrupt_sequence_control_c[] = "Ctrl-C";
743 const char interrupt_sequence_break[] = "BREAK";
744 const char interrupt_sequence_break_g[] = "BREAK-g";
745 static const char *const interrupt_sequence_modes[] =
746 {
747 interrupt_sequence_control_c,
748 interrupt_sequence_break,
749 interrupt_sequence_break_g,
750 NULL
751 };
752 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
753
754 static void
755 show_interrupt_sequence (struct ui_file *file, int from_tty,
756 struct cmd_list_element *c,
757 const char *value)
758 {
759 if (interrupt_sequence_mode == interrupt_sequence_control_c)
760 fprintf_filtered (file,
761 _("Send the ASCII ETX character (Ctrl-c) "
762 "to the remote target to interrupt the "
763 "execution of the program.\n"));
764 else if (interrupt_sequence_mode == interrupt_sequence_break)
765 fprintf_filtered (file,
766 _("send a break signal to the remote target "
767 "to interrupt the execution of the program.\n"));
768 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
769 fprintf_filtered (file,
770 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
771 "the remote target to interrupt the execution "
772 "of Linux kernel.\n"));
773 else
774 internal_error (__FILE__, __LINE__,
775 _("Invalid value for interrupt_sequence_mode: %s."),
776 interrupt_sequence_mode);
777 }
778
779 /* This boolean variable specifies whether interrupt_sequence is sent
780 to the remote target when gdb connects to it.
781 This is mostly needed when you debug the Linux kernel: The Linux kernel
782 expects BREAK g which is Magic SysRq g for connecting gdb. */
783 static int interrupt_on_connect = 0;
784
785 /* This variable is used to implement the "set/show remotebreak" commands.
786 Since these commands are now deprecated in favor of "set/show remote
787 interrupt-sequence", it no longer has any effect on the code. */
788 static int remote_break;
789
790 static void
791 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
792 {
793 if (remote_break)
794 interrupt_sequence_mode = interrupt_sequence_break;
795 else
796 interrupt_sequence_mode = interrupt_sequence_control_c;
797 }
798
799 static void
800 show_remotebreak (struct ui_file *file, int from_tty,
801 struct cmd_list_element *c,
802 const char *value)
803 {
804 }
805
806 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
807 remote_open knows that we don't have a file open when the program
808 starts. */
809 static struct serial *remote_desc = NULL;
810
811 /* This variable sets the number of bits in an address that are to be
812 sent in a memory ("M" or "m") packet. Normally, after stripping
813 leading zeros, the entire address would be sent. This variable
814 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
815 initial implementation of remote.c restricted the address sent in
816 memory packets to ``host::sizeof long'' bytes - (typically 32
817 bits). Consequently, for 64 bit targets, the upper 32 bits of an
818 address was never sent. Since fixing this bug may cause a break in
819 some remote targets this variable is principly provided to
820 facilitate backward compatibility. */
821
822 static int remote_address_size;
823
824 /* Temporary to track who currently owns the terminal. See
825 remote_terminal_* for more details. */
826
827 static int remote_async_terminal_ours_p;
828
829 /* The executable file to use for "run" on the remote side. */
830
831 static char *remote_exec_file = "";
832
833 \f
834 /* User configurable variables for the number of characters in a
835 memory read/write packet. MIN (rsa->remote_packet_size,
836 rsa->sizeof_g_packet) is the default. Some targets need smaller
837 values (fifo overruns, et.al.) and some users need larger values
838 (speed up transfers). The variables ``preferred_*'' (the user
839 request), ``current_*'' (what was actually set) and ``forced_*''
840 (Positive - a soft limit, negative - a hard limit). */
841
842 struct memory_packet_config
843 {
844 char *name;
845 long size;
846 int fixed_p;
847 };
848
849 /* Compute the current size of a read/write packet. Since this makes
850 use of ``actual_register_packet_size'' the computation is dynamic. */
851
852 static long
853 get_memory_packet_size (struct memory_packet_config *config)
854 {
855 struct remote_state *rs = get_remote_state ();
856 struct remote_arch_state *rsa = get_remote_arch_state ();
857
858 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
859 law?) that some hosts don't cope very well with large alloca()
860 calls. Eventually the alloca() code will be replaced by calls to
861 xmalloc() and make_cleanups() allowing this restriction to either
862 be lifted or removed. */
863 #ifndef MAX_REMOTE_PACKET_SIZE
864 #define MAX_REMOTE_PACKET_SIZE 16384
865 #endif
866 /* NOTE: 20 ensures we can write at least one byte. */
867 #ifndef MIN_REMOTE_PACKET_SIZE
868 #define MIN_REMOTE_PACKET_SIZE 20
869 #endif
870 long what_they_get;
871 if (config->fixed_p)
872 {
873 if (config->size <= 0)
874 what_they_get = MAX_REMOTE_PACKET_SIZE;
875 else
876 what_they_get = config->size;
877 }
878 else
879 {
880 what_they_get = get_remote_packet_size ();
881 /* Limit the packet to the size specified by the user. */
882 if (config->size > 0
883 && what_they_get > config->size)
884 what_they_get = config->size;
885
886 /* Limit it to the size of the targets ``g'' response unless we have
887 permission from the stub to use a larger packet size. */
888 if (rs->explicit_packet_size == 0
889 && rsa->actual_register_packet_size > 0
890 && what_they_get > rsa->actual_register_packet_size)
891 what_they_get = rsa->actual_register_packet_size;
892 }
893 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
894 what_they_get = MAX_REMOTE_PACKET_SIZE;
895 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
896 what_they_get = MIN_REMOTE_PACKET_SIZE;
897
898 /* Make sure there is room in the global buffer for this packet
899 (including its trailing NUL byte). */
900 if (rs->buf_size < what_they_get + 1)
901 {
902 rs->buf_size = 2 * what_they_get;
903 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
904 }
905
906 return what_they_get;
907 }
908
909 /* Update the size of a read/write packet. If they user wants
910 something really big then do a sanity check. */
911
912 static void
913 set_memory_packet_size (char *args, struct memory_packet_config *config)
914 {
915 int fixed_p = config->fixed_p;
916 long size = config->size;
917
918 if (args == NULL)
919 error (_("Argument required (integer, `fixed' or `limited')."));
920 else if (strcmp (args, "hard") == 0
921 || strcmp (args, "fixed") == 0)
922 fixed_p = 1;
923 else if (strcmp (args, "soft") == 0
924 || strcmp (args, "limit") == 0)
925 fixed_p = 0;
926 else
927 {
928 char *end;
929
930 size = strtoul (args, &end, 0);
931 if (args == end)
932 error (_("Invalid %s (bad syntax)."), config->name);
933 #if 0
934 /* Instead of explicitly capping the size of a packet to
935 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
936 instead allowed to set the size to something arbitrarily
937 large. */
938 if (size > MAX_REMOTE_PACKET_SIZE)
939 error (_("Invalid %s (too large)."), config->name);
940 #endif
941 }
942 /* Extra checks? */
943 if (fixed_p && !config->fixed_p)
944 {
945 if (! query (_("The target may not be able to correctly handle a %s\n"
946 "of %ld bytes. Change the packet size? "),
947 config->name, size))
948 error (_("Packet size not changed."));
949 }
950 /* Update the config. */
951 config->fixed_p = fixed_p;
952 config->size = size;
953 }
954
955 static void
956 show_memory_packet_size (struct memory_packet_config *config)
957 {
958 printf_filtered (_("The %s is %ld. "), config->name, config->size);
959 if (config->fixed_p)
960 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
961 get_memory_packet_size (config));
962 else
963 printf_filtered (_("Packets are limited to %ld bytes.\n"),
964 get_memory_packet_size (config));
965 }
966
967 static struct memory_packet_config memory_write_packet_config =
968 {
969 "memory-write-packet-size",
970 };
971
972 static void
973 set_memory_write_packet_size (char *args, int from_tty)
974 {
975 set_memory_packet_size (args, &memory_write_packet_config);
976 }
977
978 static void
979 show_memory_write_packet_size (char *args, int from_tty)
980 {
981 show_memory_packet_size (&memory_write_packet_config);
982 }
983
984 static long
985 get_memory_write_packet_size (void)
986 {
987 return get_memory_packet_size (&memory_write_packet_config);
988 }
989
990 static struct memory_packet_config memory_read_packet_config =
991 {
992 "memory-read-packet-size",
993 };
994
995 static void
996 set_memory_read_packet_size (char *args, int from_tty)
997 {
998 set_memory_packet_size (args, &memory_read_packet_config);
999 }
1000
1001 static void
1002 show_memory_read_packet_size (char *args, int from_tty)
1003 {
1004 show_memory_packet_size (&memory_read_packet_config);
1005 }
1006
1007 static long
1008 get_memory_read_packet_size (void)
1009 {
1010 long size = get_memory_packet_size (&memory_read_packet_config);
1011
1012 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1013 extra buffer size argument before the memory read size can be
1014 increased beyond this. */
1015 if (size > get_remote_packet_size ())
1016 size = get_remote_packet_size ();
1017 return size;
1018 }
1019
1020 \f
1021 /* Generic configuration support for packets the stub optionally
1022 supports. Allows the user to specify the use of the packet as well
1023 as allowing GDB to auto-detect support in the remote stub. */
1024
1025 enum packet_support
1026 {
1027 PACKET_SUPPORT_UNKNOWN = 0,
1028 PACKET_ENABLE,
1029 PACKET_DISABLE
1030 };
1031
1032 struct packet_config
1033 {
1034 const char *name;
1035 const char *title;
1036 enum auto_boolean detect;
1037 enum packet_support support;
1038 };
1039
1040 /* Analyze a packet's return value and update the packet config
1041 accordingly. */
1042
1043 enum packet_result
1044 {
1045 PACKET_ERROR,
1046 PACKET_OK,
1047 PACKET_UNKNOWN
1048 };
1049
1050 static void
1051 update_packet_config (struct packet_config *config)
1052 {
1053 switch (config->detect)
1054 {
1055 case AUTO_BOOLEAN_TRUE:
1056 config->support = PACKET_ENABLE;
1057 break;
1058 case AUTO_BOOLEAN_FALSE:
1059 config->support = PACKET_DISABLE;
1060 break;
1061 case AUTO_BOOLEAN_AUTO:
1062 config->support = PACKET_SUPPORT_UNKNOWN;
1063 break;
1064 }
1065 }
1066
1067 static void
1068 show_packet_config_cmd (struct packet_config *config)
1069 {
1070 char *support = "internal-error";
1071
1072 switch (config->support)
1073 {
1074 case PACKET_ENABLE:
1075 support = "enabled";
1076 break;
1077 case PACKET_DISABLE:
1078 support = "disabled";
1079 break;
1080 case PACKET_SUPPORT_UNKNOWN:
1081 support = "unknown";
1082 break;
1083 }
1084 switch (config->detect)
1085 {
1086 case AUTO_BOOLEAN_AUTO:
1087 printf_filtered (_("Support for the `%s' packet "
1088 "is auto-detected, currently %s.\n"),
1089 config->name, support);
1090 break;
1091 case AUTO_BOOLEAN_TRUE:
1092 case AUTO_BOOLEAN_FALSE:
1093 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1094 config->name, support);
1095 break;
1096 }
1097 }
1098
1099 static void
1100 add_packet_config_cmd (struct packet_config *config, const char *name,
1101 const char *title, int legacy)
1102 {
1103 char *set_doc;
1104 char *show_doc;
1105 char *cmd_name;
1106
1107 config->name = name;
1108 config->title = title;
1109 config->detect = AUTO_BOOLEAN_AUTO;
1110 config->support = PACKET_SUPPORT_UNKNOWN;
1111 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1112 name, title);
1113 show_doc = xstrprintf ("Show current use of remote "
1114 "protocol `%s' (%s) packet",
1115 name, title);
1116 /* set/show TITLE-packet {auto,on,off} */
1117 cmd_name = xstrprintf ("%s-packet", title);
1118 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1119 &config->detect, set_doc,
1120 show_doc, NULL, /* help_doc */
1121 set_remote_protocol_packet_cmd,
1122 show_remote_protocol_packet_cmd,
1123 &remote_set_cmdlist, &remote_show_cmdlist);
1124 /* The command code copies the documentation strings. */
1125 xfree (set_doc);
1126 xfree (show_doc);
1127 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1128 if (legacy)
1129 {
1130 char *legacy_name;
1131
1132 legacy_name = xstrprintf ("%s-packet", name);
1133 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1134 &remote_set_cmdlist);
1135 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1136 &remote_show_cmdlist);
1137 }
1138 }
1139
1140 static enum packet_result
1141 packet_check_result (const char *buf)
1142 {
1143 if (buf[0] != '\0')
1144 {
1145 /* The stub recognized the packet request. Check that the
1146 operation succeeded. */
1147 if (buf[0] == 'E'
1148 && isxdigit (buf[1]) && isxdigit (buf[2])
1149 && buf[3] == '\0')
1150 /* "Enn" - definitly an error. */
1151 return PACKET_ERROR;
1152
1153 /* Always treat "E." as an error. This will be used for
1154 more verbose error messages, such as E.memtypes. */
1155 if (buf[0] == 'E' && buf[1] == '.')
1156 return PACKET_ERROR;
1157
1158 /* The packet may or may not be OK. Just assume it is. */
1159 return PACKET_OK;
1160 }
1161 else
1162 /* The stub does not support the packet. */
1163 return PACKET_UNKNOWN;
1164 }
1165
1166 static enum packet_result
1167 packet_ok (const char *buf, struct packet_config *config)
1168 {
1169 enum packet_result result;
1170
1171 result = packet_check_result (buf);
1172 switch (result)
1173 {
1174 case PACKET_OK:
1175 case PACKET_ERROR:
1176 /* The stub recognized the packet request. */
1177 switch (config->support)
1178 {
1179 case PACKET_SUPPORT_UNKNOWN:
1180 if (remote_debug)
1181 fprintf_unfiltered (gdb_stdlog,
1182 "Packet %s (%s) is supported\n",
1183 config->name, config->title);
1184 config->support = PACKET_ENABLE;
1185 break;
1186 case PACKET_DISABLE:
1187 internal_error (__FILE__, __LINE__,
1188 _("packet_ok: attempt to use a disabled packet"));
1189 break;
1190 case PACKET_ENABLE:
1191 break;
1192 }
1193 break;
1194 case PACKET_UNKNOWN:
1195 /* The stub does not support the packet. */
1196 switch (config->support)
1197 {
1198 case PACKET_ENABLE:
1199 if (config->detect == AUTO_BOOLEAN_AUTO)
1200 /* If the stub previously indicated that the packet was
1201 supported then there is a protocol error.. */
1202 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1203 config->name, config->title);
1204 else
1205 /* The user set it wrong. */
1206 error (_("Enabled packet %s (%s) not recognized by stub"),
1207 config->name, config->title);
1208 break;
1209 case PACKET_SUPPORT_UNKNOWN:
1210 if (remote_debug)
1211 fprintf_unfiltered (gdb_stdlog,
1212 "Packet %s (%s) is NOT supported\n",
1213 config->name, config->title);
1214 config->support = PACKET_DISABLE;
1215 break;
1216 case PACKET_DISABLE:
1217 break;
1218 }
1219 break;
1220 }
1221
1222 return result;
1223 }
1224
1225 enum {
1226 PACKET_vCont = 0,
1227 PACKET_X,
1228 PACKET_qSymbol,
1229 PACKET_P,
1230 PACKET_p,
1231 PACKET_Z0,
1232 PACKET_Z1,
1233 PACKET_Z2,
1234 PACKET_Z3,
1235 PACKET_Z4,
1236 PACKET_vFile_open,
1237 PACKET_vFile_pread,
1238 PACKET_vFile_pwrite,
1239 PACKET_vFile_close,
1240 PACKET_vFile_unlink,
1241 PACKET_vFile_readlink,
1242 PACKET_qXfer_auxv,
1243 PACKET_qXfer_features,
1244 PACKET_qXfer_libraries,
1245 PACKET_qXfer_libraries_svr4,
1246 PACKET_qXfer_memory_map,
1247 PACKET_qXfer_spu_read,
1248 PACKET_qXfer_spu_write,
1249 PACKET_qXfer_osdata,
1250 PACKET_qXfer_threads,
1251 PACKET_qXfer_statictrace_read,
1252 PACKET_qXfer_traceframe_info,
1253 PACKET_qGetTIBAddr,
1254 PACKET_qGetTLSAddr,
1255 PACKET_qSupported,
1256 PACKET_QPassSignals,
1257 PACKET_qSearch_memory,
1258 PACKET_vAttach,
1259 PACKET_vRun,
1260 PACKET_QStartNoAckMode,
1261 PACKET_vKill,
1262 PACKET_qXfer_siginfo_read,
1263 PACKET_qXfer_siginfo_write,
1264 PACKET_qAttached,
1265 PACKET_ConditionalTracepoints,
1266 PACKET_FastTracepoints,
1267 PACKET_StaticTracepoints,
1268 PACKET_InstallInTrace,
1269 PACKET_bc,
1270 PACKET_bs,
1271 PACKET_TracepointSource,
1272 PACKET_QAllow,
1273 PACKET_qXfer_fdpic,
1274 PACKET_QDisableRandomization,
1275 PACKET_MAX
1276 };
1277
1278 static struct packet_config remote_protocol_packets[PACKET_MAX];
1279
1280 static void
1281 set_remote_protocol_packet_cmd (char *args, int from_tty,
1282 struct cmd_list_element *c)
1283 {
1284 struct packet_config *packet;
1285
1286 for (packet = remote_protocol_packets;
1287 packet < &remote_protocol_packets[PACKET_MAX];
1288 packet++)
1289 {
1290 if (&packet->detect == c->var)
1291 {
1292 update_packet_config (packet);
1293 return;
1294 }
1295 }
1296 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1297 c->name);
1298 }
1299
1300 static void
1301 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1302 struct cmd_list_element *c,
1303 const char *value)
1304 {
1305 struct packet_config *packet;
1306
1307 for (packet = remote_protocol_packets;
1308 packet < &remote_protocol_packets[PACKET_MAX];
1309 packet++)
1310 {
1311 if (&packet->detect == c->var)
1312 {
1313 show_packet_config_cmd (packet);
1314 return;
1315 }
1316 }
1317 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1318 c->name);
1319 }
1320
1321 /* Should we try one of the 'Z' requests? */
1322
1323 enum Z_packet_type
1324 {
1325 Z_PACKET_SOFTWARE_BP,
1326 Z_PACKET_HARDWARE_BP,
1327 Z_PACKET_WRITE_WP,
1328 Z_PACKET_READ_WP,
1329 Z_PACKET_ACCESS_WP,
1330 NR_Z_PACKET_TYPES
1331 };
1332
1333 /* For compatibility with older distributions. Provide a ``set remote
1334 Z-packet ...'' command that updates all the Z packet types. */
1335
1336 static enum auto_boolean remote_Z_packet_detect;
1337
1338 static void
1339 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1340 struct cmd_list_element *c)
1341 {
1342 int i;
1343
1344 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1345 {
1346 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1347 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1348 }
1349 }
1350
1351 static void
1352 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1353 struct cmd_list_element *c,
1354 const char *value)
1355 {
1356 int i;
1357
1358 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1359 {
1360 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1361 }
1362 }
1363
1364 /* Should we try the 'ThreadInfo' query packet?
1365
1366 This variable (NOT available to the user: auto-detect only!)
1367 determines whether GDB will use the new, simpler "ThreadInfo"
1368 query or the older, more complex syntax for thread queries.
1369 This is an auto-detect variable (set to true at each connect,
1370 and set to false when the target fails to recognize it). */
1371
1372 static int use_threadinfo_query;
1373 static int use_threadextra_query;
1374
1375 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1376 static struct async_signal_handler *sigint_remote_twice_token;
1377 static struct async_signal_handler *sigint_remote_token;
1378
1379 \f
1380 /* Asynchronous signal handle registered as event loop source for
1381 when we have pending events ready to be passed to the core. */
1382
1383 static struct async_event_handler *remote_async_inferior_event_token;
1384
1385 /* Asynchronous signal handle registered as event loop source for when
1386 the remote sent us a %Stop notification. The registered callback
1387 will do a vStopped sequence to pull the rest of the events out of
1388 the remote side into our event queue. */
1389
1390 static struct async_event_handler *remote_async_get_pending_events_token;
1391 \f
1392
1393 static ptid_t magic_null_ptid;
1394 static ptid_t not_sent_ptid;
1395 static ptid_t any_thread_ptid;
1396
1397 /* These are the threads which we last sent to the remote system. The
1398 TID member will be -1 for all or -2 for not sent yet. */
1399
1400 static ptid_t general_thread;
1401 static ptid_t continue_thread;
1402
1403 /* This the traceframe which we last selected on the remote system.
1404 It will be -1 if no traceframe is selected. */
1405 static int remote_traceframe_number = -1;
1406
1407 /* Find out if the stub attached to PID (and hence GDB should offer to
1408 detach instead of killing it when bailing out). */
1409
1410 static int
1411 remote_query_attached (int pid)
1412 {
1413 struct remote_state *rs = get_remote_state ();
1414
1415 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1416 return 0;
1417
1418 if (remote_multi_process_p (rs))
1419 sprintf (rs->buf, "qAttached:%x", pid);
1420 else
1421 sprintf (rs->buf, "qAttached");
1422
1423 putpkt (rs->buf);
1424 getpkt (&rs->buf, &rs->buf_size, 0);
1425
1426 switch (packet_ok (rs->buf,
1427 &remote_protocol_packets[PACKET_qAttached]))
1428 {
1429 case PACKET_OK:
1430 if (strcmp (rs->buf, "1") == 0)
1431 return 1;
1432 break;
1433 case PACKET_ERROR:
1434 warning (_("Remote failure reply: %s"), rs->buf);
1435 break;
1436 case PACKET_UNKNOWN:
1437 break;
1438 }
1439
1440 return 0;
1441 }
1442
1443 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1444 has been invented by GDB, instead of reported by the target. Since
1445 we can be connected to a remote system before before knowing about
1446 any inferior, mark the target with execution when we find the first
1447 inferior. If ATTACHED is 1, then we had just attached to this
1448 inferior. If it is 0, then we just created this inferior. If it
1449 is -1, then try querying the remote stub to find out if it had
1450 attached to the inferior or not. */
1451
1452 static struct inferior *
1453 remote_add_inferior (int fake_pid_p, int pid, int attached)
1454 {
1455 struct inferior *inf;
1456
1457 /* Check whether this process we're learning about is to be
1458 considered attached, or if is to be considered to have been
1459 spawned by the stub. */
1460 if (attached == -1)
1461 attached = remote_query_attached (pid);
1462
1463 if (gdbarch_has_global_solist (target_gdbarch))
1464 {
1465 /* If the target shares code across all inferiors, then every
1466 attach adds a new inferior. */
1467 inf = add_inferior (pid);
1468
1469 /* ... and every inferior is bound to the same program space.
1470 However, each inferior may still have its own address
1471 space. */
1472 inf->aspace = maybe_new_address_space ();
1473 inf->pspace = current_program_space;
1474 }
1475 else
1476 {
1477 /* In the traditional debugging scenario, there's a 1-1 match
1478 between program/address spaces. We simply bind the inferior
1479 to the program space's address space. */
1480 inf = current_inferior ();
1481 inferior_appeared (inf, pid);
1482 }
1483
1484 inf->attach_flag = attached;
1485 inf->fake_pid_p = fake_pid_p;
1486
1487 return inf;
1488 }
1489
1490 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1491 according to RUNNING. */
1492
1493 static void
1494 remote_add_thread (ptid_t ptid, int running)
1495 {
1496 add_thread (ptid);
1497
1498 set_executing (ptid, running);
1499 set_running (ptid, running);
1500 }
1501
1502 /* Come here when we learn about a thread id from the remote target.
1503 It may be the first time we hear about such thread, so take the
1504 opportunity to add it to GDB's thread list. In case this is the
1505 first time we're noticing its corresponding inferior, add it to
1506 GDB's inferior list as well. */
1507
1508 static void
1509 remote_notice_new_inferior (ptid_t currthread, int running)
1510 {
1511 /* If this is a new thread, add it to GDB's thread list.
1512 If we leave it up to WFI to do this, bad things will happen. */
1513
1514 if (in_thread_list (currthread) && is_exited (currthread))
1515 {
1516 /* We're seeing an event on a thread id we knew had exited.
1517 This has to be a new thread reusing the old id. Add it. */
1518 remote_add_thread (currthread, running);
1519 return;
1520 }
1521
1522 if (!in_thread_list (currthread))
1523 {
1524 struct inferior *inf = NULL;
1525 int pid = ptid_get_pid (currthread);
1526
1527 if (ptid_is_pid (inferior_ptid)
1528 && pid == ptid_get_pid (inferior_ptid))
1529 {
1530 /* inferior_ptid has no thread member yet. This can happen
1531 with the vAttach -> remote_wait,"TAAthread:" path if the
1532 stub doesn't support qC. This is the first stop reported
1533 after an attach, so this is the main thread. Update the
1534 ptid in the thread list. */
1535 if (in_thread_list (pid_to_ptid (pid)))
1536 thread_change_ptid (inferior_ptid, currthread);
1537 else
1538 {
1539 remote_add_thread (currthread, running);
1540 inferior_ptid = currthread;
1541 }
1542 return;
1543 }
1544
1545 if (ptid_equal (magic_null_ptid, inferior_ptid))
1546 {
1547 /* inferior_ptid is not set yet. This can happen with the
1548 vRun -> remote_wait,"TAAthread:" path if the stub
1549 doesn't support qC. This is the first stop reported
1550 after an attach, so this is the main thread. Update the
1551 ptid in the thread list. */
1552 thread_change_ptid (inferior_ptid, currthread);
1553 return;
1554 }
1555
1556 /* When connecting to a target remote, or to a target
1557 extended-remote which already was debugging an inferior, we
1558 may not know about it yet. Add it before adding its child
1559 thread, so notifications are emitted in a sensible order. */
1560 if (!in_inferior_list (ptid_get_pid (currthread)))
1561 {
1562 struct remote_state *rs = get_remote_state ();
1563 int fake_pid_p = !remote_multi_process_p (rs);
1564
1565 inf = remote_add_inferior (fake_pid_p,
1566 ptid_get_pid (currthread), -1);
1567 }
1568
1569 /* This is really a new thread. Add it. */
1570 remote_add_thread (currthread, running);
1571
1572 /* If we found a new inferior, let the common code do whatever
1573 it needs to with it (e.g., read shared libraries, insert
1574 breakpoints). */
1575 if (inf != NULL)
1576 notice_new_inferior (currthread, running, 0);
1577 }
1578 }
1579
1580 /* Return the private thread data, creating it if necessary. */
1581
1582 struct private_thread_info *
1583 demand_private_info (ptid_t ptid)
1584 {
1585 struct thread_info *info = find_thread_ptid (ptid);
1586
1587 gdb_assert (info);
1588
1589 if (!info->private)
1590 {
1591 info->private = xmalloc (sizeof (*(info->private)));
1592 info->private_dtor = free_private_thread_info;
1593 info->private->core = -1;
1594 info->private->extra = 0;
1595 }
1596
1597 return info->private;
1598 }
1599
1600 /* Call this function as a result of
1601 1) A halt indication (T packet) containing a thread id
1602 2) A direct query of currthread
1603 3) Successful execution of set thread */
1604
1605 static void
1606 record_currthread (ptid_t currthread)
1607 {
1608 general_thread = currthread;
1609 }
1610
1611 static char *last_pass_packet;
1612
1613 /* If 'QPassSignals' is supported, tell the remote stub what signals
1614 it can simply pass through to the inferior without reporting. */
1615
1616 static void
1617 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1618 {
1619 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1620 {
1621 char *pass_packet, *p;
1622 int count = 0, i;
1623
1624 gdb_assert (numsigs < 256);
1625 for (i = 0; i < numsigs; i++)
1626 {
1627 if (pass_signals[i])
1628 count++;
1629 }
1630 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1631 strcpy (pass_packet, "QPassSignals:");
1632 p = pass_packet + strlen (pass_packet);
1633 for (i = 0; i < numsigs; i++)
1634 {
1635 if (pass_signals[i])
1636 {
1637 if (i >= 16)
1638 *p++ = tohex (i >> 4);
1639 *p++ = tohex (i & 15);
1640 if (count)
1641 *p++ = ';';
1642 else
1643 break;
1644 count--;
1645 }
1646 }
1647 *p = 0;
1648 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1649 {
1650 struct remote_state *rs = get_remote_state ();
1651 char *buf = rs->buf;
1652
1653 putpkt (pass_packet);
1654 getpkt (&rs->buf, &rs->buf_size, 0);
1655 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1656 if (last_pass_packet)
1657 xfree (last_pass_packet);
1658 last_pass_packet = pass_packet;
1659 }
1660 else
1661 xfree (pass_packet);
1662 }
1663 }
1664
1665 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1666 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1667 thread. If GEN is set, set the general thread, if not, then set
1668 the step/continue thread. */
1669 static void
1670 set_thread (struct ptid ptid, int gen)
1671 {
1672 struct remote_state *rs = get_remote_state ();
1673 ptid_t state = gen ? general_thread : continue_thread;
1674 char *buf = rs->buf;
1675 char *endbuf = rs->buf + get_remote_packet_size ();
1676
1677 if (ptid_equal (state, ptid))
1678 return;
1679
1680 *buf++ = 'H';
1681 *buf++ = gen ? 'g' : 'c';
1682 if (ptid_equal (ptid, magic_null_ptid))
1683 xsnprintf (buf, endbuf - buf, "0");
1684 else if (ptid_equal (ptid, any_thread_ptid))
1685 xsnprintf (buf, endbuf - buf, "0");
1686 else if (ptid_equal (ptid, minus_one_ptid))
1687 xsnprintf (buf, endbuf - buf, "-1");
1688 else
1689 write_ptid (buf, endbuf, ptid);
1690 putpkt (rs->buf);
1691 getpkt (&rs->buf, &rs->buf_size, 0);
1692 if (gen)
1693 general_thread = ptid;
1694 else
1695 continue_thread = ptid;
1696 }
1697
1698 static void
1699 set_general_thread (struct ptid ptid)
1700 {
1701 set_thread (ptid, 1);
1702 }
1703
1704 static void
1705 set_continue_thread (struct ptid ptid)
1706 {
1707 set_thread (ptid, 0);
1708 }
1709
1710 /* Change the remote current process. Which thread within the process
1711 ends up selected isn't important, as long as it is the same process
1712 as what INFERIOR_PTID points to.
1713
1714 This comes from that fact that there is no explicit notion of
1715 "selected process" in the protocol. The selected process for
1716 general operations is the process the selected general thread
1717 belongs to. */
1718
1719 static void
1720 set_general_process (void)
1721 {
1722 struct remote_state *rs = get_remote_state ();
1723
1724 /* If the remote can't handle multiple processes, don't bother. */
1725 if (!rs->extended || !remote_multi_process_p (rs))
1726 return;
1727
1728 /* We only need to change the remote current thread if it's pointing
1729 at some other process. */
1730 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1731 set_general_thread (inferior_ptid);
1732 }
1733
1734 \f
1735 /* Return nonzero if the thread PTID is still alive on the remote
1736 system. */
1737
1738 static int
1739 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1740 {
1741 struct remote_state *rs = get_remote_state ();
1742 char *p, *endp;
1743
1744 if (ptid_equal (ptid, magic_null_ptid))
1745 /* The main thread is always alive. */
1746 return 1;
1747
1748 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1749 /* The main thread is always alive. This can happen after a
1750 vAttach, if the remote side doesn't support
1751 multi-threading. */
1752 return 1;
1753
1754 p = rs->buf;
1755 endp = rs->buf + get_remote_packet_size ();
1756
1757 *p++ = 'T';
1758 write_ptid (p, endp, ptid);
1759
1760 putpkt (rs->buf);
1761 getpkt (&rs->buf, &rs->buf_size, 0);
1762 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1763 }
1764
1765 /* About these extended threadlist and threadinfo packets. They are
1766 variable length packets but, the fields within them are often fixed
1767 length. They are redundent enough to send over UDP as is the
1768 remote protocol in general. There is a matching unit test module
1769 in libstub. */
1770
1771 #define OPAQUETHREADBYTES 8
1772
1773 /* a 64 bit opaque identifier */
1774 typedef unsigned char threadref[OPAQUETHREADBYTES];
1775
1776 /* WARNING: This threadref data structure comes from the remote O.S.,
1777 libstub protocol encoding, and remote.c. It is not particularly
1778 changable. */
1779
1780 /* Right now, the internal structure is int. We want it to be bigger.
1781 Plan to fix this. */
1782
1783 typedef int gdb_threadref; /* Internal GDB thread reference. */
1784
1785 /* gdb_ext_thread_info is an internal GDB data structure which is
1786 equivalent to the reply of the remote threadinfo packet. */
1787
1788 struct gdb_ext_thread_info
1789 {
1790 threadref threadid; /* External form of thread reference. */
1791 int active; /* Has state interesting to GDB?
1792 regs, stack. */
1793 char display[256]; /* Brief state display, name,
1794 blocked/suspended. */
1795 char shortname[32]; /* To be used to name threads. */
1796 char more_display[256]; /* Long info, statistics, queue depth,
1797 whatever. */
1798 };
1799
1800 /* The volume of remote transfers can be limited by submitting
1801 a mask containing bits specifying the desired information.
1802 Use a union of these values as the 'selection' parameter to
1803 get_thread_info. FIXME: Make these TAG names more thread specific. */
1804
1805 #define TAG_THREADID 1
1806 #define TAG_EXISTS 2
1807 #define TAG_DISPLAY 4
1808 #define TAG_THREADNAME 8
1809 #define TAG_MOREDISPLAY 16
1810
1811 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1812
1813 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1814
1815 static char *unpack_nibble (char *buf, int *val);
1816
1817 static char *pack_nibble (char *buf, int nibble);
1818
1819 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1820
1821 static char *unpack_byte (char *buf, int *value);
1822
1823 static char *pack_int (char *buf, int value);
1824
1825 static char *unpack_int (char *buf, int *value);
1826
1827 static char *unpack_string (char *src, char *dest, int length);
1828
1829 static char *pack_threadid (char *pkt, threadref *id);
1830
1831 static char *unpack_threadid (char *inbuf, threadref *id);
1832
1833 void int_to_threadref (threadref *id, int value);
1834
1835 static int threadref_to_int (threadref *ref);
1836
1837 static void copy_threadref (threadref *dest, threadref *src);
1838
1839 static int threadmatch (threadref *dest, threadref *src);
1840
1841 static char *pack_threadinfo_request (char *pkt, int mode,
1842 threadref *id);
1843
1844 static int remote_unpack_thread_info_response (char *pkt,
1845 threadref *expectedref,
1846 struct gdb_ext_thread_info
1847 *info);
1848
1849
1850 static int remote_get_threadinfo (threadref *threadid,
1851 int fieldset, /*TAG mask */
1852 struct gdb_ext_thread_info *info);
1853
1854 static char *pack_threadlist_request (char *pkt, int startflag,
1855 int threadcount,
1856 threadref *nextthread);
1857
1858 static int parse_threadlist_response (char *pkt,
1859 int result_limit,
1860 threadref *original_echo,
1861 threadref *resultlist,
1862 int *doneflag);
1863
1864 static int remote_get_threadlist (int startflag,
1865 threadref *nextthread,
1866 int result_limit,
1867 int *done,
1868 int *result_count,
1869 threadref *threadlist);
1870
1871 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1872
1873 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1874 void *context, int looplimit);
1875
1876 static int remote_newthread_step (threadref *ref, void *context);
1877
1878
1879 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1880 buffer we're allowed to write to. Returns
1881 BUF+CHARACTERS_WRITTEN. */
1882
1883 static char *
1884 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1885 {
1886 int pid, tid;
1887 struct remote_state *rs = get_remote_state ();
1888
1889 if (remote_multi_process_p (rs))
1890 {
1891 pid = ptid_get_pid (ptid);
1892 if (pid < 0)
1893 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1894 else
1895 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1896 }
1897 tid = ptid_get_tid (ptid);
1898 if (tid < 0)
1899 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1900 else
1901 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1902
1903 return buf;
1904 }
1905
1906 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1907 passed the last parsed char. Returns null_ptid on error. */
1908
1909 static ptid_t
1910 read_ptid (char *buf, char **obuf)
1911 {
1912 char *p = buf;
1913 char *pp;
1914 ULONGEST pid = 0, tid = 0;
1915
1916 if (*p == 'p')
1917 {
1918 /* Multi-process ptid. */
1919 pp = unpack_varlen_hex (p + 1, &pid);
1920 if (*pp != '.')
