gdb/
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* Temp hacks for tracepoint encoding migration. */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
138
139 static void remote_interrupt (int signo);
140
141 static void remote_interrupt_twice (int signo);
142
143 static void interrupt_query (void);
144
145 static void set_general_thread (struct ptid ptid);
146 static void set_continue_thread (struct ptid ptid);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (ptid_t);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (ptid_t currthread);
185
186 static int fromhex (int a);
187
188 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
189
190 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
203 struct cmd_list_element *c);
204
205 static void show_remote_protocol_packet_cmd (struct ui_file *file,
206 int from_tty,
207 struct cmd_list_element *c,
208 const char *value);
209
210 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
211 static ptid_t read_ptid (char *buf, char **obuf);
212
213 static void remote_set_permissions (void);
214
215 struct remote_state;
216 static int remote_get_trace_status (struct trace_status *ts);
217
218 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
219
220 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
221
222 static void remote_query_supported (void);
223
224 static void remote_check_symbols (struct objfile *objfile);
225
226 void _initialize_remote (void);
227
228 struct stop_reply;
229 static struct stop_reply *stop_reply_xmalloc (void);
230 static void stop_reply_xfree (struct stop_reply *);
231 static void do_stop_reply_xfree (void *arg);
232 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
233 static void push_stop_reply (struct stop_reply *);
234 static void remote_get_pending_stop_replies (void);
235 static void discard_pending_stop_replies (int pid);
236 static int peek_stop_reply (ptid_t ptid);
237
238 static void remote_async_inferior_event_handler (gdb_client_data);
239 static void remote_async_get_pending_events_handler (gdb_client_data);
240
241 static void remote_terminal_ours (void);
242
243 static int remote_read_description_p (struct target_ops *target);
244
245 static void remote_console_output (char *msg);
246
247 /* The non-stop remote protocol provisions for one pending stop reply.
248 This is where we keep it until it is acknowledged. */
249
250 static struct stop_reply *pending_stop_reply = NULL;
251
252 /* For "remote". */
253
254 static struct cmd_list_element *remote_cmdlist;
255
256 /* For "set remote" and "show remote". */
257
258 static struct cmd_list_element *remote_set_cmdlist;
259 static struct cmd_list_element *remote_show_cmdlist;
260
261 /* Description of the remote protocol state for the currently
262 connected target. This is per-target state, and independent of the
263 selected architecture. */
264
265 struct remote_state
266 {
267 /* A buffer to use for incoming packets, and its current size. The
268 buffer is grown dynamically for larger incoming packets.
269 Outgoing packets may also be constructed in this buffer.
270 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
271 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
272 packets. */
273 char *buf;
274 long buf_size;
275
276 /* If we negotiated packet size explicitly (and thus can bypass
277 heuristics for the largest packet size that will not overflow
278 a buffer in the stub), this will be set to that packet size.
279 Otherwise zero, meaning to use the guessed size. */
280 long explicit_packet_size;
281
282 /* remote_wait is normally called when the target is running and
283 waits for a stop reply packet. But sometimes we need to call it
284 when the target is already stopped. We can send a "?" packet
285 and have remote_wait read the response. Or, if we already have
286 the response, we can stash it in BUF and tell remote_wait to
287 skip calling getpkt. This flag is set when BUF contains a
288 stop reply packet and the target is not waiting. */
289 int cached_wait_status;
290
291 /* True, if in no ack mode. That is, neither GDB nor the stub will
292 expect acks from each other. The connection is assumed to be
293 reliable. */
294 int noack_mode;
295
296 /* True if we're connected in extended remote mode. */
297 int extended;
298
299 /* True if the stub reported support for multi-process
300 extensions. */
301 int multi_process_aware;
302
303 /* True if we resumed the target and we're waiting for the target to
304 stop. In the mean time, we can't start another command/query.
305 The remote server wouldn't be ready to process it, so we'd
306 timeout waiting for a reply that would never come and eventually
307 we'd close the connection. This can happen in asynchronous mode
308 because we allow GDB commands while the target is running. */
309 int waiting_for_stop_reply;
310
311 /* True if the stub reports support for non-stop mode. */
312 int non_stop_aware;
313
314 /* True if the stub reports support for vCont;t. */
315 int support_vCont_t;
316
317 /* True if the stub reports support for conditional tracepoints. */
318 int cond_tracepoints;
319
320 /* True if the stub reports support for fast tracepoints. */
321 int fast_tracepoints;
322
323 /* True if the stub reports support for static tracepoints. */
324 int static_tracepoints;
325
326 /* True if the stub can continue running a trace while GDB is
327 disconnected. */
328 int disconnected_tracing;
329
330 /* True if the stub reports support for enabling and disabling
331 tracepoints while a trace experiment is running. */
332 int enable_disable_tracepoints;
333
334 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
335 responded to that. */
336 int ctrlc_pending_p;
337 };
338
339 /* Private data that we'll store in (struct thread_info)->private. */
340 struct private_thread_info
341 {
342 char *extra;
343 int core;
344 };
345
346 static void
347 free_private_thread_info (struct private_thread_info *info)
348 {
349 xfree (info->extra);
350 xfree (info);
351 }
352
353 /* Returns true if the multi-process extensions are in effect. */
354 static int
355 remote_multi_process_p (struct remote_state *rs)
356 {
357 return rs->extended && rs->multi_process_aware;
358 }
359
360 /* This data could be associated with a target, but we do not always
361 have access to the current target when we need it, so for now it is
362 static. This will be fine for as long as only one target is in use
363 at a time. */
364 static struct remote_state remote_state;
365
366 static struct remote_state *
367 get_remote_state_raw (void)
368 {
369 return &remote_state;
370 }
371
372 /* Description of the remote protocol for a given architecture. */
373
374 struct packet_reg
375 {
376 long offset; /* Offset into G packet. */
377 long regnum; /* GDB's internal register number. */
378 LONGEST pnum; /* Remote protocol register number. */
379 int in_g_packet; /* Always part of G packet. */
380 /* long size in bytes; == register_size (target_gdbarch, regnum);
381 at present. */
382 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
383 at present. */
384 };
385
386 struct remote_arch_state
387 {
388 /* Description of the remote protocol registers. */
389 long sizeof_g_packet;
390
391 /* Description of the remote protocol registers indexed by REGNUM
392 (making an array gdbarch_num_regs in size). */
393 struct packet_reg *regs;
394
395 /* This is the size (in chars) of the first response to the ``g''
396 packet. It is used as a heuristic when determining the maximum
397 size of memory-read and memory-write packets. A target will
398 typically only reserve a buffer large enough to hold the ``g''
399 packet. The size does not include packet overhead (headers and
400 trailers). */
401 long actual_register_packet_size;
402
403 /* This is the maximum size (in chars) of a non read/write packet.
404 It is also used as a cap on the size of read/write packets. */
405 long remote_packet_size;
406 };
407
408 long sizeof_pkt = 2000;
409
410 /* Utility: generate error from an incoming stub packet. */
411 static void
412 trace_error (char *buf)
413 {
414 if (*buf++ != 'E')
415 return; /* not an error msg */
416 switch (*buf)
417 {
418 case '1': /* malformed packet error */
419 if (*++buf == '0') /* general case: */
420 error (_("remote.c: error in outgoing packet."));
421 else
422 error (_("remote.c: error in outgoing packet at field #%ld."),
423 strtol (buf, NULL, 16));
424 case '2':
425 error (_("trace API error 0x%s."), ++buf);
426 default:
427 error (_("Target returns error code '%s'."), buf);
428 }
429 }
430
431 /* Utility: wait for reply from stub, while accepting "O" packets. */
432 static char *
433 remote_get_noisy_reply (char **buf_p,
434 long *sizeof_buf)
435 {
436 do /* Loop on reply from remote stub. */
437 {
438 char *buf;
439
440 QUIT; /* Allow user to bail out with ^C. */
441 getpkt (buf_p, sizeof_buf, 0);
442 buf = *buf_p;
443 if (buf[0] == 'E')
444 trace_error (buf);
445 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
446 {
447 ULONGEST ul;
448 CORE_ADDR from, to, org_to;
449 char *p, *pp;
450 int adjusted_size = 0;
451 volatile struct gdb_exception ex;
452
453 p = buf + strlen ("qRelocInsn:");
454 pp = unpack_varlen_hex (p, &ul);
455 if (*pp != ';')
456 error (_("invalid qRelocInsn packet: %s"), buf);
457 from = ul;
458
459 p = pp + 1;
460 unpack_varlen_hex (p, &ul);
461 to = ul;
462
463 org_to = to;
464
465 TRY_CATCH (ex, RETURN_MASK_ALL)
466 {
467 gdbarch_relocate_instruction (target_gdbarch, &to, from);
468 }
469 if (ex.reason >= 0)
470 {
471 adjusted_size = to - org_to;
472
473 sprintf (buf, "qRelocInsn:%x", adjusted_size);
474 putpkt (buf);
475 }
476 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
477 {
478 /* Propagate memory errors silently back to the target.
479 The stub may have limited the range of addresses we
480 can write to, for example. */
481 putpkt ("E01");
482 }
483 else
484 {
485 /* Something unexpectedly bad happened. Be verbose so
486 we can tell what, and propagate the error back to the
487 stub, so it doesn't get stuck waiting for a
488 response. */
489 exception_fprintf (gdb_stderr, ex,
490 _("warning: relocating instruction: "));
491 putpkt ("E01");
492 }
493 }
494 else if (buf[0] == 'O' && buf[1] != 'K')
495 remote_console_output (buf + 1); /* 'O' message from stub */
496 else
497 return buf; /* Here's the actual reply. */
498 }
499 while (1);
500 }
501
502 /* Handle for retreving the remote protocol data from gdbarch. */
503 static struct gdbarch_data *remote_gdbarch_data_handle;
504
505 static struct remote_arch_state *
506 get_remote_arch_state (void)
507 {
508 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
509 }
510
511 /* Fetch the global remote target state. */
512
513 static struct remote_state *
514 get_remote_state (void)
515 {
516 /* Make sure that the remote architecture state has been
517 initialized, because doing so might reallocate rs->buf. Any
518 function which calls getpkt also needs to be mindful of changes
519 to rs->buf, but this call limits the number of places which run
520 into trouble. */
521 get_remote_arch_state ();
522
523 return get_remote_state_raw ();
524 }
525
526 static int
527 compare_pnums (const void *lhs_, const void *rhs_)
528 {
529 const struct packet_reg * const *lhs = lhs_;
530 const struct packet_reg * const *rhs = rhs_;
531
532 if ((*lhs)->pnum < (*rhs)->pnum)
533 return -1;
534 else if ((*lhs)->pnum == (*rhs)->pnum)
535 return 0;
536 else
537 return 1;
538 }
539
540 static int
541 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
542 {
543 int regnum, num_remote_regs, offset;
544 struct packet_reg **remote_regs;
545
546 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
547 {
548 struct packet_reg *r = &regs[regnum];
549
550 if (register_size (gdbarch, regnum) == 0)
551 /* Do not try to fetch zero-sized (placeholder) registers. */
552 r->pnum = -1;
553 else
554 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
555
556 r->regnum = regnum;
557 }
558
559 /* Define the g/G packet format as the contents of each register
560 with a remote protocol number, in order of ascending protocol
561 number. */
562
563 remote_regs = alloca (gdbarch_num_regs (gdbarch)
564 * sizeof (struct packet_reg *));
565 for (num_remote_regs = 0, regnum = 0;
566 regnum < gdbarch_num_regs (gdbarch);
567 regnum++)
568 if (regs[regnum].pnum != -1)
569 remote_regs[num_remote_regs++] = &regs[regnum];
570
571 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
572 compare_pnums);
573
574 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
575 {
576 remote_regs[regnum]->in_g_packet = 1;
577 remote_regs[regnum]->offset = offset;
578 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
579 }
580
581 return offset;
582 }
583
584 /* Given the architecture described by GDBARCH, return the remote
585 protocol register's number and the register's offset in the g/G
586 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
587 If the target does not have a mapping for REGNUM, return false,
588 otherwise, return true. */
589
590 int
591 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
592 int *pnum, int *poffset)
593 {
594 int sizeof_g_packet;
595 struct packet_reg *regs;
596 struct cleanup *old_chain;
597
598 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
599
600 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
601 old_chain = make_cleanup (xfree, regs);
602
603 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
604
605 *pnum = regs[regnum].pnum;
606 *poffset = regs[regnum].offset;
607
608 do_cleanups (old_chain);
609
610 return *pnum != -1;
611 }
612
613 static void *
614 init_remote_state (struct gdbarch *gdbarch)
615 {
616 struct remote_state *rs = get_remote_state_raw ();
617 struct remote_arch_state *rsa;
618
619 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
620
621 /* Use the architecture to build a regnum<->pnum table, which will be
622 1:1 unless a feature set specifies otherwise. */
623 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
624 gdbarch_num_regs (gdbarch),
625 struct packet_reg);
626
627 /* Record the maximum possible size of the g packet - it may turn out
628 to be smaller. */
629 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
630
631 /* Default maximum number of characters in a packet body. Many
632 remote stubs have a hardwired buffer size of 400 bytes
633 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
634 as the maximum packet-size to ensure that the packet and an extra
635 NUL character can always fit in the buffer. This stops GDB
636 trashing stubs that try to squeeze an extra NUL into what is
637 already a full buffer (As of 1999-12-04 that was most stubs). */
638 rsa->remote_packet_size = 400 - 1;
639
640 /* This one is filled in when a ``g'' packet is received. */
641 rsa->actual_register_packet_size = 0;
642
643 /* Should rsa->sizeof_g_packet needs more space than the
644 default, adjust the size accordingly. Remember that each byte is
645 encoded as two characters. 32 is the overhead for the packet
646 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
647 (``$NN:G...#NN'') is a better guess, the below has been padded a
648 little. */
649 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
650 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
651
652 /* Make sure that the packet buffer is plenty big enough for
653 this architecture. */
654 if (rs->buf_size < rsa->remote_packet_size)
655 {
656 rs->buf_size = 2 * rsa->remote_packet_size;
657 rs->buf = xrealloc (rs->buf, rs->buf_size);
658 }
659
660 return rsa;
661 }
662
663 /* Return the current allowed size of a remote packet. This is
664 inferred from the current architecture, and should be used to
665 limit the length of outgoing packets. */
666 static long
667 get_remote_packet_size (void)
668 {
669 struct remote_state *rs = get_remote_state ();
670 struct remote_arch_state *rsa = get_remote_arch_state ();
671
672 if (rs->explicit_packet_size)
673 return rs->explicit_packet_size;
674
675 return rsa->remote_packet_size;
676 }
677
678 static struct packet_reg *
679 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
680 {
681 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
682 return NULL;
683 else
684 {
685 struct packet_reg *r = &rsa->regs[regnum];
686
687 gdb_assert (r->regnum == regnum);
688 return r;
689 }
690 }
691
692 static struct packet_reg *
693 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
694 {
695 int i;
696
697 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
698 {
699 struct packet_reg *r = &rsa->regs[i];
700
701 if (r->pnum == pnum)
702 return r;
703 }
704 return NULL;
705 }
706
707 /* FIXME: graces/2002-08-08: These variables should eventually be
708 bound to an instance of the target object (as in gdbarch-tdep()),
709 when such a thing exists. */
710
711 /* This is set to the data address of the access causing the target
712 to stop for a watchpoint. */
713 static CORE_ADDR remote_watch_data_address;
714
715 /* This is non-zero if target stopped for a watchpoint. */
716 static int remote_stopped_by_watchpoint_p;
717
718 static struct target_ops remote_ops;
719
720 static struct target_ops extended_remote_ops;
721
722 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
723 ``forever'' still use the normal timeout mechanism. This is
724 currently used by the ASYNC code to guarentee that target reads
725 during the initial connect always time-out. Once getpkt has been
726 modified to return a timeout indication and, in turn
727 remote_wait()/wait_for_inferior() have gained a timeout parameter
728 this can go away. */
729 static int wait_forever_enabled_p = 1;
730
731 /* Allow the user to specify what sequence to send to the remote
732 when he requests a program interruption: Although ^C is usually
733 what remote systems expect (this is the default, here), it is
734 sometimes preferable to send a break. On other systems such
735 as the Linux kernel, a break followed by g, which is Magic SysRq g
736 is required in order to interrupt the execution. */
737 const char interrupt_sequence_control_c[] = "Ctrl-C";
738 const char interrupt_sequence_break[] = "BREAK";
739 const char interrupt_sequence_break_g[] = "BREAK-g";
740 static const char *interrupt_sequence_modes[] =
741 {
742 interrupt_sequence_control_c,
743 interrupt_sequence_break,
744 interrupt_sequence_break_g,
745 NULL
746 };
747 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
748
749 static void
750 show_interrupt_sequence (struct ui_file *file, int from_tty,
751 struct cmd_list_element *c,
752 const char *value)
753 {
754 if (interrupt_sequence_mode == interrupt_sequence_control_c)
755 fprintf_filtered (file,
756 _("Send the ASCII ETX character (Ctrl-c) "
757 "to the remote target to interrupt the "
758 "execution of the program.\n"));
759 else if (interrupt_sequence_mode == interrupt_sequence_break)
760 fprintf_filtered (file,
761 _("send a break signal to the remote target "
762 "to interrupt the execution of the program.\n"));
763 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
764 fprintf_filtered (file,
765 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
766 "the remote target to interrupt the execution "
767 "of Linux kernel.\n"));
768 else
769 internal_error (__FILE__, __LINE__,
770 _("Invalid value for interrupt_sequence_mode: %s."),
771 interrupt_sequence_mode);
772 }
773
774 /* This boolean variable specifies whether interrupt_sequence is sent
775 to the remote target when gdb connects to it.
776 This is mostly needed when you debug the Linux kernel: The Linux kernel
777 expects BREAK g which is Magic SysRq g for connecting gdb. */
778 static int interrupt_on_connect = 0;
779
780 /* This variable is used to implement the "set/show remotebreak" commands.
781 Since these commands are now deprecated in favor of "set/show remote
782 interrupt-sequence", it no longer has any effect on the code. */
783 static int remote_break;
784
785 static void
786 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
787 {
788 if (remote_break)
789 interrupt_sequence_mode = interrupt_sequence_break;
790 else
791 interrupt_sequence_mode = interrupt_sequence_control_c;
792 }
793
794 static void
795 show_remotebreak (struct ui_file *file, int from_tty,
796 struct cmd_list_element *c,
797 const char *value)
798 {
799 }
800
801 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
802 remote_open knows that we don't have a file open when the program
803 starts. */
804 static struct serial *remote_desc = NULL;
805
806 /* This variable sets the number of bits in an address that are to be
807 sent in a memory ("M" or "m") packet. Normally, after stripping
808 leading zeros, the entire address would be sent. This variable
809 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
810 initial implementation of remote.c restricted the address sent in
811 memory packets to ``host::sizeof long'' bytes - (typically 32
812 bits). Consequently, for 64 bit targets, the upper 32 bits of an
813 address was never sent. Since fixing this bug may cause a break in
814 some remote targets this variable is principly provided to
815 facilitate backward compatibility. */
816
817 static int remote_address_size;
818
819 /* Temporary to track who currently owns the terminal. See
820 remote_terminal_* for more details. */
821
822 static int remote_async_terminal_ours_p;
823
824 /* The executable file to use for "run" on the remote side. */
825
826 static char *remote_exec_file = "";
827
828 \f
829 /* User configurable variables for the number of characters in a
830 memory read/write packet. MIN (rsa->remote_packet_size,
831 rsa->sizeof_g_packet) is the default. Some targets need smaller
832 values (fifo overruns, et.al.) and some users need larger values
833 (speed up transfers). The variables ``preferred_*'' (the user
834 request), ``current_*'' (what was actually set) and ``forced_*''
835 (Positive - a soft limit, negative - a hard limit). */
836
837 struct memory_packet_config
838 {
839 char *name;
840 long size;
841 int fixed_p;
842 };
843
844 /* Compute the current size of a read/write packet. Since this makes
845 use of ``actual_register_packet_size'' the computation is dynamic. */
846
847 static long
848 get_memory_packet_size (struct memory_packet_config *config)
849 {
850 struct remote_state *rs = get_remote_state ();
851 struct remote_arch_state *rsa = get_remote_arch_state ();
852
853 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
854 law?) that some hosts don't cope very well with large alloca()
855 calls. Eventually the alloca() code will be replaced by calls to
856 xmalloc() and make_cleanups() allowing this restriction to either
857 be lifted or removed. */
858 #ifndef MAX_REMOTE_PACKET_SIZE
859 #define MAX_REMOTE_PACKET_SIZE 16384
860 #endif
861 /* NOTE: 20 ensures we can write at least one byte. */
862 #ifndef MIN_REMOTE_PACKET_SIZE
863 #define MIN_REMOTE_PACKET_SIZE 20
864 #endif
865 long what_they_get;
866 if (config->fixed_p)
867 {
868 if (config->size <= 0)
869 what_they_get = MAX_REMOTE_PACKET_SIZE;
870 else
871 what_they_get = config->size;
872 }
873 else
874 {
875 what_they_get = get_remote_packet_size ();
876 /* Limit the packet to the size specified by the user. */
877 if (config->size > 0
878 && what_they_get > config->size)
879 what_they_get = config->size;
880
881 /* Limit it to the size of the targets ``g'' response unless we have
882 permission from the stub to use a larger packet size. */
883 if (rs->explicit_packet_size == 0
884 && rsa->actual_register_packet_size > 0
885 && what_they_get > rsa->actual_register_packet_size)
886 what_they_get = rsa->actual_register_packet_size;
887 }
888 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
889 what_they_get = MAX_REMOTE_PACKET_SIZE;
890 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
891 what_they_get = MIN_REMOTE_PACKET_SIZE;
892
893 /* Make sure there is room in the global buffer for this packet
894 (including its trailing NUL byte). */
895 if (rs->buf_size < what_they_get + 1)
896 {
897 rs->buf_size = 2 * what_they_get;
898 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
899 }
900
901 return what_they_get;
902 }
903
904 /* Update the size of a read/write packet. If they user wants
905 something really big then do a sanity check. */
906
907 static void
908 set_memory_packet_size (char *args, struct memory_packet_config *config)
909 {
910 int fixed_p = config->fixed_p;
911 long size = config->size;
912
913 if (args == NULL)
914 error (_("Argument required (integer, `fixed' or `limited')."));
915 else if (strcmp (args, "hard") == 0
916 || strcmp (args, "fixed") == 0)
917 fixed_p = 1;
918 else if (strcmp (args, "soft") == 0
919 || strcmp (args, "limit") == 0)
920 fixed_p = 0;
921 else
922 {
923 char *end;
924
925 size = strtoul (args, &end, 0);
926 if (args == end)
927 error (_("Invalid %s (bad syntax)."), config->name);
928 #if 0
929 /* Instead of explicitly capping the size of a packet to
930 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
931 instead allowed to set the size to something arbitrarily
932 large. */
933 if (size > MAX_REMOTE_PACKET_SIZE)
934 error (_("Invalid %s (too large)."), config->name);
935 #endif
936 }
937 /* Extra checks? */
938 if (fixed_p && !config->fixed_p)
939 {
940 if (! query (_("The target may not be able to correctly handle a %s\n"
941 "of %ld bytes. Change the packet size? "),
942 config->name, size))
943 error (_("Packet size not changed."));
944 }
945 /* Update the config. */
946 config->fixed_p = fixed_p;
947 config->size = size;
948 }
949
950 static void
951 show_memory_packet_size (struct memory_packet_config *config)
952 {
953 printf_filtered (_("The %s is %ld. "), config->name, config->size);
954 if (config->fixed_p)
955 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
956 get_memory_packet_size (config));
957 else
958 printf_filtered (_("Packets are limited to %ld bytes.\n"),
959 get_memory_packet_size (config));
960 }
961
962 static struct memory_packet_config memory_write_packet_config =
963 {
964 "memory-write-packet-size",
965 };
966
967 static void
968 set_memory_write_packet_size (char *args, int from_tty)
969 {
970 set_memory_packet_size (args, &memory_write_packet_config);
971 }
972
973 static void
974 show_memory_write_packet_size (char *args, int from_tty)
975 {
976 show_memory_packet_size (&memory_write_packet_config);
977 }
978
979 static long
980 get_memory_write_packet_size (void)
981 {
982 return get_memory_packet_size (&memory_write_packet_config);
983 }
984
985 static struct memory_packet_config memory_read_packet_config =
986 {
987 "memory-read-packet-size",
988 };
989
990 static void
991 set_memory_read_packet_size (char *args, int from_tty)
992 {
993 set_memory_packet_size (args, &memory_read_packet_config);
994 }
995
996 static void
997 show_memory_read_packet_size (char *args, int from_tty)
998 {
999 show_memory_packet_size (&memory_read_packet_config);
1000 }
1001
1002 static long
1003 get_memory_read_packet_size (void)
1004 {
1005 long size = get_memory_packet_size (&memory_read_packet_config);
1006
1007 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1008 extra buffer size argument before the memory read size can be
1009 increased beyond this. */
1010 if (size > get_remote_packet_size ())
1011 size = get_remote_packet_size ();
1012 return size;
1013 }
1014
1015 \f
1016 /* Generic configuration support for packets the stub optionally
1017 supports. Allows the user to specify the use of the packet as well
1018 as allowing GDB to auto-detect support in the remote stub. */
1019
1020 enum packet_support
1021 {
1022 PACKET_SUPPORT_UNKNOWN = 0,
1023 PACKET_ENABLE,
1024 PACKET_DISABLE
1025 };
1026
1027 struct packet_config
1028 {
1029 const char *name;
1030 const char *title;
1031 enum auto_boolean detect;
1032 enum packet_support support;
1033 };
1034
1035 /* Analyze a packet's return value and update the packet config
1036 accordingly. */
1037
1038 enum packet_result
1039 {
1040 PACKET_ERROR,
1041 PACKET_OK,
1042 PACKET_UNKNOWN
1043 };
1044
1045 static void
1046 update_packet_config (struct packet_config *config)
1047 {
1048 switch (config->detect)
1049 {
1050 case AUTO_BOOLEAN_TRUE:
1051 config->support = PACKET_ENABLE;
1052 break;
1053 case AUTO_BOOLEAN_FALSE:
1054 config->support = PACKET_DISABLE;
1055 break;
1056 case AUTO_BOOLEAN_AUTO:
1057 config->support = PACKET_SUPPORT_UNKNOWN;
1058 break;
1059 }
1060 }
1061
1062 static void
1063 show_packet_config_cmd (struct packet_config *config)
1064 {
1065 char *support = "internal-error";
1066
1067 switch (config->support)
1068 {
1069 case PACKET_ENABLE:
1070 support = "enabled";
1071 break;
1072 case PACKET_DISABLE:
1073 support = "disabled";
1074 break;
1075 case PACKET_SUPPORT_UNKNOWN:
1076 support = "unknown";
1077 break;
1078 }
1079 switch (config->detect)
1080 {
1081 case AUTO_BOOLEAN_AUTO:
1082 printf_filtered (_("Support for the `%s' packet "
1083 "is auto-detected, currently %s.\n"),
1084 config->name, support);
1085 break;
1086 case AUTO_BOOLEAN_TRUE:
1087 case AUTO_BOOLEAN_FALSE:
1088 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1089 config->name, support);
1090 break;
1091 }
1092 }
1093
1094 static void
1095 add_packet_config_cmd (struct packet_config *config, const char *name,
1096 const char *title, int legacy)
1097 {
1098 char *set_doc;
1099 char *show_doc;
1100 char *cmd_name;
1101
1102 config->name = name;
1103 config->title = title;
1104 config->detect = AUTO_BOOLEAN_AUTO;
1105 config->support = PACKET_SUPPORT_UNKNOWN;
1106 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1107 name, title);
1108 show_doc = xstrprintf ("Show current use of remote "
1109 "protocol `%s' (%s) packet",
1110 name, title);
1111 /* set/show TITLE-packet {auto,on,off} */
1112 cmd_name = xstrprintf ("%s-packet", title);
1113 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1114 &config->detect, set_doc,
1115 show_doc, NULL, /* help_doc */
1116 set_remote_protocol_packet_cmd,
1117 show_remote_protocol_packet_cmd,
1118 &remote_set_cmdlist, &remote_show_cmdlist);
1119 /* The command code copies the documentation strings. */
1120 xfree (set_doc);
1121 xfree (show_doc);
1122 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1123 if (legacy)
1124 {
1125 char *legacy_name;
1126
1127 legacy_name = xstrprintf ("%s-packet", name);
1128 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1129 &remote_set_cmdlist);
1130 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1131 &remote_show_cmdlist);
1132 }
1133 }
1134
1135 static enum packet_result
1136 packet_check_result (const char *buf)
1137 {
1138 if (buf[0] != '\0')
1139 {
1140 /* The stub recognized the packet request. Check that the
1141 operation succeeded. */
1142 if (buf[0] == 'E'
1143 && isxdigit (buf[1]) && isxdigit (buf[2])
1144 && buf[3] == '\0')
1145 /* "Enn" - definitly an error. */
1146 return PACKET_ERROR;
1147
1148 /* Always treat "E." as an error. This will be used for
1149 more verbose error messages, such as E.memtypes. */
1150 if (buf[0] == 'E' && buf[1] == '.')
