Fix new inferior events output
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, bool needed, int any_count,
2028 gdb::array_view<const int> syscall_counts)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && any_count == 0)
2041 {
2042 /* Count how many syscalls are to be caught. */
2043 for (size_t i = 0; i < syscall_counts.size (); i++)
2044 {
2045 if (syscall_counts[i] != 0)
2046 n_sysno++;
2047 }
2048 }
2049
2050 if (remote_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "remote_set_syscall_catchpoint "
2054 "pid %d needed %d any_count %d n_sysno %d\n",
2055 pid, needed, any_count, n_sysno);
2056 }
2057
2058 std::string built_packet;
2059 if (needed)
2060 {
2061 /* Prepare a packet with the sysno list, assuming max 8+1
2062 characters for a sysno. If the resulting packet size is too
2063 big, fallback on the non-selective packet. */
2064 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2065 built_packet.reserve (maxpktsz);
2066 built_packet = "QCatchSyscalls:1";
2067 if (any_count == 0)
2068 {
2069 /* Add in each syscall to be caught. */
2070 for (size_t i = 0; i < syscall_counts.size (); i++)
2071 {
2072 if (syscall_counts[i] != 0)
2073 string_appendf (built_packet, ";%zx", i);
2074 }
2075 }
2076 if (built_packet.size () > get_remote_packet_size ())
2077 {
2078 /* catch_packet too big. Fallback to less efficient
2079 non selective mode, with GDB doing the filtering. */
2080 catch_packet = "QCatchSyscalls:1";
2081 }
2082 else
2083 catch_packet = built_packet.c_str ();
2084 }
2085 else
2086 catch_packet = "QCatchSyscalls:0";
2087
2088 struct remote_state *rs = get_remote_state ();
2089
2090 putpkt (catch_packet);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2093 if (result == PACKET_OK)
2094 return 0;
2095 else
2096 return -1;
2097 }
2098
2099 /* If 'QProgramSignals' is supported, tell the remote stub what
2100 signals it should pass through to the inferior when detaching. */
2101
2102 static void
2103 remote_program_signals (struct target_ops *self,
2104 int numsigs, unsigned char *signals)
2105 {
2106 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2107 {
2108 char *packet, *p;
2109 int count = 0, i;
2110 struct remote_state *rs = get_remote_state ();
2111
2112 gdb_assert (numsigs < 256);
2113 for (i = 0; i < numsigs; i++)
2114 {
2115 if (signals[i])
2116 count++;
2117 }
2118 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2119 strcpy (packet, "QProgramSignals:");
2120 p = packet + strlen (packet);
2121 for (i = 0; i < numsigs; i++)
2122 {
2123 if (signal_pass_state (i))
2124 {
2125 if (i >= 16)
2126 *p++ = tohex (i >> 4);
2127 *p++ = tohex (i & 15);
2128 if (count)
2129 *p++ = ';';
2130 else
2131 break;
2132 count--;
2133 }
2134 }
2135 *p = 0;
2136 if (!rs->last_program_signals_packet
2137 || strcmp (rs->last_program_signals_packet, packet) != 0)
2138 {
2139 putpkt (packet);
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2142 xfree (rs->last_program_signals_packet);
2143 rs->last_program_signals_packet = packet;
2144 }
2145 else
2146 xfree (packet);
2147 }
2148 }
2149
2150 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2151 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2152 thread. If GEN is set, set the general thread, if not, then set
2153 the step/continue thread. */
2154 static void
2155 set_thread (ptid_t ptid, int gen)
2156 {
2157 struct remote_state *rs = get_remote_state ();
2158 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2159 char *buf = rs->buf;
2160 char *endbuf = rs->buf + get_remote_packet_size ();
2161
2162 if (ptid_equal (state, ptid))
2163 return;
2164
2165 *buf++ = 'H';
2166 *buf++ = gen ? 'g' : 'c';
2167 if (ptid_equal (ptid, magic_null_ptid))
2168 xsnprintf (buf, endbuf - buf, "0");
2169 else if (ptid_equal (ptid, any_thread_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, minus_one_ptid))
2172 xsnprintf (buf, endbuf - buf, "-1");
2173 else
2174 write_ptid (buf, endbuf, ptid);
2175 putpkt (rs->buf);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 if (gen)
2178 rs->general_thread = ptid;
2179 else
2180 rs->continue_thread = ptid;
2181 }
2182
2183 static void
2184 set_general_thread (ptid_t ptid)
2185 {
2186 set_thread (ptid, 1);
2187 }
2188
2189 static void
2190 set_continue_thread (ptid_t ptid)
2191 {
2192 set_thread (ptid, 0);
2193 }
2194
2195 /* Change the remote current process. Which thread within the process
2196 ends up selected isn't important, as long as it is the same process
2197 as what INFERIOR_PTID points to.
2198
2199 This comes from that fact that there is no explicit notion of
2200 "selected process" in the protocol. The selected process for
2201 general operations is the process the selected general thread
2202 belongs to. */
2203
2204 static void
2205 set_general_process (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208
2209 /* If the remote can't handle multiple processes, don't bother. */
2210 if (!remote_multi_process_p (rs))
2211 return;
2212
2213 /* We only need to change the remote current thread if it's pointing
2214 at some other process. */
2215 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2216 set_general_thread (inferior_ptid);
2217 }
2218
2219 \f
2220 /* Return nonzero if this is the main thread that we made up ourselves
2221 to model non-threaded targets as single-threaded. */
2222
2223 static int
2224 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2225 {
2226 if (ptid_equal (ptid, magic_null_ptid))
2227 /* The main thread is always alive. */
2228 return 1;
2229
2230 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2231 /* The main thread is always alive. This can happen after a
2232 vAttach, if the remote side doesn't support
2233 multi-threading. */
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /* Return nonzero if the thread PTID is still alive on the remote
2240 system. */
2241
2242 static int
2243 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2244 {
2245 struct remote_state *rs = get_remote_state ();
2246 char *p, *endp;
2247
2248 /* Check if this is a thread that we made up ourselves to model
2249 non-threaded targets as single-threaded. */
2250 if (remote_thread_always_alive (ops, ptid))
2251 return 1;
2252
2253 p = rs->buf;
2254 endp = rs->buf + get_remote_packet_size ();
2255
2256 *p++ = 'T';
2257 write_ptid (p, endp, ptid);
2258
2259 putpkt (rs->buf);
2260 getpkt (&rs->buf, &rs->buf_size, 0);
2261 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2262 }
2263
2264 /* Return a pointer to a thread name if we know it and NULL otherwise.
2265 The thread_info object owns the memory for the name. */
2266
2267 static const char *
2268 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2269 {
2270 if (info->priv != NULL)
2271 {
2272 const std::string &name = get_remote_thread_info (info)->name;
2273 return !name.empty () ? name.c_str () : NULL;
2274 }
2275
2276 return NULL;
2277 }
2278
2279 /* About these extended threadlist and threadinfo packets. They are
2280 variable length packets but, the fields within them are often fixed
2281 length. They are redundent enough to send over UDP as is the
2282 remote protocol in general. There is a matching unit test module
2283 in libstub. */
2284
2285 /* WARNING: This threadref data structure comes from the remote O.S.,
2286 libstub protocol encoding, and remote.c. It is not particularly
2287 changable. */
2288
2289 /* Right now, the internal structure is int. We want it to be bigger.
2290 Plan to fix this. */
2291
2292 typedef int gdb_threadref; /* Internal GDB thread reference. */
2293
2294 /* gdb_ext_thread_info is an internal GDB data structure which is
2295 equivalent to the reply of the remote threadinfo packet. */
2296
2297 struct gdb_ext_thread_info
2298 {
2299 threadref threadid; /* External form of thread reference. */
2300 int active; /* Has state interesting to GDB?
2301 regs, stack. */
2302 char display[256]; /* Brief state display, name,
2303 blocked/suspended. */
2304 char shortname[32]; /* To be used to name threads. */
2305 char more_display[256]; /* Long info, statistics, queue depth,
2306 whatever. */
2307 };
2308
2309 /* The volume of remote transfers can be limited by submitting
2310 a mask containing bits specifying the desired information.
2311 Use a union of these values as the 'selection' parameter to
2312 get_thread_info. FIXME: Make these TAG names more thread specific. */
2313
2314 #define TAG_THREADID 1
2315 #define TAG_EXISTS 2
2316 #define TAG_DISPLAY 4
2317 #define TAG_THREADNAME 8
2318 #define TAG_MOREDISPLAY 16
2319
2320 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2321
2322 static char *unpack_nibble (char *buf, int *val);
2323
2324 static char *unpack_byte (char *buf, int *value);
2325
2326 static char *pack_int (char *buf, int value);
2327
2328 static char *unpack_int (char *buf, int *value);
2329
2330 static char *unpack_string (char *src, char *dest, int length);
2331
2332 static char *pack_threadid (char *pkt, threadref *id);
2333
2334 static char *unpack_threadid (char *inbuf, threadref *id);
2335
2336 void int_to_threadref (threadref *id, int value);
2337
2338 static int threadref_to_int (threadref *ref);
2339
2340 static void copy_threadref (threadref *dest, threadref *src);
2341
2342 static int threadmatch (threadref *dest, threadref *src);
2343
2344 static char *pack_threadinfo_request (char *pkt, int mode,
2345 threadref *id);
2346
2347 static int remote_unpack_thread_info_response (char *pkt,
2348 threadref *expectedref,
2349 struct gdb_ext_thread_info
2350 *info);
2351
2352
2353 static int remote_get_threadinfo (threadref *threadid,
2354 int fieldset, /*TAG mask */
2355 struct gdb_ext_thread_info *info);
2356
2357 static char *pack_threadlist_request (char *pkt, int startflag,
2358 int threadcount,
2359 threadref *nextthread);
2360
2361 static int parse_threadlist_response (char *pkt,
2362 int result_limit,
2363 threadref *original_echo,
2364 threadref *resultlist,
2365 int *doneflag);
2366
2367 static int remote_get_threadlist (int startflag,
2368 threadref *nextthread,
2369 int result_limit,
2370 int *done,
2371 int *result_count,
2372 threadref *threadlist);
2373
2374 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2375
2376 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2377 void *context, int looplimit);
2378
2379 static int remote_newthread_step (threadref *ref, void *context);
2380
2381
2382 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2383 buffer we're allowed to write to. Returns
2384 BUF+CHARACTERS_WRITTEN. */
2385
2386 static char *
2387 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2388 {
2389 int pid, tid;
2390 struct remote_state *rs = get_remote_state ();
2391
2392 if (remote_multi_process_p (rs))
2393 {
2394 pid = ptid_get_pid (ptid);
2395 if (pid < 0)
2396 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2397 else
2398 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2399 }
2400 tid = ptid_get_lwp (ptid);
2401 if (tid < 0)
2402 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2403 else
2404 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2405
2406 return buf;
2407 }
2408
2409 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2410 last parsed char. Returns null_ptid if no thread id is found, and
2411 throws an error if the thread id has an invalid format. */
2412
2413 static ptid_t
2414 read_ptid (const char *buf, const char **obuf)
2415 {
2416 const char *p = buf;
2417 const char *pp;
2418 ULONGEST pid = 0, tid = 0;
2419
2420 if (*p == 'p')
2421 {
2422 /* Multi-process ptid. */
2423 pp = unpack_varlen_hex (p + 1, &pid);
2424 if (*pp != '.')
2425 error (_("invalid remote ptid: %s"), p);
2426
2427 p = pp;
2428 pp = unpack_varlen_hex (p + 1, &tid);
2429 if (obuf)
2430 *obuf = pp;
2431 return ptid_build (pid, tid, 0);
2432 }
2433
2434 /* No multi-process. Just a tid. */
2435 pp = unpack_varlen_hex (p, &tid);
2436
2437 /* Return null_ptid when no thread id is found. */
2438 if (p == pp)
2439 {
2440 if (obuf)
2441 *obuf = pp;
2442 return null_ptid;
2443 }
2444
2445 /* Since the stub is not sending a process id, then default to
2446 what's in inferior_ptid, unless it's null at this point. If so,
2447 then since there's no way to know the pid of the reported
2448 threads, use the magic number. */
2449 if (ptid_equal (inferior_ptid, null_ptid))
2450 pid = ptid_get_pid (magic_null_ptid);
2451 else
2452 pid = ptid_get_pid (inferior_ptid);
2453
2454 if (obuf)
2455 *obuf = pp;
2456 return ptid_build (pid, tid, 0);
2457 }
2458
2459 static int
2460 stubhex (int ch)
2461 {
2462 if (ch >= 'a' && ch <= 'f')
2463 return ch - 'a' + 10;
2464 if (ch >= '0' && ch <= '9')
2465 return ch - '0';
2466 if (ch >= 'A' && ch <= 'F')
2467 return ch - 'A' + 10;
2468 return -1;
2469 }
2470
2471 static int
2472 stub_unpack_int (char *buff, int fieldlength)
2473 {
2474 int nibble;
2475 int retval = 0;
2476
2477 while (fieldlength)
2478 {
2479 nibble = stubhex (*buff++);
2480 retval |= nibble;
2481 fieldlength--;
2482 if (fieldlength)
2483 retval = retval << 4;
2484 }
2485 return retval;
2486 }
2487
2488 static char *
2489 unpack_nibble (char *buf, int *val)
2490 {
2491 *val = fromhex (*buf++);
2492 return buf;
2493 }
2494
2495 static char *
2496 unpack_byte (char *buf, int *value)
2497 {
2498 *value = stub_unpack_int (buf, 2);
2499 return buf + 2;
2500 }
2501
2502 static char *
2503 pack_int (char *buf, int value)
2504 {
2505 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2507 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2508 buf = pack_hex_byte (buf, (value & 0xff));
2509 return buf;
2510 }
2511
2512 static char *
2513 unpack_int (char *buf, int *value)
2514 {
2515 *value = stub_unpack_int (buf, 8);
2516 return buf + 8;
2517 }
2518
2519 #if 0 /* Currently unused, uncomment when needed. */
2520 static char *pack_string (char *pkt, char *string);
2521
2522 static char *
2523 pack_string (char *pkt, char *string)
2524 {
2525 char ch;
2526 int len;
2527
2528 len = strlen (string);
2529 if (len > 200)
2530 len = 200; /* Bigger than most GDB packets, junk??? */
2531 pkt = pack_hex_byte (pkt, len);
2532 while (len-- > 0)
2533 {
2534 ch = *string++;
2535 if ((ch == '\0') || (ch == '#'))
2536 ch = '*'; /* Protect encapsulation. */
2537 *pkt++ = ch;
2538 }
2539 return pkt;
2540 }
2541 #endif /* 0 (unused) */
2542
2543 static char *
2544 unpack_string (char *src, char *dest, int length)
2545 {
2546 while (length--)
2547 *dest++ = *src++;
2548 *dest = '\0';
2549 return src;
2550 }
2551
2552 static char *
2553 pack_threadid (char *pkt, threadref *id)
2554 {
2555 char *limit;
2556 unsigned char *altid;
2557
2558 altid = (unsigned char *) id;
2559 limit = pkt + BUF_THREAD_ID_SIZE;
2560 while (pkt < limit)
2561 pkt = pack_hex_byte (pkt, *altid++);
2562 return pkt;
2563 }
2564
2565
2566 static char *
2567 unpack_threadid (char *inbuf, threadref *id)
2568 {
2569 char *altref;
2570 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2571 int x, y;
2572
2573 altref = (char *) id;
2574
2575 while (inbuf < limit)
2576 {
2577 x = stubhex (*inbuf++);
2578 y = stubhex (*inbuf++);
2579 *altref++ = (x << 4) | y;
2580 }
2581 return inbuf;
2582 }
2583
2584 /* Externally, threadrefs are 64 bits but internally, they are still
2585 ints. This is due to a mismatch of specifications. We would like
2586 to use 64bit thread references internally. This is an adapter
2587 function. */
2588
2589 void
2590 int_to_threadref (threadref *id, int value)
2591 {
2592 unsigned char *scan;
2593
2594 scan = (unsigned char *) id;
2595 {
2596 int i = 4;
2597 while (i--)
2598 *scan++ = 0;
2599 }
2600 *scan++ = (value >> 24) & 0xff;
2601 *scan++ = (value >> 16) & 0xff;
2602 *scan++ = (value >> 8) & 0xff;
2603 *scan++ = (value & 0xff);
2604 }
2605
2606 static int
2607 threadref_to_int (threadref *ref)
2608 {
2609 int i, value = 0;
2610 unsigned char *scan;
2611
2612 scan = *ref;
2613 scan += 4;
2614 i = 4;
2615 while (i-- > 0)
2616 value = (value << 8) | ((*scan++) & 0xff);
2617 return value;
2618 }
2619
2620 static void
2621 copy_threadref (threadref *dest, threadref *src)
2622 {
2623 int i;
2624 unsigned char *csrc, *cdest;
2625
2626 csrc = (unsigned char *) src;
2627 cdest = (unsigned char *) dest;
2628 i = 8;
2629 while (i--)
2630 *cdest++ = *csrc++;
2631 }
2632
2633 static int
2634 threadmatch (threadref *dest, threadref *src)
2635 {
2636 /* Things are broken right now, so just assume we got a match. */
2637 #if 0
2638 unsigned char *srcp, *destp;
2639 int i, result;
2640 srcp = (char *) src;
2641 destp = (char *) dest;
2642
2643 result = 1;
2644 while (i-- > 0)
2645 result &= (*srcp++ == *destp++) ? 1 : 0;
2646 return result;
2647 #endif
2648 return 1;
2649 }
2650
2651 /*
2652 threadid:1, # always request threadid
2653 context_exists:2,
2654 display:4,
2655 unique_name:8,
2656 more_display:16
2657 */
2658
2659 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2660
2661 static char *
2662 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2663 {
2664 *pkt++ = 'q'; /* Info Query */
2665 *pkt++ = 'P'; /* process or thread info */
2666 pkt = pack_int (pkt, mode); /* mode */
2667 pkt = pack_threadid (pkt, id); /* threadid */
2668 *pkt = '\0'; /* terminate */
2669 return pkt;
2670 }
2671
2672 /* These values tag the fields in a thread info response packet. */
2673 /* Tagging the fields allows us to request specific fields and to
2674 add more fields as time goes by. */
2675
2676 #define TAG_THREADID 1 /* Echo the thread identifier. */
2677 #define TAG_EXISTS 2 /* Is this process defined enough to
2678 fetch registers and its stack? */
2679 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2680 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2681 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2682 the process. */
2683
2684 static int
2685 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2686 struct gdb_ext_thread_info *info)
2687 {
2688 struct remote_state *rs = get_remote_state ();
2689 int mask, length;
2690 int tag;
2691 threadref ref;
2692 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2693 int retval = 1;
2694
2695 /* info->threadid = 0; FIXME: implement zero_threadref. */
2696 info->active = 0;
2697 info->display[0] = '\0';
2698 info->shortname[0] = '\0';
2699 info->more_display[0] = '\0';
2700
2701 /* Assume the characters indicating the packet type have been
2702 stripped. */
2703 pkt = unpack_int (pkt, &mask); /* arg mask */
2704 pkt = unpack_threadid (pkt, &ref);
2705
2706 if (mask == 0)
2707 warning (_("Incomplete response to threadinfo request."));
2708 if (!threadmatch (&ref, expectedref))
2709 { /* This is an answer to a different request. */
2710 warning (_("ERROR RMT Thread info mismatch."));
2711 return 0;
2712 }
2713 copy_threadref (&info->threadid, &ref);
2714
2715 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2716
2717 /* Packets are terminated with nulls. */
2718 while ((pkt < limit) && mask && *pkt)
2719 {
2720 pkt = unpack_int (pkt, &tag); /* tag */
2721 pkt = unpack_byte (pkt, &length); /* length */
2722 if (!(tag & mask)) /* Tags out of synch with mask. */
2723 {
2724 warning (_("ERROR RMT: threadinfo tag mismatch."));
2725 retval = 0;
2726 break;
2727 }
2728 if (tag == TAG_THREADID)
2729 {
2730 if (length != 16)
2731 {
2732 warning (_("ERROR RMT: length of threadid is not 16."));
2733 retval = 0;
2734 break;
2735 }
2736 pkt = unpack_threadid (pkt, &ref);
2737 mask = mask & ~TAG_THREADID;
2738 continue;
2739 }
2740 if (tag == TAG_EXISTS)
2741 {
2742 info->active = stub_unpack_int (pkt, length);
2743 pkt += length;
2744 mask = mask & ~(TAG_EXISTS);
2745 if (length > 8)
2746 {
2747 warning (_("ERROR RMT: 'exists' length too long."));
2748 retval = 0;
2749 break;
2750 }
2751 continue;
2752 }
2753 if (tag == TAG_THREADNAME)
2754 {
2755 pkt = unpack_string (pkt, &info->shortname[0], length);
2756 mask = mask & ~TAG_THREADNAME;
2757 continue;
2758 }
2759 if (tag == TAG_DISPLAY)
2760 {
2761 pkt = unpack_string (pkt, &info->display[0], length);
2762 mask = mask & ~TAG_DISPLAY;
2763 continue;
2764 }
2765 if (tag == TAG_MOREDISPLAY)
2766 {
2767 pkt = unpack_string (pkt, &info->more_display[0], length);
2768 mask = mask & ~TAG_MOREDISPLAY;
2769 continue;
2770 }
2771 warning (_("ERROR RMT: unknown thread info tag."));
2772 break; /* Not a tag we know about. */
2773 }
2774 return retval;
2775 }
2776
2777 static int
2778 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2779 struct gdb_ext_thread_info *info)
2780 {
2781 struct remote_state *rs = get_remote_state ();
2782 int result;
2783
2784 pack_threadinfo_request (rs->buf, fieldset, threadid);
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787
2788 if (rs->buf[0] == '\0')
2789 return 0;
2790
2791 result = remote_unpack_thread_info_response (rs->buf + 2,
2792 threadid, info);
2793 return result;
2794 }
2795
2796 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2797
2798 static char *
2799 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2800 threadref *nextthread)
2801 {
2802 *pkt++ = 'q'; /* info query packet */
2803 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2804 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2805 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2806 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2807 *pkt = '\0';
2808 return pkt;
2809 }
2810
2811 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2812
2813 static int
2814 parse_threadlist_response (char *pkt, int result_limit,
2815 threadref *original_echo, threadref *resultlist,
2816 int *doneflag)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *limit;
2820 int count, resultcount, done;
2821
2822 resultcount = 0;
2823 /* Assume the 'q' and 'M chars have been stripped. */
2824 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2825 /* done parse past here */
2826 pkt = unpack_byte (pkt, &count); /* count field */
2827 pkt = unpack_nibble (pkt, &done);
2828 /* The first threadid is the argument threadid. */
2829 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2830 while ((count-- > 0) && (pkt < limit))
2831 {
2832 pkt = unpack_threadid (pkt, resultlist++);
2833 if (resultcount++ >= result_limit)
2834 break;
2835 }
2836 if (doneflag)
2837 *doneflag = done;
2838 return resultcount;
2839 }
2840
2841 /* Fetch the next batch of threads from the remote. Returns -1 if the
2842 qL packet is not supported, 0 on error and 1 on success. */
2843
2844 static int
2845 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2846 int *done, int *result_count, threadref *threadlist)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 int result = 1;
2850
2851 /* Trancate result limit to be smaller than the packet size. */
2852 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2853 >= get_remote_packet_size ())
2854 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2855
2856 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2857 putpkt (rs->buf);
2858 getpkt (&rs->buf, &rs->buf_size, 0);
2859 if (*rs->buf == '\0')
2860 {
2861 /* Packet not supported. */
2862 return -1;
2863 }
2864
2865 *result_count =
2866 parse_threadlist_response (rs->buf + 2, result_limit,
2867 &rs->echo_nextthread, threadlist, done);
2868
2869 if (!threadmatch (&rs->echo_nextthread, nextthread))
2870 {
2871 /* FIXME: This is a good reason to drop the packet. */
2872 /* Possably, there is a duplicate response. */
2873 /* Possabilities :
2874 retransmit immediatly - race conditions
2875 retransmit after timeout - yes
2876 exit
2877 wait for packet, then exit
2878 */
2879 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2880 return 0; /* I choose simply exiting. */
2881 }
2882 if (*result_count <= 0)
2883 {
2884 if (*done != 1)
2885 {
2886 warning (_("RMT ERROR : failed to get remote thread list."));
2887 result = 0;
2888 }
2889 return result; /* break; */
2890 }
2891 if (*result_count > result_limit)
2892 {
2893 *result_count = 0;
2894 warning (_("RMT ERROR: threadlist response longer than requested."));
2895 return 0;
2896 }
2897 return result;
2898 }
2899
2900 /* Fetch the list of remote threads, with the qL packet, and call
2901 STEPFUNCTION for each thread found. Stops iterating and returns 1
2902 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2903 STEPFUNCTION returns false. If the packet is not supported,
2904 returns -1. */
2905
2906 static int
2907 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2908 int looplimit)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 int done, i, result_count;
2912 int startflag = 1;
2913 int result = 1;
2914 int loopcount = 0;
2915
2916 done = 0;
2917 while (!done)
2918 {
2919 if (loopcount++ > looplimit)
2920 {
2921 result = 0;
2922 warning (_("Remote fetch threadlist -infinite loop-."));
2923 break;
2924 }
2925 result = remote_get_threadlist (startflag, &rs->nextthread,
2926 MAXTHREADLISTRESULTS,
2927 &done, &result_count,
2928 rs->resultthreadlist);
2929 if (result <= 0)
2930 break;
2931 /* Clear for later iterations. */
2932 startflag = 0;
2933 /* Setup to resume next batch of thread references, set nextthread. */
2934 if (result_count >= 1)
2935 copy_threadref (&rs->nextthread,
2936 &rs->resultthreadlist[result_count - 1]);
2937 i = 0;
2938 while (result_count--)
2939 {
2940 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2941 {
2942 result = 0;
2943 break;
2944 }
2945 }
2946 }
2947 return result;
2948 }
2949
2950 /* A thread found on the remote target. */
2951
2952 struct thread_item
2953 {
2954 explicit thread_item (ptid_t ptid_)
2955 : ptid (ptid_)
2956 {}
2957
2958 thread_item (thread_item &&other) = default;
2959 thread_item &operator= (thread_item &&other) = default;
2960
2961 DISABLE_COPY_AND_ASSIGN (thread_item);
2962
2963 /* The thread's PTID. */
2964 ptid_t ptid;
2965
2966 /* The thread's extra info. */
2967 std::string extra;
2968
2969 /* The thread's name. */
2970 std::string name;
2971
2972 /* The core the thread was running on. -1 if not known. */
2973 int core = -1;
2974
2975 /* The thread handle associated with the thread. */
2976 gdb::byte_vector thread_handle;
2977 };
2978
2979 /* Context passed around to the various methods listing remote
2980 threads. As new threads are found, they're added to the ITEMS
2981 vector. */
2982
2983 struct threads_listing_context
2984 {
2985 /* Return true if this object contains an entry for a thread with ptid
2986 PTID. */
2987
2988 bool contains_thread (ptid_t ptid) const
2989 {
2990 auto match_ptid = [&] (const thread_item &item)
2991 {
2992 return item.ptid == ptid;
2993 };
2994
2995 auto it = std::find_if (this->items.begin (),
2996 this->items.end (),
2997 match_ptid);
2998
2999 return it != this->items.end ();
3000 }
3001
3002 /* Remove the thread with ptid PTID. */
3003
3004 void remove_thread (ptid_t ptid)
3005 {
3006 auto match_ptid = [&] (const thread_item &item)
3007 {
3008 return item.ptid == ptid;
3009 };
3010
3011 auto it = std::remove_if (this->items.begin (),
3012 this->items.end (),
3013 match_ptid);
3014
3015 if (it != this->items.end ())
3016 this->items.erase (it);
3017 }
3018
3019 /* The threads found on the remote target. */
3020 std::vector<thread_item> items;
3021 };
3022
3023 static int
3024 remote_newthread_step (threadref *ref, void *data)
3025 {
3026 struct threads_listing_context *context
3027 = (struct threads_listing_context *) data;
3028 int pid = inferior_ptid.pid ();
3029 int lwp = threadref_to_int (ref);
3030 ptid_t ptid (pid, lwp);
3031
3032 context->items.emplace_back (ptid);
3033
3034 return 1; /* continue iterator */
3035 }
3036
3037 #define CRAZY_MAX_THREADS 1000
3038
3039 static ptid_t
3040 remote_current_thread (ptid_t oldpid)
3041 {
3042 struct remote_state *rs = get_remote_state ();
3043
3044 putpkt ("qC");
3045 getpkt (&rs->buf, &rs->buf_size, 0);
3046 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3047 {
3048 const char *obuf;
3049 ptid_t result;
3050
3051 result = read_ptid (&rs->buf[2], &obuf);
3052 if (*obuf != '\0' && remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "warning: garbage in qC reply\n");
3055
3056 return result;
3057 }
3058 else
3059 return oldpid;
3060 }
3061
3062 /* List remote threads using the deprecated qL packet. */
3063
3064 static int
3065 remote_get_threads_with_ql (struct target_ops *ops,
3066 struct threads_listing_context *context)
3067 {
3068 if (remote_threadlist_iterator (remote_newthread_step, context,
3069 CRAZY_MAX_THREADS) >= 0)
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 #if defined(HAVE_LIBEXPAT)
3076
3077 static void
3078 start_thread (struct gdb_xml_parser *parser,
3079 const struct gdb_xml_element *element,
3080 void *user_data,
3081 std::vector<gdb_xml_value> &attributes)
3082 {
3083 struct threads_listing_context *data
3084 = (struct threads_listing_context *) user_data;
3085 struct gdb_xml_value *attr;
3086
3087 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3088 ptid_t ptid = read_ptid (id, NULL);
3089
3090 data->items.emplace_back (ptid);
3091 thread_item &item = data->items.back ();
3092
3093 attr = xml_find_attribute (attributes, "core");
3094 if (attr != NULL)
3095 item.core = *(ULONGEST *) attr->value.get ();
3096
3097 attr = xml_find_attribute (attributes, "name");
3098 if (attr != NULL)
3099 item.name = (const char *) attr->value.get ();
3100
3101 attr = xml_find_attribute (attributes, "handle");
3102 if (attr != NULL)
3103 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3104 }
3105
3106 static void
3107 end_thread (struct gdb_xml_parser *parser,
3108 const struct gdb_xml_element *element,
3109 void *user_data, const char *body_text)
3110 {
3111 struct threads_listing_context *data
3112 = (struct threads_listing_context *) user_data;
3113
3114 if (body_text != NULL && *body_text != '\0')
3115 data->items.back ().extra = body_text;
3116 }
3117
3118 const struct gdb_xml_attribute thread_attributes[] = {
3119 { "id", GDB_XML_AF_NONE, NULL, NULL },
3120 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3121 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3122 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3123 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3124 };
3125
3126 const struct gdb_xml_element thread_children[] = {
3127 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3128 };
3129
3130 const struct gdb_xml_element threads_children[] = {
3131 { "thread", thread_attributes, thread_children,
3132 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3133 start_thread, end_thread },
3134 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3135 };
3136
3137 const struct gdb_xml_element threads_elements[] = {
3138 { "threads", NULL, threads_children,
3139 GDB_XML_EF_NONE, NULL, NULL },
3140 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3141 };
3142
3143 #endif
3144
3145 /* List remote threads using qXfer:threads:read. */
3146
3147 static int
3148 remote_get_threads_with_qxfer (struct target_ops *ops,
3149 struct threads_listing_context *context)
3150 {
3151 #if defined(HAVE_LIBEXPAT)
3152 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3153 {
3154 gdb::optional<gdb::char_vector> xml
3155 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3156
3157 if (xml && (*xml)[0] != '\0')
3158 {
3159 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3160 threads_elements, xml->data (), context);
3161 }
3162
3163 return 1;
3164 }
3165 #endif
3166
3167 return 0;
3168 }
3169
3170 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3171
3172 static int
3173 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3174 struct threads_listing_context *context)
3175 {
3176 struct remote_state *rs = get_remote_state ();
3177
3178 if (rs->use_threadinfo_query)
3179 {
3180 const char *bufp;
3181
3182 putpkt ("qfThreadInfo");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 bufp = rs->buf;
3185 if (bufp[0] != '\0') /* q packet recognized */
3186 {
3187 while (*bufp++ == 'm') /* reply contains one or more TID */
3188 {
3189 do
3190 {
3191 ptid_t ptid = read_ptid (bufp, &bufp);
3192 context->items.emplace_back (ptid);
3193 }
3194 while (*bufp++ == ','); /* comma-separated list */
3195 putpkt ("qsThreadInfo");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 bufp = rs->buf;
3198 }
3199 return 1;
3200 }
3201 else
3202 {
3203 /* Packet not recognized. */
3204 rs->use_threadinfo_query = 0;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 /* Implement the to_update_thread_list function for the remote
3212 targets. */
3213
3214 static void
3215 remote_update_thread_list (struct target_ops *ops)
3216 {
3217 struct threads_listing_context context;
3218 int got_list = 0;
3219
3220 /* We have a few different mechanisms to fetch the thread list. Try
3221 them all, starting with the most preferred one first, falling
3222 back to older methods. */
3223 if (remote_get_threads_with_qxfer (ops, &context)
3224 || remote_get_threads_with_qthreadinfo (ops, &context)
3225 || remote_get_threads_with_ql (ops, &context))
3226 {
3227 struct thread_info *tp, *tmp;
3228
3229 got_list = 1;
3230
3231 if (context.items.empty ()
3232 && remote_thread_always_alive (ops, inferior_ptid))
3233 {
3234 /* Some targets don't really support threads, but still
3235 reply an (empty) thread list in response to the thread
3236 listing packets, instead of replying "packet not
3237 supported". Exit early so we don't delete the main
3238 thread. */
3239 return;
3240 }
3241
3242 /* CONTEXT now holds the current thread list on the remote
3243 target end. Delete GDB-side threads no longer found on the
3244 target. */
3245 ALL_THREADS_SAFE (tp, tmp)
3246 {
3247 if (!context.contains_thread (tp->ptid))
3248 {
3249 /* Not found. */
3250 delete_thread (tp->ptid);
3251 }
3252 }
3253
3254 /* Remove any unreported fork child threads from CONTEXT so
3255 that we don't interfere with follow fork, which is where
3256 creation of such threads is handled. */
3257 remove_new_fork_children (&context);
3258
3259 /* And now add threads we don't know about yet to our list. */
3260 for (thread_item &item : context.items)
3261 {
3262 if (item.ptid != null_ptid)
3263 {
3264 /* In non-stop mode, we assume new found threads are
3265 executing until proven otherwise with a stop reply.
3266 In all-stop, we can only get here if all threads are
3267 stopped. */
3268 int executing = target_is_non_stop_p () ? 1 : 0;
3269
3270 remote_notice_new_inferior (item.ptid, executing);
3271
3272 remote_thread_info *info = get_remote_thread_info (item.ptid);
3273 info->core = item.core;
3274 info->extra = std::move (item.extra);
3275 info->name = std::move (item.name);
3276 info->thread_handle = std::move (item.thread_handle);
3277 }
3278 }
3279 }
3280
3281 if (!got_list)
3282 {
3283 /* If no thread listing method is supported, then query whether
3284 each known thread is alive, one by one, with the T packet.
3285 If the target doesn't support threads at all, then this is a
3286 no-op. See remote_thread_alive. */
3287 prune_threads ();
3288 }
3289 }
3290
3291 /*
3292 * Collect a descriptive string about the given thread.
3293 * The target may say anything it wants to about the thread
3294 * (typically info about its blocked / runnable state, name, etc.).
3295 * This string will appear in the info threads display.
3296 *
3297 * Optional: targets are not required to implement this function.
3298 */
3299
3300 static const char *
3301 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3302 {
3303 struct remote_state *rs = get_remote_state ();
3304 int result;
3305 int set;
3306 threadref id;
3307 struct gdb_ext_thread_info threadinfo;
3308 static char display_buf[100]; /* arbitrary... */
3309 int n = 0; /* position in display_buf */
3310
3311 if (rs->remote_desc == 0) /* paranoia */
3312 internal_error (__FILE__, __LINE__,
3313 _("remote_threads_extra_info"));
3314
3315 if (ptid_equal (tp->ptid, magic_null_ptid)
3316 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3317 /* This is the main thread which was added by GDB. The remote
3318 server doesn't know about it. */
3319 return NULL;
3320
3321 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3322 {
3323 struct thread_info *info = find_thread_ptid (tp->ptid);
3324
3325 if (info != NULL && info->priv != NULL)
3326 {
3327 const std::string &extra = get_remote_thread_info (info)->extra;
3328 return !extra.empty () ? extra.c_str () : NULL;
3329 }
3330 else
3331 return NULL;
3332 }
3333
3334 if (rs->use_threadextra_query)
3335 {
3336 char *b = rs->buf;
3337 char *endb = rs->buf + get_remote_packet_size ();
3338
3339 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3340 b += strlen (b);
3341 write_ptid (b, endb, tp->ptid);
3342
3343 putpkt (rs->buf);
3344 getpkt (&rs->buf, &rs->buf_size, 0);
3345 if (rs->buf[0] != 0)
3346 {
3347 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3348 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3349 display_buf [result] = '\0';
3350 return display_buf;
3351 }
3352 }
3353
3354 /* If the above query fails, fall back to the old method. */
3355 rs->use_threadextra_query = 0;
3356 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3357 | TAG_MOREDISPLAY | TAG_DISPLAY;
3358 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3359 if (remote_get_threadinfo (&id, set, &threadinfo))
3360 if (threadinfo.active)
3361 {
3362 if (*threadinfo.shortname)
3363 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3364 " Name: %s,", threadinfo.shortname);
3365 if (*threadinfo.display)
3366 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3367 " State: %s,", threadinfo.display);
3368 if (*threadinfo.more_display)
3369 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3370 " Priority: %s", threadinfo.more_display);
3371
3372 if (n > 0)
3373 {
3374 /* For purely cosmetic reasons, clear up trailing commas. */
3375 if (',' == display_buf[n-1])
3376 display_buf[n-1] = ' ';
3377 return display_buf;
3378 }
3379 }
3380 return NULL;
3381 }
3382 \f
3383
3384 static bool
3385 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3386 struct static_tracepoint_marker *marker)
3387 {
3388 struct remote_state *rs = get_remote_state ();
3389 char *p = rs->buf;
3390
3391 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3392 p += strlen (p);
3393 p += hexnumstr (p, addr);
3394 putpkt (rs->buf);
3395 getpkt (&rs->buf, &rs->buf_size, 0);
3396 p = rs->buf;
3397
3398 if (*p == 'E')
3399 error (_("Remote failure reply: %s"), p);
3400
3401 if (*p++ == 'm')
3402 {
3403 parse_static_tracepoint_marker_definition (p, NULL, marker);
3404 return true;
3405 }
3406
3407 return false;
3408 }
3409
3410 static std::vector<static_tracepoint_marker>
3411 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3412 const char *strid)
3413 {
3414 struct remote_state *rs = get_remote_state ();
3415 std::vector<static_tracepoint_marker> markers;
3416 const char *p;
3417 static_tracepoint_marker marker;
3418
3419 /* Ask for a first packet of static tracepoint marker
3420 definition. */
3421 putpkt ("qTfSTM");
3422 getpkt (&rs->buf, &rs->buf_size, 0);
3423 p = rs->buf;
3424 if (*p == 'E')
3425 error (_("Remote failure reply: %s"), p);
3426
3427 while (*p++ == 'm')
3428 {
3429 do
3430 {
3431 parse_static_tracepoint_marker_definition (p, &p, &marker);
3432
3433 if (strid == NULL || marker.str_id == strid)
3434 markers.push_back (std::move (marker));
3435 }
3436 while (*p++ == ','); /* comma-separated list */
3437 /* Ask for another packet of static tracepoint definition. */
3438 putpkt ("qTsSTM");
3439 getpkt (&rs->buf, &rs->buf_size, 0);
3440 p = rs->buf;
3441 }
3442
3443 return markers;
3444 }
3445
3446 \f
3447 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3448
3449 static ptid_t
3450 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3451 {
3452 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3453 }
3454 \f
3455
3456 /* Restart the remote side; this is an extended protocol operation. */
3457
3458 static void
3459 extended_remote_restart (void)
3460 {
3461 struct remote_state *rs = get_remote_state ();
3462
3463 /* Send the restart command; for reasons I don't understand the
3464 remote side really expects a number after the "R". */
3465 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3466 putpkt (rs->buf);
3467
3468 remote_fileio_reset ();
3469 }
3470 \f
3471 /* Clean up connection to a remote debugger. */
3472
3473 static void
3474 remote_close (struct target_ops *self)
3475 {
3476 struct remote_state *rs = get_remote_state ();
3477
3478 if (rs->remote_desc == NULL)
3479 return; /* already closed */
3480
3481 /* Make sure we leave stdin registered in the event loop. */
3482 remote_terminal_ours (self);
3483
3484 serial_close (rs->remote_desc);
3485 rs->remote_desc = NULL;
3486
3487 /* We don't have a connection to the remote stub anymore. Get rid
3488 of all the inferiors and their threads we were controlling.
3489 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3490 will be unable to find the thread corresponding to (pid, 0, 0). */
3491 inferior_ptid = null_ptid;
3492 discard_all_inferiors ();
3493
3494 /* We are closing the remote target, so we should discard
3495 everything of this target. */
3496 discard_pending_stop_replies_in_queue (rs);
3497
3498 if (remote_async_inferior_event_token)
3499 delete_async_event_handler (&remote_async_inferior_event_token);
3500
3501 remote_notif_state_xfree (rs->notif_state);
3502
3503 trace_reset_local_state ();
3504 }
3505
3506 /* Query the remote side for the text, data and bss offsets. */
3507
3508 static void
3509 get_offsets (void)
3510 {
3511 struct remote_state *rs = get_remote_state ();
3512 char *buf;
3513 char *ptr;
3514 int lose, num_segments = 0, do_sections, do_segments;
3515 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3516 struct section_offsets *offs;
3517 struct symfile_segment_data *data;
3518
3519 if (symfile_objfile == NULL)
3520 return;
3521
3522 putpkt ("qOffsets");
3523 getpkt (&rs->buf, &rs->buf_size, 0);
3524 buf = rs->buf;
3525
3526 if (buf[0] == '\000')
3527 return; /* Return silently. Stub doesn't support
3528 this command. */
3529 if (buf[0] == 'E')
3530 {
3531 warning (_("Remote failure reply: %s"), buf);
3532 return;
3533 }
3534
3535 /* Pick up each field in turn. This used to be done with scanf, but
3536 scanf will make trouble if CORE_ADDR size doesn't match
3537 conversion directives correctly. The following code will work
3538 with any size of CORE_ADDR. */
3539 text_addr = data_addr = bss_addr = 0;
3540 ptr = buf;
3541 lose = 0;
3542
3543 if (startswith (ptr, "Text="))
3544 {
3545 ptr += 5;
3546 /* Don't use strtol, could lose on big values. */
3547 while (*ptr && *ptr != ';')
3548 text_addr = (text_addr << 4) + fromhex (*ptr++);
3549
3550 if (startswith (ptr, ";Data="))
3551 {
3552 ptr += 6;
3553 while (*ptr && *ptr != ';')
3554 data_addr = (data_addr << 4) + fromhex (*ptr++);
3555 }
3556 else
3557 lose = 1;
3558
3559 if (!lose && startswith (ptr, ";Bss="))
3560 {
3561 ptr += 5;
3562 while (*ptr && *ptr != ';')
3563 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3564
3565 if (bss_addr != data_addr)
3566 warning (_("Target reported unsupported offsets: %s"), buf);
3567 }
3568 else
3569 lose = 1;
3570 }
3571 else if (startswith (ptr, "TextSeg="))
3572 {
3573 ptr += 8;
3574 /* Don't use strtol, could lose on big values. */
3575 while (*ptr && *ptr != ';')
3576 text_addr = (text_addr << 4) + fromhex (*ptr++);
3577 num_segments = 1;
3578
3579 if (startswith (ptr, ";DataSeg="))
3580 {
3581 ptr += 9;
3582 while (*ptr && *ptr != ';')
3583 data_addr = (data_addr << 4) + fromhex (*ptr++);
3584 num_segments++;
3585 }
3586 }
3587 else
3588 lose = 1;
3589
3590 if (lose)
3591 error (_("Malformed response to offset query, %s"), buf);
3592 else if (*ptr != '\0')
3593 warning (_("Target reported unsupported offsets: %s"), buf);
3594
3595 offs = ((struct section_offsets *)
3596 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3597 memcpy (offs, symfile_objfile->section_offsets,
3598 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3599
3600 data = get_symfile_segment_data (symfile_objfile->obfd);
3601 do_segments = (data != NULL);
3602 do_sections = num_segments == 0;
3603
3604 if (num_segments > 0)
3605 {
3606 segments[0] = text_addr;
3607 segments[1] = data_addr;
3608 }
3609 /* If we have two segments, we can still try to relocate everything
3610 by assuming that the .text and .data offsets apply to the whole
3611 text and data segments. Convert the offsets given in the packet
3612 to base addresses for symfile_map_offsets_to_segments. */
3613 else if (data && data->num_segments == 2)
3614 {
3615 segments[0] = data->segment_bases[0] + text_addr;
3616 segments[1] = data->segment_bases[1] + data_addr;
3617 num_segments = 2;
3618 }
3619 /* If the object file has only one segment, assume that it is text
3620 rather than data; main programs with no writable data are rare,
3621 but programs with no code are useless. Of course the code might
3622 have ended up in the data segment... to detect that we would need
3623 the permissions here. */
3624 else if (data && data->num_segments == 1)
3625 {
3626 segments[0] = data->segment_bases[0] + text_addr;
3627 num_segments = 1;
3628 }
3629 /* There's no way to relocate by segment. */
3630 else
3631 do_segments = 0;
3632
3633 if (do_segments)
3634 {
3635 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3636 offs, num_segments, segments);
3637
3638 if (ret == 0 && !do_sections)
3639 error (_("Can not handle qOffsets TextSeg "
3640 "response with this symbol file"));
3641
3642 if (ret > 0)
3643 do_sections = 0;
3644 }
3645
3646 if (data)
3647 free_symfile_segment_data (data);
3648
3649 if (do_sections)
3650 {
3651 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3652
3653 /* This is a temporary kludge to force data and bss to use the
3654 same offsets because that's what nlmconv does now. The real
3655 solution requires changes to the stub and remote.c that I
3656 don't have time to do right now. */
3657
3658 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3659 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3660 }
3661
3662 objfile_relocate (symfile_objfile, offs);
3663 }
3664
3665 /* Send interrupt_sequence to remote target. */
3666 static void
3667 send_interrupt_sequence (void)
3668 {
3669 struct remote_state *rs = get_remote_state ();
3670
3671 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3672 remote_serial_write ("\x03", 1);
3673 else if (interrupt_sequence_mode == interrupt_sequence_break)
3674 serial_send_break (rs->remote_desc);
3675 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3676 {
3677 serial_send_break (rs->remote_desc);
3678 remote_serial_write ("g", 1);
3679 }
3680 else
3681 internal_error (__FILE__, __LINE__,
3682 _("Invalid value for interrupt_sequence_mode: %s."),
3683 interrupt_sequence_mode);
3684 }
3685
3686
3687 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3688 and extract the PTID. Returns NULL_PTID if not found. */
3689
3690 static ptid_t
3691 stop_reply_extract_thread (char *stop_reply)
3692 {
3693 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3694 {
3695 const char *p;
3696
3697 /* Txx r:val ; r:val (...) */
3698 p = &stop_reply[3];
3699
3700 /* Look for "register" named "thread". */
3701 while (*p != '\0')
3702 {
3703 const char *p1;
3704
3705 p1 = strchr (p, ':');
3706 if (p1 == NULL)
3707 return null_ptid;
3708
3709 if (strncmp (p, "thread", p1 - p) == 0)
3710 return read_ptid (++p1, &p);
3711
3712 p1 = strchr (p, ';');
3713 if (p1 == NULL)
3714 return null_ptid;
3715 p1++;
3716
3717 p = p1;
3718 }
3719 }
3720
3721 return null_ptid;
3722 }
3723
3724 /* Determine the remote side's current thread. If we have a stop
3725 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3726 "thread" register we can extract the current thread from. If not,
3727 ask the remote which is the current thread with qC. The former
3728 method avoids a roundtrip. */
3729
3730 static ptid_t
3731 get_current_thread (char *wait_status)
3732 {
3733 ptid_t ptid = null_ptid;
3734
3735 /* Note we don't use remote_parse_stop_reply as that makes use of
3736 the target architecture, which we haven't yet fully determined at
3737 this point. */
3738 if (wait_status != NULL)
3739 ptid = stop_reply_extract_thread (wait_status);
3740 if (ptid_equal (ptid, null_ptid))
3741 ptid = remote_current_thread (inferior_ptid);
3742
3743 return ptid;
3744 }
3745
3746 /* Query the remote target for which is the current thread/process,
3747 add it to our tables, and update INFERIOR_PTID. The caller is
3748 responsible for setting the state such that the remote end is ready
3749 to return the current thread.