1921 error (_("invalid remote ptid: %s"), p);
1922
1923 p = pp;
1924 pp = unpack_varlen_hex (p + 1, &tid);
1925 if (obuf)
1926 *obuf = pp;
1927 return ptid_build (pid, 0, tid);
1928 }
1929
1930 /* No multi-process. Just a tid. */
1931 pp = unpack_varlen_hex (p, &tid);
1932
1933 /* Since the stub is not sending a process id, then default to
1934 what's in inferior_ptid, unless it's null at this point. If so,
1935 then since there's no way to know the pid of the reported
1936 threads, use the magic number. */
1937 if (ptid_equal (inferior_ptid, null_ptid))
1938 pid = ptid_get_pid (magic_null_ptid);
1939 else
1940 pid = ptid_get_pid (inferior_ptid);
1941
1942 if (obuf)
1943 *obuf = pp;
1944 return ptid_build (pid, 0, tid);
1945 }
1946
1947 /* Encode 64 bits in 16 chars of hex. */
1948
1949 static const char hexchars[] = "0123456789abcdef";
1950
1951 static int
1952 ishex (int ch, int *val)
1953 {
1954 if ((ch >= 'a') && (ch <= 'f'))
1955 {
1956 *val = ch - 'a' + 10;
1957 return 1;
1958 }
1959 if ((ch >= 'A') && (ch <= 'F'))
1960 {
1961 *val = ch - 'A' + 10;
1962 return 1;
1963 }
1964 if ((ch >= '0') && (ch <= '9'))
1965 {
1966 *val = ch - '0';
1967 return 1;
1968 }
1969 return 0;
1970 }
1971
1972 static int
1973 stubhex (int ch)
1974 {
1975 if (ch >= 'a' && ch <= 'f')
1976 return ch - 'a' + 10;
1977 if (ch >= '0' && ch <= '9')
1978 return ch - '0';
1979 if (ch >= 'A' && ch <= 'F')
1980 return ch - 'A' + 10;
1981 return -1;
1982 }
1983
1984 static int
1985 stub_unpack_int (char *buff, int fieldlength)
1986 {
1987 int nibble;
1988 int retval = 0;
1989
1990 while (fieldlength)
1991 {
1992 nibble = stubhex (*buff++);
1993 retval |= nibble;
1994 fieldlength--;
1995 if (fieldlength)
1996 retval = retval << 4;
1997 }
1998 return retval;
1999 }
2000
2001 char *
2002 unpack_varlen_hex (char *buff, /* packet to parse */
2003 ULONGEST *result)
2004 {
2005 int nibble;
2006 ULONGEST retval = 0;
2007
2008 while (ishex (*buff, &nibble))
2009 {
2010 buff++;
2011 retval = retval << 4;
2012 retval |= nibble & 0x0f;
2013 }
2014 *result = retval;
2015 return buff;
2016 }
2017
2018 static char *
2019 unpack_nibble (char *buf, int *val)
2020 {
2021 *val = fromhex (*buf++);
2022 return buf;
2023 }
2024
2025 static char *
2026 pack_nibble (char *buf, int nibble)
2027 {
2028 *buf++ = hexchars[(nibble & 0x0f)];
2029 return buf;
2030 }
2031
2032 static char *
2033 pack_hex_byte (char *pkt, int byte)
2034 {
2035 *pkt++ = hexchars[(byte >> 4) & 0xf];
2036 *pkt++ = hexchars[(byte & 0xf)];
2037 return pkt;
2038 }
2039
2040 static char *
2041 unpack_byte (char *buf, int *value)
2042 {
2043 *value = stub_unpack_int (buf, 2);
2044 return buf + 2;
2045 }
2046
2047 static char *
2048 pack_int (char *buf, int value)
2049 {
2050 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2051 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2052 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2053 buf = pack_hex_byte (buf, (value & 0xff));
2054 return buf;
2055 }
2056
2057 static char *
2058 unpack_int (char *buf, int *value)
2059 {
2060 *value = stub_unpack_int (buf, 8);
2061 return buf + 8;
2062 }
2063
2064 #if 0 /* Currently unused, uncomment when needed. */
2065 static char *pack_string (char *pkt, char *string);
2066
2067 static char *
2068 pack_string (char *pkt, char *string)
2069 {
2070 char ch;
2071 int len;
2072
2073 len = strlen (string);
2074 if (len > 200)
2075 len = 200; /* Bigger than most GDB packets, junk??? */
2076 pkt = pack_hex_byte (pkt, len);
2077 while (len-- > 0)
2078 {
2079 ch = *string++;
2080 if ((ch == '\0') || (ch == '#'))
2081 ch = '*'; /* Protect encapsulation. */
2082 *pkt++ = ch;
2083 }
2084 return pkt;
2085 }
2086 #endif /* 0 (unused) */
2087
2088 static char *
2089 unpack_string (char *src, char *dest, int length)
2090 {
2091 while (length--)
2092 *dest++ = *src++;
2093 *dest = '\0';
2094 return src;
2095 }
2096
2097 static char *
2098 pack_threadid (char *pkt, threadref *id)
2099 {
2100 char *limit;
2101 unsigned char *altid;
2102
2103 altid = (unsigned char *) id;
2104 limit = pkt + BUF_THREAD_ID_SIZE;
2105 while (pkt < limit)
2106 pkt = pack_hex_byte (pkt, *altid++);
2107 return pkt;
2108 }
2109
2110
2111 static char *
2112 unpack_threadid (char *inbuf, threadref *id)
2113 {
2114 char *altref;
2115 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2116 int x, y;
2117
2118 altref = (char *) id;
2119
2120 while (inbuf < limit)
2121 {
2122 x = stubhex (*inbuf++);
2123 y = stubhex (*inbuf++);
2124 *altref++ = (x << 4) | y;
2125 }
2126 return inbuf;
2127 }
2128
2129 /* Externally, threadrefs are 64 bits but internally, they are still
2130 ints. This is due to a mismatch of specifications. We would like
2131 to use 64bit thread references internally. This is an adapter
2132 function. */
2133
2134 void
2135 int_to_threadref (threadref *id, int value)
2136 {
2137 unsigned char *scan;
2138
2139 scan = (unsigned char *) id;
2140 {
2141 int i = 4;
2142 while (i--)
2143 *scan++ = 0;
2144 }
2145 *scan++ = (value >> 24) & 0xff;
2146 *scan++ = (value >> 16) & 0xff;
2147 *scan++ = (value >> 8) & 0xff;
2148 *scan++ = (value & 0xff);
2149 }
2150
2151 static int
2152 threadref_to_int (threadref *ref)
2153 {
2154 int i, value = 0;
2155 unsigned char *scan;
2156
2157 scan = *ref;
2158 scan += 4;
2159 i = 4;
2160 while (i-- > 0)
2161 value = (value << 8) | ((*scan++) & 0xff);
2162 return value;
2163 }
2164
2165 static void
2166 copy_threadref (threadref *dest, threadref *src)
2167 {
2168 int i;
2169 unsigned char *csrc, *cdest;
2170
2171 csrc = (unsigned char *) src;
2172 cdest = (unsigned char *) dest;
2173 i = 8;
2174 while (i--)
2175 *cdest++ = *csrc++;
2176 }
2177
2178 static int
2179 threadmatch (threadref *dest, threadref *src)
2180 {
2181 /* Things are broken right now, so just assume we got a match. */
2182 #if 0
2183 unsigned char *srcp, *destp;
2184 int i, result;
2185 srcp = (char *) src;
2186 destp = (char *) dest;
2187
2188 result = 1;
2189 while (i-- > 0)
2190 result &= (*srcp++ == *destp++) ? 1 : 0;
2191 return result;
2192 #endif
2193 return 1;
2194 }
2195
2196 /*
2197 threadid:1, # always request threadid
2198 context_exists:2,
2199 display:4,
2200 unique_name:8,
2201 more_display:16
2202 */
2203
2204 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2205
2206 static char *
2207 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2208 {
2209 *pkt++ = 'q'; /* Info Query */
2210 *pkt++ = 'P'; /* process or thread info */
2211 pkt = pack_int (pkt, mode); /* mode */
2212 pkt = pack_threadid (pkt, id); /* threadid */
2213 *pkt = '\0'; /* terminate */
2214 return pkt;
2215 }
2216
2217 /* These values tag the fields in a thread info response packet. */
2218 /* Tagging the fields allows us to request specific fields and to
2219 add more fields as time goes by. */
2220
2221 #define TAG_THREADID 1 /* Echo the thread identifier. */
2222 #define TAG_EXISTS 2 /* Is this process defined enough to
2223 fetch registers and its stack? */
2224 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2225 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2226 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2227 the process. */
2228
2229 static int
2230 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2231 struct gdb_ext_thread_info *info)
2232 {
2233 struct remote_state *rs = get_remote_state ();
2234 int mask, length;
2235 int tag;
2236 threadref ref;
2237 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2238 int retval = 1;
2239
2240 /* info->threadid = 0; FIXME: implement zero_threadref. */
2241 info->active = 0;
2242 info->display[0] = '\0';
2243 info->shortname[0] = '\0';
2244 info->more_display[0] = '\0';
2245
2246 /* Assume the characters indicating the packet type have been
2247 stripped. */
2248 pkt = unpack_int (pkt, &mask); /* arg mask */
2249 pkt = unpack_threadid (pkt, &ref);
2250
2251 if (mask == 0)
2252 warning (_("Incomplete response to threadinfo request."));
2253 if (!threadmatch (&ref, expectedref))
2254 { /* This is an answer to a different request. */
2255 warning (_("ERROR RMT Thread info mismatch."));
2256 return 0;
2257 }
2258 copy_threadref (&info->threadid, &ref);
2259
2260 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2261
2262 /* Packets are terminated with nulls. */
2263 while ((pkt < limit) && mask && *pkt)
2264 {
2265 pkt = unpack_int (pkt, &tag); /* tag */
2266 pkt = unpack_byte (pkt, &length); /* length */
2267 if (!(tag & mask)) /* Tags out of synch with mask. */
2268 {
2269 warning (_("ERROR RMT: threadinfo tag mismatch."));
2270 retval = 0;
2271 break;
2272 }
2273 if (tag == TAG_THREADID)
2274 {
2275 if (length != 16)
2276 {
2277 warning (_("ERROR RMT: length of threadid is not 16."));
2278 retval = 0;
2279 break;
2280 }
2281 pkt = unpack_threadid (pkt, &ref);
2282 mask = mask & ~TAG_THREADID;
2283 continue;
2284 }
2285 if (tag == TAG_EXISTS)
2286 {
2287 info->active = stub_unpack_int (pkt, length);
2288 pkt += length;
2289 mask = mask & ~(TAG_EXISTS);
2290 if (length > 8)
2291 {
2292 warning (_("ERROR RMT: 'exists' length too long."));
2293 retval = 0;
2294 break;
2295 }
2296 continue;
2297 }
2298 if (tag == TAG_THREADNAME)
2299 {
2300 pkt = unpack_string (pkt, &info->shortname[0], length);
2301 mask = mask & ~TAG_THREADNAME;
2302 continue;
2303 }
2304 if (tag == TAG_DISPLAY)
2305 {
2306 pkt = unpack_string (pkt, &info->display[0], length);
2307 mask = mask & ~TAG_DISPLAY;
2308 continue;
2309 }
2310 if (tag == TAG_MOREDISPLAY)
2311 {
2312 pkt = unpack_string (pkt, &info->more_display[0], length);
2313 mask = mask & ~TAG_MOREDISPLAY;
2314 continue;
2315 }
2316 warning (_("ERROR RMT: unknown thread info tag."));
2317 break; /* Not a tag we know about. */
2318 }
2319 return retval;
2320 }
2321
2322 static int
2323 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2324 struct gdb_ext_thread_info *info)
2325 {
2326 struct remote_state *rs = get_remote_state ();
2327 int result;
2328
2329 pack_threadinfo_request (rs->buf, fieldset, threadid);
2330 putpkt (rs->buf);
2331 getpkt (&rs->buf, &rs->buf_size, 0);
2332
2333 if (rs->buf[0] == '\0')
2334 return 0;
2335
2336 result = remote_unpack_thread_info_response (rs->buf + 2,
2337 threadid, info);
2338 return result;
2339 }
2340
2341 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2342
2343 static char *
2344 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2345 threadref *nextthread)
2346 {
2347 *pkt++ = 'q'; /* info query packet */
2348 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2349 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2350 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2351 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2352 *pkt = '\0';
2353 return pkt;
2354 }
2355
2356 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2357
2358 static int
2359 parse_threadlist_response (char *pkt, int result_limit,
2360 threadref *original_echo, threadref *resultlist,
2361 int *doneflag)
2362 {
2363 struct remote_state *rs = get_remote_state ();
2364 char *limit;
2365 int count, resultcount, done;
2366
2367 resultcount = 0;
2368 /* Assume the 'q' and 'M chars have been stripped. */
2369 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2370 /* done parse past here */
2371 pkt = unpack_byte (pkt, &count); /* count field */
2372 pkt = unpack_nibble (pkt, &done);
2373 /* The first threadid is the argument threadid. */
2374 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2375 while ((count-- > 0) && (pkt < limit))
2376 {
2377 pkt = unpack_threadid (pkt, resultlist++);
2378 if (resultcount++ >= result_limit)
2379 break;
2380 }
2381 if (doneflag)
2382 *doneflag = done;
2383 return resultcount;
2384 }
2385
2386 static int
2387 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2388 int *done, int *result_count, threadref *threadlist)
2389 {
2390 struct remote_state *rs = get_remote_state ();
2391 static threadref echo_nextthread;
2392 int result = 1;
2393
2394 /* Trancate result limit to be smaller than the packet size. */
2395 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2396 >= get_remote_packet_size ())
2397 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2398
2399 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2400 putpkt (rs->buf);
2401 getpkt (&rs->buf, &rs->buf_size, 0);
2402
2403 if (*rs->buf == '\0')
2404 return 0;
2405 else
2406 *result_count =
2407 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2408 threadlist, done);
2409
2410 if (!threadmatch (&echo_nextthread, nextthread))
2411 {
2412 /* FIXME: This is a good reason to drop the packet. */
2413 /* Possably, there is a duplicate response. */
2414 /* Possabilities :
2415 retransmit immediatly - race conditions
2416 retransmit after timeout - yes
2417 exit
2418 wait for packet, then exit
2419 */
2420 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2421 return 0; /* I choose simply exiting. */
2422 }
2423 if (*result_count <= 0)
2424 {
2425 if (*done != 1)
2426 {
2427 warning (_("RMT ERROR : failed to get remote thread list."));
2428 result = 0;
2429 }
2430 return result; /* break; */
2431 }
2432 if (*result_count > result_limit)
2433 {
2434 *result_count = 0;
2435 warning (_("RMT ERROR: threadlist response longer than requested."));
2436 return 0;
2437 }
2438 return result;
2439 }
2440
2441 /* This is the interface between remote and threads, remotes upper
2442 interface. */
2443
2444 /* remote_find_new_threads retrieves the thread list and for each
2445 thread in the list, looks up the thread in GDB's internal list,
2446 adding the thread if it does not already exist. This involves
2447 getting partial thread lists from the remote target so, polling the
2448 quit_flag is required. */
2449
2450
2451 /* About this many threadisds fit in a packet. */
2452
2453 #define MAXTHREADLISTRESULTS 32
2454
2455 static int
2456 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2457 int looplimit)
2458 {
2459 int done, i, result_count;
2460 int startflag = 1;
2461 int result = 1;
2462 int loopcount = 0;
2463 static threadref nextthread;
2464 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2465
2466 done = 0;
2467 while (!done)
2468 {
2469 if (loopcount++ > looplimit)
2470 {
2471 result = 0;
2472 warning (_("Remote fetch threadlist -infinite loop-."));
2473 break;
2474 }
2475 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2476 &done, &result_count, resultthreadlist))
2477 {
2478 result = 0;
2479 break;
2480 }
2481 /* Clear for later iterations. */
2482 startflag = 0;
2483 /* Setup to resume next batch of thread references, set nextthread. */
2484 if (result_count >= 1)
2485 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2486 i = 0;
2487 while (result_count--)
2488 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2489 break;
2490 }
2491 return result;
2492 }
2493
2494 static int
2495 remote_newthread_step (threadref *ref, void *context)
2496 {
2497 int pid = ptid_get_pid (inferior_ptid);
2498 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2499
2500 if (!in_thread_list (ptid))
2501 add_thread (ptid);
2502 return 1; /* continue iterator */
2503 }
2504
2505 #define CRAZY_MAX_THREADS 1000
2506
2507 static ptid_t
2508 remote_current_thread (ptid_t oldpid)
2509 {
2510 struct remote_state *rs = get_remote_state ();
2511
2512 putpkt ("qC");
2513 getpkt (&rs->buf, &rs->buf_size, 0);
2514 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2515 return read_ptid (&rs->buf[2], NULL);
2516 else
2517 return oldpid;
2518 }
2519
2520 /* Find new threads for info threads command.
2521 * Original version, using John Metzler's thread protocol.
2522 */
2523
2524 static void
2525 remote_find_new_threads (void)
2526 {
2527 remote_threadlist_iterator (remote_newthread_step, 0,
2528 CRAZY_MAX_THREADS);
2529 }
2530
2531 #if defined(HAVE_LIBEXPAT)
2532
2533 typedef struct thread_item
2534 {
2535 ptid_t ptid;
2536 char *extra;
2537 int core;
2538 } thread_item_t;
2539 DEF_VEC_O(thread_item_t);
2540
2541 struct threads_parsing_context
2542 {
2543 VEC (thread_item_t) *items;
2544 };
2545
2546 static void
2547 start_thread (struct gdb_xml_parser *parser,
2548 const struct gdb_xml_element *element,
2549 void *user_data, VEC(gdb_xml_value_s) *attributes)
2550 {
2551 struct threads_parsing_context *data = user_data;
2552
2553 struct thread_item item;
2554 char *id;
2555 struct gdb_xml_value *attr;
2556
2557 id = xml_find_attribute (attributes, "id")->value;
2558 item.ptid = read_ptid (id, NULL);
2559
2560 attr = xml_find_attribute (attributes, "core");
2561 if (attr != NULL)
2562 item.core = *(ULONGEST *) attr->value;
2563 else
2564 item.core = -1;
2565
2566 item.extra = 0;
2567
2568 VEC_safe_push (thread_item_t, data->items, &item);
2569 }
2570
2571 static void
2572 end_thread (struct gdb_xml_parser *parser,
2573 const struct gdb_xml_element *element,
2574 void *user_data, const char *body_text)
2575 {
2576 struct threads_parsing_context *data = user_data;
2577
2578 if (body_text && *body_text)
2579 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2580 }
2581
2582 const struct gdb_xml_attribute thread_attributes[] = {
2583 { "id", GDB_XML_AF_NONE, NULL, NULL },
2584 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2585 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2586 };
2587
2588 const struct gdb_xml_element thread_children[] = {
2589 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2590 };
2591
2592 const struct gdb_xml_element threads_children[] = {
2593 { "thread", thread_attributes, thread_children,
2594 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2595 start_thread, end_thread },
2596 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2597 };
2598
2599 const struct gdb_xml_element threads_elements[] = {
2600 { "threads", NULL, threads_children,
2601 GDB_XML_EF_NONE, NULL, NULL },
2602 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2603 };
2604
2605 /* Discard the contents of the constructed thread info context. */
2606
2607 static void
2608 clear_threads_parsing_context (void *p)
2609 {
2610 struct threads_parsing_context *context = p;
2611 int i;
2612 struct thread_item *item;
2613
2614 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2615 xfree (item->extra);
2616
2617 VEC_free (thread_item_t, context->items);
2618 }
2619
2620 #endif
2621
2622 /*
2623 * Find all threads for info threads command.
2624 * Uses new thread protocol contributed by Cisco.
2625 * Falls back and attempts to use the older method (above)
2626 * if the target doesn't respond to the new method.
2627 */
2628
2629 static void
2630 remote_threads_info (struct target_ops *ops)
2631 {
2632 struct remote_state *rs = get_remote_state ();
2633 char *bufp;
2634 ptid_t new_thread;
2635
2636 if (remote_desc == 0) /* paranoia */
2637 error (_("Command can only be used when connected to the remote target."));
2638
2639 #if defined(HAVE_LIBEXPAT)
2640 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2641 {
2642 char *xml = target_read_stralloc (&current_target,
2643 TARGET_OBJECT_THREADS, NULL);
2644
2645 struct cleanup *back_to = make_cleanup (xfree, xml);
2646
2647 if (xml && *xml)
2648 {
2649 struct threads_parsing_context context;
2650
2651 context.items = NULL;
2652 make_cleanup (clear_threads_parsing_context, &context);
2653
2654 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2655 threads_elements, xml, &context) == 0)
2656 {
2657 int i;
2658 struct thread_item *item;
2659
2660 for (i = 0;
2661 VEC_iterate (thread_item_t, context.items, i, item);
2662 ++i)
2663 {
2664 if (!ptid_equal (item->ptid, null_ptid))
2665 {
2666 struct private_thread_info *info;
2667 /* In non-stop mode, we assume new found threads
2668 are running until proven otherwise with a
2669 stop reply. In all-stop, we can only get
2670 here if all threads are stopped. */
2671 int running = non_stop ? 1 : 0;
2672
2673 remote_notice_new_inferior (item->ptid, running);
2674
2675 info = demand_private_info (item->ptid);
2676 info->core = item->core;
2677 info->extra = item->extra;
2678 item->extra = NULL;
2679 }
2680 }
2681 }
2682 }
2683
2684 do_cleanups (back_to);
2685 return;
2686 }
2687 #endif
2688
2689 if (use_threadinfo_query)
2690 {
2691 putpkt ("qfThreadInfo");
2692 getpkt (&rs->buf, &rs->buf_size, 0);
2693 bufp = rs->buf;
2694 if (bufp[0] != '\0') /* q packet recognized */
2695 {
2696 while (*bufp++ == 'm') /* reply contains one or more TID */
2697 {
2698 do
2699 {
2700 new_thread = read_ptid (bufp, &bufp);
2701 if (!ptid_equal (new_thread, null_ptid))
2702 {
2703 /* In non-stop mode, we assume new found threads
2704 are running until proven otherwise with a
2705 stop reply. In all-stop, we can only get
2706 here if all threads are stopped. */
2707 int running = non_stop ? 1 : 0;
2708
2709 remote_notice_new_inferior (new_thread, running);
2710 }
2711 }
2712 while (*bufp++ == ','); /* comma-separated list */
2713 putpkt ("qsThreadInfo");
2714 getpkt (&rs->buf, &rs->buf_size, 0);
2715 bufp = rs->buf;
2716 }
2717 return; /* done */
2718 }
2719 }
2720
2721 /* Only qfThreadInfo is supported in non-stop mode. */
2722 if (non_stop)
2723 return;
2724
2725 /* Else fall back to old method based on jmetzler protocol. */
2726 use_threadinfo_query = 0;
2727 remote_find_new_threads ();
2728 return;
2729 }
2730
2731 /*
2732 * Collect a descriptive string about the given thread.
2733 * The target may say anything it wants to about the thread
2734 * (typically info about its blocked / runnable state, name, etc.).
2735 * This string will appear in the info threads display.
2736 *
2737 * Optional: targets are not required to implement this function.
2738 */
2739
2740 static char *
2741 remote_threads_extra_info (struct thread_info *tp)
2742 {
2743 struct remote_state *rs = get_remote_state ();
2744 int result;
2745 int set;
2746 threadref id;
2747 struct gdb_ext_thread_info threadinfo;
2748 static char display_buf[100]; /* arbitrary... */
2749 int n = 0; /* position in display_buf */
2750
2751 if (remote_desc == 0) /* paranoia */
2752 internal_error (__FILE__, __LINE__,
2753 _("remote_threads_extra_info"));
2754
2755 if (ptid_equal (tp->ptid, magic_null_ptid)
2756 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2757 /* This is the main thread which was added by GDB. The remote
2758 server doesn't know about it. */
2759 return NULL;
2760
2761 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2762 {
2763 struct thread_info *info = find_thread_ptid (tp->ptid);
2764
2765 if (info && info->private)
2766 return info->private->extra;
2767 else
2768 return NULL;
2769 }
2770
2771 if (use_threadextra_query)
2772 {
2773 char *b = rs->buf;
2774 char *endb = rs->buf + get_remote_packet_size ();
2775
2776 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2777 b += strlen (b);
2778 write_ptid (b, endb, tp->ptid);
2779
2780 putpkt (rs->buf);
2781 getpkt (&rs->buf, &rs->buf_size, 0);
2782 if (rs->buf[0] != 0)
2783 {
2784 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2785 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2786 display_buf [result] = '\0';
2787 return display_buf;
2788 }
2789 }
2790
2791 /* If the above query fails, fall back to the old method. */
2792 use_threadextra_query = 0;
2793 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2794 | TAG_MOREDISPLAY | TAG_DISPLAY;
2795 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2796 if (remote_get_threadinfo (&id, set, &threadinfo))
2797 if (threadinfo.active)
2798 {
2799 if (*threadinfo.shortname)
2800 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2801 " Name: %s,", threadinfo.shortname);
2802 if (*threadinfo.display)
2803 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2804 " State: %s,", threadinfo.display);
2805 if (*threadinfo.more_display)
2806 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2807 " Priority: %s", threadinfo.more_display);
2808
2809 if (n > 0)
2810 {
2811 /* For purely cosmetic reasons, clear up trailing commas. */
2812 if (',' == display_buf[n-1])
2813 display_buf[n-1] = ' ';
2814 return display_buf;
2815 }
2816 }
2817 return NULL;
2818 }
2819 \f
2820
2821 static int
2822 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2823 struct static_tracepoint_marker *marker)
2824 {
2825 struct remote_state *rs = get_remote_state ();
2826 char *p = rs->buf;
2827
2828 sprintf (p, "qTSTMat:");
2829 p += strlen (p);
2830 p += hexnumstr (p, addr);
2831 putpkt (rs->buf);
2832 getpkt (&rs->buf, &rs->buf_size, 0);
2833 p = rs->buf;
2834
2835 if (*p == 'E')
2836 error (_("Remote failure reply: %s"), p);
2837
2838 if (*p++ == 'm')
2839 {
2840 parse_static_tracepoint_marker_definition (p, &p, marker);
2841 return 1;
2842 }
2843
2844 return 0;
2845 }
2846
2847 static void
2848 free_current_marker (void *arg)
2849 {
2850 struct static_tracepoint_marker **marker_p = arg;
2851
2852 if (*marker_p != NULL)
2853 {
2854 release_static_tracepoint_marker (*marker_p);
2855 xfree (*marker_p);
2856 }
2857 else
2858 *marker_p = NULL;
2859 }
2860
2861 static VEC(static_tracepoint_marker_p) *
2862 remote_static_tracepoint_markers_by_strid (const char *strid)
2863 {
2864 struct remote_state *rs = get_remote_state ();
2865 VEC(static_tracepoint_marker_p) *markers = NULL;
2866 struct static_tracepoint_marker *marker = NULL;
2867 struct cleanup *old_chain;
2868 char *p;
2869
2870 /* Ask for a first packet of static tracepoint marker
2871 definition. */
2872 putpkt ("qTfSTM");
2873 getpkt (&rs->buf, &rs->buf_size, 0);
2874 p = rs->buf;
2875 if (*p == 'E')
2876 error (_("Remote failure reply: %s"), p);
2877
2878 old_chain = make_cleanup (free_current_marker, &marker);
2879
2880 while (*p++ == 'm')
2881 {
2882 if (marker == NULL)
2883 marker = XCNEW (struct static_tracepoint_marker);
2884
2885 do
2886 {
2887 parse_static_tracepoint_marker_definition (p, &p, marker);
2888
2889 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2890 {
2891 VEC_safe_push (static_tracepoint_marker_p,
2892 markers, marker);
2893 marker = NULL;
2894 }
2895 else
2896 {
2897 release_static_tracepoint_marker (marker);
2898 memset (marker, 0, sizeof (*marker));
2899 }
2900 }
2901 while (*p++ == ','); /* comma-separated list */
2902 /* Ask for another packet of static tracepoint definition. */
2903 putpkt ("qTsSTM");
2904 getpkt (&rs->buf, &rs->buf_size, 0);
2905 p = rs->buf;
2906 }
2907
2908 do_cleanups (old_chain);
2909 return markers;
2910 }
2911
2912 \f
2913 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2914
2915 static ptid_t
2916 remote_get_ada_task_ptid (long lwp, long thread)
2917 {
2918 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2919 }
2920 \f
2921
2922 /* Restart the remote side; this is an extended protocol operation. */
2923
2924 static void
2925 extended_remote_restart (void)
2926 {
2927 struct remote_state *rs = get_remote_state ();
2928
2929 /* Send the restart command; for reasons I don't understand the
2930 remote side really expects a number after the "R". */
2931 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2932 putpkt (rs->buf);
2933
2934 remote_fileio_reset ();
2935 }
2936 \f
2937 /* Clean up connection to a remote debugger. */
2938
2939 static void
2940 remote_close (int quitting)
2941 {
2942 if (remote_desc == NULL)
2943 return; /* already closed */
2944
2945 /* Make sure we leave stdin registered in the event loop, and we
2946 don't leave the async SIGINT signal handler installed. */
2947 remote_terminal_ours ();
2948
2949 serial_close (remote_desc);
2950 remote_desc = NULL;
2951
2952 /* We don't have a connection to the remote stub anymore. Get rid
2953 of all the inferiors and their threads we were controlling.
2954 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2955 will be unable to find the thread corresponding to (pid, 0, 0). */
2956 inferior_ptid = null_ptid;
2957 discard_all_inferiors ();
2958
2959 /* We're no longer interested in any of these events. */
2960 discard_pending_stop_replies (-1);
2961
2962 if (remote_async_inferior_event_token)
2963 delete_async_event_handler (&remote_async_inferior_event_token);
2964 if (remote_async_get_pending_events_token)
2965 delete_async_event_handler (&remote_async_get_pending_events_token);
2966 }
2967
2968 /* Query the remote side for the text, data and bss offsets. */
2969
2970 static void
2971 get_offsets (void)
2972 {
2973 struct remote_state *rs = get_remote_state ();
2974 char *buf;
2975 char *ptr;
2976 int lose, num_segments = 0, do_sections, do_segments;
2977 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2978 struct section_offsets *offs;
2979 struct symfile_segment_data *data;
2980
2981 if (symfile_objfile == NULL)
2982 return;
2983
2984 putpkt ("qOffsets");
2985 getpkt (&rs->buf, &rs->buf_size, 0);
2986 buf = rs->buf;
2987
2988 if (buf[0] == '\000')
2989 return; /* Return silently. Stub doesn't support
2990 this command. */
2991 if (buf[0] == 'E')
2992 {
2993 warning (_("Remote failure reply: %s"), buf);
2994 return;
2995 }
2996
2997 /* Pick up each field in turn. This used to be done with scanf, but
2998 scanf will make trouble if CORE_ADDR size doesn't match
2999 conversion directives correctly. The following code will work
3000 with any size of CORE_ADDR. */
3001 text_addr = data_addr = bss_addr = 0;
3002 ptr = buf;
3003 lose = 0;
3004
3005 if (strncmp (ptr, "Text=", 5) == 0)
3006 {
3007 ptr += 5;
3008 /* Don't use strtol, could lose on big values. */
3009 while (*ptr && *ptr != ';')
3010 text_addr = (text_addr << 4) + fromhex (*ptr++);
3011
3012 if (strncmp (ptr, ";Data=", 6) == 0)
3013 {
3014 ptr += 6;
3015 while (*ptr && *ptr != ';')
3016 data_addr = (data_addr << 4) + fromhex (*ptr++);
3017 }
3018 else
3019 lose = 1;
3020
3021 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3022 {
3023 ptr += 5;
3024 while (*ptr && *ptr != ';')
3025 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3026
3027 if (bss_addr != data_addr)
3028 warning (_("Target reported unsupported offsets: %s"), buf);
3029 }
3030 else
3031 lose = 1;
3032 }
3033 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3034 {
3035 ptr += 8;
3036 /* Don't use strtol, could lose on big values. */
3037 while (*ptr && *ptr != ';')
3038 text_addr = (text_addr << 4) + fromhex (*ptr++);
3039 num_segments = 1;
3040
3041 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3042 {
3043 ptr += 9;
3044 while (*ptr && *ptr != ';')
3045 data_addr = (data_addr << 4) + fromhex (*ptr++);
3046 num_segments++;
3047 }
3048 }
3049 else
3050 lose = 1;
3051
3052 if (lose)
3053 error (_("Malformed response to offset query, %s"), buf);
3054 else if (*ptr != '\0')
3055 warning (_("Target reported unsupported offsets: %s"), buf);
3056
3057 offs = ((struct section_offsets *)
3058 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3059 memcpy (offs, symfile_objfile->section_offsets,
3060 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3061
3062 data = get_symfile_segment_data (symfile_objfile->obfd);
3063 do_segments = (data != NULL);
3064 do_sections = num_segments == 0;
3065
3066 if (num_segments > 0)
3067 {
3068 segments[0] = text_addr;
3069 segments[1] = data_addr;
3070 }
3071 /* If we have two segments, we can still try to relocate everything
3072 by assuming that the .text and .data offsets apply to the whole
3073 text and data segments. Convert the offsets given in the packet
3074 to base addresses for symfile_map_offsets_to_segments. */
3075 else if (data && data->num_segments == 2)
3076 {
3077 segments[0] = data->segment_bases[0] + text_addr;
3078 segments[1] = data->segment_bases[1] + data_addr;
3079 num_segments = 2;
3080 }
3081 /* If the object file has only one segment, assume that it is text
3082 rather than data; main programs with no writable data are rare,
3083 but programs with no code are useless. Of course the code might
3084 have ended up in the data segment... to detect that we would need
3085 the permissions here. */
3086 else if (data && data->num_segments == 1)
3087 {
3088 segments[0] = data->segment_bases[0] + text_addr;
3089 num_segments = 1;
3090 }
3091 /* There's no way to relocate by segment. */
3092 else
3093 do_segments = 0;
3094
3095 if (do_segments)
3096 {
3097 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3098 offs, num_segments, segments);
3099
3100 if (ret == 0 && !do_sections)
3101 error (_("Can not handle qOffsets TextSeg "
3102 "response with this symbol file"));
3103
3104 if (ret > 0)
3105 do_sections = 0;
3106 }
3107
3108 if (data)
3109 free_symfile_segment_data (data);
3110
3111 if (do_sections)
3112 {
3113 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3114
3115 /* This is a temporary kludge to force data and bss to use the
3116 same offsets because that's what nlmconv does now. The real
3117 solution requires changes to the stub and remote.c that I
3118 don't have time to do right now. */
3119
3120 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3121 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3122 }
3123
3124 objfile_relocate (symfile_objfile, offs);
3125 }
3126
3127 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3128 threads we know are stopped already. This is used during the
3129 initial remote connection in non-stop mode --- threads that are
3130 reported as already being stopped are left stopped. */
3131
3132 static int
3133 set_stop_requested_callback (struct thread_info *thread, void *data)
3134 {
3135 /* If we have a stop reply for this thread, it must be stopped. */
3136 if (peek_stop_reply (thread->ptid))
3137 set_stop_requested (thread->ptid, 1);
3138
3139 return 0;
3140 }
3141
3142 /* Send interrupt_sequence to remote target. */
3143 static void
3144 send_interrupt_sequence (void)
3145 {
3146 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3147 serial_write (remote_desc, "\x03", 1);
3148 else if (interrupt_sequence_mode == interrupt_sequence_break)
3149 serial_send_break (remote_desc);
3150 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3151 {
3152 serial_send_break (remote_desc);
3153 serial_write (remote_desc, "g", 1);
3154 }
3155 else
3156 internal_error (__FILE__, __LINE__,
3157 _("Invalid value for interrupt_sequence_mode: %s."),
3158 interrupt_sequence_mode);
3159 }
3160
3161 /* Query the remote target for which is the current thread/process,
3162 add it to our tables, and update INFERIOR_PTID. The caller is
3163 responsible for setting the state such that the remote end is ready
3164 to return the current thread. */
3165
3166 static void
3167 add_current_inferior_and_thread (void)
3168 {
3169 struct remote_state *rs = get_remote_state ();
3170 int fake_pid_p = 0;
3171 ptid_t ptid;
3172
3173 inferior_ptid = null_ptid;
3174
3175 /* Now, if we have thread information, update inferior_ptid. */
3176 ptid = remote_current_thread (inferior_ptid);
3177 if (!ptid_equal (ptid, null_ptid))
3178 {
3179 if (!remote_multi_process_p (rs))
3180 fake_pid_p = 1;
3181
3182 inferior_ptid = ptid;
3183 }
3184 else
3185 {
3186 /* Without this, some commands which require an active target
3187 (such as kill) won't work. This variable serves (at least)
3188 double duty as both the pid of the target process (if it has
3189 such), and as a flag indicating that a target is active. */
3190 inferior_ptid = magic_null_ptid;
3191 fake_pid_p = 1;
3192 }
3193
3194 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3195
3196 /* Add the main thread. */
3197 add_thread_silent (inferior_ptid);
3198 }
3199
3200 static void
3201 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3202 {
3203 struct remote_state *rs = get_remote_state ();
3204 struct packet_config *noack_config;
3205 char *wait_status = NULL;
3206
3207 immediate_quit++; /* Allow user to interrupt it. */
3208
3209 if (interrupt_on_connect)
3210 send_interrupt_sequence ();
3211
3212 /* Ack any packet which the remote side has already sent. */
3213 serial_write (remote_desc, "+", 1);
3214
3215 /* The first packet we send to the target is the optional "supported
3216 packets" request. If the target can answer this, it will tell us
3217 which later probes to skip. */
3218 remote_query_supported ();
3219
3220 /* If the stub wants to get a QAllow, compose one and send it. */
3221 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3222 remote_set_permissions ();
3223
3224 /* Next, we possibly activate noack mode.
3225
3226 If the QStartNoAckMode packet configuration is set to AUTO,
3227 enable noack mode if the stub reported a wish for it with
3228 qSupported.
3229
3230 If set to TRUE, then enable noack mode even if the stub didn't
3231 report it in qSupported. If the stub doesn't reply OK, the
3232 session ends with an error.
3233
3234 If FALSE, then don't activate noack mode, regardless of what the
3235 stub claimed should be the default with qSupported. */
3236
3237 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3238
3239 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3240 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3241 && noack_config->support == PACKET_ENABLE))
3242 {
3243 putpkt ("QStartNoAckMode");
3244 getpkt (&rs->buf, &rs->buf_size, 0);
3245 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3246 rs->noack_mode = 1;
3247 }
3248
3249 if (extended_p)
3250 {
3251 /* Tell the remote that we are using the extended protocol. */
3252 putpkt ("!");
3253 getpkt (&rs->buf, &rs->buf_size, 0);
3254 }
3255
3256 /* Next, if the target can specify a description, read it. We do
3257 this before anything involving memory or registers. */
3258 target_find_description ();
3259
3260 /* Next, now that we know something about the target, update the
3261 address spaces in the program spaces. */
3262 update_address_spaces ();
3263
3264 /* On OSs where the list of libraries is global to all
3265 processes, we fetch them early. */
3266 if (gdbarch_has_global_solist (target_gdbarch))
3267 solib_add (NULL, from_tty, target, auto_solib_add);
3268
3269 if (non_stop)
3270 {
3271 if (!rs->non_stop_aware)
3272 error (_("Non-stop mode requested, but remote "
3273 "does not support non-stop"));
3274
3275 putpkt ("QNonStop:1");
3276 getpkt (&rs->buf, &rs->buf_size, 0);
3277
3278 if (strcmp (rs->buf, "OK") != 0)
3279 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3280
3281 /* Find about threads and processes the stub is already
3282 controlling. We default to adding them in the running state.
3283 The '?' query below will then tell us about which threads are
3284 stopped. */
3285 remote_threads_info (target);
3286 }
3287 else if (rs->non_stop_aware)
3288 {
3289 /* Don't assume that the stub can operate in all-stop mode.
3290 Request it explicitely. */
3291 putpkt ("QNonStop:0");
3292 getpkt (&rs->buf, &rs->buf_size, 0);
3293
3294 if (strcmp (rs->buf, "OK") != 0)
3295 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3296 }
3297
3298 /* Check whether the target is running now. */
3299 putpkt ("?");
3300 getpkt (&rs->buf, &rs->buf_size, 0);
3301
3302 if (!non_stop)
3303 {
3304 ptid_t ptid;
3305 int fake_pid_p = 0;
3306 struct inferior *inf;
3307
3308 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3309 {
3310 if (!extended_p)
3311 error (_("The target is not running (try extended-remote?)"));
3312
3313 /* We're connected, but not running. Drop out before we
3314 call start_remote. */
3315 return;
3316 }
3317 else
3318 {
3319 /* Save the reply for later. */
3320 wait_status = alloca (strlen (rs->buf) + 1);
3321 strcpy (wait_status, rs->buf);
3322 }
3323
3324 /* Let the stub know that we want it to return the thread. */
3325 set_continue_thread (minus_one_ptid);
3326
3327 add_current_inferior_and_thread ();
3328
3329 /* init_wait_for_inferior should be called before get_offsets in order
3330 to manage `inserted' flag in bp loc in a correct state.
3331 breakpoint_init_inferior, called from init_wait_for_inferior, set
3332 `inserted' flag to 0, while before breakpoint_re_set, called from
3333 start_remote, set `inserted' flag to 1. In the initialization of
3334 inferior, breakpoint_init_inferior should be called first, and then
3335 breakpoint_re_set can be called. If this order is broken, state of
3336 `inserted' flag is wrong, and cause some problems on breakpoint
3337 manipulation. */
3338 init_wait_for_inferior ();
3339
3340 get_offsets (); /* Get text, data & bss offsets. */
3341
3342 /* If we could not find a description using qXfer, and we know
3343 how to do it some other way, try again. This is not
3344 supported for non-stop; it could be, but it is tricky if
3345 there are no stopped threads when we connect. */
3346 if (remote_read_description_p (target)
3347 && gdbarch_target_desc (target_gdbarch) == NULL)
3348 {
3349 target_clear_description ();
3350 target_find_description ();
3351 }
3352
3353 /* Use the previously fetched status. */
3354 gdb_assert (wait_status != NULL);
3355 strcpy (rs->buf, wait_status);
3356 rs->cached_wait_status = 1;
3357
3358 immediate_quit--;
3359 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3360 }
3361 else
3362 {
3363 /* Clear WFI global state. Do this before finding about new
3364 threads and inferiors, and setting the current inferior.