1151 return PACKET_ERROR;
1152
1153 /* The packet may or may not be OK. Just assume it is. */
1154 return PACKET_OK;
1155 }
1156 else
1157 /* The stub does not support the packet. */
1158 return PACKET_UNKNOWN;
1159 }
1160
1161 static enum packet_result
1162 packet_ok (const char *buf, struct packet_config *config)
1163 {
1164 enum packet_result result;
1165
1166 result = packet_check_result (buf);
1167 switch (result)
1168 {
1169 case PACKET_OK:
1170 case PACKET_ERROR:
1171 /* The stub recognized the packet request. */
1172 switch (config->support)
1173 {
1174 case PACKET_SUPPORT_UNKNOWN:
1175 if (remote_debug)
1176 fprintf_unfiltered (gdb_stdlog,
1177 "Packet %s (%s) is supported\n",
1178 config->name, config->title);
1179 config->support = PACKET_ENABLE;
1180 break;
1181 case PACKET_DISABLE:
1182 internal_error (__FILE__, __LINE__,
1183 _("packet_ok: attempt to use a disabled packet"));
1184 break;
1185 case PACKET_ENABLE:
1186 break;
1187 }
1188 break;
1189 case PACKET_UNKNOWN:
1190 /* The stub does not support the packet. */
1191 switch (config->support)
1192 {
1193 case PACKET_ENABLE:
1194 if (config->detect == AUTO_BOOLEAN_AUTO)
1195 /* If the stub previously indicated that the packet was
1196 supported then there is a protocol error.. */
1197 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1198 config->name, config->title);
1199 else
1200 /* The user set it wrong. */
1201 error (_("Enabled packet %s (%s) not recognized by stub"),
1202 config->name, config->title);
1203 break;
1204 case PACKET_SUPPORT_UNKNOWN:
1205 if (remote_debug)
1206 fprintf_unfiltered (gdb_stdlog,
1207 "Packet %s (%s) is NOT supported\n",
1208 config->name, config->title);
1209 config->support = PACKET_DISABLE;
1210 break;
1211 case PACKET_DISABLE:
1212 break;
1213 }
1214 break;
1215 }
1216
1217 return result;
1218 }
1219
1220 enum {
1221 PACKET_vCont = 0,
1222 PACKET_X,
1223 PACKET_qSymbol,
1224 PACKET_P,
1225 PACKET_p,
1226 PACKET_Z0,
1227 PACKET_Z1,
1228 PACKET_Z2,
1229 PACKET_Z3,
1230 PACKET_Z4,
1231 PACKET_vFile_open,
1232 PACKET_vFile_pread,
1233 PACKET_vFile_pwrite,
1234 PACKET_vFile_close,
1235 PACKET_vFile_unlink,
1236 PACKET_qXfer_auxv,
1237 PACKET_qXfer_features,
1238 PACKET_qXfer_libraries,
1239 PACKET_qXfer_memory_map,
1240 PACKET_qXfer_spu_read,
1241 PACKET_qXfer_spu_write,
1242 PACKET_qXfer_osdata,
1243 PACKET_qXfer_threads,
1244 PACKET_qXfer_statictrace_read,
1245 PACKET_qXfer_traceframe_info,
1246 PACKET_qGetTIBAddr,
1247 PACKET_qGetTLSAddr,
1248 PACKET_qSupported,
1249 PACKET_QPassSignals,
1250 PACKET_qSearch_memory,
1251 PACKET_vAttach,
1252 PACKET_vRun,
1253 PACKET_QStartNoAckMode,
1254 PACKET_vKill,
1255 PACKET_qXfer_siginfo_read,
1256 PACKET_qXfer_siginfo_write,
1257 PACKET_qAttached,
1258 PACKET_ConditionalTracepoints,
1259 PACKET_FastTracepoints,
1260 PACKET_StaticTracepoints,
1261 PACKET_bc,
1262 PACKET_bs,
1263 PACKET_TracepointSource,
1264 PACKET_QAllow,
1265 PACKET_qXfer_fdpic,
1266 PACKET_MAX
1267 };
1268
1269 static struct packet_config remote_protocol_packets[PACKET_MAX];
1270
1271 static void
1272 set_remote_protocol_packet_cmd (char *args, int from_tty,
1273 struct cmd_list_element *c)
1274 {
1275 struct packet_config *packet;
1276
1277 for (packet = remote_protocol_packets;
1278 packet < &remote_protocol_packets[PACKET_MAX];
1279 packet++)
1280 {
1281 if (&packet->detect == c->var)
1282 {
1283 update_packet_config (packet);
1284 return;
1285 }
1286 }
1287 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1288 c->name);
1289 }
1290
1291 static void
1292 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1293 struct cmd_list_element *c,
1294 const char *value)
1295 {
1296 struct packet_config *packet;
1297
1298 for (packet = remote_protocol_packets;
1299 packet < &remote_protocol_packets[PACKET_MAX];
1300 packet++)
1301 {
1302 if (&packet->detect == c->var)
1303 {
1304 show_packet_config_cmd (packet);
1305 return;
1306 }
1307 }
1308 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1309 c->name);
1310 }
1311
1312 /* Should we try one of the 'Z' requests? */
1313
1314 enum Z_packet_type
1315 {
1316 Z_PACKET_SOFTWARE_BP,
1317 Z_PACKET_HARDWARE_BP,
1318 Z_PACKET_WRITE_WP,
1319 Z_PACKET_READ_WP,
1320 Z_PACKET_ACCESS_WP,
1321 NR_Z_PACKET_TYPES
1322 };
1323
1324 /* For compatibility with older distributions. Provide a ``set remote
1325 Z-packet ...'' command that updates all the Z packet types. */
1326
1327 static enum auto_boolean remote_Z_packet_detect;
1328
1329 static void
1330 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1331 struct cmd_list_element *c)
1332 {
1333 int i;
1334
1335 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1336 {
1337 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1338 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1339 }
1340 }
1341
1342 static void
1343 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1344 struct cmd_list_element *c,
1345 const char *value)
1346 {
1347 int i;
1348
1349 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1350 {
1351 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1352 }
1353 }
1354
1355 /* Should we try the 'ThreadInfo' query packet?
1356
1357 This variable (NOT available to the user: auto-detect only!)
1358 determines whether GDB will use the new, simpler "ThreadInfo"
1359 query or the older, more complex syntax for thread queries.
1360 This is an auto-detect variable (set to true at each connect,
1361 and set to false when the target fails to recognize it). */
1362
1363 static int use_threadinfo_query;
1364 static int use_threadextra_query;
1365
1366 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1367 static struct async_signal_handler *sigint_remote_twice_token;
1368 static struct async_signal_handler *sigint_remote_token;
1369
1370 \f
1371 /* Asynchronous signal handle registered as event loop source for
1372 when we have pending events ready to be passed to the core. */
1373
1374 static struct async_event_handler *remote_async_inferior_event_token;
1375
1376 /* Asynchronous signal handle registered as event loop source for when
1377 the remote sent us a %Stop notification. The registered callback
1378 will do a vStopped sequence to pull the rest of the events out of
1379 the remote side into our event queue. */
1380
1381 static struct async_event_handler *remote_async_get_pending_events_token;
1382 \f
1383
1384 static ptid_t magic_null_ptid;
1385 static ptid_t not_sent_ptid;
1386 static ptid_t any_thread_ptid;
1387
1388 /* These are the threads which we last sent to the remote system. The
1389 TID member will be -1 for all or -2 for not sent yet. */
1390
1391 static ptid_t general_thread;
1392 static ptid_t continue_thread;
1393
1394 /* This the traceframe which we last selected on the remote system.
1395 It will be -1 if no traceframe is selected. */
1396 static int remote_traceframe_number = -1;
1397
1398 /* Find out if the stub attached to PID (and hence GDB should offer to
1399 detach instead of killing it when bailing out). */
1400
1401 static int
1402 remote_query_attached (int pid)
1403 {
1404 struct remote_state *rs = get_remote_state ();
1405
1406 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1407 return 0;
1408
1409 if (remote_multi_process_p (rs))
1410 sprintf (rs->buf, "qAttached:%x", pid);
1411 else
1412 sprintf (rs->buf, "qAttached");
1413
1414 putpkt (rs->buf);
1415 getpkt (&rs->buf, &rs->buf_size, 0);
1416
1417 switch (packet_ok (rs->buf,
1418 &remote_protocol_packets[PACKET_qAttached]))
1419 {
1420 case PACKET_OK:
1421 if (strcmp (rs->buf, "1") == 0)
1422 return 1;
1423 break;
1424 case PACKET_ERROR:
1425 warning (_("Remote failure reply: %s"), rs->buf);
1426 break;
1427 case PACKET_UNKNOWN:
1428 break;
1429 }
1430
1431 return 0;
1432 }
1433
1434 /* Add PID to GDB's inferior table. Since we can be connected to a
1435 remote system before before knowing about any inferior, mark the
1436 target with execution when we find the first inferior. If ATTACHED
1437 is 1, then we had just attached to this inferior. If it is 0, then
1438 we just created this inferior. If it is -1, then try querying the
1439 remote stub to find out if it had attached to the inferior or
1440 not. */
1441
1442 static struct inferior *
1443 remote_add_inferior (int pid, int attached)
1444 {
1445 struct inferior *inf;
1446
1447 /* Check whether this process we're learning about is to be
1448 considered attached, or if is to be considered to have been
1449 spawned by the stub. */
1450 if (attached == -1)
1451 attached = remote_query_attached (pid);
1452
1453 if (gdbarch_has_global_solist (target_gdbarch))
1454 {
1455 /* If the target shares code across all inferiors, then every
1456 attach adds a new inferior. */
1457 inf = add_inferior (pid);
1458
1459 /* ... and every inferior is bound to the same program space.
1460 However, each inferior may still have its own address
1461 space. */
1462 inf->aspace = maybe_new_address_space ();
1463 inf->pspace = current_program_space;
1464 }
1465 else
1466 {
1467 /* In the traditional debugging scenario, there's a 1-1 match
1468 between program/address spaces. We simply bind the inferior
1469 to the program space's address space. */
1470 inf = current_inferior ();
1471 inferior_appeared (inf, pid);
1472 }
1473
1474 inf->attach_flag = attached;
1475
1476 return inf;
1477 }
1478
1479 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1480 according to RUNNING. */
1481
1482 static void
1483 remote_add_thread (ptid_t ptid, int running)
1484 {
1485 add_thread (ptid);
1486
1487 set_executing (ptid, running);
1488 set_running (ptid, running);
1489 }
1490
1491 /* Come here when we learn about a thread id from the remote target.
1492 It may be the first time we hear about such thread, so take the
1493 opportunity to add it to GDB's thread list. In case this is the
1494 first time we're noticing its corresponding inferior, add it to
1495 GDB's inferior list as well. */
1496
1497 static void
1498 remote_notice_new_inferior (ptid_t currthread, int running)
1499 {
1500 /* If this is a new thread, add it to GDB's thread list.
1501 If we leave it up to WFI to do this, bad things will happen. */
1502
1503 if (in_thread_list (currthread) && is_exited (currthread))
1504 {
1505 /* We're seeing an event on a thread id we knew had exited.
1506 This has to be a new thread reusing the old id. Add it. */
1507 remote_add_thread (currthread, running);
1508 return;
1509 }
1510
1511 if (!in_thread_list (currthread))
1512 {
1513 struct inferior *inf = NULL;
1514 int pid = ptid_get_pid (currthread);
1515
1516 if (ptid_is_pid (inferior_ptid)
1517 && pid == ptid_get_pid (inferior_ptid))
1518 {
1519 /* inferior_ptid has no thread member yet. This can happen
1520 with the vAttach -> remote_wait,"TAAthread:" path if the
1521 stub doesn't support qC. This is the first stop reported
1522 after an attach, so this is the main thread. Update the
1523 ptid in the thread list. */
1524 if (in_thread_list (pid_to_ptid (pid)))
1525 thread_change_ptid (inferior_ptid, currthread);
1526 else
1527 {
1528 remote_add_thread (currthread, running);
1529 inferior_ptid = currthread;
1530 }
1531 return;
1532 }
1533
1534 if (ptid_equal (magic_null_ptid, inferior_ptid))
1535 {
1536 /* inferior_ptid is not set yet. This can happen with the
1537 vRun -> remote_wait,"TAAthread:" path if the stub
1538 doesn't support qC. This is the first stop reported
1539 after an attach, so this is the main thread. Update the
1540 ptid in the thread list. */
1541 thread_change_ptid (inferior_ptid, currthread);
1542 return;
1543 }
1544
1545 /* When connecting to a target remote, or to a target
1546 extended-remote which already was debugging an inferior, we
1547 may not know about it yet. Add it before adding its child
1548 thread, so notifications are emitted in a sensible order. */
1549 if (!in_inferior_list (ptid_get_pid (currthread)))
1550 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1551
1552 /* This is really a new thread. Add it. */
1553 remote_add_thread (currthread, running);
1554
1555 /* If we found a new inferior, let the common code do whatever
1556 it needs to with it (e.g., read shared libraries, insert
1557 breakpoints). */
1558 if (inf != NULL)
1559 notice_new_inferior (currthread, running, 0);
1560 }
1561 }
1562
1563 /* Return the private thread data, creating it if necessary. */
1564
1565 struct private_thread_info *
1566 demand_private_info (ptid_t ptid)
1567 {
1568 struct thread_info *info = find_thread_ptid (ptid);
1569
1570 gdb_assert (info);
1571
1572 if (!info->private)
1573 {
1574 info->private = xmalloc (sizeof (*(info->private)));
1575 info->private_dtor = free_private_thread_info;
1576 info->private->core = -1;
1577 info->private->extra = 0;
1578 }
1579
1580 return info->private;
1581 }
1582
1583 /* Call this function as a result of
1584 1) A halt indication (T packet) containing a thread id
1585 2) A direct query of currthread
1586 3) Successful execution of set thread */
1587
1588 static void
1589 record_currthread (ptid_t currthread)
1590 {
1591 general_thread = currthread;
1592 }
1593
1594 static char *last_pass_packet;
1595
1596 /* If 'QPassSignals' is supported, tell the remote stub what signals
1597 it can simply pass through to the inferior without reporting. */
1598
1599 static void
1600 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1601 {
1602 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1603 {
1604 char *pass_packet, *p;
1605 int count = 0, i;
1606
1607 gdb_assert (numsigs < 256);
1608 for (i = 0; i < numsigs; i++)
1609 {
1610 if (pass_signals[i])
1611 count++;
1612 }
1613 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1614 strcpy (pass_packet, "QPassSignals:");
1615 p = pass_packet + strlen (pass_packet);
1616 for (i = 0; i < numsigs; i++)
1617 {
1618 if (pass_signals[i])
1619 {
1620 if (i >= 16)
1621 *p++ = tohex (i >> 4);
1622 *p++ = tohex (i & 15);
1623 if (count)
1624 *p++ = ';';
1625 else
1626 break;
1627 count--;
1628 }
1629 }
1630 *p = 0;
1631 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1632 {
1633 struct remote_state *rs = get_remote_state ();
1634 char *buf = rs->buf;
1635
1636 putpkt (pass_packet);
1637 getpkt (&rs->buf, &rs->buf_size, 0);
1638 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1639 if (last_pass_packet)
1640 xfree (last_pass_packet);
1641 last_pass_packet = pass_packet;
1642 }
1643 else
1644 xfree (pass_packet);
1645 }
1646 }
1647
1648 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1649 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1650 thread. If GEN is set, set the general thread, if not, then set
1651 the step/continue thread. */
1652 static void
1653 set_thread (struct ptid ptid, int gen)
1654 {
1655 struct remote_state *rs = get_remote_state ();
1656 ptid_t state = gen ? general_thread : continue_thread;
1657 char *buf = rs->buf;
1658 char *endbuf = rs->buf + get_remote_packet_size ();
1659
1660 if (ptid_equal (state, ptid))
1661 return;
1662
1663 *buf++ = 'H';
1664 *buf++ = gen ? 'g' : 'c';
1665 if (ptid_equal (ptid, magic_null_ptid))
1666 xsnprintf (buf, endbuf - buf, "0");
1667 else if (ptid_equal (ptid, any_thread_ptid))
1668 xsnprintf (buf, endbuf - buf, "0");
1669 else if (ptid_equal (ptid, minus_one_ptid))
1670 xsnprintf (buf, endbuf - buf, "-1");
1671 else
1672 write_ptid (buf, endbuf, ptid);
1673 putpkt (rs->buf);
1674 getpkt (&rs->buf, &rs->buf_size, 0);
1675 if (gen)
1676 general_thread = ptid;
1677 else
1678 continue_thread = ptid;
1679 }
1680
1681 static void
1682 set_general_thread (struct ptid ptid)
1683 {
1684 set_thread (ptid, 1);
1685 }
1686
1687 static void
1688 set_continue_thread (struct ptid ptid)
1689 {
1690 set_thread (ptid, 0);
1691 }
1692
1693 /* Change the remote current process. Which thread within the process
1694 ends up selected isn't important, as long as it is the same process
1695 as what INFERIOR_PTID points to.
1696
1697 This comes from that fact that there is no explicit notion of
1698 "selected process" in the protocol. The selected process for
1699 general operations is the process the selected general thread
1700 belongs to. */
1701
1702 static void
1703 set_general_process (void)
1704 {
1705 struct remote_state *rs = get_remote_state ();
1706
1707 /* If the remote can't handle multiple processes, don't bother. */
1708 if (!remote_multi_process_p (rs))
1709 return;
1710
1711 /* We only need to change the remote current thread if it's pointing
1712 at some other process. */
1713 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1714 set_general_thread (inferior_ptid);
1715 }
1716
1717 \f
1718 /* Return nonzero if the thread PTID is still alive on the remote
1719 system. */
1720
1721 static int
1722 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1723 {
1724 struct remote_state *rs = get_remote_state ();
1725 char *p, *endp;
1726
1727 if (ptid_equal (ptid, magic_null_ptid))
1728 /* The main thread is always alive. */
1729 return 1;
1730
1731 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1732 /* The main thread is always alive. This can happen after a
1733 vAttach, if the remote side doesn't support
1734 multi-threading. */
1735 return 1;
1736
1737 p = rs->buf;
1738 endp = rs->buf + get_remote_packet_size ();
1739
1740 *p++ = 'T';
1741 write_ptid (p, endp, ptid);
1742
1743 putpkt (rs->buf);
1744 getpkt (&rs->buf, &rs->buf_size, 0);
1745 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1746 }
1747
1748 /* About these extended threadlist and threadinfo packets. They are
1749 variable length packets but, the fields within them are often fixed
1750 length. They are redundent enough to send over UDP as is the
1751 remote protocol in general. There is a matching unit test module
1752 in libstub. */
1753
1754 #define OPAQUETHREADBYTES 8
1755
1756 /* a 64 bit opaque identifier */
1757 typedef unsigned char threadref[OPAQUETHREADBYTES];
1758
1759 /* WARNING: This threadref data structure comes from the remote O.S.,
1760 libstub protocol encoding, and remote.c. It is not particularly
1761 changable. */
1762
1763 /* Right now, the internal structure is int. We want it to be bigger.
1764 Plan to fix this. */
1765
1766 typedef int gdb_threadref; /* Internal GDB thread reference. */
1767
1768 /* gdb_ext_thread_info is an internal GDB data structure which is
1769 equivalent to the reply of the remote threadinfo packet. */
1770
1771 struct gdb_ext_thread_info
1772 {
1773 threadref threadid; /* External form of thread reference. */
1774 int active; /* Has state interesting to GDB?