3750
3751 This function is called after handling the '?' or 'vRun' packets,
3752 whose response is a stop reply from which we can also try
3753 extracting the thread. If the target doesn't support the explicit
3754 qC query, we infer the current thread from that stop reply, passed
3755 in in WAIT_STATUS, which may be NULL. */
3756
3757 static void
3758 add_current_inferior_and_thread (char *wait_status)
3759 {
3760 struct remote_state *rs = get_remote_state ();
3761 int fake_pid_p = 0;
3762
3763 inferior_ptid = null_ptid;
3764
3765 /* Now, if we have thread information, update inferior_ptid. */
3766 ptid_t curr_ptid = get_current_thread (wait_status);
3767
3768 if (curr_ptid != null_ptid)
3769 {
3770 if (!remote_multi_process_p (rs))
3771 fake_pid_p = 1;
3772 }
3773 else
3774 {
3775 /* Without this, some commands which require an active target
3776 (such as kill) won't work. This variable serves (at least)
3777 double duty as both the pid of the target process (if it has
3778 such), and as a flag indicating that a target is active. */
3779 curr_ptid = magic_null_ptid;
3780 fake_pid_p = 1;
3781 }
3782
3783 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3784
3785 /* Add the main thread and switch to it. Don't try reading
3786 registers yet, since we haven't fetched the target description
3787 yet. */
3788 thread_info *tp = add_thread_silent (curr_ptid);
3789 switch_to_thread_no_regs (tp);
3790 }
3791
3792 /* Print info about a thread that was found already stopped on
3793 connection. */
3794
3795 static void
3796 print_one_stopped_thread (struct thread_info *thread)
3797 {
3798 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3799
3800 switch_to_thread (thread->ptid);
3801 stop_pc = get_frame_pc (get_current_frame ());
3802 set_current_sal_from_frame (get_current_frame ());
3803
3804 thread->suspend.waitstatus_pending_p = 0;
3805
3806 if (ws->kind == TARGET_WAITKIND_STOPPED)
3807 {
3808 enum gdb_signal sig = ws->value.sig;
3809
3810 if (signal_print_state (sig))
3811 gdb::observers::signal_received.notify (sig);
3812 }
3813 gdb::observers::normal_stop.notify (NULL, 1);
3814 }
3815
3816 /* Process all initial stop replies the remote side sent in response
3817 to the ? packet. These indicate threads that were already stopped
3818 on initial connection. We mark these threads as stopped and print
3819 their current frame before giving the user the prompt. */
3820
3821 static void
3822 process_initial_stop_replies (int from_tty)
3823 {
3824 int pending_stop_replies = stop_reply_queue_length ();
3825 struct inferior *inf;
3826 struct thread_info *thread;
3827 struct thread_info *selected = NULL;
3828 struct thread_info *lowest_stopped = NULL;
3829 struct thread_info *first = NULL;
3830
3831 /* Consume the initial pending events. */
3832 while (pending_stop_replies-- > 0)
3833 {
3834 ptid_t waiton_ptid = minus_one_ptid;
3835 ptid_t event_ptid;
3836 struct target_waitstatus ws;
3837 int ignore_event = 0;
3838 struct thread_info *thread;
3839
3840 memset (&ws, 0, sizeof (ws));
3841 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3842 if (remote_debug)
3843 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3844
3845 switch (ws.kind)
3846 {
3847 case TARGET_WAITKIND_IGNORE:
3848 case TARGET_WAITKIND_NO_RESUMED:
3849 case TARGET_WAITKIND_SIGNALLED:
3850 case TARGET_WAITKIND_EXITED:
3851 /* We shouldn't see these, but if we do, just ignore. */
3852 if (remote_debug)
3853 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3854 ignore_event = 1;
3855 break;
3856
3857 case TARGET_WAITKIND_EXECD:
3858 xfree (ws.value.execd_pathname);
3859 break;
3860 default:
3861 break;
3862 }
3863
3864 if (ignore_event)
3865 continue;
3866
3867 thread = find_thread_ptid (event_ptid);
3868
3869 if (ws.kind == TARGET_WAITKIND_STOPPED)
3870 {
3871 enum gdb_signal sig = ws.value.sig;
3872
3873 /* Stubs traditionally report SIGTRAP as initial signal,
3874 instead of signal 0. Suppress it. */
3875 if (sig == GDB_SIGNAL_TRAP)
3876 sig = GDB_SIGNAL_0;
3877 thread->suspend.stop_signal = sig;
3878 ws.value.sig = sig;
3879 }
3880
3881 thread->suspend.waitstatus = ws;
3882
3883 if (ws.kind != TARGET_WAITKIND_STOPPED
3884 || ws.value.sig != GDB_SIGNAL_0)
3885 thread->suspend.waitstatus_pending_p = 1;
3886
3887 set_executing (event_ptid, 0);
3888 set_running (event_ptid, 0);
3889 get_remote_thread_info (thread)->vcont_resumed = 0;
3890 }
3891
3892 /* "Notice" the new inferiors before anything related to
3893 registers/memory. */
3894 ALL_INFERIORS (inf)
3895 {
3896 if (inf->pid == 0)
3897 continue;
3898
3899 inf->needs_setup = 1;
3900
3901 if (non_stop)
3902 {
3903 thread = any_live_thread_of_process (inf->pid);
3904 notice_new_inferior (thread->ptid,
3905 thread->state == THREAD_RUNNING,
3906 from_tty);
3907 }
3908 }
3909
3910 /* If all-stop on top of non-stop, pause all threads. Note this
3911 records the threads' stop pc, so must be done after "noticing"
3912 the inferiors. */
3913 if (!non_stop)
3914 {
3915 stop_all_threads ();
3916
3917 /* If all threads of an inferior were already stopped, we
3918 haven't setup the inferior yet. */
3919 ALL_INFERIORS (inf)
3920 {
3921 if (inf->pid == 0)
3922 continue;
3923
3924 if (inf->needs_setup)
3925 {
3926 thread = any_live_thread_of_process (inf->pid);
3927 switch_to_thread_no_regs (thread);
3928 setup_inferior (0);
3929 }
3930 }
3931 }
3932
3933 /* Now go over all threads that are stopped, and print their current
3934 frame. If all-stop, then if there's a signalled thread, pick
3935 that as current. */
3936 ALL_NON_EXITED_THREADS (thread)
3937 {
3938 if (first == NULL)
3939 first = thread;
3940
3941 if (!non_stop)
3942 set_running (thread->ptid, 0);
3943 else if (thread->state != THREAD_STOPPED)
3944 continue;
3945
3946 if (selected == NULL
3947 && thread->suspend.waitstatus_pending_p)
3948 selected = thread;
3949
3950 if (lowest_stopped == NULL
3951 || thread->inf->num < lowest_stopped->inf->num
3952 || thread->per_inf_num < lowest_stopped->per_inf_num)
3953 lowest_stopped = thread;
3954
3955 if (non_stop)
3956 print_one_stopped_thread (thread);
3957 }
3958
3959 /* In all-stop, we only print the status of one thread, and leave
3960 others with their status pending. */
3961 if (!non_stop)
3962 {
3963 thread = selected;
3964 if (thread == NULL)
3965 thread = lowest_stopped;
3966 if (thread == NULL)
3967 thread = first;
3968
3969 print_one_stopped_thread (thread);
3970 }
3971
3972 /* For "info program". */
3973 thread = inferior_thread ();
3974 if (thread->state == THREAD_STOPPED)
3975 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3976 }
3977
3978 /* Start the remote connection and sync state. */
3979
3980 static void
3981 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3982 {
3983 struct remote_state *rs = get_remote_state ();
3984 struct packet_config *noack_config;
3985 char *wait_status = NULL;
3986
3987 /* Signal other parts that we're going through the initial setup,
3988 and so things may not be stable yet. E.g., we don't try to
3989 install tracepoints until we've relocated symbols. Also, a
3990 Ctrl-C before we're connected and synced up can't interrupt the
3991 target. Instead, it offers to drop the (potentially wedged)
3992 connection. */
3993 rs->starting_up = 1;
3994
3995 QUIT;
3996
3997 if (interrupt_on_connect)
3998 send_interrupt_sequence ();
3999
4000 /* Ack any packet which the remote side has already sent. */
4001 remote_serial_write ("+", 1);
4002
4003 /* The first packet we send to the target is the optional "supported
4004 packets" request. If the target can answer this, it will tell us
4005 which later probes to skip. */
4006 remote_query_supported ();
4007
4008 /* If the stub wants to get a QAllow, compose one and send it. */
4009 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4010 remote_set_permissions (target);
4011
4012 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4013 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4014 as a reply to known packet. For packet "vFile:setfs:" it is an
4015 invalid reply and GDB would return error in
4016 remote_hostio_set_filesystem, making remote files access impossible.
4017 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4018 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4019 {
4020 const char v_mustreplyempty[] = "vMustReplyEmpty";
4021
4022 putpkt (v_mustreplyempty);
4023 getpkt (&rs->buf, &rs->buf_size, 0);
4024 if (strcmp (rs->buf, "OK") == 0)
4025 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4026 else if (strcmp (rs->buf, "") != 0)
4027 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4028 rs->buf);
4029 }
4030
4031 /* Next, we possibly activate noack mode.
4032
4033 If the QStartNoAckMode packet configuration is set to AUTO,
4034 enable noack mode if the stub reported a wish for it with
4035 qSupported.
4036
4037 If set to TRUE, then enable noack mode even if the stub didn't
4038 report it in qSupported. If the stub doesn't reply OK, the
4039 session ends with an error.
4040
4041 If FALSE, then don't activate noack mode, regardless of what the
4042 stub claimed should be the default with qSupported. */
4043
4044 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4045 if (packet_config_support (noack_config) != PACKET_DISABLE)
4046 {
4047 putpkt ("QStartNoAckMode");
4048 getpkt (&rs->buf, &rs->buf_size, 0);
4049 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4050 rs->noack_mode = 1;
4051 }
4052
4053 if (extended_p)
4054 {
4055 /* Tell the remote that we are using the extended protocol. */
4056 putpkt ("!");
4057 getpkt (&rs->buf, &rs->buf_size, 0);
4058 }
4059
4060 /* Let the target know which signals it is allowed to pass down to
4061 the program. */
4062 update_signals_program_target ();
4063
4064 /* Next, if the target can specify a description, read it. We do
4065 this before anything involving memory or registers. */
4066 target_find_description ();
4067
4068 /* Next, now that we know something about the target, update the
4069 address spaces in the program spaces. */
4070 update_address_spaces ();
4071
4072 /* On OSs where the list of libraries is global to all
4073 processes, we fetch them early. */
4074 if (gdbarch_has_global_solist (target_gdbarch ()))
4075 solib_add (NULL, from_tty, auto_solib_add);
4076
4077 if (target_is_non_stop_p ())
4078 {
4079 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4080 error (_("Non-stop mode requested, but remote "
4081 "does not support non-stop"));
4082
4083 putpkt ("QNonStop:1");
4084 getpkt (&rs->buf, &rs->buf_size, 0);
4085
4086 if (strcmp (rs->buf, "OK") != 0)
4087 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4088
4089 /* Find about threads and processes the stub is already
4090 controlling. We default to adding them in the running state.
4091 The '?' query below will then tell us about which threads are
4092 stopped. */
4093 remote_update_thread_list (target);
4094 }
4095 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4096 {
4097 /* Don't assume that the stub can operate in all-stop mode.
4098 Request it explicitly. */
4099 putpkt ("QNonStop:0");
4100 getpkt (&rs->buf, &rs->buf_size, 0);
4101
4102 if (strcmp (rs->buf, "OK") != 0)
4103 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4104 }
4105
4106 /* Upload TSVs regardless of whether the target is running or not. The
4107 remote stub, such as GDBserver, may have some predefined or builtin
4108 TSVs, even if the target is not running. */
4109 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4110 {
4111 struct uploaded_tsv *uploaded_tsvs = NULL;
4112
4113 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4114 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4115 }
4116
4117 /* Check whether the target is running now. */
4118 putpkt ("?");
4119 getpkt (&rs->buf, &rs->buf_size, 0);
4120
4121 if (!target_is_non_stop_p ())
4122 {
4123 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4124 {
4125 if (!extended_p)
4126 error (_("The target is not running (try extended-remote?)"));
4127
4128 /* We're connected, but not running. Drop out before we
4129 call start_remote. */
4130 rs->starting_up = 0;
4131 return;
4132 }
4133 else
4134 {
4135 /* Save the reply for later. */
4136 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4137 strcpy (wait_status, rs->buf);
4138 }
4139
4140 /* Fetch thread list. */
4141 target_update_thread_list ();
4142
4143 /* Let the stub know that we want it to return the thread. */
4144 set_continue_thread (minus_one_ptid);
4145
4146 if (thread_count () == 0)
4147 {
4148 /* Target has no concept of threads at all. GDB treats
4149 non-threaded target as single-threaded; add a main
4150 thread. */
4151 add_current_inferior_and_thread (wait_status);
4152 }
4153 else
4154 {
4155 /* We have thread information; select the thread the target
4156 says should be current. If we're reconnecting to a
4157 multi-threaded program, this will ideally be the thread
4158 that last reported an event before GDB disconnected. */
4159 inferior_ptid = get_current_thread (wait_status);
4160 if (ptid_equal (inferior_ptid, null_ptid))
4161 {
4162 /* Odd... The target was able to list threads, but not
4163 tell us which thread was current (no "thread"
4164 register in T stop reply?). Just pick the first
4165 thread in the thread list then. */
4166
4167 if (remote_debug)
4168 fprintf_unfiltered (gdb_stdlog,
4169 "warning: couldn't determine remote "
4170 "current thread; picking first in list.\n");
4171
4172 inferior_ptid = thread_list->ptid;
4173 }
4174 }
4175
4176 /* init_wait_for_inferior should be called before get_offsets in order
4177 to manage `inserted' flag in bp loc in a correct state.
4178 breakpoint_init_inferior, called from init_wait_for_inferior, set
4179 `inserted' flag to 0, while before breakpoint_re_set, called from
4180 start_remote, set `inserted' flag to 1. In the initialization of
4181 inferior, breakpoint_init_inferior should be called first, and then
4182 breakpoint_re_set can be called. If this order is broken, state of
4183 `inserted' flag is wrong, and cause some problems on breakpoint
4184 manipulation. */
4185 init_wait_for_inferior ();
4186
4187 get_offsets (); /* Get text, data & bss offsets. */
4188
4189 /* If we could not find a description using qXfer, and we know
4190 how to do it some other way, try again. This is not
4191 supported for non-stop; it could be, but it is tricky if
4192 there are no stopped threads when we connect. */
4193 if (remote_read_description_p (target)
4194 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4195 {
4196 target_clear_description ();
4197 target_find_description ();
4198 }
4199
4200 /* Use the previously fetched status. */
4201 gdb_assert (wait_status != NULL);
4202 strcpy (rs->buf, wait_status);
4203 rs->cached_wait_status = 1;
4204
4205 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4206 }
4207 else
4208 {
4209 /* Clear WFI global state. Do this before finding about new
4210 threads and inferiors, and setting the current inferior.
4211 Otherwise we would clear the proceed status of the current
4212 inferior when we want its stop_soon state to be preserved
4213 (see notice_new_inferior). */
4214 init_wait_for_inferior ();
4215
4216 /* In non-stop, we will either get an "OK", meaning that there
4217 are no stopped threads at this time; or, a regular stop
4218 reply. In the latter case, there may be more than one thread
4219 stopped --- we pull them all out using the vStopped
4220 mechanism. */
4221 if (strcmp (rs->buf, "OK") != 0)
4222 {
4223 struct notif_client *notif = &notif_client_stop;
4224
4225 /* remote_notif_get_pending_replies acks this one, and gets
4226 the rest out. */
4227 rs->notif_state->pending_event[notif_client_stop.id]
4228 = remote_notif_parse (notif, rs->buf);
4229 remote_notif_get_pending_events (notif);
4230 }
4231
4232 if (thread_count () == 0)
4233 {
4234 if (!extended_p)
4235 error (_("The target is not running (try extended-remote?)"));
4236
4237 /* We're connected, but not running. Drop out before we
4238 call start_remote. */
4239 rs->starting_up = 0;
4240 return;
4241 }
4242
4243 /* In non-stop mode, any cached wait status will be stored in
4244 the stop reply queue. */
4245 gdb_assert (wait_status == NULL);
4246
4247 /* Report all signals during attach/startup. */
4248 remote_pass_signals (target, 0, NULL);
4249
4250 /* If there are already stopped threads, mark them stopped and
4251 report their stops before giving the prompt to the user. */
4252 process_initial_stop_replies (from_tty);
4253
4254 if (target_can_async_p ())
4255 target_async (1);
4256 }
4257
4258 /* If we connected to a live target, do some additional setup. */
4259 if (target_has_execution)
4260 {
4261 if (symfile_objfile) /* No use without a symbol-file. */
4262 remote_check_symbols ();
4263 }
4264
4265 /* Possibly the target has been engaged in a trace run started
4266 previously; find out where things are at. */
4267 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4268 {
4269 struct uploaded_tp *uploaded_tps = NULL;
4270
4271 if (current_trace_status ()->running)
4272 printf_filtered (_("Trace is already running on the target.\n"));
4273
4274 remote_upload_tracepoints (target, &uploaded_tps);
4275
4276 merge_uploaded_tracepoints (&uploaded_tps);
4277 }
4278
4279 /* Possibly the target has been engaged in a btrace record started
4280 previously; find out where things are at. */
4281 remote_btrace_maybe_reopen ();
4282
4283 /* The thread and inferior lists are now synchronized with the
4284 target, our symbols have been relocated, and we're merged the
4285 target's tracepoints with ours. We're done with basic start
4286 up. */
4287 rs->starting_up = 0;
4288
4289 /* Maybe breakpoints are global and need to be inserted now. */
4290 if (breakpoints_should_be_inserted_now ())
4291 insert_breakpoints ();
4292 }
4293
4294 /* Open a connection to a remote debugger.
4295 NAME is the filename used for communication. */
4296
4297 static void
4298 remote_open (const char *name, int from_tty)
4299 {
4300 remote_open_1 (name, from_tty, &remote_ops, 0);
4301 }
4302
4303 /* Open a connection to a remote debugger using the extended
4304 remote gdb protocol. NAME is the filename used for communication. */
4305
4306 static void
4307 extended_remote_open (const char *name, int from_tty)
4308 {
4309 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4310 }
4311
4312 /* Reset all packets back to "unknown support". Called when opening a
4313 new connection to a remote target. */
4314
4315 static void
4316 reset_all_packet_configs_support (void)
4317 {
4318 int i;
4319
4320 for (i = 0; i < PACKET_MAX; i++)
4321 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4322 }
4323
4324 /* Initialize all packet configs. */
4325
4326 static void
4327 init_all_packet_configs (void)
4328 {
4329 int i;
4330
4331 for (i = 0; i < PACKET_MAX; i++)
4332 {
4333 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4334 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4335 }
4336 }
4337
4338 /* Symbol look-up. */
4339
4340 static void
4341 remote_check_symbols (void)
4342 {
4343 char *msg, *reply, *tmp;
4344 int end;
4345 long reply_size;
4346 struct cleanup *old_chain;
4347
4348 /* The remote side has no concept of inferiors that aren't running
4349 yet, it only knows about running processes. If we're connected
4350 but our current inferior is not running, we should not invite the
4351 remote target to request symbol lookups related to its
4352 (unrelated) current process. */
4353 if (!target_has_execution)
4354 return;
4355
4356 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4357 return;
4358
4359 /* Make sure the remote is pointing at the right process. Note
4360 there's no way to select "no process". */
4361 set_general_process ();
4362
4363 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4364 because we need both at the same time. */
4365 msg = (char *) xmalloc (get_remote_packet_size ());
4366 old_chain = make_cleanup (xfree, msg);
4367 reply = (char *) xmalloc (get_remote_packet_size ());
4368 make_cleanup (free_current_contents, &reply);
4369 reply_size = get_remote_packet_size ();
4370
4371 /* Invite target to request symbol lookups. */
4372
4373 putpkt ("qSymbol::");
4374 getpkt (&reply, &reply_size, 0);
4375 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4376
4377 while (startswith (reply, "qSymbol:"))
4378 {
4379 struct bound_minimal_symbol sym;
4380
4381 tmp = &reply[8];
4382 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4383 msg[end] = '\0';
4384 sym = lookup_minimal_symbol (msg, NULL, NULL);
4385 if (sym.minsym == NULL)
4386 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4387 else
4388 {
4389 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4390 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4391
4392 /* If this is a function address, return the start of code
4393 instead of any data function descriptor. */
4394 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4395 sym_addr,
4396 &current_target);
4397
4398 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4399 phex_nz (sym_addr, addr_size), &reply[8]);
4400 }
4401
4402 putpkt (msg);
4403 getpkt (&reply, &reply_size, 0);
4404 }
4405
4406 do_cleanups (old_chain);
4407 }
4408
4409 static struct serial *
4410 remote_serial_open (const char *name)
4411 {
4412 static int udp_warning = 0;
4413
4414 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4415 of in ser-tcp.c, because it is the remote protocol assuming that the
4416 serial connection is reliable and not the serial connection promising
4417 to be. */
4418 if (!udp_warning && startswith (name, "udp:"))
4419 {
4420 warning (_("The remote protocol may be unreliable over UDP.\n"
4421 "Some events may be lost, rendering further debugging "
4422 "impossible."));
4423 udp_warning = 1;
4424 }
4425
4426 return serial_open (name);
4427 }
4428
4429 /* Inform the target of our permission settings. The permission flags
4430 work without this, but if the target knows the settings, it can do
4431 a couple things. First, it can add its own check, to catch cases
4432 that somehow manage to get by the permissions checks in target
4433 methods. Second, if the target is wired to disallow particular
4434 settings (for instance, a system in the field that is not set up to
4435 be able to stop at a breakpoint), it can object to any unavailable
4436 permissions. */
4437
4438 void
4439 remote_set_permissions (struct target_ops *self)
4440 {
4441 struct remote_state *rs = get_remote_state ();
4442
4443 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4444 "WriteReg:%x;WriteMem:%x;"
4445 "InsertBreak:%x;InsertTrace:%x;"
4446 "InsertFastTrace:%x;Stop:%x",
4447 may_write_registers, may_write_memory,
4448 may_insert_breakpoints, may_insert_tracepoints,
4449 may_insert_fast_tracepoints, may_stop);
4450 putpkt (rs->buf);
4451 getpkt (&rs->buf, &rs->buf_size, 0);
4452
4453 /* If the target didn't like the packet, warn the user. Do not try
4454 to undo the user's settings, that would just be maddening. */
4455 if (strcmp (rs->buf, "OK") != 0)
4456 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4457 }
4458
4459 /* This type describes each known response to the qSupported
4460 packet. */
4461 struct protocol_feature
4462 {
4463 /* The name of this protocol feature. */
4464 const char *name;
4465
4466 /* The default for this protocol feature. */
4467 enum packet_support default_support;
4468
4469 /* The function to call when this feature is reported, or after
4470 qSupported processing if the feature is not supported.
4471 The first argument points to this structure. The second
4472 argument indicates whether the packet requested support be
4473 enabled, disabled, or probed (or the default, if this function
4474 is being called at the end of processing and this feature was
4475 not reported). The third argument may be NULL; if not NULL, it
4476 is a NUL-terminated string taken from the packet following
4477 this feature's name and an equals sign. */
4478 void (*func) (const struct protocol_feature *, enum packet_support,
4479 const char *);
4480
4481 /* The corresponding packet for this feature. Only used if
4482 FUNC is remote_supported_packet. */
4483 int packet;
4484 };
4485
4486 static void
4487 remote_supported_packet (const struct protocol_feature *feature,
4488 enum packet_support support,
4489 const char *argument)
4490 {
4491 if (argument)
4492 {
4493 warning (_("Remote qSupported response supplied an unexpected value for"
4494 " \"%s\"."), feature->name);
4495 return;
4496 }
4497
4498 remote_protocol_packets[feature->packet].support = support;
4499 }
4500
4501 static void
4502 remote_packet_size (const struct protocol_feature *feature,
4503 enum packet_support support, const char *value)
4504 {
4505 struct remote_state *rs = get_remote_state ();
4506
4507 int packet_size;
4508 char *value_end;
4509
4510 if (support != PACKET_ENABLE)
4511 return;
4512
4513 if (value == NULL || *value == '\0')
4514 {
4515 warning (_("Remote target reported \"%s\" without a size."),
4516 feature->name);
4517 return;
4518 }
4519
4520 errno = 0;
4521 packet_size = strtol (value, &value_end, 16);
4522 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4523 {
4524 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4525 feature->name, value);
4526 return;
4527 }
4528
4529 /* Record the new maximum packet size. */
4530 rs->explicit_packet_size = packet_size;
4531 }
4532
4533 static const struct protocol_feature remote_protocol_features[] = {
4534 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4535 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4536 PACKET_qXfer_auxv },
4537 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4538 PACKET_qXfer_exec_file },
4539 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4540 PACKET_qXfer_features },
4541 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4542 PACKET_qXfer_libraries },
4543 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4544 PACKET_qXfer_libraries_svr4 },
4545 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4546 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4547 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4548 PACKET_qXfer_memory_map },
4549 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4550 PACKET_qXfer_spu_read },
4551 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4552 PACKET_qXfer_spu_write },
4553 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4554 PACKET_qXfer_osdata },
4555 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4556 PACKET_qXfer_threads },
4557 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4558 PACKET_qXfer_traceframe_info },
4559 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4560 PACKET_QPassSignals },
4561 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4562 PACKET_QCatchSyscalls },
4563 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4564 PACKET_QProgramSignals },
4565 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4566 PACKET_QSetWorkingDir },
4567 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4568 PACKET_QStartupWithShell },
4569 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4570 PACKET_QEnvironmentHexEncoded },
4571 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4572 PACKET_QEnvironmentReset },
4573 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4574 PACKET_QEnvironmentUnset },
4575 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_QStartNoAckMode },
4577 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_multiprocess_feature },
4579 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4580 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4581 PACKET_qXfer_siginfo_read },
4582 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4583 PACKET_qXfer_siginfo_write },
4584 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4585 PACKET_ConditionalTracepoints },
4586 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4587 PACKET_ConditionalBreakpoints },
4588 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4589 PACKET_BreakpointCommands },
4590 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4591 PACKET_FastTracepoints },
4592 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4593 PACKET_StaticTracepoints },
4594 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4595 PACKET_InstallInTrace},
4596 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4597 PACKET_DisconnectedTracing_feature },
4598 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4599 PACKET_bc },
4600 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4601 PACKET_bs },
4602 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4603 PACKET_TracepointSource },
4604 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4605 PACKET_QAllow },
4606 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_EnableDisableTracepoints_feature },
4608 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_qXfer_fdpic },
4610 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_qXfer_uib },
4612 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_QDisableRandomization },
4614 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4615 { "QTBuffer:size", PACKET_DISABLE,
4616 remote_supported_packet, PACKET_QTBuffer_size},
4617 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4618 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4619 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4620 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4621 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4622 PACKET_qXfer_btrace },
4623 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4624 PACKET_qXfer_btrace_conf },
4625 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4626 PACKET_Qbtrace_conf_bts_size },
4627 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4628 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4629 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4630 PACKET_fork_event_feature },
4631 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4632 PACKET_vfork_event_feature },
4633 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4634 PACKET_exec_event_feature },
4635 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4636 PACKET_Qbtrace_conf_pt_size },
4637 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4638 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4639 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4640 };
4641
4642 static char *remote_support_xml;
4643
4644 /* Register string appended to "xmlRegisters=" in qSupported query. */
4645
4646 void
4647 register_remote_support_xml (const char *xml)
4648 {
4649 #if defined(HAVE_LIBEXPAT)
4650 if (remote_support_xml == NULL)
4651 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4652 else
4653 {
4654 char *copy = xstrdup (remote_support_xml + 13);
4655 char *p = strtok (copy, ",");
4656
4657 do
4658 {
4659 if (strcmp (p, xml) == 0)
4660 {
4661 /* already there */
4662 xfree (copy);
4663 return;
4664 }
4665 }
4666 while ((p = strtok (NULL, ",")) != NULL);
4667 xfree (copy);
4668
4669 remote_support_xml = reconcat (remote_support_xml,
4670 remote_support_xml, ",", xml,
4671 (char *) NULL);
4672 }
4673 #endif
4674 }
4675
4676 static char *
4677 remote_query_supported_append (char *msg, const char *append)
4678 {
4679 if (msg)
4680 return reconcat (msg, msg, ";", append, (char *) NULL);
4681 else
4682 return xstrdup (append);
4683 }
4684
4685 static void
4686 remote_query_supported (void)
4687 {
4688 struct remote_state *rs = get_remote_state ();
4689 char *next;
4690 int i;
4691 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4692
4693 /* The packet support flags are handled differently for this packet
4694 than for most others. We treat an error, a disabled packet, and
4695 an empty response identically: any features which must be reported
4696 to be used will be automatically disabled. An empty buffer
4697 accomplishes this, since that is also the representation for a list
4698 containing no features. */
4699
4700 rs->buf[0] = 0;
4701 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4702 {
4703 char *q = NULL;
4704 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4705
4706 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4707 q = remote_query_supported_append (q, "multiprocess+");
4708
4709 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4710 q = remote_query_supported_append (q, "swbreak+");
4711 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4712 q = remote_query_supported_append (q, "hwbreak+");
4713
4714 q = remote_query_supported_append (q, "qRelocInsn+");
4715
4716 if (packet_set_cmd_state (PACKET_fork_event_feature)
4717 != AUTO_BOOLEAN_FALSE)
4718 q = remote_query_supported_append (q, "fork-events+");
4719 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4720 != AUTO_BOOLEAN_FALSE)
4721 q = remote_query_supported_append (q, "vfork-events+");
4722 if (packet_set_cmd_state (PACKET_exec_event_feature)
4723 != AUTO_BOOLEAN_FALSE)
4724 q = remote_query_supported_append (q, "exec-events+");
4725
4726 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4727 q = remote_query_supported_append (q, "vContSupported+");
4728
4729 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4730 q = remote_query_supported_append (q, "QThreadEvents+");
4731
4732 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4733 q = remote_query_supported_append (q, "no-resumed+");
4734
4735 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4736 the qSupported:xmlRegisters=i386 handling. */
4737 if (remote_support_xml != NULL
4738 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
4739 q = remote_query_supported_append (q, remote_support_xml);
4740
4741 q = reconcat (q, "qSupported:", q, (char *) NULL);
4742 putpkt (q);
4743
4744 do_cleanups (old_chain);
4745
4746 getpkt (&rs->buf, &rs->buf_size, 0);
4747
4748 /* If an error occured, warn, but do not return - just reset the
4749 buffer to empty and go on to disable features. */
4750 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4751 == PACKET_ERROR)
4752 {
4753 warning (_("Remote failure reply: %s"), rs->buf);
4754 rs->buf[0] = 0;
4755 }
4756 }
4757
4758 memset (seen, 0, sizeof (seen));
4759
4760 next = rs->buf;
4761 while (*next)
4762 {
4763 enum packet_support is_supported;
4764 char *p, *end, *name_end, *value;
4765
4766 /* First separate out this item from the rest of the packet. If
4767 there's another item after this, we overwrite the separator
4768 (terminated strings are much easier to work with). */
4769 p = next;
4770 end = strchr (p, ';');
4771 if (end == NULL)
4772 {
4773 end = p + strlen (p);
4774 next = end;
4775 }
4776 else
4777 {
4778 *end = '\0';
4779 next = end + 1;
4780
4781 if (end == p)
4782 {
4783 warning (_("empty item in \"qSupported\" response"));
4784 continue;
4785 }
4786 }
4787
4788 name_end = strchr (p, '=');
4789 if (name_end)
4790 {
4791 /* This is a name=value entry. */
4792 is_supported = PACKET_ENABLE;
4793 value = name_end + 1;
4794 *name_end = '\0';
4795 }
4796 else
4797 {
4798 value = NULL;
4799 switch (end[-1])
4800 {
4801 case '+':
4802 is_supported = PACKET_ENABLE;
4803 break;
4804
4805 case '-':
4806 is_supported = PACKET_DISABLE;
4807 break;
4808
4809 case '?':
4810 is_supported = PACKET_SUPPORT_UNKNOWN;
4811 break;
4812
4813 default:
4814 warning (_("unrecognized item \"%s\" "
4815 "in \"qSupported\" response"), p);
4816 continue;
4817 }
4818 end[-1] = '\0';
4819 }
4820
4821 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4822 if (strcmp (remote_protocol_features[i].name, p) == 0)
4823 {
4824 const struct protocol_feature *feature;
4825
4826 seen[i] = 1;
4827 feature = &remote_protocol_features[i];
4828 feature->func (feature, is_supported, value);
4829 break;
4830 }
4831 }
4832
4833 /* If we increased the packet size, make sure to increase the global
4834 buffer size also. We delay this until after parsing the entire
4835 qSupported packet, because this is the same buffer we were
4836 parsing. */
4837 if (rs->buf_size < rs->explicit_packet_size)
4838 {
4839 rs->buf_size = rs->explicit_packet_size;
4840 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4841 }
4842
4843 /* Handle the defaults for unmentioned features. */
4844 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4845 if (!seen[i])
4846 {
4847 const struct protocol_feature *feature;
4848
4849 feature = &remote_protocol_features[i];
4850 feature->func (feature, feature->default_support, NULL);
4851 }
4852 }
4853
4854 /* Serial QUIT handler for the remote serial descriptor.
4855
4856 Defers handling a Ctrl-C until we're done with the current
4857 command/response packet sequence, unless:
4858
4859 - We're setting up the connection. Don't send a remote interrupt
4860 request, as we're not fully synced yet. Quit immediately
4861 instead.
4862
4863 - The target has been resumed in the foreground
4864 (target_terminal::is_ours is false) with a synchronous resume
4865 packet, and we're blocked waiting for the stop reply, thus a
4866 Ctrl-C should be immediately sent to the target.
4867
4868 - We get a second Ctrl-C while still within the same serial read or
4869 write. In that case the serial is seemingly wedged --- offer to
4870 quit/disconnect.
4871
4872 - We see a second Ctrl-C without target response, after having
4873 previously interrupted the target. In that case the target/stub
4874 is probably wedged --- offer to quit/disconnect.
4875 */
4876
4877 static void
4878 remote_serial_quit_handler (void)
4879 {
4880 struct remote_state *rs = get_remote_state ();
4881
4882 if (check_quit_flag ())
4883 {
4884 /* If we're starting up, we're not fully synced yet. Quit
4885 immediately. */
4886 if (rs->starting_up)
4887 quit ();
4888 else if (rs->got_ctrlc_during_io)
4889 {
4890 if (query (_("The target is not responding to GDB commands.\n"
4891 "Stop debugging it? ")))
4892 remote_unpush_and_throw ();
4893 }
4894 /* If ^C has already been sent once, offer to disconnect. */
4895 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4896 interrupt_query ();
4897 /* All-stop protocol, and blocked waiting for stop reply. Send
4898 an interrupt request. */
4899 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4900 target_interrupt ();
4901 else
4902 rs->got_ctrlc_during_io = 1;
4903 }
4904 }
4905
4906 /* Remove any of the remote.c targets from target stack. Upper targets depend
4907 on it so remove them first. */
4908
4909 static void
4910 remote_unpush_target (void)
4911 {
4912 pop_all_targets_at_and_above (process_stratum);
4913 }
4914
4915 static void
4916 remote_unpush_and_throw (void)
4917 {
4918 remote_unpush_target ();
4919 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4920 }
4921
4922 static void
4923 remote_open_1 (const char *name, int from_tty,
4924 struct target_ops *target, int extended_p)
4925 {
4926 struct remote_state *rs = get_remote_state ();
4927
4928 if (name == 0)
4929 error (_("To open a remote debug connection, you need to specify what\n"
4930 "serial device is attached to the remote system\n"
4931 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4932
4933 /* See FIXME above. */
4934 if (!target_async_permitted)
4935 wait_forever_enabled_p = 1;
4936
4937 /* If we're connected to a running target, target_preopen will kill it.
4938 Ask this question first, before target_preopen has a chance to kill
4939 anything. */
4940 if (rs->remote_desc != NULL && !have_inferiors ())
4941 {
4942 if (from_tty
4943 && !query (_("Already connected to a remote target. Disconnect? ")))
4944 error (_("Still connected."));
4945 }
4946
4947 /* Here the possibly existing remote target gets unpushed. */
4948 target_preopen (from_tty);
4949
4950 /* Make sure we send the passed signals list the next time we resume. */
4951 xfree (rs->last_pass_packet);
4952 rs->last_pass_packet = NULL;
4953
4954 /* Make sure we send the program signals list the next time we
4955 resume. */
4956 xfree (rs->last_program_signals_packet);
4957 rs->last_program_signals_packet = NULL;
4958
4959 remote_fileio_reset ();
4960 reopen_exec_file ();
4961 reread_symbols ();
4962
4963 rs->remote_desc = remote_serial_open (name);
4964 if (!rs->remote_desc)
4965 perror_with_name (name);
4966
4967 if (baud_rate != -1)
4968 {
4969 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4970 {
4971 /* The requested speed could not be set. Error out to
4972 top level after closing remote_desc. Take care to
4973 set remote_desc to NULL to avoid closing remote_desc
4974 more than once. */
4975 serial_close (rs->remote_desc);
4976 rs->remote_desc = NULL;
4977 perror_with_name (name);
4978 }
4979 }
4980
4981 serial_setparity (rs->remote_desc, serial_parity);
4982 serial_raw (rs->remote_desc);
4983
4984 /* If there is something sitting in the buffer we might take it as a
4985 response to a command, which would be bad. */
4986 serial_flush_input (rs->remote_desc);
4987
4988 if (from_tty)
4989 {
4990 puts_filtered ("Remote debugging using ");
4991 puts_filtered (name);
4992 puts_filtered ("\n");
4993 }
4994 push_target (target); /* Switch to using remote target now. */
4995
4996 /* Register extra event sources in the event loop. */
4997 remote_async_inferior_event_token
4998 = create_async_event_handler (remote_async_inferior_event_handler,
4999 NULL);
5000 rs->notif_state = remote_notif_state_allocate ();
5001
5002 /* Reset the target state; these things will be queried either by
5003 remote_query_supported or as they are needed. */
5004 reset_all_packet_configs_support ();
5005 rs->cached_wait_status = 0;
5006 rs->explicit_packet_size = 0;
5007 rs->noack_mode = 0;
5008 rs->extended = extended_p;
5009 rs->waiting_for_stop_reply = 0;
5010 rs->ctrlc_pending_p = 0;
5011 rs->got_ctrlc_during_io = 0;
5012
5013 rs->general_thread = not_sent_ptid;
5014 rs->continue_thread = not_sent_ptid;
5015 rs->remote_traceframe_number = -1;
5016
5017 rs->last_resume_exec_dir = EXEC_FORWARD;
5018
5019 /* Probe for ability to use "ThreadInfo" query, as required. */
5020 rs->use_threadinfo_query = 1;
5021 rs->use_threadextra_query = 1;
5022
5023 readahead_cache_invalidate ();
5024
5025 if (target_async_permitted)
5026 {
5027 /* FIXME: cagney/1999-09-23: During the initial connection it is
5028 assumed that the target is already ready and able to respond to
5029 requests. Unfortunately remote_start_remote() eventually calls
5030 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5031 around this. Eventually a mechanism that allows
5032 wait_for_inferior() to expect/get timeouts will be
5033 implemented. */
5034 wait_forever_enabled_p = 0;
5035 }
5036
5037 /* First delete any symbols previously loaded from shared libraries. */
5038 no_shared_libraries (NULL, 0);
5039
5040 /* Start afresh. */
5041 init_thread_list ();
5042
5043 /* Start the remote connection. If error() or QUIT, discard this
5044 target (we'd otherwise be in an inconsistent state) and then
5045 propogate the error on up the exception chain. This ensures that
5046 the caller doesn't stumble along blindly assuming that the
5047 function succeeded. The CLI doesn't have this problem but other
5048 UI's, such as MI do.
5049
5050 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5051 this function should return an error indication letting the
5052 caller restore the previous state. Unfortunately the command
5053 ``target remote'' is directly wired to this function making that
5054 impossible. On a positive note, the CLI side of this problem has
5055 been fixed - the function set_cmd_context() makes it possible for
5056 all the ``target ....'' commands to share a common callback
5057 function. See cli-dump.c. */
5058 {
5059
5060 TRY
5061 {
5062 remote_start_remote (from_tty, target, extended_p);
5063 }
5064 CATCH (ex, RETURN_MASK_ALL)
5065 {
5066 /* Pop the partially set up target - unless something else did
5067 already before throwing the exception. */
5068 if (rs->remote_desc != NULL)
5069 remote_unpush_target ();
5070 if (target_async_permitted)
5071 wait_forever_enabled_p = 1;
5072 throw_exception (ex);
5073 }
5074 END_CATCH
5075 }
5076
5077 remote_btrace_reset ();
5078
5079 if (target_async_permitted)
5080 wait_forever_enabled_p = 1;
5081 }
5082
5083 /* Detach the specified process. */
5084
5085 static void
5086 remote_detach_pid (int pid)
5087 {
5088 struct remote_state *rs = get_remote_state ();
5089
5090 if (remote_multi_process_p (rs))
5091 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5092 else
5093 strcpy (rs->buf, "D");
5094
5095 putpkt (rs->buf);
5096 getpkt (&rs->buf, &rs->buf_size, 0);
5097
5098 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5099 ;
5100 else if (rs->buf[0] == '\0')
5101 error (_("Remote doesn't know how to detach"));
5102 else
5103 error (_("Can't detach process."));
5104 }
5105
5106 /* This detaches a program to which we previously attached, using
5107 inferior_ptid to identify the process. After this is done, GDB
5108 can be used to debug some other program. We better not have left
5109 any breakpoints in the target program or it'll die when it hits
5110 one. */
5111
5112 static void
5113 remote_detach_1 (int from_tty, inferior *inf)
5114 {
5115 int pid = ptid_get_pid (inferior_ptid);
5116 struct remote_state *rs = get_remote_state ();
5117 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5118 int is_fork_parent;
5119
5120 if (!target_has_execution)
5121 error (_("No process to detach from."));
5122
5123 target_announce_detach (from_tty);
5124
5125 /* Tell the remote target to detach. */
5126 remote_detach_pid (pid);
5127
5128 /* Exit only if this is the only active inferior. */
5129 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5130 puts_filtered (_("Ending remote debugging.\n"));
5131
5132 /* Check to see if we are detaching a fork parent. Note that if we
5133 are detaching a fork child, tp == NULL. */
5134 is_fork_parent = (tp != NULL
5135 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5136
5137 /* If doing detach-on-fork, we don't mourn, because that will delete
5138 breakpoints that should be available for the followed inferior. */
5139 if (!is_fork_parent)
5140 {
5141 /* Save the pid as a string before mourning, since that will
5142 unpush the remote target, and we need the string after. */
5143 std::string infpid = target_pid_to_str (pid_to_ptid (pid));
5144
5145 target_mourn_inferior (inferior_ptid);
5146 if (print_inferior_events)
5147 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5148 inf->num, infpid.c_str ());
5149 }
5150 else
5151 {
5152 inferior_ptid = null_ptid;
5153 detach_inferior (pid);
5154 }
5155 }
5156
5157 static void
5158 remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5159 {
5160 remote_detach_1 (from_tty, inf);
5161 }
5162
5163 static void
5164 extended_remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5165 {
5166 remote_detach_1 (from_tty, inf);
5167 }
5168
5169 /* Target follow-fork function for remote targets. On entry, and
5170 at return, the current inferior is the fork parent.