3365 Otherwise we would clear the proceed status of the current
3366 inferior when we want its stop_soon state to be preserved
3367 (see notice_new_inferior). */
3368 init_wait_for_inferior ();
3369
3370 /* In non-stop, we will either get an "OK", meaning that there
3371 are no stopped threads at this time; or, a regular stop
3372 reply. In the latter case, there may be more than one thread
3373 stopped --- we pull them all out using the vStopped
3374 mechanism. */
3375 if (strcmp (rs->buf, "OK") != 0)
3376 {
3377 struct stop_reply *stop_reply;
3378 struct cleanup *old_chain;
3379
3380 stop_reply = stop_reply_xmalloc ();
3381 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3382
3383 remote_parse_stop_reply (rs->buf, stop_reply);
3384 discard_cleanups (old_chain);
3385
3386 /* get_pending_stop_replies acks this one, and gets the rest
3387 out. */
3388 pending_stop_reply = stop_reply;
3389 remote_get_pending_stop_replies ();
3390
3391 /* Make sure that threads that were stopped remain
3392 stopped. */
3393 iterate_over_threads (set_stop_requested_callback, NULL);
3394 }
3395
3396 if (target_can_async_p ())
3397 target_async (inferior_event_handler, 0);
3398
3399 if (thread_count () == 0)
3400 {
3401 if (!extended_p)
3402 error (_("The target is not running (try extended-remote?)"));
3403
3404 /* We're connected, but not running. Drop out before we
3405 call start_remote. */
3406 return;
3407 }
3408
3409 /* Let the stub know that we want it to return the thread. */
3410
3411 /* Force the stub to choose a thread. */
3412 set_general_thread (null_ptid);
3413
3414 /* Query it. */
3415 inferior_ptid = remote_current_thread (minus_one_ptid);
3416 if (ptid_equal (inferior_ptid, minus_one_ptid))
3417 error (_("remote didn't report the current thread in non-stop mode"));
3418
3419 get_offsets (); /* Get text, data & bss offsets. */
3420
3421 /* In non-stop mode, any cached wait status will be stored in
3422 the stop reply queue. */
3423 gdb_assert (wait_status == NULL);
3424
3425 /* Report all signals during attach/startup. */
3426 remote_pass_signals (0, NULL);
3427 }
3428
3429 /* If we connected to a live target, do some additional setup. */
3430 if (target_has_execution)
3431 {
3432 if (exec_bfd) /* No use without an exec file. */
3433 remote_check_symbols (symfile_objfile);
3434 }
3435
3436 /* Possibly the target has been engaged in a trace run started
3437 previously; find out where things are at. */
3438 if (remote_get_trace_status (current_trace_status ()) != -1)
3439 {
3440 struct uploaded_tp *uploaded_tps = NULL;
3441 struct uploaded_tsv *uploaded_tsvs = NULL;
3442
3443 if (current_trace_status ()->running)
3444 printf_filtered (_("Trace is already running on the target.\n"));
3445
3446 /* Get trace state variables first, they may be checked when
3447 parsing uploaded commands. */
3448
3449 remote_upload_trace_state_variables (&uploaded_tsvs);
3450
3451 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3452
3453 remote_upload_tracepoints (&uploaded_tps);
3454
3455 merge_uploaded_tracepoints (&uploaded_tps);
3456 }
3457
3458 /* If breakpoints are global, insert them now. */
3459 if (gdbarch_has_global_breakpoints (target_gdbarch)
3460 && breakpoints_always_inserted_mode ())
3461 insert_breakpoints ();
3462 }
3463
3464 /* Open a connection to a remote debugger.
3465 NAME is the filename used for communication. */
3466
3467 static void
3468 remote_open (char *name, int from_tty)
3469 {
3470 remote_open_1 (name, from_tty, &remote_ops, 0);
3471 }
3472
3473 /* Open a connection to a remote debugger using the extended
3474 remote gdb protocol. NAME is the filename used for communication. */
3475
3476 static void
3477 extended_remote_open (char *name, int from_tty)
3478 {
3479 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3480 }
3481
3482 /* Generic code for opening a connection to a remote target. */
3483
3484 static void
3485 init_all_packet_configs (void)
3486 {
3487 int i;
3488
3489 for (i = 0; i < PACKET_MAX; i++)
3490 update_packet_config (&remote_protocol_packets[i]);
3491 }
3492
3493 /* Symbol look-up. */
3494
3495 static void
3496 remote_check_symbols (struct objfile *objfile)
3497 {
3498 struct remote_state *rs = get_remote_state ();
3499 char *msg, *reply, *tmp;
3500 struct minimal_symbol *sym;
3501 int end;
3502
3503 /* The remote side has no concept of inferiors that aren't running
3504 yet, it only knows about running processes. If we're connected
3505 but our current inferior is not running, we should not invite the
3506 remote target to request symbol lookups related to its
3507 (unrelated) current process. */
3508 if (!target_has_execution)
3509 return;
3510
3511 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3512 return;
3513
3514 /* Make sure the remote is pointing at the right process. Note
3515 there's no way to select "no process". */
3516 set_general_process ();
3517
3518 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3519 because we need both at the same time. */
3520 msg = alloca (get_remote_packet_size ());
3521
3522 /* Invite target to request symbol lookups. */
3523
3524 putpkt ("qSymbol::");
3525 getpkt (&rs->buf, &rs->buf_size, 0);
3526 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3527 reply = rs->buf;
3528
3529 while (strncmp (reply, "qSymbol:", 8) == 0)
3530 {
3531 tmp = &reply[8];
3532 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3533 msg[end] = '\0';
3534 sym = lookup_minimal_symbol (msg, NULL, NULL);
3535 if (sym == NULL)
3536 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3537 else
3538 {
3539 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3540 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3541
3542 /* If this is a function address, return the start of code
3543 instead of any data function descriptor. */
3544 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3545 sym_addr,
3546 &current_target);
3547
3548 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3549 phex_nz (sym_addr, addr_size), &reply[8]);
3550 }
3551
3552 putpkt (msg);
3553 getpkt (&rs->buf, &rs->buf_size, 0);
3554 reply = rs->buf;
3555 }
3556 }
3557
3558 static struct serial *
3559 remote_serial_open (char *name)
3560 {
3561 static int udp_warning = 0;
3562
3563 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3564 of in ser-tcp.c, because it is the remote protocol assuming that the
3565 serial connection is reliable and not the serial connection promising
3566 to be. */
3567 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3568 {
3569 warning (_("The remote protocol may be unreliable over UDP.\n"
3570 "Some events may be lost, rendering further debugging "
3571 "impossible."));
3572 udp_warning = 1;
3573 }
3574
3575 return serial_open (name);
3576 }
3577
3578 /* Inform the target of our permission settings. The permission flags
3579 work without this, but if the target knows the settings, it can do
3580 a couple things. First, it can add its own check, to catch cases
3581 that somehow manage to get by the permissions checks in target
3582 methods. Second, if the target is wired to disallow particular
3583 settings (for instance, a system in the field that is not set up to
3584 be able to stop at a breakpoint), it can object to any unavailable
3585 permissions. */
3586
3587 void
3588 remote_set_permissions (void)
3589 {
3590 struct remote_state *rs = get_remote_state ();
3591
3592 sprintf (rs->buf, "QAllow:"
3593 "WriteReg:%x;WriteMem:%x;"
3594 "InsertBreak:%x;InsertTrace:%x;"
3595 "InsertFastTrace:%x;Stop:%x",
3596 may_write_registers, may_write_memory,
3597 may_insert_breakpoints, may_insert_tracepoints,
3598 may_insert_fast_tracepoints, may_stop);
3599 putpkt (rs->buf);
3600 getpkt (&rs->buf, &rs->buf_size, 0);
3601
3602 /* If the target didn't like the packet, warn the user. Do not try
3603 to undo the user's settings, that would just be maddening. */
3604 if (strcmp (rs->buf, "OK") != 0)
3605 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3606 }
3607
3608 /* This type describes each known response to the qSupported
3609 packet. */
3610 struct protocol_feature
3611 {
3612 /* The name of this protocol feature. */
3613 const char *name;
3614
3615 /* The default for this protocol feature. */
3616 enum packet_support default_support;
3617
3618 /* The function to call when this feature is reported, or after
3619 qSupported processing if the feature is not supported.
3620 The first argument points to this structure. The second
3621 argument indicates whether the packet requested support be
3622 enabled, disabled, or probed (or the default, if this function
3623 is being called at the end of processing and this feature was
3624 not reported). The third argument may be NULL; if not NULL, it
3625 is a NUL-terminated string taken from the packet following
3626 this feature's name and an equals sign. */
3627 void (*func) (const struct protocol_feature *, enum packet_support,
3628 const char *);
3629
3630 /* The corresponding packet for this feature. Only used if
3631 FUNC is remote_supported_packet. */
3632 int packet;
3633 };
3634
3635 static void
3636 remote_supported_packet (const struct protocol_feature *feature,
3637 enum packet_support support,
3638 const char *argument)
3639 {
3640 if (argument)
3641 {
3642 warning (_("Remote qSupported response supplied an unexpected value for"
3643 " \"%s\"."), feature->name);
3644 return;
3645 }
3646
3647 if (remote_protocol_packets[feature->packet].support
3648 == PACKET_SUPPORT_UNKNOWN)
3649 remote_protocol_packets[feature->packet].support = support;
3650 }
3651
3652 static void
3653 remote_packet_size (const struct protocol_feature *feature,
3654 enum packet_support support, const char *value)
3655 {
3656 struct remote_state *rs = get_remote_state ();
3657
3658 int packet_size;
3659 char *value_end;
3660
3661 if (support != PACKET_ENABLE)
3662 return;
3663
3664 if (value == NULL || *value == '\0')
3665 {
3666 warning (_("Remote target reported \"%s\" without a size."),
3667 feature->name);
3668 return;
3669 }
3670
3671 errno = 0;
3672 packet_size = strtol (value, &value_end, 16);
3673 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3674 {
3675 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3676 feature->name, value);
3677 return;
3678 }
3679
3680 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3681 {
3682 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3683 packet_size, MAX_REMOTE_PACKET_SIZE);
3684 packet_size = MAX_REMOTE_PACKET_SIZE;
3685 }
3686
3687 /* Record the new maximum packet size. */
3688 rs->explicit_packet_size = packet_size;
3689 }
3690
3691 static void
3692 remote_multi_process_feature (const struct protocol_feature *feature,
3693 enum packet_support support, const char *value)
3694 {
3695 struct remote_state *rs = get_remote_state ();
3696
3697 rs->multi_process_aware = (support == PACKET_ENABLE);
3698 }
3699
3700 static void
3701 remote_non_stop_feature (const struct protocol_feature *feature,
3702 enum packet_support support, const char *value)
3703 {
3704 struct remote_state *rs = get_remote_state ();
3705
3706 rs->non_stop_aware = (support == PACKET_ENABLE);
3707 }
3708
3709 static void
3710 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3711 enum packet_support support,
3712 const char *value)
3713 {
3714 struct remote_state *rs = get_remote_state ();
3715
3716 rs->cond_tracepoints = (support == PACKET_ENABLE);
3717 }
3718
3719 static void
3720 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3721 enum packet_support support,
3722 const char *value)
3723 {
3724 struct remote_state *rs = get_remote_state ();
3725
3726 rs->fast_tracepoints = (support == PACKET_ENABLE);
3727 }
3728
3729 static void
3730 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3731 enum packet_support support,
3732 const char *value)
3733 {
3734 struct remote_state *rs = get_remote_state ();
3735
3736 rs->static_tracepoints = (support == PACKET_ENABLE);
3737 }
3738
3739 static void
3740 remote_install_in_trace_feature (const struct protocol_feature *feature,
3741 enum packet_support support,
3742 const char *value)
3743 {
3744 struct remote_state *rs = get_remote_state ();
3745
3746 rs->install_in_trace = (support == PACKET_ENABLE);
3747 }
3748
3749 static void
3750 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3751 enum packet_support support,
3752 const char *value)
3753 {
3754 struct remote_state *rs = get_remote_state ();
3755
3756 rs->disconnected_tracing = (support == PACKET_ENABLE);
3757 }
3758
3759 static void
3760 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3761 enum packet_support support,
3762 const char *value)
3763 {
3764 struct remote_state *rs = get_remote_state ();
3765
3766 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3767 }
3768
3769 static void
3770 remote_string_tracing_feature (const struct protocol_feature *feature,
3771 enum packet_support support,
3772 const char *value)
3773 {
3774 struct remote_state *rs = get_remote_state ();
3775
3776 rs->string_tracing = (support == PACKET_ENABLE);
3777 }
3778
3779 static struct protocol_feature remote_protocol_features[] = {
3780 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3781 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3782 PACKET_qXfer_auxv },
3783 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3784 PACKET_qXfer_features },
3785 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3786 PACKET_qXfer_libraries },
3787 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3788 PACKET_qXfer_libraries_svr4 },
3789 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3790 PACKET_qXfer_memory_map },
3791 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3792 PACKET_qXfer_spu_read },
3793 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3794 PACKET_qXfer_spu_write },
3795 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3796 PACKET_qXfer_osdata },
3797 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3798 PACKET_qXfer_threads },
3799 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3800 PACKET_qXfer_traceframe_info },
3801 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3802 PACKET_QPassSignals },
3803 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3804 PACKET_QStartNoAckMode },
3805 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3806 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3807 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3808 PACKET_qXfer_siginfo_read },
3809 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3810 PACKET_qXfer_siginfo_write },
3811 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3812 PACKET_ConditionalTracepoints },
3813 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3814 PACKET_FastTracepoints },
3815 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3816 PACKET_StaticTracepoints },
3817 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3818 PACKET_InstallInTrace},
3819 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3820 -1 },
3821 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3822 PACKET_bc },
3823 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3824 PACKET_bs },
3825 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3826 PACKET_TracepointSource },
3827 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3828 PACKET_QAllow },
3829 { "EnableDisableTracepoints", PACKET_DISABLE,
3830 remote_enable_disable_tracepoint_feature, -1 },
3831 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3832 PACKET_qXfer_fdpic },
3833 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3834 PACKET_QDisableRandomization },
3835 { "tracenz", PACKET_DISABLE,
3836 remote_string_tracing_feature, -1 },
3837 };
3838
3839 static char *remote_support_xml;
3840
3841 /* Register string appended to "xmlRegisters=" in qSupported query. */
3842
3843 void
3844 register_remote_support_xml (const char *xml)
3845 {
3846 #if defined(HAVE_LIBEXPAT)
3847 if (remote_support_xml == NULL)
3848 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3849 else
3850 {
3851 char *copy = xstrdup (remote_support_xml + 13);
3852 char *p = strtok (copy, ",");
3853
3854 do
3855 {
3856 if (strcmp (p, xml) == 0)
3857 {
3858 /* already there */
3859 xfree (copy);
3860 return;
3861 }
3862 }
3863 while ((p = strtok (NULL, ",")) != NULL);
3864 xfree (copy);
3865
3866 remote_support_xml = reconcat (remote_support_xml,
3867 remote_support_xml, ",", xml,
3868 (char *) NULL);
3869 }
3870 #endif
3871 }
3872
3873 static char *
3874 remote_query_supported_append (char *msg, const char *append)
3875 {
3876 if (msg)
3877 return reconcat (msg, msg, ";", append, (char *) NULL);
3878 else
3879 return xstrdup (append);
3880 }
3881
3882 static void
3883 remote_query_supported (void)
3884 {
3885 struct remote_state *rs = get_remote_state ();
3886 char *next;
3887 int i;
3888 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3889
3890 /* The packet support flags are handled differently for this packet
3891 than for most others. We treat an error, a disabled packet, and
3892 an empty response identically: any features which must be reported
3893 to be used will be automatically disabled. An empty buffer
3894 accomplishes this, since that is also the representation for a list
3895 containing no features. */
3896
3897 rs->buf[0] = 0;
3898 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3899 {
3900 char *q = NULL;
3901 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3902
3903 q = remote_query_supported_append (q, "multiprocess+");
3904
3905 if (remote_support_xml)
3906 q = remote_query_supported_append (q, remote_support_xml);
3907
3908 q = remote_query_supported_append (q, "qRelocInsn+");
3909
3910 q = reconcat (q, "qSupported:", q, (char *) NULL);
3911 putpkt (q);
3912
3913 do_cleanups (old_chain);
3914
3915 getpkt (&rs->buf, &rs->buf_size, 0);
3916
3917 /* If an error occured, warn, but do not return - just reset the
3918 buffer to empty and go on to disable features. */
3919 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3920 == PACKET_ERROR)
3921 {
3922 warning (_("Remote failure reply: %s"), rs->buf);
3923 rs->buf[0] = 0;
3924 }
3925 }
3926
3927 memset (seen, 0, sizeof (seen));
3928
3929 next = rs->buf;
3930 while (*next)
3931 {
3932 enum packet_support is_supported;
3933 char *p, *end, *name_end, *value;
3934
3935 /* First separate out this item from the rest of the packet. If
3936 there's another item after this, we overwrite the separator
3937 (terminated strings are much easier to work with). */
3938 p = next;
3939 end = strchr (p, ';');
3940 if (end == NULL)
3941 {
3942 end = p + strlen (p);
3943 next = end;
3944 }
3945 else
3946 {
3947 *end = '\0';
3948 next = end + 1;
3949
3950 if (end == p)
3951 {
3952 warning (_("empty item in \"qSupported\" response"));
3953 continue;
3954 }
3955 }
3956
3957 name_end = strchr (p, '=');
3958 if (name_end)
3959 {
3960 /* This is a name=value entry. */
3961 is_supported = PACKET_ENABLE;
3962 value = name_end + 1;
3963 *name_end = '\0';
3964 }
3965 else
3966 {
3967 value = NULL;
3968 switch (end[-1])
3969 {
3970 case '+':
3971 is_supported = PACKET_ENABLE;
3972 break;
3973
3974 case '-':
3975 is_supported = PACKET_DISABLE;
3976 break;
3977
3978 case '?':
3979 is_supported = PACKET_SUPPORT_UNKNOWN;
3980 break;
3981
3982 default:
3983 warning (_("unrecognized item \"%s\" "
3984 "in \"qSupported\" response"), p);
3985 continue;
3986 }
3987 end[-1] = '\0';
3988 }
3989
3990 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3991 if (strcmp (remote_protocol_features[i].name, p) == 0)
3992 {
3993 const struct protocol_feature *feature;
3994
3995 seen[i] = 1;
3996 feature = &remote_protocol_features[i];
3997 feature->func (feature, is_supported, value);
3998 break;
3999 }
4000 }
4001
4002 /* If we increased the packet size, make sure to increase the global
4003 buffer size also. We delay this until after parsing the entire
4004 qSupported packet, because this is the same buffer we were
4005 parsing. */
4006 if (rs->buf_size < rs->explicit_packet_size)
4007 {
4008 rs->buf_size = rs->explicit_packet_size;
4009 rs->buf = xrealloc (rs->buf, rs->buf_size);
4010 }
4011
4012 /* Handle the defaults for unmentioned features. */
4013 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4014 if (!seen[i])
4015 {
4016 const struct protocol_feature *feature;
4017
4018 feature = &remote_protocol_features[i];
4019 feature->func (feature, feature->default_support, NULL);
4020 }
4021 }
4022
4023
4024 static void
4025 remote_open_1 (char *name, int from_tty,
4026 struct target_ops *target, int extended_p)
4027 {
4028 struct remote_state *rs = get_remote_state ();
4029
4030 if (name == 0)
4031 error (_("To open a remote debug connection, you need to specify what\n"
4032 "serial device is attached to the remote system\n"
4033 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4034
4035 /* See FIXME above. */
4036 if (!target_async_permitted)
4037 wait_forever_enabled_p = 1;
4038
4039 /* If we're connected to a running target, target_preopen will kill it.
4040 But if we're connected to a target system with no running process,
4041 then we will still be connected when it returns. Ask this question
4042 first, before target_preopen has a chance to kill anything. */
4043 if (remote_desc != NULL && !have_inferiors ())
4044 {
4045 if (!from_tty
4046 || query (_("Already connected to a remote target. Disconnect? ")))
4047 pop_target ();
4048 else
4049 error (_("Still connected."));
4050 }
4051
4052 target_preopen (from_tty);
4053
4054 unpush_target (target);
4055
4056 /* This time without a query. If we were connected to an
4057 extended-remote target and target_preopen killed the running
4058 process, we may still be connected. If we are starting "target
4059 remote" now, the extended-remote target will not have been
4060 removed by unpush_target. */
4061 if (remote_desc != NULL && !have_inferiors ())
4062 pop_target ();
4063
4064 /* Make sure we send the passed signals list the next time we resume. */
4065 xfree (last_pass_packet);
4066 last_pass_packet = NULL;
4067
4068 remote_fileio_reset ();
4069 reopen_exec_file ();
4070 reread_symbols ();
4071
4072 remote_desc = remote_serial_open (name);
4073 if (!remote_desc)
4074 perror_with_name (name);
4075
4076 if (baud_rate != -1)
4077 {
4078 if (serial_setbaudrate (remote_desc, baud_rate))
4079 {
4080 /* The requested speed could not be set. Error out to
4081 top level after closing remote_desc. Take care to
4082 set remote_desc to NULL to avoid closing remote_desc
4083 more than once. */
4084 serial_close (remote_desc);
4085 remote_desc = NULL;
4086 perror_with_name (name);
4087 }
4088 }
4089
4090 serial_raw (remote_desc);
4091
4092 /* If there is something sitting in the buffer we might take it as a
4093 response to a command, which would be bad. */
4094 serial_flush_input (remote_desc);
4095
4096 if (from_tty)
4097 {
4098 puts_filtered ("Remote debugging using ");
4099 puts_filtered (name);
4100 puts_filtered ("\n");
4101 }
4102 push_target (target); /* Switch to using remote target now. */
4103
4104 /* Register extra event sources in the event loop. */
4105 remote_async_inferior_event_token
4106 = create_async_event_handler (remote_async_inferior_event_handler,
4107 NULL);
4108 remote_async_get_pending_events_token
4109 = create_async_event_handler (remote_async_get_pending_events_handler,
4110 NULL);
4111
4112 /* Reset the target state; these things will be queried either by
4113 remote_query_supported or as they are needed. */
4114 init_all_packet_configs ();
4115 rs->cached_wait_status = 0;
4116 rs->explicit_packet_size = 0;
4117 rs->noack_mode = 0;
4118 rs->multi_process_aware = 0;
4119 rs->extended = extended_p;
4120 rs->non_stop_aware = 0;
4121 rs->waiting_for_stop_reply = 0;
4122 rs->ctrlc_pending_p = 0;
4123
4124 general_thread = not_sent_ptid;
4125 continue_thread = not_sent_ptid;
4126 remote_traceframe_number = -1;
4127
4128 /* Probe for ability to use "ThreadInfo" query, as required. */
4129 use_threadinfo_query = 1;
4130 use_threadextra_query = 1;
4131
4132 if (target_async_permitted)
4133 {
4134 /* With this target we start out by owning the terminal. */
4135 remote_async_terminal_ours_p = 1;
4136
4137 /* FIXME: cagney/1999-09-23: During the initial connection it is
4138 assumed that the target is already ready and able to respond to
4139 requests. Unfortunately remote_start_remote() eventually calls
4140 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4141 around this. Eventually a mechanism that allows
4142 wait_for_inferior() to expect/get timeouts will be
4143 implemented. */
4144 wait_forever_enabled_p = 0;
4145 }
4146
4147 /* First delete any symbols previously loaded from shared libraries. */
4148 no_shared_libraries (NULL, 0);
4149
4150 /* Start afresh. */
4151 init_thread_list ();
4152
4153 /* Start the remote connection. If error() or QUIT, discard this
4154 target (we'd otherwise be in an inconsistent state) and then
4155 propogate the error on up the exception chain. This ensures that
4156 the caller doesn't stumble along blindly assuming that the
4157 function succeeded. The CLI doesn't have this problem but other
4158 UI's, such as MI do.
4159
4160 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4161 this function should return an error indication letting the
4162 caller restore the previous state. Unfortunately the command
4163 ``target remote'' is directly wired to this function making that
4164 impossible. On a positive note, the CLI side of this problem has
4165 been fixed - the function set_cmd_context() makes it possible for
4166 all the ``target ....'' commands to share a common callback
4167 function. See cli-dump.c. */
4168 {
4169 volatile struct gdb_exception ex;
4170
4171 TRY_CATCH (ex, RETURN_MASK_ALL)
4172 {
4173 remote_start_remote (from_tty, target, extended_p);
4174 }
4175 if (ex.reason < 0)
4176 {
4177 /* Pop the partially set up target - unless something else did
4178 already before throwing the exception. */
4179 if (remote_desc != NULL)
4180 pop_target ();
4181 if (target_async_permitted)
4182 wait_forever_enabled_p = 1;
4183 throw_exception (ex);
4184 }
4185 }
4186
4187 if (target_async_permitted)
4188 wait_forever_enabled_p = 1;
4189 }
4190
4191 /* This takes a program previously attached to and detaches it. After
4192 this is done, GDB can be used to debug some other program. We
4193 better not have left any breakpoints in the target program or it'll
4194 die when it hits one. */
4195
4196 static void
4197 remote_detach_1 (char *args, int from_tty, int extended)
4198 {
4199 int pid = ptid_get_pid (inferior_ptid);
4200 struct remote_state *rs = get_remote_state ();
4201
4202 if (args)
4203 error (_("Argument given to \"detach\" when remotely debugging."));
4204
4205 if (!target_has_execution)
4206 error (_("No process to detach from."));
4207
4208 /* Tell the remote target to detach. */
4209 if (remote_multi_process_p (rs))
4210 sprintf (rs->buf, "D;%x", pid);
4211 else
4212 strcpy (rs->buf, "D");
4213
4214 putpkt (rs->buf);
4215 getpkt (&rs->buf, &rs->buf_size, 0);
4216
4217 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4218 ;
4219 else if (rs->buf[0] == '\0')
4220 error (_("Remote doesn't know how to detach"));
4221 else
4222 error (_("Can't detach process."));
4223
4224 if (from_tty)
4225 {
4226 if (remote_multi_process_p (rs))
4227 printf_filtered (_("Detached from remote %s.\n"),
4228 target_pid_to_str (pid_to_ptid (pid)));
4229 else
4230 {
4231 if (extended)
4232 puts_filtered (_("Detached from remote process.\n"));
4233 else
4234 puts_filtered (_("Ending remote debugging.\n"));
4235 }
4236 }
4237
4238 discard_pending_stop_replies (pid);
4239 target_mourn_inferior ();
4240 }
4241
4242 static void
4243 remote_detach (struct target_ops *ops, char *args, int from_tty)
4244 {
4245 remote_detach_1 (args, from_tty, 0);
4246 }
4247
4248 static void
4249 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4250 {
4251 remote_detach_1 (args, from_tty, 1);
4252 }
4253
4254 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4255
4256 static void
4257 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4258 {
4259 if (args)
4260 error (_("Argument given to \"disconnect\" when remotely debugging."));
4261
4262 /* Make sure we unpush even the extended remote targets; mourn
4263 won't do it. So call remote_mourn_1 directly instead of
4264 target_mourn_inferior. */
4265 remote_mourn_1 (target);
4266
4267 if (from_tty)
4268 puts_filtered ("Ending remote debugging.\n");
4269 }
4270
4271 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4272 be chatty about it. */
4273
4274 static void
4275 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4276 {
4277 struct remote_state *rs = get_remote_state ();
4278 int pid;
4279 char *wait_status = NULL;
4280
4281 pid = parse_pid_to_attach (args);
4282
4283 /* Remote PID can be freely equal to getpid, do not check it here the same
4284 way as in other targets. */
4285
4286 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4287 error (_("This target does not support attaching to a process"));
4288
4289 sprintf (rs->buf, "vAttach;%x", pid);
4290 putpkt (rs->buf);
4291 getpkt (&rs->buf, &rs->buf_size, 0);
4292
4293 if (packet_ok (rs->buf,
4294 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4295 {
4296 if (from_tty)
4297 printf_unfiltered (_("Attached to %s\n"),
4298 target_pid_to_str (pid_to_ptid (pid)));
4299
4300 if (!non_stop)
4301 {
4302 /* Save the reply for later. */
4303 wait_status = alloca (strlen (rs->buf) + 1);
4304 strcpy (wait_status, rs->buf);
4305 }
4306 else if (strcmp (rs->buf, "OK") != 0)
4307 error (_("Attaching to %s failed with: %s"),
4308 target_pid_to_str (pid_to_ptid (pid)),
4309 rs->buf);
4310 }
4311 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4312 error (_("This target does not support attaching to a process"));
4313 else
4314 error (_("Attaching to %s failed"),
4315 target_pid_to_str (pid_to_ptid (pid)));
4316
4317 set_current_inferior (remote_add_inferior (0, pid, 1));
4318
4319 inferior_ptid = pid_to_ptid (pid);
4320
4321 if (non_stop)
4322 {
4323 struct thread_info *thread;
4324
4325 /* Get list of threads. */
4326 remote_threads_info (target);
4327
4328 thread = first_thread_of_process (pid);
4329 if (thread)
4330 inferior_ptid = thread->ptid;
4331 else
4332 inferior_ptid = pid_to_ptid (pid);
4333
4334 /* Invalidate our notion of the remote current thread. */
4335 record_currthread (minus_one_ptid);
4336 }
4337 else
4338 {
4339 /* Now, if we have thread information, update inferior_ptid. */
4340 inferior_ptid = remote_current_thread (inferior_ptid);
4341
4342 /* Add the main thread to the thread list. */
4343 add_thread_silent (inferior_ptid);
4344 }
4345
4346 /* Next, if the target can specify a description, read it. We do
4347 this before anything involving memory or registers. */
4348 target_find_description ();
4349
4350 if (!non_stop)
4351 {
4352 /* Use the previously fetched status. */
4353 gdb_assert (wait_status != NULL);
4354
4355 if (target_can_async_p ())
4356 {
4357 struct stop_reply *stop_reply;
4358 struct cleanup *old_chain;
4359
4360 stop_reply = stop_reply_xmalloc ();
4361 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4362 remote_parse_stop_reply (wait_status, stop_reply);
4363 discard_cleanups (old_chain);
4364 push_stop_reply (stop_reply);
4365
4366 target_async (inferior_event_handler, 0);
4367 }
4368 else
4369 {
4370 gdb_assert (wait_status != NULL);
4371 strcpy (rs->buf, wait_status);
4372 rs->cached_wait_status = 1;
4373 }
4374 }
4375 else
4376 gdb_assert (wait_status == NULL);
4377 }
4378
4379 static void
4380 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4381 {
4382 extended_remote_attach_1 (ops, args, from_tty);
4383 }
4384
4385 /* Convert hex digit A to a number. */
4386
4387 static int
4388 fromhex (int a)
4389 {
4390 if (a >= '0' && a <= '9')
4391 return a - '0';
4392 else if (a >= 'a' && a <= 'f')
4393 return a - 'a' + 10;
4394 else if (a >= 'A' && a <= 'F')
4395 return a - 'A' + 10;
4396 else
4397 error (_("Reply contains invalid hex digit %d"), a);
4398 }
4399
4400 int
4401 hex2bin (const char *hex, gdb_byte *bin, int count)
4402 {
4403 int i;
4404
4405 for (i = 0; i < count; i++)
4406 {
4407 if (hex[0] == 0 || hex[1] == 0)
4408 {
4409 /* Hex string is short, or of uneven length.
4410 Return the count that has been converted so far. */
4411 return i;
4412 }
4413 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4414 hex += 2;
4415 }
4416 return i;
4417 }
4418
4419 /* Convert number NIB to a hex digit. */
4420
4421 static int
4422 tohex (int nib)
4423 {
4424 if (nib < 10)
4425 return '0' + nib;
4426 else
4427 return 'a' + nib - 10;
4428 }
4429
4430 int
4431 bin2hex (const gdb_byte *bin, char *hex, int count)
4432 {
4433 int i;
4434
4435 /* May use a length, or a nul-terminated string as input. */
4436 if (count == 0)
4437 count = strlen ((char *) bin);
4438
4439 for (i = 0; i < count; i++)
4440 {
4441 *hex++ = tohex ((*bin >> 4) & 0xf);
4442 *hex++ = tohex (*bin++ & 0xf);
4443 }
4444 *hex = 0;
4445 return i;
4446 }
4447 \f
4448 /* Check for the availability of vCont. This function should also check
4449 the response. */
4450
4451 static void
4452 remote_vcont_probe (struct remote_state *rs)
4453 {
4454 char *buf;
4455
4456 strcpy (rs->buf, "vCont?");
4457 putpkt (rs->buf);
4458 getpkt (&rs->buf, &rs->buf_size, 0);
4459 buf = rs->buf;
4460
4461 /* Make sure that the features we assume are supported. */
4462 if (strncmp (buf, "vCont", 5) == 0)
4463 {
4464 char *p = &buf[5];
4465 int support_s, support_S, support_c, support_C;
4466
4467 support_s = 0;
4468 support_S = 0;
4469 support_c = 0;
4470 support_C = 0;
4471 rs->support_vCont_t = 0;
4472 while (p && *p == ';')
4473 {
4474 p++;
4475 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4476 support_s = 1;
4477 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4478 support_S = 1;
4479 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4480 support_c = 1;
4481 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4482 support_C = 1;
4483 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4484 rs->support_vCont_t = 1;
4485
4486 p = strchr (p, ';');
4487 }
4488
4489 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4490 BUF will make packet_ok disable the packet. */
4491 if (!support_s || !support_S || !support_c || !support_C)
4492 buf[0] = 0;
4493 }
4494
4495 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4496 }
4497
4498 /* Helper function for building "vCont" resumptions. Write a
4499 resumption to P. ENDP points to one-passed-the-end of the buffer
4500 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4501 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4502 resumed thread should be single-stepped and/or signalled. If PTID
4503 equals minus_one_ptid, then all threads are resumed; if PTID
4504 represents a process, then all threads of the process are resumed;
4505 the thread to be stepped and/or signalled is given in the global
4506 INFERIOR_PTID. */
4507
4508 static char *
4509 append_resumption (char *p, char *endp,
4510 ptid_t ptid, int step, enum target_signal siggnal)
4511 {
4512 struct remote_state *rs = get_remote_state ();
4513
4514 if (step && siggnal != TARGET_SIGNAL_0)
4515 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4516 else if (step)
4517 p += xsnprintf (p, endp - p, ";s");
4518 else if (siggnal != TARGET_SIGNAL_0)
4519 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4520 else
4521 p += xsnprintf (p, endp - p, ";c");
4522
4523 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4524 {
4525 ptid_t nptid;
4526
4527 /* All (-1) threads of process. */
4528 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4529
4530 p += xsnprintf (p, endp - p, ":");
4531 p = write_ptid (p, endp, nptid);
4532 }
4533 else if (!ptid_equal (ptid, minus_one_ptid))
4534 {
4535 p += xsnprintf (p, endp - p, ":");
4536 p = write_ptid (p, endp, ptid);
4537 }
4538
4539 return p;
4540 }
4541
4542 /* Resume the remote inferior by using a "vCont" packet. The thread
4543 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4544 resumed thread should be single-stepped and/or signalled. If PTID
4545 equals minus_one_ptid, then all threads are resumed; the thread to
4546 be stepped and/or signalled is given in the global INFERIOR_PTID.