1775 regs, stack. */
1776 char display[256]; /* Brief state display, name,
1777 blocked/suspended. */
1778 char shortname[32]; /* To be used to name threads. */
1779 char more_display[256]; /* Long info, statistics, queue depth,
1780 whatever. */
1781 };
1782
1783 /* The volume of remote transfers can be limited by submitting
1784 a mask containing bits specifying the desired information.
1785 Use a union of these values as the 'selection' parameter to
1786 get_thread_info. FIXME: Make these TAG names more thread specific. */
1787
1788 #define TAG_THREADID 1
1789 #define TAG_EXISTS 2
1790 #define TAG_DISPLAY 4
1791 #define TAG_THREADNAME 8
1792 #define TAG_MOREDISPLAY 16
1793
1794 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1795
1796 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1797
1798 static char *unpack_nibble (char *buf, int *val);
1799
1800 static char *pack_nibble (char *buf, int nibble);
1801
1802 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1803
1804 static char *unpack_byte (char *buf, int *value);
1805
1806 static char *pack_int (char *buf, int value);
1807
1808 static char *unpack_int (char *buf, int *value);
1809
1810 static char *unpack_string (char *src, char *dest, int length);
1811
1812 static char *pack_threadid (char *pkt, threadref *id);
1813
1814 static char *unpack_threadid (char *inbuf, threadref *id);
1815
1816 void int_to_threadref (threadref *id, int value);
1817
1818 static int threadref_to_int (threadref *ref);
1819
1820 static void copy_threadref (threadref *dest, threadref *src);
1821
1822 static int threadmatch (threadref *dest, threadref *src);
1823
1824 static char *pack_threadinfo_request (char *pkt, int mode,
1825 threadref *id);
1826
1827 static int remote_unpack_thread_info_response (char *pkt,
1828 threadref *expectedref,
1829 struct gdb_ext_thread_info
1830 *info);
1831
1832
1833 static int remote_get_threadinfo (threadref *threadid,
1834 int fieldset, /*TAG mask */
1835 struct gdb_ext_thread_info *info);
1836
1837 static char *pack_threadlist_request (char *pkt, int startflag,
1838 int threadcount,
1839 threadref *nextthread);
1840
1841 static int parse_threadlist_response (char *pkt,
1842 int result_limit,
1843 threadref *original_echo,
1844 threadref *resultlist,
1845 int *doneflag);
1846
1847 static int remote_get_threadlist (int startflag,
1848 threadref *nextthread,
1849 int result_limit,
1850 int *done,
1851 int *result_count,
1852 threadref *threadlist);
1853
1854 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1855
1856 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1857 void *context, int looplimit);
1858
1859 static int remote_newthread_step (threadref *ref, void *context);
1860
1861
1862 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1863 buffer we're allowed to write to. Returns
1864 BUF+CHARACTERS_WRITTEN. */
1865
1866 static char *
1867 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1868 {
1869 int pid, tid;
1870 struct remote_state *rs = get_remote_state ();
1871
1872 if (remote_multi_process_p (rs))
1873 {
1874 pid = ptid_get_pid (ptid);
1875 if (pid < 0)
1876 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1877 else
1878 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1879 }
1880 tid = ptid_get_tid (ptid);
1881 if (tid < 0)
1882 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1883 else
1884 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1885
1886 return buf;
1887 }
1888
1889 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1890 passed the last parsed char. Returns null_ptid on error. */
1891
1892 static ptid_t
1893 read_ptid (char *buf, char **obuf)
1894 {
1895 char *p = buf;
1896 char *pp;
1897 ULONGEST pid = 0, tid = 0;
1898
1899 if (*p == 'p')
1900 {
1901 /* Multi-process ptid. */
1902 pp = unpack_varlen_hex (p + 1, &pid);
1903 if (*pp != '.')
1904 error (_("invalid remote ptid: %s"), p);
1905
1906 p = pp;
1907 pp = unpack_varlen_hex (p + 1, &tid);
1908 if (obuf)
1909 *obuf = pp;
1910 return ptid_build (pid, 0, tid);
1911 }
1912
1913 /* No multi-process. Just a tid. */
1914 pp = unpack_varlen_hex (p, &tid);
1915
1916 /* Since the stub is not sending a process id, then default to
1917 what's in inferior_ptid, unless it's null at this point. If so,
1918 then since there's no way to know the pid of the reported
1919 threads, use the magic number. */
1920 if (ptid_equal (inferior_ptid, null_ptid))
1921 pid = ptid_get_pid (magic_null_ptid);
1922 else
1923 pid = ptid_get_pid (inferior_ptid);
1924
1925 if (obuf)
1926 *obuf = pp;
1927 return ptid_build (pid, 0, tid);
1928 }
1929
1930 /* Encode 64 bits in 16 chars of hex. */
1931
1932 static const char hexchars[] = "0123456789abcdef";
1933
1934 static int
1935 ishex (int ch, int *val)
1936 {
1937 if ((ch >= 'a') && (ch <= 'f'))
1938 {
1939 *val = ch - 'a' + 10;
1940 return 1;
1941 }
1942 if ((ch >= 'A') && (ch <= 'F'))
1943 {
1944 *val = ch - 'A' + 10;
1945 return 1;
1946 }
1947 if ((ch >= '0') && (ch <= '9'))
1948 {
1949 *val = ch - '0';
1950 return 1;
1951 }
1952 return 0;
1953 }
1954
1955 static int
1956 stubhex (int ch)
1957 {
1958 if (ch >= 'a' && ch <= 'f')
1959 return ch - 'a' + 10;
1960 if (ch >= '0' && ch <= '9')
1961 return ch - '0';
1962 if (ch >= 'A' && ch <= 'F')
1963 return ch - 'A' + 10;
1964 return -1;
1965 }
1966
1967 static int
1968 stub_unpack_int (char *buff, int fieldlength)
1969 {
1970 int nibble;
1971 int retval = 0;
1972
1973 while (fieldlength)
1974 {
1975 nibble = stubhex (*buff++);
1976 retval |= nibble;
1977 fieldlength--;
1978 if (fieldlength)
1979 retval = retval << 4;
1980 }
1981 return retval;
1982 }
1983
1984 char *
1985 unpack_varlen_hex (char *buff, /* packet to parse */
1986 ULONGEST *result)
1987 {
1988 int nibble;
1989 ULONGEST retval = 0;
1990
1991 while (ishex (*buff, &nibble))
1992 {
1993 buff++;
1994 retval = retval << 4;
1995 retval |= nibble & 0x0f;
1996 }
1997 *result = retval;
1998 return buff;
1999 }
2000
2001 static char *
2002 unpack_nibble (char *buf, int *val)
2003 {
2004 *val = fromhex (*buf++);
2005 return buf;
2006 }
2007
2008 static char *
2009 pack_nibble (char *buf, int nibble)
2010 {
2011 *buf++ = hexchars[(nibble & 0x0f)];
2012 return buf;
2013 }
2014
2015 static char *
2016 pack_hex_byte (char *pkt, int byte)
2017 {
2018 *pkt++ = hexchars[(byte >> 4) & 0xf];
2019 *pkt++ = hexchars[(byte & 0xf)];
2020 return pkt;
2021 }
2022
2023 static char *
2024 unpack_byte (char *buf, int *value)
2025 {
2026 *value = stub_unpack_int (buf, 2);
2027 return buf + 2;
2028 }
2029
2030 static char *
2031 pack_int (char *buf, int value)
2032 {
2033 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2034 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2035 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2036 buf = pack_hex_byte (buf, (value & 0xff));
2037 return buf;
2038 }
2039
2040 static char *
2041 unpack_int (char *buf, int *value)
2042 {
2043 *value = stub_unpack_int (buf, 8);
2044 return buf + 8;
2045 }
2046
2047 #if 0 /* Currently unused, uncomment when needed. */
2048 static char *pack_string (char *pkt, char *string);
2049
2050 static char *
2051 pack_string (char *pkt, char *string)
2052 {
2053 char ch;
2054 int len;
2055
2056 len = strlen (string);
2057 if (len > 200)
2058 len = 200; /* Bigger than most GDB packets, junk??? */
2059 pkt = pack_hex_byte (pkt, len);
2060 while (len-- > 0)
2061 {
2062 ch = *string++;
2063 if ((ch == '\0') || (ch == '#'))
2064 ch = '*'; /* Protect encapsulation. */
2065 *pkt++ = ch;
2066 }
2067 return pkt;
2068 }
2069 #endif /* 0 (unused) */
2070
2071 static char *
2072 unpack_string (char *src, char *dest, int length)
2073 {
2074 while (length--)
2075 *dest++ = *src++;
2076 *dest = '\0';
2077 return src;
2078 }
2079
2080 static char *
2081 pack_threadid (char *pkt, threadref *id)
2082 {
2083 char *limit;
2084 unsigned char *altid;
2085
2086 altid = (unsigned char *) id;
2087 limit = pkt + BUF_THREAD_ID_SIZE;
2088 while (pkt < limit)
2089 pkt = pack_hex_byte (pkt, *altid++);
2090 return pkt;
2091 }
2092
2093
2094 static char *
2095 unpack_threadid (char *inbuf, threadref *id)
2096 {
2097 char *altref;
2098 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2099 int x, y;
2100
2101 altref = (char *) id;
2102
2103 while (inbuf < limit)
2104 {
2105 x = stubhex (*inbuf++);
2106 y = stubhex (*inbuf++);
2107 *altref++ = (x << 4) | y;
2108 }
2109 return inbuf;
2110 }
2111
2112 /* Externally, threadrefs are 64 bits but internally, they are still
2113 ints. This is due to a mismatch of specifications. We would like
2114 to use 64bit thread references internally. This is an adapter
2115 function. */
2116
2117 void
2118 int_to_threadref (threadref *id, int value)
2119 {
2120 unsigned char *scan;
2121
2122 scan = (unsigned char *) id;
2123 {
2124 int i = 4;
2125 while (i--)
2126 *scan++ = 0;
2127 }
2128 *scan++ = (value >> 24) & 0xff;
2129 *scan++ = (value >> 16) & 0xff;
2130 *scan++ = (value >> 8) & 0xff;
2131 *scan++ = (value & 0xff);
2132 }
2133
2134 static int
2135 threadref_to_int (threadref *ref)
2136 {
2137 int i, value = 0;
2138 unsigned char *scan;
2139
2140 scan = *ref;
2141 scan += 4;
2142 i = 4;
2143 while (i-- > 0)
2144 value = (value << 8) | ((*scan++) & 0xff);
2145 return value;
2146 }
2147
2148 static void
2149 copy_threadref (threadref *dest, threadref *src)
2150 {
2151 int i;
2152 unsigned char *csrc, *cdest;
2153
2154 csrc = (unsigned char *) src;
2155 cdest = (unsigned char *) dest;
2156 i = 8;
2157 while (i--)
2158 *cdest++ = *csrc++;
2159 }
2160
2161 static int
2162 threadmatch (threadref *dest, threadref *src)
2163 {
2164 /* Things are broken right now, so just assume we got a match. */
2165 #if 0
2166 unsigned char *srcp, *destp;
2167 int i, result;
2168 srcp = (char *) src;
2169 destp = (char *) dest;
2170
2171 result = 1;
2172 while (i-- > 0)
2173 result &= (*srcp++ == *destp++) ? 1 : 0;
2174 return result;
2175 #endif
2176 return 1;
2177 }
2178
2179 /*
2180 threadid:1, # always request threadid
2181 context_exists:2,
2182 display:4,
2183 unique_name:8,
2184 more_display:16
2185 */
2186
2187 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2188
2189 static char *
2190 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2191 {
2192 *pkt++ = 'q'; /* Info Query */
2193 *pkt++ = 'P'; /* process or thread info */
2194 pkt = pack_int (pkt, mode); /* mode */
2195 pkt = pack_threadid (pkt, id); /* threadid */
2196 *pkt = '\0'; /* terminate */
2197 return pkt;
2198 }
2199
2200 /* These values tag the fields in a thread info response packet. */
2201 /* Tagging the fields allows us to request specific fields and to
2202 add more fields as time goes by. */
2203
2204 #define TAG_THREADID 1 /* Echo the thread identifier. */
2205 #define TAG_EXISTS 2 /* Is this process defined enough to
2206 fetch registers and its stack? */
2207 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2208 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2209 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2210 the process. */
2211
2212 static int
2213 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2214 struct gdb_ext_thread_info *info)
2215 {
2216 struct remote_state *rs = get_remote_state ();
2217 int mask, length;
2218 int tag;
2219 threadref ref;
2220 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2221 int retval = 1;
2222
2223 /* info->threadid = 0; FIXME: implement zero_threadref. */
2224 info->active = 0;
2225 info->display[0] = '\0';
2226 info->shortname[0] = '\0';
2227 info->more_display[0] = '\0';
2228
2229 /* Assume the characters indicating the packet type have been
2230 stripped. */
2231 pkt = unpack_int (pkt, &mask); /* arg mask */
2232 pkt = unpack_threadid (pkt, &ref);
2233
2234 if (mask == 0)
2235 warning (_("Incomplete response to threadinfo request."));
2236 if (!threadmatch (&ref, expectedref))
2237 { /* This is an answer to a different request. */
2238 warning (_("ERROR RMT Thread info mismatch."));
2239 return 0;
2240 }
2241 copy_threadref (&info->threadid, &ref);
2242
2243 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2244
2245 /* Packets are terminated with nulls. */
2246 while ((pkt < limit) && mask && *pkt)
2247 {
2248 pkt = unpack_int (pkt, &tag); /* tag */
2249 pkt = unpack_byte (pkt, &length); /* length */
2250 if (!(tag & mask)) /* Tags out of synch with mask. */
2251 {
2252 warning (_("ERROR RMT: threadinfo tag mismatch."));
2253 retval = 0;
2254 break;
2255 }
2256 if (tag == TAG_THREADID)
2257 {
2258 if (length != 16)
2259 {
2260 warning (_("ERROR RMT: length of threadid is not 16."));
2261 retval = 0;
2262 break;
2263 }
2264 pkt = unpack_threadid (pkt, &ref);
2265 mask = mask & ~TAG_THREADID;
2266 continue;
2267 }
2268 if (tag == TAG_EXISTS)
2269 {
2270 info->active = stub_unpack_int (pkt, length);
2271 pkt += length;
2272 mask = mask & ~(TAG_EXISTS);
2273 if (length > 8)
2274 {
2275 warning (_("ERROR RMT: 'exists' length too long."));
2276 retval = 0;
2277 break;
2278 }
2279 continue;
2280 }
2281 if (tag == TAG_THREADNAME)
2282 {
2283 pkt = unpack_string (pkt, &info->shortname[0], length);
2284 mask = mask & ~TAG_THREADNAME;
2285 continue;
2286 }
2287 if (tag == TAG_DISPLAY)
2288 {
2289 pkt = unpack_string (pkt, &info->display[0], length);
2290 mask = mask & ~TAG_DISPLAY;
2291 continue;
2292 }
2293 if (tag == TAG_MOREDISPLAY)
2294 {
2295 pkt = unpack_string (pkt, &info->more_display[0], length);
2296 mask = mask & ~TAG_MOREDISPLAY;
2297 continue;
2298 }
2299 warning (_("ERROR RMT: unknown thread info tag."));
2300 break; /* Not a tag we know about. */
2301 }
2302 return retval;
2303 }
2304
2305 static int
2306 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2307 struct gdb_ext_thread_info *info)
2308 {
2309 struct remote_state *rs = get_remote_state ();
2310 int result;
2311
2312 pack_threadinfo_request (rs->buf, fieldset, threadid);
2313 putpkt (rs->buf);
2314 getpkt (&rs->buf, &rs->buf_size, 0);
2315
2316 if (rs->buf[0] == '\0')
2317 return 0;
2318
2319 result = remote_unpack_thread_info_response (rs->buf + 2,
2320 threadid, info);
2321 return result;
2322 }
2323
2324 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2325
2326 static char *
2327 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2328 threadref *nextthread)
2329 {
2330 *pkt++ = 'q'; /* info query packet */
2331 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2332 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2333 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2334 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2335 *pkt = '\0';
2336 return pkt;
2337 }
2338
2339 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2340
2341 static int
2342 parse_threadlist_response (char *pkt, int result_limit,
2343 threadref *original_echo, threadref *resultlist,
2344 int *doneflag)
2345 {
2346 struct remote_state *rs = get_remote_state ();
2347 char *limit;
2348 int count, resultcount, done;
2349
2350 resultcount = 0;
2351 /* Assume the 'q' and 'M chars have been stripped. */
2352 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2353 /* done parse past here */
2354 pkt = unpack_byte (pkt, &count); /* count field */
2355 pkt = unpack_nibble (pkt, &done);
2356 /* The first threadid is the argument threadid. */
2357 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2358 while ((count-- > 0) && (pkt < limit))
2359 {
2360 pkt = unpack_threadid (pkt, resultlist++);
2361 if (resultcount++ >= result_limit)
2362 break;
2363 }
2364 if (doneflag)
2365 *doneflag = done;
2366 return resultcount;
2367 }
2368
2369 static int
2370 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2371 int *done, int *result_count, threadref *threadlist)
2372 {
2373 struct remote_state *rs = get_remote_state ();
2374 static threadref echo_nextthread;
2375 int result = 1;
2376
2377 /* Trancate result limit to be smaller than the packet size. */
2378 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2379 >= get_remote_packet_size ())
2380 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2381
2382 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2383 putpkt (rs->buf);
2384 getpkt (&rs->buf, &rs->buf_size, 0);
2385
2386 if (*rs->buf == '\0')
2387 return 0;
2388 else
2389 *result_count =
2390 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2391 threadlist, done);
2392
2393 if (!threadmatch (&echo_nextthread, nextthread))
2394 {
2395 /* FIXME: This is a good reason to drop the packet. */
2396 /* Possably, there is a duplicate response. */
2397 /* Possabilities :
2398 retransmit immediatly - race conditions
2399 retransmit after timeout - yes
2400 exit
2401 wait for packet, then exit
2402 */
2403 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2404 return 0; /* I choose simply exiting. */
2405 }
2406 if (*result_count <= 0)
2407 {
2408 if (*done != 1)
2409 {
2410 warning (_("RMT ERROR : failed to get remote thread list."));
2411 result = 0;
2412 }
2413 return result; /* break; */
2414 }
2415 if (*result_count > result_limit)
2416 {
2417 *result_count = 0;
2418 warning (_("RMT ERROR: threadlist response longer than requested."));
2419 return 0;
2420 }
2421 return result;
2422 }
2423
2424 /* This is the interface between remote and threads, remotes upper
2425 interface. */
2426
2427 /* remote_find_new_threads retrieves the thread list and for each
2428 thread in the list, looks up the thread in GDB's internal list,
2429 adding the thread if it does not already exist. This involves
2430 getting partial thread lists from the remote target so, polling the
2431 quit_flag is required. */
2432
2433
2434 /* About this many threadisds fit in a packet. */
2435
2436 #define MAXTHREADLISTRESULTS 32
2437
2438 static int
2439 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2440 int looplimit)
2441 {
2442 int done, i, result_count;
2443 int startflag = 1;
2444 int result = 1;
2445 int loopcount = 0;
2446 static threadref nextthread;
2447 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2448
2449 done = 0;
2450 while (!done)
2451 {
2452 if (loopcount++ > looplimit)
2453 {
2454 result = 0;
2455 warning (_("Remote fetch threadlist -infinite loop-."));
2456 break;
2457 }
2458 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2459 &done, &result_count, resultthreadlist))
2460 {
2461 result = 0;
2462 break;
2463 }
2464 /* Clear for later iterations. */
2465 startflag = 0;
2466 /* Setup to resume next batch of thread references, set nextthread. */
2467 if (result_count >= 1)
2468 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2469 i = 0;
2470 while (result_count--)
2471 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2472 break;
2473 }
2474 return result;
2475 }
2476
2477 static int
2478 remote_newthread_step (threadref *ref, void *context)
2479 {
2480 int pid = ptid_get_pid (inferior_ptid);
2481 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2482
2483 if (!in_thread_list (ptid))
2484 add_thread (ptid);
2485 return 1; /* continue iterator */
2486 }
2487
2488 #define CRAZY_MAX_THREADS 1000
2489
2490 static ptid_t
2491 remote_current_thread (ptid_t oldpid)
2492 {
2493 struct remote_state *rs = get_remote_state ();
2494
2495 putpkt ("qC");
2496 getpkt (&rs->buf, &rs->buf_size, 0);
2497 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2498 return read_ptid (&rs->buf[2], NULL);
2499 else
2500 return oldpid;
2501 }
2502
2503 /* Find new threads for info threads command.
2504 * Original version, using John Metzler's thread protocol.
2505 */
2506
2507 static void
2508 remote_find_new_threads (void)
2509 {
2510 remote_threadlist_iterator (remote_newthread_step, 0,
2511 CRAZY_MAX_THREADS);
2512 }
2513
2514 #if defined(HAVE_LIBEXPAT)
2515
2516 typedef struct thread_item
2517 {
2518 ptid_t ptid;
2519 char *extra;
2520 int core;
2521 } thread_item_t;
2522 DEF_VEC_O(thread_item_t);
2523
2524 struct threads_parsing_context
2525 {
2526 VEC (thread_item_t) *items;
2527 };
2528
2529 static void
2530 start_thread (struct gdb_xml_parser *parser,
2531 const struct gdb_xml_element *element,
2532 void *user_data, VEC(gdb_xml_value_s) *attributes)
2533 {
2534 struct threads_parsing_context *data = user_data;
2535
2536 struct thread_item item;
2537 char *id;
2538 struct gdb_xml_value *attr;
2539
2540 id = xml_find_attribute (attributes, "id")->value;
2541 item.ptid = read_ptid (id, NULL);
2542
2543 attr = xml_find_attribute (attributes, "core");
2544 if (attr != NULL)
2545 item.core = *(ULONGEST *) attr->value;
2546 else
2547 item.core = -1;
2548
2549 item.extra = 0;
2550
2551 VEC_safe_push (thread_item_t, data->items, &item);
2552 }
2553
2554 static void
2555 end_thread (struct gdb_xml_parser *parser,
2556 const struct gdb_xml_element *element,
2557 void *user_data, const char *body_text)
2558 {
2559 struct threads_parsing_context *data = user_data;
2560
2561 if (body_text && *body_text)
2562 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2563 }
2564
2565 const struct gdb_xml_attribute thread_attributes[] = {
2566 { "id", GDB_XML_AF_NONE, NULL, NULL },
2567 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2568 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2569 };
2570
2571 const struct gdb_xml_element thread_children[] = {
2572 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2573 };
2574
2575 const struct gdb_xml_element threads_children[] = {
2576 { "thread", thread_attributes, thread_children,
2577 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2578 start_thread, end_thread },
2579 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2580 };
2581
2582 const struct gdb_xml_element threads_elements[] = {
2583 { "threads", NULL, threads_children,
2584 GDB_XML_EF_NONE, NULL, NULL },
2585 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2586 };
2587
2588 /* Discard the contents of the constructed thread info context. */
2589
2590 static void
2591 clear_threads_parsing_context (void *p)
2592 {
2593 struct threads_parsing_context *context = p;
2594 int i;
2595 struct thread_item *item;
2596
2597 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2598 xfree (item->extra);
2599
2600 VEC_free (thread_item_t, context->items);
2601 }
2602
2603 #endif
2604
2605 /*
2606 * Find all threads for info threads command.
2607 * Uses new thread protocol contributed by Cisco.
2608 * Falls back and attempts to use the older method (above)
2609 * if the target doesn't respond to the new method.