5171
5172 Note that although this is currently only used for extended-remote,
5173 it is named remote_follow_fork in anticipation of using it for the
5174 remote target as well. */
5175
5176 static int
5177 remote_follow_fork (struct target_ops *ops, int follow_child,
5178 int detach_fork)
5179 {
5180 struct remote_state *rs = get_remote_state ();
5181 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5182
5183 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5184 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5185 {
5186 /* When following the parent and detaching the child, we detach
5187 the child here. For the case of following the child and
5188 detaching the parent, the detach is done in the target-
5189 independent follow fork code in infrun.c. We can't use
5190 target_detach when detaching an unfollowed child because
5191 the client side doesn't know anything about the child. */
5192 if (detach_fork && !follow_child)
5193 {
5194 /* Detach the fork child. */
5195 ptid_t child_ptid;
5196 pid_t child_pid;
5197
5198 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5199 child_pid = ptid_get_pid (child_ptid);
5200
5201 remote_detach_pid (child_pid);
5202 }
5203 }
5204 return 0;
5205 }
5206
5207 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5208 in the program space of the new inferior. On entry and at return the
5209 current inferior is the exec'ing inferior. INF is the new exec'd
5210 inferior, which may be the same as the exec'ing inferior unless
5211 follow-exec-mode is "new". */
5212
5213 static void
5214 remote_follow_exec (struct target_ops *ops,
5215 struct inferior *inf, char *execd_pathname)
5216 {
5217 /* We know that this is a target file name, so if it has the "target:"
5218 prefix we strip it off before saving it in the program space. */
5219 if (is_target_filename (execd_pathname))
5220 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5221
5222 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5223 }
5224
5225 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5226
5227 static void
5228 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5229 {
5230 if (args)
5231 error (_("Argument given to \"disconnect\" when remotely debugging."));
5232
5233 /* Make sure we unpush even the extended remote targets. Calling
5234 target_mourn_inferior won't unpush, and remote_mourn won't
5235 unpush if there is more than one inferior left. */
5236 unpush_target (target);
5237 generic_mourn_inferior ();
5238
5239 if (from_tty)
5240 puts_filtered ("Ending remote debugging.\n");
5241 }
5242
5243 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5244 be chatty about it. */
5245
5246 static void
5247 extended_remote_attach (struct target_ops *target, const char *args,
5248 int from_tty)
5249 {
5250 struct remote_state *rs = get_remote_state ();
5251 int pid;
5252 char *wait_status = NULL;
5253
5254 pid = parse_pid_to_attach (args);
5255
5256 /* Remote PID can be freely equal to getpid, do not check it here the same
5257 way as in other targets. */
5258
5259 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5260 error (_("This target does not support attaching to a process"));
5261
5262 if (from_tty)
5263 {
5264 char *exec_file = get_exec_file (0);
5265
5266 if (exec_file)
5267 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5268 target_pid_to_str (pid_to_ptid (pid)));
5269 else
5270 printf_unfiltered (_("Attaching to %s\n"),
5271 target_pid_to_str (pid_to_ptid (pid)));
5272
5273 gdb_flush (gdb_stdout);
5274 }
5275
5276 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5277 putpkt (rs->buf);
5278 getpkt (&rs->buf, &rs->buf_size, 0);
5279
5280 switch (packet_ok (rs->buf,
5281 &remote_protocol_packets[PACKET_vAttach]))
5282 {
5283 case PACKET_OK:
5284 if (!target_is_non_stop_p ())
5285 {
5286 /* Save the reply for later. */
5287 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5288 strcpy (wait_status, rs->buf);
5289 }
5290 else if (strcmp (rs->buf, "OK") != 0)
5291 error (_("Attaching to %s failed with: %s"),
5292 target_pid_to_str (pid_to_ptid (pid)),
5293 rs->buf);
5294 break;
5295 case PACKET_UNKNOWN:
5296 error (_("This target does not support attaching to a process"));
5297 default:
5298 error (_("Attaching to %s failed"),
5299 target_pid_to_str (pid_to_ptid (pid)));
5300 }
5301
5302 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5303
5304 inferior_ptid = pid_to_ptid (pid);
5305
5306 if (target_is_non_stop_p ())
5307 {
5308 struct thread_info *thread;
5309
5310 /* Get list of threads. */
5311 remote_update_thread_list (target);
5312
5313 thread = first_thread_of_process (pid);
5314 if (thread)
5315 inferior_ptid = thread->ptid;
5316 else
5317 inferior_ptid = pid_to_ptid (pid);
5318
5319 /* Invalidate our notion of the remote current thread. */
5320 record_currthread (rs, minus_one_ptid);
5321 }
5322 else
5323 {
5324 /* Now, if we have thread information, update inferior_ptid. */
5325 inferior_ptid = remote_current_thread (inferior_ptid);
5326
5327 /* Add the main thread to the thread list. */
5328 thread_info *thr = add_thread_silent (inferior_ptid);
5329 /* Don't consider the thread stopped until we've processed the
5330 saved stop reply. */
5331 set_executing (thr->ptid, true);
5332 }
5333
5334 /* Next, if the target can specify a description, read it. We do
5335 this before anything involving memory or registers. */
5336 target_find_description ();
5337
5338 if (!target_is_non_stop_p ())
5339 {
5340 /* Use the previously fetched status. */
5341 gdb_assert (wait_status != NULL);
5342
5343 if (target_can_async_p ())
5344 {
5345 struct notif_event *reply
5346 = remote_notif_parse (&notif_client_stop, wait_status);
5347
5348 push_stop_reply ((struct stop_reply *) reply);
5349
5350 target_async (1);
5351 }
5352 else
5353 {
5354 gdb_assert (wait_status != NULL);
5355 strcpy (rs->buf, wait_status);
5356 rs->cached_wait_status = 1;
5357 }
5358 }
5359 else
5360 gdb_assert (wait_status == NULL);
5361 }
5362
5363 /* Implementation of the to_post_attach method. */
5364
5365 static void
5366 extended_remote_post_attach (struct target_ops *ops, int pid)
5367 {
5368 /* Get text, data & bss offsets. */
5369 get_offsets ();
5370
5371 /* In certain cases GDB might not have had the chance to start
5372 symbol lookup up until now. This could happen if the debugged
5373 binary is not using shared libraries, the vsyscall page is not
5374 present (on Linux) and the binary itself hadn't changed since the
5375 debugging process was started. */
5376 if (symfile_objfile != NULL)
5377 remote_check_symbols();
5378 }
5379
5380 \f
5381 /* Check for the availability of vCont. This function should also check
5382 the response. */
5383
5384 static void
5385 remote_vcont_probe (struct remote_state *rs)
5386 {
5387 char *buf;
5388
5389 strcpy (rs->buf, "vCont?");
5390 putpkt (rs->buf);
5391 getpkt (&rs->buf, &rs->buf_size, 0);
5392 buf = rs->buf;
5393
5394 /* Make sure that the features we assume are supported. */
5395 if (startswith (buf, "vCont"))
5396 {
5397 char *p = &buf[5];
5398 int support_c, support_C;
5399
5400 rs->supports_vCont.s = 0;
5401 rs->supports_vCont.S = 0;
5402 support_c = 0;
5403 support_C = 0;
5404 rs->supports_vCont.t = 0;
5405 rs->supports_vCont.r = 0;
5406 while (p && *p == ';')
5407 {
5408 p++;
5409 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5410 rs->supports_vCont.s = 1;
5411 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5412 rs->supports_vCont.S = 1;
5413 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5414 support_c = 1;
5415 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5416 support_C = 1;
5417 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5418 rs->supports_vCont.t = 1;
5419 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5420 rs->supports_vCont.r = 1;
5421
5422 p = strchr (p, ';');
5423 }
5424
5425 /* If c, and C are not all supported, we can't use vCont. Clearing
5426 BUF will make packet_ok disable the packet. */
5427 if (!support_c || !support_C)
5428 buf[0] = 0;
5429 }
5430
5431 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5432 }
5433
5434 /* Helper function for building "vCont" resumptions. Write a
5435 resumption to P. ENDP points to one-passed-the-end of the buffer
5436 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5437 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5438 resumed thread should be single-stepped and/or signalled. If PTID
5439 equals minus_one_ptid, then all threads are resumed; if PTID
5440 represents a process, then all threads of the process are resumed;
5441 the thread to be stepped and/or signalled is given in the global
5442 INFERIOR_PTID. */
5443
5444 static char *
5445 append_resumption (char *p, char *endp,
5446 ptid_t ptid, int step, enum gdb_signal siggnal)
5447 {
5448 struct remote_state *rs = get_remote_state ();
5449
5450 if (step && siggnal != GDB_SIGNAL_0)
5451 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5452 else if (step
5453 /* GDB is willing to range step. */
5454 && use_range_stepping
5455 /* Target supports range stepping. */
5456 && rs->supports_vCont.r
5457 /* We don't currently support range stepping multiple
5458 threads with a wildcard (though the protocol allows it,
5459 so stubs shouldn't make an active effort to forbid
5460 it). */
5461 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5462 {
5463 struct thread_info *tp;
5464
5465 if (ptid_equal (ptid, minus_one_ptid))
5466 {
5467 /* If we don't know about the target thread's tid, then
5468 we're resuming magic_null_ptid (see caller). */
5469 tp = find_thread_ptid (magic_null_ptid);
5470 }
5471 else
5472 tp = find_thread_ptid (ptid);
5473 gdb_assert (tp != NULL);
5474
5475 if (tp->control.may_range_step)
5476 {
5477 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5478
5479 p += xsnprintf (p, endp - p, ";r%s,%s",
5480 phex_nz (tp->control.step_range_start,
5481 addr_size),
5482 phex_nz (tp->control.step_range_end,
5483 addr_size));
5484 }
5485 else
5486 p += xsnprintf (p, endp - p, ";s");
5487 }
5488 else if (step)
5489 p += xsnprintf (p, endp - p, ";s");
5490 else if (siggnal != GDB_SIGNAL_0)
5491 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5492 else
5493 p += xsnprintf (p, endp - p, ";c");
5494
5495 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5496 {
5497 ptid_t nptid;
5498
5499 /* All (-1) threads of process. */
5500 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5501
5502 p += xsnprintf (p, endp - p, ":");
5503 p = write_ptid (p, endp, nptid);
5504 }
5505 else if (!ptid_equal (ptid, minus_one_ptid))
5506 {
5507 p += xsnprintf (p, endp - p, ":");
5508 p = write_ptid (p, endp, ptid);
5509 }
5510
5511 return p;
5512 }
5513
5514 /* Clear the thread's private info on resume. */
5515
5516 static void
5517 resume_clear_thread_private_info (struct thread_info *thread)
5518 {
5519 if (thread->priv != NULL)
5520 {
5521 remote_thread_info *priv = get_remote_thread_info (thread);
5522
5523 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5524 priv->watch_data_address = 0;
5525 }
5526 }
5527
5528 /* Append a vCont continue-with-signal action for threads that have a
5529 non-zero stop signal. */
5530
5531 static char *
5532 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5533 {
5534 struct thread_info *thread;
5535
5536 ALL_NON_EXITED_THREADS (thread)
5537 if (ptid_match (thread->ptid, ptid)
5538 && !ptid_equal (inferior_ptid, thread->ptid)
5539 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5540 {
5541 p = append_resumption (p, endp, thread->ptid,
5542 0, thread->suspend.stop_signal);
5543 thread->suspend.stop_signal = GDB_SIGNAL_0;
5544 resume_clear_thread_private_info (thread);
5545 }
5546
5547 return p;
5548 }
5549
5550 /* Set the target running, using the packets that use Hc
5551 (c/s/C/S). */
5552
5553 static void
5554 remote_resume_with_hc (struct target_ops *ops,
5555 ptid_t ptid, int step, enum gdb_signal siggnal)
5556 {
5557 struct remote_state *rs = get_remote_state ();
5558 struct thread_info *thread;
5559 char *buf;
5560
5561 rs->last_sent_signal = siggnal;
5562 rs->last_sent_step = step;
5563
5564 /* The c/s/C/S resume packets use Hc, so set the continue
5565 thread. */
5566 if (ptid_equal (ptid, minus_one_ptid))
5567 set_continue_thread (any_thread_ptid);
5568 else
5569 set_continue_thread (ptid);
5570
5571 ALL_NON_EXITED_THREADS (thread)
5572 resume_clear_thread_private_info (thread);
5573
5574 buf = rs->buf;
5575 if (execution_direction == EXEC_REVERSE)
5576 {
5577 /* We don't pass signals to the target in reverse exec mode. */
5578 if (info_verbose && siggnal != GDB_SIGNAL_0)
5579 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5580 siggnal);
5581
5582 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5583 error (_("Remote reverse-step not supported."));
5584 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5585 error (_("Remote reverse-continue not supported."));
5586
5587 strcpy (buf, step ? "bs" : "bc");
5588 }
5589 else if (siggnal != GDB_SIGNAL_0)
5590 {
5591 buf[0] = step ? 'S' : 'C';
5592 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5593 buf[2] = tohex (((int) siggnal) & 0xf);
5594 buf[3] = '\0';
5595 }
5596 else
5597 strcpy (buf, step ? "s" : "c");
5598
5599 putpkt (buf);
5600 }
5601
5602 /* Resume the remote inferior by using a "vCont" packet. The thread
5603 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5604 resumed thread should be single-stepped and/or signalled. If PTID
5605 equals minus_one_ptid, then all threads are resumed; the thread to
5606 be stepped and/or signalled is given in the global INFERIOR_PTID.
5607 This function returns non-zero iff it resumes the inferior.
5608
5609 This function issues a strict subset of all possible vCont commands
5610 at the moment. */
5611
5612 static int
5613 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5614 {
5615 struct remote_state *rs = get_remote_state ();
5616 char *p;
5617 char *endp;
5618
5619 /* No reverse execution actions defined for vCont. */
5620 if (execution_direction == EXEC_REVERSE)
5621 return 0;
5622
5623 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5624 remote_vcont_probe (rs);
5625
5626 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5627 return 0;
5628
5629 p = rs->buf;
5630 endp = rs->buf + get_remote_packet_size ();
5631
5632 /* If we could generate a wider range of packets, we'd have to worry
5633 about overflowing BUF. Should there be a generic
5634 "multi-part-packet" packet? */
5635
5636 p += xsnprintf (p, endp - p, "vCont");
5637
5638 if (ptid_equal (ptid, magic_null_ptid))
5639 {
5640 /* MAGIC_NULL_PTID means that we don't have any active threads,
5641 so we don't have any TID numbers the inferior will
5642 understand. Make sure to only send forms that do not specify
5643 a TID. */
5644 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5645 }
5646 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5647 {
5648 /* Resume all threads (of all processes, or of a single
5649 process), with preference for INFERIOR_PTID. This assumes
5650 inferior_ptid belongs to the set of all threads we are about
5651 to resume. */
5652 if (step || siggnal != GDB_SIGNAL_0)
5653 {
5654 /* Step inferior_ptid, with or without signal. */
5655 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5656 }
5657
5658 /* Also pass down any pending signaled resumption for other
5659 threads not the current. */
5660 p = append_pending_thread_resumptions (p, endp, ptid);
5661
5662 /* And continue others without a signal. */
5663 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5664 }
5665 else
5666 {
5667 /* Scheduler locking; resume only PTID. */
5668 append_resumption (p, endp, ptid, step, siggnal);
5669 }
5670
5671 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5672 putpkt (rs->buf);
5673
5674 if (target_is_non_stop_p ())
5675 {
5676 /* In non-stop, the stub replies to vCont with "OK". The stop
5677 reply will be reported asynchronously by means of a `%Stop'
5678 notification. */
5679 getpkt (&rs->buf, &rs->buf_size, 0);
5680 if (strcmp (rs->buf, "OK") != 0)
5681 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5682 }
5683
5684 return 1;
5685 }
5686
5687 /* Tell the remote machine to resume. */
5688
5689 static void
5690 remote_resume (struct target_ops *ops,
5691 ptid_t ptid, int step, enum gdb_signal siggnal)
5692 {
5693 struct remote_state *rs = get_remote_state ();
5694
5695 /* When connected in non-stop mode, the core resumes threads
5696 individually. Resuming remote threads directly in target_resume
5697 would thus result in sending one packet per thread. Instead, to
5698 minimize roundtrip latency, here we just store the resume
5699 request; the actual remote resumption will be done in
5700 target_commit_resume / remote_commit_resume, where we'll be able
5701 to do vCont action coalescing. */
5702 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5703 {
5704 remote_thread_info *remote_thr;
5705
5706 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5707 remote_thr = get_remote_thread_info (inferior_ptid);
5708 else
5709 remote_thr = get_remote_thread_info (ptid);
5710
5711 remote_thr->last_resume_step = step;
5712 remote_thr->last_resume_sig = siggnal;
5713 return;
5714 }
5715
5716 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5717 (explained in remote-notif.c:handle_notification) so
5718 remote_notif_process is not called. We need find a place where
5719 it is safe to start a 'vNotif' sequence. It is good to do it
5720 before resuming inferior, because inferior was stopped and no RSP
5721 traffic at that moment. */
5722 if (!target_is_non_stop_p ())
5723 remote_notif_process (rs->notif_state, &notif_client_stop);
5724
5725 rs->last_resume_exec_dir = execution_direction;
5726
5727 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5728 if (!remote_resume_with_vcont (ptid, step, siggnal))
5729 remote_resume_with_hc (ops, ptid, step, siggnal);
5730
5731 /* We are about to start executing the inferior, let's register it
5732 with the event loop. NOTE: this is the one place where all the
5733 execution commands end up. We could alternatively do this in each
5734 of the execution commands in infcmd.c. */
5735 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5736 into infcmd.c in order to allow inferior function calls to work
5737 NOT asynchronously. */
5738 if (target_can_async_p ())
5739 target_async (1);
5740
5741 /* We've just told the target to resume. The remote server will
5742 wait for the inferior to stop, and then send a stop reply. In
5743 the mean time, we can't start another command/query ourselves
5744 because the stub wouldn't be ready to process it. This applies
5745 only to the base all-stop protocol, however. In non-stop (which
5746 only supports vCont), the stub replies with an "OK", and is
5747 immediate able to process further serial input. */
5748 if (!target_is_non_stop_p ())
5749 rs->waiting_for_stop_reply = 1;
5750 }
5751
5752 static void check_pending_events_prevent_wildcard_vcont
5753 (int *may_global_wildcard_vcont);
5754 static int is_pending_fork_parent_thread (struct thread_info *thread);
5755
5756 /* Private per-inferior info for target remote processes. */
5757
5758 struct remote_inferior : public private_inferior
5759 {
5760 /* Whether we can send a wildcard vCont for this process. */
5761 bool may_wildcard_vcont = true;
5762 };
5763
5764 /* Get the remote private inferior data associated to INF. */
5765
5766 static remote_inferior *
5767 get_remote_inferior (inferior *inf)
5768 {
5769 if (inf->priv == NULL)
5770 inf->priv.reset (new remote_inferior);
5771
5772 return static_cast<remote_inferior *> (inf->priv.get ());
5773 }
5774
5775 /* Structure used to track the construction of a vCont packet in the
5776 outgoing packet buffer. This is used to send multiple vCont
5777 packets if we have more actions than would fit a single packet. */
5778
5779 struct vcont_builder
5780 {
5781 /* Pointer to the first action. P points here if no action has been
5782 appended yet. */
5783 char *first_action;
5784
5785 /* Where the next action will be appended. */
5786 char *p;
5787
5788 /* The end of the buffer. Must never write past this. */
5789 char *endp;
5790 };
5791
5792 /* Prepare the outgoing buffer for a new vCont packet. */
5793
5794 static void
5795 vcont_builder_restart (struct vcont_builder *builder)
5796 {
5797 struct remote_state *rs = get_remote_state ();
5798
5799 builder->p = rs->buf;
5800 builder->endp = rs->buf + get_remote_packet_size ();
5801 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5802 builder->first_action = builder->p;
5803 }
5804
5805 /* If the vCont packet being built has any action, send it to the
5806 remote end. */
5807
5808 static void
5809 vcont_builder_flush (struct vcont_builder *builder)
5810 {
5811 struct remote_state *rs;
5812
5813 if (builder->p == builder->first_action)
5814 return;
5815
5816 rs = get_remote_state ();
5817 putpkt (rs->buf);
5818 getpkt (&rs->buf, &rs->buf_size, 0);
5819 if (strcmp (rs->buf, "OK") != 0)
5820 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5821 }
5822
5823 /* The largest action is range-stepping, with its two addresses. This
5824 is more than sufficient. If a new, bigger action is created, it'll
5825 quickly trigger a failed assertion in append_resumption (and we'll
5826 just bump this). */
5827 #define MAX_ACTION_SIZE 200
5828
5829 /* Append a new vCont action in the outgoing packet being built. If
5830 the action doesn't fit the packet along with previous actions, push
5831 what we've got so far to the remote end and start over a new vCont
5832 packet (with the new action). */
5833
5834 static void
5835 vcont_builder_push_action (struct vcont_builder *builder,
5836 ptid_t ptid, int step, enum gdb_signal siggnal)
5837 {
5838 char buf[MAX_ACTION_SIZE + 1];
5839 char *endp;
5840 size_t rsize;
5841
5842 endp = append_resumption (buf, buf + sizeof (buf),
5843 ptid, step, siggnal);
5844
5845 /* Check whether this new action would fit in the vCont packet along
5846 with previous actions. If not, send what we've got so far and
5847 start a new vCont packet. */
5848 rsize = endp - buf;
5849 if (rsize > builder->endp - builder->p)
5850 {
5851 vcont_builder_flush (builder);
5852 vcont_builder_restart (builder);
5853
5854 /* Should now fit. */
5855 gdb_assert (rsize <= builder->endp - builder->p);
5856 }
5857
5858 memcpy (builder->p, buf, rsize);
5859 builder->p += rsize;
5860 *builder->p = '\0';
5861 }
5862
5863 /* to_commit_resume implementation. */
5864
5865 static void
5866 remote_commit_resume (struct target_ops *ops)
5867 {
5868 struct inferior *inf;
5869 struct thread_info *tp;
5870 int any_process_wildcard;
5871 int may_global_wildcard_vcont;
5872 struct vcont_builder vcont_builder;
5873
5874 /* If connected in all-stop mode, we'd send the remote resume
5875 request directly from remote_resume. Likewise if
5876 reverse-debugging, as there are no defined vCont actions for
5877 reverse execution. */
5878 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5879 return;
5880
5881 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5882 instead of resuming all threads of each process individually.
5883 However, if any thread of a process must remain halted, we can't
5884 send wildcard resumes and must send one action per thread.
5885
5886 Care must be taken to not resume threads/processes the server
5887 side already told us are stopped, but the core doesn't know about
5888 yet, because the events are still in the vStopped notification
5889 queue. For example:
5890
5891 #1 => vCont s:p1.1;c
5892 #2 <= OK
5893 #3 <= %Stopped T05 p1.1
5894 #4 => vStopped
5895 #5 <= T05 p1.2
5896 #6 => vStopped
5897 #7 <= OK
5898 #8 (infrun handles the stop for p1.1 and continues stepping)
5899 #9 => vCont s:p1.1;c
5900
5901 The last vCont above would resume thread p1.2 by mistake, because
5902 the server has no idea that the event for p1.2 had not been
5903 handled yet.
5904
5905 The server side must similarly ignore resume actions for the
5906 thread that has a pending %Stopped notification (and any other
5907 threads with events pending), until GDB acks the notification
5908 with vStopped. Otherwise, e.g., the following case is
5909 mishandled:
5910
5911 #1 => g (or any other packet)
5912 #2 <= [registers]
5913 #3 <= %Stopped T05 p1.2
5914 #4 => vCont s:p1.1;c
5915 #5 <= OK
5916
5917 Above, the server must not resume thread p1.2. GDB can't know
5918 that p1.2 stopped until it acks the %Stopped notification, and
5919 since from GDB's perspective all threads should be running, it
5920 sends a "c" action.
5921
5922 Finally, special care must also be given to handling fork/vfork
5923 events. A (v)fork event actually tells us that two processes
5924 stopped -- the parent and the child. Until we follow the fork,
5925 we must not resume the child. Therefore, if we have a pending
5926 fork follow, we must not send a global wildcard resume action
5927 (vCont;c). We can still send process-wide wildcards though. */
5928
5929 /* Start by assuming a global wildcard (vCont;c) is possible. */
5930 may_global_wildcard_vcont = 1;
5931
5932 /* And assume every process is individually wildcard-able too. */
5933 ALL_NON_EXITED_INFERIORS (inf)
5934 {
5935 remote_inferior *priv = get_remote_inferior (inf);
5936
5937 priv->may_wildcard_vcont = true;
5938 }
5939
5940 /* Check for any pending events (not reported or processed yet) and
5941 disable process and global wildcard resumes appropriately. */
5942 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5943
5944 ALL_NON_EXITED_THREADS (tp)
5945 {
5946 /* If a thread of a process is not meant to be resumed, then we
5947 can't wildcard that process. */
5948 if (!tp->executing)
5949 {
5950 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5951
5952 /* And if we can't wildcard a process, we can't wildcard
5953 everything either. */
5954 may_global_wildcard_vcont = 0;
5955 continue;
5956 }
5957
5958 /* If a thread is the parent of an unfollowed fork, then we
5959 can't do a global wildcard, as that would resume the fork
5960 child. */
5961 if (is_pending_fork_parent_thread (tp))
5962 may_global_wildcard_vcont = 0;
5963 }
5964
5965 /* Now let's build the vCont packet(s). Actions must be appended
5966 from narrower to wider scopes (thread -> process -> global). If
5967 we end up with too many actions for a single packet vcont_builder
5968 flushes the current vCont packet to the remote side and starts a
5969 new one. */
5970 vcont_builder_restart (&vcont_builder);
5971
5972 /* Threads first. */
5973 ALL_NON_EXITED_THREADS (tp)
5974 {
5975 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5976
5977 if (!tp->executing || remote_thr->vcont_resumed)
5978 continue;
5979
5980 gdb_assert (!thread_is_in_step_over_chain (tp));
5981
5982 if (!remote_thr->last_resume_step
5983 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5984 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5985 {
5986 /* We'll send a wildcard resume instead. */
5987 remote_thr->vcont_resumed = 1;
5988 continue;
5989 }
5990
5991 vcont_builder_push_action (&vcont_builder, tp->ptid,
5992 remote_thr->last_resume_step,
5993 remote_thr->last_resume_sig);
5994 remote_thr->vcont_resumed = 1;
5995 }
5996
5997 /* Now check whether we can send any process-wide wildcard. This is
5998 to avoid sending a global wildcard in the case nothing is
5999 supposed to be resumed. */
6000 any_process_wildcard = 0;
6001
6002 ALL_NON_EXITED_INFERIORS (inf)
6003 {
6004 if (get_remote_inferior (inf)->may_wildcard_vcont)
6005 {
6006 any_process_wildcard = 1;
6007 break;
6008 }
6009 }
6010
6011 if (any_process_wildcard)
6012 {
6013 /* If all processes are wildcard-able, then send a single "c"
6014 action, otherwise, send an "all (-1) threads of process"
6015 continue action for each running process, if any. */
6016 if (may_global_wildcard_vcont)
6017 {
6018 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6019 0, GDB_SIGNAL_0);
6020 }
6021 else
6022 {
6023 ALL_NON_EXITED_INFERIORS (inf)
6024 {
6025 if (get_remote_inferior (inf)->may_wildcard_vcont)
6026 {
6027 vcont_builder_push_action (&vcont_builder,
6028 pid_to_ptid (inf->pid),
6029 0, GDB_SIGNAL_0);
6030 }
6031 }
6032 }
6033 }
6034
6035 vcont_builder_flush (&vcont_builder);
6036 }
6037
6038 \f
6039
6040 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6041 thread, all threads of a remote process, or all threads of all
6042 processes. */
6043
6044 static void
6045 remote_stop_ns (ptid_t ptid)
6046 {
6047 struct remote_state *rs = get_remote_state ();
6048 char *p = rs->buf;
6049 char *endp = rs->buf + get_remote_packet_size ();
6050
6051 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6052 remote_vcont_probe (rs);
6053
6054 if (!rs->supports_vCont.t)
6055 error (_("Remote server does not support stopping threads"));
6056
6057 if (ptid_equal (ptid, minus_one_ptid)
6058 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6059 p += xsnprintf (p, endp - p, "vCont;t");
6060 else
6061 {
6062 ptid_t nptid;
6063
6064 p += xsnprintf (p, endp - p, "vCont;t:");
6065
6066 if (ptid_is_pid (ptid))
6067 /* All (-1) threads of process. */
6068 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6069 else
6070 {
6071 /* Small optimization: if we already have a stop reply for
6072 this thread, no use in telling the stub we want this
6073 stopped. */
6074 if (peek_stop_reply (ptid))
6075 return;
6076
6077 nptid = ptid;
6078 }
6079
6080 write_ptid (p, endp, nptid);
6081 }
6082
6083 /* In non-stop, we get an immediate OK reply. The stop reply will
6084 come in asynchronously by notification. */
6085 putpkt (rs->buf);
6086 getpkt (&rs->buf, &rs->buf_size, 0);
6087 if (strcmp (rs->buf, "OK") != 0)
6088 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6089 }
6090
6091 /* All-stop version of target_interrupt. Sends a break or a ^C to
6092 interrupt the remote target. It is undefined which thread of which
6093 process reports the interrupt. */
6094
6095 static void
6096 remote_interrupt_as (void)
6097 {
6098 struct remote_state *rs = get_remote_state ();
6099
6100 rs->ctrlc_pending_p = 1;
6101
6102 /* If the inferior is stopped already, but the core didn't know
6103 about it yet, just ignore the request. The cached wait status
6104 will be collected in remote_wait. */
6105 if (rs->cached_wait_status)
6106 return;
6107
6108 /* Send interrupt_sequence to remote target. */
6109 send_interrupt_sequence ();
6110 }
6111
6112 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6113 the remote target. It is undefined which thread of which process
6114 reports the interrupt. Throws an error if the packet is not
6115 supported by the server. */
6116
6117 static void
6118 remote_interrupt_ns (void)
6119 {
6120 struct remote_state *rs = get_remote_state ();
6121 char *p = rs->buf;
6122 char *endp = rs->buf + get_remote_packet_size ();
6123
6124 xsnprintf (p, endp - p, "vCtrlC");
6125
6126 /* In non-stop, we get an immediate OK reply. The stop reply will
6127 come in asynchronously by notification. */
6128 putpkt (rs->buf);
6129 getpkt (&rs->buf, &rs->buf_size, 0);
6130
6131 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6132 {
6133 case PACKET_OK:
6134 break;
6135 case PACKET_UNKNOWN:
6136 error (_("No support for interrupting the remote target."));
6137 case PACKET_ERROR:
6138 error (_("Interrupting target failed: %s"), rs->buf);
6139 }
6140 }
6141
6142 /* Implement the to_stop function for the remote targets. */
6143
6144 static void
6145 remote_stop (struct target_ops *self, ptid_t ptid)
6146 {
6147 if (remote_debug)
6148 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6149
6150 if (target_is_non_stop_p ())
6151 remote_stop_ns (ptid);
6152 else
6153 {
6154 /* We don't currently have a way to transparently pause the
6155 remote target in all-stop mode. Interrupt it instead. */
6156 remote_interrupt_as ();
6157 }
6158 }
6159
6160 /* Implement the to_interrupt function for the remote targets. */
6161
6162 static void
6163 remote_interrupt (struct target_ops *self)
6164 {
6165 if (remote_debug)
6166 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6167
6168 if (target_is_non_stop_p ())
6169 remote_interrupt_ns ();
6170 else
6171 remote_interrupt_as ();
6172 }
6173
6174 /* Implement the to_pass_ctrlc function for the remote targets. */
6175
6176 static void
6177 remote_pass_ctrlc (struct target_ops *self)
6178 {
6179 struct remote_state *rs = get_remote_state ();
6180
6181 if (remote_debug)
6182 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6183
6184 /* If we're starting up, we're not fully synced yet. Quit
6185 immediately. */
6186 if (rs->starting_up)
6187 quit ();
6188 /* If ^C has already been sent once, offer to disconnect. */
6189 else if (rs->ctrlc_pending_p)
6190 interrupt_query ();
6191 else
6192 target_interrupt ();
6193 }
6194
6195 /* Ask the user what to do when an interrupt is received. */
6196
6197 static void
6198 interrupt_query (void)
6199 {
6200 struct remote_state *rs = get_remote_state ();
6201
6202 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6203 {
6204 if (query (_("The target is not responding to interrupt requests.\n"
6205 "Stop debugging it? ")))
6206 {
6207 remote_unpush_target ();
6208 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6209 }
6210 }
6211 else
6212 {
6213 if (query (_("Interrupted while waiting for the program.\n"
6214 "Give up waiting? ")))
6215 quit ();
6216 }
6217 }
6218
6219 /* Enable/disable target terminal ownership. Most targets can use
6220 terminal groups to control terminal ownership. Remote targets are
6221 different in that explicit transfer of ownership to/from GDB/target
6222 is required. */
6223
6224 static void
6225 remote_terminal_inferior (struct target_ops *self)
6226 {
6227 /* NOTE: At this point we could also register our selves as the
6228 recipient of all input. Any characters typed could then be
6229 passed on down to the target. */
6230 }
6231
6232 static void
6233 remote_terminal_ours (struct target_ops *self)
6234 {
6235 }
6236
6237 static void
6238 remote_console_output (char *msg)
6239 {
6240 char *p;
6241
6242 for (p = msg; p[0] && p[1]; p += 2)
6243 {
6244 char tb[2];
6245 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6246
6247 tb[0] = c;
6248 tb[1] = 0;
6249 fputs_unfiltered (tb, gdb_stdtarg);
6250 }
6251 gdb_flush (gdb_stdtarg);
6252 }
6253
6254 DEF_VEC_O(cached_reg_t);
6255
6256 typedef struct stop_reply
6257 {
6258 struct notif_event base;
6259
6260 /* The identifier of the thread about this event */
6261 ptid_t ptid;
6262
6263 /* The remote state this event is associated with. When the remote
6264 connection, represented by a remote_state object, is closed,
6265 all the associated stop_reply events should be released. */
6266 struct remote_state *rs;
6267
6268 struct target_waitstatus ws;
6269
6270 /* The architecture associated with the expedited registers. */
6271 gdbarch *arch;
6272
6273 /* Expedited registers. This makes remote debugging a bit more
6274 efficient for those targets that provide critical registers as
6275 part of their normal status mechanism (as another roundtrip to
6276 fetch them is avoided). */
6277 VEC(cached_reg_t) *regcache;
6278
6279 enum target_stop_reason stop_reason;
6280
6281 CORE_ADDR watch_data_address;
6282
6283 int core;
6284 } *stop_reply_p;
6285
6286 DECLARE_QUEUE_P (stop_reply_p);
6287 DEFINE_QUEUE_P (stop_reply_p);
6288 /* The list of already fetched and acknowledged stop events. This
6289 queue is used for notification Stop, and other notifications
6290 don't need queue for their events, because the notification events
6291 of Stop can't be consumed immediately, so that events should be
6292 queued first, and be consumed by remote_wait_{ns,as} one per
6293 time. Other notifications can consume their events immediately,
6294 so queue is not needed for them. */
6295 static QUEUE (stop_reply_p) *stop_reply_queue;
6296
6297 static void
6298 stop_reply_xfree (struct stop_reply *r)
6299 {
6300 notif_event_xfree ((struct notif_event *) r);
6301 }
6302
6303 /* Return the length of the stop reply queue. */
6304
6305 static int
6306 stop_reply_queue_length (void)
6307 {
6308 return QUEUE_length (stop_reply_p, stop_reply_queue);
6309 }
6310
6311 static void
6312 remote_notif_stop_parse (struct notif_client *self, char *buf,
6313 struct notif_event *event)
6314 {
6315 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6316 }
6317
6318 static void
6319 remote_notif_stop_ack (struct notif_client *self, char *buf,
6320 struct notif_event *event)
6321 {
6322 struct stop_reply *stop_reply = (struct stop_reply *) event;
6323
6324 /* acknowledge */
6325 putpkt (self->ack_command);
6326
6327 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6328 /* We got an unknown stop reply. */
6329 error (_("Unknown stop reply"));
6330
6331 push_stop_reply (stop_reply);
6332 }
6333
6334 static int
6335 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6336 {
6337 /* We can't get pending events in remote_notif_process for
6338 notification stop, and we have to do this in remote_wait_ns
6339 instead. If we fetch all queued events from stub, remote stub
6340 may exit and we have no chance to process them back in
6341 remote_wait_ns. */
6342 mark_async_event_handler (remote_async_inferior_event_token);
6343 return 0;
6344 }
6345
6346 static void
6347 stop_reply_dtr (struct notif_event *event)
6348 {
6349 struct stop_reply *r = (struct stop_reply *) event;
6350 cached_reg_t *reg;
6351 int ix;
6352
6353 for (ix = 0;
6354 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6355 ix++)
6356 xfree (reg->data);
6357
6358 VEC_free (cached_reg_t, r->regcache);
6359 }
6360
6361 static struct notif_event *
6362 remote_notif_stop_alloc_reply (void)
6363 {
6364 /* We cast to a pointer to the "base class". */
6365 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6366
6367 r->dtr = stop_reply_dtr;
6368
6369 return r;
6370 }
6371
6372 /* A client of notification Stop. */
6373
6374 struct notif_client notif_client_stop =
6375 {
6376 "Stop",
6377 "vStopped",
6378 remote_notif_stop_parse,
6379 remote_notif_stop_ack,
6380 remote_notif_stop_can_get_pending_events,
6381 remote_notif_stop_alloc_reply,
6382 REMOTE_NOTIF_STOP,
6383 };
6384
6385 /* A parameter to pass data in and out. */
6386
6387 struct queue_iter_param
6388 {
6389 void *input;
6390 struct stop_reply *output;
6391 };
6392
6393 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6394 the pid of the process that owns the threads we want to check, or
6395 -1 if we want to check all threads. */
6396
6397 static int
6398 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6399 ptid_t thread_ptid)
6400 {
6401 if (ws->kind == TARGET_WAITKIND_FORKED
6402 || ws->kind == TARGET_WAITKIND_VFORKED)
6403 {
6404 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6405 return 1;
6406 }
6407
6408 return 0;
6409 }
6410
6411 /* Return the thread's pending status used to determine whether the
6412 thread is a fork parent stopped at a fork event. */
6413
6414 static struct target_waitstatus *
6415 thread_pending_fork_status (struct thread_info *thread)
6416 {
6417 if (thread->suspend.waitstatus_pending_p)
6418 return &thread->suspend.waitstatus;
6419 else
6420 return &thread->pending_follow;
6421 }
6422
6423 /* Determine if THREAD is a pending fork parent thread. */
6424
6425 static int
6426 is_pending_fork_parent_thread (struct thread_info *thread)
6427 {
6428 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6429 int pid = -1;
6430
6431 return is_pending_fork_parent (ws, pid, thread->ptid);
6432 }
6433
6434 /* Check whether EVENT is a fork event, and if it is, remove the
6435 fork child from the context list passed in DATA. */
6436
6437 static int
6438 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6439 QUEUE_ITER (stop_reply_p) *iter,
6440 stop_reply_p event,
6441 void *data)
6442 {
6443 struct queue_iter_param *param = (struct queue_iter_param *) data;
6444 struct threads_listing_context *context
6445 = (struct threads_listing_context *) param->input;
6446
6447 if (event->ws.kind == TARGET_WAITKIND_FORKED
6448 || event->ws.kind == TARGET_WAITKIND_VFORKED
6449 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6450 context->remove_thread (event->ws.value.related_pid);
6451
6452 return 1;
6453 }
6454
6455 /* If CONTEXT contains any fork child threads that have not been
6456 reported yet, remove them from the CONTEXT list. If such a
6457 thread exists it is because we are stopped at a fork catchpoint
6458 and have not yet called follow_fork, which will set up the
6459 host-side data structures for the new process. */
6460
6461 static void
6462 remove_new_fork_children (struct threads_listing_context *context)
6463 {
6464 struct thread_info * thread;
6465 int pid = -1;
6466 struct notif_client *notif = &notif_client_stop;
6467 struct queue_iter_param param;
6468
6469 /* For any threads stopped at a fork event, remove the corresponding
6470 fork child threads from the CONTEXT list. */
6471 ALL_NON_EXITED_THREADS (thread)
6472 {
6473 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6474
6475 if (is_pending_fork_parent (ws, pid, thread->ptid))
6476 context->remove_thread (ws->value.related_pid);
6477 }
6478
6479 /* Check for any pending fork events (not reported or processed yet)
6480 in process PID and remove those fork child threads from the
6481 CONTEXT list as well. */
6482 remote_notif_get_pending_events (notif);
6483 param.input = context;
6484 param.output = NULL;
6485 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6486 remove_child_of_pending_fork, &param);
6487 }
6488
6489 /* Check whether EVENT would prevent a global or process wildcard
6490 vCont action. */
6491
6492 static int
6493 check_pending_event_prevents_wildcard_vcont_callback
6494 (QUEUE (stop_reply_p) *q,
6495 QUEUE_ITER (stop_reply_p) *iter,
6496 stop_reply_p event,
6497 void *data)
6498 {
6499 struct inferior *inf;
6500 int *may_global_wildcard_vcont = (int *) data;
6501
6502 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6503 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6504 return 1;
6505
6506 if (event->ws.kind == TARGET_WAITKIND_FORKED
6507 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6508 *may_global_wildcard_vcont = 0;
6509
6510 inf = find_inferior_ptid (event->ptid);
6511
6512 /* This may be the first time we heard about this process.
6513 Regardless, we must not do a global wildcard resume, otherwise
6514 we'd resume this process too. */
6515 *may_global_wildcard_vcont = 0;
6516 if (inf != NULL)
6517 get_remote_inferior (inf)->may_wildcard_vcont = false;
6518
6519 return 1;
6520 }
6521
6522 /* Check whether any event pending in the vStopped queue would prevent
6523 a global or process wildcard vCont action. Clear
6524 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6525 and clear the event inferior's may_wildcard_vcont flag if we can't
6526 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6527
6528 static void
6529 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6530 {
6531 struct notif_client *notif = &notif_client_stop;
6532
6533 remote_notif_get_pending_events (notif);
6534 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6535 check_pending_event_prevents_wildcard_vcont_callback,
6536 may_global_wildcard);
6537 }
6538
6539 /* Remove stop replies in the queue if its pid is equal to the given
6540 inferior's pid. */
6541
6542 static int
6543 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6544 QUEUE_ITER (stop_reply_p) *iter,
6545 stop_reply_p event,
6546 void *data)
6547 {
6548 struct queue_iter_param *param = (struct queue_iter_param *) data;
6549 struct inferior *inf = (struct inferior *) param->input;
6550
6551 if (ptid_get_pid (event->ptid) == inf->pid)
6552 {
6553 stop_reply_xfree (event);
6554 QUEUE_remove_elem (stop_reply_p, q, iter);
6555 }
6556
6557 return 1;
6558 }
6559
6560 /* Discard all pending stop replies of inferior INF. */
6561
6562 static void
6563 discard_pending_stop_replies (struct inferior *inf)
6564 {
6565 struct queue_iter_param param;
6566 struct stop_reply *reply;
6567 struct remote_state *rs = get_remote_state ();
6568 struct remote_notif_state *rns = rs->notif_state;
6569
6570 /* This function can be notified when an inferior exists. When the
6571 target is not remote, the notification state is NULL. */
6572 if (rs->remote_desc == NULL)
6573 return;
6574
6575 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6576
6577 /* Discard the in-flight notification. */
6578 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6579 {
6580 stop_reply_xfree (reply);
6581 rns->pending_event[notif_client_stop.id] = NULL;
6582 }
6583
6584 param.input = inf;
6585 param.output = NULL;
6586 /* Discard the stop replies we have already pulled with
6587 vStopped. */
6588 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6589 remove_stop_reply_for_inferior, &param);
6590 }
6591
6592 /* If its remote state is equal to the given remote state,
6593 remove EVENT from the stop reply queue. */
6594
6595 static int
6596 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6597 QUEUE_ITER (stop_reply_p) *iter,
6598 stop_reply_p event,
6599 void *data)
6600 {
6601 struct queue_iter_param *param = (struct queue_iter_param *) data;
6602 struct remote_state *rs = (struct remote_state *) param->input;
6603
6604 if (event->rs == rs)
6605 {
6606 stop_reply_xfree (event);
6607 QUEUE_remove_elem (stop_reply_p, q, iter);
6608 }
6609
6610 return 1;
6611 }
6612
6613 /* Discard the stop replies for RS in stop_reply_queue. */
6614
6615 static void
6616 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6617 {
6618 struct queue_iter_param param;
6619
6620 param.input = rs;
6621 param.output = NULL;
6622 /* Discard the stop replies we have already pulled with
6623 vStopped. */
6624 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6625 remove_stop_reply_of_remote_state, &param);
6626 }
6627
6628 /* A parameter to pass data in and out. */
6629
6630 static int
6631 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6632 QUEUE_ITER (stop_reply_p) *iter,
6633 stop_reply_p event,
6634 void *data)
6635 {
6636 struct queue_iter_param *param = (struct queue_iter_param *) data;
6637 ptid_t *ptid = (ptid_t *) param->input;
6638
6639 if (ptid_match (event->ptid, *ptid))
6640 {
6641 param->output = event;
6642 QUEUE_remove_elem (stop_reply_p, q, iter);
6643 return 0;
6644 }
6645
6646 return 1;
6647 }
6648
6649 /* Remove the first reply in 'stop_reply_queue' which matches
6650 PTID. */
6651
6652 static struct stop_reply *
6653 remote_notif_remove_queued_reply (ptid_t ptid)
6654 {
6655 struct queue_iter_param param;
6656
6657 param.input = &ptid;
6658 param.output = NULL;
6659
6660 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6661 remote_notif_remove_once_on_match, &param);
6662 if (notif_debug)
6663 fprintf_unfiltered (gdb_stdlog,
6664 "notif: discard queued event: 'Stop' in %s\n",
6665 target_pid_to_str (ptid));
6666
6667 return param.output;
6668 }
6669
6670 /* Look for a queued stop reply belonging to PTID. If one is found,
6671 remove it from the queue, and return it. Returns NULL if none is
6672 found. If there are still queued events left to process, tell the
6673 event loop to get back to target_wait soon. */
6674
6675 static struct stop_reply *
6676 queued_stop_reply (ptid_t ptid)
6677 {
6678 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6679
6680 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6681 /* There's still at least an event left. */
6682 mark_async_event_handler (remote_async_inferior_event_token);
6683
6684 return r;
6685 }
6686
6687 /* Push a fully parsed stop reply in the stop reply queue. Since we
6688 know that we now have at least one queued event left to pass to the
6689 core side, tell the event loop to get back to target_wait soon. */
6690
6691 static void
6692 push_stop_reply (struct stop_reply *new_event)
6693 {
6694 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6695
6696 if (notif_debug)
6697 fprintf_unfiltered (gdb_stdlog,
6698 "notif: push 'Stop' %s to queue %d\n",
6699 target_pid_to_str (new_event->ptid),
6700 QUEUE_length (stop_reply_p,
6701 stop_reply_queue));
6702
6703 mark_async_event_handler (remote_async_inferior_event_token);
6704 }
6705
6706 static int
6707 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6708 QUEUE_ITER (stop_reply_p) *iter,
6709 struct stop_reply *event,
6710 void *data)
6711 {
6712 ptid_t *ptid = (ptid_t *) data;
6713
6714 return !(ptid_equal (*ptid, event->ptid)
6715 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6716 }
6717
6718 /* Returns true if we have a stop reply for PTID. */
6719
6720 static int
6721 peek_stop_reply (ptid_t ptid)
6722 {
6723 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6724 stop_reply_match_ptid_and_ws, &ptid);
6725 }
6726
6727 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6728 starting with P and ending with PEND matches PREFIX. */
6729
6730 static int
6731 strprefix (const char *p, const char *pend, const char *prefix)
6732 {
6733 for ( ; p < pend; p++, prefix++)
6734 if (*p != *prefix)
6735 return 0;
6736 return *prefix == '\0';
6737 }
6738
6739 /* Parse the stop reply in BUF. Either the function succeeds, and the
6740 result is stored in EVENT, or throws an error. */
6741
6742 static void
6743 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6744 {
6745 remote_arch_state *rsa = NULL;
6746 ULONGEST addr;
6747 const char *p;
6748 int skipregs = 0;
6749
6750 event->ptid = null_ptid;
6751 event->rs = get_remote_state ();
6752 event->ws.kind = TARGET_WAITKIND_IGNORE;
6753 event->ws.value.integer = 0;
6754 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6755 event->regcache = NULL;
6756 event->core = -1;
6757
6758 switch (buf[0])
6759 {
6760 case 'T': /* Status with PC, SP, FP, ... */
6761 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6762 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6763 ss = signal number
6764 n... = register number
6765 r... = register contents
6766 */
6767
6768 p = &buf[3]; /* after Txx */
6769 while (*p)
6770 {
6771 const char *p1;
6772 int fieldsize;
6773
6774 p1 = strchr (p, ':');
6775 if (p1 == NULL)
6776 error (_("Malformed packet(a) (missing colon): %s\n\
6777 Packet: '%s'\n"),
6778 p, buf);
6779 if (p == p1)
6780 error (_("Malformed packet(a) (missing register number): %s\n\
6781 Packet: '%s'\n"),
6782 p, buf);
6783
6784 /* Some "registers" are actually extended stop information.