4547 This function returns non-zero iff it resumes the inferior.
4548
4549 This function issues a strict subset of all possible vCont commands at the
4550 moment. */
4551
4552 static int
4553 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4554 {
4555 struct remote_state *rs = get_remote_state ();
4556 char *p;
4557 char *endp;
4558
4559 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4560 remote_vcont_probe (rs);
4561
4562 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4563 return 0;
4564
4565 p = rs->buf;
4566 endp = rs->buf + get_remote_packet_size ();
4567
4568 /* If we could generate a wider range of packets, we'd have to worry
4569 about overflowing BUF. Should there be a generic
4570 "multi-part-packet" packet? */
4571
4572 p += xsnprintf (p, endp - p, "vCont");
4573
4574 if (ptid_equal (ptid, magic_null_ptid))
4575 {
4576 /* MAGIC_NULL_PTID means that we don't have any active threads,
4577 so we don't have any TID numbers the inferior will
4578 understand. Make sure to only send forms that do not specify
4579 a TID. */
4580 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4581 }
4582 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4583 {
4584 /* Resume all threads (of all processes, or of a single
4585 process), with preference for INFERIOR_PTID. This assumes
4586 inferior_ptid belongs to the set of all threads we are about
4587 to resume. */
4588 if (step || siggnal != TARGET_SIGNAL_0)
4589 {
4590 /* Step inferior_ptid, with or without signal. */
4591 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4592 }
4593
4594 /* And continue others without a signal. */
4595 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4596 }
4597 else
4598 {
4599 /* Scheduler locking; resume only PTID. */
4600 append_resumption (p, endp, ptid, step, siggnal);
4601 }
4602
4603 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4604 putpkt (rs->buf);
4605
4606 if (non_stop)
4607 {
4608 /* In non-stop, the stub replies to vCont with "OK". The stop
4609 reply will be reported asynchronously by means of a `%Stop'
4610 notification. */
4611 getpkt (&rs->buf, &rs->buf_size, 0);
4612 if (strcmp (rs->buf, "OK") != 0)
4613 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4614 }
4615
4616 return 1;
4617 }
4618
4619 /* Tell the remote machine to resume. */
4620
4621 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4622
4623 static int last_sent_step;
4624
4625 static void
4626 remote_resume (struct target_ops *ops,
4627 ptid_t ptid, int step, enum target_signal siggnal)
4628 {
4629 struct remote_state *rs = get_remote_state ();
4630 char *buf;
4631
4632 last_sent_signal = siggnal;
4633 last_sent_step = step;
4634
4635 /* The vCont packet doesn't need to specify threads via Hc. */
4636 /* No reverse support (yet) for vCont. */
4637 if (execution_direction != EXEC_REVERSE)
4638 if (remote_vcont_resume (ptid, step, siggnal))
4639 goto done;
4640
4641 /* All other supported resume packets do use Hc, so set the continue
4642 thread. */
4643 if (ptid_equal (ptid, minus_one_ptid))
4644 set_continue_thread (any_thread_ptid);
4645 else
4646 set_continue_thread (ptid);
4647
4648 buf = rs->buf;
4649 if (execution_direction == EXEC_REVERSE)
4650 {
4651 /* We don't pass signals to the target in reverse exec mode. */
4652 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4653 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4654 siggnal);
4655
4656 if (step
4657 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4658 error (_("Remote reverse-step not supported."));
4659 if (!step
4660 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4661 error (_("Remote reverse-continue not supported."));
4662
4663 strcpy (buf, step ? "bs" : "bc");
4664 }
4665 else if (siggnal != TARGET_SIGNAL_0)
4666 {
4667 buf[0] = step ? 'S' : 'C';
4668 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4669 buf[2] = tohex (((int) siggnal) & 0xf);
4670 buf[3] = '\0';
4671 }
4672 else
4673 strcpy (buf, step ? "s" : "c");
4674
4675 putpkt (buf);
4676
4677 done:
4678 /* We are about to start executing the inferior, let's register it
4679 with the event loop. NOTE: this is the one place where all the
4680 execution commands end up. We could alternatively do this in each
4681 of the execution commands in infcmd.c. */
4682 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4683 into infcmd.c in order to allow inferior function calls to work
4684 NOT asynchronously. */
4685 if (target_can_async_p ())
4686 target_async (inferior_event_handler, 0);
4687
4688 /* We've just told the target to resume. The remote server will
4689 wait for the inferior to stop, and then send a stop reply. In
4690 the mean time, we can't start another command/query ourselves
4691 because the stub wouldn't be ready to process it. This applies
4692 only to the base all-stop protocol, however. In non-stop (which
4693 only supports vCont), the stub replies with an "OK", and is
4694 immediate able to process further serial input. */
4695 if (!non_stop)
4696 rs->waiting_for_stop_reply = 1;
4697 }
4698 \f
4699
4700 /* Set up the signal handler for SIGINT, while the target is
4701 executing, ovewriting the 'regular' SIGINT signal handler. */
4702 static void
4703 initialize_sigint_signal_handler (void)
4704 {
4705 signal (SIGINT, handle_remote_sigint);
4706 }
4707
4708 /* Signal handler for SIGINT, while the target is executing. */
4709 static void
4710 handle_remote_sigint (int sig)
4711 {
4712 signal (sig, handle_remote_sigint_twice);
4713 mark_async_signal_handler_wrapper (sigint_remote_token);
4714 }
4715
4716 /* Signal handler for SIGINT, installed after SIGINT has already been
4717 sent once. It will take effect the second time that the user sends
4718 a ^C. */
4719 static void
4720 handle_remote_sigint_twice (int sig)
4721 {
4722 signal (sig, handle_remote_sigint);
4723 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4724 }
4725
4726 /* Perform the real interruption of the target execution, in response
4727 to a ^C. */
4728 static void
4729 async_remote_interrupt (gdb_client_data arg)
4730 {
4731 if (remote_debug)
4732 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4733
4734 target_stop (inferior_ptid);
4735 }
4736
4737 /* Perform interrupt, if the first attempt did not succeed. Just give
4738 up on the target alltogether. */
4739 void
4740 async_remote_interrupt_twice (gdb_client_data arg)
4741 {
4742 if (remote_debug)
4743 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4744
4745 interrupt_query ();
4746 }
4747
4748 /* Reinstall the usual SIGINT handlers, after the target has
4749 stopped. */
4750 static void
4751 cleanup_sigint_signal_handler (void *dummy)
4752 {
4753 signal (SIGINT, handle_sigint);
4754 }
4755
4756 /* Send ^C to target to halt it. Target will respond, and send us a
4757 packet. */
4758 static void (*ofunc) (int);
4759
4760 /* The command line interface's stop routine. This function is installed
4761 as a signal handler for SIGINT. The first time a user requests a
4762 stop, we call remote_stop to send a break or ^C. If there is no
4763 response from the target (it didn't stop when the user requested it),
4764 we ask the user if he'd like to detach from the target. */
4765 static void
4766 remote_interrupt (int signo)
4767 {
4768 /* If this doesn't work, try more severe steps. */
4769 signal (signo, remote_interrupt_twice);
4770
4771 gdb_call_async_signal_handler (sigint_remote_token, 1);
4772 }
4773
4774 /* The user typed ^C twice. */
4775
4776 static void
4777 remote_interrupt_twice (int signo)
4778 {
4779 signal (signo, ofunc);
4780 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4781 signal (signo, remote_interrupt);
4782 }
4783
4784 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4785 thread, all threads of a remote process, or all threads of all
4786 processes. */
4787
4788 static void
4789 remote_stop_ns (ptid_t ptid)
4790 {
4791 struct remote_state *rs = get_remote_state ();
4792 char *p = rs->buf;
4793 char *endp = rs->buf + get_remote_packet_size ();
4794
4795 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4796 remote_vcont_probe (rs);
4797
4798 if (!rs->support_vCont_t)
4799 error (_("Remote server does not support stopping threads"));
4800
4801 if (ptid_equal (ptid, minus_one_ptid)
4802 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4803 p += xsnprintf (p, endp - p, "vCont;t");
4804 else
4805 {
4806 ptid_t nptid;
4807
4808 p += xsnprintf (p, endp - p, "vCont;t:");
4809
4810 if (ptid_is_pid (ptid))
4811 /* All (-1) threads of process. */
4812 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4813 else
4814 {
4815 /* Small optimization: if we already have a stop reply for
4816 this thread, no use in telling the stub we want this
4817 stopped. */
4818 if (peek_stop_reply (ptid))
4819 return;
4820
4821 nptid = ptid;
4822 }
4823
4824 write_ptid (p, endp, nptid);
4825 }
4826
4827 /* In non-stop, we get an immediate OK reply. The stop reply will
4828 come in asynchronously by notification. */
4829 putpkt (rs->buf);
4830 getpkt (&rs->buf, &rs->buf_size, 0);
4831 if (strcmp (rs->buf, "OK") != 0)
4832 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4833 }
4834
4835 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4836 remote target. It is undefined which thread of which process
4837 reports the stop. */
4838
4839 static void
4840 remote_stop_as (ptid_t ptid)
4841 {
4842 struct remote_state *rs = get_remote_state ();
4843
4844 rs->ctrlc_pending_p = 1;
4845
4846 /* If the inferior is stopped already, but the core didn't know
4847 about it yet, just ignore the request. The cached wait status
4848 will be collected in remote_wait. */
4849 if (rs->cached_wait_status)
4850 return;
4851
4852 /* Send interrupt_sequence to remote target. */
4853 send_interrupt_sequence ();
4854 }
4855
4856 /* This is the generic stop called via the target vector. When a target
4857 interrupt is requested, either by the command line or the GUI, we
4858 will eventually end up here. */
4859
4860 static void
4861 remote_stop (ptid_t ptid)
4862 {
4863 if (remote_debug)
4864 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4865
4866 if (non_stop)
4867 remote_stop_ns (ptid);
4868 else
4869 remote_stop_as (ptid);
4870 }
4871
4872 /* Ask the user what to do when an interrupt is received. */
4873
4874 static void
4875 interrupt_query (void)
4876 {
4877 target_terminal_ours ();
4878
4879 if (target_can_async_p ())
4880 {
4881 signal (SIGINT, handle_sigint);
4882 deprecated_throw_reason (RETURN_QUIT);
4883 }
4884 else
4885 {
4886 if (query (_("Interrupted while waiting for the program.\n\
4887 Give up (and stop debugging it)? ")))
4888 {
4889 pop_target ();
4890 deprecated_throw_reason (RETURN_QUIT);
4891 }
4892 }
4893
4894 target_terminal_inferior ();
4895 }
4896
4897 /* Enable/disable target terminal ownership. Most targets can use
4898 terminal groups to control terminal ownership. Remote targets are
4899 different in that explicit transfer of ownership to/from GDB/target
4900 is required. */
4901
4902 static void
4903 remote_terminal_inferior (void)
4904 {
4905 if (!target_async_permitted)
4906 /* Nothing to do. */
4907 return;
4908
4909 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4910 idempotent. The event-loop GDB talking to an asynchronous target
4911 with a synchronous command calls this function from both
4912 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4913 transfer the terminal to the target when it shouldn't this guard
4914 can go away. */
4915 if (!remote_async_terminal_ours_p)
4916 return;
4917 delete_file_handler (input_fd);
4918 remote_async_terminal_ours_p = 0;
4919 initialize_sigint_signal_handler ();
4920 /* NOTE: At this point we could also register our selves as the
4921 recipient of all input. Any characters typed could then be
4922 passed on down to the target. */
4923 }
4924
4925 static void
4926 remote_terminal_ours (void)
4927 {
4928 if (!target_async_permitted)
4929 /* Nothing to do. */
4930 return;
4931
4932 /* See FIXME in remote_terminal_inferior. */
4933 if (remote_async_terminal_ours_p)
4934 return;
4935 cleanup_sigint_signal_handler (NULL);
4936 add_file_handler (input_fd, stdin_event_handler, 0);
4937 remote_async_terminal_ours_p = 1;
4938 }
4939
4940 static void
4941 remote_console_output (char *msg)
4942 {
4943 char *p;
4944
4945 for (p = msg; p[0] && p[1]; p += 2)
4946 {
4947 char tb[2];
4948 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4949
4950 tb[0] = c;
4951 tb[1] = 0;
4952 fputs_unfiltered (tb, gdb_stdtarg);
4953 }
4954 gdb_flush (gdb_stdtarg);
4955 }
4956
4957 typedef struct cached_reg
4958 {
4959 int num;
4960 gdb_byte data[MAX_REGISTER_SIZE];
4961 } cached_reg_t;
4962
4963 DEF_VEC_O(cached_reg_t);
4964
4965 struct stop_reply
4966 {
4967 struct stop_reply *next;
4968
4969 ptid_t ptid;
4970
4971 struct target_waitstatus ws;
4972
4973 /* Expedited registers. This makes remote debugging a bit more
4974 efficient for those targets that provide critical registers as
4975 part of their normal status mechanism (as another roundtrip to
4976 fetch them is avoided). */
4977 VEC(cached_reg_t) *regcache;
4978
4979 int stopped_by_watchpoint_p;
4980 CORE_ADDR watch_data_address;
4981
4982 int solibs_changed;
4983 int replay_event;
4984
4985 int core;
4986 };
4987
4988 /* The list of already fetched and acknowledged stop events. */
4989 static struct stop_reply *stop_reply_queue;
4990
4991 static struct stop_reply *
4992 stop_reply_xmalloc (void)
4993 {
4994 struct stop_reply *r = XMALLOC (struct stop_reply);
4995
4996 r->next = NULL;
4997 return r;
4998 }
4999
5000 static void
5001 stop_reply_xfree (struct stop_reply *r)
5002 {
5003 if (r != NULL)
5004 {
5005 VEC_free (cached_reg_t, r->regcache);
5006 xfree (r);
5007 }
5008 }
5009
5010 /* Discard all pending stop replies of inferior PID. If PID is -1,
5011 discard everything. */
5012
5013 static void
5014 discard_pending_stop_replies (int pid)
5015 {
5016 struct stop_reply *prev = NULL, *reply, *next;
5017
5018 /* Discard the in-flight notification. */
5019 if (pending_stop_reply != NULL
5020 && (pid == -1
5021 || ptid_get_pid (pending_stop_reply->ptid) == pid))
5022 {
5023 stop_reply_xfree (pending_stop_reply);
5024 pending_stop_reply = NULL;
5025 }
5026
5027 /* Discard the stop replies we have already pulled with
5028 vStopped. */
5029 for (reply = stop_reply_queue; reply; reply = next)
5030 {
5031 next = reply->next;
5032 if (pid == -1
5033 || ptid_get_pid (reply->ptid) == pid)
5034 {
5035 if (reply == stop_reply_queue)
5036 stop_reply_queue = reply->next;
5037 else
5038 prev->next = reply->next;
5039
5040 stop_reply_xfree (reply);
5041 }
5042 else
5043 prev = reply;
5044 }
5045 }
5046
5047 /* Cleanup wrapper. */
5048
5049 static void
5050 do_stop_reply_xfree (void *arg)
5051 {
5052 struct stop_reply *r = arg;
5053
5054 stop_reply_xfree (r);
5055 }
5056
5057 /* Look for a queued stop reply belonging to PTID. If one is found,
5058 remove it from the queue, and return it. Returns NULL if none is
5059 found. If there are still queued events left to process, tell the
5060 event loop to get back to target_wait soon. */
5061
5062 static struct stop_reply *
5063 queued_stop_reply (ptid_t ptid)
5064 {
5065 struct stop_reply *it;
5066 struct stop_reply **it_link;
5067
5068 it = stop_reply_queue;
5069 it_link = &stop_reply_queue;
5070 while (it)
5071 {
5072 if (ptid_match (it->ptid, ptid))
5073 {
5074 *it_link = it->next;
5075 it->next = NULL;
5076 break;
5077 }
5078
5079 it_link = &it->next;
5080 it = *it_link;
5081 }
5082
5083 if (stop_reply_queue)
5084 /* There's still at least an event left. */
5085 mark_async_event_handler (remote_async_inferior_event_token);
5086
5087 return it;
5088 }
5089
5090 /* Push a fully parsed stop reply in the stop reply queue. Since we
5091 know that we now have at least one queued event left to pass to the
5092 core side, tell the event loop to get back to target_wait soon. */
5093
5094 static void
5095 push_stop_reply (struct stop_reply *new_event)
5096 {
5097 struct stop_reply *event;
5098
5099 if (stop_reply_queue)
5100 {
5101 for (event = stop_reply_queue;
5102 event && event->next;
5103 event = event->next)
5104 ;
5105
5106 event->next = new_event;
5107 }
5108 else
5109 stop_reply_queue = new_event;
5110
5111 mark_async_event_handler (remote_async_inferior_event_token);
5112 }
5113
5114 /* Returns true if we have a stop reply for PTID. */
5115
5116 static int
5117 peek_stop_reply (ptid_t ptid)
5118 {
5119 struct stop_reply *it;
5120
5121 for (it = stop_reply_queue; it; it = it->next)
5122 if (ptid_equal (ptid, it->ptid))
5123 {
5124 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5125 return 1;
5126 }
5127
5128 return 0;
5129 }
5130
5131 /* Parse the stop reply in BUF. Either the function succeeds, and the
5132 result is stored in EVENT, or throws an error. */
5133
5134 static void
5135 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5136 {
5137 struct remote_arch_state *rsa = get_remote_arch_state ();
5138 ULONGEST addr;
5139 char *p;
5140
5141 event->ptid = null_ptid;
5142 event->ws.kind = TARGET_WAITKIND_IGNORE;
5143 event->ws.value.integer = 0;
5144 event->solibs_changed = 0;
5145 event->replay_event = 0;
5146 event->stopped_by_watchpoint_p = 0;
5147 event->regcache = NULL;
5148 event->core = -1;
5149
5150 switch (buf[0])
5151 {
5152 case 'T': /* Status with PC, SP, FP, ... */
5153 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5154 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5155 ss = signal number
5156 n... = register number
5157 r... = register contents
5158 */
5159
5160 p = &buf[3]; /* after Txx */
5161 while (*p)
5162 {
5163 char *p1;
5164 char *p_temp;
5165 int fieldsize;
5166 LONGEST pnum = 0;
5167
5168 /* If the packet contains a register number, save it in
5169 pnum and set p1 to point to the character following it.
5170 Otherwise p1 points to p. */
5171
5172 /* If this packet is an awatch packet, don't parse the 'a'
5173 as a register number. */
5174
5175 if (strncmp (p, "awatch", strlen("awatch")) != 0
5176 && strncmp (p, "core", strlen ("core") != 0))
5177 {
5178 /* Read the ``P'' register number. */
5179 pnum = strtol (p, &p_temp, 16);
5180 p1 = p_temp;
5181 }
5182 else
5183 p1 = p;
5184
5185 if (p1 == p) /* No register number present here. */
5186 {
5187 p1 = strchr (p, ':');
5188 if (p1 == NULL)
5189 error (_("Malformed packet(a) (missing colon): %s\n\
5190 Packet: '%s'\n"),
5191 p, buf);
5192 if (strncmp (p, "thread", p1 - p) == 0)
5193 event->ptid = read_ptid (++p1, &p);
5194 else if ((strncmp (p, "watch", p1 - p) == 0)
5195 || (strncmp (p, "rwatch", p1 - p) == 0)
5196 || (strncmp (p, "awatch", p1 - p) == 0))
5197 {
5198 event->stopped_by_watchpoint_p = 1;
5199 p = unpack_varlen_hex (++p1, &addr);
5200 event->watch_data_address = (CORE_ADDR) addr;
5201 }
5202 else if (strncmp (p, "library", p1 - p) == 0)
5203 {
5204 p1++;
5205 p_temp = p1;
5206 while (*p_temp && *p_temp != ';')
5207 p_temp++;
5208
5209 event->solibs_changed = 1;
5210 p = p_temp;
5211 }
5212 else if (strncmp (p, "replaylog", p1 - p) == 0)
5213 {
5214 /* NO_HISTORY event.
5215 p1 will indicate "begin" or "end", but
5216 it makes no difference for now, so ignore it. */
5217 event->replay_event = 1;
5218 p_temp = strchr (p1 + 1, ';');
5219 if (p_temp)
5220 p = p_temp;
5221 }
5222 else if (strncmp (p, "core", p1 - p) == 0)
5223 {
5224 ULONGEST c;
5225
5226 p = unpack_varlen_hex (++p1, &c);
5227 event->core = c;
5228 }
5229 else
5230 {
5231 /* Silently skip unknown optional info. */
5232 p_temp = strchr (p1 + 1, ';');
5233 if (p_temp)
5234 p = p_temp;
5235 }
5236 }
5237 else
5238 {
5239 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5240 cached_reg_t cached_reg;
5241
5242 p = p1;
5243
5244 if (*p != ':')
5245 error (_("Malformed packet(b) (missing colon): %s\n\
5246 Packet: '%s'\n"),
5247 p, buf);
5248 ++p;
5249
5250 if (reg == NULL)
5251 error (_("Remote sent bad register number %s: %s\n\
5252 Packet: '%s'\n"),
5253 hex_string (pnum), p, buf);
5254
5255 cached_reg.num = reg->regnum;
5256
5257 fieldsize = hex2bin (p, cached_reg.data,
5258 register_size (target_gdbarch,
5259 reg->regnum));
5260 p += 2 * fieldsize;
5261 if (fieldsize < register_size (target_gdbarch,
5262 reg->regnum))
5263 warning (_("Remote reply is too short: %s"), buf);
5264
5265 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5266 }
5267
5268 if (*p != ';')
5269 error (_("Remote register badly formatted: %s\nhere: %s"),
5270 buf, p);
5271 ++p;
5272 }
5273 /* fall through */
5274 case 'S': /* Old style status, just signal only. */
5275 if (event->solibs_changed)
5276 event->ws.kind = TARGET_WAITKIND_LOADED;
5277 else if (event->replay_event)
5278 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5279 else
5280 {
5281 event->ws.kind = TARGET_WAITKIND_STOPPED;
5282 event->ws.value.sig = (enum target_signal)
5283 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5284 }
5285 break;
5286 case 'W': /* Target exited. */
5287 case 'X':
5288 {
5289 char *p;
5290 int pid;
5291 ULONGEST value;
5292
5293 /* GDB used to accept only 2 hex chars here. Stubs should
5294 only send more if they detect GDB supports multi-process
5295 support. */
5296 p = unpack_varlen_hex (&buf[1], &value);
5297
5298 if (buf[0] == 'W')
5299 {
5300 /* The remote process exited. */
5301 event->ws.kind = TARGET_WAITKIND_EXITED;
5302 event->ws.value.integer = value;
5303 }
5304 else
5305 {
5306 /* The remote process exited with a signal. */
5307 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5308 event->ws.value.sig = (enum target_signal) value;
5309 }
5310
5311 /* If no process is specified, assume inferior_ptid. */
5312 pid = ptid_get_pid (inferior_ptid);
5313 if (*p == '\0')
5314 ;
5315 else if (*p == ';')
5316 {
5317 p++;
5318
5319 if (p == '\0')
5320 ;
5321 else if (strncmp (p,
5322 "process:", sizeof ("process:") - 1) == 0)
5323 {
5324 ULONGEST upid;
5325
5326 p += sizeof ("process:") - 1;
5327 unpack_varlen_hex (p, &upid);
5328 pid = upid;
5329 }
5330 else
5331 error (_("unknown stop reply packet: %s"), buf);
5332 }
5333 else
5334 error (_("unknown stop reply packet: %s"), buf);
5335 event->ptid = pid_to_ptid (pid);
5336 }
5337 break;
5338 }
5339
5340 if (non_stop && ptid_equal (event->ptid, null_ptid))
5341 error (_("No process or thread specified in stop reply: %s"), buf);
5342 }
5343
5344 /* When the stub wants to tell GDB about a new stop reply, it sends a
5345 stop notification (%Stop). Those can come it at any time, hence,
5346 we have to make sure that any pending putpkt/getpkt sequence we're
5347 making is finished, before querying the stub for more events with
5348 vStopped. E.g., if we started a vStopped sequence immediatelly
5349 upon receiving the %Stop notification, something like this could
5350 happen:
5351
5352 1.1) --> Hg 1
5353 1.2) <-- OK
5354 1.3) --> g
5355 1.4) <-- %Stop
5356 1.5) --> vStopped
5357 1.6) <-- (registers reply to step #1.3)
5358
5359 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5360 query.
5361
5362 To solve this, whenever we parse a %Stop notification sucessfully,
5363 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5364 doing whatever we were doing:
5365
5366 2.1) --> Hg 1
5367 2.2) <-- OK
5368 2.3) --> g
5369 2.4) <-- %Stop
5370 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5371 2.5) <-- (registers reply to step #2.3)
5372
5373 Eventualy after step #2.5, we return to the event loop, which
5374 notices there's an event on the
5375 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5376 associated callback --- the function below. At this point, we're
5377 always safe to start a vStopped sequence. :
5378
5379 2.6) --> vStopped
5380 2.7) <-- T05 thread:2
5381 2.8) --> vStopped
5382 2.9) --> OK
5383 */
5384
5385 static void
5386 remote_get_pending_stop_replies (void)
5387 {
5388 struct remote_state *rs = get_remote_state ();
5389
5390 if (pending_stop_reply)
5391 {
5392 /* acknowledge */
5393 putpkt ("vStopped");
5394
5395 /* Now we can rely on it. */
5396 push_stop_reply (pending_stop_reply);
5397 pending_stop_reply = NULL;
5398
5399 while (1)
5400 {
5401 getpkt (&rs->buf, &rs->buf_size, 0);
5402 if (strcmp (rs->buf, "OK") == 0)
5403 break;
5404 else
5405 {
5406 struct cleanup *old_chain;
5407 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5408
5409 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5410 remote_parse_stop_reply (rs->buf, stop_reply);
5411
5412 /* acknowledge */
5413 putpkt ("vStopped");
5414
5415 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5416 {
5417 /* Now we can rely on it. */
5418 discard_cleanups (old_chain);
5419 push_stop_reply (stop_reply);
5420 }
5421 else
5422 /* We got an unknown stop reply. */
5423 do_cleanups (old_chain);
5424 }
5425 }
5426 }
5427 }
5428
5429
5430 /* Called when it is decided that STOP_REPLY holds the info of the
5431 event that is to be returned to the core. This function always
5432 destroys STOP_REPLY. */
5433
5434 static ptid_t
5435 process_stop_reply (struct stop_reply *stop_reply,
5436 struct target_waitstatus *status)
5437 {
5438 ptid_t ptid;
5439
5440 *status = stop_reply->ws;
5441 ptid = stop_reply->ptid;
5442
5443 /* If no thread/process was reported by the stub, assume the current
5444 inferior. */
5445 if (ptid_equal (ptid, null_ptid))
5446 ptid = inferior_ptid;
5447
5448 if (status->kind != TARGET_WAITKIND_EXITED
5449 && status->kind != TARGET_WAITKIND_SIGNALLED)
5450 {
5451 /* Expedited registers. */
5452 if (stop_reply->regcache)
5453 {
5454 struct regcache *regcache
5455 = get_thread_arch_regcache (ptid, target_gdbarch);
5456 cached_reg_t *reg;
5457 int ix;
5458
5459 for (ix = 0;
5460 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5461 ix++)
5462 regcache_raw_supply (regcache, reg->num, reg->data);
5463 VEC_free (cached_reg_t, stop_reply->regcache);
5464 }
5465
5466 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5467 remote_watch_data_address = stop_reply->watch_data_address;
5468
5469 remote_notice_new_inferior (ptid, 0);
5470 demand_private_info (ptid)->core = stop_reply->core;
5471 }
5472
5473 stop_reply_xfree (stop_reply);
5474 return ptid;
5475 }
5476
5477 /* The non-stop mode version of target_wait. */
5478
5479 static ptid_t
5480 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5481 {
5482 struct remote_state *rs = get_remote_state ();
5483 struct stop_reply *stop_reply;
5484 int ret;
5485
5486 /* If in non-stop mode, get out of getpkt even if a
5487 notification is received. */
5488
5489 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5490 0 /* forever */);
5491 while (1)
5492 {
5493 if (ret != -1)
5494 switch (rs->buf[0])
5495 {
5496 case 'E': /* Error of some sort. */
5497 /* We're out of sync with the target now. Did it continue
5498 or not? We can't tell which thread it was in non-stop,
5499 so just ignore this. */
5500 warning (_("Remote failure reply: %s"), rs->buf);
5501 break;
5502 case 'O': /* Console output. */
5503 remote_console_output (rs->buf + 1);
5504 break;
5505 default:
5506 warning (_("Invalid remote reply: %s"), rs->buf);
5507 break;
5508 }
5509
5510 /* Acknowledge a pending stop reply that may have arrived in the
5511 mean time. */
5512 if (pending_stop_reply != NULL)
5513 remote_get_pending_stop_replies ();
5514
5515 /* If indeed we noticed a stop reply, we're done. */
5516 stop_reply = queued_stop_reply (ptid);
5517 if (stop_reply != NULL)
5518 return process_stop_reply (stop_reply, status);
5519
5520 /* Still no event. If we're just polling for an event, then
5521 return to the event loop. */
5522 if (options & TARGET_WNOHANG)
5523 {
5524 status->kind = TARGET_WAITKIND_IGNORE;
5525 return minus_one_ptid;
5526 }
5527
5528 /* Otherwise do a blocking wait. */
5529 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5530 1 /* forever */);
5531 }
5532 }
5533
5534 /* Wait until the remote machine stops, then return, storing status in
5535 STATUS just as `wait' would. */
5536
5537 static ptid_t
5538 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5539 {
5540 struct remote_state *rs = get_remote_state ();
5541 ptid_t event_ptid = null_ptid;
5542 char *buf;
5543 struct stop_reply *stop_reply;
5544
5545 again:
5546
5547 status->kind = TARGET_WAITKIND_IGNORE;
5548 status->value.integer = 0;
5549
5550 stop_reply = queued_stop_reply (ptid);
5551 if (stop_reply != NULL)
5552 return process_stop_reply (stop_reply, status);
5553
5554 if (rs->cached_wait_status)
5555 /* Use the cached wait status, but only once. */
5556 rs->cached_wait_status = 0;
5557 else
5558 {
5559 int ret;
5560
5561 if (!target_is_async_p ())
5562 {
5563 ofunc = signal (SIGINT, remote_interrupt);
5564 /* If the user hit C-c before this packet, or between packets,
5565 pretend that it was hit right here. */
5566 if (quit_flag)
5567 {
5568 quit_flag = 0;
5569 remote_interrupt (SIGINT);
5570 }
5571 }
5572
5573 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5574 _never_ wait for ever -> test on target_is_async_p().
5575 However, before we do that we need to ensure that the caller
5576 knows how to take the target into/out of async mode. */
5577 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5578 if (!target_is_async_p ())
5579 signal (SIGINT, ofunc);
5580 }
5581
5582 buf = rs->buf;
5583
5584 remote_stopped_by_watchpoint_p = 0;
5585
5586 /* We got something. */
5587 rs->waiting_for_stop_reply = 0;
5588
5589 /* Assume that the target has acknowledged Ctrl-C unless we receive
5590 an 'F' or 'O' packet. */
5591 if (buf[0] != 'F' && buf[0] != 'O')
5592 rs->ctrlc_pending_p = 0;
5593
5594 switch (buf[0])
5595 {
5596 case 'E': /* Error of some sort. */
5597 /* We're out of sync with the target now. Did it continue or
5598 not? Not is more likely, so report a stop. */
5599 warning (_("Remote failure reply: %s"), buf);
5600 status->kind = TARGET_WAITKIND_STOPPED;
5601 status->value.sig = TARGET_SIGNAL_0;
5602 break;
5603 case 'F': /* File-I/O request. */
5604 remote_fileio_request (buf, rs->ctrlc_pending_p);
5605 rs->ctrlc_pending_p = 0;
5606 break;
5607 case 'T': case 'S': case 'X': case 'W':
5608 {
5609 struct stop_reply *stop_reply;
5610 struct cleanup *old_chain;
5611
5612 stop_reply = stop_reply_xmalloc ();
5613 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5614 remote_parse_stop_reply (buf, stop_reply);
5615 discard_cleanups (old_chain);
5616 event_ptid = process_stop_reply (stop_reply, status);
5617 break;
5618 }
5619 case 'O': /* Console output. */
5620 remote_console_output (buf + 1);
5621
5622 /* The target didn't really stop; keep waiting. */
5623 rs->waiting_for_stop_reply = 1;
5624
5625 break;
5626 case '\0':
5627 if (last_sent_signal != TARGET_SIGNAL_0)
5628 {
5629 /* Zero length reply means that we tried 'S' or 'C' and the
5630 remote system doesn't support it. */
5631 target_terminal_ours_for_output ();
5632 printf_filtered
5633 ("Can't send signals to this remote system. %s not sent.\n",
5634 target_signal_to_name (last_sent_signal));
5635 last_sent_signal = TARGET_SIGNAL_0;
5636 target_terminal_inferior ();
5637
5638 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5639 putpkt ((char *) buf);
5640
5641 /* We just told the target to resume, so a stop reply is in
5642 order. */
5643 rs->waiting_for_stop_reply = 1;
5644 break;
5645 }
5646 /* else fallthrough */
5647 default:
5648 warning (_("Invalid remote reply: %s"), buf);
5649 /* Keep waiting. */
5650 rs->waiting_for_stop_reply = 1;
5651 break;
5652 }
5653
5654 if (status->kind == TARGET_WAITKIND_IGNORE)
5655 {
5656 /* Nothing interesting happened. If we're doing a non-blocking
5657 poll, we're done. Otherwise, go back to waiting. */
5658 if (options & TARGET_WNOHANG)
5659 return minus_one_ptid;
5660 else
5661 goto again;
5662 }
5663 else if (status->kind != TARGET_WAITKIND_EXITED
5664 && status->kind != TARGET_WAITKIND_SIGNALLED)
5665 {
5666 if (!ptid_equal (event_ptid, null_ptid))
5667 record_currthread (event_ptid);
5668 else
5669 event_ptid = inferior_ptid;
5670 }
5671 else
5672 /* A process exit. Invalidate our notion of current thread. */
5673 record_currthread (minus_one_ptid);
5674
5675 return event_ptid;
5676 }
5677
5678 /* Wait until the remote machine stops, then return, storing status in
5679 STATUS just as `wait' would. */
5680
5681 static ptid_t
5682 remote_wait (struct target_ops *ops,
5683 ptid_t ptid, struct target_waitstatus *status, int options)
5684 {
5685 ptid_t event_ptid;
5686
5687 if (non_stop)
5688 event_ptid = remote_wait_ns (ptid, status, options);
5689 else
5690 event_ptid = remote_wait_as (ptid, status, options);
5691
5692 if (target_can_async_p ())
5693 {
5694 /* If there are are events left in the queue tell the event loop
5695 to return here. */
5696 if (stop_reply_queue)
5697 mark_async_event_handler (remote_async_inferior_event_token);
5698 }
5699
5700 return event_ptid;
5701 }
5702
5703 /* Fetch a single register using a 'p' packet. */
5704
5705 static int
5706 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5707 {
5708 struct remote_state *rs = get_remote_state ();
5709 char *buf, *p;
5710 char regp[MAX_REGISTER_SIZE];
5711 int i;
5712
5713 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5714 return 0;
5715
5716 if (reg->pnum == -1)
5717 return 0;
5718
5719 p = rs->buf;
5720 *p++ = 'p';
5721 p += hexnumstr (p, reg->pnum);
5722 *p++ = '\0';
5723 putpkt (rs->buf);
5724 getpkt (&rs->buf, &rs->buf_size, 0);
5725
5726 buf = rs->buf;
5727
5728 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5729 {
5730 case PACKET_OK:
5731 break;
5732 case PACKET_UNKNOWN:
5733 return 0;
5734 case PACKET_ERROR:
5735 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5736 gdbarch_register_name (get_regcache_arch (regcache),
5737 reg->regnum),
5738 buf);
5739 }
5740
5741 /* If this register is unfetchable, tell the regcache. */
5742 if (buf[0] == 'x')
5743 {
5744 regcache_raw_supply (regcache, reg->regnum, NULL);
5745 return 1;
5746 }
5747
5748 /* Otherwise, parse and supply the value. */
5749 p = buf;
5750 i = 0;
5751 while (p[0] != 0)
5752 {
5753 if (p[1] == 0)
5754 error (_("fetch_register_using_p: early buf termination"));
5755
5756 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5757 p += 2;
5758 }
5759 regcache_raw_supply (regcache, reg->regnum, regp);
5760 return 1;
5761 }
5762
5763 /* Fetch the registers included in the target's 'g' packet. */
5764
5765 static int
5766 send_g_packet (void)
5767 {
5768 struct remote_state *rs = get_remote_state ();
5769 int buf_len;
5770
5771 sprintf (rs->buf, "g");
5772 remote_send (&rs->buf, &rs->buf_size);
5773
5774 /* We can get out of synch in various cases. If the first character
5775 in the buffer is not a hex character, assume that has happened
5776 and try to fetch another packet to read. */
5777 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5778 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5779 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5780 && rs->buf[0] != 'x') /* New: unavailable register value. */
5781 {
5782 if (remote_debug)
5783 fprintf_unfiltered (gdb_stdlog,
5784 "Bad register packet; fetching a new packet\n");
5785 getpkt (&rs->buf, &rs->buf_size, 0);
5786 }
5787
5788 buf_len = strlen (rs->buf);
5789
5790 /* Sanity check the received packet. */
5791 if (buf_len % 2 != 0)
5792 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5793
5794 return buf_len / 2;
5795 }
5796
5797 static void
5798 process_g_packet (struct regcache *regcache)
5799 {
5800 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5801 struct remote_state *rs = get_remote_state ();
5802 struct remote_arch_state *rsa = get_remote_arch_state ();
5803 int i, buf_len;
5804 char *p;
5805 char *regs;
5806
5807 buf_len = strlen (rs->buf);
5808
5809 /* Further sanity checks, with knowledge of the architecture. */
5810 if (buf_len > 2 * rsa->sizeof_g_packet)
5811 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5812
5813 /* Save the size of the packet sent to us by the target. It is used
5814 as a heuristic when determining the max size of packets that the
5815 target can safely receive. */
5816 if (rsa->actual_register_packet_size == 0)
5817 rsa->actual_register_packet_size = buf_len;
5818
5819 /* If this is smaller than we guessed the 'g' packet would be,
5820 update our records. A 'g' reply that doesn't include a register's
5821 value implies either that the register is not available, or that
5822 the 'p' packet must be used. */
5823 if (buf_len < 2 * rsa->sizeof_g_packet)
5824 {
5825 rsa->sizeof_g_packet = buf_len / 2;
5826
5827 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5828 {
5829 if (rsa->regs[i].pnum == -1)
5830 continue;
5831
5832 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5833 rsa->regs[i].in_g_packet = 0;
5834 else
5835 rsa->regs[i].in_g_packet = 1;
5836 }
5837 }
5838
5839 regs = alloca (rsa->sizeof_g_packet);
5840
5841 /* Unimplemented registers read as all bits zero. */
5842 memset (regs, 0, rsa->sizeof_g_packet);
5843
5844 /* Reply describes registers byte by byte, each byte encoded as two
5845 hex characters. Suck them all up, then supply them to the
5846 register cacheing/storage mechanism. */
5847
5848 p = rs->buf;
5849 for (i = 0; i < rsa->sizeof_g_packet; i++)
5850 {
5851 if (p[0] == 0 || p[1] == 0)
5852 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5853 internal_error (__FILE__, __LINE__,
5854 _("unexpected end of 'g' packet reply"));
5855
5856 if (p[0] == 'x' && p[1] == 'x')
5857 regs[i] = 0; /* 'x' */
5858 else
5859 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5860 p += 2;
5861 }
5862
5863 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5864 {
5865 struct packet_reg *r = &rsa->regs[i];
5866
5867 if (r->in_g_packet)
5868 {
5869 if (r->offset * 2 >= strlen (rs->buf))
5870 /* This shouldn't happen - we adjusted in_g_packet above. */
5871 internal_error (__FILE__, __LINE__,
5872 _("unexpected end of 'g' packet reply"));
5873 else if (rs->buf[r->offset * 2] == 'x')
5874 {
5875 gdb_assert (r->offset * 2 < strlen (rs->buf));
5876 /* The register isn't available, mark it as such (at
5877 the same time setting the value to zero). */
5878 regcache_raw_supply (regcache, r->regnum, NULL);
5879 }
5880 else
5881 regcache_raw_supply (regcache, r->regnum,
5882 regs + r->offset);
5883 }
5884 }
5885 }
5886
5887 static void
5888 fetch_registers_using_g (struct regcache *regcache)
5889 {
5890 send_g_packet ();
5891 process_g_packet (regcache);
5892 }
5893
5894 /* Make the remote selected traceframe match GDB's selected
5895 traceframe. */
5896
5897 static void
5898 set_remote_traceframe (void)
5899 {
5900 int newnum;
5901
5902 if (remote_traceframe_number == get_traceframe_number ())
5903 return;
5904
5905 /* Avoid recursion, remote_trace_find calls us again. */
5906 remote_traceframe_number = get_traceframe_number ();
5907
5908 newnum = target_trace_find (tfind_number,
5909 get_traceframe_number (), 0, 0, NULL);
5910
5911 /* Should not happen. If it does, all bets are off. */
5912 if (newnum != get_traceframe_number ())
5913 warning (_("could not set remote traceframe"));
5914 }
5915
5916 static void
5917 remote_fetch_registers (struct target_ops *ops,
5918 struct regcache *regcache, int regnum)
5919 {
5920 struct remote_arch_state *rsa = get_remote_arch_state ();
5921 int i;
5922
5923 set_remote_traceframe ();
5924 set_general_thread (inferior_ptid);
5925
5926 if (regnum >= 0)
5927 {
5928 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5929
5930 gdb_assert (reg != NULL);
5931
5932 /* If this register might be in the 'g' packet, try that first -
5933 we are likely to read more than one register. If this is the
5934 first 'g' packet, we might be overly optimistic about its
5935 contents, so fall back to 'p'. */
5936 if (reg->in_g_packet)
5937 {
5938 fetch_registers_using_g (regcache);
5939 if (reg->in_g_packet)
5940 return;
5941 }
5942
5943 if (fetch_register_using_p (regcache, reg))
5944 return;
5945
5946 /* This register is not available. */
5947 regcache_raw_supply (regcache, reg->regnum, NULL);
5948
5949 return;
5950 }
5951
5952 fetch_registers_using_g (regcache);
5953
5954 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5955 if (!rsa->regs[i].in_g_packet)
5956 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5957 {
5958 /* This register is not available. */
5959 regcache_raw_supply (regcache, i, NULL);
5960 }
5961 }
5962
5963 /* Prepare to store registers. Since we may send them all (using a
5964 'G' request), we have to read out the ones we don't want to change
5965 first. */
5966
5967 static void
5968 remote_prepare_to_store (struct regcache *regcache)
5969 {
5970 struct remote_arch_state *rsa = get_remote_arch_state ();
5971 int i;
5972 gdb_byte buf[MAX_REGISTER_SIZE];
5973
5974 /* Make sure the entire registers array is valid. */
5975 switch (remote_protocol_packets[PACKET_P].support)
5976 {
5977 case PACKET_DISABLE:
5978 case PACKET_SUPPORT_UNKNOWN:
5979 /* Make sure all the necessary registers are cached. */
5980 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5981 if (rsa->regs[i].in_g_packet)
5982 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5983 break;
5984 case PACKET_ENABLE:
5985 break;
5986 }
5987 }
5988
5989 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5990 packet was not recognized. */
5991
5992 static int
5993 store_register_using_P (const struct regcache *regcache,
5994 struct packet_reg *reg)
5995 {
5996 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5997 struct remote_state *rs = get_remote_state ();
5998 /* Try storing a single register. */
5999 char *buf = rs->buf;
6000 gdb_byte regp[MAX_REGISTER_SIZE];
6001 char *p;
6002
6003 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6004 return 0;
6005
6006 if (reg->pnum == -1)
6007 return 0;
6008
6009 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6010 p = buf + strlen (buf);
6011 regcache_raw_collect (regcache, reg->regnum, regp);
6012 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6013 putpkt (rs->buf);
6014 getpkt (&rs->buf, &rs->buf_size, 0);
6015
6016 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6017 {
6018 case PACKET_OK:
6019 return 1;
6020 case PACKET_ERROR:
6021 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6022 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6023 case PACKET_UNKNOWN:
6024 return 0;
6025 default:
6026 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6027 }
6028 }
6029
6030 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6031 contents of the register cache buffer. FIXME: ignores errors. */
6032
6033 static void
6034 store_registers_using_G (const struct regcache *regcache)
6035 {
6036 struct remote_state *rs = get_remote_state ();
6037 struct remote_arch_state *rsa = get_remote_arch_state ();
6038 gdb_byte *regs;
6039 char *p;
6040
6041 /* Extract all the registers in the regcache copying them into a
6042 local buffer. */
6043 {
6044 int i;
6045
6046 regs = alloca (rsa->sizeof_g_packet);
6047 memset (regs, 0, rsa->sizeof_g_packet);
6048 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6049 {
6050 struct packet_reg *r = &rsa->regs[i];
6051
6052 if (r->in_g_packet)
6053 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6054 }
6055 }
6056
6057 /* Command describes registers byte by byte,
6058 each byte encoded as two hex characters. */
6059 p = rs->buf;
6060 *p++ = 'G';
6061 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6062 updated. */
6063 bin2hex (regs, p, rsa->sizeof_g_packet);
6064 putpkt (rs->buf);
6065 getpkt (&rs->buf, &rs->buf_size, 0);
6066 if (packet_check_result (rs->buf) == PACKET_ERROR)
6067 error (_("Could not write registers; remote failure reply '%s'"),
6068 rs->buf);
6069 }
6070
6071 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6072 of the register cache buffer. FIXME: ignores errors. */
6073
6074 static void
6075 remote_store_registers (struct target_ops *ops,
6076 struct regcache *regcache, int regnum)
6077 {
6078 struct remote_arch_state *rsa = get_remote_arch_state ();
6079 int i;
6080
6081 set_remote_traceframe ();
6082 set_general_thread (inferior_ptid);
6083
6084 if (regnum >= 0)
6085 {
6086 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6087
6088 gdb_assert (reg != NULL);
6089
6090 /* Always prefer to store registers using the 'P' packet if
6091 possible; we often change only a small number of registers.