2610 */
2611
2612 static void
2613 remote_threads_info (struct target_ops *ops)
2614 {
2615 struct remote_state *rs = get_remote_state ();
2616 char *bufp;
2617 ptid_t new_thread;
2618
2619 if (remote_desc == 0) /* paranoia */
2620 error (_("Command can only be used when connected to the remote target."));
2621
2622 #if defined(HAVE_LIBEXPAT)
2623 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2624 {
2625 char *xml = target_read_stralloc (&current_target,
2626 TARGET_OBJECT_THREADS, NULL);
2627
2628 struct cleanup *back_to = make_cleanup (xfree, xml);
2629
2630 if (xml && *xml)
2631 {
2632 struct threads_parsing_context context;
2633
2634 context.items = NULL;
2635 make_cleanup (clear_threads_parsing_context, &context);
2636
2637 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2638 threads_elements, xml, &context) == 0)
2639 {
2640 int i;
2641 struct thread_item *item;
2642
2643 for (i = 0;
2644 VEC_iterate (thread_item_t, context.items, i, item);
2645 ++i)
2646 {
2647 if (!ptid_equal (item->ptid, null_ptid))
2648 {
2649 struct private_thread_info *info;
2650 /* In non-stop mode, we assume new found threads
2651 are running until proven otherwise with a
2652 stop reply. In all-stop, we can only get
2653 here if all threads are stopped. */
2654 int running = non_stop ? 1 : 0;
2655
2656 remote_notice_new_inferior (item->ptid, running);
2657
2658 info = demand_private_info (item->ptid);
2659 info->core = item->core;
2660 info->extra = item->extra;
2661 item->extra = NULL;
2662 }
2663 }
2664 }
2665 }
2666
2667 do_cleanups (back_to);
2668 return;
2669 }
2670 #endif
2671
2672 if (use_threadinfo_query)
2673 {
2674 putpkt ("qfThreadInfo");
2675 getpkt (&rs->buf, &rs->buf_size, 0);
2676 bufp = rs->buf;
2677 if (bufp[0] != '\0') /* q packet recognized */
2678 {
2679 while (*bufp++ == 'm') /* reply contains one or more TID */
2680 {
2681 do
2682 {
2683 new_thread = read_ptid (bufp, &bufp);
2684 if (!ptid_equal (new_thread, null_ptid))
2685 {
2686 /* In non-stop mode, we assume new found threads
2687 are running until proven otherwise with a
2688 stop reply. In all-stop, we can only get
2689 here if all threads are stopped. */
2690 int running = non_stop ? 1 : 0;
2691
2692 remote_notice_new_inferior (new_thread, running);
2693 }
2694 }
2695 while (*bufp++ == ','); /* comma-separated list */
2696 putpkt ("qsThreadInfo");
2697 getpkt (&rs->buf, &rs->buf_size, 0);
2698 bufp = rs->buf;
2699 }
2700 return; /* done */
2701 }
2702 }
2703
2704 /* Only qfThreadInfo is supported in non-stop mode. */
2705 if (non_stop)
2706 return;
2707
2708 /* Else fall back to old method based on jmetzler protocol. */
2709 use_threadinfo_query = 0;
2710 remote_find_new_threads ();
2711 return;
2712 }
2713
2714 /*
2715 * Collect a descriptive string about the given thread.
2716 * The target may say anything it wants to about the thread
2717 * (typically info about its blocked / runnable state, name, etc.).
2718 * This string will appear in the info threads display.
2719 *
2720 * Optional: targets are not required to implement this function.
2721 */
2722
2723 static char *
2724 remote_threads_extra_info (struct thread_info *tp)
2725 {
2726 struct remote_state *rs = get_remote_state ();
2727 int result;
2728 int set;
2729 threadref id;
2730 struct gdb_ext_thread_info threadinfo;
2731 static char display_buf[100]; /* arbitrary... */
2732 int n = 0; /* position in display_buf */
2733
2734 if (remote_desc == 0) /* paranoia */
2735 internal_error (__FILE__, __LINE__,
2736 _("remote_threads_extra_info"));
2737
2738 if (ptid_equal (tp->ptid, magic_null_ptid)
2739 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2740 /* This is the main thread which was added by GDB. The remote
2741 server doesn't know about it. */
2742 return NULL;
2743
2744 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2745 {
2746 struct thread_info *info = find_thread_ptid (tp->ptid);
2747
2748 if (info && info->private)
2749 return info->private->extra;
2750 else
2751 return NULL;
2752 }
2753
2754 if (use_threadextra_query)
2755 {
2756 char *b = rs->buf;
2757 char *endb = rs->buf + get_remote_packet_size ();
2758
2759 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2760 b += strlen (b);
2761 write_ptid (b, endb, tp->ptid);
2762
2763 putpkt (rs->buf);
2764 getpkt (&rs->buf, &rs->buf_size, 0);
2765 if (rs->buf[0] != 0)
2766 {
2767 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2768 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2769 display_buf [result] = '\0';
2770 return display_buf;
2771 }
2772 }
2773
2774 /* If the above query fails, fall back to the old method. */
2775 use_threadextra_query = 0;
2776 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2777 | TAG_MOREDISPLAY | TAG_DISPLAY;
2778 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2779 if (remote_get_threadinfo (&id, set, &threadinfo))
2780 if (threadinfo.active)
2781 {
2782 if (*threadinfo.shortname)
2783 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2784 " Name: %s,", threadinfo.shortname);
2785 if (*threadinfo.display)
2786 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2787 " State: %s,", threadinfo.display);
2788 if (*threadinfo.more_display)
2789 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2790 " Priority: %s", threadinfo.more_display);
2791
2792 if (n > 0)
2793 {
2794 /* For purely cosmetic reasons, clear up trailing commas. */
2795 if (',' == display_buf[n-1])
2796 display_buf[n-1] = ' ';
2797 return display_buf;
2798 }
2799 }
2800 return NULL;
2801 }
2802 \f
2803
2804 static int
2805 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2806 struct static_tracepoint_marker *marker)
2807 {
2808 struct remote_state *rs = get_remote_state ();
2809 char *p = rs->buf;
2810
2811 sprintf (p, "qTSTMat:");
2812 p += strlen (p);
2813 p += hexnumstr (p, addr);
2814 putpkt (rs->buf);
2815 getpkt (&rs->buf, &rs->buf_size, 0);
2816 p = rs->buf;
2817
2818 if (*p == 'E')
2819 error (_("Remote failure reply: %s"), p);
2820
2821 if (*p++ == 'm')
2822 {
2823 parse_static_tracepoint_marker_definition (p, &p, marker);
2824 return 1;
2825 }
2826
2827 return 0;
2828 }
2829
2830 static void
2831 free_current_marker (void *arg)
2832 {
2833 struct static_tracepoint_marker **marker_p = arg;
2834
2835 if (*marker_p != NULL)
2836 {
2837 release_static_tracepoint_marker (*marker_p);
2838 xfree (*marker_p);
2839 }
2840 else
2841 *marker_p = NULL;
2842 }
2843
2844 static VEC(static_tracepoint_marker_p) *
2845 remote_static_tracepoint_markers_by_strid (const char *strid)
2846 {
2847 struct remote_state *rs = get_remote_state ();
2848 VEC(static_tracepoint_marker_p) *markers = NULL;
2849 struct static_tracepoint_marker *marker = NULL;
2850 struct cleanup *old_chain;
2851 char *p;
2852
2853 /* Ask for a first packet of static tracepoint marker
2854 definition. */
2855 putpkt ("qTfSTM");
2856 getpkt (&rs->buf, &rs->buf_size, 0);
2857 p = rs->buf;
2858 if (*p == 'E')
2859 error (_("Remote failure reply: %s"), p);
2860
2861 old_chain = make_cleanup (free_current_marker, &marker);
2862
2863 while (*p++ == 'm')
2864 {
2865 if (marker == NULL)
2866 marker = XCNEW (struct static_tracepoint_marker);
2867
2868 do
2869 {
2870 parse_static_tracepoint_marker_definition (p, &p, marker);
2871
2872 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2873 {
2874 VEC_safe_push (static_tracepoint_marker_p,
2875 markers, marker);
2876 marker = NULL;
2877 }
2878 else
2879 {
2880 release_static_tracepoint_marker (marker);
2881 memset (marker, 0, sizeof (*marker));
2882 }
2883 }
2884 while (*p++ == ','); /* comma-separated list */
2885 /* Ask for another packet of static tracepoint definition. */
2886 putpkt ("qTsSTM");
2887 getpkt (&rs->buf, &rs->buf_size, 0);
2888 p = rs->buf;
2889 }
2890
2891 do_cleanups (old_chain);
2892 return markers;
2893 }
2894
2895 \f
2896 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2897
2898 static ptid_t
2899 remote_get_ada_task_ptid (long lwp, long thread)
2900 {
2901 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2902 }
2903 \f
2904
2905 /* Restart the remote side; this is an extended protocol operation. */
2906
2907 static void
2908 extended_remote_restart (void)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911
2912 /* Send the restart command; for reasons I don't understand the
2913 remote side really expects a number after the "R". */
2914 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2915 putpkt (rs->buf);
2916
2917 remote_fileio_reset ();
2918 }
2919 \f
2920 /* Clean up connection to a remote debugger. */
2921
2922 static void
2923 remote_close (int quitting)
2924 {
2925 if (remote_desc == NULL)
2926 return; /* already closed */
2927
2928 /* Make sure we leave stdin registered in the event loop, and we
2929 don't leave the async SIGINT signal handler installed. */
2930 remote_terminal_ours ();
2931
2932 serial_close (remote_desc);
2933 remote_desc = NULL;
2934
2935 /* We don't have a connection to the remote stub anymore. Get rid
2936 of all the inferiors and their threads we were controlling.
2937 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2938 will be unable to find the thread corresponding to (pid, 0, 0). */
2939 inferior_ptid = null_ptid;
2940 discard_all_inferiors ();
2941
2942 /* We're no longer interested in any of these events. */
2943 discard_pending_stop_replies (-1);
2944
2945 if (remote_async_inferior_event_token)
2946 delete_async_event_handler (&remote_async_inferior_event_token);
2947 if (remote_async_get_pending_events_token)
2948 delete_async_event_handler (&remote_async_get_pending_events_token);
2949 }
2950
2951 /* Query the remote side for the text, data and bss offsets. */
2952
2953 static void
2954 get_offsets (void)
2955 {
2956 struct remote_state *rs = get_remote_state ();
2957 char *buf;
2958 char *ptr;
2959 int lose, num_segments = 0, do_sections, do_segments;
2960 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2961 struct section_offsets *offs;
2962 struct symfile_segment_data *data;
2963
2964 if (symfile_objfile == NULL)
2965 return;
2966
2967 putpkt ("qOffsets");
2968 getpkt (&rs->buf, &rs->buf_size, 0);
2969 buf = rs->buf;
2970
2971 if (buf[0] == '\000')
2972 return; /* Return silently. Stub doesn't support
2973 this command. */
2974 if (buf[0] == 'E')
2975 {
2976 warning (_("Remote failure reply: %s"), buf);
2977 return;
2978 }
2979
2980 /* Pick up each field in turn. This used to be done with scanf, but
2981 scanf will make trouble if CORE_ADDR size doesn't match
2982 conversion directives correctly. The following code will work
2983 with any size of CORE_ADDR. */
2984 text_addr = data_addr = bss_addr = 0;
2985 ptr = buf;
2986 lose = 0;
2987
2988 if (strncmp (ptr, "Text=", 5) == 0)
2989 {
2990 ptr += 5;
2991 /* Don't use strtol, could lose on big values. */
2992 while (*ptr && *ptr != ';')
2993 text_addr = (text_addr << 4) + fromhex (*ptr++);
2994
2995 if (strncmp (ptr, ";Data=", 6) == 0)
2996 {
2997 ptr += 6;
2998 while (*ptr && *ptr != ';')
2999 data_addr = (data_addr << 4) + fromhex (*ptr++);
3000 }
3001 else
3002 lose = 1;
3003
3004 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3005 {
3006 ptr += 5;
3007 while (*ptr && *ptr != ';')
3008 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3009
3010 if (bss_addr != data_addr)
3011 warning (_("Target reported unsupported offsets: %s"), buf);
3012 }
3013 else
3014 lose = 1;
3015 }
3016 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3017 {
3018 ptr += 8;
3019 /* Don't use strtol, could lose on big values. */
3020 while (*ptr && *ptr != ';')
3021 text_addr = (text_addr << 4) + fromhex (*ptr++);
3022 num_segments = 1;
3023
3024 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3025 {
3026 ptr += 9;
3027 while (*ptr && *ptr != ';')
3028 data_addr = (data_addr << 4) + fromhex (*ptr++);
3029 num_segments++;
3030 }
3031 }
3032 else
3033 lose = 1;
3034
3035 if (lose)
3036 error (_("Malformed response to offset query, %s"), buf);
3037 else if (*ptr != '\0')
3038 warning (_("Target reported unsupported offsets: %s"), buf);
3039
3040 offs = ((struct section_offsets *)
3041 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3042 memcpy (offs, symfile_objfile->section_offsets,
3043 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3044
3045 data = get_symfile_segment_data (symfile_objfile->obfd);
3046 do_segments = (data != NULL);
3047 do_sections = num_segments == 0;
3048
3049 if (num_segments > 0)
3050 {
3051 segments[0] = text_addr;
3052 segments[1] = data_addr;
3053 }
3054 /* If we have two segments, we can still try to relocate everything
3055 by assuming that the .text and .data offsets apply to the whole
3056 text and data segments. Convert the offsets given in the packet
3057 to base addresses for symfile_map_offsets_to_segments. */
3058 else if (data && data->num_segments == 2)
3059 {
3060 segments[0] = data->segment_bases[0] + text_addr;
3061 segments[1] = data->segment_bases[1] + data_addr;
3062 num_segments = 2;
3063 }
3064 /* If the object file has only one segment, assume that it is text
3065 rather than data; main programs with no writable data are rare,
3066 but programs with no code are useless. Of course the code might
3067 have ended up in the data segment... to detect that we would need
3068 the permissions here. */
3069 else if (data && data->num_segments == 1)
3070 {
3071 segments[0] = data->segment_bases[0] + text_addr;
3072 num_segments = 1;
3073 }
3074 /* There's no way to relocate by segment. */
3075 else
3076 do_segments = 0;
3077
3078 if (do_segments)
3079 {
3080 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3081 offs, num_segments, segments);
3082
3083 if (ret == 0 && !do_sections)
3084 error (_("Can not handle qOffsets TextSeg "
3085 "response with this symbol file"));
3086
3087 if (ret > 0)
3088 do_sections = 0;
3089 }
3090
3091 if (data)
3092 free_symfile_segment_data (data);
3093
3094 if (do_sections)
3095 {
3096 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3097
3098 /* This is a temporary kludge to force data and bss to use the
3099 same offsets because that's what nlmconv does now. The real
3100 solution requires changes to the stub and remote.c that I
3101 don't have time to do right now. */
3102
3103 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3104 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3105 }
3106
3107 objfile_relocate (symfile_objfile, offs);
3108 }
3109
3110 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3111 threads we know are stopped already. This is used during the
3112 initial remote connection in non-stop mode --- threads that are
3113 reported as already being stopped are left stopped. */
3114
3115 static int
3116 set_stop_requested_callback (struct thread_info *thread, void *data)
3117 {
3118 /* If we have a stop reply for this thread, it must be stopped. */
3119 if (peek_stop_reply (thread->ptid))
3120 set_stop_requested (thread->ptid, 1);
3121
3122 return 0;
3123 }
3124
3125 /* Send interrupt_sequence to remote target. */
3126 static void
3127 send_interrupt_sequence (void)
3128 {
3129 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3130 serial_write (remote_desc, "\x03", 1);
3131 else if (interrupt_sequence_mode == interrupt_sequence_break)
3132 serial_send_break (remote_desc);
3133 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3134 {
3135 serial_send_break (remote_desc);
3136 serial_write (remote_desc, "g", 1);
3137 }
3138 else
3139 internal_error (__FILE__, __LINE__,
3140 _("Invalid value for interrupt_sequence_mode: %s."),
3141 interrupt_sequence_mode);
3142 }
3143
3144 static void
3145 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3146 {
3147 struct remote_state *rs = get_remote_state ();
3148 struct packet_config *noack_config;
3149 char *wait_status = NULL;
3150
3151 immediate_quit++; /* Allow user to interrupt it. */
3152
3153 if (interrupt_on_connect)
3154 send_interrupt_sequence ();
3155
3156 /* Ack any packet which the remote side has already sent. */
3157 serial_write (remote_desc, "+", 1);
3158
3159 /* The first packet we send to the target is the optional "supported
3160 packets" request. If the target can answer this, it will tell us
3161 which later probes to skip. */
3162 remote_query_supported ();
3163
3164 /* If the stub wants to get a QAllow, compose one and send it. */
3165 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3166 remote_set_permissions ();
3167
3168 /* Next, we possibly activate noack mode.
3169
3170 If the QStartNoAckMode packet configuration is set to AUTO,
3171 enable noack mode if the stub reported a wish for it with
3172 qSupported.
3173
3174 If set to TRUE, then enable noack mode even if the stub didn't
3175 report it in qSupported. If the stub doesn't reply OK, the
3176 session ends with an error.
3177
3178 If FALSE, then don't activate noack mode, regardless of what the
3179 stub claimed should be the default with qSupported. */
3180
3181 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3182
3183 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3184 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3185 && noack_config->support == PACKET_ENABLE))
3186 {
3187 putpkt ("QStartNoAckMode");
3188 getpkt (&rs->buf, &rs->buf_size, 0);
3189 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3190 rs->noack_mode = 1;
3191 }
3192
3193 if (extended_p)
3194 {
3195 /* Tell the remote that we are using the extended protocol. */
3196 putpkt ("!");
3197 getpkt (&rs->buf, &rs->buf_size, 0);
3198 }
3199
3200 /* Next, if the target can specify a description, read it. We do
3201 this before anything involving memory or registers. */
3202 target_find_description ();
3203
3204 /* Next, now that we know something about the target, update the
3205 address spaces in the program spaces. */
3206 update_address_spaces ();
3207
3208 /* On OSs where the list of libraries is global to all
3209 processes, we fetch them early. */
3210 if (gdbarch_has_global_solist (target_gdbarch))
3211 solib_add (NULL, from_tty, target, auto_solib_add);
3212
3213 if (non_stop)
3214 {
3215 if (!rs->non_stop_aware)
3216 error (_("Non-stop mode requested, but remote "
3217 "does not support non-stop"));
3218
3219 putpkt ("QNonStop:1");
3220 getpkt (&rs->buf, &rs->buf_size, 0);
3221
3222 if (strcmp (rs->buf, "OK") != 0)
3223 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3224
3225 /* Find about threads and processes the stub is already
3226 controlling. We default to adding them in the running state.
3227 The '?' query below will then tell us about which threads are
3228 stopped. */
3229 remote_threads_info (target);
3230 }
3231 else if (rs->non_stop_aware)
3232 {
3233 /* Don't assume that the stub can operate in all-stop mode.
3234 Request it explicitely. */
3235 putpkt ("QNonStop:0");
3236 getpkt (&rs->buf, &rs->buf_size, 0);
3237
3238 if (strcmp (rs->buf, "OK") != 0)
3239 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3240 }
3241
3242 /* Check whether the target is running now. */
3243 putpkt ("?");
3244 getpkt (&rs->buf, &rs->buf_size, 0);
3245
3246 if (!non_stop)
3247 {
3248 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3249 {
3250 if (!extended_p)
3251 error (_("The target is not running (try extended-remote?)"));
3252
3253 /* We're connected, but not running. Drop out before we
3254 call start_remote. */
3255 return;
3256 }
3257 else
3258 {
3259 /* Save the reply for later. */
3260 wait_status = alloca (strlen (rs->buf) + 1);
3261 strcpy (wait_status, rs->buf);
3262 }
3263
3264 /* Let the stub know that we want it to return the thread. */
3265 set_continue_thread (minus_one_ptid);
3266
3267 /* Without this, some commands which require an active target
3268 (such as kill) won't work. This variable serves (at least)
3269 double duty as both the pid of the target process (if it has
3270 such), and as a flag indicating that a target is active.
3271 These functions should be split out into seperate variables,
3272 especially since GDB will someday have a notion of debugging
3273 several processes. */
3274 inferior_ptid = magic_null_ptid;
3275
3276 /* Now, if we have thread information, update inferior_ptid. */
3277 inferior_ptid = remote_current_thread (inferior_ptid);
3278
3279 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3280
3281 /* Always add the main thread. */
3282 add_thread_silent (inferior_ptid);
3283
3284 /* init_wait_for_inferior should be called before get_offsets in order
3285 to manage `inserted' flag in bp loc in a correct state.
3286 breakpoint_init_inferior, called from init_wait_for_inferior, set
3287 `inserted' flag to 0, while before breakpoint_re_set, called from
3288 start_remote, set `inserted' flag to 1. In the initialization of
3289 inferior, breakpoint_init_inferior should be called first, and then
3290 breakpoint_re_set can be called. If this order is broken, state of
3291 `inserted' flag is wrong, and cause some problems on breakpoint
3292 manipulation. */
3293 init_wait_for_inferior ();
3294
3295 get_offsets (); /* Get text, data & bss offsets. */
3296
3297 /* If we could not find a description using qXfer, and we know
3298 how to do it some other way, try again. This is not
3299 supported for non-stop; it could be, but it is tricky if
3300 there are no stopped threads when we connect. */
3301 if (remote_read_description_p (target)
3302 && gdbarch_target_desc (target_gdbarch) == NULL)
3303 {
3304 target_clear_description ();
3305 target_find_description ();
3306 }
3307
3308 /* Use the previously fetched status. */
3309 gdb_assert (wait_status != NULL);
3310 strcpy (rs->buf, wait_status);
3311 rs->cached_wait_status = 1;
3312
3313 immediate_quit--;
3314 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3315 }
3316 else
3317 {
3318 /* Clear WFI global state. Do this before finding about new
3319 threads and inferiors, and setting the current inferior.
3320 Otherwise we would clear the proceed status of the current
3321 inferior when we want its stop_soon state to be preserved
3322 (see notice_new_inferior). */
3323 init_wait_for_inferior ();
3324
3325 /* In non-stop, we will either get an "OK", meaning that there
3326 are no stopped threads at this time; or, a regular stop
3327 reply. In the latter case, there may be more than one thread
3328 stopped --- we pull them all out using the vStopped
3329 mechanism. */
3330 if (strcmp (rs->buf, "OK") != 0)
3331 {
3332 struct stop_reply *stop_reply;
3333 struct cleanup *old_chain;
3334
3335 stop_reply = stop_reply_xmalloc ();
3336 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3337
3338 remote_parse_stop_reply (rs->buf, stop_reply);
3339 discard_cleanups (old_chain);
3340
3341 /* get_pending_stop_replies acks this one, and gets the rest
3342 out. */
3343 pending_stop_reply = stop_reply;
3344 remote_get_pending_stop_replies ();
3345
3346 /* Make sure that threads that were stopped remain
3347 stopped. */
3348 iterate_over_threads (set_stop_requested_callback, NULL);
3349 }
3350
3351 if (target_can_async_p ())
3352 target_async (inferior_event_handler, 0);
3353
3354 if (thread_count () == 0)
3355 {
3356 if (!extended_p)
3357 error (_("The target is not running (try extended-remote?)"));
3358
3359 /* We're connected, but not running. Drop out before we
3360 call start_remote. */
3361 return;
3362 }
3363
3364 /* Let the stub know that we want it to return the thread. */
3365
3366 /* Force the stub to choose a thread. */
3367 set_general_thread (null_ptid);
3368
3369 /* Query it. */
3370 inferior_ptid = remote_current_thread (minus_one_ptid);
3371 if (ptid_equal (inferior_ptid, minus_one_ptid))
3372 error (_("remote didn't report the current thread in non-stop mode"));
3373
3374 get_offsets (); /* Get text, data & bss offsets. */
3375
3376 /* In non-stop mode, any cached wait status will be stored in
3377 the stop reply queue. */
3378 gdb_assert (wait_status == NULL);
3379
3380 /* Report all signals during attach/startup. */
3381 remote_pass_signals (0, NULL);
3382 }
3383
3384 /* If we connected to a live target, do some additional setup. */
3385 if (target_has_execution)
3386 {
3387 if (exec_bfd) /* No use without an exec file. */
3388 remote_check_symbols (symfile_objfile);
3389 }
3390
3391 /* Possibly the target has been engaged in a trace run started
3392 previously; find out where things are at. */
3393 if (remote_get_trace_status (current_trace_status ()) != -1)
3394 {
3395 struct uploaded_tp *uploaded_tps = NULL;
3396 struct uploaded_tsv *uploaded_tsvs = NULL;
3397
3398 if (current_trace_status ()->running)
3399 printf_filtered (_("Trace is already running on the target.\n"));
3400
3401 /* Get trace state variables first, they may be checked when
3402 parsing uploaded commands. */
3403
3404 remote_upload_trace_state_variables (&uploaded_tsvs);
3405
3406 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3407
3408 remote_upload_tracepoints (&uploaded_tps);
3409
3410 merge_uploaded_tracepoints (&uploaded_tps);
3411 }
3412
3413 /* If breakpoints are global, insert them now. */
3414 if (gdbarch_has_global_breakpoints (target_gdbarch)
3415 && breakpoints_always_inserted_mode ())
3416 insert_breakpoints ();
3417 }
3418
3419 /* Open a connection to a remote debugger.