6785 Note if you're adding a new entry here: GDB 7.9 and
6786 earlier assume that all register "numbers" that start
6787 with an hex digit are real register numbers. Make sure
6788 the server only sends such a packet if it knows the
6789 client understands it. */
6790
6791 if (strprefix (p, p1, "thread"))
6792 event->ptid = read_ptid (++p1, &p);
6793 else if (strprefix (p, p1, "syscall_entry"))
6794 {
6795 ULONGEST sysno;
6796
6797 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6798 p = unpack_varlen_hex (++p1, &sysno);
6799 event->ws.value.syscall_number = (int) sysno;
6800 }
6801 else if (strprefix (p, p1, "syscall_return"))
6802 {
6803 ULONGEST sysno;
6804
6805 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6806 p = unpack_varlen_hex (++p1, &sysno);
6807 event->ws.value.syscall_number = (int) sysno;
6808 }
6809 else if (strprefix (p, p1, "watch")
6810 || strprefix (p, p1, "rwatch")
6811 || strprefix (p, p1, "awatch"))
6812 {
6813 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6814 p = unpack_varlen_hex (++p1, &addr);
6815 event->watch_data_address = (CORE_ADDR) addr;
6816 }
6817 else if (strprefix (p, p1, "swbreak"))
6818 {
6819 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6820
6821 /* Make sure the stub doesn't forget to indicate support
6822 with qSupported. */
6823 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6824 error (_("Unexpected swbreak stop reason"));
6825
6826 /* The value part is documented as "must be empty",
6827 though we ignore it, in case we ever decide to make
6828 use of it in a backward compatible way. */
6829 p = strchrnul (p1 + 1, ';');
6830 }
6831 else if (strprefix (p, p1, "hwbreak"))
6832 {
6833 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6834
6835 /* Make sure the stub doesn't forget to indicate support
6836 with qSupported. */
6837 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6838 error (_("Unexpected hwbreak stop reason"));
6839
6840 /* See above. */
6841 p = strchrnul (p1 + 1, ';');
6842 }
6843 else if (strprefix (p, p1, "library"))
6844 {
6845 event->ws.kind = TARGET_WAITKIND_LOADED;
6846 p = strchrnul (p1 + 1, ';');
6847 }
6848 else if (strprefix (p, p1, "replaylog"))
6849 {
6850 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6851 /* p1 will indicate "begin" or "end", but it makes
6852 no difference for now, so ignore it. */
6853 p = strchrnul (p1 + 1, ';');
6854 }
6855 else if (strprefix (p, p1, "core"))
6856 {
6857 ULONGEST c;
6858
6859 p = unpack_varlen_hex (++p1, &c);
6860 event->core = c;
6861 }
6862 else if (strprefix (p, p1, "fork"))
6863 {
6864 event->ws.value.related_pid = read_ptid (++p1, &p);
6865 event->ws.kind = TARGET_WAITKIND_FORKED;
6866 }
6867 else if (strprefix (p, p1, "vfork"))
6868 {
6869 event->ws.value.related_pid = read_ptid (++p1, &p);
6870 event->ws.kind = TARGET_WAITKIND_VFORKED;
6871 }
6872 else if (strprefix (p, p1, "vforkdone"))
6873 {
6874 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6875 p = strchrnul (p1 + 1, ';');
6876 }
6877 else if (strprefix (p, p1, "exec"))
6878 {
6879 ULONGEST ignored;
6880 char pathname[PATH_MAX];
6881 int pathlen;
6882
6883 /* Determine the length of the execd pathname. */
6884 p = unpack_varlen_hex (++p1, &ignored);
6885 pathlen = (p - p1) / 2;
6886
6887 /* Save the pathname for event reporting and for
6888 the next run command. */
6889 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6890 pathname[pathlen] = '\0';
6891
6892 /* This is freed during event handling. */
6893 event->ws.value.execd_pathname = xstrdup (pathname);
6894 event->ws.kind = TARGET_WAITKIND_EXECD;
6895
6896 /* Skip the registers included in this packet, since
6897 they may be for an architecture different from the
6898 one used by the original program. */
6899 skipregs = 1;
6900 }
6901 else if (strprefix (p, p1, "create"))
6902 {
6903 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6904 p = strchrnul (p1 + 1, ';');
6905 }
6906 else
6907 {
6908 ULONGEST pnum;
6909 const char *p_temp;
6910
6911 if (skipregs)
6912 {
6913 p = strchrnul (p1 + 1, ';');
6914 p++;
6915 continue;
6916 }
6917
6918 /* Maybe a real ``P'' register number. */
6919 p_temp = unpack_varlen_hex (p, &pnum);
6920 /* If the first invalid character is the colon, we got a
6921 register number. Otherwise, it's an unknown stop
6922 reason. */
6923 if (p_temp == p1)
6924 {
6925 /* If we haven't parsed the event's thread yet, find
6926 it now, in order to find the architecture of the
6927 reported expedited registers. */
6928 if (event->ptid == null_ptid)
6929 {
6930 const char *thr = strstr (p1 + 1, ";thread:");
6931 if (thr != NULL)
6932 event->ptid = read_ptid (thr + strlen (";thread:"),
6933 NULL);
6934 else
6935 {
6936 /* Either the current thread hasn't changed,
6937 or the inferior is not multi-threaded.
6938 The event must be for the thread we last
6939 set as (or learned as being) current. */
6940 event->ptid = event->rs->general_thread;
6941 }
6942 }
6943
6944 if (rsa == NULL)
6945 {
6946 inferior *inf = (event->ptid == null_ptid
6947 ? NULL
6948 : find_inferior_ptid (event->ptid));
6949 /* If this is the first time we learn anything
6950 about this process, skip the registers
6951 included in this packet, since we don't yet
6952 know which architecture to use to parse them.
6953 We'll determine the architecture later when
6954 we process the stop reply and retrieve the
6955 target description, via
6956 remote_notice_new_inferior ->
6957 post_create_inferior. */
6958 if (inf == NULL)
6959 {
6960 p = strchrnul (p1 + 1, ';');
6961 p++;
6962 continue;
6963 }
6964
6965 event->arch = inf->gdbarch;
6966 rsa = get_remote_arch_state (event->arch);
6967 }
6968
6969 packet_reg *reg
6970 = packet_reg_from_pnum (event->arch, rsa, pnum);
6971 cached_reg_t cached_reg;
6972
6973 if (reg == NULL)
6974 error (_("Remote sent bad register number %s: %s\n\
6975 Packet: '%s'\n"),
6976 hex_string (pnum), p, buf);
6977
6978 cached_reg.num = reg->regnum;
6979 cached_reg.data = (gdb_byte *)
6980 xmalloc (register_size (event->arch, reg->regnum));
6981
6982 p = p1 + 1;
6983 fieldsize = hex2bin (p, cached_reg.data,
6984 register_size (event->arch, reg->regnum));
6985 p += 2 * fieldsize;
6986 if (fieldsize < register_size (event->arch, reg->regnum))
6987 warning (_("Remote reply is too short: %s"), buf);
6988
6989 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6990 }
6991 else
6992 {
6993 /* Not a number. Silently skip unknown optional
6994 info. */
6995 p = strchrnul (p1 + 1, ';');
6996 }
6997 }
6998
6999 if (*p != ';')
7000 error (_("Remote register badly formatted: %s\nhere: %s"),
7001 buf, p);
7002 ++p;
7003 }
7004
7005 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7006 break;
7007
7008 /* fall through */
7009 case 'S': /* Old style status, just signal only. */
7010 {
7011 int sig;
7012
7013 event->ws.kind = TARGET_WAITKIND_STOPPED;
7014 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7015 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7016 event->ws.value.sig = (enum gdb_signal) sig;
7017 else
7018 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7019 }
7020 break;
7021 case 'w': /* Thread exited. */
7022 {
7023 const char *p;
7024 ULONGEST value;
7025
7026 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7027 p = unpack_varlen_hex (&buf[1], &value);
7028 event->ws.value.integer = value;
7029 if (*p != ';')
7030 error (_("stop reply packet badly formatted: %s"), buf);
7031 event->ptid = read_ptid (++p, NULL);
7032 break;
7033 }
7034 case 'W': /* Target exited. */
7035 case 'X':
7036 {
7037 const char *p;
7038 int pid;
7039 ULONGEST value;
7040
7041 /* GDB used to accept only 2 hex chars here. Stubs should
7042 only send more if they detect GDB supports multi-process
7043 support. */
7044 p = unpack_varlen_hex (&buf[1], &value);
7045
7046 if (buf[0] == 'W')
7047 {
7048 /* The remote process exited. */
7049 event->ws.kind = TARGET_WAITKIND_EXITED;
7050 event->ws.value.integer = value;
7051 }
7052 else
7053 {
7054 /* The remote process exited with a signal. */
7055 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7056 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7057 event->ws.value.sig = (enum gdb_signal) value;
7058 else
7059 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7060 }
7061
7062 /* If no process is specified, assume inferior_ptid. */
7063 pid = ptid_get_pid (inferior_ptid);
7064 if (*p == '\0')
7065 ;
7066 else if (*p == ';')
7067 {
7068 p++;
7069
7070 if (*p == '\0')
7071 ;
7072 else if (startswith (p, "process:"))
7073 {
7074 ULONGEST upid;
7075
7076 p += sizeof ("process:") - 1;
7077 unpack_varlen_hex (p, &upid);
7078 pid = upid;
7079 }
7080 else
7081 error (_("unknown stop reply packet: %s"), buf);
7082 }
7083 else
7084 error (_("unknown stop reply packet: %s"), buf);
7085 event->ptid = pid_to_ptid (pid);
7086 }
7087 break;
7088 case 'N':
7089 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7090 event->ptid = minus_one_ptid;
7091 break;
7092 }
7093
7094 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7095 error (_("No process or thread specified in stop reply: %s"), buf);
7096 }
7097
7098 /* When the stub wants to tell GDB about a new notification reply, it
7099 sends a notification (%Stop, for example). Those can come it at
7100 any time, hence, we have to make sure that any pending
7101 putpkt/getpkt sequence we're making is finished, before querying
7102 the stub for more events with the corresponding ack command
7103 (vStopped, for example). E.g., if we started a vStopped sequence
7104 immediately upon receiving the notification, something like this
7105 could happen:
7106
7107 1.1) --> Hg 1
7108 1.2) <-- OK
7109 1.3) --> g
7110 1.4) <-- %Stop
7111 1.5) --> vStopped
7112 1.6) <-- (registers reply to step #1.3)
7113
7114 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7115 query.
7116
7117 To solve this, whenever we parse a %Stop notification successfully,
7118 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7119 doing whatever we were doing:
7120
7121 2.1) --> Hg 1
7122 2.2) <-- OK
7123 2.3) --> g
7124 2.4) <-- %Stop
7125 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7126 2.5) <-- (registers reply to step #2.3)
7127
7128 Eventualy after step #2.5, we return to the event loop, which
7129 notices there's an event on the
7130 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7131 associated callback --- the function below. At this point, we're
7132 always safe to start a vStopped sequence. :
7133
7134 2.6) --> vStopped
7135 2.7) <-- T05 thread:2
7136 2.8) --> vStopped
7137 2.9) --> OK
7138 */
7139
7140 void
7141 remote_notif_get_pending_events (struct notif_client *nc)
7142 {
7143 struct remote_state *rs = get_remote_state ();
7144
7145 if (rs->notif_state->pending_event[nc->id] != NULL)
7146 {
7147 if (notif_debug)
7148 fprintf_unfiltered (gdb_stdlog,
7149 "notif: process: '%s' ack pending event\n",
7150 nc->name);
7151
7152 /* acknowledge */
7153 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7154 rs->notif_state->pending_event[nc->id] = NULL;
7155
7156 while (1)
7157 {
7158 getpkt (&rs->buf, &rs->buf_size, 0);
7159 if (strcmp (rs->buf, "OK") == 0)
7160 break;
7161 else
7162 remote_notif_ack (nc, rs->buf);
7163 }
7164 }
7165 else
7166 {
7167 if (notif_debug)
7168 fprintf_unfiltered (gdb_stdlog,
7169 "notif: process: '%s' no pending reply\n",
7170 nc->name);
7171 }
7172 }
7173
7174 /* Called when it is decided that STOP_REPLY holds the info of the
7175 event that is to be returned to the core. This function always
7176 destroys STOP_REPLY. */
7177
7178 static ptid_t
7179 process_stop_reply (struct stop_reply *stop_reply,
7180 struct target_waitstatus *status)
7181 {
7182 ptid_t ptid;
7183
7184 *status = stop_reply->ws;
7185 ptid = stop_reply->ptid;
7186
7187 /* If no thread/process was reported by the stub, assume the current
7188 inferior. */
7189 if (ptid_equal (ptid, null_ptid))
7190 ptid = inferior_ptid;
7191
7192 if (status->kind != TARGET_WAITKIND_EXITED
7193 && status->kind != TARGET_WAITKIND_SIGNALLED
7194 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7195 {
7196 /* Expedited registers. */
7197 if (stop_reply->regcache)
7198 {
7199 struct regcache *regcache
7200 = get_thread_arch_regcache (ptid, stop_reply->arch);
7201 cached_reg_t *reg;
7202 int ix;
7203
7204 for (ix = 0;
7205 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7206 ix++)
7207 {
7208 regcache_raw_supply (regcache, reg->num, reg->data);
7209 xfree (reg->data);
7210 }
7211
7212 VEC_free (cached_reg_t, stop_reply->regcache);
7213 }
7214
7215 remote_notice_new_inferior (ptid, 0);
7216 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7217 remote_thr->core = stop_reply->core;
7218 remote_thr->stop_reason = stop_reply->stop_reason;
7219 remote_thr->watch_data_address = stop_reply->watch_data_address;
7220 remote_thr->vcont_resumed = 0;
7221 }
7222
7223 stop_reply_xfree (stop_reply);
7224 return ptid;
7225 }
7226
7227 /* The non-stop mode version of target_wait. */
7228
7229 static ptid_t
7230 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7231 {
7232 struct remote_state *rs = get_remote_state ();
7233 struct stop_reply *stop_reply;
7234 int ret;
7235 int is_notif = 0;
7236
7237 /* If in non-stop mode, get out of getpkt even if a
7238 notification is received. */
7239
7240 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7241 0 /* forever */, &is_notif);
7242 while (1)
7243 {
7244 if (ret != -1 && !is_notif)
7245 switch (rs->buf[0])
7246 {
7247 case 'E': /* Error of some sort. */
7248 /* We're out of sync with the target now. Did it continue
7249 or not? We can't tell which thread it was in non-stop,
7250 so just ignore this. */
7251 warning (_("Remote failure reply: %s"), rs->buf);
7252 break;
7253 case 'O': /* Console output. */
7254 remote_console_output (rs->buf + 1);
7255 break;
7256 default:
7257 warning (_("Invalid remote reply: %s"), rs->buf);
7258 break;
7259 }
7260
7261 /* Acknowledge a pending stop reply that may have arrived in the
7262 mean time. */
7263 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7264 remote_notif_get_pending_events (&notif_client_stop);
7265
7266 /* If indeed we noticed a stop reply, we're done. */
7267 stop_reply = queued_stop_reply (ptid);
7268 if (stop_reply != NULL)
7269 return process_stop_reply (stop_reply, status);
7270
7271 /* Still no event. If we're just polling for an event, then
7272 return to the event loop. */
7273 if (options & TARGET_WNOHANG)
7274 {
7275 status->kind = TARGET_WAITKIND_IGNORE;
7276 return minus_one_ptid;
7277 }
7278
7279 /* Otherwise do a blocking wait. */
7280 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7281 1 /* forever */, &is_notif);
7282 }
7283 }
7284
7285 /* Wait until the remote machine stops, then return, storing status in
7286 STATUS just as `wait' would. */
7287
7288 static ptid_t
7289 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7290 {
7291 struct remote_state *rs = get_remote_state ();
7292 ptid_t event_ptid = null_ptid;
7293 char *buf;
7294 struct stop_reply *stop_reply;
7295
7296 again:
7297
7298 status->kind = TARGET_WAITKIND_IGNORE;
7299 status->value.integer = 0;
7300
7301 stop_reply = queued_stop_reply (ptid);
7302 if (stop_reply != NULL)
7303 return process_stop_reply (stop_reply, status);
7304
7305 if (rs->cached_wait_status)
7306 /* Use the cached wait status, but only once. */
7307 rs->cached_wait_status = 0;
7308 else
7309 {
7310 int ret;
7311 int is_notif;
7312 int forever = ((options & TARGET_WNOHANG) == 0
7313 && wait_forever_enabled_p);
7314
7315 if (!rs->waiting_for_stop_reply)
7316 {
7317 status->kind = TARGET_WAITKIND_NO_RESUMED;
7318 return minus_one_ptid;
7319 }
7320
7321 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7322 _never_ wait for ever -> test on target_is_async_p().
7323 However, before we do that we need to ensure that the caller
7324 knows how to take the target into/out of async mode. */
7325 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7326 forever, &is_notif);
7327
7328 /* GDB gets a notification. Return to core as this event is
7329 not interesting. */
7330 if (ret != -1 && is_notif)
7331 return minus_one_ptid;
7332
7333 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7334 return minus_one_ptid;
7335 }
7336
7337 buf = rs->buf;
7338
7339 /* Assume that the target has acknowledged Ctrl-C unless we receive
7340 an 'F' or 'O' packet. */
7341 if (buf[0] != 'F' && buf[0] != 'O')
7342 rs->ctrlc_pending_p = 0;
7343
7344 switch (buf[0])
7345 {
7346 case 'E': /* Error of some sort. */
7347 /* We're out of sync with the target now. Did it continue or
7348 not? Not is more likely, so report a stop. */
7349 rs->waiting_for_stop_reply = 0;
7350
7351 warning (_("Remote failure reply: %s"), buf);
7352 status->kind = TARGET_WAITKIND_STOPPED;
7353 status->value.sig = GDB_SIGNAL_0;
7354 break;
7355 case 'F': /* File-I/O request. */
7356 /* GDB may access the inferior memory while handling the File-I/O
7357 request, but we don't want GDB accessing memory while waiting
7358 for a stop reply. See the comments in putpkt_binary. Set
7359 waiting_for_stop_reply to 0 temporarily. */
7360 rs->waiting_for_stop_reply = 0;
7361 remote_fileio_request (buf, rs->ctrlc_pending_p);
7362 rs->ctrlc_pending_p = 0;
7363 /* GDB handled the File-I/O request, and the target is running
7364 again. Keep waiting for events. */
7365 rs->waiting_for_stop_reply = 1;
7366 break;
7367 case 'N': case 'T': case 'S': case 'X': case 'W':
7368 {
7369 struct stop_reply *stop_reply;
7370
7371 /* There is a stop reply to handle. */
7372 rs->waiting_for_stop_reply = 0;
7373
7374 stop_reply
7375 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7376 rs->buf);
7377
7378 event_ptid = process_stop_reply (stop_reply, status);
7379 break;
7380 }
7381 case 'O': /* Console output. */
7382 remote_console_output (buf + 1);
7383 break;
7384 case '\0':
7385 if (rs->last_sent_signal != GDB_SIGNAL_0)
7386 {
7387 /* Zero length reply means that we tried 'S' or 'C' and the
7388 remote system doesn't support it. */
7389 target_terminal::ours_for_output ();
7390 printf_filtered
7391 ("Can't send signals to this remote system. %s not sent.\n",
7392 gdb_signal_to_name (rs->last_sent_signal));
7393 rs->last_sent_signal = GDB_SIGNAL_0;
7394 target_terminal::inferior ();
7395
7396 strcpy (buf, rs->last_sent_step ? "s" : "c");
7397 putpkt (buf);
7398 break;
7399 }
7400 /* else fallthrough */
7401 default:
7402 warning (_("Invalid remote reply: %s"), buf);
7403 break;
7404 }
7405
7406 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7407 return minus_one_ptid;
7408 else if (status->kind == TARGET_WAITKIND_IGNORE)
7409 {
7410 /* Nothing interesting happened. If we're doing a non-blocking
7411 poll, we're done. Otherwise, go back to waiting. */
7412 if (options & TARGET_WNOHANG)
7413 return minus_one_ptid;
7414 else
7415 goto again;
7416 }
7417 else if (status->kind != TARGET_WAITKIND_EXITED
7418 && status->kind != TARGET_WAITKIND_SIGNALLED)
7419 {
7420 if (!ptid_equal (event_ptid, null_ptid))
7421 record_currthread (rs, event_ptid);
7422 else
7423 event_ptid = inferior_ptid;
7424 }
7425 else
7426 /* A process exit. Invalidate our notion of current thread. */
7427 record_currthread (rs, minus_one_ptid);
7428
7429 return event_ptid;
7430 }
7431
7432 /* Wait until the remote machine stops, then return, storing status in
7433 STATUS just as `wait' would. */
7434
7435 static ptid_t
7436 remote_wait (struct target_ops *ops,
7437 ptid_t ptid, struct target_waitstatus *status, int options)
7438 {
7439 ptid_t event_ptid;
7440
7441 if (target_is_non_stop_p ())
7442 event_ptid = remote_wait_ns (ptid, status, options);
7443 else
7444 event_ptid = remote_wait_as (ptid, status, options);
7445
7446 if (target_is_async_p ())
7447 {
7448 /* If there are are events left in the queue tell the event loop
7449 to return here. */
7450 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7451 mark_async_event_handler (remote_async_inferior_event_token);
7452 }
7453
7454 return event_ptid;
7455 }
7456
7457 /* Fetch a single register using a 'p' packet. */
7458
7459 static int
7460 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7461 {
7462 struct gdbarch *gdbarch = regcache->arch ();
7463 struct remote_state *rs = get_remote_state ();
7464 char *buf, *p;
7465 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7466 int i;
7467
7468 if (packet_support (PACKET_p) == PACKET_DISABLE)
7469 return 0;
7470
7471 if (reg->pnum == -1)
7472 return 0;
7473
7474 p = rs->buf;
7475 *p++ = 'p';
7476 p += hexnumstr (p, reg->pnum);
7477 *p++ = '\0';
7478 putpkt (rs->buf);
7479 getpkt (&rs->buf, &rs->buf_size, 0);
7480
7481 buf = rs->buf;
7482
7483 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7484 {
7485 case PACKET_OK:
7486 break;
7487 case PACKET_UNKNOWN:
7488 return 0;
7489 case PACKET_ERROR:
7490 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7491 gdbarch_register_name (regcache->arch (),
7492 reg->regnum),
7493 buf);
7494 }
7495
7496 /* If this register is unfetchable, tell the regcache. */
7497 if (buf[0] == 'x')
7498 {
7499 regcache_raw_supply (regcache, reg->regnum, NULL);
7500 return 1;
7501 }
7502
7503 /* Otherwise, parse and supply the value. */
7504 p = buf;
7505 i = 0;
7506 while (p[0] != 0)
7507 {
7508 if (p[1] == 0)
7509 error (_("fetch_register_using_p: early buf termination"));
7510
7511 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7512 p += 2;
7513 }
7514 regcache_raw_supply (regcache, reg->regnum, regp);
7515 return 1;
7516 }
7517
7518 /* Fetch the registers included in the target's 'g' packet. */
7519
7520 static int
7521 send_g_packet (void)
7522 {
7523 struct remote_state *rs = get_remote_state ();
7524 int buf_len;
7525
7526 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7527 remote_send (&rs->buf, &rs->buf_size);
7528
7529 /* We can get out of synch in various cases. If the first character
7530 in the buffer is not a hex character, assume that has happened
7531 and try to fetch another packet to read. */
7532 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7533 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7534 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7535 && rs->buf[0] != 'x') /* New: unavailable register value. */
7536 {
7537 if (remote_debug)
7538 fprintf_unfiltered (gdb_stdlog,
7539 "Bad register packet; fetching a new packet\n");
7540 getpkt (&rs->buf, &rs->buf_size, 0);
7541 }
7542
7543 buf_len = strlen (rs->buf);
7544
7545 /* Sanity check the received packet. */
7546 if (buf_len % 2 != 0)
7547 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7548
7549 return buf_len / 2;
7550 }
7551
7552 static void
7553 process_g_packet (struct regcache *regcache)
7554 {
7555 struct gdbarch *gdbarch = regcache->arch ();
7556 struct remote_state *rs = get_remote_state ();
7557 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7558 int i, buf_len;
7559 char *p;
7560 char *regs;
7561
7562 buf_len = strlen (rs->buf);
7563
7564 /* Further sanity checks, with knowledge of the architecture. */
7565 if (buf_len > 2 * rsa->sizeof_g_packet)
7566 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7567 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7568
7569 /* Save the size of the packet sent to us by the target. It is used
7570 as a heuristic when determining the max size of packets that the
7571 target can safely receive. */
7572 if (rsa->actual_register_packet_size == 0)
7573 rsa->actual_register_packet_size = buf_len;
7574
7575 /* If this is smaller than we guessed the 'g' packet would be,
7576 update our records. A 'g' reply that doesn't include a register's
7577 value implies either that the register is not available, or that
7578 the 'p' packet must be used. */
7579 if (buf_len < 2 * rsa->sizeof_g_packet)
7580 {
7581 long sizeof_g_packet = buf_len / 2;
7582
7583 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7584 {
7585 long offset = rsa->regs[i].offset;
7586 long reg_size = register_size (gdbarch, i);
7587
7588 if (rsa->regs[i].pnum == -1)
7589 continue;
7590
7591 if (offset >= sizeof_g_packet)
7592 rsa->regs[i].in_g_packet = 0;
7593 else if (offset + reg_size > sizeof_g_packet)
7594 error (_("Truncated register %d in remote 'g' packet"), i);
7595 else
7596 rsa->regs[i].in_g_packet = 1;
7597 }
7598
7599 /* Looks valid enough, we can assume this is the correct length
7600 for a 'g' packet. It's important not to adjust
7601 rsa->sizeof_g_packet if we have truncated registers otherwise
7602 this "if" won't be run the next time the method is called
7603 with a packet of the same size and one of the internal errors
7604 below will trigger instead. */
7605 rsa->sizeof_g_packet = sizeof_g_packet;
7606 }
7607
7608 regs = (char *) alloca (rsa->sizeof_g_packet);
7609
7610 /* Unimplemented registers read as all bits zero. */
7611 memset (regs, 0, rsa->sizeof_g_packet);
7612
7613 /* Reply describes registers byte by byte, each byte encoded as two
7614 hex characters. Suck them all up, then supply them to the
7615 register cacheing/storage mechanism. */
7616
7617 p = rs->buf;
7618 for (i = 0; i < rsa->sizeof_g_packet; i++)
7619 {
7620 if (p[0] == 0 || p[1] == 0)
7621 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7622 internal_error (__FILE__, __LINE__,
7623 _("unexpected end of 'g' packet reply"));
7624
7625 if (p[0] == 'x' && p[1] == 'x')
7626 regs[i] = 0; /* 'x' */
7627 else
7628 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7629 p += 2;
7630 }
7631
7632 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7633 {
7634 struct packet_reg *r = &rsa->regs[i];
7635 long reg_size = register_size (gdbarch, i);
7636
7637 if (r->in_g_packet)
7638 {
7639 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7640 /* This shouldn't happen - we adjusted in_g_packet above. */
7641 internal_error (__FILE__, __LINE__,
7642 _("unexpected end of 'g' packet reply"));
7643 else if (rs->buf[r->offset * 2] == 'x')
7644 {
7645 gdb_assert (r->offset * 2 < strlen (rs->buf));
7646 /* The register isn't available, mark it as such (at
7647 the same time setting the value to zero). */
7648 regcache_raw_supply (regcache, r->regnum, NULL);
7649 }
7650 else
7651 regcache_raw_supply (regcache, r->regnum,
7652 regs + r->offset);
7653 }
7654 }
7655 }
7656
7657 static void
7658 fetch_registers_using_g (struct regcache *regcache)
7659 {
7660 send_g_packet ();
7661 process_g_packet (regcache);
7662 }
7663
7664 /* Make the remote selected traceframe match GDB's selected
7665 traceframe. */
7666
7667 static void
7668 set_remote_traceframe (void)
7669 {
7670 int newnum;
7671 struct remote_state *rs = get_remote_state ();
7672
7673 if (rs->remote_traceframe_number == get_traceframe_number ())
7674 return;
7675
7676 /* Avoid recursion, remote_trace_find calls us again. */
7677 rs->remote_traceframe_number = get_traceframe_number ();
7678
7679 newnum = target_trace_find (tfind_number,
7680 get_traceframe_number (), 0, 0, NULL);
7681
7682 /* Should not happen. If it does, all bets are off. */
7683 if (newnum != get_traceframe_number ())
7684 warning (_("could not set remote traceframe"));
7685 }
7686
7687 static void
7688 remote_fetch_registers (struct target_ops *ops,
7689 struct regcache *regcache, int regnum)
7690 {
7691 struct gdbarch *gdbarch = regcache->arch ();
7692 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7693 int i;
7694
7695 set_remote_traceframe ();
7696 set_general_thread (regcache_get_ptid (regcache));
7697
7698 if (regnum >= 0)
7699 {
7700 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7701
7702 gdb_assert (reg != NULL);
7703
7704 /* If this register might be in the 'g' packet, try that first -
7705 we are likely to read more than one register. If this is the
7706 first 'g' packet, we might be overly optimistic about its
7707 contents, so fall back to 'p'. */
7708 if (reg->in_g_packet)
7709 {
7710 fetch_registers_using_g (regcache);
7711 if (reg->in_g_packet)
7712 return;
7713 }
7714
7715 if (fetch_register_using_p (regcache, reg))
7716 return;
7717
7718 /* This register is not available. */
7719 regcache_raw_supply (regcache, reg->regnum, NULL);
7720
7721 return;
7722 }
7723
7724 fetch_registers_using_g (regcache);
7725
7726 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7727 if (!rsa->regs[i].in_g_packet)
7728 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7729 {
7730 /* This register is not available. */
7731 regcache_raw_supply (regcache, i, NULL);
7732 }
7733 }
7734
7735 /* Prepare to store registers. Since we may send them all (using a
7736 'G' request), we have to read out the ones we don't want to change
7737 first. */
7738
7739 static void
7740 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7741 {
7742 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7743 int i;
7744
7745 /* Make sure the entire registers array is valid. */
7746 switch (packet_support (PACKET_P))
7747 {
7748 case PACKET_DISABLE:
7749 case PACKET_SUPPORT_UNKNOWN:
7750 /* Make sure all the necessary registers are cached. */
7751 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7752 if (rsa->regs[i].in_g_packet)
7753 regcache_raw_update (regcache, rsa->regs[i].regnum);
7754 break;
7755 case PACKET_ENABLE:
7756 break;
7757 }
7758 }
7759
7760 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7761 packet was not recognized. */
7762
7763 static int
7764 store_register_using_P (const struct regcache *regcache,
7765 struct packet_reg *reg)
7766 {
7767 struct gdbarch *gdbarch = regcache->arch ();
7768 struct remote_state *rs = get_remote_state ();
7769 /* Try storing a single register. */
7770 char *buf = rs->buf;
7771 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7772 char *p;
7773
7774 if (packet_support (PACKET_P) == PACKET_DISABLE)
7775 return 0;
7776
7777 if (reg->pnum == -1)
7778 return 0;
7779
7780 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7781 p = buf + strlen (buf);
7782 regcache_raw_collect (regcache, reg->regnum, regp);
7783 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7784 putpkt (rs->buf);
7785 getpkt (&rs->buf, &rs->buf_size, 0);
7786
7787 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7788 {
7789 case PACKET_OK:
7790 return 1;
7791 case PACKET_ERROR:
7792 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7793 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7794 case PACKET_UNKNOWN:
7795 return 0;
7796 default:
7797 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7798 }
7799 }
7800
7801 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7802 contents of the register cache buffer. FIXME: ignores errors. */
7803
7804 static void
7805 store_registers_using_G (const struct regcache *regcache)
7806 {
7807 struct remote_state *rs = get_remote_state ();
7808 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7809 gdb_byte *regs;
7810 char *p;
7811
7812 /* Extract all the registers in the regcache copying them into a
7813 local buffer. */
7814 {
7815 int i;
7816
7817 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7818 memset (regs, 0, rsa->sizeof_g_packet);
7819 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7820 {
7821 struct packet_reg *r = &rsa->regs[i];
7822
7823 if (r->in_g_packet)
7824 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7825 }
7826 }
7827
7828 /* Command describes registers byte by byte,
7829 each byte encoded as two hex characters. */
7830 p = rs->buf;
7831 *p++ = 'G';
7832 bin2hex (regs, p, rsa->sizeof_g_packet);
7833 putpkt (rs->buf);
7834 getpkt (&rs->buf, &rs->buf_size, 0);
7835 if (packet_check_result (rs->buf) == PACKET_ERROR)
7836 error (_("Could not write registers; remote failure reply '%s'"),
7837 rs->buf);
7838 }
7839
7840 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7841 of the register cache buffer. FIXME: ignores errors. */
7842
7843 static void
7844 remote_store_registers (struct target_ops *ops,
7845 struct regcache *regcache, int regnum)
7846 {
7847 struct gdbarch *gdbarch = regcache->arch ();
7848 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7849 int i;
7850
7851 set_remote_traceframe ();
7852 set_general_thread (regcache_get_ptid (regcache));
7853
7854 if (regnum >= 0)
7855 {
7856 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7857
7858 gdb_assert (reg != NULL);
7859
7860 /* Always prefer to store registers using the 'P' packet if
7861 possible; we often change only a small number of registers.
7862 Sometimes we change a larger number; we'd need help from a
7863 higher layer to know to use 'G'. */
7864 if (store_register_using_P (regcache, reg))
7865 return;
7866
7867 /* For now, don't complain if we have no way to write the
7868 register. GDB loses track of unavailable registers too
7869 easily. Some day, this may be an error. We don't have
7870 any way to read the register, either... */
7871 if (!reg->in_g_packet)
7872 return;
7873
7874 store_registers_using_G (regcache);
7875 return;
7876 }
7877
7878 store_registers_using_G (regcache);
7879
7880 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7881 if (!rsa->regs[i].in_g_packet)
7882 if (!store_register_using_P (regcache, &rsa->regs[i]))
7883 /* See above for why we do not issue an error here. */
7884 continue;
7885 }
7886 \f
7887
7888 /* Return the number of hex digits in num. */
7889
7890 static int
7891 hexnumlen (ULONGEST num)
7892 {
7893 int i;
7894
7895 for (i = 0; num != 0; i++)
7896 num >>= 4;
7897
7898 return std::max (i, 1);
7899 }
7900
7901 /* Set BUF to the minimum number of hex digits representing NUM. */
7902
7903 static int
7904 hexnumstr (char *buf, ULONGEST num)
7905 {
7906 int len = hexnumlen (num);
7907
7908 return hexnumnstr (buf, num, len);
7909 }
7910
7911
7912 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7913
7914 static int
7915 hexnumnstr (char *buf, ULONGEST num, int width)
7916 {
7917 int i;
7918
7919 buf[width] = '\0';
7920
7921 for (i = width - 1; i >= 0; i--)
7922 {
7923 buf[i] = "0123456789abcdef"[(num & 0xf)];
7924 num >>= 4;
7925 }
7926
7927 return width;
7928 }
7929
7930 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7931
7932 static CORE_ADDR
7933 remote_address_masked (CORE_ADDR addr)
7934 {
7935 unsigned int address_size = remote_address_size;
7936
7937 /* If "remoteaddresssize" was not set, default to target address size. */
7938 if (!address_size)
7939 address_size = gdbarch_addr_bit (target_gdbarch ());
7940
7941 if (address_size > 0
7942 && address_size < (sizeof (ULONGEST) * 8))
7943 {
7944 /* Only create a mask when that mask can safely be constructed
7945 in a ULONGEST variable. */
7946 ULONGEST mask = 1;
7947
7948 mask = (mask << address_size) - 1;
7949 addr &= mask;
7950 }
7951 return addr;
7952 }
7953
7954 /* Determine whether the remote target supports binary downloading.
7955 This is accomplished by sending a no-op memory write of zero length
7956 to the target at the specified address. It does not suffice to send
7957 the whole packet, since many stubs strip the eighth bit and
7958 subsequently compute a wrong checksum, which causes real havoc with
7959 remote_write_bytes.
7960
7961 NOTE: This can still lose if the serial line is not eight-bit
7962 clean. In cases like this, the user should clear "remote
7963 X-packet". */
7964
7965 static void
7966 check_binary_download (CORE_ADDR addr)
7967 {
7968 struct remote_state *rs = get_remote_state ();
7969
7970 switch (packet_support (PACKET_X))
7971 {
7972 case PACKET_DISABLE:
7973 break;
7974 case PACKET_ENABLE:
7975 break;
7976 case PACKET_SUPPORT_UNKNOWN:
7977 {
7978 char *p;
7979
7980 p = rs->buf;
7981 *p++ = 'X';
7982 p += hexnumstr (p, (ULONGEST) addr);
7983 *p++ = ',';
7984 p += hexnumstr (p, (ULONGEST) 0);
7985 *p++ = ':';
7986 *p = '\0';
7987
7988 putpkt_binary (rs->buf, (int) (p - rs->buf));
7989 getpkt (&rs->buf, &rs->buf_size, 0);
7990
7991 if (rs->buf[0] == '\0')
7992 {
7993 if (remote_debug)
7994 fprintf_unfiltered (gdb_stdlog,
7995 "binary downloading NOT "
7996 "supported by target\n");
7997 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
7998 }
7999 else
8000 {
8001 if (remote_debug)
8002 fprintf_unfiltered (gdb_stdlog,
8003 "binary downloading supported by target\n");
8004 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8005 }
8006 break;
8007 }
8008 }
8009 }
8010
8011 /* Helper function to resize the payload in order to try to get a good
8012 alignment. We try to write an amount of data such that the next write will
8013 start on an address aligned on REMOTE_ALIGN_WRITES. */
8014
8015 static int
8016 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8017 {
8018 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8019 }
8020
8021 /* Write memory data directly to the remote machine.
8022 This does not inform the data cache; the data cache uses this.
8023 HEADER is the starting part of the packet.
8024 MEMADDR is the address in the remote memory space.
8025 MYADDR is the address of the buffer in our space.
8026 LEN_UNITS is the number of addressable units to write.
8027 UNIT_SIZE is the length in bytes of an addressable unit.
8028 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8029 should send data as binary ('X'), or hex-encoded ('M').
8030
8031 The function creates packet of the form
8032 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8033
8034 where encoding of <DATA> is terminated by PACKET_FORMAT.
8035
8036 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8037 are omitted.
8038
8039 Return the transferred status, error or OK (an
8040 'enum target_xfer_status' value). Save the number of addressable units
8041 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8042
8043 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8044 exchange between gdb and the stub could look like (?? in place of the
8045 checksum):
8046
8047 -> $m1000,4#??
8048 <- aaaabbbbccccdddd
8049
8050 -> $M1000,3:eeeeffffeeee#??
8051 <- OK
8052
8053 -> $m1000,4#??
8054 <- eeeeffffeeeedddd */
8055
8056 static enum target_xfer_status
8057 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8058 const gdb_byte *myaddr, ULONGEST len_units,
8059 int unit_size, ULONGEST *xfered_len_units,
8060 char packet_format, int use_length)
8061 {
8062 struct remote_state *rs = get_remote_state ();
8063 char *p;
8064 char *plen = NULL;
8065 int plenlen = 0;
8066 int todo_units;
8067 int units_written;
8068 int payload_capacity_bytes;
8069 int payload_length_bytes;
8070
8071 if (packet_format != 'X' && packet_format != 'M')
8072 internal_error (__FILE__, __LINE__,
8073 _("remote_write_bytes_aux: bad packet format"));
8074
8075 if (len_units == 0)
8076 return TARGET_XFER_EOF;
8077
8078 payload_capacity_bytes = get_memory_write_packet_size ();
8079
8080 /* The packet buffer will be large enough for the payload;
8081 get_memory_packet_size ensures this. */
8082 rs->buf[0] = '\0';
8083
8084 /* Compute the size of the actual payload by subtracting out the
8085 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8086
8087 payload_capacity_bytes -= strlen ("$,:#NN");
8088 if (!use_length)
8089 /* The comma won't be used. */
8090 payload_capacity_bytes += 1;
8091 payload_capacity_bytes -= strlen (header);
8092 payload_capacity_bytes -= hexnumlen (memaddr);
8093
8094 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8095
8096 strcat (rs->buf, header);
8097 p = rs->buf + strlen (header);
8098
8099 /* Compute a best guess of the number of bytes actually transfered. */
8100 if (packet_format == 'X')
8101 {
8102 /* Best guess at number of bytes that will fit. */
8103 todo_units = std::min (len_units,
8104 (ULONGEST) payload_capacity_bytes / unit_size);
8105 if (use_length)
8106 payload_capacity_bytes -= hexnumlen (todo_units);
8107 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8108 }
8109 else
8110 {
8111 /* Number of bytes that will fit. */
8112 todo_units
8113 = std::min (len_units,
8114 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8115 if (use_length)
8116 payload_capacity_bytes -= hexnumlen (todo_units);
8117 todo_units = std::min (todo_units,
8118 (payload_capacity_bytes / unit_size) / 2);
8119 }
8120
8121 if (todo_units <= 0)
8122 internal_error (__FILE__, __LINE__,
8123 _("minimum packet size too small to write data"));
8124
8125 /* If we already need another packet, then try to align the end
8126 of this packet to a useful boundary. */
8127 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8128 todo_units = align_for_efficient_write (todo_units, memaddr);
8129
8130 /* Append "<memaddr>". */
8131 memaddr = remote_address_masked (memaddr);
8132 p += hexnumstr (p, (ULONGEST) memaddr);
8133
8134 if (use_length)
8135 {
8136 /* Append ",". */
8137 *p++ = ',';
8138
8139 /* Append the length and retain its location and size. It may need to be
8140 adjusted once the packet body has been created. */
8141 plen = p;
8142 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8143 p += plenlen;
8144 }
8145
8146 /* Append ":". */
8147 *p++ = ':';
8148 *p = '\0';
8149
8150 /* Append the packet body. */
8151 if (packet_format == 'X')
8152 {
8153 /* Binary mode. Send target system values byte by byte, in
8154 increasing byte addresses. Only escape certain critical
8155 characters. */
8156 payload_length_bytes =
8157 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8158 &units_written, payload_capacity_bytes);
8159
8160 /* If not all TODO units fit, then we'll need another packet. Make
8161 a second try to keep the end of the packet aligned. Don't do
8162 this if the packet is tiny. */
8163 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8164 {
8165 int new_todo_units;
8166
8167 new_todo_units = align_for_efficient_write (units_written, memaddr);
8168
8169 if (new_todo_units != units_written)
8170 payload_length_bytes =
8171 remote_escape_output (myaddr, new_todo_units, unit_size,
8172 (gdb_byte *) p, &units_written,
8173 payload_capacity_bytes);
8174 }
8175
8176 p += payload_length_bytes;
8177 if (use_length && units_written < todo_units)
8178 {
8179 /* Escape chars have filled up the buffer prematurely,
8180 and we have actually sent fewer units than planned.
8181 Fix-up the length field of the packet. Use the same
8182 number of characters as before. */
8183 plen += hexnumnstr (plen, (ULONGEST) units_written,
8184 plenlen);
8185 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8186 }
8187 }
8188 else
8189 {
8190 /* Normal mode: Send target system values byte by byte, in
8191 increasing byte addresses. Each byte is encoded as a two hex
8192 value. */
8193 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8194 units_written = todo_units;
8195 }
8196
8197 putpkt_binary (rs->buf, (int) (p - rs->buf));
8198 getpkt (&rs->buf, &rs->buf_size, 0);
8199
8200 if (rs->buf[0] == 'E')
8201 return TARGET_XFER_E_IO;
8202
8203 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8204 send fewer units than we'd planned. */
8205 *xfered_len_units = (ULONGEST) units_written;
8206 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8207 }
8208
8209 /* Write memory data directly to the remote machine.