6092 Sometimes we change a larger number; we'd need help from a
6093 higher layer to know to use 'G'. */
6094 if (store_register_using_P (regcache, reg))
6095 return;
6096
6097 /* For now, don't complain if we have no way to write the
6098 register. GDB loses track of unavailable registers too
6099 easily. Some day, this may be an error. We don't have
6100 any way to read the register, either... */
6101 if (!reg->in_g_packet)
6102 return;
6103
6104 store_registers_using_G (regcache);
6105 return;
6106 }
6107
6108 store_registers_using_G (regcache);
6109
6110 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6111 if (!rsa->regs[i].in_g_packet)
6112 if (!store_register_using_P (regcache, &rsa->regs[i]))
6113 /* See above for why we do not issue an error here. */
6114 continue;
6115 }
6116 \f
6117
6118 /* Return the number of hex digits in num. */
6119
6120 static int
6121 hexnumlen (ULONGEST num)
6122 {
6123 int i;
6124
6125 for (i = 0; num != 0; i++)
6126 num >>= 4;
6127
6128 return max (i, 1);
6129 }
6130
6131 /* Set BUF to the minimum number of hex digits representing NUM. */
6132
6133 static int
6134 hexnumstr (char *buf, ULONGEST num)
6135 {
6136 int len = hexnumlen (num);
6137
6138 return hexnumnstr (buf, num, len);
6139 }
6140
6141
6142 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6143
6144 static int
6145 hexnumnstr (char *buf, ULONGEST num, int width)
6146 {
6147 int i;
6148
6149 buf[width] = '\0';
6150
6151 for (i = width - 1; i >= 0; i--)
6152 {
6153 buf[i] = "0123456789abcdef"[(num & 0xf)];
6154 num >>= 4;
6155 }
6156
6157 return width;
6158 }
6159
6160 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6161
6162 static CORE_ADDR
6163 remote_address_masked (CORE_ADDR addr)
6164 {
6165 int address_size = remote_address_size;
6166
6167 /* If "remoteaddresssize" was not set, default to target address size. */
6168 if (!address_size)
6169 address_size = gdbarch_addr_bit (target_gdbarch);
6170
6171 if (address_size > 0
6172 && address_size < (sizeof (ULONGEST) * 8))
6173 {
6174 /* Only create a mask when that mask can safely be constructed
6175 in a ULONGEST variable. */
6176 ULONGEST mask = 1;
6177
6178 mask = (mask << address_size) - 1;
6179 addr &= mask;
6180 }
6181 return addr;
6182 }
6183
6184 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6185 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6186 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6187 (which may be more than *OUT_LEN due to escape characters). The
6188 total number of bytes in the output buffer will be at most
6189 OUT_MAXLEN. */
6190
6191 static int
6192 remote_escape_output (const gdb_byte *buffer, int len,
6193 gdb_byte *out_buf, int *out_len,
6194 int out_maxlen)
6195 {
6196 int input_index, output_index;
6197
6198 output_index = 0;
6199 for (input_index = 0; input_index < len; input_index++)
6200 {
6201 gdb_byte b = buffer[input_index];
6202
6203 if (b == '$' || b == '#' || b == '}')
6204 {
6205 /* These must be escaped. */
6206 if (output_index + 2 > out_maxlen)
6207 break;
6208 out_buf[output_index++] = '}';
6209 out_buf[output_index++] = b ^ 0x20;
6210 }
6211 else
6212 {
6213 if (output_index + 1 > out_maxlen)
6214 break;
6215 out_buf[output_index++] = b;
6216 }
6217 }
6218
6219 *out_len = input_index;
6220 return output_index;
6221 }
6222
6223 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6224 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6225 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6226
6227 This function reverses remote_escape_output. It allows more
6228 escaped characters than that function does, in particular because
6229 '*' must be escaped to avoid the run-length encoding processing
6230 in reading packets. */
6231
6232 static int
6233 remote_unescape_input (const gdb_byte *buffer, int len,
6234 gdb_byte *out_buf, int out_maxlen)
6235 {
6236 int input_index, output_index;
6237 int escaped;
6238
6239 output_index = 0;
6240 escaped = 0;
6241 for (input_index = 0; input_index < len; input_index++)
6242 {
6243 gdb_byte b = buffer[input_index];
6244
6245 if (output_index + 1 > out_maxlen)
6246 {
6247 warning (_("Received too much data from remote target;"
6248 " ignoring overflow."));
6249 return output_index;
6250 }
6251
6252 if (escaped)
6253 {
6254 out_buf[output_index++] = b ^ 0x20;
6255 escaped = 0;
6256 }
6257 else if (b == '}')
6258 escaped = 1;
6259 else
6260 out_buf[output_index++] = b;
6261 }
6262
6263 if (escaped)
6264 error (_("Unmatched escape character in target response."));
6265
6266 return output_index;
6267 }
6268
6269 /* Determine whether the remote target supports binary downloading.
6270 This is accomplished by sending a no-op memory write of zero length
6271 to the target at the specified address. It does not suffice to send
6272 the whole packet, since many stubs strip the eighth bit and
6273 subsequently compute a wrong checksum, which causes real havoc with
6274 remote_write_bytes.
6275
6276 NOTE: This can still lose if the serial line is not eight-bit
6277 clean. In cases like this, the user should clear "remote
6278 X-packet". */
6279
6280 static void
6281 check_binary_download (CORE_ADDR addr)
6282 {
6283 struct remote_state *rs = get_remote_state ();
6284
6285 switch (remote_protocol_packets[PACKET_X].support)
6286 {
6287 case PACKET_DISABLE:
6288 break;
6289 case PACKET_ENABLE:
6290 break;
6291 case PACKET_SUPPORT_UNKNOWN:
6292 {
6293 char *p;
6294
6295 p = rs->buf;
6296 *p++ = 'X';
6297 p += hexnumstr (p, (ULONGEST) addr);
6298 *p++ = ',';
6299 p += hexnumstr (p, (ULONGEST) 0);
6300 *p++ = ':';
6301 *p = '\0';
6302
6303 putpkt_binary (rs->buf, (int) (p - rs->buf));
6304 getpkt (&rs->buf, &rs->buf_size, 0);
6305
6306 if (rs->buf[0] == '\0')
6307 {
6308 if (remote_debug)
6309 fprintf_unfiltered (gdb_stdlog,
6310 "binary downloading NOT "
6311 "supported by target\n");
6312 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6313 }
6314 else
6315 {
6316 if (remote_debug)
6317 fprintf_unfiltered (gdb_stdlog,
6318 "binary downloading supported by target\n");
6319 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6320 }
6321 break;
6322 }
6323 }
6324 }
6325
6326 /* Write memory data directly to the remote machine.
6327 This does not inform the data cache; the data cache uses this.
6328 HEADER is the starting part of the packet.
6329 MEMADDR is the address in the remote memory space.
6330 MYADDR is the address of the buffer in our space.
6331 LEN is the number of bytes.
6332 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6333 should send data as binary ('X'), or hex-encoded ('M').
6334
6335 The function creates packet of the form
6336 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6337
6338 where encoding of <DATA> is termined by PACKET_FORMAT.
6339
6340 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6341 are omitted.
6342
6343 Returns the number of bytes transferred, or 0 (setting errno) for
6344 error. Only transfer a single packet. */
6345
6346 static int
6347 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6348 const gdb_byte *myaddr, int len,
6349 char packet_format, int use_length)
6350 {
6351 struct remote_state *rs = get_remote_state ();
6352 char *p;
6353 char *plen = NULL;
6354 int plenlen = 0;
6355 int todo;
6356 int nr_bytes;
6357 int payload_size;
6358 int payload_length;
6359 int header_length;
6360
6361 if (packet_format != 'X' && packet_format != 'M')
6362 internal_error (__FILE__, __LINE__,
6363 _("remote_write_bytes_aux: bad packet format"));
6364
6365 if (len <= 0)
6366 return 0;
6367
6368 payload_size = get_memory_write_packet_size ();
6369
6370 /* The packet buffer will be large enough for the payload;
6371 get_memory_packet_size ensures this. */
6372 rs->buf[0] = '\0';
6373
6374 /* Compute the size of the actual payload by subtracting out the
6375 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6376
6377 payload_size -= strlen ("$,:#NN");
6378 if (!use_length)
6379 /* The comma won't be used. */
6380 payload_size += 1;
6381 header_length = strlen (header);
6382 payload_size -= header_length;
6383 payload_size -= hexnumlen (memaddr);
6384
6385 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6386
6387 strcat (rs->buf, header);
6388 p = rs->buf + strlen (header);
6389
6390 /* Compute a best guess of the number of bytes actually transfered. */
6391 if (packet_format == 'X')
6392 {
6393 /* Best guess at number of bytes that will fit. */
6394 todo = min (len, payload_size);
6395 if (use_length)
6396 payload_size -= hexnumlen (todo);
6397 todo = min (todo, payload_size);
6398 }
6399 else
6400 {
6401 /* Num bytes that will fit. */
6402 todo = min (len, payload_size / 2);
6403 if (use_length)
6404 payload_size -= hexnumlen (todo);
6405 todo = min (todo, payload_size / 2);
6406 }
6407
6408 if (todo <= 0)
6409 internal_error (__FILE__, __LINE__,
6410 _("minimum packet size too small to write data"));
6411
6412 /* If we already need another packet, then try to align the end
6413 of this packet to a useful boundary. */
6414 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6415 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6416
6417 /* Append "<memaddr>". */
6418 memaddr = remote_address_masked (memaddr);
6419 p += hexnumstr (p, (ULONGEST) memaddr);
6420
6421 if (use_length)
6422 {
6423 /* Append ",". */
6424 *p++ = ',';
6425
6426 /* Append <len>. Retain the location/size of <len>. It may need to
6427 be adjusted once the packet body has been created. */
6428 plen = p;
6429 plenlen = hexnumstr (p, (ULONGEST) todo);
6430 p += plenlen;
6431 }
6432
6433 /* Append ":". */
6434 *p++ = ':';
6435 *p = '\0';
6436
6437 /* Append the packet body. */
6438 if (packet_format == 'X')
6439 {
6440 /* Binary mode. Send target system values byte by byte, in
6441 increasing byte addresses. Only escape certain critical
6442 characters. */
6443 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6444 payload_size);
6445
6446 /* If not all TODO bytes fit, then we'll need another packet. Make
6447 a second try to keep the end of the packet aligned. Don't do
6448 this if the packet is tiny. */
6449 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6450 {
6451 int new_nr_bytes;
6452
6453 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6454 - memaddr);
6455 if (new_nr_bytes != nr_bytes)
6456 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6457 p, &nr_bytes,
6458 payload_size);
6459 }
6460
6461 p += payload_length;
6462 if (use_length && nr_bytes < todo)
6463 {
6464 /* Escape chars have filled up the buffer prematurely,
6465 and we have actually sent fewer bytes than planned.
6466 Fix-up the length field of the packet. Use the same
6467 number of characters as before. */
6468 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6469 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6470 }
6471 }
6472 else
6473 {
6474 /* Normal mode: Send target system values byte by byte, in
6475 increasing byte addresses. Each byte is encoded as a two hex
6476 value. */
6477 nr_bytes = bin2hex (myaddr, p, todo);
6478 p += 2 * nr_bytes;
6479 }
6480
6481 putpkt_binary (rs->buf, (int) (p - rs->buf));
6482 getpkt (&rs->buf, &rs->buf_size, 0);
6483
6484 if (rs->buf[0] == 'E')
6485 {
6486 /* There is no correspondance between what the remote protocol
6487 uses for errors and errno codes. We would like a cleaner way
6488 of representing errors (big enough to include errno codes,
6489 bfd_error codes, and others). But for now just return EIO. */
6490 errno = EIO;
6491 return 0;
6492 }
6493
6494 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6495 fewer bytes than we'd planned. */
6496 return nr_bytes;
6497 }
6498
6499 /* Write memory data directly to the remote machine.
6500 This does not inform the data cache; the data cache uses this.
6501 MEMADDR is the address in the remote memory space.
6502 MYADDR is the address of the buffer in our space.
6503 LEN is the number of bytes.
6504
6505 Returns number of bytes transferred, or 0 (setting errno) for
6506 error. Only transfer a single packet. */
6507
6508 static int
6509 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6510 {
6511 char *packet_format = 0;
6512
6513 /* Check whether the target supports binary download. */
6514 check_binary_download (memaddr);
6515
6516 switch (remote_protocol_packets[PACKET_X].support)
6517 {
6518 case PACKET_ENABLE:
6519 packet_format = "X";
6520 break;
6521 case PACKET_DISABLE:
6522 packet_format = "M";
6523 break;
6524 case PACKET_SUPPORT_UNKNOWN:
6525 internal_error (__FILE__, __LINE__,
6526 _("remote_write_bytes: bad internal state"));
6527 default:
6528 internal_error (__FILE__, __LINE__, _("bad switch"));
6529 }
6530
6531 return remote_write_bytes_aux (packet_format,
6532 memaddr, myaddr, len, packet_format[0], 1);
6533 }
6534
6535 /* Read memory data directly from the remote machine.
6536 This does not use the data cache; the data cache uses this.
6537 MEMADDR is the address in the remote memory space.
6538 MYADDR is the address of the buffer in our space.
6539 LEN is the number of bytes.
6540
6541 Returns number of bytes transferred, or 0 for error. */
6542
6543 static int
6544 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6545 {
6546 struct remote_state *rs = get_remote_state ();
6547 int max_buf_size; /* Max size of packet output buffer. */
6548 char *p;
6549 int todo;
6550 int i;
6551
6552 if (len <= 0)
6553 return 0;
6554
6555 max_buf_size = get_memory_read_packet_size ();
6556 /* The packet buffer will be large enough for the payload;
6557 get_memory_packet_size ensures this. */
6558
6559 /* Number if bytes that will fit. */
6560 todo = min (len, max_buf_size / 2);
6561
6562 /* Construct "m"<memaddr>","<len>". */
6563 memaddr = remote_address_masked (memaddr);
6564 p = rs->buf;
6565 *p++ = 'm';
6566 p += hexnumstr (p, (ULONGEST) memaddr);
6567 *p++ = ',';
6568 p += hexnumstr (p, (ULONGEST) todo);
6569 *p = '\0';
6570 putpkt (rs->buf);
6571 getpkt (&rs->buf, &rs->buf_size, 0);
6572 if (rs->buf[0] == 'E'
6573 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6574 && rs->buf[3] == '\0')
6575 {
6576 /* There is no correspondance between what the remote protocol
6577 uses for errors and errno codes. We would like a cleaner way
6578 of representing errors (big enough to include errno codes,
6579 bfd_error codes, and others). But for now just return
6580 EIO. */
6581 errno = EIO;
6582 return 0;
6583 }
6584 /* Reply describes memory byte by byte, each byte encoded as two hex
6585 characters. */
6586 p = rs->buf;
6587 i = hex2bin (p, myaddr, todo);
6588 /* Return what we have. Let higher layers handle partial reads. */
6589 return i;
6590 }
6591 \f
6592
6593 /* Remote notification handler. */
6594
6595 static void
6596 handle_notification (char *buf, size_t length)
6597 {
6598 if (strncmp (buf, "Stop:", 5) == 0)
6599 {
6600 if (pending_stop_reply)
6601 {
6602 /* We've already parsed the in-flight stop-reply, but the
6603 stub for some reason thought we didn't, possibly due to
6604 timeout on its side. Just ignore it. */
6605 if (remote_debug)
6606 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6607 }
6608 else
6609 {
6610 struct cleanup *old_chain;
6611 struct stop_reply *reply = stop_reply_xmalloc ();
6612
6613 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6614
6615 remote_parse_stop_reply (buf + 5, reply);
6616
6617 discard_cleanups (old_chain);
6618
6619 /* Be careful to only set it after parsing, since an error
6620 may be thrown then. */
6621 pending_stop_reply = reply;
6622
6623 /* Notify the event loop there's a stop reply to acknowledge
6624 and that there may be more events to fetch. */
6625 mark_async_event_handler (remote_async_get_pending_events_token);
6626
6627 if (remote_debug)
6628 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6629 }
6630 }
6631 else
6632 /* We ignore notifications we don't recognize, for compatibility
6633 with newer stubs. */
6634 ;
6635 }
6636
6637 \f
6638 /* Read or write LEN bytes from inferior memory at MEMADDR,
6639 transferring to or from debugger address BUFFER. Write to inferior
6640 if SHOULD_WRITE is nonzero. Returns length of data written or
6641 read; 0 for error. TARGET is unused. */
6642
6643 static int
6644 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6645 int should_write, struct mem_attrib *attrib,
6646 struct target_ops *target)
6647 {
6648 int res;
6649
6650 set_remote_traceframe ();
6651 set_general_thread (inferior_ptid);
6652
6653 if (should_write)
6654 res = remote_write_bytes (mem_addr, buffer, mem_len);
6655 else
6656 res = remote_read_bytes (mem_addr, buffer, mem_len);
6657
6658 return res;
6659 }
6660
6661 /* Sends a packet with content determined by the printf format string
6662 FORMAT and the remaining arguments, then gets the reply. Returns
6663 whether the packet was a success, a failure, or unknown. */
6664
6665 static enum packet_result
6666 remote_send_printf (const char *format, ...)
6667 {
6668 struct remote_state *rs = get_remote_state ();
6669 int max_size = get_remote_packet_size ();
6670 va_list ap;
6671
6672 va_start (ap, format);
6673
6674 rs->buf[0] = '\0';
6675 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6676 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6677
6678 if (putpkt (rs->buf) < 0)
6679 error (_("Communication problem with target."));
6680
6681 rs->buf[0] = '\0';
6682 getpkt (&rs->buf, &rs->buf_size, 0);
6683
6684 return packet_check_result (rs->buf);
6685 }
6686
6687 static void
6688 restore_remote_timeout (void *p)
6689 {
6690 int value = *(int *)p;
6691
6692 remote_timeout = value;
6693 }
6694
6695 /* Flash writing can take quite some time. We'll set
6696 effectively infinite timeout for flash operations.
6697 In future, we'll need to decide on a better approach. */
6698 static const int remote_flash_timeout = 1000;
6699
6700 static void
6701 remote_flash_erase (struct target_ops *ops,
6702 ULONGEST address, LONGEST length)
6703 {
6704 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6705 int saved_remote_timeout = remote_timeout;
6706 enum packet_result ret;
6707 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6708 &saved_remote_timeout);
6709
6710 remote_timeout = remote_flash_timeout;
6711
6712 ret = remote_send_printf ("vFlashErase:%s,%s",
6713 phex (address, addr_size),
6714 phex (length, 4));
6715 switch (ret)
6716 {
6717 case PACKET_UNKNOWN:
6718 error (_("Remote target does not support flash erase"));
6719 case PACKET_ERROR:
6720 error (_("Error erasing flash with vFlashErase packet"));
6721 default:
6722 break;
6723 }
6724
6725 do_cleanups (back_to);
6726 }
6727
6728 static LONGEST
6729 remote_flash_write (struct target_ops *ops,
6730 ULONGEST address, LONGEST length,
6731 const gdb_byte *data)
6732 {
6733 int saved_remote_timeout = remote_timeout;
6734 int ret;
6735 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6736 &saved_remote_timeout);
6737
6738 remote_timeout = remote_flash_timeout;
6739 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6740 do_cleanups (back_to);
6741
6742 return ret;
6743 }
6744
6745 static void
6746 remote_flash_done (struct target_ops *ops)
6747 {
6748 int saved_remote_timeout = remote_timeout;
6749 int ret;
6750 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6751 &saved_remote_timeout);
6752
6753 remote_timeout = remote_flash_timeout;
6754 ret = remote_send_printf ("vFlashDone");
6755 do_cleanups (back_to);
6756
6757 switch (ret)
6758 {
6759 case PACKET_UNKNOWN:
6760 error (_("Remote target does not support vFlashDone"));
6761 case PACKET_ERROR:
6762 error (_("Error finishing flash operation"));
6763 default:
6764 break;
6765 }
6766 }
6767
6768 static void
6769 remote_files_info (struct target_ops *ignore)
6770 {
6771 puts_filtered ("Debugging a target over a serial line.\n");
6772 }
6773 \f
6774 /* Stuff for dealing with the packets which are part of this protocol.
6775 See comment at top of file for details. */
6776
6777 /* Read a single character from the remote end. */
6778
6779 static int
6780 readchar (int timeout)
6781 {
6782 int ch;
6783
6784 ch = serial_readchar (remote_desc, timeout);
6785
6786 if (ch >= 0)
6787 return ch;
6788
6789 switch ((enum serial_rc) ch)
6790 {
6791 case SERIAL_EOF:
6792 pop_target ();
6793 error (_("Remote connection closed"));
6794 /* no return */
6795 case SERIAL_ERROR:
6796 pop_target ();
6797 perror_with_name (_("Remote communication error. "
6798 "Target disconnected."));
6799 /* no return */
6800 case SERIAL_TIMEOUT:
6801 break;
6802 }
6803 return ch;
6804 }
6805
6806 /* Send the command in *BUF to the remote machine, and read the reply
6807 into *BUF. Report an error if we get an error reply. Resize
6808 *BUF using xrealloc if necessary to hold the result, and update
6809 *SIZEOF_BUF. */
6810
6811 static void
6812 remote_send (char **buf,
6813 long *sizeof_buf)
6814 {
6815 putpkt (*buf);
6816 getpkt (buf, sizeof_buf, 0);
6817
6818 if ((*buf)[0] == 'E')
6819 error (_("Remote failure reply: %s"), *buf);
6820 }
6821
6822 /* Return a pointer to an xmalloc'ed string representing an escaped
6823 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6824 etc. The caller is responsible for releasing the returned
6825 memory. */
6826
6827 static char *
6828 escape_buffer (const char *buf, int n)
6829 {
6830 struct cleanup *old_chain;
6831 struct ui_file *stb;
6832 char *str;
6833
6834 stb = mem_fileopen ();
6835 old_chain = make_cleanup_ui_file_delete (stb);
6836
6837 fputstrn_unfiltered (buf, n, 0, stb);
6838 str = ui_file_xstrdup (stb, NULL);
6839 do_cleanups (old_chain);
6840 return str;
6841 }
6842
6843 /* Display a null-terminated packet on stdout, for debugging, using C
6844 string notation. */
6845
6846 static void
6847 print_packet (char *buf)
6848 {
6849 puts_filtered ("\"");
6850 fputstr_filtered (buf, '"', gdb_stdout);
6851 puts_filtered ("\"");
6852 }
6853
6854 int
6855 putpkt (char *buf)
6856 {
6857 return putpkt_binary (buf, strlen (buf));
6858 }
6859
6860 /* Send a packet to the remote machine, with error checking. The data
6861 of the packet is in BUF. The string in BUF can be at most
6862 get_remote_packet_size () - 5 to account for the $, # and checksum,
6863 and for a possible /0 if we are debugging (remote_debug) and want
6864 to print the sent packet as a string. */
6865
6866 static int
6867 putpkt_binary (char *buf, int cnt)
6868 {
6869 struct remote_state *rs = get_remote_state ();
6870 int i;
6871 unsigned char csum = 0;
6872 char *buf2 = alloca (cnt + 6);
6873
6874 int ch;
6875 int tcount = 0;
6876 char *p;
6877
6878 /* Catch cases like trying to read memory or listing threads while
6879 we're waiting for a stop reply. The remote server wouldn't be
6880 ready to handle this request, so we'd hang and timeout. We don't
6881 have to worry about this in synchronous mode, because in that
6882 case it's not possible to issue a command while the target is
6883 running. This is not a problem in non-stop mode, because in that
6884 case, the stub is always ready to process serial input. */
6885 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6886 error (_("Cannot execute this command while the target is running."));
6887
6888 /* We're sending out a new packet. Make sure we don't look at a
6889 stale cached response. */
6890 rs->cached_wait_status = 0;
6891
6892 /* Copy the packet into buffer BUF2, encapsulating it
6893 and giving it a checksum. */
6894
6895 p = buf2;
6896 *p++ = '$';
6897
6898 for (i = 0; i < cnt; i++)
6899 {
6900 csum += buf[i];
6901 *p++ = buf[i];
6902 }
6903 *p++ = '#';
6904 *p++ = tohex ((csum >> 4) & 0xf);
6905 *p++ = tohex (csum & 0xf);
6906
6907 /* Send it over and over until we get a positive ack. */
6908
6909 while (1)
6910 {
6911 int started_error_output = 0;
6912
6913 if (remote_debug)
6914 {
6915 struct cleanup *old_chain;
6916 char *str;
6917
6918 *p = '\0';
6919 str = escape_buffer (buf2, p - buf2);
6920 old_chain = make_cleanup (xfree, str);
6921 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6922 gdb_flush (gdb_stdlog);
6923 do_cleanups (old_chain);
6924 }
6925 if (serial_write (remote_desc, buf2, p - buf2))
6926 perror_with_name (_("putpkt: write failed"));
6927
6928 /* If this is a no acks version of the remote protocol, send the
6929 packet and move on. */
6930 if (rs->noack_mode)
6931 break;
6932
6933 /* Read until either a timeout occurs (-2) or '+' is read.
6934 Handle any notification that arrives in the mean time. */
6935 while (1)
6936 {
6937 ch = readchar (remote_timeout);
6938
6939 if (remote_debug)
6940 {
6941 switch (ch)
6942 {
6943 case '+':
6944 case '-':
6945 case SERIAL_TIMEOUT:
6946 case '$':
6947 case '%':
6948 if (started_error_output)
6949 {
6950 putchar_unfiltered ('\n');
6951 started_error_output = 0;
6952 }
6953 }
6954 }
6955
6956 switch (ch)
6957 {
6958 case '+':
6959 if (remote_debug)
6960 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6961 return 1;
6962 case '-':
6963 if (remote_debug)
6964 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6965 /* FALLTHROUGH */
6966 case SERIAL_TIMEOUT:
6967 tcount++;
6968 if (tcount > 3)
6969 return 0;
6970 break; /* Retransmit buffer. */
6971 case '$':
6972 {
6973 if (remote_debug)
6974 fprintf_unfiltered (gdb_stdlog,
6975 "Packet instead of Ack, ignoring it\n");
6976 /* It's probably an old response sent because an ACK
6977 was lost. Gobble up the packet and ack it so it
6978 doesn't get retransmitted when we resend this
6979 packet. */
6980 skip_frame ();
6981 serial_write (remote_desc, "+", 1);
6982 continue; /* Now, go look for +. */
6983 }
6984
6985 case '%':
6986 {
6987 int val;
6988
6989 /* If we got a notification, handle it, and go back to looking
6990 for an ack. */
6991 /* We've found the start of a notification. Now
6992 collect the data. */
6993 val = read_frame (&rs->buf, &rs->buf_size);
6994 if (val >= 0)
6995 {
6996 if (remote_debug)
6997 {
6998 struct cleanup *old_chain;
6999 char *str;
7000
7001 str = escape_buffer (rs->buf, val);
7002 old_chain = make_cleanup (xfree, str);
7003 fprintf_unfiltered (gdb_stdlog,
7004 " Notification received: %s\n",
7005 str);
7006 do_cleanups (old_chain);
7007 }
7008 handle_notification (rs->buf, val);
7009 /* We're in sync now, rewait for the ack. */
7010 tcount = 0;
7011 }
7012 else
7013 {
7014 if (remote_debug)
7015 {
7016 if (!started_error_output)
7017 {
7018 started_error_output = 1;
7019 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7020 }
7021 fputc_unfiltered (ch & 0177, gdb_stdlog);
7022 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7023 }
7024 }
7025 continue;
7026 }
7027 /* fall-through */
7028 default:
7029 if (remote_debug)
7030 {
7031 if (!started_error_output)
7032 {
7033 started_error_output = 1;
7034 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7035 }
7036 fputc_unfiltered (ch & 0177, gdb_stdlog);
7037 }
7038 continue;
7039 }
7040 break; /* Here to retransmit. */
7041 }
7042
7043 #if 0
7044 /* This is wrong. If doing a long backtrace, the user should be
7045 able to get out next time we call QUIT, without anything as
7046 violent as interrupt_query. If we want to provide a way out of
7047 here without getting to the next QUIT, it should be based on
7048 hitting ^C twice as in remote_wait. */
7049 if (quit_flag)
7050 {
7051 quit_flag = 0;
7052 interrupt_query ();
7053 }
7054 #endif
7055 }
7056 return 0;
7057 }
7058
7059 /* Come here after finding the start of a frame when we expected an
7060 ack. Do our best to discard the rest of this packet. */
7061
7062 static void
7063 skip_frame (void)
7064 {
7065 int c;
7066
7067 while (1)
7068 {
7069 c = readchar (remote_timeout);
7070 switch (c)
7071 {
7072 case SERIAL_TIMEOUT:
7073 /* Nothing we can do. */
7074 return;
7075 case '#':
7076 /* Discard the two bytes of checksum and stop. */
7077 c = readchar (remote_timeout);
7078 if (c >= 0)
7079 c = readchar (remote_timeout);
7080
7081 return;
7082 case '*': /* Run length encoding. */
7083 /* Discard the repeat count. */
7084 c = readchar (remote_timeout);
7085 if (c < 0)
7086 return;
7087 break;
7088 default:
7089 /* A regular character. */
7090 break;
7091 }
7092 }
7093 }
7094
7095 /* Come here after finding the start of the frame. Collect the rest
7096 into *BUF, verifying the checksum, length, and handling run-length
7097 compression. NUL terminate the buffer. If there is not enough room,
7098 expand *BUF using xrealloc.
7099
7100 Returns -1 on error, number of characters in buffer (ignoring the
7101 trailing NULL) on success. (could be extended to return one of the
7102 SERIAL status indications). */
7103
7104 static long
7105 read_frame (char **buf_p,
7106 long *sizeof_buf)
7107 {
7108 unsigned char csum;
7109 long bc;
7110 int c;
7111 char *buf = *buf_p;
7112 struct remote_state *rs = get_remote_state ();
7113
7114 csum = 0;
7115 bc = 0;
7116
7117 while (1)
7118 {
7119 c = readchar (remote_timeout);
7120 switch (c)
7121 {
7122 case SERIAL_TIMEOUT:
7123 if (remote_debug)
7124 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7125 return -1;
7126 case '$':
7127 if (remote_debug)
7128 fputs_filtered ("Saw new packet start in middle of old one\n",
7129 gdb_stdlog);
7130 return -1; /* Start a new packet, count retries. */
7131 case '#':
7132 {
7133 unsigned char pktcsum;
7134 int check_0 = 0;
7135 int check_1 = 0;
7136
7137 buf[bc] = '\0';
7138
7139 check_0 = readchar (remote_timeout);
7140 if (check_0 >= 0)
7141 check_1 = readchar (remote_timeout);
7142
7143 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7144 {
7145 if (remote_debug)
7146 fputs_filtered ("Timeout in checksum, retrying\n",
7147 gdb_stdlog);
7148 return -1;
7149 }
7150 else if (check_0 < 0 || check_1 < 0)
7151 {
7152 if (remote_debug)
7153 fputs_filtered ("Communication error in checksum\n",
7154 gdb_stdlog);
7155 return -1;
7156 }
7157
7158 /* Don't recompute the checksum; with no ack packets we
7159 don't have any way to indicate a packet retransmission
7160 is necessary. */
7161 if (rs->noack_mode)
7162 return bc;
7163
7164 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7165 if (csum == pktcsum)
7166 return bc;
7167
7168 if (remote_debug)
7169 {
7170 struct cleanup *old_chain;
7171 char *str;
7172
7173 str = escape_buffer (buf, bc);
7174 old_chain = make_cleanup (xfree, str);
7175 fprintf_unfiltered (gdb_stdlog,
7176 "Bad checksum, sentsum=0x%x, "
7177 "csum=0x%x, buf=%s\n",
7178 pktcsum, csum, str);
7179 do_cleanups (old_chain);
7180 }
7181 /* Number of characters in buffer ignoring trailing
7182 NULL. */
7183 return -1;
7184 }
7185 case '*': /* Run length encoding. */
7186 {
7187 int repeat;
7188
7189 csum += c;
7190 c = readchar (remote_timeout);
7191 csum += c;
7192 repeat = c - ' ' + 3; /* Compute repeat count. */
7193
7194 /* The character before ``*'' is repeated. */
7195
7196 if (repeat > 0 && repeat <= 255 && bc > 0)
7197 {
7198 if (bc + repeat - 1 >= *sizeof_buf - 1)
7199 {
7200 /* Make some more room in the buffer. */
7201 *sizeof_buf += repeat;
7202 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7203 buf = *buf_p;
7204 }
7205
7206 memset (&buf[bc], buf[bc - 1], repeat);
7207 bc += repeat;
7208 continue;
7209 }
7210
7211 buf[bc] = '\0';
7212 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7213 return -1;
7214 }
7215 default:
7216 if (bc >= *sizeof_buf - 1)
7217 {
7218 /* Make some more room in the buffer. */
7219 *sizeof_buf *= 2;
7220 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7221 buf = *buf_p;
7222 }
7223
7224 buf[bc++] = c;
7225 csum += c;
7226 continue;
7227 }
7228 }
7229 }
7230
7231 /* Read a packet from the remote machine, with error checking, and
7232 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7233 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7234 rather than timing out; this is used (in synchronous mode) to wait
7235 for a target that is is executing user code to stop. */
7236 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7237 don't have to change all the calls to getpkt to deal with the
7238 return value, because at the moment I don't know what the right
7239 thing to do it for those. */
7240 void
7241 getpkt (char **buf,
7242 long *sizeof_buf,
7243 int forever)
7244 {
7245 int timed_out;
7246
7247 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7248 }
7249
7250
7251 /* Read a packet from the remote machine, with error checking, and
7252 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7253 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7254 rather than timing out; this is used (in synchronous mode) to wait
7255 for a target that is is executing user code to stop. If FOREVER ==
7256 0, this function is allowed to time out gracefully and return an
7257 indication of this to the caller. Otherwise return the number of
7258 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7259 enough reason to return to the caller. */
7260
7261 static int
7262 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7263 int expecting_notif)
7264 {
7265 struct remote_state *rs = get_remote_state ();
7266 int c;
7267 int tries;
7268 int timeout;
7269 int val = -1;
7270
7271 /* We're reading a new response. Make sure we don't look at a
7272 previously cached response. */
7273 rs->cached_wait_status = 0;
7274
7275 strcpy (*buf, "timeout");
7276
7277 if (forever)
7278 timeout = watchdog > 0 ? watchdog : -1;
7279 else if (expecting_notif)
7280 timeout = 0; /* There should already be a char in the buffer. If
7281 not, bail out. */
7282 else
7283 timeout = remote_timeout;
7284
7285 #define MAX_TRIES 3
7286
7287 /* Process any number of notifications, and then return when
7288 we get a packet. */
7289 for (;;)
7290 {
7291 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7292 times. */
7293 for (tries = 1; tries <= MAX_TRIES; tries++)
7294 {
7295 /* This can loop forever if the remote side sends us
7296 characters continuously, but if it pauses, we'll get
7297 SERIAL_TIMEOUT from readchar because of timeout. Then
7298 we'll count that as a retry.
7299
7300 Note that even when forever is set, we will only wait
7301 forever prior to the start of a packet. After that, we
7302 expect characters to arrive at a brisk pace. They should
7303 show up within remote_timeout intervals. */
7304 do
7305 c = readchar (timeout);
7306 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7307
7308 if (c == SERIAL_TIMEOUT)
7309 {
7310 if (expecting_notif)
7311 return -1; /* Don't complain, it's normal to not get
7312 anything in this case. */
7313
7314 if (forever) /* Watchdog went off? Kill the target. */
7315 {
7316 QUIT;
7317 pop_target ();
7318 error (_("Watchdog timeout has expired. Target detached."));
7319 }
7320 if (remote_debug)
7321 fputs_filtered ("Timed out.\n", gdb_stdlog);
7322 }
7323 else
7324 {
7325 /* We've found the start of a packet or notification.