3420 NAME is the filename used for communication. */
3421
3422 static void
3423 remote_open (char *name, int from_tty)
3424 {
3425 remote_open_1 (name, from_tty, &remote_ops, 0);
3426 }
3427
3428 /* Open a connection to a remote debugger using the extended
3429 remote gdb protocol. NAME is the filename used for communication. */
3430
3431 static void
3432 extended_remote_open (char *name, int from_tty)
3433 {
3434 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3435 }
3436
3437 /* Generic code for opening a connection to a remote target. */
3438
3439 static void
3440 init_all_packet_configs (void)
3441 {
3442 int i;
3443
3444 for (i = 0; i < PACKET_MAX; i++)
3445 update_packet_config (&remote_protocol_packets[i]);
3446 }
3447
3448 /* Symbol look-up. */
3449
3450 static void
3451 remote_check_symbols (struct objfile *objfile)
3452 {
3453 struct remote_state *rs = get_remote_state ();
3454 char *msg, *reply, *tmp;
3455 struct minimal_symbol *sym;
3456 int end;
3457
3458 /* The remote side has no concept of inferiors that aren't running
3459 yet, it only knows about running processes. If we're connected
3460 but our current inferior is not running, we should not invite the
3461 remote target to request symbol lookups related to its
3462 (unrelated) current process. */
3463 if (!target_has_execution)
3464 return;
3465
3466 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3467 return;
3468
3469 /* Make sure the remote is pointing at the right process. Note
3470 there's no way to select "no process". */
3471 set_general_process ();
3472
3473 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3474 because we need both at the same time. */
3475 msg = alloca (get_remote_packet_size ());
3476
3477 /* Invite target to request symbol lookups. */
3478
3479 putpkt ("qSymbol::");
3480 getpkt (&rs->buf, &rs->buf_size, 0);
3481 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3482 reply = rs->buf;
3483
3484 while (strncmp (reply, "qSymbol:", 8) == 0)
3485 {
3486 tmp = &reply[8];
3487 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3488 msg[end] = '\0';
3489 sym = lookup_minimal_symbol (msg, NULL, NULL);
3490 if (sym == NULL)
3491 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3492 else
3493 {
3494 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3495 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3496
3497 /* If this is a function address, return the start of code
3498 instead of any data function descriptor. */
3499 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3500 sym_addr,
3501 &current_target);
3502
3503 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3504 phex_nz (sym_addr, addr_size), &reply[8]);
3505 }
3506
3507 putpkt (msg);
3508 getpkt (&rs->buf, &rs->buf_size, 0);
3509 reply = rs->buf;
3510 }
3511 }
3512
3513 static struct serial *
3514 remote_serial_open (char *name)
3515 {
3516 static int udp_warning = 0;
3517
3518 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3519 of in ser-tcp.c, because it is the remote protocol assuming that the
3520 serial connection is reliable and not the serial connection promising
3521 to be. */
3522 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3523 {
3524 warning (_("The remote protocol may be unreliable over UDP.\n"
3525 "Some events may be lost, rendering further debugging "
3526 "impossible."));
3527 udp_warning = 1;
3528 }
3529
3530 return serial_open (name);
3531 }
3532
3533 /* Inform the target of our permission settings. The permission flags
3534 work without this, but if the target knows the settings, it can do
3535 a couple things. First, it can add its own check, to catch cases
3536 that somehow manage to get by the permissions checks in target
3537 methods. Second, if the target is wired to disallow particular
3538 settings (for instance, a system in the field that is not set up to
3539 be able to stop at a breakpoint), it can object to any unavailable
3540 permissions. */
3541
3542 void
3543 remote_set_permissions (void)
3544 {
3545 struct remote_state *rs = get_remote_state ();
3546
3547 sprintf (rs->buf, "QAllow:"
3548 "WriteReg:%x;WriteMem:%x;"
3549 "InsertBreak:%x;InsertTrace:%x;"
3550 "InsertFastTrace:%x;Stop:%x",
3551 may_write_registers, may_write_memory,
3552 may_insert_breakpoints, may_insert_tracepoints,
3553 may_insert_fast_tracepoints, may_stop);
3554 putpkt (rs->buf);
3555 getpkt (&rs->buf, &rs->buf_size, 0);
3556
3557 /* If the target didn't like the packet, warn the user. Do not try
3558 to undo the user's settings, that would just be maddening. */
3559 if (strcmp (rs->buf, "OK") != 0)
3560 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3561 }
3562
3563 /* This type describes each known response to the qSupported
3564 packet. */
3565 struct protocol_feature
3566 {
3567 /* The name of this protocol feature. */
3568 const char *name;
3569
3570 /* The default for this protocol feature. */
3571 enum packet_support default_support;
3572
3573 /* The function to call when this feature is reported, or after
3574 qSupported processing if the feature is not supported.
3575 The first argument points to this structure. The second
3576 argument indicates whether the packet requested support be
3577 enabled, disabled, or probed (or the default, if this function
3578 is being called at the end of processing and this feature was
3579 not reported). The third argument may be NULL; if not NULL, it
3580 is a NUL-terminated string taken from the packet following
3581 this feature's name and an equals sign. */
3582 void (*func) (const struct protocol_feature *, enum packet_support,
3583 const char *);
3584
3585 /* The corresponding packet for this feature. Only used if
3586 FUNC is remote_supported_packet. */
3587 int packet;
3588 };
3589
3590 static void
3591 remote_supported_packet (const struct protocol_feature *feature,
3592 enum packet_support support,
3593 const char *argument)
3594 {
3595 if (argument)
3596 {
3597 warning (_("Remote qSupported response supplied an unexpected value for"
3598 " \"%s\"."), feature->name);
3599 return;
3600 }
3601
3602 if (remote_protocol_packets[feature->packet].support
3603 == PACKET_SUPPORT_UNKNOWN)
3604 remote_protocol_packets[feature->packet].support = support;
3605 }
3606
3607 static void
3608 remote_packet_size (const struct protocol_feature *feature,
3609 enum packet_support support, const char *value)
3610 {
3611 struct remote_state *rs = get_remote_state ();
3612
3613 int packet_size;
3614 char *value_end;
3615
3616 if (support != PACKET_ENABLE)
3617 return;
3618
3619 if (value == NULL || *value == '\0')
3620 {
3621 warning (_("Remote target reported \"%s\" without a size."),
3622 feature->name);
3623 return;
3624 }
3625
3626 errno = 0;
3627 packet_size = strtol (value, &value_end, 16);
3628 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3629 {
3630 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3631 feature->name, value);
3632 return;
3633 }
3634
3635 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3636 {
3637 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3638 packet_size, MAX_REMOTE_PACKET_SIZE);
3639 packet_size = MAX_REMOTE_PACKET_SIZE;
3640 }
3641
3642 /* Record the new maximum packet size. */
3643 rs->explicit_packet_size = packet_size;
3644 }
3645
3646 static void
3647 remote_multi_process_feature (const struct protocol_feature *feature,
3648 enum packet_support support, const char *value)
3649 {
3650 struct remote_state *rs = get_remote_state ();
3651
3652 rs->multi_process_aware = (support == PACKET_ENABLE);
3653 }
3654
3655 static void
3656 remote_non_stop_feature (const struct protocol_feature *feature,
3657 enum packet_support support, const char *value)
3658 {
3659 struct remote_state *rs = get_remote_state ();
3660
3661 rs->non_stop_aware = (support == PACKET_ENABLE);
3662 }
3663
3664 static void
3665 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3666 enum packet_support support,
3667 const char *value)
3668 {
3669 struct remote_state *rs = get_remote_state ();
3670
3671 rs->cond_tracepoints = (support == PACKET_ENABLE);
3672 }
3673
3674 static void
3675 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3676 enum packet_support support,
3677 const char *value)
3678 {
3679 struct remote_state *rs = get_remote_state ();
3680
3681 rs->fast_tracepoints = (support == PACKET_ENABLE);
3682 }
3683
3684 static void
3685 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3686 enum packet_support support,
3687 const char *value)
3688 {
3689 struct remote_state *rs = get_remote_state ();
3690
3691 rs->static_tracepoints = (support == PACKET_ENABLE);
3692 }
3693
3694 static void
3695 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3696 enum packet_support support,
3697 const char *value)
3698 {
3699 struct remote_state *rs = get_remote_state ();
3700
3701 rs->disconnected_tracing = (support == PACKET_ENABLE);
3702 }
3703
3704 static void
3705 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3706 enum packet_support support,
3707 const char *value)
3708 {
3709 struct remote_state *rs = get_remote_state ();
3710
3711 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3712 }
3713
3714 static struct protocol_feature remote_protocol_features[] = {
3715 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3716 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3717 PACKET_qXfer_auxv },
3718 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3719 PACKET_qXfer_features },
3720 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3721 PACKET_qXfer_libraries },
3722 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3723 PACKET_qXfer_memory_map },
3724 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3725 PACKET_qXfer_spu_read },
3726 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3727 PACKET_qXfer_spu_write },
3728 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3729 PACKET_qXfer_osdata },
3730 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3731 PACKET_qXfer_threads },
3732 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3733 PACKET_qXfer_traceframe_info },
3734 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3735 PACKET_QPassSignals },
3736 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3737 PACKET_QStartNoAckMode },
3738 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3739 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3740 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3741 PACKET_qXfer_siginfo_read },
3742 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3743 PACKET_qXfer_siginfo_write },
3744 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3745 PACKET_ConditionalTracepoints },
3746 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3747 PACKET_FastTracepoints },
3748 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3749 PACKET_StaticTracepoints },
3750 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3751 -1 },
3752 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3753 PACKET_bc },
3754 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3755 PACKET_bs },
3756 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3757 PACKET_TracepointSource },
3758 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3759 PACKET_QAllow },
3760 { "EnableDisableTracepoints", PACKET_DISABLE,
3761 remote_enable_disable_tracepoint_feature, -1 },
3762 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3763 PACKET_qXfer_fdpic },
3764 };
3765
3766 static char *remote_support_xml;
3767
3768 /* Register string appended to "xmlRegisters=" in qSupported query. */
3769
3770 void
3771 register_remote_support_xml (const char *xml)
3772 {
3773 #if defined(HAVE_LIBEXPAT)
3774 if (remote_support_xml == NULL)
3775 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3776 else
3777 {
3778 char *copy = xstrdup (remote_support_xml + 13);
3779 char *p = strtok (copy, ",");
3780
3781 do
3782 {
3783 if (strcmp (p, xml) == 0)
3784 {
3785 /* already there */
3786 xfree (copy);
3787 return;
3788 }
3789 }
3790 while ((p = strtok (NULL, ",")) != NULL);
3791 xfree (copy);
3792
3793 remote_support_xml = reconcat (remote_support_xml,
3794 remote_support_xml, ",", xml,
3795 (char *) NULL);
3796 }
3797 #endif
3798 }
3799
3800 static char *
3801 remote_query_supported_append (char *msg, const char *append)
3802 {
3803 if (msg)
3804 return reconcat (msg, msg, ";", append, (char *) NULL);
3805 else
3806 return xstrdup (append);
3807 }
3808
3809 static void
3810 remote_query_supported (void)
3811 {
3812 struct remote_state *rs = get_remote_state ();
3813 char *next;
3814 int i;
3815 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3816
3817 /* The packet support flags are handled differently for this packet
3818 than for most others. We treat an error, a disabled packet, and
3819 an empty response identically: any features which must be reported
3820 to be used will be automatically disabled. An empty buffer
3821 accomplishes this, since that is also the representation for a list
3822 containing no features. */
3823
3824 rs->buf[0] = 0;
3825 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3826 {
3827 char *q = NULL;
3828 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3829
3830 if (rs->extended)
3831 q = remote_query_supported_append (q, "multiprocess+");
3832
3833 if (remote_support_xml)
3834 q = remote_query_supported_append (q, remote_support_xml);
3835
3836 q = remote_query_supported_append (q, "qRelocInsn+");
3837
3838 q = reconcat (q, "qSupported:", q, (char *) NULL);
3839 putpkt (q);
3840
3841 do_cleanups (old_chain);
3842
3843 getpkt (&rs->buf, &rs->buf_size, 0);
3844
3845 /* If an error occured, warn, but do not return - just reset the
3846 buffer to empty and go on to disable features. */
3847 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3848 == PACKET_ERROR)
3849 {
3850 warning (_("Remote failure reply: %s"), rs->buf);
3851 rs->buf[0] = 0;
3852 }
3853 }
3854
3855 memset (seen, 0, sizeof (seen));
3856
3857 next = rs->buf;
3858 while (*next)
3859 {
3860 enum packet_support is_supported;
3861 char *p, *end, *name_end, *value;
3862
3863 /* First separate out this item from the rest of the packet. If
3864 there's another item after this, we overwrite the separator
3865 (terminated strings are much easier to work with). */
3866 p = next;
3867 end = strchr (p, ';');
3868 if (end == NULL)
3869 {
3870 end = p + strlen (p);
3871 next = end;
3872 }
3873 else
3874 {
3875 *end = '\0';
3876 next = end + 1;
3877
3878 if (end == p)
3879 {
3880 warning (_("empty item in \"qSupported\" response"));
3881 continue;
3882 }
3883 }
3884
3885 name_end = strchr (p, '=');
3886 if (name_end)
3887 {
3888 /* This is a name=value entry. */
3889 is_supported = PACKET_ENABLE;
3890 value = name_end + 1;
3891 *name_end = '\0';
3892 }
3893 else
3894 {
3895 value = NULL;
3896 switch (end[-1])
3897 {
3898 case '+':
3899 is_supported = PACKET_ENABLE;
3900 break;
3901
3902 case '-':
3903 is_supported = PACKET_DISABLE;
3904 break;
3905
3906 case '?':
3907 is_supported = PACKET_SUPPORT_UNKNOWN;
3908 break;
3909
3910 default:
3911 warning (_("unrecognized item \"%s\" "
3912 "in \"qSupported\" response"), p);
3913 continue;
3914 }
3915 end[-1] = '\0';
3916 }
3917
3918 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3919 if (strcmp (remote_protocol_features[i].name, p) == 0)
3920 {
3921 const struct protocol_feature *feature;
3922
3923 seen[i] = 1;
3924 feature = &remote_protocol_features[i];
3925 feature->func (feature, is_supported, value);
3926 break;
3927 }
3928 }
3929
3930 /* If we increased the packet size, make sure to increase the global
3931 buffer size also. We delay this until after parsing the entire
3932 qSupported packet, because this is the same buffer we were
3933 parsing. */
3934 if (rs->buf_size < rs->explicit_packet_size)
3935 {
3936 rs->buf_size = rs->explicit_packet_size;
3937 rs->buf = xrealloc (rs->buf, rs->buf_size);
3938 }
3939
3940 /* Handle the defaults for unmentioned features. */
3941 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3942 if (!seen[i])
3943 {
3944 const struct protocol_feature *feature;
3945
3946 feature = &remote_protocol_features[i];
3947 feature->func (feature, feature->default_support, NULL);
3948 }
3949 }
3950
3951
3952 static void
3953 remote_open_1 (char *name, int from_tty,
3954 struct target_ops *target, int extended_p)
3955 {
3956 struct remote_state *rs = get_remote_state ();
3957
3958 if (name == 0)
3959 error (_("To open a remote debug connection, you need to specify what\n"
3960 "serial device is attached to the remote system\n"
3961 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3962
3963 /* See FIXME above. */
3964 if (!target_async_permitted)
3965 wait_forever_enabled_p = 1;
3966
3967 /* If we're connected to a running target, target_preopen will kill it.
3968 But if we're connected to a target system with no running process,
3969 then we will still be connected when it returns. Ask this question
3970 first, before target_preopen has a chance to kill anything. */
3971 if (remote_desc != NULL && !have_inferiors ())
3972 {
3973 if (!from_tty
3974 || query (_("Already connected to a remote target. Disconnect? ")))
3975 pop_target ();
3976 else
3977 error (_("Still connected."));
3978 }
3979
3980 target_preopen (from_tty);
3981
3982 unpush_target (target);
3983
3984 /* This time without a query. If we were connected to an
3985 extended-remote target and target_preopen killed the running
3986 process, we may still be connected. If we are starting "target
3987 remote" now, the extended-remote target will not have been
3988 removed by unpush_target. */
3989 if (remote_desc != NULL && !have_inferiors ())
3990 pop_target ();
3991
3992 /* Make sure we send the passed signals list the next time we resume. */
3993 xfree (last_pass_packet);
3994 last_pass_packet = NULL;
3995
3996 remote_fileio_reset ();
3997 reopen_exec_file ();
3998 reread_symbols ();
3999
4000 remote_desc = remote_serial_open (name);
4001 if (!remote_desc)
4002 perror_with_name (name);
4003
4004 if (baud_rate != -1)
4005 {
4006 if (serial_setbaudrate (remote_desc, baud_rate))
4007 {
4008 /* The requested speed could not be set. Error out to
4009 top level after closing remote_desc. Take care to
4010 set remote_desc to NULL to avoid closing remote_desc
4011 more than once. */
4012 serial_close (remote_desc);
4013 remote_desc = NULL;
4014 perror_with_name (name);
4015 }
4016 }
4017
4018 serial_raw (remote_desc);
4019
4020 /* If there is something sitting in the buffer we might take it as a
4021 response to a command, which would be bad. */
4022 serial_flush_input (remote_desc);
4023
4024 if (from_tty)
4025 {
4026 puts_filtered ("Remote debugging using ");
4027 puts_filtered (name);
4028 puts_filtered ("\n");
4029 }
4030 push_target (target); /* Switch to using remote target now. */
4031
4032 /* Register extra event sources in the event loop. */
4033 remote_async_inferior_event_token
4034 = create_async_event_handler (remote_async_inferior_event_handler,
4035 NULL);
4036 remote_async_get_pending_events_token
4037 = create_async_event_handler (remote_async_get_pending_events_handler,
4038 NULL);
4039
4040 /* Reset the target state; these things will be queried either by
4041 remote_query_supported or as they are needed. */
4042 init_all_packet_configs ();
4043 rs->cached_wait_status = 0;
4044 rs->explicit_packet_size = 0;
4045 rs->noack_mode = 0;
4046 rs->multi_process_aware = 0;
4047 rs->extended = extended_p;
4048 rs->non_stop_aware = 0;
4049 rs->waiting_for_stop_reply = 0;
4050 rs->ctrlc_pending_p = 0;
4051
4052 general_thread = not_sent_ptid;
4053 continue_thread = not_sent_ptid;
4054 remote_traceframe_number = -1;
4055
4056 /* Probe for ability to use "ThreadInfo" query, as required. */
4057 use_threadinfo_query = 1;
4058 use_threadextra_query = 1;
4059
4060 if (target_async_permitted)
4061 {
4062 /* With this target we start out by owning the terminal. */
4063 remote_async_terminal_ours_p = 1;
4064
4065 /* FIXME: cagney/1999-09-23: During the initial connection it is
4066 assumed that the target is already ready and able to respond to
4067 requests. Unfortunately remote_start_remote() eventually calls
4068 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4069 around this. Eventually a mechanism that allows
4070 wait_for_inferior() to expect/get timeouts will be
4071 implemented. */
4072 wait_forever_enabled_p = 0;
4073 }
4074
4075 /* First delete any symbols previously loaded from shared libraries. */
4076 no_shared_libraries (NULL, 0);
4077
4078 /* Start afresh. */
4079 init_thread_list ();
4080
4081 /* Start the remote connection. If error() or QUIT, discard this
4082 target (we'd otherwise be in an inconsistent state) and then
4083 propogate the error on up the exception chain. This ensures that
4084 the caller doesn't stumble along blindly assuming that the
4085 function succeeded. The CLI doesn't have this problem but other
4086 UI's, such as MI do.
4087
4088 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4089 this function should return an error indication letting the
4090 caller restore the previous state. Unfortunately the command
4091 ``target remote'' is directly wired to this function making that
4092 impossible. On a positive note, the CLI side of this problem has
4093 been fixed - the function set_cmd_context() makes it possible for
4094 all the ``target ....'' commands to share a common callback
4095 function. See cli-dump.c. */
4096 {
4097 volatile struct gdb_exception ex;
4098
4099 TRY_CATCH (ex, RETURN_MASK_ALL)
4100 {
4101 remote_start_remote (from_tty, target, extended_p);
4102 }
4103 if (ex.reason < 0)
4104 {
4105 /* Pop the partially set up target - unless something else did
4106 already before throwing the exception. */
4107 if (remote_desc != NULL)
4108 pop_target ();
4109 if (target_async_permitted)
4110 wait_forever_enabled_p = 1;
4111 throw_exception (ex);
4112 }
4113 }
4114
4115 if (target_async_permitted)
4116 wait_forever_enabled_p = 1;
4117 }
4118
4119 /* This takes a program previously attached to and detaches it. After
4120 this is done, GDB can be used to debug some other program. We
4121 better not have left any breakpoints in the target program or it'll
4122 die when it hits one. */
4123
4124 static void
4125 remote_detach_1 (char *args, int from_tty, int extended)
4126 {
4127 int pid = ptid_get_pid (inferior_ptid);
4128 struct remote_state *rs = get_remote_state ();
4129
4130 if (args)
4131 error (_("Argument given to \"detach\" when remotely debugging."));
4132
4133 if (!target_has_execution)
4134 error (_("No process to detach from."));
4135
4136 /* Tell the remote target to detach. */
4137 if (remote_multi_process_p (rs))
4138 sprintf (rs->buf, "D;%x", pid);
4139 else
4140 strcpy (rs->buf, "D");
4141
4142 putpkt (rs->buf);
4143 getpkt (&rs->buf, &rs->buf_size, 0);
4144
4145 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4146 ;
4147 else if (rs->buf[0] == '\0')
4148 error (_("Remote doesn't know how to detach"));
4149 else
4150 error (_("Can't detach process."));
4151
4152 if (from_tty)
4153 {
4154 if (remote_multi_process_p (rs))
4155 printf_filtered (_("Detached from remote %s.\n"),
4156 target_pid_to_str (pid_to_ptid (pid)));
4157 else
4158 {
4159 if (extended)
4160 puts_filtered (_("Detached from remote process.\n"));
4161 else
4162 puts_filtered (_("Ending remote debugging.\n"));
4163 }
4164 }
4165
4166 discard_pending_stop_replies (pid);
4167 target_mourn_inferior ();
4168 }
4169
4170 static void
4171 remote_detach (struct target_ops *ops, char *args, int from_tty)
4172 {
4173 remote_detach_1 (args, from_tty, 0);
4174 }
4175
4176 static void
4177 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4178 {
4179 remote_detach_1 (args, from_tty, 1);
4180 }
4181
4182 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4183
4184 static void
4185 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4186 {
4187 if (args)
4188 error (_("Argument given to \"disconnect\" when remotely debugging."));
4189
4190 /* Make sure we unpush even the extended remote targets; mourn
4191 won't do it. So call remote_mourn_1 directly instead of
4192 target_mourn_inferior. */
4193 remote_mourn_1 (target);
4194
4195 if (from_tty)
4196 puts_filtered ("Ending remote debugging.\n");
4197 }
4198
4199 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4200 be chatty about it. */
4201
4202 static void
4203 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4204 {
4205 struct remote_state *rs = get_remote_state ();
4206 int pid;
4207 char *wait_status = NULL;
4208
4209 pid = parse_pid_to_attach (args);
4210
4211 /* Remote PID can be freely equal to getpid, do not check it here the same
4212 way as in other targets. */
4213
4214 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4215 error (_("This target does not support attaching to a process"));
4216
4217 sprintf (rs->buf, "vAttach;%x", pid);
4218 putpkt (rs->buf);
4219 getpkt (&rs->buf, &rs->buf_size, 0);
4220
4221 if (packet_ok (rs->buf,
4222 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4223 {
4224 if (from_tty)
4225 printf_unfiltered (_("Attached to %s\n"),
4226 target_pid_to_str (pid_to_ptid (pid)));
4227
4228 if (!non_stop)
4229 {
4230 /* Save the reply for later. */
4231 wait_status = alloca (strlen (rs->buf) + 1);
4232 strcpy (wait_status, rs->buf);
4233 }
4234 else if (strcmp (rs->buf, "OK") != 0)
4235 error (_("Attaching to %s failed with: %s"),
4236 target_pid_to_str (pid_to_ptid (pid)),
4237 rs->buf);
4238 }
4239 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4240 error (_("This target does not support attaching to a process"));
4241 else
4242 error (_("Attaching to %s failed"),
4243 target_pid_to_str (pid_to_ptid (pid)));
4244
4245 set_current_inferior (remote_add_inferior (pid, 1));
4246
4247 inferior_ptid = pid_to_ptid (pid);
4248
4249 if (non_stop)
4250 {
4251 struct thread_info *thread;
4252
4253 /* Get list of threads. */
4254 remote_threads_info (target);
4255
4256 thread = first_thread_of_process (pid);
4257 if (thread)
4258 inferior_ptid = thread->ptid;
4259 else
4260 inferior_ptid = pid_to_ptid (pid);
4261
4262 /* Invalidate our notion of the remote current thread. */
4263 record_currthread (minus_one_ptid);
4264 }
4265 else
4266 {
4267 /* Now, if we have thread information, update inferior_ptid. */
4268 inferior_ptid = remote_current_thread (inferior_ptid);
4269
4270 /* Add the main thread to the thread list. */
4271 add_thread_silent (inferior_ptid);
4272 }
4273
4274 /* Next, if the target can specify a description, read it. We do
4275 this before anything involving memory or registers. */
4276 target_find_description ();
4277
4278 if (!non_stop)
4279 {
4280 /* Use the previously fetched status. */
4281 gdb_assert (wait_status != NULL);
4282
4283 if (target_can_async_p ())
4284 {
4285 struct stop_reply *stop_reply;
4286 struct cleanup *old_chain;
4287
4288 stop_reply = stop_reply_xmalloc ();
4289 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4290 remote_parse_stop_reply (wait_status, stop_reply);
4291 discard_cleanups (old_chain);
4292 push_stop_reply (stop_reply);
4293
4294 target_async (inferior_event_handler, 0);
4295 }
4296 else
4297 {
4298 gdb_assert (wait_status != NULL);
4299 strcpy (rs->buf, wait_status);
4300 rs->cached_wait_status = 1;
4301 }
4302 }
4303 else
4304 gdb_assert (wait_status == NULL);
4305 }
4306
4307 static void
4308 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4309 {
4310 extended_remote_attach_1 (ops, args, from_tty);
4311 }
4312
4313 /* Convert hex digit A to a number. */
4314
4315 static int
4316 fromhex (int a)
4317 {
4318 if (a >= '0' && a <= '9')
4319 return a - '0';
4320 else if (a >= 'a' && a <= 'f')
4321 return a - 'a' + 10;
4322 else if (a >= 'A' && a <= 'F')
4323 return a - 'A' + 10;
4324 else
4325 error (_("Reply contains invalid hex digit %d"), a);
4326 }
4327
4328 int
4329 hex2bin (const char *hex, gdb_byte *bin, int count)
4330 {
4331 int i;
4332
4333 for (i = 0; i < count; i++)
4334 {
4335 if (hex[0] == 0 || hex[1] == 0)
4336 {
4337 /* Hex string is short, or of uneven length.