8210 This does not inform the data cache; the data cache uses this.
8211 MEMADDR is the address in the remote memory space.
8212 MYADDR is the address of the buffer in our space.
8213 LEN is the number of bytes.
8214
8215 Return the transferred status, error or OK (an
8216 'enum target_xfer_status' value). Save the number of bytes
8217 transferred in *XFERED_LEN. Only transfer a single packet. */
8218
8219 static enum target_xfer_status
8220 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8221 int unit_size, ULONGEST *xfered_len)
8222 {
8223 const char *packet_format = NULL;
8224
8225 /* Check whether the target supports binary download. */
8226 check_binary_download (memaddr);
8227
8228 switch (packet_support (PACKET_X))
8229 {
8230 case PACKET_ENABLE:
8231 packet_format = "X";
8232 break;
8233 case PACKET_DISABLE:
8234 packet_format = "M";
8235 break;
8236 case PACKET_SUPPORT_UNKNOWN:
8237 internal_error (__FILE__, __LINE__,
8238 _("remote_write_bytes: bad internal state"));
8239 default:
8240 internal_error (__FILE__, __LINE__, _("bad switch"));
8241 }
8242
8243 return remote_write_bytes_aux (packet_format,
8244 memaddr, myaddr, len, unit_size, xfered_len,
8245 packet_format[0], 1);
8246 }
8247
8248 /* Read memory data directly from the remote machine.
8249 This does not use the data cache; the data cache uses this.
8250 MEMADDR is the address in the remote memory space.
8251 MYADDR is the address of the buffer in our space.
8252 LEN_UNITS is the number of addressable memory units to read..
8253 UNIT_SIZE is the length in bytes of an addressable unit.
8254
8255 Return the transferred status, error or OK (an
8256 'enum target_xfer_status' value). Save the number of bytes
8257 transferred in *XFERED_LEN_UNITS.
8258
8259 See the comment of remote_write_bytes_aux for an example of
8260 memory read/write exchange between gdb and the stub. */
8261
8262 static enum target_xfer_status
8263 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8264 int unit_size, ULONGEST *xfered_len_units)
8265 {
8266 struct remote_state *rs = get_remote_state ();
8267 int buf_size_bytes; /* Max size of packet output buffer. */
8268 char *p;
8269 int todo_units;
8270 int decoded_bytes;
8271
8272 buf_size_bytes = get_memory_read_packet_size ();
8273 /* The packet buffer will be large enough for the payload;
8274 get_memory_packet_size ensures this. */
8275
8276 /* Number of units that will fit. */
8277 todo_units = std::min (len_units,
8278 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8279
8280 /* Construct "m"<memaddr>","<len>". */
8281 memaddr = remote_address_masked (memaddr);
8282 p = rs->buf;
8283 *p++ = 'm';
8284 p += hexnumstr (p, (ULONGEST) memaddr);
8285 *p++ = ',';
8286 p += hexnumstr (p, (ULONGEST) todo_units);
8287 *p = '\0';
8288 putpkt (rs->buf);
8289 getpkt (&rs->buf, &rs->buf_size, 0);
8290 if (rs->buf[0] == 'E'
8291 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8292 && rs->buf[3] == '\0')
8293 return TARGET_XFER_E_IO;
8294 /* Reply describes memory byte by byte, each byte encoded as two hex
8295 characters. */
8296 p = rs->buf;
8297 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8298 /* Return what we have. Let higher layers handle partial reads. */
8299 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8300 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8301 }
8302
8303 /* Using the set of read-only target sections of remote, read live
8304 read-only memory.
8305
8306 For interface/parameters/return description see target.h,
8307 to_xfer_partial. */
8308
8309 static enum target_xfer_status
8310 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8311 ULONGEST memaddr, ULONGEST len,
8312 int unit_size, ULONGEST *xfered_len)
8313 {
8314 struct target_section *secp;
8315 struct target_section_table *table;
8316
8317 secp = target_section_by_addr (ops, memaddr);
8318 if (secp != NULL
8319 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8320 secp->the_bfd_section)
8321 & SEC_READONLY))
8322 {
8323 struct target_section *p;
8324 ULONGEST memend = memaddr + len;
8325
8326 table = target_get_section_table (ops);
8327
8328 for (p = table->sections; p < table->sections_end; p++)
8329 {
8330 if (memaddr >= p->addr)
8331 {
8332 if (memend <= p->endaddr)
8333 {
8334 /* Entire transfer is within this section. */
8335 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8336 xfered_len);
8337 }
8338 else if (memaddr >= p->endaddr)
8339 {
8340 /* This section ends before the transfer starts. */
8341 continue;
8342 }
8343 else
8344 {
8345 /* This section overlaps the transfer. Just do half. */
8346 len = p->endaddr - memaddr;
8347 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8348 xfered_len);
8349 }
8350 }
8351 }
8352 }
8353
8354 return TARGET_XFER_EOF;
8355 }
8356
8357 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8358 first if the requested memory is unavailable in traceframe.
8359 Otherwise, fall back to remote_read_bytes_1. */
8360
8361 static enum target_xfer_status
8362 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8363 gdb_byte *myaddr, ULONGEST len, int unit_size,
8364 ULONGEST *xfered_len)
8365 {
8366 if (len == 0)
8367 return TARGET_XFER_EOF;
8368
8369 if (get_traceframe_number () != -1)
8370 {
8371 std::vector<mem_range> available;
8372
8373 /* If we fail to get the set of available memory, then the
8374 target does not support querying traceframe info, and so we
8375 attempt reading from the traceframe anyway (assuming the
8376 target implements the old QTro packet then). */
8377 if (traceframe_available_memory (&available, memaddr, len))
8378 {
8379 if (available.empty () || available[0].start != memaddr)
8380 {
8381 enum target_xfer_status res;
8382
8383 /* Don't read into the traceframe's available
8384 memory. */
8385 if (!available.empty ())
8386 {
8387 LONGEST oldlen = len;
8388
8389 len = available[0].start - memaddr;
8390 gdb_assert (len <= oldlen);
8391 }
8392
8393 /* This goes through the topmost target again. */
8394 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8395 len, unit_size, xfered_len);
8396 if (res == TARGET_XFER_OK)
8397 return TARGET_XFER_OK;
8398 else
8399 {
8400 /* No use trying further, we know some memory starting
8401 at MEMADDR isn't available. */
8402 *xfered_len = len;
8403 return (*xfered_len != 0) ?
8404 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8405 }
8406 }
8407
8408 /* Don't try to read more than how much is available, in
8409 case the target implements the deprecated QTro packet to
8410 cater for older GDBs (the target's knowledge of read-only
8411 sections may be outdated by now). */
8412 len = available[0].length;
8413 }
8414 }
8415
8416 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8417 }
8418
8419 \f
8420
8421 /* Sends a packet with content determined by the printf format string
8422 FORMAT and the remaining arguments, then gets the reply. Returns
8423 whether the packet was a success, a failure, or unknown. */
8424
8425 static enum packet_result remote_send_printf (const char *format, ...)
8426 ATTRIBUTE_PRINTF (1, 2);
8427
8428 static enum packet_result
8429 remote_send_printf (const char *format, ...)
8430 {
8431 struct remote_state *rs = get_remote_state ();
8432 int max_size = get_remote_packet_size ();
8433 va_list ap;
8434
8435 va_start (ap, format);
8436
8437 rs->buf[0] = '\0';
8438 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8439 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8440
8441 if (putpkt (rs->buf) < 0)
8442 error (_("Communication problem with target."));
8443
8444 rs->buf[0] = '\0';
8445 getpkt (&rs->buf, &rs->buf_size, 0);
8446
8447 return packet_check_result (rs->buf);
8448 }
8449
8450 /* Flash writing can take quite some time. We'll set
8451 effectively infinite timeout for flash operations.
8452 In future, we'll need to decide on a better approach. */
8453 static const int remote_flash_timeout = 1000;
8454
8455 static void
8456 remote_flash_erase (struct target_ops *ops,
8457 ULONGEST address, LONGEST length)
8458 {
8459 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8460 enum packet_result ret;
8461 scoped_restore restore_timeout
8462 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8463
8464 ret = remote_send_printf ("vFlashErase:%s,%s",
8465 phex (address, addr_size),
8466 phex (length, 4));
8467 switch (ret)
8468 {
8469 case PACKET_UNKNOWN:
8470 error (_("Remote target does not support flash erase"));
8471 case PACKET_ERROR:
8472 error (_("Error erasing flash with vFlashErase packet"));
8473 default:
8474 break;
8475 }
8476 }
8477
8478 static enum target_xfer_status
8479 remote_flash_write (struct target_ops *ops, ULONGEST address,
8480 ULONGEST length, ULONGEST *xfered_len,
8481 const gdb_byte *data)
8482 {
8483 scoped_restore restore_timeout
8484 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8485 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8486 xfered_len,'X', 0);
8487 }
8488
8489 static void
8490 remote_flash_done (struct target_ops *ops)
8491 {
8492 int ret;
8493
8494 scoped_restore restore_timeout
8495 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8496
8497 ret = remote_send_printf ("vFlashDone");
8498
8499 switch (ret)
8500 {
8501 case PACKET_UNKNOWN:
8502 error (_("Remote target does not support vFlashDone"));
8503 case PACKET_ERROR:
8504 error (_("Error finishing flash operation"));
8505 default:
8506 break;
8507 }
8508 }
8509
8510 static void
8511 remote_files_info (struct target_ops *ignore)
8512 {
8513 puts_filtered ("Debugging a target over a serial line.\n");
8514 }
8515 \f
8516 /* Stuff for dealing with the packets which are part of this protocol.
8517 See comment at top of file for details. */
8518
8519 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8520 error to higher layers. Called when a serial error is detected.
8521 The exception message is STRING, followed by a colon and a blank,
8522 the system error message for errno at function entry and final dot
8523 for output compatibility with throw_perror_with_name. */
8524
8525 static void
8526 unpush_and_perror (const char *string)
8527 {
8528 int saved_errno = errno;
8529
8530 remote_unpush_target ();
8531 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8532 safe_strerror (saved_errno));
8533 }
8534
8535 /* Read a single character from the remote end. The current quit
8536 handler is overridden to avoid quitting in the middle of packet
8537 sequence, as that would break communication with the remote server.
8538 See remote_serial_quit_handler for more detail. */
8539
8540 static int
8541 readchar (int timeout)
8542 {
8543 int ch;
8544 struct remote_state *rs = get_remote_state ();
8545
8546 {
8547 scoped_restore restore_quit
8548 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8549
8550 rs->got_ctrlc_during_io = 0;
8551
8552 ch = serial_readchar (rs->remote_desc, timeout);
8553
8554 if (rs->got_ctrlc_during_io)
8555 set_quit_flag ();
8556 }
8557
8558 if (ch >= 0)
8559 return ch;
8560
8561 switch ((enum serial_rc) ch)
8562 {
8563 case SERIAL_EOF:
8564 remote_unpush_target ();
8565 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8566 /* no return */
8567 case SERIAL_ERROR:
8568 unpush_and_perror (_("Remote communication error. "
8569 "Target disconnected."));
8570 /* no return */
8571 case SERIAL_TIMEOUT:
8572 break;
8573 }
8574 return ch;
8575 }
8576
8577 /* Wrapper for serial_write that closes the target and throws if
8578 writing fails. The current quit handler is overridden to avoid
8579 quitting in the middle of packet sequence, as that would break
8580 communication with the remote server. See
8581 remote_serial_quit_handler for more detail. */
8582
8583 static void
8584 remote_serial_write (const char *str, int len)
8585 {
8586 struct remote_state *rs = get_remote_state ();
8587
8588 scoped_restore restore_quit
8589 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8590
8591 rs->got_ctrlc_during_io = 0;
8592
8593 if (serial_write (rs->remote_desc, str, len))
8594 {
8595 unpush_and_perror (_("Remote communication error. "
8596 "Target disconnected."));
8597 }
8598
8599 if (rs->got_ctrlc_during_io)
8600 set_quit_flag ();
8601 }
8602
8603 /* Send the command in *BUF to the remote machine, and read the reply
8604 into *BUF. Report an error if we get an error reply. Resize
8605 *BUF using xrealloc if necessary to hold the result, and update
8606 *SIZEOF_BUF. */
8607
8608 static void
8609 remote_send (char **buf,
8610 long *sizeof_buf)
8611 {
8612 putpkt (*buf);
8613 getpkt (buf, sizeof_buf, 0);
8614
8615 if ((*buf)[0] == 'E')
8616 error (_("Remote failure reply: %s"), *buf);
8617 }
8618
8619 /* Return a string representing an escaped version of BUF, of len N.
8620 E.g. \n is converted to \\n, \t to \\t, etc. */
8621
8622 static std::string
8623 escape_buffer (const char *buf, int n)
8624 {
8625 string_file stb;
8626
8627 stb.putstrn (buf, n, '\\');
8628 return std::move (stb.string ());
8629 }
8630
8631 /* Display a null-terminated packet on stdout, for debugging, using C
8632 string notation. */
8633
8634 static void
8635 print_packet (const char *buf)
8636 {
8637 puts_filtered ("\"");
8638 fputstr_filtered (buf, '"', gdb_stdout);
8639 puts_filtered ("\"");
8640 }
8641
8642 int
8643 putpkt (const char *buf)
8644 {
8645 return putpkt_binary (buf, strlen (buf));
8646 }
8647
8648 /* Send a packet to the remote machine, with error checking. The data
8649 of the packet is in BUF. The string in BUF can be at most
8650 get_remote_packet_size () - 5 to account for the $, # and checksum,
8651 and for a possible /0 if we are debugging (remote_debug) and want
8652 to print the sent packet as a string. */
8653
8654 static int
8655 putpkt_binary (const char *buf, int cnt)
8656 {
8657 struct remote_state *rs = get_remote_state ();
8658 int i;
8659 unsigned char csum = 0;
8660 gdb::def_vector<char> data (cnt + 6);
8661 char *buf2 = data.data ();
8662
8663 int ch;
8664 int tcount = 0;
8665 char *p;
8666
8667 /* Catch cases like trying to read memory or listing threads while
8668 we're waiting for a stop reply. The remote server wouldn't be
8669 ready to handle this request, so we'd hang and timeout. We don't
8670 have to worry about this in synchronous mode, because in that
8671 case it's not possible to issue a command while the target is
8672 running. This is not a problem in non-stop mode, because in that
8673 case, the stub is always ready to process serial input. */
8674 if (!target_is_non_stop_p ()
8675 && target_is_async_p ()
8676 && rs->waiting_for_stop_reply)
8677 {
8678 error (_("Cannot execute this command while the target is running.\n"
8679 "Use the \"interrupt\" command to stop the target\n"
8680 "and then try again."));
8681 }
8682
8683 /* We're sending out a new packet. Make sure we don't look at a
8684 stale cached response. */
8685 rs->cached_wait_status = 0;
8686
8687 /* Copy the packet into buffer BUF2, encapsulating it
8688 and giving it a checksum. */
8689
8690 p = buf2;
8691 *p++ = '$';
8692
8693 for (i = 0; i < cnt; i++)
8694 {
8695 csum += buf[i];
8696 *p++ = buf[i];
8697 }
8698 *p++ = '#';
8699 *p++ = tohex ((csum >> 4) & 0xf);
8700 *p++ = tohex (csum & 0xf);
8701
8702 /* Send it over and over until we get a positive ack. */
8703
8704 while (1)
8705 {
8706 int started_error_output = 0;
8707
8708 if (remote_debug)
8709 {
8710 *p = '\0';
8711
8712 int len = (int) (p - buf2);
8713
8714 std::string str
8715 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8716
8717 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8718
8719 if (len > REMOTE_DEBUG_MAX_CHAR)
8720 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
8721 len - REMOTE_DEBUG_MAX_CHAR);
8722
8723 fprintf_unfiltered (gdb_stdlog, "...");
8724
8725 gdb_flush (gdb_stdlog);
8726 }
8727 remote_serial_write (buf2, p - buf2);
8728
8729 /* If this is a no acks version of the remote protocol, send the
8730 packet and move on. */
8731 if (rs->noack_mode)
8732 break;
8733
8734 /* Read until either a timeout occurs (-2) or '+' is read.
8735 Handle any notification that arrives in the mean time. */
8736 while (1)
8737 {
8738 ch = readchar (remote_timeout);
8739
8740 if (remote_debug)
8741 {
8742 switch (ch)
8743 {
8744 case '+':
8745 case '-':
8746 case SERIAL_TIMEOUT:
8747 case '$':
8748 case '%':
8749 if (started_error_output)
8750 {
8751 putchar_unfiltered ('\n');
8752 started_error_output = 0;
8753 }
8754 }
8755 }
8756
8757 switch (ch)
8758 {
8759 case '+':
8760 if (remote_debug)
8761 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8762 return 1;
8763 case '-':
8764 if (remote_debug)
8765 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8766 /* FALLTHROUGH */
8767 case SERIAL_TIMEOUT:
8768 tcount++;
8769 if (tcount > 3)
8770 return 0;
8771 break; /* Retransmit buffer. */
8772 case '$':
8773 {
8774 if (remote_debug)
8775 fprintf_unfiltered (gdb_stdlog,
8776 "Packet instead of Ack, ignoring it\n");
8777 /* It's probably an old response sent because an ACK
8778 was lost. Gobble up the packet and ack it so it
8779 doesn't get retransmitted when we resend this
8780 packet. */
8781 skip_frame ();
8782 remote_serial_write ("+", 1);
8783 continue; /* Now, go look for +. */
8784 }
8785
8786 case '%':
8787 {
8788 int val;
8789
8790 /* If we got a notification, handle it, and go back to looking
8791 for an ack. */
8792 /* We've found the start of a notification. Now
8793 collect the data. */
8794 val = read_frame (&rs->buf, &rs->buf_size);
8795 if (val >= 0)
8796 {
8797 if (remote_debug)
8798 {
8799 std::string str = escape_buffer (rs->buf, val);
8800
8801 fprintf_unfiltered (gdb_stdlog,
8802 " Notification received: %s\n",
8803 str.c_str ());
8804 }
8805 handle_notification (rs->notif_state, rs->buf);
8806 /* We're in sync now, rewait for the ack. */
8807 tcount = 0;
8808 }
8809 else
8810 {
8811 if (remote_debug)
8812 {
8813 if (!started_error_output)
8814 {
8815 started_error_output = 1;
8816 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8817 }
8818 fputc_unfiltered (ch & 0177, gdb_stdlog);
8819 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8820 }
8821 }
8822 continue;
8823 }
8824 /* fall-through */
8825 default:
8826 if (remote_debug)
8827 {
8828 if (!started_error_output)
8829 {
8830 started_error_output = 1;
8831 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8832 }
8833 fputc_unfiltered (ch & 0177, gdb_stdlog);
8834 }
8835 continue;
8836 }
8837 break; /* Here to retransmit. */
8838 }
8839
8840 #if 0
8841 /* This is wrong. If doing a long backtrace, the user should be
8842 able to get out next time we call QUIT, without anything as
8843 violent as interrupt_query. If we want to provide a way out of
8844 here without getting to the next QUIT, it should be based on
8845 hitting ^C twice as in remote_wait. */
8846 if (quit_flag)
8847 {
8848 quit_flag = 0;
8849 interrupt_query ();
8850 }
8851 #endif
8852 }
8853
8854 return 0;
8855 }
8856
8857 /* Come here after finding the start of a frame when we expected an
8858 ack. Do our best to discard the rest of this packet. */
8859
8860 static void
8861 skip_frame (void)
8862 {
8863 int c;
8864
8865 while (1)
8866 {
8867 c = readchar (remote_timeout);
8868 switch (c)
8869 {
8870 case SERIAL_TIMEOUT:
8871 /* Nothing we can do. */
8872 return;
8873 case '#':
8874 /* Discard the two bytes of checksum and stop. */
8875 c = readchar (remote_timeout);
8876 if (c >= 0)
8877 c = readchar (remote_timeout);
8878
8879 return;
8880 case '*': /* Run length encoding. */
8881 /* Discard the repeat count. */
8882 c = readchar (remote_timeout);
8883 if (c < 0)
8884 return;
8885 break;
8886 default:
8887 /* A regular character. */
8888 break;
8889 }
8890 }
8891 }
8892
8893 /* Come here after finding the start of the frame. Collect the rest
8894 into *BUF, verifying the checksum, length, and handling run-length
8895 compression. NUL terminate the buffer. If there is not enough room,
8896 expand *BUF using xrealloc.
8897
8898 Returns -1 on error, number of characters in buffer (ignoring the
8899 trailing NULL) on success. (could be extended to return one of the
8900 SERIAL status indications). */
8901
8902 static long
8903 read_frame (char **buf_p,
8904 long *sizeof_buf)
8905 {
8906 unsigned char csum;
8907 long bc;
8908 int c;
8909 char *buf = *buf_p;
8910 struct remote_state *rs = get_remote_state ();
8911
8912 csum = 0;
8913 bc = 0;
8914
8915 while (1)
8916 {
8917 c = readchar (remote_timeout);
8918 switch (c)
8919 {
8920 case SERIAL_TIMEOUT:
8921 if (remote_debug)
8922 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8923 return -1;
8924 case '$':
8925 if (remote_debug)
8926 fputs_filtered ("Saw new packet start in middle of old one\n",
8927 gdb_stdlog);
8928 return -1; /* Start a new packet, count retries. */
8929 case '#':
8930 {
8931 unsigned char pktcsum;
8932 int check_0 = 0;
8933 int check_1 = 0;
8934
8935 buf[bc] = '\0';
8936
8937 check_0 = readchar (remote_timeout);
8938 if (check_0 >= 0)
8939 check_1 = readchar (remote_timeout);
8940
8941 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8942 {
8943 if (remote_debug)
8944 fputs_filtered ("Timeout in checksum, retrying\n",
8945 gdb_stdlog);
8946 return -1;
8947 }
8948 else if (check_0 < 0 || check_1 < 0)
8949 {
8950 if (remote_debug)
8951 fputs_filtered ("Communication error in checksum\n",
8952 gdb_stdlog);
8953 return -1;
8954 }
8955
8956 /* Don't recompute the checksum; with no ack packets we
8957 don't have any way to indicate a packet retransmission
8958 is necessary. */
8959 if (rs->noack_mode)
8960 return bc;
8961
8962 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8963 if (csum == pktcsum)
8964 return bc;
8965
8966 if (remote_debug)
8967 {
8968 std::string str = escape_buffer (buf, bc);
8969
8970 fprintf_unfiltered (gdb_stdlog,
8971 "Bad checksum, sentsum=0x%x, "
8972 "csum=0x%x, buf=%s\n",
8973 pktcsum, csum, str.c_str ());
8974 }
8975 /* Number of characters in buffer ignoring trailing
8976 NULL. */
8977 return -1;
8978 }
8979 case '*': /* Run length encoding. */
8980 {
8981 int repeat;
8982
8983 csum += c;
8984 c = readchar (remote_timeout);
8985 csum += c;
8986 repeat = c - ' ' + 3; /* Compute repeat count. */
8987
8988 /* The character before ``*'' is repeated. */
8989
8990 if (repeat > 0 && repeat <= 255 && bc > 0)
8991 {
8992 if (bc + repeat - 1 >= *sizeof_buf - 1)
8993 {
8994 /* Make some more room in the buffer. */
8995 *sizeof_buf += repeat;
8996 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
8997 buf = *buf_p;
8998 }
8999
9000 memset (&buf[bc], buf[bc - 1], repeat);
9001 bc += repeat;
9002 continue;
9003 }
9004
9005 buf[bc] = '\0';
9006 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9007 return -1;
9008 }
9009 default:
9010 if (bc >= *sizeof_buf - 1)
9011 {
9012 /* Make some more room in the buffer. */
9013 *sizeof_buf *= 2;
9014 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9015 buf = *buf_p;
9016 }
9017
9018 buf[bc++] = c;
9019 csum += c;
9020 continue;
9021 }
9022 }
9023 }
9024
9025 /* Read a packet from the remote machine, with error checking, and
9026 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9027 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9028 rather than timing out; this is used (in synchronous mode) to wait
9029 for a target that is is executing user code to stop. */
9030 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9031 don't have to change all the calls to getpkt to deal with the
9032 return value, because at the moment I don't know what the right
9033 thing to do it for those. */
9034 void
9035 getpkt (char **buf,
9036 long *sizeof_buf,
9037 int forever)
9038 {
9039 getpkt_sane (buf, sizeof_buf, forever);
9040 }
9041
9042
9043 /* Read a packet from the remote machine, with error checking, and
9044 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9045 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9046 rather than timing out; this is used (in synchronous mode) to wait
9047 for a target that is is executing user code to stop. If FOREVER ==
9048 0, this function is allowed to time out gracefully and return an
9049 indication of this to the caller. Otherwise return the number of
9050 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9051 enough reason to return to the caller. *IS_NOTIF is an output
9052 boolean that indicates whether *BUF holds a notification or not
9053 (a regular packet). */
9054
9055 static int
9056 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9057 int expecting_notif, int *is_notif)
9058 {
9059 struct remote_state *rs = get_remote_state ();
9060 int c;
9061 int tries;
9062 int timeout;
9063 int val = -1;
9064
9065 /* We're reading a new response. Make sure we don't look at a
9066 previously cached response. */
9067 rs->cached_wait_status = 0;
9068
9069 strcpy (*buf, "timeout");
9070
9071 if (forever)
9072 timeout = watchdog > 0 ? watchdog : -1;
9073 else if (expecting_notif)
9074 timeout = 0; /* There should already be a char in the buffer. If
9075 not, bail out. */
9076 else
9077 timeout = remote_timeout;
9078
9079 #define MAX_TRIES 3
9080
9081 /* Process any number of notifications, and then return when
9082 we get a packet. */
9083 for (;;)
9084 {
9085 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9086 times. */
9087 for (tries = 1; tries <= MAX_TRIES; tries++)
9088 {
9089 /* This can loop forever if the remote side sends us
9090 characters continuously, but if it pauses, we'll get
9091 SERIAL_TIMEOUT from readchar because of timeout. Then
9092 we'll count that as a retry.
9093
9094 Note that even when forever is set, we will only wait
9095 forever prior to the start of a packet. After that, we
9096 expect characters to arrive at a brisk pace. They should
9097 show up within remote_timeout intervals. */
9098 do
9099 c = readchar (timeout);
9100 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9101
9102 if (c == SERIAL_TIMEOUT)
9103 {
9104 if (expecting_notif)
9105 return -1; /* Don't complain, it's normal to not get
9106 anything in this case. */
9107
9108 if (forever) /* Watchdog went off? Kill the target. */
9109 {
9110 remote_unpush_target ();
9111 throw_error (TARGET_CLOSE_ERROR,
9112 _("Watchdog timeout has expired. "
9113 "Target detached."));
9114 }
9115 if (remote_debug)
9116 fputs_filtered ("Timed out.\n", gdb_stdlog);
9117 }
9118 else
9119 {
9120 /* We've found the start of a packet or notification.
9121 Now collect the data. */
9122 val = read_frame (buf, sizeof_buf);
9123 if (val >= 0)
9124 break;
9125 }
9126
9127 remote_serial_write ("-", 1);
9128 }
9129
9130 if (tries > MAX_TRIES)
9131 {
9132 /* We have tried hard enough, and just can't receive the
9133 packet/notification. Give up. */
9134 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9135
9136 /* Skip the ack char if we're in no-ack mode. */
9137 if (!rs->noack_mode)
9138 remote_serial_write ("+", 1);
9139 return -1;
9140 }
9141
9142 /* If we got an ordinary packet, return that to our caller. */
9143 if (c == '$')
9144 {
9145 if (remote_debug)
9146 {
9147 std::string str
9148 = escape_buffer (*buf,
9149 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9150
9151 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9152 str.c_str ());
9153
9154 if (val > REMOTE_DEBUG_MAX_CHAR)
9155 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9156 val - REMOTE_DEBUG_MAX_CHAR);
9157
9158 fprintf_unfiltered (gdb_stdlog, "\n");
9159 }
9160
9161 /* Skip the ack char if we're in no-ack mode. */
9162 if (!rs->noack_mode)
9163 remote_serial_write ("+", 1);
9164 if (is_notif != NULL)
9165 *is_notif = 0;
9166 return val;
9167 }
9168
9169 /* If we got a notification, handle it, and go back to looking
9170 for a packet. */
9171 else
9172 {
9173 gdb_assert (c == '%');
9174
9175 if (remote_debug)
9176 {
9177 std::string str = escape_buffer (*buf, val);
9178
9179 fprintf_unfiltered (gdb_stdlog,
9180 " Notification received: %s\n",
9181 str.c_str ());
9182 }
9183 if (is_notif != NULL)
9184 *is_notif = 1;
9185
9186 handle_notification (rs->notif_state, *buf);
9187
9188 /* Notifications require no acknowledgement. */
9189
9190 if (expecting_notif)
9191 return val;
9192 }
9193 }
9194 }
9195
9196 static int
9197 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9198 {
9199 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9200 }
9201
9202 static int
9203 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9204 int *is_notif)
9205 {
9206 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9207 is_notif);
9208 }
9209
9210 /* Check whether EVENT is a fork event for the process specified
9211 by the pid passed in DATA, and if it is, kill the fork child. */
9212
9213 static int
9214 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9215 QUEUE_ITER (stop_reply_p) *iter,
9216 stop_reply_p event,
9217 void *data)
9218 {
9219 struct queue_iter_param *param = (struct queue_iter_param *) data;
9220 int parent_pid = *(int *) param->input;
9221
9222 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9223 {
9224 struct remote_state *rs = get_remote_state ();
9225 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9226 int res;
9227
9228 res = remote_vkill (child_pid, rs);
9229 if (res != 0)
9230 error (_("Can't kill fork child process %d"), child_pid);
9231 }
9232
9233 return 1;
9234 }
9235
9236 /* Kill any new fork children of process PID that haven't been
9237 processed by follow_fork. */
9238
9239 static void
9240 kill_new_fork_children (int pid, struct remote_state *rs)
9241 {
9242 struct thread_info *thread;
9243 struct notif_client *notif = &notif_client_stop;
9244 struct queue_iter_param param;
9245
9246 /* Kill the fork child threads of any threads in process PID
9247 that are stopped at a fork event. */
9248 ALL_NON_EXITED_THREADS (thread)
9249 {
9250 struct target_waitstatus *ws = &thread->pending_follow;
9251
9252 if (is_pending_fork_parent (ws, pid, thread->ptid))
9253 {
9254 struct remote_state *rs = get_remote_state ();
9255 int child_pid = ptid_get_pid (ws->value.related_pid);
9256 int res;
9257
9258 res = remote_vkill (child_pid, rs);
9259 if (res != 0)
9260 error (_("Can't kill fork child process %d"), child_pid);
9261 }
9262 }
9263
9264 /* Check for any pending fork events (not reported or processed yet)
9265 in process PID and kill those fork child threads as well. */
9266 remote_notif_get_pending_events (notif);
9267 param.input = &pid;
9268 param.output = NULL;
9269 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9270 kill_child_of_pending_fork, &param);
9271 }
9272
9273 \f
9274 /* Target hook to kill the current inferior. */
9275
9276 static void
9277 remote_kill (struct target_ops *ops)
9278 {
9279 int res = -1;
9280 int pid = ptid_get_pid (inferior_ptid);
9281 struct remote_state *rs = get_remote_state ();
9282
9283 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9284 {
9285 /* If we're stopped while forking and we haven't followed yet,
9286 kill the child task. We need to do this before killing the
9287 parent task because if this is a vfork then the parent will
9288 be sleeping. */
9289 kill_new_fork_children (pid, rs);
9290
9291 res = remote_vkill (pid, rs);
9292 if (res == 0)
9293 {
9294 target_mourn_inferior (inferior_ptid);
9295 return;
9296 }
9297 }
9298
9299 /* If we are in 'target remote' mode and we are killing the only
9300 inferior, then we will tell gdbserver to exit and unpush the
9301 target. */
9302 if (res == -1 && !remote_multi_process_p (rs)
9303 && number_of_live_inferiors () == 1)
9304 {
9305 remote_kill_k ();
9306
9307 /* We've killed the remote end, we get to mourn it. If we are
9308 not in extended mode, mourning the inferior also unpushes
9309 remote_ops from the target stack, which closes the remote
9310 connection. */
9311 target_mourn_inferior (inferior_ptid);
9312
9313 return;
9314 }
9315
9316 error (_("Can't kill process"));
9317 }
9318
9319 /* Send a kill request to the target using the 'vKill' packet. */
9320
9321 static int
9322 remote_vkill (int pid, struct remote_state *rs)
9323 {
9324 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9325 return -1;
9326
9327 /* Tell the remote target to detach. */
9328 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9329 putpkt (rs->buf);
9330 getpkt (&rs->buf, &rs->buf_size, 0);
9331
9332 switch (packet_ok (rs->buf,
9333 &remote_protocol_packets[PACKET_vKill]))
9334 {
9335 case PACKET_OK:
9336 return 0;
9337 case PACKET_ERROR:
9338 return 1;
9339 case PACKET_UNKNOWN:
9340 return -1;
9341 default:
9342 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9343 }
9344 }
9345
9346 /* Send a kill request to the target using the 'k' packet. */
9347
9348 static void
9349 remote_kill_k (void)
9350 {
9351 /* Catch errors so the user can quit from gdb even when we
9352 aren't on speaking terms with the remote system. */
9353 TRY
9354 {
9355 putpkt ("k");
9356 }
9357 CATCH (ex, RETURN_MASK_ERROR)
9358 {
9359 if (ex.error == TARGET_CLOSE_ERROR)
9360 {
9361 /* If we got an (EOF) error that caused the target
9362 to go away, then we're done, that's what we wanted.
9363 "k" is susceptible to cause a premature EOF, given
9364 that the remote server isn't actually required to
9365 reply to "k", and it can happen that it doesn't
9366 even get to reply ACK to the "k". */
9367 return;
9368 }
9369
9370 /* Otherwise, something went wrong. We didn't actually kill
9371 the target. Just propagate the exception, and let the
9372 user or higher layers decide what to do. */
9373 throw_exception (ex);
9374 }
9375 END_CATCH
9376 }
9377
9378 static void
9379 remote_mourn (struct target_ops *target)
9380 {
9381 struct remote_state *rs = get_remote_state ();
9382
9383 /* In 'target remote' mode with one inferior, we close the connection. */
9384 if (!rs->extended && number_of_live_inferiors () <= 1)
9385 {
9386 unpush_target (target);
9387
9388 /* remote_close takes care of doing most of the clean up. */
9389 generic_mourn_inferior ();
9390 return;
9391 }
9392
9393 /* In case we got here due to an error, but we're going to stay
9394 connected. */
9395 rs->waiting_for_stop_reply = 0;
9396
9397 /* If the current general thread belonged to the process we just
9398 detached from or has exited, the remote side current general
9399 thread becomes undefined. Considering a case like this:
9400
9401 - We just got here due to a detach.
9402 - The process that we're detaching from happens to immediately
9403 report a global breakpoint being hit in non-stop mode, in the
9404 same thread we had selected before.
9405 - GDB attaches to this process again.
9406 - This event happens to be the next event we handle.
9407
9408 GDB would consider that the current general thread didn't need to
9409 be set on the stub side (with Hg), since for all it knew,
9410 GENERAL_THREAD hadn't changed.
9411
9412 Notice that although in all-stop mode, the remote server always
9413 sets the current thread to the thread reporting the stop event,
9414 that doesn't happen in non-stop mode; in non-stop, the stub *must
9415 not* change the current thread when reporting a breakpoint hit,
9416 due to the decoupling of event reporting and event handling.
9417
9418 To keep things simple, we always invalidate our notion of the
9419 current thread. */
9420 record_currthread (rs, minus_one_ptid);
9421
9422 /* Call common code to mark the inferior as not running. */
9423 generic_mourn_inferior ();
9424
9425 if (!have_inferiors ())
9426 {
9427 if (!remote_multi_process_p (rs))
9428 {
9429 /* Check whether the target is running now - some remote stubs
9430 automatically restart after kill. */
9431 putpkt ("?");
9432 getpkt (&rs->buf, &rs->buf_size, 0);
9433
9434 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9435 {
9436 /* Assume that the target has been restarted. Set
9437 inferior_ptid so that bits of core GDB realizes
9438 there's something here, e.g., so that the user can
9439 say "kill" again. */
9440 inferior_ptid = magic_null_ptid;
9441 }
9442 }
9443 }
9444 }
9445
9446 static int
9447 extended_remote_supports_disable_randomization (struct target_ops *self)
9448 {
9449 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9450 }
9451
9452 static void
9453 extended_remote_disable_randomization (int val)
9454 {
9455 struct remote_state *rs = get_remote_state ();
9456 char *reply;
9457
9458 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9459 val);
9460 putpkt (rs->buf);
9461 reply = remote_get_noisy_reply ();
9462 if (*reply == '\0')
9463 error (_("Target does not support QDisableRandomization."));
9464 if (strcmp (reply, "OK") != 0)
9465 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9466 }
9467
9468 static int
9469 extended_remote_run (const std::string &args)
9470 {
9471 struct remote_state *rs = get_remote_state ();
9472 int len;
9473 const char *remote_exec_file = get_remote_exec_file ();
9474
9475 /* If the user has disabled vRun support, or we have detected that
9476 support is not available, do not try it. */
9477 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9478 return -1;
9479
9480 strcpy (rs->buf, "vRun;");
9481 len = strlen (rs->buf);
9482
9483 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9484 error (_("Remote file name too long for run packet"));
9485 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9486 strlen (remote_exec_file));
9487
9488 if (!args.empty ())
9489 {
9490 int i;
9491
9492 gdb_argv argv (args.c_str ());
9493 for (i = 0; argv[i] != NULL; i++)
9494 {
9495 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9496 error (_("Argument list too long for run packet"));
9497 rs->buf[len++] = ';';
9498 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9499 strlen (argv[i]));
9500 }
9501 }
9502
9503 rs->buf[len++] = '\0';
9504
9505 putpkt (rs->buf);
9506 getpkt (&rs->buf, &rs->buf_size, 0);
9507
9508 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9509 {
9510 case PACKET_OK:
9511 /* We have a wait response. All is well. */
9512 return 0;
9513 case PACKET_UNKNOWN:
9514 return -1;
9515 case PACKET_ERROR:
9516 if (remote_exec_file[0] == '\0')
9517 error (_("Running the default executable on the remote target failed; "
9518 "try \"set remote exec-file\"?"));
9519 else
9520 error (_("Running \"%s\" on the remote target failed"),
9521 remote_exec_file);
9522 default:
9523 gdb_assert_not_reached (_("bad switch"));
9524 }
9525 }
9526
9527 /* Helper function to send set/unset environment packets. ACTION is
9528 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9529 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9530 sent. */
9531
9532 static void
9533 send_environment_packet (struct remote_state *rs,
9534 const char *action,
9535 const char *packet,
9536 const char *value)
9537 {
9538 /* Convert the environment variable to an hex string, which
9539 is the best format to be transmitted over the wire. */
9540 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9541 strlen (value));
9542
9543 xsnprintf (rs->buf, get_remote_packet_size (),
9544 "%s:%s", packet, encoded_value.c_str ());
9545
9546 putpkt (rs->buf);
9547 getpkt (&rs->buf, &rs->buf_size, 0);
9548 if (strcmp (rs->buf, "OK") != 0)
9549 warning (_("Unable to %s environment variable '%s' on remote."),
9550 action, value);
9551 }
9552
9553 /* Helper function to handle the QEnvironment* packets. */
9554
9555 static void
9556 extended_remote_environment_support (struct remote_state *rs)
9557 {
9558 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9559 {
9560 putpkt ("QEnvironmentReset");
9561 getpkt (&rs->buf, &rs->buf_size, 0);
9562 if (strcmp (rs->buf, "OK") != 0)
9563 warning (_("Unable to reset environment on remote."));
9564 }
9565
9566 gdb_environ *e = &current_inferior ()->environment;
9567
9568 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9569 for (const std::string &el : e->user_set_env ())
9570 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9571 el.c_str ());
9572
9573 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9574 for (const std::string &el : e->user_unset_env ())
9575 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9576 }
9577
9578 /* Helper function to set the current working directory for the
9579 inferior in the remote target. */
9580
9581 static void
9582 extended_remote_set_inferior_cwd (struct remote_state *rs)
9583 {
9584 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9585 {
9586 const char *inferior_cwd = get_inferior_cwd ();
9587
9588 if (inferior_cwd != NULL)
9589 {
9590 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9591 strlen (inferior_cwd));
9592
9593 xsnprintf (rs->buf, get_remote_packet_size (),
9594 "QSetWorkingDir:%s", hexpath.c_str ());
9595 }
9596 else
9597 {
9598 /* An empty inferior_cwd means that the user wants us to
9599 reset the remote server's inferior's cwd. */
9600 xsnprintf (rs->buf, get_remote_packet_size (),
9601 "QSetWorkingDir:");
9602 }
9603
9604 putpkt (rs->buf);
9605 getpkt (&rs->buf, &rs->buf_size, 0);
9606 if (packet_ok (rs->buf,
9607 &remote_protocol_packets[PACKET_QSetWorkingDir])
9608 != PACKET_OK)
9609 error (_("\
9610 Remote replied unexpectedly while setting the inferior's working\n\
9611 directory: %s"),
9612 rs->buf);
9613
9614 }
9615 }
9616
9617 /* In the extended protocol we want to be able to do things like
9618 "run" and have them basically work as expected. So we need
9619 a special create_inferior function. We support changing the
9620 executable file and the command line arguments, but not the
9621 environment. */
9622
9623 static void
9624 extended_remote_create_inferior (struct target_ops *ops,
9625 const char *exec_file,
9626 const std::string &args,
9627 char **env, int from_tty)
9628 {
9629 int run_worked;
9630 char *stop_reply;
9631 struct remote_state *rs = get_remote_state ();
9632 const char *remote_exec_file = get_remote_exec_file ();
9633
9634 /* If running asynchronously, register the target file descriptor
9635 with the event loop. */
9636 if (target_can_async_p ())
9637 target_async (1);
9638
9639 /* Disable address space randomization if requested (and supported). */
9640 if (extended_remote_supports_disable_randomization (ops))
9641 extended_remote_disable_randomization (disable_randomization);
9642
9643 /* If startup-with-shell is on, we inform gdbserver to start the
9644 remote inferior using a shell. */
9645 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9646 {
9647 xsnprintf (rs->buf, get_remote_packet_size (),
9648 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9649 putpkt (rs->buf);
9650 getpkt (&rs->buf, &rs->buf_size, 0);
9651 if (strcmp (rs->buf, "OK") != 0)
9652 error (_("\
9653 Remote replied unexpectedly while setting startup-with-shell: %s"),
9654 rs->buf);
9655 }
9656
9657 extended_remote_environment_support (rs);
9658
9659 extended_remote_set_inferior_cwd (rs);
9660
9661 /* Now restart the remote server. */
9662 run_worked = extended_remote_run (args) != -1;
9663 if (!run_worked)
9664 {
9665 /* vRun was not supported. Fail if we need it to do what the
9666 user requested. */
9667 if (remote_exec_file[0])
9668 error (_("Remote target does not support \"set remote exec-file\""));
9669 if (!args.empty ())
9670 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9671
9672 /* Fall back to "R". */
9673 extended_remote_restart ();
9674 }
9675
9676 if (!have_inferiors ())
9677 {
9678 /* Clean up from the last time we ran, before we mark the target
9679 running again. This will mark breakpoints uninserted, and
9680 get_offsets may insert breakpoints. */
9681 init_thread_list ();
9682 init_wait_for_inferior ();
9683 }
9684
9685 /* vRun's success return is a stop reply. */
9686 stop_reply = run_worked ? rs->buf : NULL;
9687 add_current_inferior_and_thread (stop_reply);
9688
9689 /* Get updated offsets, if the stub uses qOffsets. */
9690 get_offsets ();
9691 }
9692 \f
9693
9694 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9695 the list of conditions (in agent expression bytecode format), if any, the
9696 target needs to evaluate. The output is placed into the packet buffer
9697 started from BUF and ended at BUF_END. */
9698
9699 static int
9700 remote_add_target_side_condition (struct gdbarch *gdbarch,
9701 struct bp_target_info *bp_tgt, char *buf,
9702 char *buf_end)
9703 {
9704 if (bp_tgt->conditions.empty ())
9705 return 0;
9706
9707 buf += strlen (buf);
9708 xsnprintf (buf, buf_end - buf, "%s", ";");
9709 buf++;
9710
9711 /* Send conditions to the target. */
9712 for (agent_expr *aexpr : bp_tgt->conditions)
9713 {
9714 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9715 buf += strlen (buf);
9716 for (int i = 0; i < aexpr->len; ++i)
9717 buf = pack_hex_byte (buf, aexpr->buf[i]);
9718 *buf = '\0';
9719 }
9720 return 0;
9721 }
9722
9723 static void
9724 remote_add_target_side_commands (struct gdbarch *gdbarch,
9725 struct bp_target_info *bp_tgt, char *buf)
9726 {
9727 if (bp_tgt->tcommands.empty ())
9728 return;
9729
9730 buf += strlen (buf);
9731
9732 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9733 buf += strlen (buf);
9734
9735 /* Concatenate all the agent expressions that are commands into the
9736 cmds parameter. */
9737 for (agent_expr *aexpr : bp_tgt->tcommands)
9738 {
9739 sprintf (buf, "X%x,", aexpr->len);
9740 buf += strlen (buf);
9741 for (int i = 0; i < aexpr->len; ++i)
9742 buf = pack_hex_byte (buf, aexpr->buf[i]);
9743 *buf = '\0';
9744 }
9745 }
9746
9747 /* Insert a breakpoint. On targets that have software breakpoint
9748 support, we ask the remote target to do the work; on targets
9749 which don't, we insert a traditional memory breakpoint. */
9750
9751 static int
9752 remote_insert_breakpoint (struct target_ops *ops,
9753 struct gdbarch *gdbarch,
9754 struct bp_target_info *bp_tgt)
9755 {
9756 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9757 If it succeeds, then set the support to PACKET_ENABLE. If it
9758 fails, and the user has explicitly requested the Z support then
9759 report an error, otherwise, mark it disabled and go on. */
9760
9761 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9762 {
9763 CORE_ADDR addr = bp_tgt->reqstd_address;
9764 struct remote_state *rs;
9765 char *p, *endbuf;
9766
9767 /* Make sure the remote is pointing at the right process, if
9768 necessary. */
9769 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9770 set_general_process ();
9771
9772 rs = get_remote_state ();
9773 p = rs->buf;
9774 endbuf = rs->buf + get_remote_packet_size ();
9775
9776 *(p++) = 'Z';
9777 *(p++) = '0';
9778 *(p++) = ',';
9779 addr = (ULONGEST) remote_address_masked (addr);
9780 p += hexnumstr (p, addr);
9781 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9782
9783 if (remote_supports_cond_breakpoints (ops))
9784 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9785
9786 if (remote_can_run_breakpoint_commands (ops))
9787 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9788
9789 putpkt (rs->buf);
9790 getpkt (&rs->buf, &rs->buf_size, 0);
9791
9792 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9793 {
9794 case PACKET_ERROR:
9795 return -1;
9796 case PACKET_OK:
9797 return 0;
9798 case PACKET_UNKNOWN:
9799 break;
9800 }
9801 }
9802
9803 /* If this breakpoint has target-side commands but this stub doesn't
9804 support Z0 packets, throw error. */
9805 if (!bp_tgt->tcommands.empty ())
9806 throw_error (NOT_SUPPORTED_ERROR, _("\
9807 Target doesn't support breakpoints that have target side commands."));
9808
9809 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9810 }
9811
9812 static int
9813 remote_remove_breakpoint (struct target_ops *ops,
9814 struct gdbarch *gdbarch,
9815 struct bp_target_info *bp_tgt,
9816 enum remove_bp_reason reason)
9817 {
9818 CORE_ADDR addr = bp_tgt->placed_address;
9819 struct remote_state *rs = get_remote_state ();
9820
9821 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9822 {
9823 char *p = rs->buf;
9824 char *endbuf = rs->buf + get_remote_packet_size ();
9825
9826 /* Make sure the remote is pointing at the right process, if
9827 necessary. */
9828 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9829 set_general_process ();
9830
9831 *(p++) = 'z';
9832 *(p++) = '0';
9833 *(p++) = ',';
9834
9835 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9836 p += hexnumstr (p, addr);
9837 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9838
9839 putpkt (rs->buf);
9840 getpkt (&rs->buf, &rs->buf_size, 0);
9841
9842 return (rs->buf[0] == 'E');
9843 }
9844
9845 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9846 }
9847
9848 static enum Z_packet_type
9849 watchpoint_to_Z_packet (int type)
9850 {
9851 switch (type)
9852 {
9853 case hw_write:
9854 return Z_PACKET_WRITE_WP;
9855 break;
9856 case hw_read:
9857 return Z_PACKET_READ_WP;
9858 break;
9859 case hw_access:
9860 return Z_PACKET_ACCESS_WP;
9861 break;
9862 default:
9863 internal_error (__FILE__, __LINE__,
9864 _("hw_bp_to_z: bad watchpoint type %d"), type);
9865 }
9866 }
9867
9868 static int
9869 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9870 enum target_hw_bp_type type, struct expression *cond)
9871 {
9872 struct remote_state *rs = get_remote_state ();
9873 char *endbuf = rs->buf + get_remote_packet_size ();
9874 char *p;
9875 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9876
9877 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9878 return 1;
9879
9880 /* Make sure the remote is pointing at the right process, if
9881 necessary. */
9882 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9883 set_general_process ();
9884
9885 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9886 p = strchr (rs->buf, '\0');
9887 addr = remote_address_masked (addr);
9888 p += hexnumstr (p, (ULONGEST) addr);
9889 xsnprintf (p, endbuf - p, ",%x", len);
9890
9891 putpkt (rs->buf);
9892 getpkt (&rs->buf, &rs->buf_size, 0);
9893
9894 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9895 {
9896 case PACKET_ERROR:
9897 return -1;
9898 case PACKET_UNKNOWN:
9899 return 1;
9900 case PACKET_OK:
9901 return 0;
9902 }
9903 internal_error (__FILE__, __LINE__,
9904 _("remote_insert_watchpoint: reached end of function"));
9905 }
9906
9907 static int
9908 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9909 CORE_ADDR start, int length)
9910 {
9911 CORE_ADDR diff = remote_address_masked (addr - start);
9912
9913 return diff < length;
9914 }
9915
9916
9917 static int
9918 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9919 enum target_hw_bp_type type, struct expression *cond)
9920 {
9921 struct remote_state *rs = get_remote_state ();
9922 char *endbuf = rs->buf + get_remote_packet_size ();
9923 char *p;
9924 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9925
9926 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9927 return -1;
9928
9929 /* Make sure the remote is pointing at the right process, if
9930 necessary. */
9931 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9932 set_general_process ();
9933
9934 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9935 p = strchr (rs->buf, '\0');
9936 addr = remote_address_masked (addr);
9937 p += hexnumstr (p, (ULONGEST) addr);
9938 xsnprintf (p, endbuf - p, ",%x", len);
9939 putpkt (rs->buf);
9940 getpkt (&rs->buf, &rs->buf_size, 0);
9941
9942 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9943 {
9944 case PACKET_ERROR:
9945 case PACKET_UNKNOWN:
9946 return -1;
9947 case PACKET_OK:
9948 return 0;
9949 }
9950 internal_error (__FILE__, __LINE__,
9951 _("remote_remove_watchpoint: reached end of function"));
9952 }
9953
9954
9955 int remote_hw_watchpoint_limit = -1;
9956 int remote_hw_watchpoint_length_limit = -1;
9957 int remote_hw_breakpoint_limit = -1;
9958
9959 static int
9960 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9961 CORE_ADDR addr, int len)
9962 {
9963 if (remote_hw_watchpoint_length_limit == 0)
9964 return 0;
9965 else if (remote_hw_watchpoint_length_limit < 0)
9966 return 1;
9967 else if (len <= remote_hw_watchpoint_length_limit)
9968 return 1;
9969 else
9970 return 0;
9971 }
9972
9973 static int
9974 remote_check_watch_resources (struct target_ops *self,
9975 enum bptype type, int cnt, int ot)
9976 {
9977 if (type == bp_hardware_breakpoint)
9978 {
9979 if (remote_hw_breakpoint_limit == 0)
9980 return 0;
9981 else if (remote_hw_breakpoint_limit < 0)
9982 return 1;
9983 else if (cnt <= remote_hw_breakpoint_limit)
9984 return 1;
9985 }
9986 else
9987 {
9988 if (remote_hw_watchpoint_limit == 0)
9989 return 0;
9990 else if (remote_hw_watchpoint_limit < 0)
9991 return 1;
9992 else if (ot)
9993 return -1;
9994 else if (cnt <= remote_hw_watchpoint_limit)
9995 return 1;
9996 }
9997 return -1;
9998 }
9999
10000 /* The to_stopped_by_sw_breakpoint method of target remote. */
10001
10002 static int
10003 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10004 {
10005 struct thread_info *thread = inferior_thread ();
10006
10007 return (thread->priv != NULL
10008 && (get_remote_thread_info (thread)->stop_reason
10009 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10010 }
10011
10012 /* The to_supports_stopped_by_sw_breakpoint method of target
10013 remote. */
10014
10015 static int
10016 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10017 {
10018 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10019 }
10020
10021 /* The to_stopped_by_hw_breakpoint method of target remote. */
10022
10023 static int
10024 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10025 {
10026 struct thread_info *thread = inferior_thread ();
10027
10028 return (thread->priv != NULL
10029 && (get_remote_thread_info (thread)->stop_reason
10030 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10031 }
10032
10033 /* The to_supports_stopped_by_hw_breakpoint method of target
10034 remote. */
10035
10036 static int
10037 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10038 {
10039 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10040 }
10041
10042 static int
10043 remote_stopped_by_watchpoint (struct target_ops *ops)
10044 {
10045 struct thread_info *thread = inferior_thread ();
10046
10047 return (thread->priv != NULL
10048 && (get_remote_thread_info (thread)->stop_reason
10049 == TARGET_STOPPED_BY_WATCHPOINT));
10050 }
10051
10052 static int
10053 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10054 {
10055 struct thread_info *thread = inferior_thread ();
10056
10057 if (thread->priv != NULL
10058 && (get_remote_thread_info (thread)->stop_reason
10059 == TARGET_STOPPED_BY_WATCHPOINT))
10060 {
10061 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10062 return 1;
10063 }
10064
10065 return 0;
10066 }
10067
10068
10069 static int
10070 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10071 struct bp_target_info *bp_tgt)
10072 {
10073 CORE_ADDR addr = bp_tgt->reqstd_address;
10074 struct remote_state *rs;
10075 char *p, *endbuf;
10076 char *message;
10077
10078 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10079 return -1;
10080
10081 /* Make sure the remote is pointing at the right process, if
10082 necessary. */
10083 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10084 set_general_process ();
10085
10086 rs = get_remote_state ();
10087 p = rs->buf;
10088 endbuf = rs->buf + get_remote_packet_size ();
10089
10090 *(p++) = 'Z';
10091 *(p++) = '1';
10092 *(p++) = ',';
10093
10094 addr = remote_address_masked (addr);
10095 p += hexnumstr (p, (ULONGEST) addr);
10096 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10097
10098 if (remote_supports_cond_breakpoints (self))
10099 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10100
10101 if (remote_can_run_breakpoint_commands (self))
10102 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10103
10104 putpkt (rs->buf);
10105 getpkt (&rs->buf, &rs->buf_size, 0);
10106
10107 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10108 {
10109 case PACKET_ERROR:
10110 if (rs->buf[1] == '.')