7326 Now collect the data. */
7327 val = read_frame (buf, sizeof_buf);
7328 if (val >= 0)
7329 break;
7330 }
7331
7332 serial_write (remote_desc, "-", 1);
7333 }
7334
7335 if (tries > MAX_TRIES)
7336 {
7337 /* We have tried hard enough, and just can't receive the
7338 packet/notification. Give up. */
7339 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7340
7341 /* Skip the ack char if we're in no-ack mode. */
7342 if (!rs->noack_mode)
7343 serial_write (remote_desc, "+", 1);
7344 return -1;
7345 }
7346
7347 /* If we got an ordinary packet, return that to our caller. */
7348 if (c == '$')
7349 {
7350 if (remote_debug)
7351 {
7352 struct cleanup *old_chain;
7353 char *str;
7354
7355 str = escape_buffer (*buf, val);
7356 old_chain = make_cleanup (xfree, str);
7357 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7358 do_cleanups (old_chain);
7359 }
7360
7361 /* Skip the ack char if we're in no-ack mode. */
7362 if (!rs->noack_mode)
7363 serial_write (remote_desc, "+", 1);
7364 return val;
7365 }
7366
7367 /* If we got a notification, handle it, and go back to looking
7368 for a packet. */
7369 else
7370 {
7371 gdb_assert (c == '%');
7372
7373 if (remote_debug)
7374 {
7375 struct cleanup *old_chain;
7376 char *str;
7377
7378 str = escape_buffer (*buf, val);
7379 old_chain = make_cleanup (xfree, str);
7380 fprintf_unfiltered (gdb_stdlog,
7381 " Notification received: %s\n",
7382 str);
7383 do_cleanups (old_chain);
7384 }
7385
7386 handle_notification (*buf, val);
7387
7388 /* Notifications require no acknowledgement. */
7389
7390 if (expecting_notif)
7391 return -1;
7392 }
7393 }
7394 }
7395
7396 static int
7397 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7398 {
7399 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7400 }
7401
7402 static int
7403 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7404 {
7405 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7406 }
7407
7408 \f
7409 /* A helper function that just calls putpkt; for type correctness. */
7410
7411 static int
7412 putpkt_for_catch_errors (void *arg)
7413 {
7414 return putpkt (arg);
7415 }
7416
7417 static void
7418 remote_kill (struct target_ops *ops)
7419 {
7420 /* Use catch_errors so the user can quit from gdb even when we
7421 aren't on speaking terms with the remote system. */
7422 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7423
7424 /* Don't wait for it to die. I'm not really sure it matters whether
7425 we do or not. For the existing stubs, kill is a noop. */
7426 target_mourn_inferior ();
7427 }
7428
7429 static int
7430 remote_vkill (int pid, struct remote_state *rs)
7431 {
7432 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7433 return -1;
7434
7435 /* Tell the remote target to detach. */
7436 sprintf (rs->buf, "vKill;%x", pid);
7437 putpkt (rs->buf);
7438 getpkt (&rs->buf, &rs->buf_size, 0);
7439
7440 if (packet_ok (rs->buf,
7441 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7442 return 0;
7443 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7444 return -1;
7445 else
7446 return 1;
7447 }
7448
7449 static void
7450 extended_remote_kill (struct target_ops *ops)
7451 {
7452 int res;
7453 int pid = ptid_get_pid (inferior_ptid);
7454 struct remote_state *rs = get_remote_state ();
7455
7456 res = remote_vkill (pid, rs);
7457 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7458 {
7459 /* Don't try 'k' on a multi-process aware stub -- it has no way
7460 to specify the pid. */
7461
7462 putpkt ("k");
7463 #if 0
7464 getpkt (&rs->buf, &rs->buf_size, 0);
7465 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7466 res = 1;
7467 #else
7468 /* Don't wait for it to die. I'm not really sure it matters whether
7469 we do or not. For the existing stubs, kill is a noop. */
7470 res = 0;
7471 #endif
7472 }
7473
7474 if (res != 0)
7475 error (_("Can't kill process"));
7476
7477 target_mourn_inferior ();
7478 }
7479
7480 static void
7481 remote_mourn (struct target_ops *ops)
7482 {
7483 remote_mourn_1 (ops);
7484 }
7485
7486 /* Worker function for remote_mourn. */
7487 static void
7488 remote_mourn_1 (struct target_ops *target)
7489 {
7490 unpush_target (target);
7491
7492 /* remote_close takes care of doing most of the clean up. */
7493 generic_mourn_inferior ();
7494 }
7495
7496 static void
7497 extended_remote_mourn_1 (struct target_ops *target)
7498 {
7499 struct remote_state *rs = get_remote_state ();
7500
7501 /* In case we got here due to an error, but we're going to stay
7502 connected. */
7503 rs->waiting_for_stop_reply = 0;
7504
7505 /* We're no longer interested in these events. */
7506 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7507
7508 /* If the current general thread belonged to the process we just
7509 detached from or has exited, the remote side current general
7510 thread becomes undefined. Considering a case like this:
7511
7512 - We just got here due to a detach.
7513 - The process that we're detaching from happens to immediately
7514 report a global breakpoint being hit in non-stop mode, in the
7515 same thread we had selected before.
7516 - GDB attaches to this process again.
7517 - This event happens to be the next event we handle.
7518
7519 GDB would consider that the current general thread didn't need to
7520 be set on the stub side (with Hg), since for all it knew,
7521 GENERAL_THREAD hadn't changed.
7522
7523 Notice that although in all-stop mode, the remote server always
7524 sets the current thread to the thread reporting the stop event,
7525 that doesn't happen in non-stop mode; in non-stop, the stub *must
7526 not* change the current thread when reporting a breakpoint hit,
7527 due to the decoupling of event reporting and event handling.
7528
7529 To keep things simple, we always invalidate our notion of the
7530 current thread. */
7531 record_currthread (minus_one_ptid);
7532
7533 /* Unlike "target remote", we do not want to unpush the target; then
7534 the next time the user says "run", we won't be connected. */
7535
7536 /* Call common code to mark the inferior as not running. */
7537 generic_mourn_inferior ();
7538
7539 if (!have_inferiors ())
7540 {
7541 if (!remote_multi_process_p (rs))
7542 {
7543 /* Check whether the target is running now - some remote stubs
7544 automatically restart after kill. */
7545 putpkt ("?");
7546 getpkt (&rs->buf, &rs->buf_size, 0);
7547
7548 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7549 {
7550 /* Assume that the target has been restarted. Set
7551 inferior_ptid so that bits of core GDB realizes
7552 there's something here, e.g., so that the user can
7553 say "kill" again. */
7554 inferior_ptid = magic_null_ptid;
7555 }
7556 }
7557 }
7558 }
7559
7560 static void
7561 extended_remote_mourn (struct target_ops *ops)
7562 {
7563 extended_remote_mourn_1 (ops);
7564 }
7565
7566 static int
7567 extended_remote_supports_disable_randomization (void)
7568 {
7569 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7570 == PACKET_ENABLE);
7571 }
7572
7573 static void
7574 extended_remote_disable_randomization (int val)
7575 {
7576 struct remote_state *rs = get_remote_state ();
7577 char *reply;
7578
7579 sprintf (rs->buf, "QDisableRandomization:%x", val);
7580 putpkt (rs->buf);
7581 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7582 if (*reply == '\0')
7583 error (_("Target does not support QDisableRandomization."));
7584 if (strcmp (reply, "OK") != 0)
7585 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7586 }
7587
7588 static int
7589 extended_remote_run (char *args)
7590 {
7591 struct remote_state *rs = get_remote_state ();
7592 int len;
7593
7594 /* If the user has disabled vRun support, or we have detected that
7595 support is not available, do not try it. */
7596 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7597 return -1;
7598
7599 strcpy (rs->buf, "vRun;");
7600 len = strlen (rs->buf);
7601
7602 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7603 error (_("Remote file name too long for run packet"));
7604 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7605
7606 gdb_assert (args != NULL);
7607 if (*args)
7608 {
7609 struct cleanup *back_to;
7610 int i;
7611 char **argv;
7612
7613 argv = gdb_buildargv (args);
7614 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7615 for (i = 0; argv[i] != NULL; i++)
7616 {
7617 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7618 error (_("Argument list too long for run packet"));
7619 rs->buf[len++] = ';';
7620 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7621 }
7622 do_cleanups (back_to);
7623 }
7624
7625 rs->buf[len++] = '\0';
7626
7627 putpkt (rs->buf);
7628 getpkt (&rs->buf, &rs->buf_size, 0);
7629
7630 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7631 {
7632 /* We have a wait response; we don't need it, though. All is well. */
7633 return 0;
7634 }
7635 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7636 /* It wasn't disabled before, but it is now. */
7637 return -1;
7638 else
7639 {
7640 if (remote_exec_file[0] == '\0')
7641 error (_("Running the default executable on the remote target failed; "
7642 "try \"set remote exec-file\"?"));
7643 else
7644 error (_("Running \"%s\" on the remote target failed"),
7645 remote_exec_file);
7646 }
7647 }
7648
7649 /* In the extended protocol we want to be able to do things like
7650 "run" and have them basically work as expected. So we need
7651 a special create_inferior function. We support changing the
7652 executable file and the command line arguments, but not the
7653 environment. */
7654
7655 static void
7656 extended_remote_create_inferior_1 (char *exec_file, char *args,
7657 char **env, int from_tty)
7658 {
7659 /* If running asynchronously, register the target file descriptor
7660 with the event loop. */
7661 if (target_can_async_p ())
7662 target_async (inferior_event_handler, 0);
7663
7664 /* Disable address space randomization if requested (and supported). */
7665 if (extended_remote_supports_disable_randomization ())
7666 extended_remote_disable_randomization (disable_randomization);
7667
7668 /* Now restart the remote server. */
7669 if (extended_remote_run (args) == -1)
7670 {
7671 /* vRun was not supported. Fail if we need it to do what the
7672 user requested. */
7673 if (remote_exec_file[0])
7674 error (_("Remote target does not support \"set remote exec-file\""));
7675 if (args[0])
7676 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7677
7678 /* Fall back to "R". */
7679 extended_remote_restart ();
7680 }
7681
7682 if (!have_inferiors ())
7683 {
7684 /* Clean up from the last time we ran, before we mark the target
7685 running again. This will mark breakpoints uninserted, and
7686 get_offsets may insert breakpoints. */
7687 init_thread_list ();
7688 init_wait_for_inferior ();
7689 }
7690
7691 add_current_inferior_and_thread ();
7692
7693 /* Get updated offsets, if the stub uses qOffsets. */
7694 get_offsets ();
7695 }
7696
7697 static void
7698 extended_remote_create_inferior (struct target_ops *ops,
7699 char *exec_file, char *args,
7700 char **env, int from_tty)
7701 {
7702 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7703 }
7704 \f
7705
7706 /* Insert a breakpoint. On targets that have software breakpoint
7707 support, we ask the remote target to do the work; on targets
7708 which don't, we insert a traditional memory breakpoint. */
7709
7710 static int
7711 remote_insert_breakpoint (struct gdbarch *gdbarch,
7712 struct bp_target_info *bp_tgt)
7713 {
7714 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7715 If it succeeds, then set the support to PACKET_ENABLE. If it
7716 fails, and the user has explicitly requested the Z support then
7717 report an error, otherwise, mark it disabled and go on. */
7718
7719 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7720 {
7721 CORE_ADDR addr = bp_tgt->placed_address;
7722 struct remote_state *rs;
7723 char *p;
7724 int bpsize;
7725
7726 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7727
7728 rs = get_remote_state ();
7729 p = rs->buf;
7730
7731 *(p++) = 'Z';
7732 *(p++) = '0';
7733 *(p++) = ',';
7734 addr = (ULONGEST) remote_address_masked (addr);
7735 p += hexnumstr (p, addr);
7736 sprintf (p, ",%d", bpsize);
7737
7738 putpkt (rs->buf);
7739 getpkt (&rs->buf, &rs->buf_size, 0);
7740
7741 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7742 {
7743 case PACKET_ERROR:
7744 return -1;
7745 case PACKET_OK:
7746 bp_tgt->placed_address = addr;
7747 bp_tgt->placed_size = bpsize;
7748 return 0;
7749 case PACKET_UNKNOWN:
7750 break;
7751 }
7752 }
7753
7754 return memory_insert_breakpoint (gdbarch, bp_tgt);
7755 }
7756
7757 static int
7758 remote_remove_breakpoint (struct gdbarch *gdbarch,
7759 struct bp_target_info *bp_tgt)
7760 {
7761 CORE_ADDR addr = bp_tgt->placed_address;
7762 struct remote_state *rs = get_remote_state ();
7763
7764 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7765 {
7766 char *p = rs->buf;
7767
7768 *(p++) = 'z';
7769 *(p++) = '0';
7770 *(p++) = ',';
7771
7772 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7773 p += hexnumstr (p, addr);
7774 sprintf (p, ",%d", bp_tgt->placed_size);
7775
7776 putpkt (rs->buf);
7777 getpkt (&rs->buf, &rs->buf_size, 0);
7778
7779 return (rs->buf[0] == 'E');
7780 }
7781
7782 return memory_remove_breakpoint (gdbarch, bp_tgt);
7783 }
7784
7785 static int
7786 watchpoint_to_Z_packet (int type)
7787 {
7788 switch (type)
7789 {
7790 case hw_write:
7791 return Z_PACKET_WRITE_WP;
7792 break;
7793 case hw_read:
7794 return Z_PACKET_READ_WP;
7795 break;
7796 case hw_access:
7797 return Z_PACKET_ACCESS_WP;
7798 break;
7799 default:
7800 internal_error (__FILE__, __LINE__,
7801 _("hw_bp_to_z: bad watchpoint type %d"), type);
7802 }
7803 }
7804
7805 static int
7806 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7807 struct expression *cond)
7808 {
7809 struct remote_state *rs = get_remote_state ();
7810 char *p;
7811 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7812
7813 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7814 return 1;
7815
7816 sprintf (rs->buf, "Z%x,", packet);
7817 p = strchr (rs->buf, '\0');
7818 addr = remote_address_masked (addr);
7819 p += hexnumstr (p, (ULONGEST) addr);
7820 sprintf (p, ",%x", len);
7821
7822 putpkt (rs->buf);
7823 getpkt (&rs->buf, &rs->buf_size, 0);
7824
7825 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7826 {
7827 case PACKET_ERROR:
7828 return -1;
7829 case PACKET_UNKNOWN:
7830 return 1;
7831 case PACKET_OK:
7832 return 0;
7833 }
7834 internal_error (__FILE__, __LINE__,
7835 _("remote_insert_watchpoint: reached end of function"));
7836 }
7837
7838
7839 static int
7840 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7841 struct expression *cond)
7842 {
7843 struct remote_state *rs = get_remote_state ();
7844 char *p;
7845 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7846
7847 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7848 return -1;
7849
7850 sprintf (rs->buf, "z%x,", packet);
7851 p = strchr (rs->buf, '\0');
7852 addr = remote_address_masked (addr);
7853 p += hexnumstr (p, (ULONGEST) addr);
7854 sprintf (p, ",%x", len);
7855 putpkt (rs->buf);
7856 getpkt (&rs->buf, &rs->buf_size, 0);
7857
7858 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7859 {
7860 case PACKET_ERROR:
7861 case PACKET_UNKNOWN:
7862 return -1;
7863 case PACKET_OK:
7864 return 0;
7865 }
7866 internal_error (__FILE__, __LINE__,
7867 _("remote_remove_watchpoint: reached end of function"));
7868 }
7869
7870
7871 int remote_hw_watchpoint_limit = -1;
7872 int remote_hw_watchpoint_length_limit = -1;
7873 int remote_hw_breakpoint_limit = -1;
7874
7875 static int
7876 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
7877 {
7878 if (remote_hw_watchpoint_length_limit == 0)
7879 return 0;
7880 else if (remote_hw_watchpoint_length_limit < 0)
7881 return 1;
7882 else if (len <= remote_hw_watchpoint_length_limit)
7883 return 1;
7884 else
7885 return 0;
7886 }
7887
7888 static int
7889 remote_check_watch_resources (int type, int cnt, int ot)
7890 {
7891 if (type == bp_hardware_breakpoint)
7892 {
7893 if (remote_hw_breakpoint_limit == 0)
7894 return 0;
7895 else if (remote_hw_breakpoint_limit < 0)
7896 return 1;
7897 else if (cnt <= remote_hw_breakpoint_limit)
7898 return 1;
7899 }
7900 else
7901 {
7902 if (remote_hw_watchpoint_limit == 0)
7903 return 0;
7904 else if (remote_hw_watchpoint_limit < 0)
7905 return 1;
7906 else if (ot)
7907 return -1;
7908 else if (cnt <= remote_hw_watchpoint_limit)
7909 return 1;
7910 }
7911 return -1;
7912 }
7913
7914 static int
7915 remote_stopped_by_watchpoint (void)
7916 {
7917 return remote_stopped_by_watchpoint_p;
7918 }
7919
7920 static int
7921 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7922 {
7923 int rc = 0;
7924
7925 if (remote_stopped_by_watchpoint ())
7926 {
7927 *addr_p = remote_watch_data_address;
7928 rc = 1;
7929 }
7930
7931 return rc;
7932 }
7933
7934
7935 static int
7936 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7937 struct bp_target_info *bp_tgt)
7938 {
7939 CORE_ADDR addr;
7940 struct remote_state *rs;
7941 char *p;
7942
7943 /* The length field should be set to the size of a breakpoint
7944 instruction, even though we aren't inserting one ourselves. */
7945
7946 gdbarch_remote_breakpoint_from_pc
7947 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7948
7949 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7950 return -1;
7951
7952 rs = get_remote_state ();
7953 p = rs->buf;
7954
7955 *(p++) = 'Z';
7956 *(p++) = '1';
7957 *(p++) = ',';
7958
7959 addr = remote_address_masked (bp_tgt->placed_address);
7960 p += hexnumstr (p, (ULONGEST) addr);
7961 sprintf (p, ",%x", bp_tgt->placed_size);
7962
7963 putpkt (rs->buf);
7964 getpkt (&rs->buf, &rs->buf_size, 0);
7965
7966 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7967 {
7968 case PACKET_ERROR:
7969 case PACKET_UNKNOWN:
7970 return -1;
7971 case PACKET_OK:
7972 return 0;
7973 }
7974 internal_error (__FILE__, __LINE__,
7975 _("remote_insert_hw_breakpoint: reached end of function"));
7976 }
7977
7978
7979 static int
7980 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7981 struct bp_target_info *bp_tgt)
7982 {
7983 CORE_ADDR addr;
7984 struct remote_state *rs = get_remote_state ();
7985 char *p = rs->buf;
7986
7987 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7988 return -1;
7989
7990 *(p++) = 'z';
7991 *(p++) = '1';
7992 *(p++) = ',';
7993
7994 addr = remote_address_masked (bp_tgt->placed_address);
7995 p += hexnumstr (p, (ULONGEST) addr);
7996 sprintf (p, ",%x", bp_tgt->placed_size);
7997
7998 putpkt (rs->buf);
7999 getpkt (&rs->buf, &rs->buf_size, 0);
8000
8001 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8002 {
8003 case PACKET_ERROR:
8004 case PACKET_UNKNOWN:
8005 return -1;
8006 case PACKET_OK:
8007 return 0;
8008 }
8009 internal_error (__FILE__, __LINE__,
8010 _("remote_remove_hw_breakpoint: reached end of function"));
8011 }
8012
8013 /* Table used by the crc32 function to calcuate the checksum. */
8014
8015 static unsigned long crc32_table[256] =
8016 {0, 0};
8017
8018 static unsigned long
8019 crc32 (const unsigned char *buf, int len, unsigned int crc)
8020 {
8021 if (!crc32_table[1])
8022 {
8023 /* Initialize the CRC table and the decoding table. */
8024 int i, j;
8025 unsigned int c;
8026
8027 for (i = 0; i < 256; i++)
8028 {
8029 for (c = i << 24, j = 8; j > 0; --j)
8030 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8031 crc32_table[i] = c;
8032 }
8033 }
8034
8035 while (len--)
8036 {
8037 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8038 buf++;
8039 }
8040 return crc;
8041 }
8042
8043 /* Verify memory using the "qCRC:" request. */
8044
8045 static int
8046 remote_verify_memory (struct target_ops *ops,
8047 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8048 {
8049 struct remote_state *rs = get_remote_state ();
8050 unsigned long host_crc, target_crc;
8051 char *tmp;
8052
8053 /* FIXME: assumes lma can fit into long. */
8054 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8055 (long) lma, (long) size);
8056 putpkt (rs->buf);
8057
8058 /* Be clever; compute the host_crc before waiting for target
8059 reply. */
8060 host_crc = crc32 (data, size, 0xffffffff);
8061
8062 getpkt (&rs->buf, &rs->buf_size, 0);
8063 if (rs->buf[0] == 'E')
8064 return -1;
8065
8066 if (rs->buf[0] != 'C')
8067 error (_("remote target does not support this operation"));
8068
8069 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8070 target_crc = target_crc * 16 + fromhex (*tmp);
8071
8072 return (host_crc == target_crc);
8073 }
8074
8075 /* compare-sections command
8076
8077 With no arguments, compares each loadable section in the exec bfd
8078 with the same memory range on the target, and reports mismatches.
8079 Useful for verifying the image on the target against the exec file. */
8080
8081 static void
8082 compare_sections_command (char *args, int from_tty)
8083 {
8084 asection *s;
8085 struct cleanup *old_chain;
8086 char *sectdata;
8087 const char *sectname;
8088 bfd_size_type size;
8089 bfd_vma lma;
8090 int matched = 0;
8091 int mismatched = 0;
8092 int res;
8093
8094 if (!exec_bfd)
8095 error (_("command cannot be used without an exec file"));
8096
8097 for (s = exec_bfd->sections; s; s = s->next)
8098 {
8099 if (!(s->flags & SEC_LOAD))
8100 continue; /* Skip non-loadable section. */
8101
8102 size = bfd_get_section_size (s);
8103 if (size == 0)
8104 continue; /* Skip zero-length section. */
8105
8106 sectname = bfd_get_section_name (exec_bfd, s);
8107 if (args && strcmp (args, sectname) != 0)
8108 continue; /* Not the section selected by user. */
8109
8110 matched = 1; /* Do this section. */
8111 lma = s->lma;
8112
8113 sectdata = xmalloc (size);
8114 old_chain = make_cleanup (xfree, sectdata);
8115 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8116
8117 res = target_verify_memory (sectdata, lma, size);
8118
8119 if (res == -1)
8120 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8121 paddress (target_gdbarch, lma),
8122 paddress (target_gdbarch, lma + size));
8123
8124 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8125 paddress (target_gdbarch, lma),
8126 paddress (target_gdbarch, lma + size));
8127 if (res)
8128 printf_filtered ("matched.\n");
8129 else
8130 {
8131 printf_filtered ("MIS-MATCHED!\n");
8132 mismatched++;
8133 }
8134
8135 do_cleanups (old_chain);
8136 }
8137 if (mismatched > 0)
8138 warning (_("One or more sections of the remote executable does not match\n\
8139 the loaded file\n"));
8140 if (args && !matched)
8141 printf_filtered (_("No loaded section named '%s'.\n"), args);
8142 }
8143
8144 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8145 into remote target. The number of bytes written to the remote
8146 target is returned, or -1 for error. */
8147
8148 static LONGEST
8149 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8150 const char *annex, const gdb_byte *writebuf,
8151 ULONGEST offset, LONGEST len,
8152 struct packet_config *packet)
8153 {
8154 int i, buf_len;
8155 ULONGEST n;
8156 struct remote_state *rs = get_remote_state ();
8157 int max_size = get_memory_write_packet_size ();
8158
8159 if (packet->support == PACKET_DISABLE)
8160 return -1;
8161
8162 /* Insert header. */
8163 i = snprintf (rs->buf, max_size,
8164 "qXfer:%s:write:%s:%s:",
8165 object_name, annex ? annex : "",
8166 phex_nz (offset, sizeof offset));
8167 max_size -= (i + 1);
8168
8169 /* Escape as much data as fits into rs->buf. */
8170 buf_len = remote_escape_output
8171 (writebuf, len, (rs->buf + i), &max_size, max_size);
8172
8173 if (putpkt_binary (rs->buf, i + buf_len) < 0
8174 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8175 || packet_ok (rs->buf, packet) != PACKET_OK)
8176 return -1;
8177
8178 unpack_varlen_hex (rs->buf, &n);
8179 return n;
8180 }
8181
8182 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8183 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8184 number of bytes read is returned, or 0 for EOF, or -1 for error.
8185 The number of bytes read may be less than LEN without indicating an
8186 EOF. PACKET is checked and updated to indicate whether the remote
8187 target supports this object. */
8188
8189 static LONGEST
8190 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8191 const char *annex,
8192 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8193 struct packet_config *packet)
8194 {
8195 static char *finished_object;
8196 static char *finished_annex;
8197 static ULONGEST finished_offset;
8198
8199 struct remote_state *rs = get_remote_state ();
8200 LONGEST i, n, packet_len;
8201
8202 if (packet->support == PACKET_DISABLE)
8203 return -1;
8204
8205 /* Check whether we've cached an end-of-object packet that matches
8206 this request. */
8207 if (finished_object)
8208 {
8209 if (strcmp (object_name, finished_object) == 0
8210 && strcmp (annex ? annex : "", finished_annex) == 0
8211 && offset == finished_offset)
8212 return 0;
8213
8214 /* Otherwise, we're now reading something different. Discard
8215 the cache. */
8216 xfree (finished_object);
8217 xfree (finished_annex);
8218 finished_object = NULL;
8219 finished_annex = NULL;
8220 }
8221
8222 /* Request only enough to fit in a single packet. The actual data
8223 may not, since we don't know how much of it will need to be escaped;
8224 the target is free to respond with slightly less data. We subtract
8225 five to account for the response type and the protocol frame. */
8226 n = min (get_remote_packet_size () - 5, len);
8227 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8228 object_name, annex ? annex : "",
8229 phex_nz (offset, sizeof offset),
8230 phex_nz (n, sizeof n));
8231 i = putpkt (rs->buf);
8232 if (i < 0)
8233 return -1;
8234
8235 rs->buf[0] = '\0';
8236 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8237 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8238 return -1;
8239
8240 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8241 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8242
8243 /* 'm' means there is (or at least might be) more data after this
8244 batch. That does not make sense unless there's at least one byte
8245 of data in this reply. */
8246 if (rs->buf[0] == 'm' && packet_len == 1)
8247 error (_("Remote qXfer reply contained no data."));
8248
8249 /* Got some data. */
8250 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8251
8252 /* 'l' is an EOF marker, possibly including a final block of data,
8253 or possibly empty. If we have the final block of a non-empty
8254 object, record this fact to bypass a subsequent partial read. */
8255 if (rs->buf[0] == 'l' && offset + i > 0)
8256 {
8257 finished_object = xstrdup (object_name);
8258 finished_annex = xstrdup (annex ? annex : "");
8259 finished_offset = offset + i;
8260 }
8261
8262 return i;
8263 }
8264
8265 static LONGEST
8266 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8267 const char *annex, gdb_byte *readbuf,
8268 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8269 {
8270 struct remote_state *rs;
8271 int i;
8272 char *p2;
8273 char query_type;
8274
8275 set_remote_traceframe ();
8276 set_general_thread (inferior_ptid);
8277
8278 rs = get_remote_state ();
8279
8280 /* Handle memory using the standard memory routines. */
8281 if (object == TARGET_OBJECT_MEMORY)
8282 {
8283 int xfered;
8284
8285 errno = 0;
8286
8287 /* If the remote target is connected but not running, we should
8288 pass this request down to a lower stratum (e.g. the executable
8289 file). */
8290 if (!target_has_execution)
8291 return 0;
8292
8293 if (writebuf != NULL)
8294 xfered = remote_write_bytes (offset, writebuf, len);
8295 else
8296 xfered = remote_read_bytes (offset, readbuf, len);
8297
8298 if (xfered > 0)
8299 return xfered;
8300 else if (xfered == 0 && errno == 0)
8301 return 0;
8302 else
8303 return -1;
8304 }
8305
8306 /* Handle SPU memory using qxfer packets. */
8307 if (object == TARGET_OBJECT_SPU)
8308 {
8309 if (readbuf)
8310 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8311 &remote_protocol_packets
8312 [PACKET_qXfer_spu_read]);
8313 else
8314 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8315 &remote_protocol_packets
8316 [PACKET_qXfer_spu_write]);
8317 }
8318
8319 /* Handle extra signal info using qxfer packets. */
8320 if (object == TARGET_OBJECT_SIGNAL_INFO)
8321 {
8322 if (readbuf)
8323 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8324 &remote_protocol_packets
8325 [PACKET_qXfer_siginfo_read]);
8326 else
8327 return remote_write_qxfer (ops, "siginfo", annex,
8328 writebuf, offset, len,
8329 &remote_protocol_packets
8330 [PACKET_qXfer_siginfo_write]);
8331 }
8332
8333 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8334 {
8335 if (readbuf)
8336 return remote_read_qxfer (ops, "statictrace", annex,
8337 readbuf, offset, len,
8338 &remote_protocol_packets
8339 [PACKET_qXfer_statictrace_read]);
8340 else
8341 return -1;
8342 }
8343
8344 /* Only handle flash writes. */
8345 if (writebuf != NULL)
8346 {
8347 LONGEST xfered;
8348
8349 switch (object)
8350 {
8351 case TARGET_OBJECT_FLASH:
8352 xfered = remote_flash_write (ops, offset, len, writebuf);
8353
8354 if (xfered > 0)
8355 return xfered;
8356 else if (xfered == 0 && errno == 0)
8357 return 0;
8358 else
8359 return -1;
8360
8361 default:
8362 return -1;
8363 }
8364 }
8365
8366 /* Map pre-existing objects onto letters. DO NOT do this for new
8367 objects!!! Instead specify new query packets. */
8368 switch (object)
8369 {
8370 case TARGET_OBJECT_AVR:
8371 query_type = 'R';
8372 break;
8373
8374 case TARGET_OBJECT_AUXV:
8375 gdb_assert (annex == NULL);
8376 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8377 &remote_protocol_packets[PACKET_qXfer_auxv]);
8378
8379 case TARGET_OBJECT_AVAILABLE_FEATURES:
8380 return remote_read_qxfer
8381 (ops, "features", annex, readbuf, offset, len,
8382 &remote_protocol_packets[PACKET_qXfer_features]);
8383
8384 case TARGET_OBJECT_LIBRARIES:
8385 return remote_read_qxfer
8386 (ops, "libraries", annex, readbuf, offset, len,
8387 &remote_protocol_packets[PACKET_qXfer_libraries]);
8388
8389 case TARGET_OBJECT_LIBRARIES_SVR4:
8390 return remote_read_qxfer
8391 (ops, "libraries-svr4", annex, readbuf, offset, len,
8392 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8393
8394 case TARGET_OBJECT_MEMORY_MAP:
8395 gdb_assert (annex == NULL);
8396 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8397 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8398
8399 case TARGET_OBJECT_OSDATA:
8400 /* Should only get here if we're connected. */
8401 gdb_assert (remote_desc);
8402 return remote_read_qxfer
8403 (ops, "osdata", annex, readbuf, offset, len,
8404 &remote_protocol_packets[PACKET_qXfer_osdata]);
8405
8406 case TARGET_OBJECT_THREADS:
8407 gdb_assert (annex == NULL);
8408 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8409 &remote_protocol_packets[PACKET_qXfer_threads]);
8410
8411 case TARGET_OBJECT_TRACEFRAME_INFO:
8412 gdb_assert (annex == NULL);
8413 return remote_read_qxfer
8414 (ops, "traceframe-info", annex, readbuf, offset, len,
8415 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8416
8417 case TARGET_OBJECT_FDPIC:
8418 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8419 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8420 default:
8421 return -1;
8422 }
8423
8424 /* Note: a zero OFFSET and LEN can be used to query the minimum
8425 buffer size. */
8426 if (offset == 0 && len == 0)
8427 return (get_remote_packet_size ());
8428 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8429 large enough let the caller deal with it. */
8430 if (len < get_remote_packet_size ())
8431 return -1;
8432 len = get_remote_packet_size ();
8433
8434 /* Except for querying the minimum buffer size, target must be open. */
8435 if (!remote_desc)
8436 error (_("remote query is only available after target open"));
8437
8438 gdb_assert (annex != NULL);
8439 gdb_assert (readbuf != NULL);
8440
8441 p2 = rs->buf;
8442 *p2++ = 'q';
8443 *p2++ = query_type;
8444
8445 /* We used one buffer char for the remote protocol q command and
8446 another for the query type. As the remote protocol encapsulation
8447 uses 4 chars plus one extra in case we are debugging
8448 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8449 string. */
8450 i = 0;
8451 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8452 {
8453 /* Bad caller may have sent forbidden characters. */
8454 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8455 *p2++ = annex[i];
8456 i++;
8457 }
8458 *p2 = '\0';
8459 gdb_assert (annex[i] == '\0');
8460
8461 i = putpkt (rs->buf);
8462 if (i < 0)
8463 return i;
8464
8465 getpkt (&rs->buf, &rs->buf_size, 0);
8466 strcpy ((char *) readbuf, rs->buf);
8467
8468 return strlen ((char *) readbuf);
8469 }
8470
8471 static int
8472 remote_search_memory (struct target_ops* ops,
8473 CORE_ADDR start_addr, ULONGEST search_space_len,
8474 const gdb_byte *pattern, ULONGEST pattern_len,
8475 CORE_ADDR *found_addrp)
8476 {
8477 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8478 struct remote_state *rs = get_remote_state ();
8479 int max_size = get_memory_write_packet_size ();
8480 struct packet_config *packet =
8481 &remote_protocol_packets[PACKET_qSearch_memory];
8482 /* Number of packet bytes used to encode the pattern;
8483 this could be more than PATTERN_LEN due to escape characters. */
8484 int escaped_pattern_len;
8485 /* Amount of pattern that was encodable in the packet. */
8486 int used_pattern_len;
8487 int i;
8488 int found;
8489 ULONGEST found_addr;
8490
8491 /* Don't go to the target if we don't have to.
8492 This is done before checking packet->support to avoid the possibility that
8493 a success for this edge case means the facility works in general. */
8494 if (pattern_len > search_space_len)
8495 return 0;
8496 if (pattern_len == 0)
8497 {
8498 *found_addrp = start_addr;
8499 return 1;
8500 }
8501
8502 /* If we already know the packet isn't supported, fall back to the simple
8503 way of searching memory. */
8504
8505 if (packet->support == PACKET_DISABLE)
8506 {
8507 /* Target doesn't provided special support, fall back and use the
8508 standard support (copy memory and do the search here). */
8509 return simple_search_memory (ops, start_addr, search_space_len,
8510 pattern, pattern_len, found_addrp);
8511 }
8512
8513 /* Insert header. */
8514 i = snprintf (rs->buf, max_size,
8515 "qSearch:memory:%s;%s;",
8516 phex_nz (start_addr, addr_size),
8517 phex_nz (search_space_len, sizeof (search_space_len)));
8518 max_size -= (i + 1);
8519
8520 /* Escape as much data as fits into rs->buf. */
8521 escaped_pattern_len =
8522 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8523 &used_pattern_len, max_size);
8524
8525 /* Bail if the pattern is too large. */
8526 if (used_pattern_len != pattern_len)
8527 error (_("Pattern is too large to transmit to remote target."));
8528
8529 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8530 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8531 || packet_ok (rs->buf, packet) != PACKET_OK)
8532 {
8533 /* The request may not have worked because the command is not
8534 supported. If so, fall back to the simple way. */
8535 if (packet->support == PACKET_DISABLE)
8536 {
8537 return simple_search_memory (ops, start_addr, search_space_len,
8538 pattern, pattern_len, found_addrp);
8539 }
8540 return -1;
8541 }
8542
8543 if (rs->buf[0] == '0')
8544 found = 0;
8545 else if (rs->buf[0] == '1')
8546 {
8547 found = 1;
8548 if (rs->buf[1] != ',')
8549 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8550 unpack_varlen_hex (rs->buf + 2, &found_addr);
8551 *found_addrp = found_addr;
8552 }
8553 else
8554 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8555
8556 return found;
8557 }
8558
8559 static void
8560 remote_rcmd (char *command,
8561 struct ui_file *outbuf)
8562 {
8563 struct remote_state *rs = get_remote_state ();
8564 char *p = rs->buf;
8565
8566 if (!remote_desc)
8567 error (_("remote rcmd is only available after target open"));
8568
8569 /* Send a NULL command across as an empty command. */
8570 if (command == NULL)
8571 command = "";
8572
8573 /* The query prefix. */
8574 strcpy (rs->buf, "qRcmd,");
8575 p = strchr (rs->buf, '\0');
8576
8577 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8578 > get_remote_packet_size ())
8579 error (_("\"monitor\" command ``%s'' is too long."), command);
8580
8581 /* Encode the actual command. */
8582 bin2hex ((gdb_byte *) command, p, 0);
8583
8584 if (putpkt (rs->buf) < 0)
8585 error (_("Communication problem with target."));
8586
8587 /* get/display the response */
8588 while (1)
8589 {
8590 char *buf;
8591
8592 /* XXX - see also remote_get_noisy_reply(). */
8593 rs->buf[0] = '\0';
8594 getpkt (&rs->buf, &rs->buf_size, 0);
8595 buf = rs->buf;
8596 if (buf[0] == '\0')
8597 error (_("Target does not support this command."));
8598 if (buf[0] == 'O' && buf[1] != 'K')
8599 {
8600 remote_console_output (buf + 1); /* 'O' message from stub. */
8601 continue;
8602 }
8603 if (strcmp (buf, "OK") == 0)
8604 break;
8605 if (strlen (buf) == 3 && buf[0] == 'E'
8606 && isdigit (buf[1]) && isdigit (buf[2]))
8607 {
8608 error (_("Protocol error with Rcmd"));
8609 }
8610 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8611 {
8612 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8613
8614 fputc_unfiltered (c, outbuf);
8615 }
8616 break;
8617 }
8618 }
8619
8620 static VEC(mem_region_s) *
8621 remote_memory_map (struct target_ops *ops)
8622 {
8623 VEC(mem_region_s) *result = NULL;
8624 char *text = target_read_stralloc (&current_target,
8625 TARGET_OBJECT_MEMORY_MAP, NULL);
8626
8627 if (text)
8628 {
8629 struct cleanup *back_to = make_cleanup (xfree, text);
8630
8631 result = parse_memory_map (text);
8632 do_cleanups (back_to);
8633 }
8634
8635 return result;
8636 }
8637
8638 static void
8639 packet_command (char *args, int from_tty)
8640 {
8641 struct remote_state *rs = get_remote_state ();
8642
8643 if (!remote_desc)
8644 error (_("command can only be used with remote target"));
8645
8646 if (!args)
8647 error (_("remote-packet command requires packet text as argument"));
8648
8649 puts_filtered ("sending: ");
8650 print_packet (args);
8651 puts_filtered ("\n");
8652 putpkt (args);
8653
8654 getpkt (&rs->buf, &rs->buf_size, 0);
8655 puts_filtered ("received: ");
8656 print_packet (rs->buf);
8657 puts_filtered ("\n");
8658 }
8659
8660 #if 0
8661 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8662
8663 static void display_thread_info (struct gdb_ext_thread_info *info);
8664
8665 static void threadset_test_cmd (char *cmd, int tty);
8666
8667 static void threadalive_test (char *cmd, int tty);
8668
8669 static void threadlist_test_cmd (char *cmd, int tty);
8670
8671 int get_and_display_threadinfo (threadref *ref);
8672
8673 static void threadinfo_test_cmd (char *cmd, int tty);
8674
8675 static int thread_display_step (threadref *ref, void *context);
8676
8677 static void threadlist_update_test_cmd (char *cmd, int tty);
8678
8679 static void init_remote_threadtests (void);
8680
8681 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8682
8683 static void
8684 threadset_test_cmd (char *cmd, int tty)
8685 {
8686 int sample_thread = SAMPLE_THREAD;
8687
8688 printf_filtered (_("Remote threadset test\n"));
8689 set_general_thread (sample_thread);
8690 }
8691
8692
8693 static void
8694 threadalive_test (char *cmd, int tty)
8695 {
8696 int sample_thread = SAMPLE_THREAD;
8697 int pid = ptid_get_pid (inferior_ptid);
8698 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8699
8700 if (remote_thread_alive (ptid))
8701 printf_filtered ("PASS: Thread alive test\n");
8702 else
8703 printf_filtered ("FAIL: Thread alive test\n");
8704 }
8705
8706 void output_threadid (char *title, threadref *ref);
8707
8708 void
8709 output_threadid (char *title, threadref *ref)
8710 {
8711 char hexid[20];
8712
8713 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8714 hexid[16] = 0;
8715 printf_filtered ("%s %s\n", title, (&hexid[0]));
8716 }
8717
8718 static void
8719 threadlist_test_cmd (char *cmd, int tty)
8720 {
8721 int startflag = 1;
8722 threadref nextthread;
8723 int done, result_count;
8724 threadref threadlist[3];
8725
8726 printf_filtered ("Remote Threadlist test\n");
8727 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8728 &result_count, &threadlist[0]))
8729 printf_filtered ("FAIL: threadlist test\n");
8730 else
8731 {
8732 threadref *scan = threadlist;
8733 threadref *limit = scan + result_count;
8734
8735 while (scan < limit)
8736 output_threadid (" thread ", scan++);
8737 }
8738 }
8739
8740 void
8741 display_thread_info (struct gdb_ext_thread_info *info)
8742 {
8743 output_threadid ("Threadid: ", &info->threadid);
8744 printf_filtered ("Name: %s\n ", info->shortname);
8745 printf_filtered ("State: %s\n", info->display);
8746 printf_filtered ("other: %s\n\n", info->more_display);
8747 }
8748
8749 int
8750 get_and_display_threadinfo (threadref *ref)
8751 {
8752 int result;
8753 int set;
8754 struct gdb_ext_thread_info threadinfo;
8755
8756 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8757 | TAG_MOREDISPLAY | TAG_DISPLAY;
8758 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8759 display_thread_info (&threadinfo);
8760 return result;
8761 }
8762
8763 static void
8764 threadinfo_test_cmd (char *cmd, int tty)
8765 {
8766 int athread = SAMPLE_THREAD;
8767 threadref thread;
8768 int set;
8769
8770 int_to_threadref (&thread, athread);
8771 printf_filtered ("Remote Threadinfo test\n");
8772 if (!get_and_display_threadinfo (&thread))
8773 printf_filtered ("FAIL cannot get thread info\n");
8774 }
8775
8776 static int
8777 thread_display_step (threadref *ref, void *context)
8778 {
8779 /* output_threadid(" threadstep ",ref); *//* simple test */
8780 return get_and_display_threadinfo (ref);
8781 }
8782
8783 static void
8784 threadlist_update_test_cmd (char *cmd, int tty)
8785 {
8786 printf_filtered ("Remote Threadlist update test\n");
8787 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8788 }
8789
8790 static void
8791 init_remote_threadtests (void)
8792 {
8793 add_com ("tlist", class_obscure, threadlist_test_cmd,
8794 _("Fetch and print the remote list of "
8795 "thread identifiers, one pkt only"));
8796 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8797 _("Fetch and display info about one thread"));
8798 add_com ("tset", class_obscure, threadset_test_cmd,
8799 _("Test setting to a different thread"));
8800 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8801 _("Iterate through updating all remote thread info"));
8802 add_com ("talive", class_obscure, threadalive_test,
8803 _(" Remote thread alive test "));
8804 }
8805
8806 #endif /* 0 */
8807
8808 /* Convert a thread ID to a string. Returns the string in a static
8809 buffer. */
8810
8811 static char *
8812 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8813 {
8814 static char buf[64];
8815 struct remote_state *rs = get_remote_state ();
8816
8817 if (ptid_is_pid (ptid))
8818 {
8819 /* Printing an inferior target id. */
8820
8821 /* When multi-process extensions are off, there's no way in the
8822 remote protocol to know the remote process id, if there's any
8823 at all. There's one exception --- when we're connected with
8824 target extended-remote, and we manually attached to a process
8825 with "attach PID". We don't record anywhere a flag that
8826 allows us to distinguish that case from the case of
8827 connecting with extended-remote and the stub already being
8828 attached to a process, and reporting yes to qAttached, hence
8829 no smart special casing here. */
8830 if (!remote_multi_process_p (rs))
8831 {
8832 xsnprintf (buf, sizeof buf, "Remote target");
8833 return buf;
8834 }
8835
8836 return normal_pid_to_str (ptid);
8837 }
8838 else
8839 {
8840 if (ptid_equal (magic_null_ptid, ptid))
8841 xsnprintf (buf, sizeof buf, "Thread <main>");
8842 else if (rs->extended && remote_multi_process_p (rs))
8843 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8844 ptid_get_pid (ptid), ptid_get_tid (ptid));
8845 else
8846 xsnprintf (buf, sizeof buf, "Thread %ld",
8847 ptid_get_tid (ptid));
8848 return buf;
8849 }
8850 }
8851
8852 /* Get the address of the thread local variable in OBJFILE which is
8853 stored at OFFSET within the thread local storage for thread PTID. */
8854
8855 static CORE_ADDR
8856 remote_get_thread_local_address (struct target_ops *ops,
8857 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8858 {
8859 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8860 {
8861 struct remote_state *rs = get_remote_state ();
8862 char *p = rs->buf;
8863 char *endp = rs->buf + get_remote_packet_size ();
8864 enum packet_result result;
8865
8866 strcpy (p, "qGetTLSAddr:");
8867 p += strlen (p);
8868 p = write_ptid (p, endp, ptid);
8869 *p++ = ',';
8870 p += hexnumstr (p, offset);
8871 *p++ = ',';
8872 p += hexnumstr (p, lm);
8873 *p++ = '\0';
8874
8875 putpkt (rs->buf);
8876 getpkt (&rs->buf, &rs->buf_size, 0);
8877 result = packet_ok (rs->buf,
8878 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8879 if (result == PACKET_OK)
8880 {
8881 ULONGEST result;
8882
8883 unpack_varlen_hex (rs->buf, &result);
8884 return result;
8885 }
8886 else if (result == PACKET_UNKNOWN)
8887 throw_error (TLS_GENERIC_ERROR,
8888 _("Remote target doesn't support qGetTLSAddr packet"));
8889 else
8890 throw_error (TLS_GENERIC_ERROR,
8891 _("Remote target failed to process qGetTLSAddr request"));
8892 }
8893 else
8894 throw_error (TLS_GENERIC_ERROR,
8895 _("TLS not supported or disabled on this target"));
8896 /* Not reached. */
8897 return 0;
8898 }
8899
8900 /* Provide thread local base, i.e. Thread Information Block address.