4338 Return the count that has been converted so far. */
4339 return i;
4340 }
4341 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4342 hex += 2;
4343 }
4344 return i;
4345 }
4346
4347 /* Convert number NIB to a hex digit. */
4348
4349 static int
4350 tohex (int nib)
4351 {
4352 if (nib < 10)
4353 return '0' + nib;
4354 else
4355 return 'a' + nib - 10;
4356 }
4357
4358 int
4359 bin2hex (const gdb_byte *bin, char *hex, int count)
4360 {
4361 int i;
4362
4363 /* May use a length, or a nul-terminated string as input. */
4364 if (count == 0)
4365 count = strlen ((char *) bin);
4366
4367 for (i = 0; i < count; i++)
4368 {
4369 *hex++ = tohex ((*bin >> 4) & 0xf);
4370 *hex++ = tohex (*bin++ & 0xf);
4371 }
4372 *hex = 0;
4373 return i;
4374 }
4375 \f
4376 /* Check for the availability of vCont. This function should also check
4377 the response. */
4378
4379 static void
4380 remote_vcont_probe (struct remote_state *rs)
4381 {
4382 char *buf;
4383
4384 strcpy (rs->buf, "vCont?");
4385 putpkt (rs->buf);
4386 getpkt (&rs->buf, &rs->buf_size, 0);
4387 buf = rs->buf;
4388
4389 /* Make sure that the features we assume are supported. */
4390 if (strncmp (buf, "vCont", 5) == 0)
4391 {
4392 char *p = &buf[5];
4393 int support_s, support_S, support_c, support_C;
4394
4395 support_s = 0;
4396 support_S = 0;
4397 support_c = 0;
4398 support_C = 0;
4399 rs->support_vCont_t = 0;
4400 while (p && *p == ';')
4401 {
4402 p++;
4403 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4404 support_s = 1;
4405 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4406 support_S = 1;
4407 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4408 support_c = 1;
4409 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4410 support_C = 1;
4411 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4412 rs->support_vCont_t = 1;
4413
4414 p = strchr (p, ';');
4415 }
4416
4417 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4418 BUF will make packet_ok disable the packet. */
4419 if (!support_s || !support_S || !support_c || !support_C)
4420 buf[0] = 0;
4421 }
4422
4423 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4424 }
4425
4426 /* Helper function for building "vCont" resumptions. Write a
4427 resumption to P. ENDP points to one-passed-the-end of the buffer
4428 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4429 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4430 resumed thread should be single-stepped and/or signalled. If PTID
4431 equals minus_one_ptid, then all threads are resumed; if PTID
4432 represents a process, then all threads of the process are resumed;
4433 the thread to be stepped and/or signalled is given in the global
4434 INFERIOR_PTID. */
4435
4436 static char *
4437 append_resumption (char *p, char *endp,
4438 ptid_t ptid, int step, enum target_signal siggnal)
4439 {
4440 struct remote_state *rs = get_remote_state ();
4441
4442 if (step && siggnal != TARGET_SIGNAL_0)
4443 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4444 else if (step)
4445 p += xsnprintf (p, endp - p, ";s");
4446 else if (siggnal != TARGET_SIGNAL_0)
4447 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4448 else
4449 p += xsnprintf (p, endp - p, ";c");
4450
4451 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4452 {
4453 ptid_t nptid;
4454
4455 /* All (-1) threads of process. */
4456 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4457
4458 p += xsnprintf (p, endp - p, ":");
4459 p = write_ptid (p, endp, nptid);
4460 }
4461 else if (!ptid_equal (ptid, minus_one_ptid))
4462 {
4463 p += xsnprintf (p, endp - p, ":");
4464 p = write_ptid (p, endp, ptid);
4465 }
4466
4467 return p;
4468 }
4469
4470 /* Resume the remote inferior by using a "vCont" packet. The thread
4471 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4472 resumed thread should be single-stepped and/or signalled. If PTID
4473 equals minus_one_ptid, then all threads are resumed; the thread to
4474 be stepped and/or signalled is given in the global INFERIOR_PTID.
4475 This function returns non-zero iff it resumes the inferior.
4476
4477 This function issues a strict subset of all possible vCont commands at the
4478 moment. */
4479
4480 static int
4481 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4482 {
4483 struct remote_state *rs = get_remote_state ();
4484 char *p;
4485 char *endp;
4486
4487 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4488 remote_vcont_probe (rs);
4489
4490 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4491 return 0;
4492
4493 p = rs->buf;
4494 endp = rs->buf + get_remote_packet_size ();
4495
4496 /* If we could generate a wider range of packets, we'd have to worry
4497 about overflowing BUF. Should there be a generic
4498 "multi-part-packet" packet? */
4499
4500 p += xsnprintf (p, endp - p, "vCont");
4501
4502 if (ptid_equal (ptid, magic_null_ptid))
4503 {
4504 /* MAGIC_NULL_PTID means that we don't have any active threads,
4505 so we don't have any TID numbers the inferior will
4506 understand. Make sure to only send forms that do not specify
4507 a TID. */
4508 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4509 }
4510 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4511 {
4512 /* Resume all threads (of all processes, or of a single
4513 process), with preference for INFERIOR_PTID. This assumes
4514 inferior_ptid belongs to the set of all threads we are about
4515 to resume. */
4516 if (step || siggnal != TARGET_SIGNAL_0)
4517 {
4518 /* Step inferior_ptid, with or without signal. */
4519 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4520 }
4521
4522 /* And continue others without a signal. */
4523 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4524 }
4525 else
4526 {
4527 /* Scheduler locking; resume only PTID. */
4528 append_resumption (p, endp, ptid, step, siggnal);
4529 }
4530
4531 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4532 putpkt (rs->buf);
4533
4534 if (non_stop)
4535 {
4536 /* In non-stop, the stub replies to vCont with "OK". The stop
4537 reply will be reported asynchronously by means of a `%Stop'
4538 notification. */
4539 getpkt (&rs->buf, &rs->buf_size, 0);
4540 if (strcmp (rs->buf, "OK") != 0)
4541 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4542 }
4543
4544 return 1;
4545 }
4546
4547 /* Tell the remote machine to resume. */
4548
4549 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4550
4551 static int last_sent_step;
4552
4553 static void
4554 remote_resume (struct target_ops *ops,
4555 ptid_t ptid, int step, enum target_signal siggnal)
4556 {
4557 struct remote_state *rs = get_remote_state ();
4558 char *buf;
4559
4560 last_sent_signal = siggnal;
4561 last_sent_step = step;
4562
4563 /* The vCont packet doesn't need to specify threads via Hc. */
4564 /* No reverse support (yet) for vCont. */
4565 if (execution_direction != EXEC_REVERSE)
4566 if (remote_vcont_resume (ptid, step, siggnal))
4567 goto done;
4568
4569 /* All other supported resume packets do use Hc, so set the continue
4570 thread. */
4571 if (ptid_equal (ptid, minus_one_ptid))
4572 set_continue_thread (any_thread_ptid);
4573 else
4574 set_continue_thread (ptid);
4575
4576 buf = rs->buf;
4577 if (execution_direction == EXEC_REVERSE)
4578 {
4579 /* We don't pass signals to the target in reverse exec mode. */
4580 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4581 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4582 siggnal);
4583
4584 if (step
4585 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4586 error (_("Remote reverse-step not supported."));
4587 if (!step
4588 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4589 error (_("Remote reverse-continue not supported."));
4590
4591 strcpy (buf, step ? "bs" : "bc");
4592 }
4593 else if (siggnal != TARGET_SIGNAL_0)
4594 {
4595 buf[0] = step ? 'S' : 'C';
4596 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4597 buf[2] = tohex (((int) siggnal) & 0xf);
4598 buf[3] = '\0';
4599 }
4600 else
4601 strcpy (buf, step ? "s" : "c");
4602
4603 putpkt (buf);
4604
4605 done:
4606 /* We are about to start executing the inferior, let's register it
4607 with the event loop. NOTE: this is the one place where all the
4608 execution commands end up. We could alternatively do this in each
4609 of the execution commands in infcmd.c. */
4610 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4611 into infcmd.c in order to allow inferior function calls to work
4612 NOT asynchronously. */
4613 if (target_can_async_p ())
4614 target_async (inferior_event_handler, 0);
4615
4616 /* We've just told the target to resume. The remote server will
4617 wait for the inferior to stop, and then send a stop reply. In
4618 the mean time, we can't start another command/query ourselves
4619 because the stub wouldn't be ready to process it. This applies
4620 only to the base all-stop protocol, however. In non-stop (which
4621 only supports vCont), the stub replies with an "OK", and is
4622 immediate able to process further serial input. */
4623 if (!non_stop)
4624 rs->waiting_for_stop_reply = 1;
4625 }
4626 \f
4627
4628 /* Set up the signal handler for SIGINT, while the target is
4629 executing, ovewriting the 'regular' SIGINT signal handler. */
4630 static void
4631 initialize_sigint_signal_handler (void)
4632 {
4633 signal (SIGINT, handle_remote_sigint);
4634 }
4635
4636 /* Signal handler for SIGINT, while the target is executing. */
4637 static void
4638 handle_remote_sigint (int sig)
4639 {
4640 signal (sig, handle_remote_sigint_twice);
4641 mark_async_signal_handler_wrapper (sigint_remote_token);
4642 }
4643
4644 /* Signal handler for SIGINT, installed after SIGINT has already been
4645 sent once. It will take effect the second time that the user sends
4646 a ^C. */
4647 static void
4648 handle_remote_sigint_twice (int sig)
4649 {
4650 signal (sig, handle_remote_sigint);
4651 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4652 }
4653
4654 /* Perform the real interruption of the target execution, in response
4655 to a ^C. */
4656 static void
4657 async_remote_interrupt (gdb_client_data arg)
4658 {
4659 if (remote_debug)
4660 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4661
4662 target_stop (inferior_ptid);
4663 }
4664
4665 /* Perform interrupt, if the first attempt did not succeed. Just give
4666 up on the target alltogether. */
4667 void
4668 async_remote_interrupt_twice (gdb_client_data arg)
4669 {
4670 if (remote_debug)
4671 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4672
4673 interrupt_query ();
4674 }
4675
4676 /* Reinstall the usual SIGINT handlers, after the target has
4677 stopped. */
4678 static void
4679 cleanup_sigint_signal_handler (void *dummy)
4680 {
4681 signal (SIGINT, handle_sigint);
4682 }
4683
4684 /* Send ^C to target to halt it. Target will respond, and send us a
4685 packet. */
4686 static void (*ofunc) (int);
4687
4688 /* The command line interface's stop routine. This function is installed
4689 as a signal handler for SIGINT. The first time a user requests a
4690 stop, we call remote_stop to send a break or ^C. If there is no
4691 response from the target (it didn't stop when the user requested it),
4692 we ask the user if he'd like to detach from the target. */
4693 static void
4694 remote_interrupt (int signo)
4695 {
4696 /* If this doesn't work, try more severe steps. */
4697 signal (signo, remote_interrupt_twice);
4698
4699 gdb_call_async_signal_handler (sigint_remote_token, 1);
4700 }
4701
4702 /* The user typed ^C twice. */
4703
4704 static void
4705 remote_interrupt_twice (int signo)
4706 {
4707 signal (signo, ofunc);
4708 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4709 signal (signo, remote_interrupt);
4710 }
4711
4712 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4713 thread, all threads of a remote process, or all threads of all
4714 processes. */
4715
4716 static void
4717 remote_stop_ns (ptid_t ptid)
4718 {
4719 struct remote_state *rs = get_remote_state ();
4720 char *p = rs->buf;
4721 char *endp = rs->buf + get_remote_packet_size ();
4722
4723 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4724 remote_vcont_probe (rs);
4725
4726 if (!rs->support_vCont_t)
4727 error (_("Remote server does not support stopping threads"));
4728
4729 if (ptid_equal (ptid, minus_one_ptid)
4730 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4731 p += xsnprintf (p, endp - p, "vCont;t");
4732 else
4733 {
4734 ptid_t nptid;
4735
4736 p += xsnprintf (p, endp - p, "vCont;t:");
4737
4738 if (ptid_is_pid (ptid))
4739 /* All (-1) threads of process. */
4740 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4741 else
4742 {
4743 /* Small optimization: if we already have a stop reply for
4744 this thread, no use in telling the stub we want this
4745 stopped. */
4746 if (peek_stop_reply (ptid))
4747 return;
4748
4749 nptid = ptid;
4750 }
4751
4752 write_ptid (p, endp, nptid);
4753 }
4754
4755 /* In non-stop, we get an immediate OK reply. The stop reply will
4756 come in asynchronously by notification. */
4757 putpkt (rs->buf);
4758 getpkt (&rs->buf, &rs->buf_size, 0);
4759 if (strcmp (rs->buf, "OK") != 0)
4760 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4761 }
4762
4763 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4764 remote target. It is undefined which thread of which process
4765 reports the stop. */
4766
4767 static void
4768 remote_stop_as (ptid_t ptid)
4769 {
4770 struct remote_state *rs = get_remote_state ();
4771
4772 rs->ctrlc_pending_p = 1;
4773
4774 /* If the inferior is stopped already, but the core didn't know
4775 about it yet, just ignore the request. The cached wait status
4776 will be collected in remote_wait. */
4777 if (rs->cached_wait_status)
4778 return;
4779
4780 /* Send interrupt_sequence to remote target. */
4781 send_interrupt_sequence ();
4782 }
4783
4784 /* This is the generic stop called via the target vector. When a target
4785 interrupt is requested, either by the command line or the GUI, we
4786 will eventually end up here. */
4787
4788 static void
4789 remote_stop (ptid_t ptid)
4790 {
4791 if (remote_debug)
4792 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4793
4794 if (non_stop)
4795 remote_stop_ns (ptid);
4796 else
4797 remote_stop_as (ptid);
4798 }
4799
4800 /* Ask the user what to do when an interrupt is received. */
4801
4802 static void
4803 interrupt_query (void)
4804 {
4805 target_terminal_ours ();
4806
4807 if (target_can_async_p ())
4808 {
4809 signal (SIGINT, handle_sigint);
4810 deprecated_throw_reason (RETURN_QUIT);
4811 }
4812 else
4813 {
4814 if (query (_("Interrupted while waiting for the program.\n\
4815 Give up (and stop debugging it)? ")))
4816 {
4817 pop_target ();
4818 deprecated_throw_reason (RETURN_QUIT);
4819 }
4820 }
4821
4822 target_terminal_inferior ();
4823 }
4824
4825 /* Enable/disable target terminal ownership. Most targets can use
4826 terminal groups to control terminal ownership. Remote targets are
4827 different in that explicit transfer of ownership to/from GDB/target
4828 is required. */
4829
4830 static void
4831 remote_terminal_inferior (void)
4832 {
4833 if (!target_async_permitted)
4834 /* Nothing to do. */
4835 return;
4836
4837 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4838 idempotent. The event-loop GDB talking to an asynchronous target
4839 with a synchronous command calls this function from both
4840 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4841 transfer the terminal to the target when it shouldn't this guard
4842 can go away. */
4843 if (!remote_async_terminal_ours_p)
4844 return;
4845 delete_file_handler (input_fd);
4846 remote_async_terminal_ours_p = 0;
4847 initialize_sigint_signal_handler ();
4848 /* NOTE: At this point we could also register our selves as the
4849 recipient of all input. Any characters typed could then be
4850 passed on down to the target. */
4851 }
4852
4853 static void
4854 remote_terminal_ours (void)
4855 {
4856 if (!target_async_permitted)
4857 /* Nothing to do. */
4858 return;
4859
4860 /* See FIXME in remote_terminal_inferior. */
4861 if (remote_async_terminal_ours_p)
4862 return;
4863 cleanup_sigint_signal_handler (NULL);
4864 add_file_handler (input_fd, stdin_event_handler, 0);
4865 remote_async_terminal_ours_p = 1;
4866 }
4867
4868 static void
4869 remote_console_output (char *msg)
4870 {
4871 char *p;
4872
4873 for (p = msg; p[0] && p[1]; p += 2)
4874 {
4875 char tb[2];
4876 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4877
4878 tb[0] = c;
4879 tb[1] = 0;
4880 fputs_unfiltered (tb, gdb_stdtarg);
4881 }
4882 gdb_flush (gdb_stdtarg);
4883 }
4884
4885 typedef struct cached_reg
4886 {
4887 int num;
4888 gdb_byte data[MAX_REGISTER_SIZE];
4889 } cached_reg_t;
4890
4891 DEF_VEC_O(cached_reg_t);
4892
4893 struct stop_reply
4894 {
4895 struct stop_reply *next;
4896
4897 ptid_t ptid;
4898
4899 struct target_waitstatus ws;
4900
4901 /* Expedited registers. This makes remote debugging a bit more
4902 efficient for those targets that provide critical registers as
4903 part of their normal status mechanism (as another roundtrip to
4904 fetch them is avoided). */
4905 VEC(cached_reg_t) *regcache;
4906
4907 int stopped_by_watchpoint_p;
4908 CORE_ADDR watch_data_address;
4909
4910 int solibs_changed;
4911 int replay_event;
4912
4913 int core;
4914 };
4915
4916 /* The list of already fetched and acknowledged stop events. */
4917 static struct stop_reply *stop_reply_queue;
4918
4919 static struct stop_reply *
4920 stop_reply_xmalloc (void)
4921 {
4922 struct stop_reply *r = XMALLOC (struct stop_reply);
4923
4924 r->next = NULL;
4925 return r;
4926 }
4927
4928 static void
4929 stop_reply_xfree (struct stop_reply *r)
4930 {
4931 if (r != NULL)
4932 {
4933 VEC_free (cached_reg_t, r->regcache);
4934 xfree (r);
4935 }
4936 }
4937
4938 /* Discard all pending stop replies of inferior PID. If PID is -1,
4939 discard everything. */
4940
4941 static void
4942 discard_pending_stop_replies (int pid)
4943 {
4944 struct stop_reply *prev = NULL, *reply, *next;
4945
4946 /* Discard the in-flight notification. */
4947 if (pending_stop_reply != NULL
4948 && (pid == -1
4949 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4950 {
4951 stop_reply_xfree (pending_stop_reply);
4952 pending_stop_reply = NULL;
4953 }
4954
4955 /* Discard the stop replies we have already pulled with
4956 vStopped. */
4957 for (reply = stop_reply_queue; reply; reply = next)
4958 {
4959 next = reply->next;
4960 if (pid == -1
4961 || ptid_get_pid (reply->ptid) == pid)
4962 {
4963 if (reply == stop_reply_queue)
4964 stop_reply_queue = reply->next;
4965 else
4966 prev->next = reply->next;
4967
4968 stop_reply_xfree (reply);
4969 }
4970 else
4971 prev = reply;
4972 }
4973 }
4974
4975 /* Cleanup wrapper. */
4976
4977 static void
4978 do_stop_reply_xfree (void *arg)
4979 {
4980 struct stop_reply *r = arg;
4981
4982 stop_reply_xfree (r);
4983 }
4984
4985 /* Look for a queued stop reply belonging to PTID. If one is found,
4986 remove it from the queue, and return it. Returns NULL if none is
4987 found. If there are still queued events left to process, tell the
4988 event loop to get back to target_wait soon. */
4989
4990 static struct stop_reply *
4991 queued_stop_reply (ptid_t ptid)
4992 {
4993 struct stop_reply *it;
4994 struct stop_reply **it_link;
4995
4996 it = stop_reply_queue;
4997 it_link = &stop_reply_queue;
4998 while (it)
4999 {
5000 if (ptid_match (it->ptid, ptid))
5001 {
5002 *it_link = it->next;
5003 it->next = NULL;
5004 break;
5005 }
5006
5007 it_link = &it->next;
5008 it = *it_link;
5009 }
5010
5011 if (stop_reply_queue)
5012 /* There's still at least an event left. */
5013 mark_async_event_handler (remote_async_inferior_event_token);
5014
5015 return it;
5016 }
5017
5018 /* Push a fully parsed stop reply in the stop reply queue. Since we
5019 know that we now have at least one queued event left to pass to the
5020 core side, tell the event loop to get back to target_wait soon. */
5021
5022 static void
5023 push_stop_reply (struct stop_reply *new_event)
5024 {
5025 struct stop_reply *event;
5026
5027 if (stop_reply_queue)
5028 {
5029 for (event = stop_reply_queue;
5030 event && event->next;
5031 event = event->next)
5032 ;
5033
5034 event->next = new_event;
5035 }
5036 else
5037 stop_reply_queue = new_event;
5038
5039 mark_async_event_handler (remote_async_inferior_event_token);
5040 }
5041
5042 /* Returns true if we have a stop reply for PTID. */
5043
5044 static int
5045 peek_stop_reply (ptid_t ptid)
5046 {
5047 struct stop_reply *it;
5048
5049 for (it = stop_reply_queue; it; it = it->next)
5050 if (ptid_equal (ptid, it->ptid))
5051 {
5052 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5053 return 1;
5054 }
5055
5056 return 0;
5057 }
5058
5059 /* Parse the stop reply in BUF. Either the function succeeds, and the
5060 result is stored in EVENT, or throws an error. */
5061
5062 static void
5063 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5064 {
5065 struct remote_arch_state *rsa = get_remote_arch_state ();
5066 ULONGEST addr;
5067 char *p;
5068
5069 event->ptid = null_ptid;
5070 event->ws.kind = TARGET_WAITKIND_IGNORE;
5071 event->ws.value.integer = 0;
5072 event->solibs_changed = 0;
5073 event->replay_event = 0;
5074 event->stopped_by_watchpoint_p = 0;
5075 event->regcache = NULL;
5076 event->core = -1;
5077
5078 switch (buf[0])
5079 {
5080 case 'T': /* Status with PC, SP, FP, ... */
5081 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5082 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5083 ss = signal number
5084 n... = register number
5085 r... = register contents
5086 */
5087
5088 p = &buf[3]; /* after Txx */
5089 while (*p)
5090 {
5091 char *p1;
5092 char *p_temp;
5093 int fieldsize;
5094 LONGEST pnum = 0;
5095
5096 /* If the packet contains a register number, save it in
5097 pnum and set p1 to point to the character following it.