10111 {
10112 message = strchr (rs->buf + 2, '.');
10113 if (message)
10114 error (_("Remote failure reply: %s"), message + 1);
10115 }
10116 return -1;
10117 case PACKET_UNKNOWN:
10118 return -1;
10119 case PACKET_OK:
10120 return 0;
10121 }
10122 internal_error (__FILE__, __LINE__,
10123 _("remote_insert_hw_breakpoint: reached end of function"));
10124 }
10125
10126
10127 static int
10128 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10129 struct bp_target_info *bp_tgt)
10130 {
10131 CORE_ADDR addr;
10132 struct remote_state *rs = get_remote_state ();
10133 char *p = rs->buf;
10134 char *endbuf = rs->buf + get_remote_packet_size ();
10135
10136 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10137 return -1;
10138
10139 /* Make sure the remote is pointing at the right process, if
10140 necessary. */
10141 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10142 set_general_process ();
10143
10144 *(p++) = 'z';
10145 *(p++) = '1';
10146 *(p++) = ',';
10147
10148 addr = remote_address_masked (bp_tgt->placed_address);
10149 p += hexnumstr (p, (ULONGEST) addr);
10150 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10151
10152 putpkt (rs->buf);
10153 getpkt (&rs->buf, &rs->buf_size, 0);
10154
10155 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10156 {
10157 case PACKET_ERROR:
10158 case PACKET_UNKNOWN:
10159 return -1;
10160 case PACKET_OK:
10161 return 0;
10162 }
10163 internal_error (__FILE__, __LINE__,
10164 _("remote_remove_hw_breakpoint: reached end of function"));
10165 }
10166
10167 /* Verify memory using the "qCRC:" request. */
10168
10169 static int
10170 remote_verify_memory (struct target_ops *ops,
10171 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10172 {
10173 struct remote_state *rs = get_remote_state ();
10174 unsigned long host_crc, target_crc;
10175 char *tmp;
10176
10177 /* It doesn't make sense to use qCRC if the remote target is
10178 connected but not running. */
10179 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10180 {
10181 enum packet_result result;
10182
10183 /* Make sure the remote is pointing at the right process. */
10184 set_general_process ();
10185
10186 /* FIXME: assumes lma can fit into long. */
10187 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10188 (long) lma, (long) size);
10189 putpkt (rs->buf);
10190
10191 /* Be clever; compute the host_crc before waiting for target
10192 reply. */
10193 host_crc = xcrc32 (data, size, 0xffffffff);
10194
10195 getpkt (&rs->buf, &rs->buf_size, 0);
10196
10197 result = packet_ok (rs->buf,
10198 &remote_protocol_packets[PACKET_qCRC]);
10199 if (result == PACKET_ERROR)
10200 return -1;
10201 else if (result == PACKET_OK)
10202 {
10203 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10204 target_crc = target_crc * 16 + fromhex (*tmp);
10205
10206 return (host_crc == target_crc);
10207 }
10208 }
10209
10210 return simple_verify_memory (ops, data, lma, size);
10211 }
10212
10213 /* compare-sections command
10214
10215 With no arguments, compares each loadable section in the exec bfd
10216 with the same memory range on the target, and reports mismatches.
10217 Useful for verifying the image on the target against the exec file. */
10218
10219 static void
10220 compare_sections_command (const char *args, int from_tty)
10221 {
10222 asection *s;
10223 const char *sectname;
10224 bfd_size_type size;
10225 bfd_vma lma;
10226 int matched = 0;
10227 int mismatched = 0;
10228 int res;
10229 int read_only = 0;
10230
10231 if (!exec_bfd)
10232 error (_("command cannot be used without an exec file"));
10233
10234 /* Make sure the remote is pointing at the right process. */
10235 set_general_process ();
10236
10237 if (args != NULL && strcmp (args, "-r") == 0)
10238 {
10239 read_only = 1;
10240 args = NULL;
10241 }
10242
10243 for (s = exec_bfd->sections; s; s = s->next)
10244 {
10245 if (!(s->flags & SEC_LOAD))
10246 continue; /* Skip non-loadable section. */
10247
10248 if (read_only && (s->flags & SEC_READONLY) == 0)
10249 continue; /* Skip writeable sections */
10250
10251 size = bfd_get_section_size (s);
10252 if (size == 0)
10253 continue; /* Skip zero-length section. */
10254
10255 sectname = bfd_get_section_name (exec_bfd, s);
10256 if (args && strcmp (args, sectname) != 0)
10257 continue; /* Not the section selected by user. */
10258
10259 matched = 1; /* Do this section. */
10260 lma = s->lma;
10261
10262 gdb::byte_vector sectdata (size);
10263 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10264
10265 res = target_verify_memory (sectdata.data (), lma, size);
10266
10267 if (res == -1)
10268 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10269 paddress (target_gdbarch (), lma),
10270 paddress (target_gdbarch (), lma + size));
10271
10272 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10273 paddress (target_gdbarch (), lma),
10274 paddress (target_gdbarch (), lma + size));
10275 if (res)
10276 printf_filtered ("matched.\n");
10277 else
10278 {
10279 printf_filtered ("MIS-MATCHED!\n");
10280 mismatched++;
10281 }
10282 }
10283 if (mismatched > 0)
10284 warning (_("One or more sections of the target image does not match\n\
10285 the loaded file\n"));
10286 if (args && !matched)
10287 printf_filtered (_("No loaded section named '%s'.\n"), args);
10288 }
10289
10290 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10291 into remote target. The number of bytes written to the remote
10292 target is returned, or -1 for error. */
10293
10294 static enum target_xfer_status
10295 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10296 const char *annex, const gdb_byte *writebuf,
10297 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10298 struct packet_config *packet)
10299 {
10300 int i, buf_len;
10301 ULONGEST n;
10302 struct remote_state *rs = get_remote_state ();
10303 int max_size = get_memory_write_packet_size ();
10304
10305 if (packet_config_support (packet) == PACKET_DISABLE)
10306 return TARGET_XFER_E_IO;
10307
10308 /* Insert header. */
10309 i = snprintf (rs->buf, max_size,
10310 "qXfer:%s:write:%s:%s:",
10311 object_name, annex ? annex : "",
10312 phex_nz (offset, sizeof offset));
10313 max_size -= (i + 1);
10314
10315 /* Escape as much data as fits into rs->buf. */
10316 buf_len = remote_escape_output
10317 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10318
10319 if (putpkt_binary (rs->buf, i + buf_len) < 0
10320 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10321 || packet_ok (rs->buf, packet) != PACKET_OK)
10322 return TARGET_XFER_E_IO;
10323
10324 unpack_varlen_hex (rs->buf, &n);
10325
10326 *xfered_len = n;
10327 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10328 }
10329
10330 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10331 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10332 number of bytes read is returned, or 0 for EOF, or -1 for error.
10333 The number of bytes read may be less than LEN without indicating an
10334 EOF. PACKET is checked and updated to indicate whether the remote
10335 target supports this object. */
10336
10337 static enum target_xfer_status
10338 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10339 const char *annex,
10340 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10341 ULONGEST *xfered_len,
10342 struct packet_config *packet)
10343 {
10344 struct remote_state *rs = get_remote_state ();
10345 LONGEST i, n, packet_len;
10346
10347 if (packet_config_support (packet) == PACKET_DISABLE)
10348 return TARGET_XFER_E_IO;
10349
10350 /* Check whether we've cached an end-of-object packet that matches
10351 this request. */
10352 if (rs->finished_object)
10353 {
10354 if (strcmp (object_name, rs->finished_object) == 0
10355 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10356 && offset == rs->finished_offset)
10357 return TARGET_XFER_EOF;
10358
10359
10360 /* Otherwise, we're now reading something different. Discard
10361 the cache. */
10362 xfree (rs->finished_object);
10363 xfree (rs->finished_annex);
10364 rs->finished_object = NULL;
10365 rs->finished_annex = NULL;
10366 }
10367
10368 /* Request only enough to fit in a single packet. The actual data
10369 may not, since we don't know how much of it will need to be escaped;
10370 the target is free to respond with slightly less data. We subtract
10371 five to account for the response type and the protocol frame. */
10372 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10373 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10374 object_name, annex ? annex : "",
10375 phex_nz (offset, sizeof offset),
10376 phex_nz (n, sizeof n));
10377 i = putpkt (rs->buf);
10378 if (i < 0)
10379 return TARGET_XFER_E_IO;
10380
10381 rs->buf[0] = '\0';
10382 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10383 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10384 return TARGET_XFER_E_IO;
10385
10386 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10387 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10388
10389 /* 'm' means there is (or at least might be) more data after this
10390 batch. That does not make sense unless there's at least one byte
10391 of data in this reply. */
10392 if (rs->buf[0] == 'm' && packet_len == 1)
10393 error (_("Remote qXfer reply contained no data."));
10394
10395 /* Got some data. */
10396 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10397 packet_len - 1, readbuf, n);
10398
10399 /* 'l' is an EOF marker, possibly including a final block of data,
10400 or possibly empty. If we have the final block of a non-empty
10401 object, record this fact to bypass a subsequent partial read. */
10402 if (rs->buf[0] == 'l' && offset + i > 0)
10403 {
10404 rs->finished_object = xstrdup (object_name);
10405 rs->finished_annex = xstrdup (annex ? annex : "");
10406 rs->finished_offset = offset + i;
10407 }
10408
10409 if (i == 0)
10410 return TARGET_XFER_EOF;
10411 else
10412 {
10413 *xfered_len = i;
10414 return TARGET_XFER_OK;
10415 }
10416 }
10417
10418 static enum target_xfer_status
10419 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10420 const char *annex, gdb_byte *readbuf,
10421 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10422 ULONGEST *xfered_len)
10423 {
10424 struct remote_state *rs;
10425 int i;
10426 char *p2;
10427 char query_type;
10428 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10429
10430 set_remote_traceframe ();
10431 set_general_thread (inferior_ptid);
10432
10433 rs = get_remote_state ();
10434
10435 /* Handle memory using the standard memory routines. */
10436 if (object == TARGET_OBJECT_MEMORY)
10437 {
10438 /* If the remote target is connected but not running, we should
10439 pass this request down to a lower stratum (e.g. the executable
10440 file). */
10441 if (!target_has_execution)
10442 return TARGET_XFER_EOF;
10443
10444 if (writebuf != NULL)
10445 return remote_write_bytes (offset, writebuf, len, unit_size,
10446 xfered_len);
10447 else
10448 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10449 xfered_len);
10450 }
10451
10452 /* Handle SPU memory using qxfer packets. */
10453 if (object == TARGET_OBJECT_SPU)
10454 {
10455 if (readbuf)
10456 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10457 xfered_len, &remote_protocol_packets
10458 [PACKET_qXfer_spu_read]);
10459 else
10460 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10461 xfered_len, &remote_protocol_packets
10462 [PACKET_qXfer_spu_write]);
10463 }
10464
10465 /* Handle extra signal info using qxfer packets. */
10466 if (object == TARGET_OBJECT_SIGNAL_INFO)
10467 {
10468 if (readbuf)
10469 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10470 xfered_len, &remote_protocol_packets
10471 [PACKET_qXfer_siginfo_read]);
10472 else
10473 return remote_write_qxfer (ops, "siginfo", annex,
10474 writebuf, offset, len, xfered_len,
10475 &remote_protocol_packets
10476 [PACKET_qXfer_siginfo_write]);
10477 }
10478
10479 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10480 {
10481 if (readbuf)
10482 return remote_read_qxfer (ops, "statictrace", annex,
10483 readbuf, offset, len, xfered_len,
10484 &remote_protocol_packets
10485 [PACKET_qXfer_statictrace_read]);
10486 else
10487 return TARGET_XFER_E_IO;
10488 }
10489
10490 /* Only handle flash writes. */
10491 if (writebuf != NULL)
10492 {
10493 switch (object)
10494 {
10495 case TARGET_OBJECT_FLASH:
10496 return remote_flash_write (ops, offset, len, xfered_len,
10497 writebuf);
10498
10499 default:
10500 return TARGET_XFER_E_IO;
10501 }
10502 }
10503
10504 /* Map pre-existing objects onto letters. DO NOT do this for new
10505 objects!!! Instead specify new query packets. */
10506 switch (object)
10507 {
10508 case TARGET_OBJECT_AVR:
10509 query_type = 'R';
10510 break;
10511
10512 case TARGET_OBJECT_AUXV:
10513 gdb_assert (annex == NULL);
10514 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10515 xfered_len,
10516 &remote_protocol_packets[PACKET_qXfer_auxv]);
10517
10518 case TARGET_OBJECT_AVAILABLE_FEATURES:
10519 return remote_read_qxfer
10520 (ops, "features", annex, readbuf, offset, len, xfered_len,
10521 &remote_protocol_packets[PACKET_qXfer_features]);
10522
10523 case TARGET_OBJECT_LIBRARIES:
10524 return remote_read_qxfer
10525 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10526 &remote_protocol_packets[PACKET_qXfer_libraries]);
10527
10528 case TARGET_OBJECT_LIBRARIES_SVR4:
10529 return remote_read_qxfer
10530 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10531 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10532
10533 case TARGET_OBJECT_MEMORY_MAP:
10534 gdb_assert (annex == NULL);
10535 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10536 xfered_len,
10537 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10538
10539 case TARGET_OBJECT_OSDATA:
10540 /* Should only get here if we're connected. */
10541 gdb_assert (rs->remote_desc);
10542 return remote_read_qxfer
10543 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10544 &remote_protocol_packets[PACKET_qXfer_osdata]);
10545
10546 case TARGET_OBJECT_THREADS:
10547 gdb_assert (annex == NULL);
10548 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10549 xfered_len,
10550 &remote_protocol_packets[PACKET_qXfer_threads]);
10551
10552 case TARGET_OBJECT_TRACEFRAME_INFO:
10553 gdb_assert (annex == NULL);
10554 return remote_read_qxfer
10555 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10556 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10557
10558 case TARGET_OBJECT_FDPIC:
10559 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10560 xfered_len,
10561 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10562
10563 case TARGET_OBJECT_OPENVMS_UIB:
10564 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10565 xfered_len,
10566 &remote_protocol_packets[PACKET_qXfer_uib]);
10567
10568 case TARGET_OBJECT_BTRACE:
10569 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10570 xfered_len,
10571 &remote_protocol_packets[PACKET_qXfer_btrace]);
10572
10573 case TARGET_OBJECT_BTRACE_CONF:
10574 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10575 len, xfered_len,
10576 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10577
10578 case TARGET_OBJECT_EXEC_FILE:
10579 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10580 len, xfered_len,
10581 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10582
10583 default:
10584 return TARGET_XFER_E_IO;
10585 }
10586
10587 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10588 large enough let the caller deal with it. */
10589 if (len < get_remote_packet_size ())
10590 return TARGET_XFER_E_IO;
10591 len = get_remote_packet_size ();
10592
10593 /* Except for querying the minimum buffer size, target must be open. */
10594 if (!rs->remote_desc)
10595 error (_("remote query is only available after target open"));
10596
10597 gdb_assert (annex != NULL);
10598 gdb_assert (readbuf != NULL);
10599
10600 p2 = rs->buf;
10601 *p2++ = 'q';
10602 *p2++ = query_type;
10603
10604 /* We used one buffer char for the remote protocol q command and
10605 another for the query type. As the remote protocol encapsulation
10606 uses 4 chars plus one extra in case we are debugging
10607 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10608 string. */
10609 i = 0;
10610 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10611 {
10612 /* Bad caller may have sent forbidden characters. */
10613 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10614 *p2++ = annex[i];
10615 i++;
10616 }
10617 *p2 = '\0';
10618 gdb_assert (annex[i] == '\0');
10619
10620 i = putpkt (rs->buf);
10621 if (i < 0)
10622 return TARGET_XFER_E_IO;
10623
10624 getpkt (&rs->buf, &rs->buf_size, 0);
10625 strcpy ((char *) readbuf, rs->buf);
10626
10627 *xfered_len = strlen ((char *) readbuf);
10628 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10629 }
10630
10631 /* Implementation of to_get_memory_xfer_limit. */
10632
10633 static ULONGEST
10634 remote_get_memory_xfer_limit (struct target_ops *ops)
10635 {
10636 return get_memory_write_packet_size ();
10637 }
10638
10639 static int
10640 remote_search_memory (struct target_ops* ops,
10641 CORE_ADDR start_addr, ULONGEST search_space_len,
10642 const gdb_byte *pattern, ULONGEST pattern_len,
10643 CORE_ADDR *found_addrp)
10644 {
10645 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10646 struct remote_state *rs = get_remote_state ();
10647 int max_size = get_memory_write_packet_size ();
10648 struct packet_config *packet =
10649 &remote_protocol_packets[PACKET_qSearch_memory];
10650 /* Number of packet bytes used to encode the pattern;
10651 this could be more than PATTERN_LEN due to escape characters. */
10652 int escaped_pattern_len;
10653 /* Amount of pattern that was encodable in the packet. */
10654 int used_pattern_len;
10655 int i;
10656 int found;
10657 ULONGEST found_addr;
10658
10659 /* Don't go to the target if we don't have to. This is done before
10660 checking packet_config_support to avoid the possibility that a
10661 success for this edge case means the facility works in
10662 general. */
10663 if (pattern_len > search_space_len)
10664 return 0;
10665 if (pattern_len == 0)
10666 {
10667 *found_addrp = start_addr;
10668 return 1;
10669 }
10670
10671 /* If we already know the packet isn't supported, fall back to the simple
10672 way of searching memory. */
10673
10674 if (packet_config_support (packet) == PACKET_DISABLE)
10675 {
10676 /* Target doesn't provided special support, fall back and use the
10677 standard support (copy memory and do the search here). */
10678 return simple_search_memory (ops, start_addr, search_space_len,
10679 pattern, pattern_len, found_addrp);
10680 }
10681
10682 /* Make sure the remote is pointing at the right process. */
10683 set_general_process ();
10684
10685 /* Insert header. */
10686 i = snprintf (rs->buf, max_size,
10687 "qSearch:memory:%s;%s;",
10688 phex_nz (start_addr, addr_size),
10689 phex_nz (search_space_len, sizeof (search_space_len)));
10690 max_size -= (i + 1);
10691
10692 /* Escape as much data as fits into rs->buf. */
10693 escaped_pattern_len =
10694 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10695 &used_pattern_len, max_size);
10696
10697 /* Bail if the pattern is too large. */
10698 if (used_pattern_len != pattern_len)
10699 error (_("Pattern is too large to transmit to remote target."));
10700
10701 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10702 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10703 || packet_ok (rs->buf, packet) != PACKET_OK)
10704 {
10705 /* The request may not have worked because the command is not
10706 supported. If so, fall back to the simple way. */
10707 if (packet_config_support (packet) == PACKET_DISABLE)
10708 {
10709 return simple_search_memory (ops, start_addr, search_space_len,
10710 pattern, pattern_len, found_addrp);
10711 }
10712 return -1;
10713 }
10714
10715 if (rs->buf[0] == '0')
10716 found = 0;
10717 else if (rs->buf[0] == '1')
10718 {
10719 found = 1;
10720 if (rs->buf[1] != ',')
10721 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10722 unpack_varlen_hex (rs->buf + 2, &found_addr);
10723 *found_addrp = found_addr;
10724 }
10725 else
10726 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10727
10728 return found;
10729 }
10730
10731 static void
10732 remote_rcmd (struct target_ops *self, const char *command,
10733 struct ui_file *outbuf)
10734 {
10735 struct remote_state *rs = get_remote_state ();
10736 char *p = rs->buf;
10737
10738 if (!rs->remote_desc)
10739 error (_("remote rcmd is only available after target open"));
10740
10741 /* Send a NULL command across as an empty command. */
10742 if (command == NULL)
10743 command = "";
10744
10745 /* The query prefix. */
10746 strcpy (rs->buf, "qRcmd,");
10747 p = strchr (rs->buf, '\0');
10748
10749 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10750 > get_remote_packet_size ())
10751 error (_("\"monitor\" command ``%s'' is too long."), command);
10752
10753 /* Encode the actual command. */
10754 bin2hex ((const gdb_byte *) command, p, strlen (command));
10755
10756 if (putpkt (rs->buf) < 0)
10757 error (_("Communication problem with target."));
10758
10759 /* get/display the response */
10760 while (1)
10761 {
10762 char *buf;
10763
10764 /* XXX - see also remote_get_noisy_reply(). */
10765 QUIT; /* Allow user to bail out with ^C. */
10766 rs->buf[0] = '\0';
10767 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10768 {
10769 /* Timeout. Continue to (try to) read responses.
10770 This is better than stopping with an error, assuming the stub
10771 is still executing the (long) monitor command.
10772 If needed, the user can interrupt gdb using C-c, obtaining
10773 an effect similar to stop on timeout. */
10774 continue;
10775 }
10776 buf = rs->buf;
10777 if (buf[0] == '\0')
10778 error (_("Target does not support this command."));
10779 if (buf[0] == 'O' && buf[1] != 'K')
10780 {
10781 remote_console_output (buf + 1); /* 'O' message from stub. */
10782 continue;
10783 }
10784 if (strcmp (buf, "OK") == 0)
10785 break;
10786 if (strlen (buf) == 3 && buf[0] == 'E'
10787 && isdigit (buf[1]) && isdigit (buf[2]))
10788 {
10789 error (_("Protocol error with Rcmd"));
10790 }
10791 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10792 {
10793 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10794
10795 fputc_unfiltered (c, outbuf);
10796 }
10797 break;
10798 }
10799 }
10800
10801 static std::vector<mem_region>
10802 remote_memory_map (struct target_ops *ops)
10803 {
10804 std::vector<mem_region> result;
10805 gdb::optional<gdb::char_vector> text
10806 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10807
10808 if (text)
10809 result = parse_memory_map (text->data ());
10810
10811 return result;
10812 }
10813
10814 static void
10815 packet_command (const char *args, int from_tty)
10816 {
10817 struct remote_state *rs = get_remote_state ();
10818
10819 if (!rs->remote_desc)
10820 error (_("command can only be used with remote target"));
10821
10822 if (!args)
10823 error (_("remote-packet command requires packet text as argument"));
10824
10825 puts_filtered ("sending: ");
10826 print_packet (args);
10827 puts_filtered ("\n");
10828 putpkt (args);
10829
10830 getpkt (&rs->buf, &rs->buf_size, 0);
10831 puts_filtered ("received: ");
10832 print_packet (rs->buf);
10833 puts_filtered ("\n");
10834 }
10835
10836 #if 0
10837 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10838
10839 static void display_thread_info (struct gdb_ext_thread_info *info);
10840
10841 static void threadset_test_cmd (char *cmd, int tty);
10842
10843 static void threadalive_test (char *cmd, int tty);
10844
10845 static void threadlist_test_cmd (char *cmd, int tty);
10846
10847 int get_and_display_threadinfo (threadref *ref);
10848
10849 static void threadinfo_test_cmd (char *cmd, int tty);
10850
10851 static int thread_display_step (threadref *ref, void *context);
10852
10853 static void threadlist_update_test_cmd (char *cmd, int tty);
10854
10855 static void init_remote_threadtests (void);
10856
10857 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10858
10859 static void
10860 threadset_test_cmd (const char *cmd, int tty)
10861 {
10862 int sample_thread = SAMPLE_THREAD;
10863
10864 printf_filtered (_("Remote threadset test\n"));
10865 set_general_thread (sample_thread);
10866 }
10867
10868
10869 static void
10870 threadalive_test (const char *cmd, int tty)
10871 {
10872 int sample_thread = SAMPLE_THREAD;
10873 int pid = ptid_get_pid (inferior_ptid);
10874 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10875
10876 if (remote_thread_alive (ptid))
10877 printf_filtered ("PASS: Thread alive test\n");
10878 else
10879 printf_filtered ("FAIL: Thread alive test\n");
10880 }
10881
10882 void output_threadid (char *title, threadref *ref);
10883
10884 void
10885 output_threadid (char *title, threadref *ref)
10886 {
10887 char hexid[20];
10888
10889 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10890 hexid[16] = 0;
10891 printf_filtered ("%s %s\n", title, (&hexid[0]));
10892 }
10893
10894 static void
10895 threadlist_test_cmd (const char *cmd, int tty)
10896 {
10897 int startflag = 1;
10898 threadref nextthread;
10899 int done, result_count;
10900 threadref threadlist[3];
10901
10902 printf_filtered ("Remote Threadlist test\n");
10903 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10904 &result_count, &threadlist[0]))
10905 printf_filtered ("FAIL: threadlist test\n");
10906 else
10907 {
10908 threadref *scan = threadlist;
10909 threadref *limit = scan + result_count;
10910
10911 while (scan < limit)
10912 output_threadid (" thread ", scan++);
10913 }
10914 }
10915
10916 void
10917 display_thread_info (struct gdb_ext_thread_info *info)
10918 {
10919 output_threadid ("Threadid: ", &info->threadid);
10920 printf_filtered ("Name: %s\n ", info->shortname);
10921 printf_filtered ("State: %s\n", info->display);
10922 printf_filtered ("other: %s\n\n", info->more_display);
10923 }
10924
10925 int
10926 get_and_display_threadinfo (threadref *ref)
10927 {
10928 int result;
10929 int set;
10930 struct gdb_ext_thread_info threadinfo;
10931
10932 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10933 | TAG_MOREDISPLAY | TAG_DISPLAY;
10934 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10935 display_thread_info (&threadinfo);
10936 return result;
10937 }
10938
10939 static void
10940 threadinfo_test_cmd (const char *cmd, int tty)
10941 {
10942 int athread = SAMPLE_THREAD;
10943 threadref thread;
10944 int set;
10945
10946 int_to_threadref (&thread, athread);
10947 printf_filtered ("Remote Threadinfo test\n");
10948 if (!get_and_display_threadinfo (&thread))
10949 printf_filtered ("FAIL cannot get thread info\n");
10950 }
10951
10952 static int
10953 thread_display_step (threadref *ref, void *context)
10954 {
10955 /* output_threadid(" threadstep ",ref); *//* simple test */
10956 return get_and_display_threadinfo (ref);
10957 }
10958
10959 static void
10960 threadlist_update_test_cmd (const char *cmd, int tty)
10961 {
10962 printf_filtered ("Remote Threadlist update test\n");
10963 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10964 }
10965
10966 static void
10967 init_remote_threadtests (void)
10968 {
10969 add_com ("tlist", class_obscure, threadlist_test_cmd,
10970 _("Fetch and print the remote list of "
10971 "thread identifiers, one pkt only"));
10972 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10973 _("Fetch and display info about one thread"));
10974 add_com ("tset", class_obscure, threadset_test_cmd,
10975 _("Test setting to a different thread"));
10976 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10977 _("Iterate through updating all remote thread info"));
10978 add_com ("talive", class_obscure, threadalive_test,
10979 _(" Remote thread alive test "));
10980 }
10981
10982 #endif /* 0 */
10983
10984 /* Convert a thread ID to a string. Returns the string in a static
10985 buffer. */
10986
10987 static const char *
10988 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10989 {
10990 static char buf[64];
10991 struct remote_state *rs = get_remote_state ();
10992
10993 if (ptid_equal (ptid, null_ptid))
10994 return normal_pid_to_str (ptid);
10995 else if (ptid_is_pid (ptid))
10996 {
10997 /* Printing an inferior target id. */
10998
10999 /* When multi-process extensions are off, there's no way in the
11000 remote protocol to know the remote process id, if there's any
11001 at all. There's one exception --- when we're connected with
11002 target extended-remote, and we manually attached to a process
11003 with "attach PID". We don't record anywhere a flag that
11004 allows us to distinguish that case from the case of
11005 connecting with extended-remote and the stub already being
11006 attached to a process, and reporting yes to qAttached, hence
11007 no smart special casing here. */
11008 if (!remote_multi_process_p (rs))
11009 {
11010 xsnprintf (buf, sizeof buf, "Remote target");
11011 return buf;
11012 }
11013
11014 return normal_pid_to_str (ptid);
11015 }
11016 else
11017 {
11018 if (ptid_equal (magic_null_ptid, ptid))
11019 xsnprintf (buf, sizeof buf, "Thread <main>");
11020 else if (remote_multi_process_p (rs))
11021 if (ptid_get_lwp (ptid) == 0)
11022 return normal_pid_to_str (ptid);
11023 else
11024 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11025 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11026 else
11027 xsnprintf (buf, sizeof buf, "Thread %ld",
11028 ptid_get_lwp (ptid));
11029 return buf;
11030 }
11031 }
11032
11033 /* Get the address of the thread local variable in OBJFILE which is
11034 stored at OFFSET within the thread local storage for thread PTID. */
11035
11036 static CORE_ADDR
11037 remote_get_thread_local_address (struct target_ops *ops,
11038 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11039 {
11040 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11041 {
11042 struct remote_state *rs = get_remote_state ();
11043 char *p = rs->buf;
11044 char *endp = rs->buf + get_remote_packet_size ();
11045 enum packet_result result;
11046
11047 strcpy (p, "qGetTLSAddr:");
11048 p += strlen (p);
11049 p = write_ptid (p, endp, ptid);
11050 *p++ = ',';
11051 p += hexnumstr (p, offset);
11052 *p++ = ',';
11053 p += hexnumstr (p, lm);
11054 *p++ = '\0';
11055
11056 putpkt (rs->buf);
11057 getpkt (&rs->buf, &rs->buf_size, 0);
11058 result = packet_ok (rs->buf,
11059 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11060 if (result == PACKET_OK)
11061 {
11062 ULONGEST result;
11063
11064 unpack_varlen_hex (rs->buf, &result);
11065 return result;
11066 }
11067 else if (result == PACKET_UNKNOWN)
11068 throw_error (TLS_GENERIC_ERROR,
11069 _("Remote target doesn't support qGetTLSAddr packet"));
11070 else
11071 throw_error (TLS_GENERIC_ERROR,
11072 _("Remote target failed to process qGetTLSAddr request"));
11073 }
11074 else
11075 throw_error (TLS_GENERIC_ERROR,
11076 _("TLS not supported or disabled on this target"));
11077 /* Not reached. */
11078 return 0;
11079 }
11080
11081 /* Provide thread local base, i.e. Thread Information Block address.
11082 Returns 1 if ptid is found and thread_local_base is non zero. */
11083
11084 static int
11085 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11086 {
11087 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11088 {
11089 struct remote_state *rs = get_remote_state ();
11090 char *p = rs->buf;
11091 char *endp = rs->buf + get_remote_packet_size ();
11092 enum packet_result result;
11093
11094 strcpy (p, "qGetTIBAddr:");
11095 p += strlen (p);
11096 p = write_ptid (p, endp, ptid);
11097 *p++ = '\0';
11098
11099 putpkt (rs->buf);
11100 getpkt (&rs->buf, &rs->buf_size, 0);
11101 result = packet_ok (rs->buf,
11102 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11103 if (result == PACKET_OK)
11104 {
11105 ULONGEST result;
11106
11107 unpack_varlen_hex (rs->buf, &result);
11108 if (addr)
11109 *addr = (CORE_ADDR) result;
11110 return 1;
11111 }
11112 else if (result == PACKET_UNKNOWN)
11113 error (_("Remote target doesn't support qGetTIBAddr packet"));
11114 else
11115 error (_("Remote target failed to process qGetTIBAddr request"));
11116 }
11117 else
11118 error (_("qGetTIBAddr not supported or disabled on this target"));
11119 /* Not reached. */
11120 return 0;
11121 }
11122
11123 /* Support for inferring a target description based on the current
11124 architecture and the size of a 'g' packet. While the 'g' packet
11125 can have any size (since optional registers can be left off the
11126 end), some sizes are easily recognizable given knowledge of the
11127 approximate architecture. */
11128
11129 struct remote_g_packet_guess
11130 {
11131 int bytes;
11132 const struct target_desc *tdesc;
11133 };
11134 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11135 DEF_VEC_O(remote_g_packet_guess_s);
11136
11137 struct remote_g_packet_data
11138 {
11139 VEC(remote_g_packet_guess_s) *guesses;
11140 };
11141
11142 static struct gdbarch_data *remote_g_packet_data_handle;
11143
11144 static void *
11145 remote_g_packet_data_init (struct obstack *obstack)
11146 {
11147 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11148 }
11149
11150 void
11151 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11152 const struct target_desc *tdesc)
11153 {
11154 struct remote_g_packet_data *data
11155 = ((struct remote_g_packet_data *)
11156 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11157 struct remote_g_packet_guess new_guess, *guess;
11158 int ix;
11159
11160 gdb_assert (tdesc != NULL);
11161
11162 for (ix = 0;
11163 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11164 ix++)
11165 if (guess->bytes == bytes)
11166 internal_error (__FILE__, __LINE__,
11167 _("Duplicate g packet description added for size %d"),
11168 bytes);
11169
11170 new_guess.bytes = bytes;
11171 new_guess.tdesc = tdesc;
11172 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11173 }
11174
11175 /* Return 1 if remote_read_description would do anything on this target
11176 and architecture, 0 otherwise. */
11177
11178 static int
11179 remote_read_description_p (struct target_ops *target)
11180 {
11181 struct remote_g_packet_data *data
11182 = ((struct remote_g_packet_data *)
11183 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11184
11185 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11186 return 1;
11187
11188 return 0;
11189 }
11190
11191 static const struct target_desc *
11192 remote_read_description (struct target_ops *target)
11193 {
11194 struct remote_g_packet_data *data
11195 = ((struct remote_g_packet_data *)
11196 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11197
11198 /* Do not try this during initial connection, when we do not know
11199 whether there is a running but stopped thread. */
11200 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11201 return target->beneath->to_read_description (target->beneath);
11202
11203 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11204 {
11205 struct remote_g_packet_guess *guess;
11206 int ix;
11207 int bytes = send_g_packet ();
11208
11209 for (ix = 0;
11210 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11211 ix++)
11212 if (guess->bytes == bytes)
11213 return guess->tdesc;
11214
11215 /* We discard the g packet. A minor optimization would be to
11216 hold on to it, and fill the register cache once we have selected
11217 an architecture, but it's too tricky to do safely. */
11218 }
11219
11220 return target->beneath->to_read_description (target->beneath);
11221 }
11222
11223 /* Remote file transfer support. This is host-initiated I/O, not
11224 target-initiated; for target-initiated, see remote-fileio.c. */
11225
11226 /* If *LEFT is at least the length of STRING, copy STRING to
11227 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11228 decrease *LEFT. Otherwise raise an error. */
11229
11230 static void
11231 remote_buffer_add_string (char **buffer, int *left, const char *string)
11232 {
11233 int len = strlen (string);
11234
11235 if (len > *left)
11236 error (_("Packet too long for target."));
11237
11238 memcpy (*buffer, string, len);
11239 *buffer += len;
11240 *left -= len;
11241
11242 /* NUL-terminate the buffer as a convenience, if there is
11243 room. */
11244 if (*left)
11245 **buffer = '\0';
11246 }
11247
11248 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11249 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11250 decrease *LEFT. Otherwise raise an error. */
11251
11252 static void
11253 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11254 int len)
11255 {
11256 if (2 * len > *left)
11257 error (_("Packet too long for target."));
11258
11259 bin2hex (bytes, *buffer, len);
11260 *buffer += 2 * len;
11261 *left -= 2 * len;
11262
11263 /* NUL-terminate the buffer as a convenience, if there is
11264 room. */
11265 if (*left)
11266 **buffer = '\0';
11267 }
11268
11269 /* If *LEFT is large enough, convert VALUE to hex and add it to
11270 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11271 decrease *LEFT. Otherwise raise an error. */
11272
11273 static void
11274 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11275 {
11276 int len = hexnumlen (value);
11277
11278 if (len > *left)
11279 error (_("Packet too long for target."));
11280
11281 hexnumstr (*buffer, value);
11282 *buffer += len;
11283 *left -= len;
11284
11285 /* NUL-terminate the buffer as a convenience, if there is
11286 room. */
11287 if (*left)
11288 **buffer = '\0';
11289 }
11290
11291 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11292 value, *REMOTE_ERRNO to the remote error number or zero if none
11293 was included, and *ATTACHMENT to point to the start of the annex
11294 if any. The length of the packet isn't needed here; there may
11295 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11296
11297 Return 0 if the packet could be parsed, -1 if it could not. If
11298 -1 is returned, the other variables may not be initialized. */
11299
11300 static int
11301 remote_hostio_parse_result (char *buffer, int *retcode,
11302 int *remote_errno, char **attachment)
11303 {
11304 char *p, *p2;
11305
11306 *remote_errno = 0;
11307 *attachment = NULL;
11308
11309 if (buffer[0] != 'F')
11310 return -1;
11311
11312 errno = 0;
11313 *retcode = strtol (&buffer[1], &p, 16);
11314 if (errno != 0 || p == &buffer[1])
11315 return -1;
11316
11317 /* Check for ",errno". */
11318 if (*p == ',')
11319 {
11320 errno = 0;
11321 *remote_errno = strtol (p + 1, &p2, 16);
11322 if (errno != 0 || p + 1 == p2)
11323 return -1;
11324 p = p2;
11325 }
11326
11327 /* Check for ";attachment". If there is no attachment, the
11328 packet should end here. */
11329 if (*p == ';')
11330 {
11331 *attachment = p + 1;
11332 return 0;
11333 }
11334 else if (*p == '\0')
11335 return 0;
11336 else
11337 return -1;
11338 }
11339
11340 /* Send a prepared I/O packet to the target and read its response.