8901 Returns 1 if ptid is found and thread_local_base is non zero. */
8902
8903 int
8904 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8905 {
8906 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8907 {
8908 struct remote_state *rs = get_remote_state ();
8909 char *p = rs->buf;
8910 char *endp = rs->buf + get_remote_packet_size ();
8911 enum packet_result result;
8912
8913 strcpy (p, "qGetTIBAddr:");
8914 p += strlen (p);
8915 p = write_ptid (p, endp, ptid);
8916 *p++ = '\0';
8917
8918 putpkt (rs->buf);
8919 getpkt (&rs->buf, &rs->buf_size, 0);
8920 result = packet_ok (rs->buf,
8921 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8922 if (result == PACKET_OK)
8923 {
8924 ULONGEST result;
8925
8926 unpack_varlen_hex (rs->buf, &result);
8927 if (addr)
8928 *addr = (CORE_ADDR) result;
8929 return 1;
8930 }
8931 else if (result == PACKET_UNKNOWN)
8932 error (_("Remote target doesn't support qGetTIBAddr packet"));
8933 else
8934 error (_("Remote target failed to process qGetTIBAddr request"));
8935 }
8936 else
8937 error (_("qGetTIBAddr not supported or disabled on this target"));
8938 /* Not reached. */
8939 return 0;
8940 }
8941
8942 /* Support for inferring a target description based on the current
8943 architecture and the size of a 'g' packet. While the 'g' packet
8944 can have any size (since optional registers can be left off the
8945 end), some sizes are easily recognizable given knowledge of the
8946 approximate architecture. */
8947
8948 struct remote_g_packet_guess
8949 {
8950 int bytes;
8951 const struct target_desc *tdesc;
8952 };
8953 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8954 DEF_VEC_O(remote_g_packet_guess_s);
8955
8956 struct remote_g_packet_data
8957 {
8958 VEC(remote_g_packet_guess_s) *guesses;
8959 };
8960
8961 static struct gdbarch_data *remote_g_packet_data_handle;
8962
8963 static void *
8964 remote_g_packet_data_init (struct obstack *obstack)
8965 {
8966 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8967 }
8968
8969 void
8970 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8971 const struct target_desc *tdesc)
8972 {
8973 struct remote_g_packet_data *data
8974 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8975 struct remote_g_packet_guess new_guess, *guess;
8976 int ix;
8977
8978 gdb_assert (tdesc != NULL);
8979
8980 for (ix = 0;
8981 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8982 ix++)
8983 if (guess->bytes == bytes)
8984 internal_error (__FILE__, __LINE__,
8985 _("Duplicate g packet description added for size %d"),
8986 bytes);
8987
8988 new_guess.bytes = bytes;
8989 new_guess.tdesc = tdesc;
8990 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8991 }
8992
8993 /* Return 1 if remote_read_description would do anything on this target
8994 and architecture, 0 otherwise. */
8995
8996 static int
8997 remote_read_description_p (struct target_ops *target)
8998 {
8999 struct remote_g_packet_data *data
9000 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9001
9002 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9003 return 1;
9004
9005 return 0;
9006 }
9007
9008 static const struct target_desc *
9009 remote_read_description (struct target_ops *target)
9010 {
9011 struct remote_g_packet_data *data
9012 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9013
9014 /* Do not try this during initial connection, when we do not know
9015 whether there is a running but stopped thread. */
9016 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9017 return NULL;
9018
9019 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9020 {
9021 struct remote_g_packet_guess *guess;
9022 int ix;
9023 int bytes = send_g_packet ();
9024
9025 for (ix = 0;
9026 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9027 ix++)
9028 if (guess->bytes == bytes)
9029 return guess->tdesc;
9030
9031 /* We discard the g packet. A minor optimization would be to
9032 hold on to it, and fill the register cache once we have selected
9033 an architecture, but it's too tricky to do safely. */
9034 }
9035
9036 return NULL;
9037 }
9038
9039 /* Remote file transfer support. This is host-initiated I/O, not
9040 target-initiated; for target-initiated, see remote-fileio.c. */
9041
9042 /* If *LEFT is at least the length of STRING, copy STRING to
9043 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9044 decrease *LEFT. Otherwise raise an error. */
9045
9046 static void
9047 remote_buffer_add_string (char **buffer, int *left, char *string)
9048 {
9049 int len = strlen (string);
9050
9051 if (len > *left)
9052 error (_("Packet too long for target."));
9053
9054 memcpy (*buffer, string, len);
9055 *buffer += len;
9056 *left -= len;
9057
9058 /* NUL-terminate the buffer as a convenience, if there is
9059 room. */
9060 if (*left)
9061 **buffer = '\0';
9062 }
9063
9064 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9065 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9066 decrease *LEFT. Otherwise raise an error. */
9067
9068 static void
9069 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9070 int len)
9071 {
9072 if (2 * len > *left)
9073 error (_("Packet too long for target."));
9074
9075 bin2hex (bytes, *buffer, len);
9076 *buffer += 2 * len;
9077 *left -= 2 * len;
9078
9079 /* NUL-terminate the buffer as a convenience, if there is
9080 room. */
9081 if (*left)
9082 **buffer = '\0';
9083 }
9084
9085 /* If *LEFT is large enough, convert VALUE to hex and add it to
9086 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9087 decrease *LEFT. Otherwise raise an error. */
9088
9089 static void
9090 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9091 {
9092 int len = hexnumlen (value);
9093
9094 if (len > *left)
9095 error (_("Packet too long for target."));
9096
9097 hexnumstr (*buffer, value);
9098 *buffer += len;
9099 *left -= len;
9100
9101 /* NUL-terminate the buffer as a convenience, if there is
9102 room. */
9103 if (*left)
9104 **buffer = '\0';
9105 }
9106
9107 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9108 value, *REMOTE_ERRNO to the remote error number or zero if none
9109 was included, and *ATTACHMENT to point to the start of the annex
9110 if any. The length of the packet isn't needed here; there may
9111 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9112
9113 Return 0 if the packet could be parsed, -1 if it could not. If
9114 -1 is returned, the other variables may not be initialized. */
9115
9116 static int
9117 remote_hostio_parse_result (char *buffer, int *retcode,
9118 int *remote_errno, char **attachment)
9119 {
9120 char *p, *p2;
9121
9122 *remote_errno = 0;
9123 *attachment = NULL;
9124
9125 if (buffer[0] != 'F')
9126 return -1;
9127
9128 errno = 0;
9129 *retcode = strtol (&buffer[1], &p, 16);
9130 if (errno != 0 || p == &buffer[1])
9131 return -1;
9132
9133 /* Check for ",errno". */
9134 if (*p == ',')
9135 {
9136 errno = 0;
9137 *remote_errno = strtol (p + 1, &p2, 16);
9138 if (errno != 0 || p + 1 == p2)
9139 return -1;
9140 p = p2;
9141 }
9142
9143 /* Check for ";attachment". If there is no attachment, the
9144 packet should end here. */
9145 if (*p == ';')
9146 {
9147 *attachment = p + 1;
9148 return 0;
9149 }
9150 else if (*p == '\0')
9151 return 0;
9152 else
9153 return -1;
9154 }
9155
9156 /* Send a prepared I/O packet to the target and read its response.
9157 The prepared packet is in the global RS->BUF before this function
9158 is called, and the answer is there when we return.
9159
9160 COMMAND_BYTES is the length of the request to send, which may include
9161 binary data. WHICH_PACKET is the packet configuration to check
9162 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9163 is set to the error number and -1 is returned. Otherwise the value
9164 returned by the function is returned.
9165
9166 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9167 attachment is expected; an error will be reported if there's a
9168 mismatch. If one is found, *ATTACHMENT will be set to point into
9169 the packet buffer and *ATTACHMENT_LEN will be set to the
9170 attachment's length. */
9171
9172 static int
9173 remote_hostio_send_command (int command_bytes, int which_packet,
9174 int *remote_errno, char **attachment,
9175 int *attachment_len)
9176 {
9177 struct remote_state *rs = get_remote_state ();
9178 int ret, bytes_read;
9179 char *attachment_tmp;
9180
9181 if (!remote_desc
9182 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9183 {
9184 *remote_errno = FILEIO_ENOSYS;
9185 return -1;
9186 }
9187
9188 putpkt_binary (rs->buf, command_bytes);
9189 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9190
9191 /* If it timed out, something is wrong. Don't try to parse the
9192 buffer. */
9193 if (bytes_read < 0)
9194 {
9195 *remote_errno = FILEIO_EINVAL;
9196 return -1;
9197 }
9198
9199 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9200 {
9201 case PACKET_ERROR:
9202 *remote_errno = FILEIO_EINVAL;
9203 return -1;
9204 case PACKET_UNKNOWN:
9205 *remote_errno = FILEIO_ENOSYS;
9206 return -1;
9207 case PACKET_OK:
9208 break;
9209 }
9210
9211 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9212 &attachment_tmp))
9213 {
9214 *remote_errno = FILEIO_EINVAL;
9215 return -1;
9216 }
9217
9218 /* Make sure we saw an attachment if and only if we expected one. */
9219 if ((attachment_tmp == NULL && attachment != NULL)
9220 || (attachment_tmp != NULL && attachment == NULL))
9221 {
9222 *remote_errno = FILEIO_EINVAL;
9223 return -1;
9224 }
9225
9226 /* If an attachment was found, it must point into the packet buffer;
9227 work out how many bytes there were. */
9228 if (attachment_tmp != NULL)
9229 {
9230 *attachment = attachment_tmp;
9231 *attachment_len = bytes_read - (*attachment - rs->buf);
9232 }
9233
9234 return ret;
9235 }
9236
9237 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9238 remote file descriptor, or -1 if an error occurs (and set
9239 *REMOTE_ERRNO). */
9240
9241 static int
9242 remote_hostio_open (const char *filename, int flags, int mode,
9243 int *remote_errno)
9244 {
9245 struct remote_state *rs = get_remote_state ();
9246 char *p = rs->buf;
9247 int left = get_remote_packet_size () - 1;
9248
9249 remote_buffer_add_string (&p, &left, "vFile:open:");
9250
9251 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9252 strlen (filename));
9253 remote_buffer_add_string (&p, &left, ",");
9254
9255 remote_buffer_add_int (&p, &left, flags);
9256 remote_buffer_add_string (&p, &left, ",");
9257
9258 remote_buffer_add_int (&p, &left, mode);
9259
9260 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9261 remote_errno, NULL, NULL);
9262 }
9263
9264 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9265 Return the number of bytes written, or -1 if an error occurs (and
9266 set *REMOTE_ERRNO). */
9267
9268 static int
9269 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9270 ULONGEST offset, int *remote_errno)
9271 {
9272 struct remote_state *rs = get_remote_state ();
9273 char *p = rs->buf;
9274 int left = get_remote_packet_size ();
9275 int out_len;
9276
9277 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9278
9279 remote_buffer_add_int (&p, &left, fd);
9280 remote_buffer_add_string (&p, &left, ",");
9281
9282 remote_buffer_add_int (&p, &left, offset);
9283 remote_buffer_add_string (&p, &left, ",");
9284
9285 p += remote_escape_output (write_buf, len, p, &out_len,
9286 get_remote_packet_size () - (p - rs->buf));
9287
9288 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9289 remote_errno, NULL, NULL);
9290 }
9291
9292 /* Read up to LEN bytes FD on the remote target into READ_BUF
9293 Return the number of bytes read, or -1 if an error occurs (and
9294 set *REMOTE_ERRNO). */
9295
9296 static int
9297 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9298 ULONGEST offset, int *remote_errno)
9299 {
9300 struct remote_state *rs = get_remote_state ();
9301 char *p = rs->buf;
9302 char *attachment;
9303 int left = get_remote_packet_size ();
9304 int ret, attachment_len;
9305 int read_len;
9306
9307 remote_buffer_add_string (&p, &left, "vFile:pread:");
9308
9309 remote_buffer_add_int (&p, &left, fd);
9310 remote_buffer_add_string (&p, &left, ",");
9311
9312 remote_buffer_add_int (&p, &left, len);
9313 remote_buffer_add_string (&p, &left, ",");
9314
9315 remote_buffer_add_int (&p, &left, offset);
9316
9317 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9318 remote_errno, &attachment,
9319 &attachment_len);
9320
9321 if (ret < 0)
9322 return ret;
9323
9324 read_len = remote_unescape_input (attachment, attachment_len,
9325 read_buf, len);
9326 if (read_len != ret)
9327 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9328
9329 return ret;
9330 }
9331
9332 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9333 (and set *REMOTE_ERRNO). */
9334
9335 static int
9336 remote_hostio_close (int fd, int *remote_errno)
9337 {
9338 struct remote_state *rs = get_remote_state ();
9339 char *p = rs->buf;
9340 int left = get_remote_packet_size () - 1;
9341
9342 remote_buffer_add_string (&p, &left, "vFile:close:");
9343
9344 remote_buffer_add_int (&p, &left, fd);
9345
9346 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9347 remote_errno, NULL, NULL);
9348 }
9349
9350 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9351 occurs (and set *REMOTE_ERRNO). */
9352
9353 static int
9354 remote_hostio_unlink (const char *filename, int *remote_errno)
9355 {
9356 struct remote_state *rs = get_remote_state ();
9357 char *p = rs->buf;
9358 int left = get_remote_packet_size () - 1;
9359
9360 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9361
9362 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9363 strlen (filename));
9364
9365 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9366 remote_errno, NULL, NULL);
9367 }
9368
9369 /* Read value of symbolic link FILENAME on the remote target. Return
9370 a null-terminated string allocated via xmalloc, or NULL if an error
9371 occurs (and set *REMOTE_ERRNO). */
9372
9373 static char *
9374 remote_hostio_readlink (const char *filename, int *remote_errno)
9375 {
9376 struct remote_state *rs = get_remote_state ();
9377 char *p = rs->buf;
9378 char *attachment;
9379 int left = get_remote_packet_size ();
9380 int len, attachment_len;
9381 int read_len;
9382 char *ret;
9383
9384 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9385
9386 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9387 strlen (filename));
9388
9389 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9390 remote_errno, &attachment,
9391 &attachment_len);
9392
9393 if (len < 0)
9394 return NULL;
9395
9396 ret = xmalloc (len + 1);
9397
9398 read_len = remote_unescape_input (attachment, attachment_len,
9399 ret, len);
9400 if (read_len != len)
9401 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9402
9403 ret[len] = '\0';
9404 return ret;
9405 }
9406
9407 static int
9408 remote_fileio_errno_to_host (int errnum)
9409 {
9410 switch (errnum)
9411 {
9412 case FILEIO_EPERM:
9413 return EPERM;
9414 case FILEIO_ENOENT:
9415 return ENOENT;
9416 case FILEIO_EINTR:
9417 return EINTR;
9418 case FILEIO_EIO:
9419 return EIO;
9420 case FILEIO_EBADF:
9421 return EBADF;
9422 case FILEIO_EACCES:
9423 return EACCES;
9424 case FILEIO_EFAULT:
9425 return EFAULT;
9426 case FILEIO_EBUSY:
9427 return EBUSY;
9428 case FILEIO_EEXIST:
9429 return EEXIST;
9430 case FILEIO_ENODEV:
9431 return ENODEV;
9432 case FILEIO_ENOTDIR:
9433 return ENOTDIR;
9434 case FILEIO_EISDIR:
9435 return EISDIR;
9436 case FILEIO_EINVAL:
9437 return EINVAL;
9438 case FILEIO_ENFILE:
9439 return ENFILE;
9440 case FILEIO_EMFILE:
9441 return EMFILE;
9442 case FILEIO_EFBIG:
9443 return EFBIG;
9444 case FILEIO_ENOSPC:
9445 return ENOSPC;
9446 case FILEIO_ESPIPE:
9447 return ESPIPE;
9448 case FILEIO_EROFS:
9449 return EROFS;
9450 case FILEIO_ENOSYS:
9451 return ENOSYS;
9452 case FILEIO_ENAMETOOLONG:
9453 return ENAMETOOLONG;
9454 }
9455 return -1;
9456 }
9457
9458 static char *
9459 remote_hostio_error (int errnum)
9460 {
9461 int host_error = remote_fileio_errno_to_host (errnum);
9462
9463 if (host_error == -1)
9464 error (_("Unknown remote I/O error %d"), errnum);
9465 else
9466 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9467 }
9468
9469 static void
9470 remote_hostio_close_cleanup (void *opaque)
9471 {
9472 int fd = *(int *) opaque;
9473 int remote_errno;
9474
9475 remote_hostio_close (fd, &remote_errno);
9476 }
9477
9478
9479 static void *
9480 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9481 {
9482 const char *filename = bfd_get_filename (abfd);
9483 int fd, remote_errno;
9484 int *stream;
9485
9486 gdb_assert (remote_filename_p (filename));
9487
9488 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9489 if (fd == -1)
9490 {
9491 errno = remote_fileio_errno_to_host (remote_errno);
9492 bfd_set_error (bfd_error_system_call);
9493 return NULL;
9494 }
9495
9496 stream = xmalloc (sizeof (int));
9497 *stream = fd;
9498 return stream;
9499 }
9500
9501 static int
9502 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9503 {
9504 int fd = *(int *)stream;
9505 int remote_errno;
9506
9507 xfree (stream);
9508
9509 /* Ignore errors on close; these may happen if the remote
9510 connection was already torn down. */
9511 remote_hostio_close (fd, &remote_errno);
9512
9513 return 1;
9514 }
9515
9516 static file_ptr
9517 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9518 file_ptr nbytes, file_ptr offset)
9519 {
9520 int fd = *(int *)stream;
9521 int remote_errno;
9522 file_ptr pos, bytes;
9523
9524 pos = 0;
9525 while (nbytes > pos)
9526 {
9527 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9528 offset + pos, &remote_errno);
9529 if (bytes == 0)
9530 /* Success, but no bytes, means end-of-file. */
9531 break;
9532 if (bytes == -1)
9533 {
9534 errno = remote_fileio_errno_to_host (remote_errno);
9535 bfd_set_error (bfd_error_system_call);
9536 return -1;
9537 }
9538
9539 pos += bytes;
9540 }
9541
9542 return pos;
9543 }
9544
9545 static int
9546 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9547 {
9548 /* FIXME: We should probably implement remote_hostio_stat. */
9549 sb->st_size = INT_MAX;
9550 return 0;
9551 }
9552
9553 int
9554 remote_filename_p (const char *filename)
9555 {
9556 return strncmp (filename, "remote:", 7) == 0;
9557 }
9558
9559 bfd *
9560 remote_bfd_open (const char *remote_file, const char *target)
9561 {
9562 return bfd_openr_iovec (remote_file, target,
9563 remote_bfd_iovec_open, NULL,
9564 remote_bfd_iovec_pread,
9565 remote_bfd_iovec_close,
9566 remote_bfd_iovec_stat);
9567 }
9568
9569 void
9570 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9571 {
9572 struct cleanup *back_to, *close_cleanup;
9573 int retcode, fd, remote_errno, bytes, io_size;
9574 FILE *file;
9575 gdb_byte *buffer;
9576 int bytes_in_buffer;
9577 int saw_eof;
9578 ULONGEST offset;
9579
9580 if (!remote_desc)
9581 error (_("command can only be used with remote target"));
9582
9583 file = fopen (local_file, "rb");
9584 if (file == NULL)
9585 perror_with_name (local_file);
9586 back_to = make_cleanup_fclose (file);
9587
9588 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9589 | FILEIO_O_TRUNC),
9590 0700, &remote_errno);
9591 if (fd == -1)
9592 remote_hostio_error (remote_errno);
9593
9594 /* Send up to this many bytes at once. They won't all fit in the
9595 remote packet limit, so we'll transfer slightly fewer. */
9596 io_size = get_remote_packet_size ();
9597 buffer = xmalloc (io_size);
9598 make_cleanup (xfree, buffer);
9599
9600 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9601
9602 bytes_in_buffer = 0;
9603 saw_eof = 0;
9604 offset = 0;
9605 while (bytes_in_buffer || !saw_eof)
9606 {
9607 if (!saw_eof)
9608 {
9609 bytes = fread (buffer + bytes_in_buffer, 1,
9610 io_size - bytes_in_buffer,
9611 file);
9612 if (bytes == 0)
9613 {
9614 if (ferror (file))
9615 error (_("Error reading %s."), local_file);
9616 else
9617 {
9618 /* EOF. Unless there is something still in the
9619 buffer from the last iteration, we are done. */
9620 saw_eof = 1;
9621 if (bytes_in_buffer == 0)
9622 break;
9623 }
9624 }
9625 }
9626 else
9627 bytes = 0;
9628
9629 bytes += bytes_in_buffer;
9630 bytes_in_buffer = 0;
9631
9632 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9633 offset, &remote_errno);
9634
9635 if (retcode < 0)
9636 remote_hostio_error (remote_errno);
9637 else if (retcode == 0)
9638 error (_("Remote write of %d bytes returned 0!"), bytes);
9639 else if (retcode < bytes)
9640 {
9641 /* Short write. Save the rest of the read data for the next
9642 write. */
9643 bytes_in_buffer = bytes - retcode;
9644 memmove (buffer, buffer + retcode, bytes_in_buffer);
9645 }
9646
9647 offset += retcode;
9648 }
9649
9650 discard_cleanups (close_cleanup);
9651 if (remote_hostio_close (fd, &remote_errno))
9652 remote_hostio_error (remote_errno);
9653
9654 if (from_tty)
9655 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9656 do_cleanups (back_to);
9657 }
9658
9659 void
9660 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9661 {
9662 struct cleanup *back_to, *close_cleanup;
9663 int fd, remote_errno, bytes, io_size;
9664 FILE *file;
9665 gdb_byte *buffer;
9666 ULONGEST offset;
9667
9668 if (!remote_desc)
9669 error (_("command can only be used with remote target"));
9670
9671 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9672 if (fd == -1)
9673 remote_hostio_error (remote_errno);
9674
9675 file = fopen (local_file, "wb");
9676 if (file == NULL)
9677 perror_with_name (local_file);
9678 back_to = make_cleanup_fclose (file);
9679
9680 /* Send up to this many bytes at once. They won't all fit in the
9681 remote packet limit, so we'll transfer slightly fewer. */
9682 io_size = get_remote_packet_size ();
9683 buffer = xmalloc (io_size);
9684 make_cleanup (xfree, buffer);
9685
9686 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9687
9688 offset = 0;
9689 while (1)
9690 {
9691 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9692 if (bytes == 0)
9693 /* Success, but no bytes, means end-of-file. */
9694 break;
9695 if (bytes == -1)
9696 remote_hostio_error (remote_errno);
9697
9698 offset += bytes;
9699
9700 bytes = fwrite (buffer, 1, bytes, file);
9701 if (bytes == 0)
9702 perror_with_name (local_file);
9703 }
9704
9705 discard_cleanups (close_cleanup);
9706 if (remote_hostio_close (fd, &remote_errno))
9707 remote_hostio_error (remote_errno);
9708
9709 if (from_tty)
9710 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9711 do_cleanups (back_to);
9712 }
9713
9714 void
9715 remote_file_delete (const char *remote_file, int from_tty)
9716 {
9717 int retcode, remote_errno;
9718
9719 if (!remote_desc)
9720 error (_("command can only be used with remote target"));
9721
9722 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9723 if (retcode == -1)
9724 remote_hostio_error (remote_errno);
9725
9726 if (from_tty)
9727 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9728 }
9729
9730 static void
9731 remote_put_command (char *args, int from_tty)
9732 {
9733 struct cleanup *back_to;
9734 char **argv;
9735
9736 if (args == NULL)
9737 error_no_arg (_("file to put"));
9738
9739 argv = gdb_buildargv (args);
9740 back_to = make_cleanup_freeargv (argv);
9741 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9742 error (_("Invalid parameters to remote put"));
9743
9744 remote_file_put (argv[0], argv[1], from_tty);
9745
9746 do_cleanups (back_to);
9747 }
9748
9749 static void
9750 remote_get_command (char *args, int from_tty)
9751 {
9752 struct cleanup *back_to;
9753 char **argv;
9754
9755 if (args == NULL)
9756 error_no_arg (_("file to get"));
9757
9758 argv = gdb_buildargv (args);
9759 back_to = make_cleanup_freeargv (argv);
9760 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9761 error (_("Invalid parameters to remote get"));
9762
9763 remote_file_get (argv[0], argv[1], from_tty);
9764
9765 do_cleanups (back_to);
9766 }
9767
9768 static void
9769 remote_delete_command (char *args, int from_tty)
9770 {
9771 struct cleanup *back_to;
9772 char **argv;
9773
9774 if (args == NULL)
9775 error_no_arg (_("file to delete"));
9776
9777 argv = gdb_buildargv (args);
9778 back_to = make_cleanup_freeargv (argv);
9779 if (argv[0] == NULL || argv[1] != NULL)
9780 error (_("Invalid parameters to remote delete"));
9781
9782 remote_file_delete (argv[0], from_tty);
9783
9784 do_cleanups (back_to);
9785 }
9786
9787 static void
9788 remote_command (char *args, int from_tty)
9789 {
9790 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9791 }
9792
9793 static int
9794 remote_can_execute_reverse (void)
9795 {
9796 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9797 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9798 return 1;
9799 else
9800 return 0;
9801 }
9802
9803 static int
9804 remote_supports_non_stop (void)
9805 {
9806 return 1;
9807 }
9808
9809 static int
9810 remote_supports_disable_randomization (void)
9811 {
9812 /* Only supported in extended mode. */
9813 return 0;
9814 }
9815
9816 static int
9817 remote_supports_multi_process (void)
9818 {
9819 struct remote_state *rs = get_remote_state ();
9820
9821 /* Only extended-remote handles being attached to multiple
9822 processes, even though plain remote can use the multi-process
9823 thread id extensions, so that GDB knows the target process's
9824 PID. */
9825 return rs->extended && remote_multi_process_p (rs);
9826 }
9827
9828 int
9829 remote_supports_cond_tracepoints (void)
9830 {
9831 struct remote_state *rs = get_remote_state ();
9832
9833 return rs->cond_tracepoints;
9834 }
9835
9836 int
9837 remote_supports_fast_tracepoints (void)
9838 {
9839 struct remote_state *rs = get_remote_state ();
9840
9841 return rs->fast_tracepoints;
9842 }
9843
9844 static int
9845 remote_supports_static_tracepoints (void)
9846 {
9847 struct remote_state *rs = get_remote_state ();
9848
9849 return rs->static_tracepoints;
9850 }
9851
9852 static int
9853 remote_supports_install_in_trace (void)
9854 {
9855 struct remote_state *rs = get_remote_state ();
9856
9857 return rs->install_in_trace;
9858 }
9859
9860 static int
9861 remote_supports_enable_disable_tracepoint (void)
9862 {
9863 struct remote_state *rs = get_remote_state ();
9864
9865 return rs->enable_disable_tracepoints;
9866 }
9867
9868 static int
9869 remote_supports_string_tracing (void)
9870 {
9871 struct remote_state *rs = get_remote_state ();
9872
9873 return rs->string_tracing;
9874 }
9875
9876 static void
9877 remote_trace_init (void)
9878 {
9879 putpkt ("QTinit");
9880 remote_get_noisy_reply (&target_buf, &target_buf_size);
9881 if (strcmp (target_buf, "OK") != 0)
9882 error (_("Target does not support this command."));
9883 }
9884
9885 static void free_actions_list (char **actions_list);
9886 static void free_actions_list_cleanup_wrapper (void *);
9887 static void
9888 free_actions_list_cleanup_wrapper (void *al)
9889 {
9890 free_actions_list (al);
9891 }
9892
9893 static void
9894 free_actions_list (char **actions_list)
9895 {
9896 int ndx;
9897
9898 if (actions_list == 0)
9899 return;
9900
9901 for (ndx = 0; actions_list[ndx]; ndx++)
9902 xfree (actions_list[ndx]);
9903
9904 xfree (actions_list);
9905 }
9906
9907 /* Recursive routine to walk through command list including loops, and
9908 download packets for each command. */
9909
9910 static void
9911 remote_download_command_source (int num, ULONGEST addr,
9912 struct command_line *cmds)
9913 {
9914 struct remote_state *rs = get_remote_state ();
9915 struct command_line *cmd;
9916
9917 for (cmd = cmds; cmd; cmd = cmd->next)
9918 {
9919 QUIT; /* Allow user to bail out with ^C. */
9920 strcpy (rs->buf, "QTDPsrc:");
9921 encode_source_string (num, addr, "cmd", cmd->line,
9922 rs->buf + strlen (rs->buf),
9923 rs->buf_size - strlen (rs->buf));
9924 putpkt (rs->buf);
9925 remote_get_noisy_reply (&target_buf, &target_buf_size);
9926 if (strcmp (target_buf, "OK"))
9927 warning (_("Target does not support source download."));
9928
9929 if (cmd->control_type == while_control
9930 || cmd->control_type == while_stepping_control)
9931 {
9932 remote_download_command_source (num, addr, *cmd->body_list);
9933
9934 QUIT; /* Allow user to bail out with ^C. */
9935 strcpy (rs->buf, "QTDPsrc:");
9936 encode_source_string (num, addr, "cmd", "end",
9937 rs->buf + strlen (rs->buf),
9938 rs->buf_size - strlen (rs->buf));
9939 putpkt (rs->buf);
9940 remote_get_noisy_reply (&target_buf, &target_buf_size);
9941 if (strcmp (target_buf, "OK"))
9942 warning (_("Target does not support source download."));
9943 }
9944 }
9945 }
9946
9947 static void
9948 remote_download_tracepoint (struct bp_location *loc)
9949 {
9950
9951 CORE_ADDR tpaddr;
9952 char addrbuf[40];
9953 char buf[2048];
9954 char **tdp_actions;
9955 char **stepping_actions;
9956 int ndx;
9957 struct cleanup *old_chain = NULL;
9958 struct agent_expr *aexpr;
9959 struct cleanup *aexpr_chain = NULL;
9960 char *pkt;
9961 struct breakpoint *b = loc->owner;
9962 struct tracepoint *t = (struct tracepoint *) b;
9963
9964 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
9965 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9966 tdp_actions);
9967 (void) make_cleanup (free_actions_list_cleanup_wrapper,
9968 stepping_actions);
9969
9970 tpaddr = loc->address;
9971 sprintf_vma (addrbuf, tpaddr);
9972 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", b->number,
9973 addrbuf, /* address */
9974 (b->enable_state == bp_enabled ? 'E' : 'D'),
9975 t->step_count, t->pass_count);
9976 /* Fast tracepoints are mostly handled by the target, but we can
9977 tell the target how big of an instruction block should be moved
9978 around. */
9979 if (b->type == bp_fast_tracepoint)
9980 {
9981 /* Only test for support at download time; we may not know
9982 target capabilities at definition time. */
9983 if (remote_supports_fast_tracepoints ())
9984 {
9985 int isize;
9986
9987 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9988 tpaddr, &isize, NULL))
9989 sprintf (buf + strlen (buf), ":F%x", isize);
9990 else
9991 /* If it passed validation at definition but fails now,
9992 something is very wrong. */
9993 internal_error (__FILE__, __LINE__,
9994 _("Fast tracepoint not "
9995 "valid during download"));
9996 }
9997 else
9998 /* Fast tracepoints are functionally identical to regular
9999 tracepoints, so don't take lack of support as a reason to
10000 give up on the trace run. */
10001 warning (_("Target does not support fast tracepoints, "
10002 "downloading %d as regular tracepoint"), b->number);
10003 }
10004 else if (b->type == bp_static_tracepoint)
10005 {
10006 /* Only test for support at download time; we may not know
10007 target capabilities at definition time. */
10008 if (remote_supports_static_tracepoints ())
10009 {
10010 struct static_tracepoint_marker marker;
10011
10012 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10013 strcat (buf, ":S");
10014 else
10015 error (_("Static tracepoint not valid during download"));
10016 }
10017 else
10018 /* Fast tracepoints are functionally identical to regular
10019 tracepoints, so don't take lack of support as a reason
10020 to give up on the trace run. */
10021 error (_("Target does not support static tracepoints"));
10022 }
10023 /* If the tracepoint has a conditional, make it into an agent
10024 expression and append to the definition. */
10025 if (loc->cond)
10026 {
10027 /* Only test support at download time, we may not know target
10028 capabilities at definition time. */
10029 if (remote_supports_cond_tracepoints ())
10030 {
10031 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10032 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10033 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
10034 pkt = buf + strlen (buf);
10035 for (ndx = 0; ndx < aexpr->len; ++ndx)
10036 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10037 *pkt = '\0';
10038 do_cleanups (aexpr_chain);
10039 }
10040 else
10041 warning (_("Target does not support conditional tracepoints, "
10042 "ignoring tp %d cond"), b->number);
10043 }
10044
10045 if (b->commands || *default_collect)
10046 strcat (buf, "-");
10047 putpkt (buf);
10048 remote_get_noisy_reply (&target_buf, &target_buf_size);
10049 if (strcmp (target_buf, "OK"))
10050 error (_("Target does not support tracepoints."));
10051
10052 /* do_single_steps (t); */
10053 if (tdp_actions)
10054 {
10055 for (ndx = 0; tdp_actions[ndx]; ndx++)
10056 {
10057 QUIT; /* Allow user to bail out with ^C. */
10058 sprintf (buf, "QTDP:-%x:%s:%s%c",
10059 b->number, addrbuf, /* address */
10060 tdp_actions[ndx],
10061 ((tdp_actions[ndx + 1] || stepping_actions)
10062 ? '-' : 0));
10063 putpkt (buf);
10064 remote_get_noisy_reply (&target_buf,
10065 &target_buf_size);
10066 if (strcmp (target_buf, "OK"))
10067 error (_("Error on target while setting tracepoints."));
10068 }
10069 }
10070 if (stepping_actions)
10071 {
10072 for (ndx = 0; stepping_actions[ndx]; ndx++)
10073 {
10074 QUIT; /* Allow user to bail out with ^C. */
10075 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
10076 b->number, addrbuf, /* address */
10077 ((ndx == 0) ? "S" : ""),
10078 stepping_actions[ndx],
10079 (stepping_actions[ndx + 1] ? "-" : ""));
10080 putpkt (buf);
10081 remote_get_noisy_reply (&target_buf,
10082 &target_buf_size);
10083 if (strcmp (target_buf, "OK"))
10084 error (_("Error on target while setting tracepoints."));
10085 }
10086 }
10087
10088 if (remote_protocol_packets[PACKET_TracepointSource].support
10089 == PACKET_ENABLE)
10090 {
10091 if (b->addr_string)
10092 {
10093 strcpy (buf, "QTDPsrc:");
10094 encode_source_string (b->number, loc->address,
10095 "at", b->addr_string, buf + strlen (buf),
10096 2048 - strlen (buf));
10097
10098 putpkt (buf);
10099 remote_get_noisy_reply (&target_buf, &target_buf_size);
10100 if (strcmp (target_buf, "OK"))
10101 warning (_("Target does not support source download."));
10102 }
10103 if (b->cond_string)
10104 {
10105 strcpy (buf, "QTDPsrc:");
10106 encode_source_string (b->number, loc->address,
10107 "cond", b->cond_string, buf + strlen (buf),
10108 2048 - strlen (buf));
10109 putpkt (buf);
10110 remote_get_noisy_reply (&target_buf, &target_buf_size);
10111 if (strcmp (target_buf, "OK"))
10112 warning (_("Target does not support source download."));
10113 }
10114 remote_download_command_source (b->number, loc->address,
10115 breakpoint_commands (b));
10116 }
10117
10118 do_cleanups (old_chain);
10119 }
10120
10121 static int
10122 remote_can_download_tracepoint (void)
10123 {
10124 struct trace_status *ts = current_trace_status ();
10125 int status = remote_get_trace_status (ts);
10126
10127 if (status == -1 || !ts->running_known || !ts->running)
10128 return 0;
10129
10130 /* If we are in a tracing experiment, but remote stub doesn't support
10131 installing tracepoint in trace, we have to return. */
10132 if (!remote_supports_install_in_trace ())
10133 return 0;
10134
10135 return 1;
10136 }
10137
10138
10139 static void
10140 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10141 {
10142 struct remote_state *rs = get_remote_state ();
10143 char *p;
10144
10145 sprintf (rs->buf, "QTDV:%x:%s:%x:",
10146 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
10147 p = rs->buf + strlen (rs->buf);
10148 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10149 error (_("Trace state variable name too long for tsv definition packet"));
10150 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10151 *p++ = '\0';
10152 putpkt (rs->buf);
10153 remote_get_noisy_reply (&target_buf, &target_buf_size);
10154 if (*target_buf == '\0')
10155 error (_("Target does not support this command."));
10156 if (strcmp (target_buf, "OK") != 0)
10157 error (_("Error on target while downloading trace state variable."));
10158 }
10159
10160 static void
10161 remote_enable_tracepoint (struct bp_location *location)
10162 {
10163 struct remote_state *rs = get_remote_state ();
10164 char addr_buf[40];
10165
10166 sprintf_vma (addr_buf, location->address);
10167 sprintf (rs->buf, "QTEnable:%x:%s", location->owner->number, addr_buf);
10168 putpkt (rs->buf);
10169 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10170 if (*rs->buf == '\0')
10171 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10172 if (strcmp (rs->buf, "OK") != 0)
10173 error (_("Error on target while enabling tracepoint."));
10174 }
10175
10176 static void
10177 remote_disable_tracepoint (struct bp_location *location)
10178 {
10179 struct remote_state *rs = get_remote_state ();
10180 char addr_buf[40];
10181
10182 sprintf_vma (addr_buf, location->address);
10183 sprintf (rs->buf, "QTDisable:%x:%s", location->owner->number, addr_buf);
10184 putpkt (rs->buf);
10185 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10186 if (*rs->buf == '\0')
10187 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10188 if (strcmp (rs->buf, "OK") != 0)
10189 error (_("Error on target while disabling tracepoint."));
10190 }
10191
10192 static void
10193 remote_trace_set_readonly_regions (void)
10194 {
10195 asection *s;
10196 bfd_size_type size;
10197 bfd_vma vma;
10198 int anysecs = 0;
10199 int offset = 0;
10200
10201 if (!exec_bfd)
10202 return; /* No information to give. */
10203
10204 strcpy (target_buf, "QTro");
10205 for (s = exec_bfd->sections; s; s = s->next)
10206 {
10207 char tmp1[40], tmp2[40];
10208 int sec_length;
10209
10210 if ((s->flags & SEC_LOAD) == 0 ||
10211 /* (s->flags & SEC_CODE) == 0 || */
10212 (s->flags & SEC_READONLY) == 0)
10213 continue;
10214
10215 anysecs = 1;
10216 vma = bfd_get_section_vma (,s);
10217 size = bfd_get_section_size (s);
10218 sprintf_vma (tmp1, vma);
10219 sprintf_vma (tmp2, vma + size);
10220 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10221 if (offset + sec_length + 1 > target_buf_size)
10222 {
10223 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10224 != PACKET_ENABLE)
10225 warning (_("\
10226 Too many sections for read-only sections definition packet."));
10227 break;
10228 }
10229 sprintf (target_buf + offset, ":%s,%s", tmp1, tmp2);
10230 offset += sec_length;
10231 }
10232 if (anysecs)
10233 {
10234 putpkt (target_buf);
10235 getpkt (&target_buf, &target_buf_size, 0);
10236 }
10237 }
10238
10239 static void
10240 remote_trace_start (void)
10241 {
10242 putpkt ("QTStart");
10243 remote_get_noisy_reply (&target_buf, &target_buf_size);
10244 if (*target_buf == '\0')
10245 error (_("Target does not support this command."));
10246 if (strcmp (target_buf, "OK") != 0)
10247 error (_("Bogus reply from target: %s"), target_buf);