5098 Otherwise p1 points to p. */
5099
5100 /* If this packet is an awatch packet, don't parse the 'a'
5101 as a register number. */
5102
5103 if (strncmp (p, "awatch", strlen("awatch")) != 0
5104 && strncmp (p, "core", strlen ("core") != 0))
5105 {
5106 /* Read the ``P'' register number. */
5107 pnum = strtol (p, &p_temp, 16);
5108 p1 = p_temp;
5109 }
5110 else
5111 p1 = p;
5112
5113 if (p1 == p) /* No register number present here. */
5114 {
5115 p1 = strchr (p, ':');
5116 if (p1 == NULL)
5117 error (_("Malformed packet(a) (missing colon): %s\n\
5118 Packet: '%s'\n"),
5119 p, buf);
5120 if (strncmp (p, "thread", p1 - p) == 0)
5121 event->ptid = read_ptid (++p1, &p);
5122 else if ((strncmp (p, "watch", p1 - p) == 0)
5123 || (strncmp (p, "rwatch", p1 - p) == 0)
5124 || (strncmp (p, "awatch", p1 - p) == 0))
5125 {
5126 event->stopped_by_watchpoint_p = 1;
5127 p = unpack_varlen_hex (++p1, &addr);
5128 event->watch_data_address = (CORE_ADDR) addr;
5129 }
5130 else if (strncmp (p, "library", p1 - p) == 0)
5131 {
5132 p1++;
5133 p_temp = p1;
5134 while (*p_temp && *p_temp != ';')
5135 p_temp++;
5136
5137 event->solibs_changed = 1;
5138 p = p_temp;
5139 }
5140 else if (strncmp (p, "replaylog", p1 - p) == 0)
5141 {
5142 /* NO_HISTORY event.
5143 p1 will indicate "begin" or "end", but
5144 it makes no difference for now, so ignore it. */
5145 event->replay_event = 1;
5146 p_temp = strchr (p1 + 1, ';');
5147 if (p_temp)
5148 p = p_temp;
5149 }
5150 else if (strncmp (p, "core", p1 - p) == 0)
5151 {
5152 ULONGEST c;
5153
5154 p = unpack_varlen_hex (++p1, &c);
5155 event->core = c;
5156 }
5157 else
5158 {
5159 /* Silently skip unknown optional info. */
5160 p_temp = strchr (p1 + 1, ';');
5161 if (p_temp)
5162 p = p_temp;
5163 }
5164 }
5165 else
5166 {
5167 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5168 cached_reg_t cached_reg;
5169
5170 p = p1;
5171
5172 if (*p != ':')
5173 error (_("Malformed packet(b) (missing colon): %s\n\
5174 Packet: '%s'\n"),
5175 p, buf);
5176 ++p;
5177
5178 if (reg == NULL)
5179 error (_("Remote sent bad register number %s: %s\n\
5180 Packet: '%s'\n"),
5181 hex_string (pnum), p, buf);
5182
5183 cached_reg.num = reg->regnum;
5184
5185 fieldsize = hex2bin (p, cached_reg.data,
5186 register_size (target_gdbarch,
5187 reg->regnum));
5188 p += 2 * fieldsize;
5189 if (fieldsize < register_size (target_gdbarch,
5190 reg->regnum))
5191 warning (_("Remote reply is too short: %s"), buf);
5192
5193 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5194 }
5195
5196 if (*p != ';')
5197 error (_("Remote register badly formatted: %s\nhere: %s"),
5198 buf, p);
5199 ++p;
5200 }
5201 /* fall through */
5202 case 'S': /* Old style status, just signal only. */
5203 if (event->solibs_changed)
5204 event->ws.kind = TARGET_WAITKIND_LOADED;
5205 else if (event->replay_event)
5206 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5207 else
5208 {
5209 event->ws.kind = TARGET_WAITKIND_STOPPED;
5210 event->ws.value.sig = (enum target_signal)
5211 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5212 }
5213 break;
5214 case 'W': /* Target exited. */
5215 case 'X':
5216 {
5217 char *p;
5218 int pid;
5219 ULONGEST value;
5220
5221 /* GDB used to accept only 2 hex chars here. Stubs should
5222 only send more if they detect GDB supports multi-process
5223 support. */
5224 p = unpack_varlen_hex (&buf[1], &value);
5225
5226 if (buf[0] == 'W')
5227 {
5228 /* The remote process exited. */
5229 event->ws.kind = TARGET_WAITKIND_EXITED;
5230 event->ws.value.integer = value;
5231 }
5232 else
5233 {
5234 /* The remote process exited with a signal. */
5235 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5236 event->ws.value.sig = (enum target_signal) value;
5237 }
5238
5239 /* If no process is specified, assume inferior_ptid. */
5240 pid = ptid_get_pid (inferior_ptid);
5241 if (*p == '\0')
5242 ;
5243 else if (*p == ';')
5244 {
5245 p++;
5246
5247 if (p == '\0')
5248 ;
5249 else if (strncmp (p,
5250 "process:", sizeof ("process:") - 1) == 0)
5251 {
5252 ULONGEST upid;
5253
5254 p += sizeof ("process:") - 1;
5255 unpack_varlen_hex (p, &upid);
5256 pid = upid;
5257 }
5258 else
5259 error (_("unknown stop reply packet: %s"), buf);
5260 }
5261 else
5262 error (_("unknown stop reply packet: %s"), buf);
5263 event->ptid = pid_to_ptid (pid);
5264 }
5265 break;
5266 }
5267
5268 if (non_stop && ptid_equal (event->ptid, null_ptid))
5269 error (_("No process or thread specified in stop reply: %s"), buf);
5270 }
5271
5272 /* When the stub wants to tell GDB about a new stop reply, it sends a
5273 stop notification (%Stop). Those can come it at any time, hence,
5274 we have to make sure that any pending putpkt/getpkt sequence we're
5275 making is finished, before querying the stub for more events with
5276 vStopped. E.g., if we started a vStopped sequence immediatelly
5277 upon receiving the %Stop notification, something like this could
5278 happen:
5279
5280 1.1) --> Hg 1
5281 1.2) <-- OK
5282 1.3) --> g
5283 1.4) <-- %Stop
5284 1.5) --> vStopped
5285 1.6) <-- (registers reply to step #1.3)
5286
5287 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5288 query.
5289
5290 To solve this, whenever we parse a %Stop notification sucessfully,
5291 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5292 doing whatever we were doing:
5293
5294 2.1) --> Hg 1
5295 2.2) <-- OK
5296 2.3) --> g
5297 2.4) <-- %Stop
5298 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5299 2.5) <-- (registers reply to step #2.3)
5300
5301 Eventualy after step #2.5, we return to the event loop, which
5302 notices there's an event on the
5303 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5304 associated callback --- the function below. At this point, we're
5305 always safe to start a vStopped sequence. :
5306
5307 2.6) --> vStopped
5308 2.7) <-- T05 thread:2
5309 2.8) --> vStopped
5310 2.9) --> OK
5311 */
5312
5313 static void
5314 remote_get_pending_stop_replies (void)
5315 {
5316 struct remote_state *rs = get_remote_state ();
5317
5318 if (pending_stop_reply)
5319 {
5320 /* acknowledge */
5321 putpkt ("vStopped");
5322
5323 /* Now we can rely on it. */
5324 push_stop_reply (pending_stop_reply);
5325 pending_stop_reply = NULL;
5326
5327 while (1)
5328 {
5329 getpkt (&rs->buf, &rs->buf_size, 0);
5330 if (strcmp (rs->buf, "OK") == 0)
5331 break;
5332 else
5333 {
5334 struct cleanup *old_chain;
5335 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5336
5337 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5338 remote_parse_stop_reply (rs->buf, stop_reply);
5339
5340 /* acknowledge */
5341 putpkt ("vStopped");
5342
5343 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5344 {
5345 /* Now we can rely on it. */
5346 discard_cleanups (old_chain);
5347 push_stop_reply (stop_reply);
5348 }
5349 else
5350 /* We got an unknown stop reply. */
5351 do_cleanups (old_chain);
5352 }
5353 }
5354 }
5355 }
5356
5357
5358 /* Called when it is decided that STOP_REPLY holds the info of the
5359 event that is to be returned to the core. This function always
5360 destroys STOP_REPLY. */
5361
5362 static ptid_t
5363 process_stop_reply (struct stop_reply *stop_reply,
5364 struct target_waitstatus *status)
5365 {
5366 ptid_t ptid;
5367
5368 *status = stop_reply->ws;
5369 ptid = stop_reply->ptid;
5370
5371 /* If no thread/process was reported by the stub, assume the current
5372 inferior. */
5373 if (ptid_equal (ptid, null_ptid))
5374 ptid = inferior_ptid;
5375
5376 if (status->kind != TARGET_WAITKIND_EXITED
5377 && status->kind != TARGET_WAITKIND_SIGNALLED)
5378 {
5379 /* Expedited registers. */
5380 if (stop_reply->regcache)
5381 {
5382 struct regcache *regcache
5383 = get_thread_arch_regcache (ptid, target_gdbarch);
5384 cached_reg_t *reg;
5385 int ix;
5386
5387 for (ix = 0;
5388 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5389 ix++)
5390 regcache_raw_supply (regcache, reg->num, reg->data);
5391 VEC_free (cached_reg_t, stop_reply->regcache);
5392 }
5393
5394 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5395 remote_watch_data_address = stop_reply->watch_data_address;
5396
5397 remote_notice_new_inferior (ptid, 0);
5398 demand_private_info (ptid)->core = stop_reply->core;
5399 }
5400
5401 stop_reply_xfree (stop_reply);
5402 return ptid;
5403 }
5404
5405 /* The non-stop mode version of target_wait. */
5406
5407 static ptid_t
5408 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5409 {
5410 struct remote_state *rs = get_remote_state ();
5411 struct stop_reply *stop_reply;
5412 int ret;
5413
5414 /* If in non-stop mode, get out of getpkt even if a
5415 notification is received. */
5416
5417 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5418 0 /* forever */);
5419 while (1)
5420 {
5421 if (ret != -1)
5422 switch (rs->buf[0])
5423 {
5424 case 'E': /* Error of some sort. */
5425 /* We're out of sync with the target now. Did it continue
5426 or not? We can't tell which thread it was in non-stop,
5427 so just ignore this. */
5428 warning (_("Remote failure reply: %s"), rs->buf);
5429 break;
5430 case 'O': /* Console output. */
5431 remote_console_output (rs->buf + 1);
5432 break;
5433 default:
5434 warning (_("Invalid remote reply: %s"), rs->buf);
5435 break;
5436 }
5437
5438 /* Acknowledge a pending stop reply that may have arrived in the
5439 mean time. */
5440 if (pending_stop_reply != NULL)
5441 remote_get_pending_stop_replies ();
5442
5443 /* If indeed we noticed a stop reply, we're done. */
5444 stop_reply = queued_stop_reply (ptid);
5445 if (stop_reply != NULL)
5446 return process_stop_reply (stop_reply, status);
5447
5448 /* Still no event. If we're just polling for an event, then
5449 return to the event loop. */
5450 if (options & TARGET_WNOHANG)
5451 {
5452 status->kind = TARGET_WAITKIND_IGNORE;
5453 return minus_one_ptid;
5454 }
5455
5456 /* Otherwise do a blocking wait. */
5457 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5458 1 /* forever */);
5459 }
5460 }
5461
5462 /* Wait until the remote machine stops, then return, storing status in
5463 STATUS just as `wait' would. */
5464
5465 static ptid_t
5466 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5467 {
5468 struct remote_state *rs = get_remote_state ();
5469 ptid_t event_ptid = null_ptid;
5470 char *buf;
5471 struct stop_reply *stop_reply;
5472
5473 again:
5474
5475 status->kind = TARGET_WAITKIND_IGNORE;
5476 status->value.integer = 0;
5477
5478 stop_reply = queued_stop_reply (ptid);
5479 if (stop_reply != NULL)
5480 return process_stop_reply (stop_reply, status);
5481
5482 if (rs->cached_wait_status)
5483 /* Use the cached wait status, but only once. */
5484 rs->cached_wait_status = 0;
5485 else
5486 {
5487 int ret;
5488
5489 if (!target_is_async_p ())
5490 {
5491 ofunc = signal (SIGINT, remote_interrupt);
5492 /* If the user hit C-c before this packet, or between packets,
5493 pretend that it was hit right here. */
5494 if (quit_flag)
5495 {
5496 quit_flag = 0;
5497 remote_interrupt (SIGINT);
5498 }
5499 }
5500
5501 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5502 _never_ wait for ever -> test on target_is_async_p().
5503 However, before we do that we need to ensure that the caller
5504 knows how to take the target into/out of async mode. */
5505 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5506 if (!target_is_async_p ())
5507 signal (SIGINT, ofunc);
5508 }
5509
5510 buf = rs->buf;
5511
5512 remote_stopped_by_watchpoint_p = 0;
5513
5514 /* We got something. */
5515 rs->waiting_for_stop_reply = 0;
5516
5517 /* Assume that the target has acknowledged Ctrl-C unless we receive
5518 an 'F' or 'O' packet. */
5519 if (buf[0] != 'F' && buf[0] != 'O')
5520 rs->ctrlc_pending_p = 0;
5521
5522 switch (buf[0])
5523 {
5524 case 'E': /* Error of some sort. */
5525 /* We're out of sync with the target now. Did it continue or
5526 not? Not is more likely, so report a stop. */
5527 warning (_("Remote failure reply: %s"), buf);
5528 status->kind = TARGET_WAITKIND_STOPPED;
5529 status->value.sig = TARGET_SIGNAL_0;
5530 break;
5531 case 'F': /* File-I/O request. */
5532 remote_fileio_request (buf, rs->ctrlc_pending_p);
5533 rs->ctrlc_pending_p = 0;
5534 break;
5535 case 'T': case 'S': case 'X': case 'W':
5536 {
5537 struct stop_reply *stop_reply;
5538 struct cleanup *old_chain;
5539
5540 stop_reply = stop_reply_xmalloc ();
5541 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5542 remote_parse_stop_reply (buf, stop_reply);
5543 discard_cleanups (old_chain);
5544 event_ptid = process_stop_reply (stop_reply, status);
5545 break;
5546 }
5547 case 'O': /* Console output. */
5548 remote_console_output (buf + 1);
5549
5550 /* The target didn't really stop; keep waiting. */
5551 rs->waiting_for_stop_reply = 1;
5552
5553 break;
5554 case '\0':
5555 if (last_sent_signal != TARGET_SIGNAL_0)
5556 {
5557 /* Zero length reply means that we tried 'S' or 'C' and the
5558 remote system doesn't support it. */
5559 target_terminal_ours_for_output ();
5560 printf_filtered
5561 ("Can't send signals to this remote system. %s not sent.\n",
5562 target_signal_to_name (last_sent_signal));
5563 last_sent_signal = TARGET_SIGNAL_0;
5564 target_terminal_inferior ();
5565
5566 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5567 putpkt ((char *) buf);
5568
5569 /* We just told the target to resume, so a stop reply is in
5570 order. */
5571 rs->waiting_for_stop_reply = 1;
5572 break;
5573 }
5574 /* else fallthrough */
5575 default:
5576 warning (_("Invalid remote reply: %s"), buf);
5577 /* Keep waiting. */
5578 rs->waiting_for_stop_reply = 1;
5579 break;
5580 }
5581
5582 if (status->kind == TARGET_WAITKIND_IGNORE)
5583 {
5584 /* Nothing interesting happened. If we're doing a non-blocking
5585 poll, we're done. Otherwise, go back to waiting. */
5586 if (options & TARGET_WNOHANG)
5587 return minus_one_ptid;
5588 else
5589 goto again;
5590 }
5591 else if (status->kind != TARGET_WAITKIND_EXITED
5592 && status->kind != TARGET_WAITKIND_SIGNALLED)
5593 {
5594 if (!ptid_equal (event_ptid, null_ptid))
5595 record_currthread (event_ptid);
5596 else
5597 event_ptid = inferior_ptid;
5598 }
5599 else
5600 /* A process exit. Invalidate our notion of current thread. */
5601 record_currthread (minus_one_ptid);
5602
5603 return event_ptid;
5604 }
5605
5606 /* Wait until the remote machine stops, then return, storing status in
5607 STATUS just as `wait' would. */
5608
5609 static ptid_t
5610 remote_wait (struct target_ops *ops,
5611 ptid_t ptid, struct target_waitstatus *status, int options)
5612 {
5613 ptid_t event_ptid;
5614
5615 if (non_stop)
5616 event_ptid = remote_wait_ns (ptid, status, options);
5617 else
5618 event_ptid = remote_wait_as (ptid, status, options);
5619
5620 if (target_can_async_p ())
5621 {
5622 /* If there are are events left in the queue tell the event loop
5623 to return here. */
5624 if (stop_reply_queue)
5625 mark_async_event_handler (remote_async_inferior_event_token);
5626 }
5627
5628 return event_ptid;
5629 }
5630
5631 /* Fetch a single register using a 'p' packet. */
5632
5633 static int
5634 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5635 {
5636 struct remote_state *rs = get_remote_state ();
5637 char *buf, *p;
5638 char regp[MAX_REGISTER_SIZE];
5639 int i;
5640
5641 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5642 return 0;
5643
5644 if (reg->pnum == -1)
5645 return 0;
5646
5647 p = rs->buf;
5648 *p++ = 'p';
5649 p += hexnumstr (p, reg->pnum);
5650 *p++ = '\0';
5651 putpkt (rs->buf);
5652 getpkt (&rs->buf, &rs->buf_size, 0);
5653
5654 buf = rs->buf;
5655
5656 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5657 {
5658 case PACKET_OK:
5659 break;
5660 case PACKET_UNKNOWN:
5661 return 0;
5662 case PACKET_ERROR:
5663 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5664 gdbarch_register_name (get_regcache_arch (regcache),
5665 reg->regnum),
5666 buf);
5667 }
5668
5669 /* If this register is unfetchable, tell the regcache. */
5670 if (buf[0] == 'x')
5671 {
5672 regcache_raw_supply (regcache, reg->regnum, NULL);
5673 return 1;
5674 }
5675
5676 /* Otherwise, parse and supply the value. */
5677 p = buf;
5678 i = 0;
5679 while (p[0] != 0)
5680 {
5681 if (p[1] == 0)
5682 error (_("fetch_register_using_p: early buf termination"));
5683
5684 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5685 p += 2;
5686 }
5687 regcache_raw_supply (regcache, reg->regnum, regp);
5688 return 1;
5689 }
5690
5691 /* Fetch the registers included in the target's 'g' packet. */
5692
5693 static int
5694 send_g_packet (void)
5695 {
5696 struct remote_state *rs = get_remote_state ();
5697 int buf_len;
5698
5699 sprintf (rs->buf, "g");
5700 remote_send (&rs->buf, &rs->buf_size);
5701
5702 /* We can get out of synch in various cases. If the first character
5703 in the buffer is not a hex character, assume that has happened
5704 and try to fetch another packet to read. */
5705 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5706 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5707 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5708 && rs->buf[0] != 'x') /* New: unavailable register value. */
5709 {
5710 if (remote_debug)
5711 fprintf_unfiltered (gdb_stdlog,
5712 "Bad register packet; fetching a new packet\n");
5713 getpkt (&rs->buf, &rs->buf_size, 0);
5714 }
5715
5716 buf_len = strlen (rs->buf);
5717
5718 /* Sanity check the received packet. */
5719 if (buf_len % 2 != 0)
5720 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5721
5722 return buf_len / 2;
5723 }
5724
5725 static void
5726 process_g_packet (struct regcache *regcache)
5727 {
5728 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5729 struct remote_state *rs = get_remote_state ();
5730 struct remote_arch_state *rsa = get_remote_arch_state ();
5731 int i, buf_len;
5732 char *p;
5733 char *regs;
5734
5735 buf_len = strlen (rs->buf);
5736
5737 /* Further sanity checks, with knowledge of the architecture. */
5738 if (buf_len > 2 * rsa->sizeof_g_packet)
5739 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5740
5741 /* Save the size of the packet sent to us by the target. It is used
5742 as a heuristic when determining the max size of packets that the
5743 target can safely receive. */
5744 if (rsa->actual_register_packet_size == 0)
5745 rsa->actual_register_packet_size = buf_len;
5746
5747 /* If this is smaller than we guessed the 'g' packet would be,
5748 update our records. A 'g' reply that doesn't include a register's
5749 value implies either that the register is not available, or that
5750 the 'p' packet must be used. */
5751 if (buf_len < 2 * rsa->sizeof_g_packet)
5752 {
5753 rsa->sizeof_g_packet = buf_len / 2;
5754
5755 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5756 {
5757 if (rsa->regs[i].pnum == -1)
5758 continue;
5759
5760 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5761 rsa->regs[i].in_g_packet = 0;
5762 else
5763 rsa->regs[i].in_g_packet = 1;
5764 }
5765 }
5766
5767 regs = alloca (rsa->sizeof_g_packet);
5768
5769 /* Unimplemented registers read as all bits zero. */
5770 memset (regs, 0, rsa->sizeof_g_packet);
5771
5772 /* Reply describes registers byte by byte, each byte encoded as two
5773 hex characters. Suck them all up, then supply them to the
5774 register cacheing/storage mechanism. */
5775
5776 p = rs->buf;
5777 for (i = 0; i < rsa->sizeof_g_packet; i++)
5778 {
5779 if (p[0] == 0 || p[1] == 0)
5780 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5781 internal_error (__FILE__, __LINE__,
5782 _("unexpected end of 'g' packet reply"));
5783
5784 if (p[0] == 'x' && p[1] == 'x')
5785 regs[i] = 0; /* 'x' */
5786 else
5787 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5788 p += 2;
5789 }
5790
5791 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5792 {
5793 struct packet_reg *r = &rsa->regs[i];
5794
5795 if (r->in_g_packet)
5796 {
5797 if (r->offset * 2 >= strlen (rs->buf))
5798 /* This shouldn't happen - we adjusted in_g_packet above. */
5799 internal_error (__FILE__, __LINE__,
5800 _("unexpected end of 'g' packet reply"));
5801 else if (rs->buf[r->offset * 2] == 'x')
5802 {
5803 gdb_assert (r->offset * 2 < strlen (rs->buf));
5804 /* The register isn't available, mark it as such (at
5805 the same time setting the value to zero). */
5806 regcache_raw_supply (regcache, r->regnum, NULL);
5807 }
5808 else
5809 regcache_raw_supply (regcache, r->regnum,
5810 regs + r->offset);
5811 }
5812 }
5813 }
5814
5815 static void
5816 fetch_registers_using_g (struct regcache *regcache)
5817 {
5818 send_g_packet ();
5819 process_g_packet (regcache);
5820 }
5821
5822 /* Make the remote selected traceframe match GDB's selected
5823 traceframe. */
5824
5825 static void
5826 set_remote_traceframe (void)
5827 {
5828 int newnum;
5829
5830 if (remote_traceframe_number == get_traceframe_number ())
5831 return;
5832
5833 /* Avoid recursion, remote_trace_find calls us again. */
5834 remote_traceframe_number = get_traceframe_number ();
5835
5836 newnum = target_trace_find (tfind_number,
5837 get_traceframe_number (), 0, 0, NULL);
5838
5839 /* Should not happen. If it does, all bets are off. */
5840 if (newnum != get_traceframe_number ())
5841 warning (_("could not set remote traceframe"));
5842 }
5843
5844 static void
5845 remote_fetch_registers (struct target_ops *ops,
5846 struct regcache *regcache, int regnum)
5847 {
5848 struct remote_arch_state *rsa = get_remote_arch_state ();
5849 int i;
5850
5851 set_remote_traceframe ();
5852 set_general_thread (inferior_ptid);
5853
5854 if (regnum >= 0)
5855 {
5856 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5857
5858 gdb_assert (reg != NULL);
5859
5860 /* If this register might be in the 'g' packet, try that first -
5861 we are likely to read more than one register. If this is the
5862 first 'g' packet, we might be overly optimistic about its
5863 contents, so fall back to 'p'. */
5864 if (reg->in_g_packet)
5865 {
5866 fetch_registers_using_g (regcache);
5867 if (reg->in_g_packet)
5868 return;
5869 }
5870
5871 if (fetch_register_using_p (regcache, reg))
5872 return;
5873
5874 /* This register is not available. */
5875 regcache_raw_supply (regcache, reg->regnum, NULL);
5876
5877 return;
5878 }
5879
5880 fetch_registers_using_g (regcache);
5881
5882 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5883 if (!rsa->regs[i].in_g_packet)
5884 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5885 {
5886 /* This register is not available. */
5887 regcache_raw_supply (regcache, i, NULL);
5888 }
5889 }
5890
5891 /* Prepare to store registers. Since we may send them all (using a
5892 'G' request), we have to read out the ones we don't want to change
5893 first. */
5894
5895 static void
5896 remote_prepare_to_store (struct regcache *regcache)
5897 {
5898 struct remote_arch_state *rsa = get_remote_arch_state ();
5899 int i;
5900 gdb_byte buf[MAX_REGISTER_SIZE];
5901
5902 /* Make sure the entire registers array is valid. */
5903 switch (remote_protocol_packets[PACKET_P].support)
5904 {
5905 case PACKET_DISABLE:
5906 case PACKET_SUPPORT_UNKNOWN:
5907 /* Make sure all the necessary registers are cached. */
5908 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5909 if (rsa->regs[i].in_g_packet)
5910 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5911 break;
5912 case PACKET_ENABLE:
5913 break;
5914 }
5915 }
5916
5917 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5918 packet was not recognized. */
5919
5920 static int
5921 store_register_using_P (const struct regcache *regcache,
5922 struct packet_reg *reg)
5923 {
5924 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5925 struct remote_state *rs = get_remote_state ();
5926 /* Try storing a single register. */
5927 char *buf = rs->buf;
5928 gdb_byte regp[MAX_REGISTER_SIZE];
5929 char *p;
5930
5931 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5932 return 0;
5933
5934 if (reg->pnum == -1)
5935 return 0;
5936
5937 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5938 p = buf + strlen (buf);
5939 regcache_raw_collect (regcache, reg->regnum, regp);
5940 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5941 putpkt (rs->buf);
5942 getpkt (&rs->buf, &rs->buf_size, 0);
5943
5944 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5945 {
5946 case PACKET_OK:
5947 return 1;
5948 case PACKET_ERROR:
5949 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5950 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5951 case PACKET_UNKNOWN:
5952 return 0;
5953 default:
5954 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5955 }
5956 }
5957
5958 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5959 contents of the register cache buffer. FIXME: ignores errors. */
5960
5961 static void
5962 store_registers_using_G (const struct regcache *regcache)
5963 {
5964 struct remote_state *rs = get_remote_state ();
5965 struct remote_arch_state *rsa = get_remote_arch_state ();
5966 gdb_byte *regs;
5967 char *p;
5968
5969 /* Extract all the registers in the regcache copying them into a
5970 local buffer. */
5971 {
5972 int i;
5973
5974 regs = alloca (rsa->sizeof_g_packet);
5975 memset (regs, 0, rsa->sizeof_g_packet);
5976 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5977 {
5978 struct packet_reg *r = &rsa->regs[i];
5979
5980 if (r->in_g_packet)
5981 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5982 }
5983 }
5984
5985 /* Command describes registers byte by byte,
5986 each byte encoded as two hex characters. */
5987 p = rs->buf;
5988 *p++ = 'G';
5989 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5990 updated. */
5991 bin2hex (regs, p, rsa->sizeof_g_packet);
5992 putpkt (rs->buf);
5993 getpkt (&rs->buf, &rs->buf_size, 0);
5994 if (packet_check_result (rs->buf) == PACKET_ERROR)
5995 error (_("Could not write registers; remote failure reply '%s'"),
5996 rs->buf);
5997 }
5998
5999 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6000 of the register cache buffer. FIXME: ignores errors. */
6001
6002 static void
6003 remote_store_registers (struct target_ops *ops,
6004 struct regcache *regcache, int regnum)
6005 {
6006 struct remote_arch_state *rsa = get_remote_arch_state ();
6007 int i;
6008
6009 set_remote_traceframe ();
6010 set_general_thread (inferior_ptid);
6011
6012 if (regnum >= 0)
6013 {
6014 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6015
6016 gdb_assert (reg != NULL);
6017
6018 /* Always prefer to store registers using the 'P' packet if
6019 possible; we often change only a small number of registers.