11341 The prepared packet is in the global RS->BUF before this function
11342 is called, and the answer is there when we return.
11343
11344 COMMAND_BYTES is the length of the request to send, which may include
11345 binary data. WHICH_PACKET is the packet configuration to check
11346 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11347 is set to the error number and -1 is returned. Otherwise the value
11348 returned by the function is returned.
11349
11350 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11351 attachment is expected; an error will be reported if there's a
11352 mismatch. If one is found, *ATTACHMENT will be set to point into
11353 the packet buffer and *ATTACHMENT_LEN will be set to the
11354 attachment's length. */
11355
11356 static int
11357 remote_hostio_send_command (int command_bytes, int which_packet,
11358 int *remote_errno, char **attachment,
11359 int *attachment_len)
11360 {
11361 struct remote_state *rs = get_remote_state ();
11362 int ret, bytes_read;
11363 char *attachment_tmp;
11364
11365 if (packet_support (which_packet) == PACKET_DISABLE)
11366 {
11367 *remote_errno = FILEIO_ENOSYS;
11368 return -1;
11369 }
11370
11371 putpkt_binary (rs->buf, command_bytes);
11372 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11373
11374 /* If it timed out, something is wrong. Don't try to parse the
11375 buffer. */
11376 if (bytes_read < 0)
11377 {
11378 *remote_errno = FILEIO_EINVAL;
11379 return -1;
11380 }
11381
11382 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11383 {
11384 case PACKET_ERROR:
11385 *remote_errno = FILEIO_EINVAL;
11386 return -1;
11387 case PACKET_UNKNOWN:
11388 *remote_errno = FILEIO_ENOSYS;
11389 return -1;
11390 case PACKET_OK:
11391 break;
11392 }
11393
11394 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11395 &attachment_tmp))
11396 {
11397 *remote_errno = FILEIO_EINVAL;
11398 return -1;
11399 }
11400
11401 /* Make sure we saw an attachment if and only if we expected one. */
11402 if ((attachment_tmp == NULL && attachment != NULL)
11403 || (attachment_tmp != NULL && attachment == NULL))
11404 {
11405 *remote_errno = FILEIO_EINVAL;
11406 return -1;
11407 }
11408
11409 /* If an attachment was found, it must point into the packet buffer;
11410 work out how many bytes there were. */
11411 if (attachment_tmp != NULL)
11412 {
11413 *attachment = attachment_tmp;
11414 *attachment_len = bytes_read - (*attachment - rs->buf);
11415 }
11416
11417 return ret;
11418 }
11419
11420 /* Invalidate the readahead cache. */
11421
11422 static void
11423 readahead_cache_invalidate (void)
11424 {
11425 struct remote_state *rs = get_remote_state ();
11426
11427 rs->readahead_cache.fd = -1;
11428 }
11429
11430 /* Invalidate the readahead cache if it is holding data for FD. */
11431
11432 static void
11433 readahead_cache_invalidate_fd (int fd)
11434 {
11435 struct remote_state *rs = get_remote_state ();
11436
11437 if (rs->readahead_cache.fd == fd)
11438 rs->readahead_cache.fd = -1;
11439 }
11440
11441 /* Set the filesystem remote_hostio functions that take FILENAME
11442 arguments will use. Return 0 on success, or -1 if an error
11443 occurs (and set *REMOTE_ERRNO). */
11444
11445 static int
11446 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11447 {
11448 struct remote_state *rs = get_remote_state ();
11449 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11450 char *p = rs->buf;
11451 int left = get_remote_packet_size () - 1;
11452 char arg[9];
11453 int ret;
11454
11455 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11456 return 0;
11457
11458 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11459 return 0;
11460
11461 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11462
11463 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11464 remote_buffer_add_string (&p, &left, arg);
11465
11466 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11467 remote_errno, NULL, NULL);
11468
11469 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11470 return 0;
11471
11472 if (ret == 0)
11473 rs->fs_pid = required_pid;
11474
11475 return ret;
11476 }
11477
11478 /* Implementation of to_fileio_open. */
11479
11480 static int
11481 remote_hostio_open (struct target_ops *self,
11482 struct inferior *inf, const char *filename,
11483 int flags, int mode, int warn_if_slow,
11484 int *remote_errno)
11485 {
11486 struct remote_state *rs = get_remote_state ();
11487 char *p = rs->buf;
11488 int left = get_remote_packet_size () - 1;
11489
11490 if (warn_if_slow)
11491 {
11492 static int warning_issued = 0;
11493
11494 printf_unfiltered (_("Reading %s from remote target...\n"),
11495 filename);
11496
11497 if (!warning_issued)
11498 {
11499 warning (_("File transfers from remote targets can be slow."
11500 " Use \"set sysroot\" to access files locally"
11501 " instead."));
11502 warning_issued = 1;
11503 }
11504 }
11505
11506 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11507 return -1;
11508
11509 remote_buffer_add_string (&p, &left, "vFile:open:");
11510
11511 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11512 strlen (filename));
11513 remote_buffer_add_string (&p, &left, ",");
11514
11515 remote_buffer_add_int (&p, &left, flags);
11516 remote_buffer_add_string (&p, &left, ",");
11517
11518 remote_buffer_add_int (&p, &left, mode);
11519
11520 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11521 remote_errno, NULL, NULL);
11522 }
11523
11524 /* Implementation of to_fileio_pwrite. */
11525
11526 static int
11527 remote_hostio_pwrite (struct target_ops *self,
11528 int fd, const gdb_byte *write_buf, int len,
11529 ULONGEST offset, int *remote_errno)
11530 {
11531 struct remote_state *rs = get_remote_state ();
11532 char *p = rs->buf;
11533 int left = get_remote_packet_size ();
11534 int out_len;
11535
11536 readahead_cache_invalidate_fd (fd);
11537
11538 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11539
11540 remote_buffer_add_int (&p, &left, fd);
11541 remote_buffer_add_string (&p, &left, ",");
11542
11543 remote_buffer_add_int (&p, &left, offset);
11544 remote_buffer_add_string (&p, &left, ",");
11545
11546 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11547 get_remote_packet_size () - (p - rs->buf));
11548
11549 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11550 remote_errno, NULL, NULL);
11551 }
11552
11553 /* Helper for the implementation of to_fileio_pread. Read the file
11554 from the remote side with vFile:pread. */
11555
11556 static int
11557 remote_hostio_pread_vFile (struct target_ops *self,
11558 int fd, gdb_byte *read_buf, int len,
11559 ULONGEST offset, int *remote_errno)
11560 {
11561 struct remote_state *rs = get_remote_state ();
11562 char *p = rs->buf;
11563 char *attachment;
11564 int left = get_remote_packet_size ();
11565 int ret, attachment_len;
11566 int read_len;
11567
11568 remote_buffer_add_string (&p, &left, "vFile:pread:");
11569
11570 remote_buffer_add_int (&p, &left, fd);
11571 remote_buffer_add_string (&p, &left, ",");
11572
11573 remote_buffer_add_int (&p, &left, len);
11574 remote_buffer_add_string (&p, &left, ",");
11575
11576 remote_buffer_add_int (&p, &left, offset);
11577
11578 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11579 remote_errno, &attachment,
11580 &attachment_len);
11581
11582 if (ret < 0)
11583 return ret;
11584
11585 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11586 read_buf, len);
11587 if (read_len != ret)
11588 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11589
11590 return ret;
11591 }
11592
11593 /* Serve pread from the readahead cache. Returns number of bytes
11594 read, or 0 if the request can't be served from the cache. */
11595
11596 static int
11597 remote_hostio_pread_from_cache (struct remote_state *rs,
11598 int fd, gdb_byte *read_buf, size_t len,
11599 ULONGEST offset)
11600 {
11601 struct readahead_cache *cache = &rs->readahead_cache;
11602
11603 if (cache->fd == fd
11604 && cache->offset <= offset
11605 && offset < cache->offset + cache->bufsize)
11606 {
11607 ULONGEST max = cache->offset + cache->bufsize;
11608
11609 if (offset + len > max)
11610 len = max - offset;
11611
11612 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11613 return len;
11614 }
11615
11616 return 0;
11617 }
11618
11619 /* Implementation of to_fileio_pread. */
11620
11621 static int
11622 remote_hostio_pread (struct target_ops *self,
11623 int fd, gdb_byte *read_buf, int len,
11624 ULONGEST offset, int *remote_errno)
11625 {
11626 int ret;
11627 struct remote_state *rs = get_remote_state ();
11628 struct readahead_cache *cache = &rs->readahead_cache;
11629
11630 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11631 if (ret > 0)
11632 {
11633 cache->hit_count++;
11634
11635 if (remote_debug)
11636 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11637 pulongest (cache->hit_count));
11638 return ret;
11639 }
11640
11641 cache->miss_count++;
11642 if (remote_debug)
11643 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11644 pulongest (cache->miss_count));
11645
11646 cache->fd = fd;
11647 cache->offset = offset;
11648 cache->bufsize = get_remote_packet_size ();
11649 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11650
11651 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11652 cache->offset, remote_errno);
11653 if (ret <= 0)
11654 {
11655 readahead_cache_invalidate_fd (fd);
11656 return ret;
11657 }
11658
11659 cache->bufsize = ret;
11660 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11661 }
11662
11663 /* Implementation of to_fileio_close. */
11664
11665 static int
11666 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11667 {
11668 struct remote_state *rs = get_remote_state ();
11669 char *p = rs->buf;
11670 int left = get_remote_packet_size () - 1;
11671
11672 readahead_cache_invalidate_fd (fd);
11673
11674 remote_buffer_add_string (&p, &left, "vFile:close:");
11675
11676 remote_buffer_add_int (&p, &left, fd);
11677
11678 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11679 remote_errno, NULL, NULL);
11680 }
11681
11682 /* Implementation of to_fileio_unlink. */
11683
11684 static int
11685 remote_hostio_unlink (struct target_ops *self,
11686 struct inferior *inf, const char *filename,
11687 int *remote_errno)
11688 {
11689 struct remote_state *rs = get_remote_state ();
11690 char *p = rs->buf;
11691 int left = get_remote_packet_size () - 1;
11692
11693 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11694 return -1;
11695
11696 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11697
11698 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11699 strlen (filename));
11700
11701 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11702 remote_errno, NULL, NULL);
11703 }
11704
11705 /* Implementation of to_fileio_readlink. */
11706
11707 static gdb::optional<std::string>
11708 remote_hostio_readlink (struct target_ops *self,
11709 struct inferior *inf, const char *filename,
11710 int *remote_errno)
11711 {
11712 struct remote_state *rs = get_remote_state ();
11713 char *p = rs->buf;
11714 char *attachment;
11715 int left = get_remote_packet_size ();
11716 int len, attachment_len;
11717 int read_len;
11718
11719 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11720 return {};
11721
11722 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11723
11724 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11725 strlen (filename));
11726
11727 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11728 remote_errno, &attachment,
11729 &attachment_len);
11730
11731 if (len < 0)
11732 return {};
11733
11734 std::string ret (len, '\0');
11735
11736 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11737 (gdb_byte *) &ret[0], len);
11738 if (read_len != len)
11739 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11740
11741 return ret;
11742 }
11743
11744 /* Implementation of to_fileio_fstat. */
11745
11746 static int
11747 remote_hostio_fstat (struct target_ops *self,
11748 int fd, struct stat *st,
11749 int *remote_errno)
11750 {
11751 struct remote_state *rs = get_remote_state ();
11752 char *p = rs->buf;
11753 int left = get_remote_packet_size ();
11754 int attachment_len, ret;
11755 char *attachment;
11756 struct fio_stat fst;
11757 int read_len;
11758
11759 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11760
11761 remote_buffer_add_int (&p, &left, fd);
11762
11763 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11764 remote_errno, &attachment,
11765 &attachment_len);
11766 if (ret < 0)
11767 {
11768 if (*remote_errno != FILEIO_ENOSYS)
11769 return ret;
11770
11771 /* Strictly we should return -1, ENOSYS here, but when
11772 "set sysroot remote:" was implemented in August 2008
11773 BFD's need for a stat function was sidestepped with
11774 this hack. This was not remedied until March 2015
11775 so we retain the previous behavior to avoid breaking
11776 compatibility.
11777
11778 Note that the memset is a March 2015 addition; older
11779 GDBs set st_size *and nothing else* so the structure
11780 would have garbage in all other fields. This might
11781 break something but retaining the previous behavior
11782 here would be just too wrong. */
11783
11784 memset (st, 0, sizeof (struct stat));
11785 st->st_size = INT_MAX;
11786 return 0;
11787 }
11788
11789 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11790 (gdb_byte *) &fst, sizeof (fst));
11791
11792 if (read_len != ret)
11793 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11794
11795 if (read_len != sizeof (fst))
11796 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11797 read_len, (int) sizeof (fst));
11798
11799 remote_fileio_to_host_stat (&fst, st);
11800
11801 return 0;
11802 }
11803
11804 /* Implementation of to_filesystem_is_local. */
11805
11806 static int
11807 remote_filesystem_is_local (struct target_ops *self)
11808 {
11809 /* Valgrind GDB presents itself as a remote target but works
11810 on the local filesystem: it does not implement remote get
11811 and users are not expected to set a sysroot. To handle
11812 this case we treat the remote filesystem as local if the
11813 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11814 does not support vFile:open. */
11815 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11816 {
11817 enum packet_support ps = packet_support (PACKET_vFile_open);
11818
11819 if (ps == PACKET_SUPPORT_UNKNOWN)
11820 {
11821 int fd, remote_errno;
11822
11823 /* Try opening a file to probe support. The supplied
11824 filename is irrelevant, we only care about whether
11825 the stub recognizes the packet or not. */
11826 fd = remote_hostio_open (self, NULL, "just probing",
11827 FILEIO_O_RDONLY, 0700, 0,
11828 &remote_errno);
11829
11830 if (fd >= 0)
11831 remote_hostio_close (self, fd, &remote_errno);
11832
11833 ps = packet_support (PACKET_vFile_open);
11834 }
11835
11836 if (ps == PACKET_DISABLE)
11837 {
11838 static int warning_issued = 0;
11839
11840 if (!warning_issued)
11841 {
11842 warning (_("remote target does not support file"
11843 " transfer, attempting to access files"
11844 " from local filesystem."));
11845 warning_issued = 1;
11846 }
11847
11848 return 1;
11849 }
11850 }
11851
11852 return 0;
11853 }
11854
11855 static int
11856 remote_fileio_errno_to_host (int errnum)
11857 {
11858 switch (errnum)
11859 {
11860 case FILEIO_EPERM:
11861 return EPERM;
11862 case FILEIO_ENOENT:
11863 return ENOENT;
11864 case FILEIO_EINTR:
11865 return EINTR;
11866 case FILEIO_EIO:
11867 return EIO;
11868 case FILEIO_EBADF:
11869 return EBADF;
11870 case FILEIO_EACCES:
11871 return EACCES;
11872 case FILEIO_EFAULT:
11873 return EFAULT;
11874 case FILEIO_EBUSY:
11875 return EBUSY;
11876 case FILEIO_EEXIST:
11877 return EEXIST;
11878 case FILEIO_ENODEV:
11879 return ENODEV;
11880 case FILEIO_ENOTDIR:
11881 return ENOTDIR;
11882 case FILEIO_EISDIR:
11883 return EISDIR;
11884 case FILEIO_EINVAL:
11885 return EINVAL;
11886 case FILEIO_ENFILE:
11887 return ENFILE;
11888 case FILEIO_EMFILE:
11889 return EMFILE;
11890 case FILEIO_EFBIG:
11891 return EFBIG;
11892 case FILEIO_ENOSPC:
11893 return ENOSPC;
11894 case FILEIO_ESPIPE:
11895 return ESPIPE;
11896 case FILEIO_EROFS:
11897 return EROFS;
11898 case FILEIO_ENOSYS:
11899 return ENOSYS;
11900 case FILEIO_ENAMETOOLONG:
11901 return ENAMETOOLONG;
11902 }
11903 return -1;
11904 }
11905
11906 static char *
11907 remote_hostio_error (int errnum)
11908 {
11909 int host_error = remote_fileio_errno_to_host (errnum);
11910
11911 if (host_error == -1)
11912 error (_("Unknown remote I/O error %d"), errnum);
11913 else
11914 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11915 }
11916
11917 static void
11918 remote_hostio_close_cleanup (void *opaque)
11919 {
11920 int fd = *(int *) opaque;
11921 int remote_errno;
11922
11923 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11924 }
11925
11926 void
11927 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11928 {
11929 struct cleanup *back_to, *close_cleanup;
11930 int retcode, fd, remote_errno, bytes, io_size;
11931 gdb_byte *buffer;
11932 int bytes_in_buffer;
11933 int saw_eof;
11934 ULONGEST offset;
11935 struct remote_state *rs = get_remote_state ();
11936
11937 if (!rs->remote_desc)
11938 error (_("command can only be used with remote target"));
11939
11940 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11941 if (file == NULL)
11942 perror_with_name (local_file);
11943
11944 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11945 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11946 | FILEIO_O_TRUNC),
11947 0700, 0, &remote_errno);
11948 if (fd == -1)
11949 remote_hostio_error (remote_errno);
11950
11951 /* Send up to this many bytes at once. They won't all fit in the
11952 remote packet limit, so we'll transfer slightly fewer. */
11953 io_size = get_remote_packet_size ();
11954 buffer = (gdb_byte *) xmalloc (io_size);
11955 back_to = make_cleanup (xfree, buffer);
11956
11957 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11958
11959 bytes_in_buffer = 0;
11960 saw_eof = 0;
11961 offset = 0;
11962 while (bytes_in_buffer || !saw_eof)
11963 {
11964 if (!saw_eof)
11965 {
11966 bytes = fread (buffer + bytes_in_buffer, 1,
11967 io_size - bytes_in_buffer,
11968 file.get ());
11969 if (bytes == 0)
11970 {
11971 if (ferror (file.get ()))
11972 error (_("Error reading %s."), local_file);
11973 else
11974 {
11975 /* EOF. Unless there is something still in the
11976 buffer from the last iteration, we are done. */
11977 saw_eof = 1;
11978 if (bytes_in_buffer == 0)
11979 break;
11980 }
11981 }
11982 }
11983 else
11984 bytes = 0;
11985
11986 bytes += bytes_in_buffer;
11987 bytes_in_buffer = 0;
11988
11989 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11990 fd, buffer, bytes,
11991 offset, &remote_errno);
11992
11993 if (retcode < 0)
11994 remote_hostio_error (remote_errno);
11995 else if (retcode == 0)
11996 error (_("Remote write of %d bytes returned 0!"), bytes);
11997 else if (retcode < bytes)
11998 {
11999 /* Short write. Save the rest of the read data for the next
12000 write. */
12001 bytes_in_buffer = bytes - retcode;
12002 memmove (buffer, buffer + retcode, bytes_in_buffer);
12003 }
12004
12005 offset += retcode;
12006 }
12007
12008 discard_cleanups (close_cleanup);
12009 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12010 remote_hostio_error (remote_errno);
12011
12012 if (from_tty)
12013 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12014 do_cleanups (back_to);
12015 }
12016
12017 void
12018 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12019 {
12020 struct cleanup *back_to, *close_cleanup;
12021 int fd, remote_errno, bytes, io_size;
12022 gdb_byte *buffer;
12023 ULONGEST offset;
12024 struct remote_state *rs = get_remote_state ();
12025
12026 if (!rs->remote_desc)
12027 error (_("command can only be used with remote target"));
12028
12029 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12030 remote_file, FILEIO_O_RDONLY, 0, 0,
12031 &remote_errno);
12032 if (fd == -1)
12033 remote_hostio_error (remote_errno);
12034
12035 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12036 if (file == NULL)
12037 perror_with_name (local_file);
12038
12039 /* Send up to this many bytes at once. They won't all fit in the
12040 remote packet limit, so we'll transfer slightly fewer. */
12041 io_size = get_remote_packet_size ();
12042 buffer = (gdb_byte *) xmalloc (io_size);
12043 back_to = make_cleanup (xfree, buffer);
12044
12045 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12046
12047 offset = 0;
12048 while (1)
12049 {
12050 bytes = remote_hostio_pread (find_target_at (process_stratum),
12051 fd, buffer, io_size, offset, &remote_errno);
12052 if (bytes == 0)
12053 /* Success, but no bytes, means end-of-file. */
12054 break;
12055 if (bytes == -1)
12056 remote_hostio_error (remote_errno);
12057
12058 offset += bytes;
12059
12060 bytes = fwrite (buffer, 1, bytes, file.get ());
12061 if (bytes == 0)
12062 perror_with_name (local_file);
12063 }
12064
12065 discard_cleanups (close_cleanup);
12066 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12067 remote_hostio_error (remote_errno);
12068
12069 if (from_tty)
12070 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12071 do_cleanups (back_to);
12072 }
12073
12074 void
12075 remote_file_delete (const char *remote_file, int from_tty)
12076 {
12077 int retcode, remote_errno;
12078 struct remote_state *rs = get_remote_state ();
12079
12080 if (!rs->remote_desc)
12081 error (_("command can only be used with remote target"));
12082
12083 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12084 NULL, remote_file, &remote_errno);
12085 if (retcode == -1)
12086 remote_hostio_error (remote_errno);
12087
12088 if (from_tty)
12089 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12090 }
12091
12092 static void
12093 remote_put_command (const char *args, int from_tty)
12094 {
12095 if (args == NULL)
12096 error_no_arg (_("file to put"));
12097
12098 gdb_argv argv (args);
12099 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12100 error (_("Invalid parameters to remote put"));
12101
12102 remote_file_put (argv[0], argv[1], from_tty);
12103 }
12104
12105 static void
12106 remote_get_command (const char *args, int from_tty)
12107 {
12108 if (args == NULL)
12109 error_no_arg (_("file to get"));
12110
12111 gdb_argv argv (args);
12112 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12113 error (_("Invalid parameters to remote get"));
12114
12115 remote_file_get (argv[0], argv[1], from_tty);
12116 }
12117
12118 static void
12119 remote_delete_command (const char *args, int from_tty)
12120 {
12121 if (args == NULL)
12122 error_no_arg (_("file to delete"));
12123
12124 gdb_argv argv (args);
12125 if (argv[0] == NULL || argv[1] != NULL)
12126 error (_("Invalid parameters to remote delete"));
12127
12128 remote_file_delete (argv[0], from_tty);
12129 }
12130
12131 static void
12132 remote_command (const char *args, int from_tty)
12133 {
12134 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12135 }
12136
12137 static int
12138 remote_can_execute_reverse (struct target_ops *self)
12139 {
12140 if (packet_support (PACKET_bs) == PACKET_ENABLE
12141 || packet_support (PACKET_bc) == PACKET_ENABLE)
12142 return 1;
12143 else
12144 return 0;
12145 }
12146
12147 static int
12148 remote_supports_non_stop (struct target_ops *self)
12149 {
12150 return 1;
12151 }
12152
12153 static int
12154 remote_supports_disable_randomization (struct target_ops *self)
12155 {
12156 /* Only supported in extended mode. */
12157 return 0;
12158 }
12159
12160 static int
12161 remote_supports_multi_process (struct target_ops *self)
12162 {
12163 struct remote_state *rs = get_remote_state ();
12164
12165 return remote_multi_process_p (rs);
12166 }
12167
12168 static int
12169 remote_supports_cond_tracepoints (void)
12170 {
12171 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12172 }
12173
12174 static int
12175 remote_supports_cond_breakpoints (struct target_ops *self)
12176 {
12177 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12178 }
12179
12180 static int
12181 remote_supports_fast_tracepoints (void)
12182 {
12183 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12184 }
12185
12186 static int
12187 remote_supports_static_tracepoints (void)
12188 {
12189 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12190 }
12191
12192 static int
12193 remote_supports_install_in_trace (void)
12194 {
12195 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12196 }
12197
12198 static int
12199 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12200 {
12201 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12202 == PACKET_ENABLE);
12203 }
12204
12205 static int
12206 remote_supports_string_tracing (struct target_ops *self)
12207 {
12208 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12209 }
12210
12211 static int
12212 remote_can_run_breakpoint_commands (struct target_ops *self)
12213 {
12214 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12215 }
12216
12217 static void
12218 remote_trace_init (struct target_ops *self)
12219 {
12220 struct remote_state *rs = get_remote_state ();
12221
12222 putpkt ("QTinit");
12223 remote_get_noisy_reply ();
12224 if (strcmp (rs->buf, "OK") != 0)
12225 error (_("Target does not support this command."));
12226 }
12227
12228 /* Recursive routine to walk through command list including loops, and
12229 download packets for each command. */
12230
12231 static void
12232 remote_download_command_source (int num, ULONGEST addr,
12233 struct command_line *cmds)
12234 {
12235 struct remote_state *rs = get_remote_state ();
12236 struct command_line *cmd;
12237
12238 for (cmd = cmds; cmd; cmd = cmd->next)
12239 {
12240 QUIT; /* Allow user to bail out with ^C. */
12241 strcpy (rs->buf, "QTDPsrc:");
12242 encode_source_string (num, addr, "cmd", cmd->line,
12243 rs->buf + strlen (rs->buf),
12244 rs->buf_size - strlen (rs->buf));
12245 putpkt (rs->buf);
12246 remote_get_noisy_reply ();
12247 if (strcmp (rs->buf, "OK"))
12248 warning (_("Target does not support source download."));
12249
12250 if (cmd->control_type == while_control
12251 || cmd->control_type == while_stepping_control)
12252 {
12253 remote_download_command_source (num, addr, *cmd->body_list);
12254
12255 QUIT; /* Allow user to bail out with ^C. */
12256 strcpy (rs->buf, "QTDPsrc:");
12257 encode_source_string (num, addr, "cmd", "end",
12258 rs->buf + strlen (rs->buf),
12259 rs->buf_size - strlen (rs->buf));
12260 putpkt (rs->buf);
12261 remote_get_noisy_reply ();
12262 if (strcmp (rs->buf, "OK"))
12263 warning (_("Target does not support source download."));
12264 }
12265 }
12266 }
12267
12268 static void
12269 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12270 {
12271 #define BUF_SIZE 2048
12272
12273 CORE_ADDR tpaddr;
12274 char addrbuf[40];
12275 char buf[BUF_SIZE];
12276 std::vector<std::string> tdp_actions;
12277 std::vector<std::string> stepping_actions;
12278 char *pkt;
12279 struct breakpoint *b = loc->owner;
12280 struct tracepoint *t = (struct tracepoint *) b;
12281 struct remote_state *rs = get_remote_state ();
12282
12283 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12284
12285 tpaddr = loc->address;
12286 sprintf_vma (addrbuf, tpaddr);
12287 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12288 addrbuf, /* address */
12289 (b->enable_state == bp_enabled ? 'E' : 'D'),
12290 t->step_count, t->pass_count);
12291 /* Fast tracepoints are mostly handled by the target, but we can
12292 tell the target how big of an instruction block should be moved
12293 around. */
12294 if (b->type == bp_fast_tracepoint)
12295 {
12296 /* Only test for support at download time; we may not know
12297 target capabilities at definition time. */
12298 if (remote_supports_fast_tracepoints ())
12299 {
12300 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12301 NULL))
12302 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12303 gdb_insn_length (loc->gdbarch, tpaddr));
12304 else
12305 /* If it passed validation at definition but fails now,
12306 something is very wrong. */
12307 internal_error (__FILE__, __LINE__,
12308 _("Fast tracepoint not "
12309 "valid during download"));
12310 }
12311 else
12312 /* Fast tracepoints are functionally identical to regular
12313 tracepoints, so don't take lack of support as a reason to
12314 give up on the trace run. */
12315 warning (_("Target does not support fast tracepoints, "
12316 "downloading %d as regular tracepoint"), b->number);
12317 }
12318 else if (b->type == bp_static_tracepoint)
12319 {
12320 /* Only test for support at download time; we may not know
12321 target capabilities at definition time. */
12322 if (remote_supports_static_tracepoints ())
12323 {
12324 struct static_tracepoint_marker marker;
12325
12326 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12327 strcat (buf, ":S");
12328 else
12329 error (_("Static tracepoint not valid during download"));
12330 }
12331 else
12332 /* Fast tracepoints are functionally identical to regular
12333 tracepoints, so don't take lack of support as a reason
12334 to give up on the trace run. */
12335 error (_("Target does not support static tracepoints"));
12336 }
12337 /* If the tracepoint has a conditional, make it into an agent
12338 expression and append to the definition. */
12339 if (loc->cond)
12340 {
12341 /* Only test support at download time, we may not know target
12342 capabilities at definition time. */
12343 if (remote_supports_cond_tracepoints ())
12344 {
12345 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12346 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12347 aexpr->len);
12348 pkt = buf + strlen (buf);
12349 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12350 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12351 *pkt = '\0';
12352 }
12353 else
12354 warning (_("Target does not support conditional tracepoints, "
12355 "ignoring tp %d cond"), b->number);
12356 }
12357
12358 if (b->commands || *default_collect)
12359 strcat (buf, "-");
12360 putpkt (buf);
12361 remote_get_noisy_reply ();
12362 if (strcmp (rs->buf, "OK"))
12363 error (_("Target does not support tracepoints."));
12364
12365 /* do_single_steps (t); */
12366 for (auto action_it = tdp_actions.begin ();
12367 action_it != tdp_actions.end (); action_it++)
12368 {
12369 QUIT; /* Allow user to bail out with ^C. */
12370
12371 bool has_more = (action_it != tdp_actions.end ()
12372 || !stepping_actions.empty ());
12373
12374 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12375 b->number, addrbuf, /* address */
12376 action_it->c_str (),
12377 has_more ? '-' : 0);
12378 putpkt (buf);
12379 remote_get_noisy_reply ();
12380 if (strcmp (rs->buf, "OK"))
12381 error (_("Error on target while setting tracepoints."));
12382 }
12383
12384 for (auto action_it = stepping_actions.begin ();
12385 action_it != stepping_actions.end (); action_it++)
12386 {
12387 QUIT; /* Allow user to bail out with ^C. */
12388
12389 bool is_first = action_it == stepping_actions.begin ();
12390 bool has_more = action_it != stepping_actions.end ();
12391
12392 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12393 b->number, addrbuf, /* address */
12394 is_first ? "S" : "",
12395 action_it->c_str (),
12396 has_more ? "-" : "");
12397 putpkt (buf);
12398 remote_get_noisy_reply ();
12399 if (strcmp (rs->buf, "OK"))
12400 error (_("Error on target while setting tracepoints."));
12401 }
12402
12403 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12404 {
12405 if (b->location != NULL)
12406 {
12407 strcpy (buf, "QTDPsrc:");
12408 encode_source_string (b->number, loc->address, "at",
12409 event_location_to_string (b->location.get ()),
12410 buf + strlen (buf), 2048 - strlen (buf));
12411 putpkt (buf);
12412 remote_get_noisy_reply ();
12413 if (strcmp (rs->buf, "OK"))
12414 warning (_("Target does not support source download."));
12415 }
12416 if (b->cond_string)
12417 {
12418 strcpy (buf, "QTDPsrc:");
12419 encode_source_string (b->number, loc->address,
12420 "cond", b->cond_string, buf + strlen (buf),
12421 2048 - strlen (buf));
12422 putpkt (buf);
12423 remote_get_noisy_reply ();
12424 if (strcmp (rs->buf, "OK"))
12425 warning (_("Target does not support source download."));
12426 }
12427 remote_download_command_source (b->number, loc->address,
12428 breakpoint_commands (b));
12429 }
12430 }
12431
12432 static int
12433 remote_can_download_tracepoint (struct target_ops *self)
12434 {
12435 struct remote_state *rs = get_remote_state ();
12436 struct trace_status *ts;
12437 int status;
12438
12439 /* Don't try to install tracepoints until we've relocated our
12440 symbols, and fetched and merged the target's tracepoint list with
12441 ours. */
12442 if (rs->starting_up)
12443 return 0;
12444
12445 ts = current_trace_status ();
12446 status = remote_get_trace_status (self, ts);
12447
12448 if (status == -1 || !ts->running_known || !ts->running)
12449 return 0;
12450
12451 /* If we are in a tracing experiment, but remote stub doesn't support
12452 installing tracepoint in trace, we have to return. */
12453 if (!remote_supports_install_in_trace ())
12454 return 0;
12455
12456 return 1;
12457 }
12458
12459
12460 static void
12461 remote_download_trace_state_variable (struct target_ops *self,
12462 const trace_state_variable &tsv)
12463 {
12464 struct remote_state *rs = get_remote_state ();
12465 char *p;
12466
12467 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12468 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
12469 tsv.builtin);
12470 p = rs->buf + strlen (rs->buf);
12471 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
12472 error (_("Trace state variable name too long for tsv definition packet"));
12473 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
12474 *p++ = '\0';
12475 putpkt (rs->buf);
12476 remote_get_noisy_reply ();
12477 if (*rs->buf == '\0')
12478 error (_("Target does not support this command."));
12479 if (strcmp (rs->buf, "OK") != 0)
12480 error (_("Error on target while downloading trace state variable."));
12481 }
12482
12483 static void
12484 remote_enable_tracepoint (struct target_ops *self,
12485 struct bp_location *location)
12486 {
12487 struct remote_state *rs = get_remote_state ();
12488 char addr_buf[40];
12489
12490 sprintf_vma (addr_buf, location->address);
12491 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12492 location->owner->number, addr_buf);
12493 putpkt (rs->buf);
12494 remote_get_noisy_reply ();
12495 if (*rs->buf == '\0')
12496 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12497 if (strcmp (rs->buf, "OK") != 0)
12498 error (_("Error on target while enabling tracepoint."));
12499 }
12500
12501 static void
12502 remote_disable_tracepoint (struct target_ops *self,
12503 struct bp_location *location)
12504 {
12505 struct remote_state *rs = get_remote_state ();
12506 char addr_buf[40];
12507
12508 sprintf_vma (addr_buf, location->address);
12509 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12510 location->owner->number, addr_buf);
12511 putpkt (rs->buf);
12512 remote_get_noisy_reply ();
12513 if (*rs->buf == '\0')
12514 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12515 if (strcmp (rs->buf, "OK") != 0)
12516 error (_("Error on target while disabling tracepoint."));
12517 }
12518
12519 static void
12520 remote_trace_set_readonly_regions (struct target_ops *self)
12521 {
12522 asection *s;
12523 bfd *abfd = NULL;
12524 bfd_size_type size;
12525 bfd_vma vma;
12526 int anysecs = 0;
12527 int offset = 0;
12528
12529 if (!exec_bfd)
12530 return; /* No information to give. */
12531
12532 struct remote_state *rs = get_remote_state ();
12533
12534 strcpy (rs->buf, "QTro");
12535 offset = strlen (rs->buf);
12536 for (s = exec_bfd->sections; s; s = s->next)
12537 {
12538 char tmp1[40], tmp2[40];
12539 int sec_length;
12540
12541 if ((s->flags & SEC_LOAD) == 0 ||
12542 /* (s->flags & SEC_CODE) == 0 || */
12543 (s->flags & SEC_READONLY) == 0)
12544 continue;
12545
12546 anysecs = 1;
12547 vma = bfd_get_section_vma (abfd, s);
12548 size = bfd_get_section_size (s);
12549 sprintf_vma (tmp1, vma);
12550 sprintf_vma (tmp2, vma + size);
12551 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12552 if (offset + sec_length + 1 > rs->buf_size)
12553 {
12554 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12555 warning (_("\
12556 Too many sections for read-only sections definition packet."));
12557 break;
12558 }
12559 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12560 tmp1, tmp2);
12561 offset += sec_length;
12562 }
12563 if (anysecs)
12564 {
12565 putpkt (rs->buf);
12566 getpkt (&rs->buf, &rs->buf_size, 0);
12567 }
12568 }
12569
12570 static void
12571 remote_trace_start (struct target_ops *self)
12572 {
12573 struct remote_state *rs = get_remote_state ();
12574
12575 putpkt ("QTStart");
12576 remote_get_noisy_reply ();
12577 if (*rs->buf == '\0')
12578 error (_("Target does not support this command."));
12579 if (strcmp (rs->buf, "OK") != 0)
12580 error (_("Bogus reply from target: %s"), rs->buf);
12581 }
12582
12583 static int
12584 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12585 {
12586 /* Initialize it just to avoid a GCC false warning. */
12587 char *p = NULL;
12588 /* FIXME we need to get register block size some other way. */
12589 extern int trace_regblock_size;
12590 enum packet_result result;
12591 struct remote_state *rs = get_remote_state ();
12592
12593 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12594 return -1;
12595
12596 trace_regblock_size
12597 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12598
12599 putpkt ("qTStatus");
12600
12601 TRY
12602 {
12603 p = remote_get_noisy_reply ();
12604 }
12605 CATCH (ex, RETURN_MASK_ERROR)
12606 {
12607 if (ex.error != TARGET_CLOSE_ERROR)
12608 {
12609 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12610 return -1;
12611 }
12612 throw_exception (ex);
12613 }
12614 END_CATCH
12615
12616 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12617
12618 /* If the remote target doesn't do tracing, flag it. */
12619 if (result == PACKET_UNKNOWN)
12620 return -1;
12621
12622 /* We're working with a live target. */
12623 ts->filename = NULL;
12624
12625 if (*p++ != 'T')
12626 error (_("Bogus trace status reply from target: %s"), rs->buf);
12627
12628 /* Function 'parse_trace_status' sets default value of each field of
12629 'ts' at first, so we don't have to do it here. */
12630 parse_trace_status (p, ts);
12631
12632 return ts->running;
12633 }
12634
12635 static void
12636 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12637 struct uploaded_tp *utp)
12638 {
12639 struct remote_state *rs = get_remote_state ();
12640 char *reply;
12641 struct bp_location *loc;
12642 struct tracepoint *tp = (struct tracepoint *) bp;
12643 size_t size = get_remote_packet_size ();
12644
12645 if (tp)
12646 {
12647 tp->hit_count = 0;
12648 tp->traceframe_usage = 0;
12649 for (loc = tp->loc; loc; loc = loc->next)
12650 {
12651 /* If the tracepoint was never downloaded, don't go asking for
12652 any status. */
12653 if (tp->number_on_target == 0)
12654 continue;
12655 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12656 phex_nz (loc->address, 0));
12657 putpkt (rs->buf);
12658 reply = remote_get_noisy_reply ();
12659 if (reply && *reply)
12660 {
12661 if (*reply == 'V')
12662 parse_tracepoint_status (reply + 1, bp, utp);
12663 }
12664 }
12665 }
12666 else if (utp)
12667 {
12668 utp->hit_count = 0;
12669 utp->traceframe_usage = 0;
12670 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12671 phex_nz (utp->addr, 0));
12672 putpkt (rs->buf);
12673 reply = remote_get_noisy_reply ();
12674 if (reply && *reply)
12675 {
12676 if (*reply == 'V')
12677 parse_tracepoint_status (reply + 1, bp, utp);
12678 }
12679 }
12680 }
12681
12682 static void
12683 remote_trace_stop (struct target_ops *self)
12684 {
12685 struct remote_state *rs = get_remote_state ();
12686
12687 putpkt ("QTStop");
12688 remote_get_noisy_reply ();
12689 if (*rs->buf == '\0')
12690 error (_("Target does not support this command."));
12691 if (strcmp (rs->buf, "OK") != 0)
12692 error (_("Bogus reply from target: %s"), rs->buf);
12693 }
12694
12695 static int
12696 remote_trace_find (struct target_ops *self,
12697 enum trace_find_type type, int num,
12698 CORE_ADDR addr1, CORE_ADDR addr2,
12699 int *tpp)
12700 {
12701 struct remote_state *rs = get_remote_state ();
12702 char *endbuf = rs->buf + get_remote_packet_size ();
12703 char *p, *reply;
12704 int target_frameno = -1, target_tracept = -1;
12705
12706 /* Lookups other than by absolute frame number depend on the current
12707 trace selected, so make sure it is correct on the remote end
12708 first. */
12709 if (type != tfind_number)
12710 set_remote_traceframe ();
12711
12712 p = rs->buf;
12713 strcpy (p, "QTFrame:");
12714 p = strchr (p, '\0');
12715 switch (type)
12716 {
12717 case tfind_number:
12718 xsnprintf (p, endbuf - p, "%x", num);
12719 break;
12720 case tfind_pc:
12721 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12722 break;
12723 case tfind_tp:
12724 xsnprintf (p, endbuf - p, "tdp:%x", num);
12725 break;
12726 case tfind_range:
12727 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12728 phex_nz (addr2, 0));
12729 break;
12730 case tfind_outside:
12731 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12732 phex_nz (addr2, 0));
12733 break;
12734 default:
12735 error (_("Unknown trace find type %d"), type);
12736 }
12737
12738 putpkt (rs->buf);
12739 reply = remote_get_noisy_reply ();
12740 if (*reply == '\0')
12741 error (_("Target does not support this command."));
12742
12743 while (reply && *reply)
12744 switch (*reply)
12745 {
12746 case 'F':
12747 p = ++reply;
12748 target_frameno = (int) strtol (p, &reply, 16);
12749 if (reply == p)
12750 error (_("Unable to parse trace frame number"));
12751 /* Don't update our remote traceframe number cache on failure
12752 to select a remote traceframe. */
12753 if (target_frameno == -1)
12754 return -1;
12755 break;
12756 case 'T':
12757 p = ++reply;
12758 target_tracept = (int) strtol (p, &reply, 16);
12759 if (reply == p)
12760 error (_("Unable to parse tracepoint number"));
12761 break;
12762 case 'O': /* "OK"? */
12763 if (reply[1] == 'K' && reply[2] == '\0')
12764 reply += 2;
12765 else
12766 error (_("Bogus reply from target: %s"), reply);
12767 break;
12768 default:
12769 error (_("Bogus reply from target: %s"), reply);
12770 }
12771 if (tpp)
12772 *tpp = target_tracept;
12773
12774 rs->remote_traceframe_number = target_frameno;
12775 return target_frameno;
12776 }
12777
12778 static int
12779 remote_get_trace_state_variable_value (struct target_ops *self,
12780 int tsvnum, LONGEST *val)
12781 {
12782 struct remote_state *rs = get_remote_state ();
12783 char *reply;
12784 ULONGEST uval;
12785
12786 set_remote_traceframe ();
12787
12788 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12789 putpkt (rs->buf);
12790 reply = remote_get_noisy_reply ();
12791 if (reply && *reply)
12792 {
12793 if (*reply == 'V')
12794 {
12795 unpack_varlen_hex (reply + 1, &uval);
12796 *val = (LONGEST) uval;
12797 return 1;
12798 }
12799 }
12800 return 0;
12801 }
12802
12803 static int
12804 remote_save_trace_data (struct target_ops *self, const char *filename)
12805 {
12806 struct remote_state *rs = get_remote_state ();
12807 char *p, *reply;
12808
12809 p = rs->buf;
12810 strcpy (p, "QTSave:");
12811 p += strlen (p);
12812 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12813 error (_("Remote file name too long for trace save packet"));
12814 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12815 *p++ = '\0';
12816 putpkt (rs->buf);
12817 reply = remote_get_noisy_reply ();
12818 if (*reply == '\0')
12819 error (_("Target does not support this command."));
12820 if (strcmp (reply, "OK") != 0)
12821 error (_("Bogus reply from target: %s"), reply);
12822 return 0;
12823 }
12824
12825 /* This is basically a memory transfer, but needs to be its own packet
12826 because we don't know how the target actually organizes its trace
12827 memory, plus we want to be able to ask for as much as possible, but
12828 not be unhappy if we don't get as much as we ask for. */
12829
12830 static LONGEST
12831 remote_get_raw_trace_data (struct target_ops *self,
12832 gdb_byte *buf, ULONGEST offset, LONGEST len)
12833 {
12834 struct remote_state *rs = get_remote_state ();
12835 char *reply;
12836 char *p;
12837 int rslt;
12838
12839 p = rs->buf;
12840 strcpy (p, "qTBuffer:");
12841 p += strlen (p);
12842 p += hexnumstr (p, offset);
12843 *p++ = ',';
12844 p += hexnumstr (p, len);
12845 *p++ = '\0';
12846
12847 putpkt (rs->buf);
12848 reply = remote_get_noisy_reply ();
12849 if (reply && *reply)
12850 {
12851 /* 'l' by itself means we're at the end of the buffer and
12852 there is nothing more to get. */
12853 if (*reply == 'l')
12854 return 0;
12855
12856 /* Convert the reply into binary. Limit the number of bytes to
12857 convert according to our passed-in buffer size, rather than
12858 what was returned in the packet; if the target is
12859 unexpectedly generous and gives us a bigger reply than we
12860 asked for, we don't want to crash. */
12861 rslt = hex2bin (reply, buf, len);
12862 return rslt;
12863 }
12864
12865 /* Something went wrong, flag as an error. */
12866 return -1;
12867 }
12868
12869 static void
12870 remote_set_disconnected_tracing (struct target_ops *self, int val)
12871 {
12872 struct remote_state *rs = get_remote_state ();
12873
12874 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12875 {
12876 char *reply;
12877
12878 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12879 putpkt (rs->buf);
12880 reply = remote_get_noisy_reply ();
12881 if (*reply == '\0')
12882 error (_("Target does not support this command."));
12883 if (strcmp (reply, "OK") != 0)
12884 error (_("Bogus reply from target: %s"), reply);
12885 }
12886 else if (val)
12887 warning (_("Target does not support disconnected tracing."));
12888 }
12889
12890 static int
12891 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12892 {
12893 struct thread_info *info = find_thread_ptid (ptid);
12894
12895 if (info != NULL && info->priv != NULL)
12896 return get_remote_thread_info (info)->core;
12897
12898 return -1;
12899 }
12900
12901 static void
12902 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12903 {
12904 struct remote_state *rs = get_remote_state ();
12905 char *reply;
12906
12907 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12908 putpkt (rs->buf);
12909 reply = remote_get_noisy_reply ();
12910 if (*reply == '\0')
12911 error (_("Target does not support this command."));
12912 if (strcmp (reply, "OK") != 0)
12913 error (_("Bogus reply from target: %s"), reply);
12914 }
12915
12916 static traceframe_info_up
12917 remote_traceframe_info (struct target_ops *self)
12918 {
12919 gdb::optional<gdb::char_vector> text
12920 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12921 NULL);
12922 if (text)
12923 return parse_traceframe_info (text->data ());
12924
12925 return NULL;
12926 }
12927
12928 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12929 instruction on which a fast tracepoint may be placed. Returns -1
12930 if the packet is not supported, and 0 if the minimum instruction
12931 length is unknown. */
12932
12933 static int
12934 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12935 {
12936 struct remote_state *rs = get_remote_state ();
12937 char *reply;
12938
12939 /* If we're not debugging a process yet, the IPA can't be
12940 loaded. */
12941 if (!target_has_execution)
12942 return 0;
12943
12944 /* Make sure the remote is pointing at the right process. */
12945 set_general_process ();
12946
12947 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12948 putpkt (rs->buf);
12949 reply = remote_get_noisy_reply ();
12950 if (*reply == '\0')
12951 return -1;
12952 else
12953 {
12954 ULONGEST min_insn_len;
12955
12956 unpack_varlen_hex (reply, &min_insn_len);
12957
12958 return (int) min_insn_len;
12959 }
12960 }
12961
12962 static void
12963 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12964 {
12965 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12966 {
12967 struct remote_state *rs = get_remote_state ();
12968 char *buf = rs->buf;
12969 char *endbuf = rs->buf + get_remote_packet_size ();
12970 enum packet_result result;
12971
12972 gdb_assert (val >= 0 || val == -1);
12973 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12974 /* Send -1 as literal "-1" to avoid host size dependency. */
12975 if (val < 0)
12976 {
12977 *buf++ = '-';
12978 buf += hexnumstr (buf, (ULONGEST) -val);
12979 }
12980 else
12981 buf += hexnumstr (buf, (ULONGEST) val);
12982
12983 putpkt (rs->buf);
12984 remote_get_noisy_reply ();
12985 result = packet_ok (rs->buf,
12986 &remote_protocol_packets[PACKET_QTBuffer_size]);
12987
12988 if (result != PACKET_OK)
12989 warning (_("Bogus reply from target: %s"), rs->buf);
12990 }
12991 }
12992
12993 static int
12994 remote_set_trace_notes (struct target_ops *self,
12995 const char *user, const char *notes,
12996 const char *stop_notes)
12997 {
12998 struct remote_state *rs = get_remote_state ();
12999 char *reply;
13000 char *buf = rs->buf;
13001 char *endbuf = rs->buf + get_remote_packet_size ();
13002 int nbytes;
13003
13004 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13005 if (user)
13006 {
13007 buf += xsnprintf (buf, endbuf - buf, "user:");
13008 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13009 buf += 2 * nbytes;
13010 *buf++ = ';';
13011 }
13012 if (notes)
13013 {
13014 buf += xsnprintf (buf, endbuf - buf, "notes:");
13015 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13016 buf += 2 * nbytes;
13017 *buf++ = ';';
13018 }
13019 if (stop_notes)
13020 {
13021 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13022 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13023 buf += 2 * nbytes;
13024 *buf++ = ';';
13025 }
13026 /* Ensure the buffer is terminated. */
13027 *buf = '\0';
13028
13029 putpkt (rs->buf);
13030 reply = remote_get_noisy_reply ();
13031 if (*reply == '\0')
13032 return 0;
13033
13034 if (strcmp (reply, "OK") != 0)
13035 error (_("Bogus reply from target: %s"), reply);
13036
13037 return 1;
13038 }
13039
13040 static int
13041 remote_use_agent (struct target_ops *self, int use)
13042 {
13043 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13044 {
13045 struct remote_state *rs = get_remote_state ();
13046
13047 /* If the stub supports QAgent. */
13048 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13049 putpkt (rs->buf);
13050 getpkt (&rs->buf, &rs->buf_size, 0);
13051
13052 if (strcmp (rs->buf, "OK") == 0)
13053 {
13054 use_agent = use;
13055 return 1;
13056 }
13057 }
13058
13059 return 0;
13060 }
13061
13062 static int
13063 remote_can_use_agent (struct target_ops *self)
13064 {
13065 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13066 }
13067
13068 struct btrace_target_info
13069 {
13070 /* The ptid of the traced thread. */
13071 ptid_t ptid;
13072
13073 /* The obtained branch trace configuration. */
13074 struct btrace_config conf;
13075 };
13076
13077 /* Reset our idea of our target's btrace configuration. */
13078
13079 static void
13080 remote_btrace_reset (void)
13081 {
13082 struct remote_state *rs = get_remote_state ();
13083
13084 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13085 }
13086
13087 /* Synchronize the configuration with the target. */
13088
13089 static void
13090 btrace_sync_conf (const struct btrace_config *conf)
13091 {
13092 struct packet_config *packet;
13093 struct remote_state *rs;
13094 char *buf, *pos, *endbuf;
13095
13096 rs = get_remote_state ();
13097 buf = rs->buf;
13098 endbuf = buf + get_remote_packet_size ();
13099
13100 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13101 if (packet_config_support (packet) == PACKET_ENABLE
13102 && conf->bts.size != rs->btrace_config.bts.size)
13103 {
13104 pos = buf;
13105 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13106 conf->bts.size);
13107
13108 putpkt (buf);
13109 getpkt (&buf, &rs->buf_size, 0);
13110
13111 if (packet_ok (buf, packet) == PACKET_ERROR)
13112 {
13113 if (buf[0] == 'E' && buf[1] == '.')