10248 }
10249
10250 static int
10251 remote_get_trace_status (struct trace_status *ts)
10252 {
10253 /* Initialize it just to avoid a GCC false warning. */
10254 char *p = NULL;
10255 /* FIXME we need to get register block size some other way. */
10256 extern int trace_regblock_size;
10257 volatile struct gdb_exception ex;
10258
10259 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10260
10261 putpkt ("qTStatus");
10262
10263 TRY_CATCH (ex, RETURN_MASK_ERROR)
10264 {
10265 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10266 }
10267 if (ex.reason < 0)
10268 {
10269 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10270 return -1;
10271 }
10272
10273 /* If the remote target doesn't do tracing, flag it. */
10274 if (*p == '\0')
10275 return -1;
10276
10277 /* We're working with a live target. */
10278 ts->from_file = 0;
10279
10280 /* Set some defaults. */
10281 ts->running_known = 0;
10282 ts->stop_reason = trace_stop_reason_unknown;
10283 ts->traceframe_count = -1;
10284 ts->buffer_free = 0;
10285
10286 if (*p++ != 'T')
10287 error (_("Bogus trace status reply from target: %s"), target_buf);
10288
10289 parse_trace_status (p, ts);
10290
10291 return ts->running;
10292 }
10293
10294 void
10295 remote_get_tracepoint_status (struct breakpoint *bp,
10296 struct uploaded_tp *utp)
10297 {
10298 struct remote_state *rs = get_remote_state ();
10299 char *reply;
10300 struct bp_location *loc;
10301 struct tracepoint *tp = (struct tracepoint *) bp;
10302
10303 if (tp)
10304 {
10305 tp->base.hit_count = 0;
10306 tp->traceframe_usage = 0;
10307 for (loc = tp->base.loc; loc; loc = loc->next)
10308 {
10309 /* If the tracepoint was never downloaded, don't go asking for
10310 any status. */
10311 if (tp->number_on_target == 0)
10312 continue;
10313 sprintf (rs->buf, "qTP:%x:%s", tp->number_on_target,
10314 phex_nz (loc->address, 0));
10315 putpkt (rs->buf);
10316 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10317 if (reply && *reply)
10318 {
10319 if (*reply == 'V')
10320 parse_tracepoint_status (reply + 1, bp, utp);
10321 }
10322 }
10323 }
10324 else if (utp)
10325 {
10326 utp->hit_count = 0;
10327 utp->traceframe_usage = 0;
10328 sprintf (rs->buf, "qTP:%x:%s", utp->number, phex_nz (utp->addr, 0));
10329 putpkt (rs->buf);
10330 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10331 if (reply && *reply)
10332 {
10333 if (*reply == 'V')
10334 parse_tracepoint_status (reply + 1, bp, utp);
10335 }
10336 }
10337 }
10338
10339 static void
10340 remote_trace_stop (void)
10341 {
10342 putpkt ("QTStop");
10343 remote_get_noisy_reply (&target_buf, &target_buf_size);
10344 if (*target_buf == '\0')
10345 error (_("Target does not support this command."));
10346 if (strcmp (target_buf, "OK") != 0)
10347 error (_("Bogus reply from target: %s"), target_buf);
10348 }
10349
10350 static int
10351 remote_trace_find (enum trace_find_type type, int num,
10352 ULONGEST addr1, ULONGEST addr2,
10353 int *tpp)
10354 {
10355 struct remote_state *rs = get_remote_state ();
10356 char *p, *reply;
10357 int target_frameno = -1, target_tracept = -1;
10358
10359 /* Lookups other than by absolute frame number depend on the current
10360 trace selected, so make sure it is correct on the remote end
10361 first. */
10362 if (type != tfind_number)
10363 set_remote_traceframe ();
10364
10365 p = rs->buf;
10366 strcpy (p, "QTFrame:");
10367 p = strchr (p, '\0');
10368 switch (type)
10369 {
10370 case tfind_number:
10371 sprintf (p, "%x", num);
10372 break;
10373 case tfind_pc:
10374 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10375 break;
10376 case tfind_tp:
10377 sprintf (p, "tdp:%x", num);
10378 break;
10379 case tfind_range:
10380 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10381 break;
10382 case tfind_outside:
10383 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10384 break;
10385 default:
10386 error (_("Unknown trace find type %d"), type);
10387 }
10388
10389 putpkt (rs->buf);
10390 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10391 if (*reply == '\0')
10392 error (_("Target does not support this command."));
10393
10394 while (reply && *reply)
10395 switch (*reply)
10396 {
10397 case 'F':
10398 p = ++reply;
10399 target_frameno = (int) strtol (p, &reply, 16);
10400 if (reply == p)
10401 error (_("Unable to parse trace frame number"));
10402 /* Don't update our remote traceframe number cache on failure
10403 to select a remote traceframe. */
10404 if (target_frameno == -1)
10405 return -1;
10406 break;
10407 case 'T':
10408 p = ++reply;
10409 target_tracept = (int) strtol (p, &reply, 16);
10410 if (reply == p)
10411 error (_("Unable to parse tracepoint number"));
10412 break;
10413 case 'O': /* "OK"? */
10414 if (reply[1] == 'K' && reply[2] == '\0')
10415 reply += 2;
10416 else
10417 error (_("Bogus reply from target: %s"), reply);
10418 break;
10419 default:
10420 error (_("Bogus reply from target: %s"), reply);
10421 }
10422 if (tpp)
10423 *tpp = target_tracept;
10424
10425 remote_traceframe_number = target_frameno;
10426 return target_frameno;
10427 }
10428
10429 static int
10430 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10431 {
10432 struct remote_state *rs = get_remote_state ();
10433 char *reply;
10434 ULONGEST uval;
10435
10436 set_remote_traceframe ();
10437
10438 sprintf (rs->buf, "qTV:%x", tsvnum);
10439 putpkt (rs->buf);
10440 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10441 if (reply && *reply)
10442 {
10443 if (*reply == 'V')
10444 {
10445 unpack_varlen_hex (reply + 1, &uval);
10446 *val = (LONGEST) uval;
10447 return 1;
10448 }
10449 }
10450 return 0;
10451 }
10452
10453 static int
10454 remote_save_trace_data (const char *filename)
10455 {
10456 struct remote_state *rs = get_remote_state ();
10457 char *p, *reply;
10458
10459 p = rs->buf;
10460 strcpy (p, "QTSave:");
10461 p += strlen (p);
10462 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10463 error (_("Remote file name too long for trace save packet"));
10464 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10465 *p++ = '\0';
10466 putpkt (rs->buf);
10467 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10468 if (*reply == '\0')
10469 error (_("Target does not support this command."));
10470 if (strcmp (reply, "OK") != 0)
10471 error (_("Bogus reply from target: %s"), reply);
10472 return 0;
10473 }
10474
10475 /* This is basically a memory transfer, but needs to be its own packet
10476 because we don't know how the target actually organizes its trace
10477 memory, plus we want to be able to ask for as much as possible, but
10478 not be unhappy if we don't get as much as we ask for. */
10479
10480 static LONGEST
10481 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10482 {
10483 struct remote_state *rs = get_remote_state ();
10484 char *reply;
10485 char *p;
10486 int rslt;
10487
10488 p = rs->buf;
10489 strcpy (p, "qTBuffer:");
10490 p += strlen (p);
10491 p += hexnumstr (p, offset);
10492 *p++ = ',';
10493 p += hexnumstr (p, len);
10494 *p++ = '\0';
10495
10496 putpkt (rs->buf);
10497 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10498 if (reply && *reply)
10499 {
10500 /* 'l' by itself means we're at the end of the buffer and
10501 there is nothing more to get. */
10502 if (*reply == 'l')
10503 return 0;
10504
10505 /* Convert the reply into binary. Limit the number of bytes to
10506 convert according to our passed-in buffer size, rather than
10507 what was returned in the packet; if the target is
10508 unexpectedly generous and gives us a bigger reply than we
10509 asked for, we don't want to crash. */
10510 rslt = hex2bin (target_buf, buf, len);
10511 return rslt;
10512 }
10513
10514 /* Something went wrong, flag as an error. */
10515 return -1;
10516 }
10517
10518 static void
10519 remote_set_disconnected_tracing (int val)
10520 {
10521 struct remote_state *rs = get_remote_state ();
10522
10523 if (rs->disconnected_tracing)
10524 {
10525 char *reply;
10526
10527 sprintf (rs->buf, "QTDisconnected:%x", val);
10528 putpkt (rs->buf);
10529 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10530 if (*reply == '\0')
10531 error (_("Target does not support this command."));
10532 if (strcmp (reply, "OK") != 0)
10533 error (_("Bogus reply from target: %s"), reply);
10534 }
10535 else if (val)
10536 warning (_("Target does not support disconnected tracing."));
10537 }
10538
10539 static int
10540 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10541 {
10542 struct thread_info *info = find_thread_ptid (ptid);
10543
10544 if (info && info->private)
10545 return info->private->core;
10546 return -1;
10547 }
10548
10549 static void
10550 remote_set_circular_trace_buffer (int val)
10551 {
10552 struct remote_state *rs = get_remote_state ();
10553 char *reply;
10554
10555 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10556 putpkt (rs->buf);
10557 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10558 if (*reply == '\0')
10559 error (_("Target does not support this command."));
10560 if (strcmp (reply, "OK") != 0)
10561 error (_("Bogus reply from target: %s"), reply);
10562 }
10563
10564 static struct traceframe_info *
10565 remote_traceframe_info (void)
10566 {
10567 char *text;
10568
10569 text = target_read_stralloc (&current_target,
10570 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10571 if (text != NULL)
10572 {
10573 struct traceframe_info *info;
10574 struct cleanup *back_to = make_cleanup (xfree, text);
10575
10576 info = parse_traceframe_info (text);
10577 do_cleanups (back_to);
10578 return info;
10579 }
10580
10581 return NULL;
10582 }
10583
10584 /* Handle the qTMinFTPILen packet. Returns the minimum length of
10585 instruction on which a fast tracepoint may be placed. Returns -1
10586 if the packet is not supported, and 0 if the minimum instruction
10587 length is unknown. */
10588
10589 static int
10590 remote_get_min_fast_tracepoint_insn_len (void)
10591 {
10592 struct remote_state *rs = get_remote_state ();
10593 char *reply;
10594
10595 sprintf (rs->buf, "qTMinFTPILen");
10596 putpkt (rs->buf);
10597 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10598 if (*reply == '\0')
10599 return -1;
10600 else
10601 {
10602 ULONGEST min_insn_len;
10603
10604 unpack_varlen_hex (reply, &min_insn_len);
10605
10606 return (int) min_insn_len;
10607 }
10608 }
10609
10610 static int
10611 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
10612 {
10613 struct remote_state *rs = get_remote_state ();
10614 char *reply;
10615 char *buf = rs->buf;
10616 char *endbuf = rs->buf + get_remote_packet_size ();
10617 int nbytes;
10618
10619 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
10620 if (user)
10621 {
10622 buf += xsnprintf (buf, endbuf - buf, "user:");
10623 nbytes = bin2hex (user, buf, 0);
10624 buf += 2 * nbytes;
10625 *buf++ = ';';
10626 }
10627 if (notes)
10628 {
10629 buf += xsnprintf (buf, endbuf - buf, "notes:");
10630 nbytes = bin2hex (notes, buf, 0);
10631 buf += 2 * nbytes;
10632 *buf++ = ';';
10633 }
10634 if (stop_notes)
10635 {
10636 buf += xsnprintf (buf, endbuf - buf, "tstop:");
10637 nbytes = bin2hex (stop_notes, buf, 0);
10638 buf += 2 * nbytes;
10639 *buf++ = ';';
10640 }
10641 /* Ensure the buffer is terminated. */
10642 *buf = '\0';
10643
10644 putpkt (rs->buf);
10645 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10646 if (*reply == '\0')
10647 return 0;
10648
10649 if (strcmp (reply, "OK") != 0)
10650 error (_("Bogus reply from target: %s"), reply);
10651
10652 return 1;
10653 }
10654
10655 static void
10656 init_remote_ops (void)
10657 {
10658 remote_ops.to_shortname = "remote";
10659 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10660 remote_ops.to_doc =
10661 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10662 Specify the serial device it is connected to\n\
10663 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10664 remote_ops.to_open = remote_open;
10665 remote_ops.to_close = remote_close;
10666 remote_ops.to_detach = remote_detach;
10667 remote_ops.to_disconnect = remote_disconnect;
10668 remote_ops.to_resume = remote_resume;
10669 remote_ops.to_wait = remote_wait;
10670 remote_ops.to_fetch_registers = remote_fetch_registers;
10671 remote_ops.to_store_registers = remote_store_registers;
10672 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10673 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10674 remote_ops.to_files_info = remote_files_info;
10675 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10676 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10677 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10678 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10679 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10680 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10681 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10682 remote_ops.to_region_ok_for_hw_watchpoint
10683 = remote_region_ok_for_hw_watchpoint;
10684 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10685 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10686 remote_ops.to_kill = remote_kill;
10687 remote_ops.to_load = generic_load;
10688 remote_ops.to_mourn_inferior = remote_mourn;
10689 remote_ops.to_pass_signals = remote_pass_signals;
10690 remote_ops.to_thread_alive = remote_thread_alive;
10691 remote_ops.to_find_new_threads = remote_threads_info;
10692 remote_ops.to_pid_to_str = remote_pid_to_str;
10693 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10694 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10695 remote_ops.to_stop = remote_stop;
10696 remote_ops.to_xfer_partial = remote_xfer_partial;
10697 remote_ops.to_rcmd = remote_rcmd;
10698 remote_ops.to_log_command = serial_log_command;
10699 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10700 remote_ops.to_stratum = process_stratum;
10701 remote_ops.to_has_all_memory = default_child_has_all_memory;
10702 remote_ops.to_has_memory = default_child_has_memory;
10703 remote_ops.to_has_stack = default_child_has_stack;
10704 remote_ops.to_has_registers = default_child_has_registers;
10705 remote_ops.to_has_execution = default_child_has_execution;
10706 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10707 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10708 remote_ops.to_magic = OPS_MAGIC;
10709 remote_ops.to_memory_map = remote_memory_map;
10710 remote_ops.to_flash_erase = remote_flash_erase;
10711 remote_ops.to_flash_done = remote_flash_done;
10712 remote_ops.to_read_description = remote_read_description;
10713 remote_ops.to_search_memory = remote_search_memory;
10714 remote_ops.to_can_async_p = remote_can_async_p;
10715 remote_ops.to_is_async_p = remote_is_async_p;
10716 remote_ops.to_async = remote_async;
10717 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10718 remote_ops.to_terminal_ours = remote_terminal_ours;
10719 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10720 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10721 remote_ops.to_supports_disable_randomization
10722 = remote_supports_disable_randomization;
10723 remote_ops.to_fileio_open = remote_hostio_open;
10724 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
10725 remote_ops.to_fileio_pread = remote_hostio_pread;
10726 remote_ops.to_fileio_close = remote_hostio_close;
10727 remote_ops.to_fileio_unlink = remote_hostio_unlink;
10728 remote_ops.to_fileio_readlink = remote_hostio_readlink;
10729 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
10730 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
10731 remote_ops.to_trace_init = remote_trace_init;
10732 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10733 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
10734 remote_ops.to_download_trace_state_variable
10735 = remote_download_trace_state_variable;
10736 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
10737 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
10738 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10739 remote_ops.to_trace_start = remote_trace_start;
10740 remote_ops.to_get_trace_status = remote_get_trace_status;
10741 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
10742 remote_ops.to_trace_stop = remote_trace_stop;
10743 remote_ops.to_trace_find = remote_trace_find;
10744 remote_ops.to_get_trace_state_variable_value
10745 = remote_get_trace_state_variable_value;
10746 remote_ops.to_save_trace_data = remote_save_trace_data;
10747 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10748 remote_ops.to_upload_trace_state_variables
10749 = remote_upload_trace_state_variables;
10750 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10751 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
10752 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10753 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10754 remote_ops.to_set_trace_notes = remote_set_trace_notes;
10755 remote_ops.to_core_of_thread = remote_core_of_thread;
10756 remote_ops.to_verify_memory = remote_verify_memory;
10757 remote_ops.to_get_tib_address = remote_get_tib_address;
10758 remote_ops.to_set_permissions = remote_set_permissions;
10759 remote_ops.to_static_tracepoint_marker_at
10760 = remote_static_tracepoint_marker_at;
10761 remote_ops.to_static_tracepoint_markers_by_strid
10762 = remote_static_tracepoint_markers_by_strid;
10763 remote_ops.to_traceframe_info = remote_traceframe_info;
10764 }
10765
10766 /* Set up the extended remote vector by making a copy of the standard
10767 remote vector and adding to it. */
10768
10769 static void
10770 init_extended_remote_ops (void)
10771 {
10772 extended_remote_ops = remote_ops;
10773
10774 extended_remote_ops.to_shortname = "extended-remote";
10775 extended_remote_ops.to_longname =
10776 "Extended remote serial target in gdb-specific protocol";
10777 extended_remote_ops.to_doc =
10778 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10779 Specify the serial device it is connected to (e.g. /dev/ttya).";
10780 extended_remote_ops.to_open = extended_remote_open;
10781 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10782 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10783 extended_remote_ops.to_detach = extended_remote_detach;
10784 extended_remote_ops.to_attach = extended_remote_attach;
10785 extended_remote_ops.to_kill = extended_remote_kill;
10786 extended_remote_ops.to_supports_disable_randomization
10787 = extended_remote_supports_disable_randomization;
10788 }
10789
10790 static int
10791 remote_can_async_p (void)
10792 {
10793 if (!target_async_permitted)
10794 /* We only enable async when the user specifically asks for it. */
10795 return 0;
10796
10797 /* We're async whenever the serial device is. */
10798 return serial_can_async_p (remote_desc);
10799 }
10800
10801 static int
10802 remote_is_async_p (void)
10803 {
10804 if (!target_async_permitted)
10805 /* We only enable async when the user specifically asks for it. */
10806 return 0;
10807
10808 /* We're async whenever the serial device is. */
10809 return serial_is_async_p (remote_desc);
10810 }
10811
10812 /* Pass the SERIAL event on and up to the client. One day this code
10813 will be able to delay notifying the client of an event until the
10814 point where an entire packet has been received. */
10815
10816 static void (*async_client_callback) (enum inferior_event_type event_type,
10817 void *context);
10818 static void *async_client_context;
10819 static serial_event_ftype remote_async_serial_handler;
10820
10821 static void
10822 remote_async_serial_handler (struct serial *scb, void *context)
10823 {
10824 /* Don't propogate error information up to the client. Instead let
10825 the client find out about the error by querying the target. */
10826 async_client_callback (INF_REG_EVENT, async_client_context);
10827 }
10828
10829 static void
10830 remote_async_inferior_event_handler (gdb_client_data data)
10831 {
10832 inferior_event_handler (INF_REG_EVENT, NULL);
10833 }
10834
10835 static void
10836 remote_async_get_pending_events_handler (gdb_client_data data)
10837 {
10838 remote_get_pending_stop_replies ();
10839 }
10840
10841 static void
10842 remote_async (void (*callback) (enum inferior_event_type event_type,
10843 void *context), void *context)
10844 {
10845 if (callback != NULL)
10846 {
10847 serial_async (remote_desc, remote_async_serial_handler, NULL);
10848 async_client_callback = callback;
10849 async_client_context = context;
10850 }
10851 else
10852 serial_async (remote_desc, NULL, NULL);
10853 }
10854
10855 static void
10856 set_remote_cmd (char *args, int from_tty)
10857 {
10858 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10859 }
10860
10861 static void
10862 show_remote_cmd (char *args, int from_tty)
10863 {
10864 /* We can't just use cmd_show_list here, because we want to skip
10865 the redundant "show remote Z-packet" and the legacy aliases. */
10866 struct cleanup *showlist_chain;
10867 struct cmd_list_element *list = remote_show_cmdlist;
10868 struct ui_out *uiout = current_uiout;
10869
10870 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10871 for (; list != NULL; list = list->next)
10872 if (strcmp (list->name, "Z-packet") == 0)
10873 continue;
10874 else if (list->type == not_set_cmd)
10875 /* Alias commands are exactly like the original, except they
10876 don't have the normal type. */
10877 continue;
10878 else
10879 {
10880 struct cleanup *option_chain
10881 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10882
10883 ui_out_field_string (uiout, "name", list->name);
10884 ui_out_text (uiout, ": ");
10885 if (list->type == show_cmd)
10886 do_setshow_command ((char *) NULL, from_tty, list);
10887 else
10888 cmd_func (list, NULL, from_tty);
10889 /* Close the tuple. */
10890 do_cleanups (option_chain);
10891 }
10892
10893 /* Close the tuple. */
10894 do_cleanups (showlist_chain);
10895 }
10896
10897
10898 /* Function to be called whenever a new objfile (shlib) is detected. */
10899 static void
10900 remote_new_objfile (struct objfile *objfile)
10901 {
10902 if (remote_desc != 0) /* Have a remote connection. */
10903 remote_check_symbols (objfile);
10904 }
10905
10906 /* Pull all the tracepoints defined on the target and create local
10907 data structures representing them. We don't want to create real
10908 tracepoints yet, we don't want to mess up the user's existing
10909 collection. */
10910
10911 static int
10912 remote_upload_tracepoints (struct uploaded_tp **utpp)
10913 {
10914 struct remote_state *rs = get_remote_state ();
10915 char *p;
10916
10917 /* Ask for a first packet of tracepoint definition. */
10918 putpkt ("qTfP");
10919 getpkt (&rs->buf, &rs->buf_size, 0);
10920 p = rs->buf;
10921 while (*p && *p != 'l')
10922 {
10923 parse_tracepoint_definition (p, utpp);
10924 /* Ask for another packet of tracepoint definition. */
10925 putpkt ("qTsP");
10926 getpkt (&rs->buf, &rs->buf_size, 0);
10927 p = rs->buf;
10928 }
10929 return 0;
10930 }
10931
10932 static int
10933 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10934 {
10935 struct remote_state *rs = get_remote_state ();
10936 char *p;
10937
10938 /* Ask for a first packet of variable definition. */
10939 putpkt ("qTfV");
10940 getpkt (&rs->buf, &rs->buf_size, 0);
10941 p = rs->buf;
10942 while (*p && *p != 'l')
10943 {
10944 parse_tsv_definition (p, utsvp);
10945 /* Ask for another packet of variable definition. */
10946 putpkt ("qTsV");
10947 getpkt (&rs->buf, &rs->buf_size, 0);
10948 p = rs->buf;
10949 }
10950 return 0;
10951 }
10952
10953 void
10954 _initialize_remote (void)
10955 {
10956 struct remote_state *rs;
10957 struct cmd_list_element *cmd;
10958 char *cmd_name;
10959
10960 /* architecture specific data */
10961 remote_gdbarch_data_handle =
10962 gdbarch_data_register_post_init (init_remote_state);
10963 remote_g_packet_data_handle =
10964 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10965
10966 /* Initialize the per-target state. At the moment there is only one
10967 of these, not one per target. Only one target is active at a
10968 time. The default buffer size is unimportant; it will be expanded
10969 whenever a larger buffer is needed. */
10970 rs = get_remote_state_raw ();
10971 rs->buf_size = 400;
10972 rs->buf = xmalloc (rs->buf_size);
10973
10974 init_remote_ops ();
10975 add_target (&remote_ops);
10976
10977 init_extended_remote_ops ();
10978 add_target (&extended_remote_ops);
10979
10980 /* Hook into new objfile notification. */
10981 observer_attach_new_objfile (remote_new_objfile);
10982
10983 /* Set up signal handlers. */
10984 sigint_remote_token =
10985 create_async_signal_handler (async_remote_interrupt, NULL);
10986 sigint_remote_twice_token =
10987 create_async_signal_handler (async_remote_interrupt_twice, NULL);
10988
10989 #if 0
10990 init_remote_threadtests ();
10991 #endif
10992
10993 /* set/show remote ... */
10994
10995 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10996 Remote protocol specific variables\n\
10997 Configure various remote-protocol specific variables such as\n\
10998 the packets being used"),
10999 &remote_set_cmdlist, "set remote ",
11000 0 /* allow-unknown */, &setlist);
11001 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11002 Remote protocol specific variables\n\
11003 Configure various remote-protocol specific variables such as\n\
11004 the packets being used"),
11005 &remote_show_cmdlist, "show remote ",
11006 0 /* allow-unknown */, &showlist);
11007
11008 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11009 Compare section data on target to the exec file.\n\
11010 Argument is a single section name (default: all loaded sections)."),
11011 &cmdlist);
11012
11013 add_cmd ("packet", class_maintenance, packet_command, _("\
11014 Send an arbitrary packet to a remote target.\n\
11015 maintenance packet TEXT\n\
11016 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11017 this command sends the string TEXT to the inferior, and displays the\n\
11018 response packet. GDB supplies the initial `$' character, and the\n\
11019 terminating `#' character and checksum."),
11020 &maintenancelist);
11021
11022 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11023 Set whether to send break if interrupted."), _("\
11024 Show whether to send break if interrupted."), _("\
11025 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11026 set_remotebreak, show_remotebreak,
11027 &setlist, &showlist);
11028 cmd_name = "remotebreak";
11029 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11030 deprecate_cmd (cmd, "set remote interrupt-sequence");
11031 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11032 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11033 deprecate_cmd (cmd, "show remote interrupt-sequence");
11034
11035 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11036 interrupt_sequence_modes, &interrupt_sequence_mode,
11037 _("\
11038 Set interrupt sequence to remote target."), _("\
11039 Show interrupt sequence to remote target."), _("\
11040 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11041 NULL, show_interrupt_sequence,
11042 &remote_set_cmdlist,
11043 &remote_show_cmdlist);
11044
11045 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11046 &interrupt_on_connect, _("\
11047 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11048 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11049 If set, interrupt sequence is sent to remote target."),
11050 NULL, NULL,
11051 &remote_set_cmdlist, &remote_show_cmdlist);
11052
11053 /* Install commands for configuring memory read/write packets. */
11054
11055 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11056 Set the maximum number of bytes per memory write packet (deprecated)."),
11057 &setlist);
11058 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11059 Show the maximum number of bytes per memory write packet (deprecated)."),
11060 &showlist);
11061 add_cmd ("memory-write-packet-size", no_class,
11062 set_memory_write_packet_size, _("\
11063 Set the maximum number of bytes per memory-write packet.\n\
11064 Specify the number of bytes in a packet or 0 (zero) for the\n\
11065 default packet size. The actual limit is further reduced\n\
11066 dependent on the target. Specify ``fixed'' to disable the\n\
11067 further restriction and ``limit'' to enable that restriction."),
11068 &remote_set_cmdlist);
11069 add_cmd ("memory-read-packet-size", no_class,
11070 set_memory_read_packet_size, _("\
11071 Set the maximum number of bytes per memory-read packet.\n\
11072 Specify the number of bytes in a packet or 0 (zero) for the\n\
11073 default packet size. The actual limit is further reduced\n\
11074 dependent on the target. Specify ``fixed'' to disable the\n\
11075 further restriction and ``limit'' to enable that restriction."),
11076 &remote_set_cmdlist);
11077 add_cmd ("memory-write-packet-size", no_class,
11078 show_memory_write_packet_size,
11079 _("Show the maximum number of bytes per memory-write packet."),
11080 &remote_show_cmdlist);
11081 add_cmd ("memory-read-packet-size", no_class,
11082 show_memory_read_packet_size,
11083 _("Show the maximum number of bytes per memory-read packet."),
11084 &remote_show_cmdlist);
11085
11086 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11087 &remote_hw_watchpoint_limit, _("\
11088 Set the maximum number of target hardware watchpoints."), _("\
11089 Show the maximum number of target hardware watchpoints."), _("\
11090 Specify a negative limit for unlimited."),
11091 NULL, NULL, /* FIXME: i18n: The maximum
11092 number of target hardware
11093 watchpoints is %s. */
11094 &remote_set_cmdlist, &remote_show_cmdlist);
11095 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11096 &remote_hw_watchpoint_length_limit, _("\
11097 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11098 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11099 Specify a negative limit for unlimited."),
11100 NULL, NULL, /* FIXME: i18n: The maximum
11101 length (in bytes) of a target
11102 hardware watchpoint is %s. */
11103 &remote_set_cmdlist, &remote_show_cmdlist);
11104 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11105 &remote_hw_breakpoint_limit, _("\
11106 Set the maximum number of target hardware breakpoints."), _("\
11107 Show the maximum number of target hardware breakpoints."), _("\
11108 Specify a negative limit for unlimited."),
11109 NULL, NULL, /* FIXME: i18n: The maximum
11110 number of target hardware
11111 breakpoints is %s. */
11112 &remote_set_cmdlist, &remote_show_cmdlist);
11113
11114 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
11115 &remote_address_size, _("\
11116 Set the maximum size of the address (in bits) in a memory packet."), _("\
11117 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11118 NULL,
11119 NULL, /* FIXME: i18n: */
11120 &setlist, &showlist);
11121
11122 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11123 "X", "binary-download", 1);
11124
11125 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11126 "vCont", "verbose-resume", 0);
11127
11128 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11129 "QPassSignals", "pass-signals", 0);
11130
11131 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11132 "qSymbol", "symbol-lookup", 0);
11133
11134 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11135 "P", "set-register", 1);
11136
11137 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11138 "p", "fetch-register", 1);
11139
11140 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11141 "Z0", "software-breakpoint", 0);
11142
11143 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11144 "Z1", "hardware-breakpoint", 0);
11145
11146 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11147 "Z2", "write-watchpoint", 0);
11148
11149 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11150 "Z3", "read-watchpoint", 0);
11151
11152 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11153 "Z4", "access-watchpoint", 0);
11154
11155 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11156 "qXfer:auxv:read", "read-aux-vector", 0);
11157
11158 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11159 "qXfer:features:read", "target-features", 0);
11160
11161 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11162 "qXfer:libraries:read", "library-info", 0);
11163
11164 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11165 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11166
11167 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11168 "qXfer:memory-map:read", "memory-map", 0);
11169
11170 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11171 "qXfer:spu:read", "read-spu-object", 0);
11172
11173 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11174 "qXfer:spu:write", "write-spu-object", 0);
11175
11176 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11177 "qXfer:osdata:read", "osdata", 0);
11178
11179 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11180 "qXfer:threads:read", "threads", 0);
11181
11182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11183 "qXfer:siginfo:read", "read-siginfo-object", 0);
11184
11185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11186 "qXfer:siginfo:write", "write-siginfo-object", 0);
11187
11188 add_packet_config_cmd
11189 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11190 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11191
11192 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11193 "qGetTLSAddr", "get-thread-local-storage-address",
11194 0);
11195
11196 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11197 "qGetTIBAddr", "get-thread-information-block-address",
11198 0);
11199
11200 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11201 "bc", "reverse-continue", 0);
11202
11203 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11204 "bs", "reverse-step", 0);
11205
11206 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11207 "qSupported", "supported-packets", 0);
11208
11209 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11210 "qSearch:memory", "search-memory", 0);
11211
11212 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11213 "vFile:open", "hostio-open", 0);
11214
11215 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11216 "vFile:pread", "hostio-pread", 0);
11217
11218 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11219 "vFile:pwrite", "hostio-pwrite", 0);
11220
11221 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11222 "vFile:close", "hostio-close", 0);
11223
11224 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11225 "vFile:unlink", "hostio-unlink", 0);
11226
11227 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11228 "vFile:readlink", "hostio-readlink", 0);
11229
11230 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11231 "vAttach", "attach", 0);
11232
11233 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11234 "vRun", "run", 0);
11235
11236 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11237 "QStartNoAckMode", "noack", 0);
11238
11239 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11240 "vKill", "kill", 0);
11241
11242 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11243 "qAttached", "query-attached", 0);
11244
11245 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11246 "ConditionalTracepoints",
11247 "conditional-tracepoints", 0);
11248 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11249 "FastTracepoints", "fast-tracepoints", 0);
11250
11251 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11252 "TracepointSource", "TracepointSource", 0);
11253
11254 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11255 "QAllow", "allow", 0);
11256
11257 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11258 "StaticTracepoints", "static-tracepoints", 0);
11259
11260 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11261 "InstallInTrace", "install-in-trace", 0);
11262
11263 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11264 "qXfer:statictrace:read", "read-sdata-object", 0);
11265
11266 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11267 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11268
11269 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11270 "QDisableRandomization", "disable-randomization", 0);
11271
11272 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11273 Z sub-packet has its own set and show commands, but users may
11274 have sets to this variable in their .gdbinit files (or in their
11275 documentation). */
11276 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11277 &remote_Z_packet_detect, _("\
11278 Set use of remote protocol `Z' packets"), _("\
11279 Show use of remote protocol `Z' packets "), _("\
11280 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11281 packets."),
11282 set_remote_protocol_Z_packet_cmd,
11283 show_remote_protocol_Z_packet_cmd,
11284 /* FIXME: i18n: Use of remote protocol
11285 `Z' packets is %s. */
11286 &remote_set_cmdlist, &remote_show_cmdlist);
11287
11288 add_prefix_cmd ("remote", class_files, remote_command, _("\
11289 Manipulate files on the remote system\n\
11290 Transfer files to and from the remote target system."),
11291 &remote_cmdlist, "remote ",
11292 0 /* allow-unknown */, &cmdlist);
11293
11294 add_cmd ("put", class_files, remote_put_command,
11295 _("Copy a local file to the remote system."),
11296 &remote_cmdlist);
11297
11298 add_cmd ("get", class_files, remote_get_command,
11299 _("Copy a remote file to the local system."),
11300 &remote_cmdlist);
11301
11302 add_cmd ("delete", class_files, remote_delete_command,
11303 _("Delete a remote file."),
11304 &remote_cmdlist);
11305
11306 remote_exec_file = xstrdup ("");
11307 add_setshow_string_noescape_cmd ("exec-file", class_files,
11308 &remote_exec_file, _("\
11309 Set the remote pathname for \"run\""), _("\
11310 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11311 &remote_set_cmdlist, &remote_show_cmdlist);
11312
11313 /* Eventually initialize fileio. See fileio.c */
11314 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
11315
11316 /* Take advantage of the fact that the LWP field is not used, to tag
11317 special ptids with it set to != 0. */
11318 magic_null_ptid = ptid_build (42000, 1, -1);
11319 not_sent_ptid = ptid_build (42000, 1, -2);
11320 any_thread_ptid = ptid_build (42000, 1, 0);
11321
11322 target_buf_size = 2048;
11323 target_buf = xmalloc (target_buf_size);
11324 }
11325
This page took 0.264039 seconds and 4 git commands to generate.