13114 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13115 else
13116 error (_("Failed to configure the BTS buffer size."));
13117 }
13118
13119 rs->btrace_config.bts.size = conf->bts.size;
13120 }
13121
13122 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13123 if (packet_config_support (packet) == PACKET_ENABLE
13124 && conf->pt.size != rs->btrace_config.pt.size)
13125 {
13126 pos = buf;
13127 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13128 conf->pt.size);
13129
13130 putpkt (buf);
13131 getpkt (&buf, &rs->buf_size, 0);
13132
13133 if (packet_ok (buf, packet) == PACKET_ERROR)
13134 {
13135 if (buf[0] == 'E' && buf[1] == '.')
13136 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13137 else
13138 error (_("Failed to configure the trace buffer size."));
13139 }
13140
13141 rs->btrace_config.pt.size = conf->pt.size;
13142 }
13143 }
13144
13145 /* Read the current thread's btrace configuration from the target and
13146 store it into CONF. */
13147
13148 static void
13149 btrace_read_config (struct btrace_config *conf)
13150 {
13151 gdb::optional<gdb::char_vector> xml
13152 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13153 if (xml)
13154 parse_xml_btrace_conf (conf, xml->data ());
13155 }
13156
13157 /* Maybe reopen target btrace. */
13158
13159 static void
13160 remote_btrace_maybe_reopen (void)
13161 {
13162 struct remote_state *rs = get_remote_state ();
13163 struct thread_info *tp;
13164 int btrace_target_pushed = 0;
13165 int warned = 0;
13166
13167 scoped_restore_current_thread restore_thread;
13168
13169 ALL_NON_EXITED_THREADS (tp)
13170 {
13171 set_general_thread (tp->ptid);
13172
13173 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13174 btrace_read_config (&rs->btrace_config);
13175
13176 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13177 continue;
13178
13179 #if !defined (HAVE_LIBIPT)
13180 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13181 {
13182 if (!warned)
13183 {
13184 warned = 1;
13185 warning (_("Target is recording using Intel Processor Trace "
13186 "but support was disabled at compile time."));
13187 }
13188
13189 continue;
13190 }
13191 #endif /* !defined (HAVE_LIBIPT) */
13192
13193 /* Push target, once, but before anything else happens. This way our
13194 changes to the threads will be cleaned up by unpushing the target
13195 in case btrace_read_config () throws. */
13196 if (!btrace_target_pushed)
13197 {
13198 btrace_target_pushed = 1;
13199 record_btrace_push_target ();
13200 printf_filtered (_("Target is recording using %s.\n"),
13201 btrace_format_string (rs->btrace_config.format));
13202 }
13203
13204 tp->btrace.target = XCNEW (struct btrace_target_info);
13205 tp->btrace.target->ptid = tp->ptid;
13206 tp->btrace.target->conf = rs->btrace_config;
13207 }
13208 }
13209
13210 /* Enable branch tracing. */
13211
13212 static struct btrace_target_info *
13213 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13214 const struct btrace_config *conf)
13215 {
13216 struct btrace_target_info *tinfo = NULL;
13217 struct packet_config *packet = NULL;
13218 struct remote_state *rs = get_remote_state ();
13219 char *buf = rs->buf;
13220 char *endbuf = rs->buf + get_remote_packet_size ();
13221
13222 switch (conf->format)
13223 {
13224 case BTRACE_FORMAT_BTS:
13225 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13226 break;
13227
13228 case BTRACE_FORMAT_PT:
13229 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13230 break;
13231 }
13232
13233 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13234 error (_("Target does not support branch tracing."));
13235
13236 btrace_sync_conf (conf);
13237
13238 set_general_thread (ptid);
13239
13240 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13241 putpkt (rs->buf);
13242 getpkt (&rs->buf, &rs->buf_size, 0);
13243
13244 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13245 {
13246 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13247 error (_("Could not enable branch tracing for %s: %s"),
13248 target_pid_to_str (ptid), rs->buf + 2);
13249 else
13250 error (_("Could not enable branch tracing for %s."),
13251 target_pid_to_str (ptid));
13252 }
13253
13254 tinfo = XCNEW (struct btrace_target_info);
13255 tinfo->ptid = ptid;
13256
13257 /* If we fail to read the configuration, we lose some information, but the
13258 tracing itself is not impacted. */
13259 TRY
13260 {
13261 btrace_read_config (&tinfo->conf);
13262 }
13263 CATCH (err, RETURN_MASK_ERROR)
13264 {
13265 if (err.message != NULL)
13266 warning ("%s", err.message);
13267 }
13268 END_CATCH
13269
13270 return tinfo;
13271 }
13272
13273 /* Disable branch tracing. */
13274
13275 static void
13276 remote_disable_btrace (struct target_ops *self,
13277 struct btrace_target_info *tinfo)
13278 {
13279 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13280 struct remote_state *rs = get_remote_state ();
13281 char *buf = rs->buf;
13282 char *endbuf = rs->buf + get_remote_packet_size ();
13283
13284 if (packet_config_support (packet) != PACKET_ENABLE)
13285 error (_("Target does not support branch tracing."));
13286
13287 set_general_thread (tinfo->ptid);
13288
13289 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13290 putpkt (rs->buf);
13291 getpkt (&rs->buf, &rs->buf_size, 0);
13292
13293 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13294 {
13295 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13296 error (_("Could not disable branch tracing for %s: %s"),
13297 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13298 else
13299 error (_("Could not disable branch tracing for %s."),
13300 target_pid_to_str (tinfo->ptid));
13301 }
13302
13303 xfree (tinfo);
13304 }
13305
13306 /* Teardown branch tracing. */
13307
13308 static void
13309 remote_teardown_btrace (struct target_ops *self,
13310 struct btrace_target_info *tinfo)
13311 {
13312 /* We must not talk to the target during teardown. */
13313 xfree (tinfo);
13314 }
13315
13316 /* Read the branch trace. */
13317
13318 static enum btrace_error
13319 remote_read_btrace (struct target_ops *self,
13320 struct btrace_data *btrace,
13321 struct btrace_target_info *tinfo,
13322 enum btrace_read_type type)
13323 {
13324 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13325 const char *annex;
13326
13327 if (packet_config_support (packet) != PACKET_ENABLE)
13328 error (_("Target does not support branch tracing."));
13329
13330 #if !defined(HAVE_LIBEXPAT)
13331 error (_("Cannot process branch tracing result. XML parsing not supported."));
13332 #endif
13333
13334 switch (type)
13335 {
13336 case BTRACE_READ_ALL:
13337 annex = "all";
13338 break;
13339 case BTRACE_READ_NEW:
13340 annex = "new";
13341 break;
13342 case BTRACE_READ_DELTA:
13343 annex = "delta";
13344 break;
13345 default:
13346 internal_error (__FILE__, __LINE__,
13347 _("Bad branch tracing read type: %u."),
13348 (unsigned int) type);
13349 }
13350
13351 gdb::optional<gdb::char_vector> xml
13352 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13353 if (!xml)
13354 return BTRACE_ERR_UNKNOWN;
13355
13356 parse_xml_btrace (btrace, xml->data ());
13357
13358 return BTRACE_ERR_NONE;
13359 }
13360
13361 static const struct btrace_config *
13362 remote_btrace_conf (struct target_ops *self,
13363 const struct btrace_target_info *tinfo)
13364 {
13365 return &tinfo->conf;
13366 }
13367
13368 static int
13369 remote_augmented_libraries_svr4_read (struct target_ops *self)
13370 {
13371 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13372 == PACKET_ENABLE);
13373 }
13374
13375 /* Implementation of to_load. */
13376
13377 static void
13378 remote_load (struct target_ops *self, const char *name, int from_tty)
13379 {
13380 generic_load (name, from_tty);
13381 }
13382
13383 /* Accepts an integer PID; returns a string representing a file that
13384 can be opened on the remote side to get the symbols for the child
13385 process. Returns NULL if the operation is not supported. */
13386
13387 static char *
13388 remote_pid_to_exec_file (struct target_ops *self, int pid)
13389 {
13390 static gdb::optional<gdb::char_vector> filename;
13391 struct inferior *inf;
13392 char *annex = NULL;
13393
13394 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13395 return NULL;
13396
13397 inf = find_inferior_pid (pid);
13398 if (inf == NULL)
13399 internal_error (__FILE__, __LINE__,
13400 _("not currently attached to process %d"), pid);
13401
13402 if (!inf->fake_pid_p)
13403 {
13404 const int annex_size = 9;
13405
13406 annex = (char *) alloca (annex_size);
13407 xsnprintf (annex, annex_size, "%x", pid);
13408 }
13409
13410 filename = target_read_stralloc (&current_target,
13411 TARGET_OBJECT_EXEC_FILE, annex);
13412
13413 return filename ? filename->data () : nullptr;
13414 }
13415
13416 /* Implement the to_can_do_single_step target_ops method. */
13417
13418 static int
13419 remote_can_do_single_step (struct target_ops *ops)
13420 {
13421 /* We can only tell whether target supports single step or not by
13422 supported s and S vCont actions if the stub supports vContSupported
13423 feature. If the stub doesn't support vContSupported feature,
13424 we have conservatively to think target doesn't supports single
13425 step. */
13426 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13427 {
13428 struct remote_state *rs = get_remote_state ();
13429
13430 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13431 remote_vcont_probe (rs);
13432
13433 return rs->supports_vCont.s && rs->supports_vCont.S;
13434 }
13435 else
13436 return 0;
13437 }
13438
13439 /* Implementation of the to_execution_direction method for the remote
13440 target. */
13441
13442 static enum exec_direction_kind
13443 remote_execution_direction (struct target_ops *self)
13444 {
13445 struct remote_state *rs = get_remote_state ();
13446
13447 return rs->last_resume_exec_dir;
13448 }
13449
13450 /* Return pointer to the thread_info struct which corresponds to
13451 THREAD_HANDLE (having length HANDLE_LEN). */
13452
13453 static struct thread_info *
13454 remote_thread_handle_to_thread_info (struct target_ops *ops,
13455 const gdb_byte *thread_handle,
13456 int handle_len,
13457 struct inferior *inf)
13458 {
13459 struct thread_info *tp;
13460
13461 ALL_NON_EXITED_THREADS (tp)
13462 {
13463 remote_thread_info *priv = get_remote_thread_info (tp);
13464
13465 if (tp->inf == inf && priv != NULL)
13466 {
13467 if (handle_len != priv->thread_handle.size ())
13468 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13469 handle_len, priv->thread_handle.size ());
13470 if (memcmp (thread_handle, priv->thread_handle.data (),
13471 handle_len) == 0)
13472 return tp;
13473 }
13474 }
13475
13476 return NULL;
13477 }
13478
13479 static void
13480 init_remote_ops (void)
13481 {
13482 remote_ops.to_shortname = "remote";
13483 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13484 remote_ops.to_doc =
13485 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13486 Specify the serial device it is connected to\n\
13487 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13488 remote_ops.to_open = remote_open;
13489 remote_ops.to_close = remote_close;
13490 remote_ops.to_detach = remote_detach;
13491 remote_ops.to_disconnect = remote_disconnect;
13492 remote_ops.to_resume = remote_resume;
13493 remote_ops.to_commit_resume = remote_commit_resume;
13494 remote_ops.to_wait = remote_wait;
13495 remote_ops.to_fetch_registers = remote_fetch_registers;
13496 remote_ops.to_store_registers = remote_store_registers;
13497 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13498 remote_ops.to_files_info = remote_files_info;
13499 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13500 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13501 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13502 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13503 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13504 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13505 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13506 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13507 remote_ops.to_watchpoint_addr_within_range =
13508 remote_watchpoint_addr_within_range;
13509 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13510 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13511 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13512 remote_ops.to_region_ok_for_hw_watchpoint
13513 = remote_region_ok_for_hw_watchpoint;
13514 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13515 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13516 remote_ops.to_kill = remote_kill;
13517 remote_ops.to_load = remote_load;
13518 remote_ops.to_mourn_inferior = remote_mourn;
13519 remote_ops.to_pass_signals = remote_pass_signals;
13520 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13521 remote_ops.to_program_signals = remote_program_signals;
13522 remote_ops.to_thread_alive = remote_thread_alive;
13523 remote_ops.to_thread_name = remote_thread_name;
13524 remote_ops.to_update_thread_list = remote_update_thread_list;
13525 remote_ops.to_pid_to_str = remote_pid_to_str;
13526 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13527 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13528 remote_ops.to_stop = remote_stop;
13529 remote_ops.to_interrupt = remote_interrupt;
13530 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13531 remote_ops.to_xfer_partial = remote_xfer_partial;
13532 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13533 remote_ops.to_rcmd = remote_rcmd;
13534 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13535 remote_ops.to_log_command = serial_log_command;
13536 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13537 remote_ops.to_stratum = process_stratum;
13538 remote_ops.to_has_all_memory = default_child_has_all_memory;
13539 remote_ops.to_has_memory = default_child_has_memory;
13540 remote_ops.to_has_stack = default_child_has_stack;
13541 remote_ops.to_has_registers = default_child_has_registers;
13542 remote_ops.to_has_execution = default_child_has_execution;
13543 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13544 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13545 remote_ops.to_magic = OPS_MAGIC;
13546 remote_ops.to_memory_map = remote_memory_map;
13547 remote_ops.to_flash_erase = remote_flash_erase;
13548 remote_ops.to_flash_done = remote_flash_done;
13549 remote_ops.to_read_description = remote_read_description;
13550 remote_ops.to_search_memory = remote_search_memory;
13551 remote_ops.to_can_async_p = remote_can_async_p;
13552 remote_ops.to_is_async_p = remote_is_async_p;
13553 remote_ops.to_async = remote_async;
13554 remote_ops.to_thread_events = remote_thread_events;
13555 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13556 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13557 remote_ops.to_terminal_ours = remote_terminal_ours;
13558 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13559 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13560 remote_ops.to_supports_disable_randomization
13561 = remote_supports_disable_randomization;
13562 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13563 remote_ops.to_fileio_open = remote_hostio_open;
13564 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13565 remote_ops.to_fileio_pread = remote_hostio_pread;
13566 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13567 remote_ops.to_fileio_close = remote_hostio_close;
13568 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13569 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13570 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13571 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13572 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13573 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13574 remote_ops.to_trace_init = remote_trace_init;
13575 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13576 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13577 remote_ops.to_download_trace_state_variable
13578 = remote_download_trace_state_variable;
13579 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13580 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13581 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13582 remote_ops.to_trace_start = remote_trace_start;
13583 remote_ops.to_get_trace_status = remote_get_trace_status;
13584 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13585 remote_ops.to_trace_stop = remote_trace_stop;
13586 remote_ops.to_trace_find = remote_trace_find;
13587 remote_ops.to_get_trace_state_variable_value
13588 = remote_get_trace_state_variable_value;
13589 remote_ops.to_save_trace_data = remote_save_trace_data;
13590 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13591 remote_ops.to_upload_trace_state_variables
13592 = remote_upload_trace_state_variables;
13593 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13594 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13595 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13596 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13597 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13598 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13599 remote_ops.to_core_of_thread = remote_core_of_thread;
13600 remote_ops.to_verify_memory = remote_verify_memory;
13601 remote_ops.to_get_tib_address = remote_get_tib_address;
13602 remote_ops.to_set_permissions = remote_set_permissions;
13603 remote_ops.to_static_tracepoint_marker_at
13604 = remote_static_tracepoint_marker_at;
13605 remote_ops.to_static_tracepoint_markers_by_strid
13606 = remote_static_tracepoint_markers_by_strid;
13607 remote_ops.to_traceframe_info = remote_traceframe_info;
13608 remote_ops.to_use_agent = remote_use_agent;
13609 remote_ops.to_can_use_agent = remote_can_use_agent;
13610 remote_ops.to_enable_btrace = remote_enable_btrace;
13611 remote_ops.to_disable_btrace = remote_disable_btrace;
13612 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13613 remote_ops.to_read_btrace = remote_read_btrace;
13614 remote_ops.to_btrace_conf = remote_btrace_conf;
13615 remote_ops.to_augmented_libraries_svr4_read =
13616 remote_augmented_libraries_svr4_read;
13617 remote_ops.to_follow_fork = remote_follow_fork;
13618 remote_ops.to_follow_exec = remote_follow_exec;
13619 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13620 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13621 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13622 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13623 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13624 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13625 remote_ops.to_execution_direction = remote_execution_direction;
13626 remote_ops.to_thread_handle_to_thread_info =
13627 remote_thread_handle_to_thread_info;
13628 }
13629
13630 /* Set up the extended remote vector by making a copy of the standard
13631 remote vector and adding to it. */
13632
13633 static void
13634 init_extended_remote_ops (void)
13635 {
13636 extended_remote_ops = remote_ops;
13637
13638 extended_remote_ops.to_shortname = "extended-remote";
13639 extended_remote_ops.to_longname =
13640 "Extended remote serial target in gdb-specific protocol";
13641 extended_remote_ops.to_doc =
13642 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13643 Specify the serial device it is connected to (e.g. /dev/ttya).";
13644 extended_remote_ops.to_open = extended_remote_open;
13645 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13646 extended_remote_ops.to_detach = extended_remote_detach;
13647 extended_remote_ops.to_attach = extended_remote_attach;
13648 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13649 extended_remote_ops.to_supports_disable_randomization
13650 = extended_remote_supports_disable_randomization;
13651 }
13652
13653 static int
13654 remote_can_async_p (struct target_ops *ops)
13655 {
13656 struct remote_state *rs = get_remote_state ();
13657
13658 /* We don't go async if the user has explicitly prevented it with the
13659 "maint set target-async" command. */
13660 if (!target_async_permitted)
13661 return 0;
13662
13663 /* We're async whenever the serial device is. */
13664 return serial_can_async_p (rs->remote_desc);
13665 }
13666
13667 static int
13668 remote_is_async_p (struct target_ops *ops)
13669 {
13670 struct remote_state *rs = get_remote_state ();
13671
13672 if (!target_async_permitted)
13673 /* We only enable async when the user specifically asks for it. */
13674 return 0;
13675
13676 /* We're async whenever the serial device is. */
13677 return serial_is_async_p (rs->remote_desc);
13678 }
13679
13680 /* Pass the SERIAL event on and up to the client. One day this code
13681 will be able to delay notifying the client of an event until the
13682 point where an entire packet has been received. */
13683
13684 static serial_event_ftype remote_async_serial_handler;
13685
13686 static void
13687 remote_async_serial_handler (struct serial *scb, void *context)
13688 {
13689 /* Don't propogate error information up to the client. Instead let
13690 the client find out about the error by querying the target. */
13691 inferior_event_handler (INF_REG_EVENT, NULL);
13692 }
13693
13694 static void
13695 remote_async_inferior_event_handler (gdb_client_data data)
13696 {
13697 inferior_event_handler (INF_REG_EVENT, NULL);
13698 }
13699
13700 static void
13701 remote_async (struct target_ops *ops, int enable)
13702 {
13703 struct remote_state *rs = get_remote_state ();
13704
13705 if (enable)
13706 {
13707 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13708
13709 /* If there are pending events in the stop reply queue tell the
13710 event loop to process them. */
13711 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13712 mark_async_event_handler (remote_async_inferior_event_token);
13713 /* For simplicity, below we clear the pending events token
13714 without remembering whether it is marked, so here we always
13715 mark it. If there's actually no pending notification to
13716 process, this ends up being a no-op (other than a spurious
13717 event-loop wakeup). */
13718 if (target_is_non_stop_p ())
13719 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13720 }
13721 else
13722 {
13723 serial_async (rs->remote_desc, NULL, NULL);
13724 /* If the core is disabling async, it doesn't want to be
13725 disturbed with target events. Clear all async event sources
13726 too. */
13727 clear_async_event_handler (remote_async_inferior_event_token);
13728 if (target_is_non_stop_p ())
13729 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13730 }
13731 }
13732
13733 /* Implementation of the to_thread_events method. */
13734
13735 static void
13736 remote_thread_events (struct target_ops *ops, int enable)
13737 {
13738 struct remote_state *rs = get_remote_state ();
13739 size_t size = get_remote_packet_size ();
13740
13741 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13742 return;
13743
13744 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13745 putpkt (rs->buf);
13746 getpkt (&rs->buf, &rs->buf_size, 0);
13747
13748 switch (packet_ok (rs->buf,
13749 &remote_protocol_packets[PACKET_QThreadEvents]))
13750 {
13751 case PACKET_OK:
13752 if (strcmp (rs->buf, "OK") != 0)
13753 error (_("Remote refused setting thread events: %s"), rs->buf);
13754 break;
13755 case PACKET_ERROR:
13756 warning (_("Remote failure reply: %s"), rs->buf);
13757 break;
13758 case PACKET_UNKNOWN:
13759 break;
13760 }
13761 }
13762
13763 static void
13764 set_remote_cmd (const char *args, int from_tty)
13765 {
13766 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13767 }
13768
13769 static void
13770 show_remote_cmd (const char *args, int from_tty)
13771 {
13772 /* We can't just use cmd_show_list here, because we want to skip
13773 the redundant "show remote Z-packet" and the legacy aliases. */
13774 struct cmd_list_element *list = remote_show_cmdlist;
13775 struct ui_out *uiout = current_uiout;
13776
13777 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13778 for (; list != NULL; list = list->next)
13779 if (strcmp (list->name, "Z-packet") == 0)
13780 continue;
13781 else if (list->type == not_set_cmd)
13782 /* Alias commands are exactly like the original, except they
13783 don't have the normal type. */
13784 continue;
13785 else
13786 {
13787 ui_out_emit_tuple option_emitter (uiout, "option");
13788
13789 uiout->field_string ("name", list->name);
13790 uiout->text (": ");
13791 if (list->type == show_cmd)
13792 do_show_command (NULL, from_tty, list);
13793 else
13794 cmd_func (list, NULL, from_tty);
13795 }
13796 }
13797
13798
13799 /* Function to be called whenever a new objfile (shlib) is detected. */
13800 static void
13801 remote_new_objfile (struct objfile *objfile)
13802 {
13803 struct remote_state *rs = get_remote_state ();
13804
13805 if (rs->remote_desc != 0) /* Have a remote connection. */
13806 remote_check_symbols ();
13807 }
13808
13809 /* Pull all the tracepoints defined on the target and create local
13810 data structures representing them. We don't want to create real
13811 tracepoints yet, we don't want to mess up the user's existing
13812 collection. */
13813
13814 static int
13815 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13816 {
13817 struct remote_state *rs = get_remote_state ();
13818 char *p;
13819
13820 /* Ask for a first packet of tracepoint definition. */
13821 putpkt ("qTfP");
13822 getpkt (&rs->buf, &rs->buf_size, 0);
13823 p = rs->buf;
13824 while (*p && *p != 'l')
13825 {
13826 parse_tracepoint_definition (p, utpp);
13827 /* Ask for another packet of tracepoint definition. */
13828 putpkt ("qTsP");
13829 getpkt (&rs->buf, &rs->buf_size, 0);
13830 p = rs->buf;
13831 }
13832 return 0;
13833 }
13834
13835 static int
13836 remote_upload_trace_state_variables (struct target_ops *self,
13837 struct uploaded_tsv **utsvp)
13838 {
13839 struct remote_state *rs = get_remote_state ();
13840 char *p;
13841
13842 /* Ask for a first packet of variable definition. */
13843 putpkt ("qTfV");
13844 getpkt (&rs->buf, &rs->buf_size, 0);
13845 p = rs->buf;
13846 while (*p && *p != 'l')
13847 {
13848 parse_tsv_definition (p, utsvp);
13849 /* Ask for another packet of variable definition. */
13850 putpkt ("qTsV");
13851 getpkt (&rs->buf, &rs->buf_size, 0);
13852 p = rs->buf;
13853 }
13854 return 0;
13855 }
13856
13857 /* The "set/show range-stepping" show hook. */
13858
13859 static void
13860 show_range_stepping (struct ui_file *file, int from_tty,
13861 struct cmd_list_element *c,
13862 const char *value)
13863 {
13864 fprintf_filtered (file,
13865 _("Debugger's willingness to use range stepping "
13866 "is %s.\n"), value);
13867 }
13868
13869 /* The "set/show range-stepping" set hook. */
13870
13871 static void
13872 set_range_stepping (const char *ignore_args, int from_tty,
13873 struct cmd_list_element *c)
13874 {
13875 struct remote_state *rs = get_remote_state ();
13876
13877 /* Whene enabling, check whether range stepping is actually
13878 supported by the target, and warn if not. */
13879 if (use_range_stepping)
13880 {
13881 if (rs->remote_desc != NULL)
13882 {
13883 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13884 remote_vcont_probe (rs);
13885
13886 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13887 && rs->supports_vCont.r)
13888 return;
13889 }
13890
13891 warning (_("Range stepping is not supported by the current target"));
13892 }
13893 }
13894
13895 void
13896 _initialize_remote (void)
13897 {
13898 struct cmd_list_element *cmd;
13899 const char *cmd_name;
13900
13901 /* architecture specific data */
13902 remote_gdbarch_data_handle =
13903 gdbarch_data_register_post_init (init_remote_state);
13904 remote_g_packet_data_handle =
13905 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13906
13907 remote_pspace_data
13908 = register_program_space_data_with_cleanup (NULL,
13909 remote_pspace_data_cleanup);
13910
13911 /* Initialize the per-target state. At the moment there is only one
13912 of these, not one per target. Only one target is active at a
13913 time. */
13914 remote_state = new_remote_state ();
13915
13916 init_remote_ops ();
13917 add_target (&remote_ops);
13918
13919 init_extended_remote_ops ();
13920 add_target (&extended_remote_ops);
13921
13922 /* Hook into new objfile notification. */
13923 gdb::observers::new_objfile.attach (remote_new_objfile);
13924 /* We're no longer interested in notification events of an inferior
13925 when it exits. */
13926 gdb::observers::inferior_exit.attach (discard_pending_stop_replies);
13927
13928 #if 0
13929 init_remote_threadtests ();
13930 #endif
13931
13932 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13933 /* set/show remote ... */
13934
13935 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13936 Remote protocol specific variables\n\
13937 Configure various remote-protocol specific variables such as\n\
13938 the packets being used"),
13939 &remote_set_cmdlist, "set remote ",
13940 0 /* allow-unknown */, &setlist);
13941 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13942 Remote protocol specific variables\n\
13943 Configure various remote-protocol specific variables such as\n\
13944 the packets being used"),
13945 &remote_show_cmdlist, "show remote ",
13946 0 /* allow-unknown */, &showlist);
13947
13948 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13949 Compare section data on target to the exec file.\n\
13950 Argument is a single section name (default: all loaded sections).\n\
13951 To compare only read-only loaded sections, specify the -r option."),
13952 &cmdlist);
13953
13954 add_cmd ("packet", class_maintenance, packet_command, _("\
13955 Send an arbitrary packet to a remote target.\n\
13956 maintenance packet TEXT\n\
13957 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13958 this command sends the string TEXT to the inferior, and displays the\n\
13959 response packet. GDB supplies the initial `$' character, and the\n\
13960 terminating `#' character and checksum."),
13961 &maintenancelist);
13962
13963 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
13964 Set whether to send break if interrupted."), _("\
13965 Show whether to send break if interrupted."), _("\
13966 If set, a break, instead of a cntrl-c, is sent to the remote target."),
13967 set_remotebreak, show_remotebreak,
13968 &setlist, &showlist);
13969 cmd_name = "remotebreak";
13970 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
13971 deprecate_cmd (cmd, "set remote interrupt-sequence");
13972 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
13973 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
13974 deprecate_cmd (cmd, "show remote interrupt-sequence");
13975
13976 add_setshow_enum_cmd ("interrupt-sequence", class_support,
13977 interrupt_sequence_modes, &interrupt_sequence_mode,
13978 _("\
13979 Set interrupt sequence to remote target."), _("\
13980 Show interrupt sequence to remote target."), _("\
13981 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
13982 NULL, show_interrupt_sequence,
13983 &remote_set_cmdlist,
13984 &remote_show_cmdlist);
13985
13986 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
13987 &interrupt_on_connect, _("\
13988 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13989 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13990 If set, interrupt sequence is sent to remote target."),
13991 NULL, NULL,
13992 &remote_set_cmdlist, &remote_show_cmdlist);
13993
13994 /* Install commands for configuring memory read/write packets. */
13995
13996 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
13997 Set the maximum number of bytes per memory write packet (deprecated)."),
13998 &setlist);
13999 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14000 Show the maximum number of bytes per memory write packet (deprecated)."),
14001 &showlist);
14002 add_cmd ("memory-write-packet-size", no_class,
14003 set_memory_write_packet_size, _("\
14004 Set the maximum number of bytes per memory-write packet.\n\
14005 Specify the number of bytes in a packet or 0 (zero) for the\n\
14006 default packet size. The actual limit is further reduced\n\
14007 dependent on the target. Specify ``fixed'' to disable the\n\
14008 further restriction and ``limit'' to enable that restriction."),
14009 &remote_set_cmdlist);
14010 add_cmd ("memory-read-packet-size", no_class,
14011 set_memory_read_packet_size, _("\
14012 Set the maximum number of bytes per memory-read packet.\n\
14013 Specify the number of bytes in a packet or 0 (zero) for the\n\
14014 default packet size. The actual limit is further reduced\n\
14015 dependent on the target. Specify ``fixed'' to disable the\n\
14016 further restriction and ``limit'' to enable that restriction."),
14017 &remote_set_cmdlist);
14018 add_cmd ("memory-write-packet-size", no_class,
14019 show_memory_write_packet_size,
14020 _("Show the maximum number of bytes per memory-write packet."),
14021 &remote_show_cmdlist);
14022 add_cmd ("memory-read-packet-size", no_class,
14023 show_memory_read_packet_size,
14024 _("Show the maximum number of bytes per memory-read packet."),
14025 &remote_show_cmdlist);
14026
14027 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14028 &remote_hw_watchpoint_limit, _("\
14029 Set the maximum number of target hardware watchpoints."), _("\
14030 Show the maximum number of target hardware watchpoints."), _("\
14031 Specify a negative limit for unlimited."),
14032 NULL, NULL, /* FIXME: i18n: The maximum
14033 number of target hardware
14034 watchpoints is %s. */
14035 &remote_set_cmdlist, &remote_show_cmdlist);
14036 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14037 &remote_hw_watchpoint_length_limit, _("\
14038 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14039 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14040 Specify a negative limit for unlimited."),
14041 NULL, NULL, /* FIXME: i18n: The maximum
14042 length (in bytes) of a target
14043 hardware watchpoint is %s. */
14044 &remote_set_cmdlist, &remote_show_cmdlist);
14045 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14046 &remote_hw_breakpoint_limit, _("\
14047 Set the maximum number of target hardware breakpoints."), _("\
14048 Show the maximum number of target hardware breakpoints."), _("\
14049 Specify a negative limit for unlimited."),
14050 NULL, NULL, /* FIXME: i18n: The maximum
14051 number of target hardware
14052 breakpoints is %s. */
14053 &remote_set_cmdlist, &remote_show_cmdlist);
14054
14055 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14056 &remote_address_size, _("\
14057 Set the maximum size of the address (in bits) in a memory packet."), _("\
14058 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14059 NULL,
14060 NULL, /* FIXME: i18n: */
14061 &setlist, &showlist);
14062
14063 init_all_packet_configs ();
14064
14065 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14066 "X", "binary-download", 1);
14067
14068 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14069 "vCont", "verbose-resume", 0);
14070
14071 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14072 "QPassSignals", "pass-signals", 0);
14073
14074 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14075 "QCatchSyscalls", "catch-syscalls", 0);
14076
14077 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14078 "QProgramSignals", "program-signals", 0);
14079
14080 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14081 "QSetWorkingDir", "set-working-dir", 0);
14082
14083 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14084 "QStartupWithShell", "startup-with-shell", 0);
14085
14086 add_packet_config_cmd (&remote_protocol_packets
14087 [PACKET_QEnvironmentHexEncoded],
14088 "QEnvironmentHexEncoded", "environment-hex-encoded",
14089 0);
14090
14091 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14092 "QEnvironmentReset", "environment-reset",
14093 0);
14094
14095 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14096 "QEnvironmentUnset", "environment-unset",
14097 0);
14098
14099 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14100 "qSymbol", "symbol-lookup", 0);
14101
14102 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14103 "P", "set-register", 1);
14104
14105 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14106 "p", "fetch-register", 1);
14107
14108 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14109 "Z0", "software-breakpoint", 0);
14110
14111 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14112 "Z1", "hardware-breakpoint", 0);
14113
14114 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14115 "Z2", "write-watchpoint", 0);
14116
14117 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14118 "Z3", "read-watchpoint", 0);
14119
14120 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14121 "Z4", "access-watchpoint", 0);
14122
14123 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14124 "qXfer:auxv:read", "read-aux-vector", 0);
14125
14126 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14127 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14128
14129 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14130 "qXfer:features:read", "target-features", 0);
14131
14132 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14133 "qXfer:libraries:read", "library-info", 0);
14134
14135 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14136 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14137
14138 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14139 "qXfer:memory-map:read", "memory-map", 0);
14140
14141 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14142 "qXfer:spu:read", "read-spu-object", 0);
14143
14144 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14145 "qXfer:spu:write", "write-spu-object", 0);
14146
14147 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14148 "qXfer:osdata:read", "osdata", 0);
14149
14150 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14151 "qXfer:threads:read", "threads", 0);
14152
14153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14154 "qXfer:siginfo:read", "read-siginfo-object", 0);
14155
14156 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14157 "qXfer:siginfo:write", "write-siginfo-object", 0);
14158
14159 add_packet_config_cmd
14160 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14161 "qXfer:traceframe-info:read", "traceframe-info", 0);
14162
14163 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14164 "qXfer:uib:read", "unwind-info-block", 0);
14165
14166 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14167 "qGetTLSAddr", "get-thread-local-storage-address",
14168 0);
14169
14170 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14171 "qGetTIBAddr", "get-thread-information-block-address",
14172 0);
14173
14174 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14175 "bc", "reverse-continue", 0);
14176
14177 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14178 "bs", "reverse-step", 0);
14179
14180 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14181 "qSupported", "supported-packets", 0);
14182
14183 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14184 "qSearch:memory", "search-memory", 0);
14185
14186 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14187 "qTStatus", "trace-status", 0);
14188
14189 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14190 "vFile:setfs", "hostio-setfs", 0);
14191
14192 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14193 "vFile:open", "hostio-open", 0);
14194
14195 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14196 "vFile:pread", "hostio-pread", 0);
14197
14198 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14199 "vFile:pwrite", "hostio-pwrite", 0);
14200
14201 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14202 "vFile:close", "hostio-close", 0);
14203
14204 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14205 "vFile:unlink", "hostio-unlink", 0);
14206
14207 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14208 "vFile:readlink", "hostio-readlink", 0);
14209
14210 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14211 "vFile:fstat", "hostio-fstat", 0);
14212
14213 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14214 "vAttach", "attach", 0);
14215
14216 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14217 "vRun", "run", 0);
14218
14219 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14220 "QStartNoAckMode", "noack", 0);
14221
14222 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14223 "vKill", "kill", 0);
14224
14225 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14226 "qAttached", "query-attached", 0);
14227
14228 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14229 "ConditionalTracepoints",
14230 "conditional-tracepoints", 0);
14231
14232 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14233 "ConditionalBreakpoints",
14234 "conditional-breakpoints", 0);
14235
14236 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14237 "BreakpointCommands",
14238 "breakpoint-commands", 0);
14239
14240 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14241 "FastTracepoints", "fast-tracepoints", 0);
14242
14243 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14244 "TracepointSource", "TracepointSource", 0);
14245
14246 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14247 "QAllow", "allow", 0);
14248
14249 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14250 "StaticTracepoints", "static-tracepoints", 0);
14251
14252 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14253 "InstallInTrace", "install-in-trace", 0);
14254
14255 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14256 "qXfer:statictrace:read", "read-sdata-object", 0);
14257
14258 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14259 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14260
14261 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14262 "QDisableRandomization", "disable-randomization", 0);
14263
14264 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14265 "QAgent", "agent", 0);
14266
14267 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14268 "QTBuffer:size", "trace-buffer-size", 0);
14269
14270 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14271 "Qbtrace:off", "disable-btrace", 0);
14272
14273 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14274 "Qbtrace:bts", "enable-btrace-bts", 0);
14275
14276 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14277 "Qbtrace:pt", "enable-btrace-pt", 0);
14278
14279 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14280 "qXfer:btrace", "read-btrace", 0);
14281
14282 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14283 "qXfer:btrace-conf", "read-btrace-conf", 0);
14284
14285 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14286 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14287
14288 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14289 "multiprocess-feature", "multiprocess-feature", 0);
14290
14291 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14292 "swbreak-feature", "swbreak-feature", 0);
14293
14294 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14295 "hwbreak-feature", "hwbreak-feature", 0);
14296
14297 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14298 "fork-event-feature", "fork-event-feature", 0);
14299
14300 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14301 "vfork-event-feature", "vfork-event-feature", 0);
14302
14303 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14304 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14305
14306 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14307 "vContSupported", "verbose-resume-supported", 0);
14308
14309 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14310 "exec-event-feature", "exec-event-feature", 0);
14311
14312 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14313 "vCtrlC", "ctrl-c", 0);
14314
14315 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14316 "QThreadEvents", "thread-events", 0);
14317
14318 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14319 "N stop reply", "no-resumed-stop-reply", 0);
14320
14321 /* Assert that we've registered "set remote foo-packet" commands
14322 for all packet configs. */
14323 {
14324 int i;
14325
14326 for (i = 0; i < PACKET_MAX; i++)
14327 {
14328 /* Ideally all configs would have a command associated. Some
14329 still don't though. */
14330 int excepted;
14331
14332 switch (i)
14333 {
14334 case PACKET_QNonStop:
14335 case PACKET_EnableDisableTracepoints_feature:
14336 case PACKET_tracenz_feature:
14337 case PACKET_DisconnectedTracing_feature:
14338 case PACKET_augmented_libraries_svr4_read_feature:
14339 case PACKET_qCRC:
14340 /* Additions to this list need to be well justified:
14341 pre-existing packets are OK; new packets are not. */
14342 excepted = 1;
14343 break;
14344 default:
14345 excepted = 0;
14346 break;
14347 }
14348
14349 /* This catches both forgetting to add a config command, and
14350 forgetting to remove a packet from the exception list. */
14351 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14352 }
14353 }
14354
14355 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14356 Z sub-packet has its own set and show commands, but users may
14357 have sets to this variable in their .gdbinit files (or in their
14358 documentation). */
14359 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14360 &remote_Z_packet_detect, _("\
14361 Set use of remote protocol `Z' packets"), _("\
14362 Show use of remote protocol `Z' packets "), _("\
14363 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14364 packets."),
14365 set_remote_protocol_Z_packet_cmd,
14366 show_remote_protocol_Z_packet_cmd,
14367 /* FIXME: i18n: Use of remote protocol
14368 `Z' packets is %s. */
14369 &remote_set_cmdlist, &remote_show_cmdlist);
14370
14371 add_prefix_cmd ("remote", class_files, remote_command, _("\
14372 Manipulate files on the remote system\n\
14373 Transfer files to and from the remote target system."),
14374 &remote_cmdlist, "remote ",
14375 0 /* allow-unknown */, &cmdlist);
14376
14377 add_cmd ("put", class_files, remote_put_command,
14378 _("Copy a local file to the remote system."),
14379 &remote_cmdlist);
14380
14381 add_cmd ("get", class_files, remote_get_command,
14382 _("Copy a remote file to the local system."),
14383 &remote_cmdlist);
14384
14385 add_cmd ("delete", class_files, remote_delete_command,
14386 _("Delete a remote file."),
14387 &remote_cmdlist);
14388
14389 add_setshow_string_noescape_cmd ("exec-file", class_files,
14390 &remote_exec_file_var, _("\
14391 Set the remote pathname for \"run\""), _("\
14392 Show the remote pathname for \"run\""), NULL,
14393 set_remote_exec_file,
14394 show_remote_exec_file,
14395 &remote_set_cmdlist,
14396 &remote_show_cmdlist);
14397
14398 add_setshow_boolean_cmd ("range-stepping", class_run,
14399 &use_range_stepping, _("\
14400 Enable or disable range stepping."), _("\
14401 Show whether target-assisted range stepping is enabled."), _("\
14402 If on, and the target supports it, when stepping a source line, GDB\n\
14403 tells the target to step the corresponding range of addresses itself instead\n\
14404 of issuing multiple single-steps. This speeds up source level\n\
14405 stepping. If off, GDB always issues single-steps, even if range\n\
14406 stepping is supported by the target. The default is on."),
14407 set_range_stepping,
14408 show_range_stepping,
14409 &setlist,
14410 &showlist);
14411
14412 /* Eventually initialize fileio. See fileio.c */
14413 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14414
14415 /* Take advantage of the fact that the TID field is not used, to tag
14416 special ptids with it set to != 0. */
14417 magic_null_ptid = ptid_build (42000, -1, 1);
14418 not_sent_ptid = ptid_build (42000, -2, 1);
14419 any_thread_ptid = ptid_build (42000, 0, 1);
14420 }
This page took 1.235088 seconds and 4 git commands to generate.