6020 Sometimes we change a larger number; we'd need help from a
6021 higher layer to know to use 'G'. */
6022 if (store_register_using_P (regcache, reg))
6023 return;
6024
6025 /* For now, don't complain if we have no way to write the
6026 register. GDB loses track of unavailable registers too
6027 easily. Some day, this may be an error. We don't have
6028 any way to read the register, either... */
6029 if (!reg->in_g_packet)
6030 return;
6031
6032 store_registers_using_G (regcache);
6033 return;
6034 }
6035
6036 store_registers_using_G (regcache);
6037
6038 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6039 if (!rsa->regs[i].in_g_packet)
6040 if (!store_register_using_P (regcache, &rsa->regs[i]))
6041 /* See above for why we do not issue an error here. */
6042 continue;
6043 }
6044 \f
6045
6046 /* Return the number of hex digits in num. */
6047
6048 static int
6049 hexnumlen (ULONGEST num)
6050 {
6051 int i;
6052
6053 for (i = 0; num != 0; i++)
6054 num >>= 4;
6055
6056 return max (i, 1);
6057 }
6058
6059 /* Set BUF to the minimum number of hex digits representing NUM. */
6060
6061 static int
6062 hexnumstr (char *buf, ULONGEST num)
6063 {
6064 int len = hexnumlen (num);
6065
6066 return hexnumnstr (buf, num, len);
6067 }
6068
6069
6070 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6071
6072 static int
6073 hexnumnstr (char *buf, ULONGEST num, int width)
6074 {
6075 int i;
6076
6077 buf[width] = '\0';
6078
6079 for (i = width - 1; i >= 0; i--)
6080 {
6081 buf[i] = "0123456789abcdef"[(num & 0xf)];
6082 num >>= 4;
6083 }
6084
6085 return width;
6086 }
6087
6088 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6089
6090 static CORE_ADDR
6091 remote_address_masked (CORE_ADDR addr)
6092 {
6093 int address_size = remote_address_size;
6094
6095 /* If "remoteaddresssize" was not set, default to target address size. */
6096 if (!address_size)
6097 address_size = gdbarch_addr_bit (target_gdbarch);
6098
6099 if (address_size > 0
6100 && address_size < (sizeof (ULONGEST) * 8))
6101 {
6102 /* Only create a mask when that mask can safely be constructed
6103 in a ULONGEST variable. */
6104 ULONGEST mask = 1;
6105
6106 mask = (mask << address_size) - 1;
6107 addr &= mask;
6108 }
6109 return addr;
6110 }
6111
6112 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6113 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6114 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6115 (which may be more than *OUT_LEN due to escape characters). The
6116 total number of bytes in the output buffer will be at most
6117 OUT_MAXLEN. */
6118
6119 static int
6120 remote_escape_output (const gdb_byte *buffer, int len,
6121 gdb_byte *out_buf, int *out_len,
6122 int out_maxlen)
6123 {
6124 int input_index, output_index;
6125
6126 output_index = 0;
6127 for (input_index = 0; input_index < len; input_index++)
6128 {
6129 gdb_byte b = buffer[input_index];
6130
6131 if (b == '$' || b == '#' || b == '}')
6132 {
6133 /* These must be escaped. */
6134 if (output_index + 2 > out_maxlen)
6135 break;
6136 out_buf[output_index++] = '}';
6137 out_buf[output_index++] = b ^ 0x20;
6138 }
6139 else
6140 {
6141 if (output_index + 1 > out_maxlen)
6142 break;
6143 out_buf[output_index++] = b;
6144 }
6145 }
6146
6147 *out_len = input_index;
6148 return output_index;
6149 }
6150
6151 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6152 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6153 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6154
6155 This function reverses remote_escape_output. It allows more
6156 escaped characters than that function does, in particular because
6157 '*' must be escaped to avoid the run-length encoding processing
6158 in reading packets. */
6159
6160 static int
6161 remote_unescape_input (const gdb_byte *buffer, int len,
6162 gdb_byte *out_buf, int out_maxlen)
6163 {
6164 int input_index, output_index;
6165 int escaped;
6166
6167 output_index = 0;
6168 escaped = 0;
6169 for (input_index = 0; input_index < len; input_index++)
6170 {
6171 gdb_byte b = buffer[input_index];
6172
6173 if (output_index + 1 > out_maxlen)
6174 {
6175 warning (_("Received too much data from remote target;"
6176 " ignoring overflow."));
6177 return output_index;
6178 }
6179
6180 if (escaped)
6181 {
6182 out_buf[output_index++] = b ^ 0x20;
6183 escaped = 0;
6184 }
6185 else if (b == '}')
6186 escaped = 1;
6187 else
6188 out_buf[output_index++] = b;
6189 }
6190
6191 if (escaped)
6192 error (_("Unmatched escape character in target response."));
6193
6194 return output_index;
6195 }
6196
6197 /* Determine whether the remote target supports binary downloading.
6198 This is accomplished by sending a no-op memory write of zero length
6199 to the target at the specified address. It does not suffice to send
6200 the whole packet, since many stubs strip the eighth bit and
6201 subsequently compute a wrong checksum, which causes real havoc with
6202 remote_write_bytes.
6203
6204 NOTE: This can still lose if the serial line is not eight-bit
6205 clean. In cases like this, the user should clear "remote
6206 X-packet". */
6207
6208 static void
6209 check_binary_download (CORE_ADDR addr)
6210 {
6211 struct remote_state *rs = get_remote_state ();
6212
6213 switch (remote_protocol_packets[PACKET_X].support)
6214 {
6215 case PACKET_DISABLE:
6216 break;
6217 case PACKET_ENABLE:
6218 break;
6219 case PACKET_SUPPORT_UNKNOWN:
6220 {
6221 char *p;
6222
6223 p = rs->buf;
6224 *p++ = 'X';
6225 p += hexnumstr (p, (ULONGEST) addr);
6226 *p++ = ',';
6227 p += hexnumstr (p, (ULONGEST) 0);
6228 *p++ = ':';
6229 *p = '\0';
6230
6231 putpkt_binary (rs->buf, (int) (p - rs->buf));
6232 getpkt (&rs->buf, &rs->buf_size, 0);
6233
6234 if (rs->buf[0] == '\0')
6235 {
6236 if (remote_debug)
6237 fprintf_unfiltered (gdb_stdlog,
6238 "binary downloading NOT "
6239 "supported by target\n");
6240 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6241 }
6242 else
6243 {
6244 if (remote_debug)
6245 fprintf_unfiltered (gdb_stdlog,
6246 "binary downloading supported by target\n");
6247 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6248 }
6249 break;
6250 }
6251 }
6252 }
6253
6254 /* Write memory data directly to the remote machine.
6255 This does not inform the data cache; the data cache uses this.
6256 HEADER is the starting part of the packet.
6257 MEMADDR is the address in the remote memory space.
6258 MYADDR is the address of the buffer in our space.
6259 LEN is the number of bytes.
6260 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6261 should send data as binary ('X'), or hex-encoded ('M').
6262
6263 The function creates packet of the form
6264 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6265
6266 where encoding of <DATA> is termined by PACKET_FORMAT.
6267
6268 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6269 are omitted.
6270
6271 Returns the number of bytes transferred, or 0 (setting errno) for
6272 error. Only transfer a single packet. */
6273
6274 static int
6275 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6276 const gdb_byte *myaddr, int len,
6277 char packet_format, int use_length)
6278 {
6279 struct remote_state *rs = get_remote_state ();
6280 char *p;
6281 char *plen = NULL;
6282 int plenlen = 0;
6283 int todo;
6284 int nr_bytes;
6285 int payload_size;
6286 int payload_length;
6287 int header_length;
6288
6289 if (packet_format != 'X' && packet_format != 'M')
6290 internal_error (__FILE__, __LINE__,
6291 _("remote_write_bytes_aux: bad packet format"));
6292
6293 if (len <= 0)
6294 return 0;
6295
6296 payload_size = get_memory_write_packet_size ();
6297
6298 /* The packet buffer will be large enough for the payload;
6299 get_memory_packet_size ensures this. */
6300 rs->buf[0] = '\0';
6301
6302 /* Compute the size of the actual payload by subtracting out the
6303 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6304
6305 payload_size -= strlen ("$,:#NN");
6306 if (!use_length)
6307 /* The comma won't be used. */
6308 payload_size += 1;
6309 header_length = strlen (header);
6310 payload_size -= header_length;
6311 payload_size -= hexnumlen (memaddr);
6312
6313 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6314
6315 strcat (rs->buf, header);
6316 p = rs->buf + strlen (header);
6317
6318 /* Compute a best guess of the number of bytes actually transfered. */
6319 if (packet_format == 'X')
6320 {
6321 /* Best guess at number of bytes that will fit. */
6322 todo = min (len, payload_size);
6323 if (use_length)
6324 payload_size -= hexnumlen (todo);
6325 todo = min (todo, payload_size);
6326 }
6327 else
6328 {
6329 /* Num bytes that will fit. */
6330 todo = min (len, payload_size / 2);
6331 if (use_length)
6332 payload_size -= hexnumlen (todo);
6333 todo = min (todo, payload_size / 2);
6334 }
6335
6336 if (todo <= 0)
6337 internal_error (__FILE__, __LINE__,
6338 _("minumum packet size too small to write data"));
6339
6340 /* If we already need another packet, then try to align the end
6341 of this packet to a useful boundary. */
6342 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6343 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6344
6345 /* Append "<memaddr>". */
6346 memaddr = remote_address_masked (memaddr);
6347 p += hexnumstr (p, (ULONGEST) memaddr);
6348
6349 if (use_length)
6350 {
6351 /* Append ",". */
6352 *p++ = ',';
6353
6354 /* Append <len>. Retain the location/size of <len>. It may need to
6355 be adjusted once the packet body has been created. */
6356 plen = p;
6357 plenlen = hexnumstr (p, (ULONGEST) todo);
6358 p += plenlen;
6359 }
6360
6361 /* Append ":". */
6362 *p++ = ':';
6363 *p = '\0';
6364
6365 /* Append the packet body. */
6366 if (packet_format == 'X')
6367 {
6368 /* Binary mode. Send target system values byte by byte, in
6369 increasing byte addresses. Only escape certain critical
6370 characters. */
6371 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6372 payload_size);
6373
6374 /* If not all TODO bytes fit, then we'll need another packet. Make
6375 a second try to keep the end of the packet aligned. Don't do
6376 this if the packet is tiny. */
6377 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6378 {
6379 int new_nr_bytes;
6380
6381 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6382 - memaddr);
6383 if (new_nr_bytes != nr_bytes)
6384 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6385 p, &nr_bytes,
6386 payload_size);
6387 }
6388
6389 p += payload_length;
6390 if (use_length && nr_bytes < todo)
6391 {
6392 /* Escape chars have filled up the buffer prematurely,
6393 and we have actually sent fewer bytes than planned.
6394 Fix-up the length field of the packet. Use the same
6395 number of characters as before. */
6396 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6397 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6398 }
6399 }
6400 else
6401 {
6402 /* Normal mode: Send target system values byte by byte, in
6403 increasing byte addresses. Each byte is encoded as a two hex
6404 value. */
6405 nr_bytes = bin2hex (myaddr, p, todo);
6406 p += 2 * nr_bytes;
6407 }
6408
6409 putpkt_binary (rs->buf, (int) (p - rs->buf));
6410 getpkt (&rs->buf, &rs->buf_size, 0);
6411
6412 if (rs->buf[0] == 'E')
6413 {
6414 /* There is no correspondance between what the remote protocol
6415 uses for errors and errno codes. We would like a cleaner way
6416 of representing errors (big enough to include errno codes,
6417 bfd_error codes, and others). But for now just return EIO. */
6418 errno = EIO;
6419 return 0;
6420 }
6421
6422 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6423 fewer bytes than we'd planned. */
6424 return nr_bytes;
6425 }
6426
6427 /* Write memory data directly to the remote machine.
6428 This does not inform the data cache; the data cache uses this.
6429 MEMADDR is the address in the remote memory space.
6430 MYADDR is the address of the buffer in our space.
6431 LEN is the number of bytes.
6432
6433 Returns number of bytes transferred, or 0 (setting errno) for
6434 error. Only transfer a single packet. */
6435
6436 static int
6437 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6438 {
6439 char *packet_format = 0;
6440
6441 /* Check whether the target supports binary download. */
6442 check_binary_download (memaddr);
6443
6444 switch (remote_protocol_packets[PACKET_X].support)
6445 {
6446 case PACKET_ENABLE:
6447 packet_format = "X";
6448 break;
6449 case PACKET_DISABLE:
6450 packet_format = "M";
6451 break;
6452 case PACKET_SUPPORT_UNKNOWN:
6453 internal_error (__FILE__, __LINE__,
6454 _("remote_write_bytes: bad internal state"));
6455 default:
6456 internal_error (__FILE__, __LINE__, _("bad switch"));
6457 }
6458
6459 return remote_write_bytes_aux (packet_format,
6460 memaddr, myaddr, len, packet_format[0], 1);
6461 }
6462
6463 /* Read memory data directly from the remote machine.
6464 This does not use the data cache; the data cache uses this.
6465 MEMADDR is the address in the remote memory space.
6466 MYADDR is the address of the buffer in our space.
6467 LEN is the number of bytes.
6468
6469 Returns number of bytes transferred, or 0 for error. */
6470
6471 static int
6472 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6473 {
6474 struct remote_state *rs = get_remote_state ();
6475 int max_buf_size; /* Max size of packet output buffer. */
6476 char *p;
6477 int todo;
6478 int i;
6479
6480 if (len <= 0)
6481 return 0;
6482
6483 max_buf_size = get_memory_read_packet_size ();
6484 /* The packet buffer will be large enough for the payload;
6485 get_memory_packet_size ensures this. */
6486
6487 /* Number if bytes that will fit. */
6488 todo = min (len, max_buf_size / 2);
6489
6490 /* Construct "m"<memaddr>","<len>". */
6491 memaddr = remote_address_masked (memaddr);
6492 p = rs->buf;
6493 *p++ = 'm';
6494 p += hexnumstr (p, (ULONGEST) memaddr);
6495 *p++ = ',';
6496 p += hexnumstr (p, (ULONGEST) todo);
6497 *p = '\0';
6498 putpkt (rs->buf);
6499 getpkt (&rs->buf, &rs->buf_size, 0);
6500 if (rs->buf[0] == 'E'
6501 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6502 && rs->buf[3] == '\0')
6503 {
6504 /* There is no correspondance between what the remote protocol
6505 uses for errors and errno codes. We would like a cleaner way
6506 of representing errors (big enough to include errno codes,
6507 bfd_error codes, and others). But for now just return
6508 EIO. */
6509 errno = EIO;
6510 return 0;
6511 }
6512 /* Reply describes memory byte by byte, each byte encoded as two hex
6513 characters. */
6514 p = rs->buf;
6515 i = hex2bin (p, myaddr, todo);
6516 /* Return what we have. Let higher layers handle partial reads. */
6517 return i;
6518 }
6519 \f
6520
6521 /* Remote notification handler. */
6522
6523 static void
6524 handle_notification (char *buf, size_t length)
6525 {
6526 if (strncmp (buf, "Stop:", 5) == 0)
6527 {
6528 if (pending_stop_reply)
6529 {
6530 /* We've already parsed the in-flight stop-reply, but the
6531 stub for some reason thought we didn't, possibly due to
6532 timeout on its side. Just ignore it. */
6533 if (remote_debug)
6534 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6535 }
6536 else
6537 {
6538 struct cleanup *old_chain;
6539 struct stop_reply *reply = stop_reply_xmalloc ();
6540
6541 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6542
6543 remote_parse_stop_reply (buf + 5, reply);
6544
6545 discard_cleanups (old_chain);
6546
6547 /* Be careful to only set it after parsing, since an error
6548 may be thrown then. */
6549 pending_stop_reply = reply;
6550
6551 /* Notify the event loop there's a stop reply to acknowledge
6552 and that there may be more events to fetch. */
6553 mark_async_event_handler (remote_async_get_pending_events_token);
6554
6555 if (remote_debug)
6556 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6557 }
6558 }
6559 else
6560 /* We ignore notifications we don't recognize, for compatibility
6561 with newer stubs. */
6562 ;
6563 }
6564
6565 \f
6566 /* Read or write LEN bytes from inferior memory at MEMADDR,
6567 transferring to or from debugger address BUFFER. Write to inferior
6568 if SHOULD_WRITE is nonzero. Returns length of data written or
6569 read; 0 for error. TARGET is unused. */
6570
6571 static int
6572 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6573 int should_write, struct mem_attrib *attrib,
6574 struct target_ops *target)
6575 {
6576 int res;
6577
6578 set_remote_traceframe ();
6579 set_general_thread (inferior_ptid);
6580
6581 if (should_write)
6582 res = remote_write_bytes (mem_addr, buffer, mem_len);
6583 else
6584 res = remote_read_bytes (mem_addr, buffer, mem_len);
6585
6586 return res;
6587 }
6588
6589 /* Sends a packet with content determined by the printf format string
6590 FORMAT and the remaining arguments, then gets the reply. Returns
6591 whether the packet was a success, a failure, or unknown. */
6592
6593 static enum packet_result
6594 remote_send_printf (const char *format, ...)
6595 {
6596 struct remote_state *rs = get_remote_state ();
6597 int max_size = get_remote_packet_size ();
6598 va_list ap;
6599
6600 va_start (ap, format);
6601
6602 rs->buf[0] = '\0';
6603 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6604 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6605
6606 if (putpkt (rs->buf) < 0)
6607 error (_("Communication problem with target."));
6608
6609 rs->buf[0] = '\0';
6610 getpkt (&rs->buf, &rs->buf_size, 0);
6611
6612 return packet_check_result (rs->buf);
6613 }
6614
6615 static void
6616 restore_remote_timeout (void *p)
6617 {
6618 int value = *(int *)p;
6619
6620 remote_timeout = value;
6621 }
6622
6623 /* Flash writing can take quite some time. We'll set
6624 effectively infinite timeout for flash operations.
6625 In future, we'll need to decide on a better approach. */
6626 static const int remote_flash_timeout = 1000;
6627
6628 static void
6629 remote_flash_erase (struct target_ops *ops,
6630 ULONGEST address, LONGEST length)
6631 {
6632 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6633 int saved_remote_timeout = remote_timeout;
6634 enum packet_result ret;
6635 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6636 &saved_remote_timeout);
6637
6638 remote_timeout = remote_flash_timeout;
6639
6640 ret = remote_send_printf ("vFlashErase:%s,%s",
6641 phex (address, addr_size),
6642 phex (length, 4));
6643 switch (ret)
6644 {
6645 case PACKET_UNKNOWN:
6646 error (_("Remote target does not support flash erase"));
6647 case PACKET_ERROR:
6648 error (_("Error erasing flash with vFlashErase packet"));
6649 default:
6650 break;
6651 }
6652
6653 do_cleanups (back_to);
6654 }
6655
6656 static LONGEST
6657 remote_flash_write (struct target_ops *ops,
6658 ULONGEST address, LONGEST length,
6659 const gdb_byte *data)
6660 {
6661 int saved_remote_timeout = remote_timeout;
6662 int ret;
6663 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6664 &saved_remote_timeout);
6665
6666 remote_timeout = remote_flash_timeout;
6667 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6668 do_cleanups (back_to);
6669
6670 return ret;
6671 }
6672
6673 static void
6674 remote_flash_done (struct target_ops *ops)
6675 {
6676 int saved_remote_timeout = remote_timeout;
6677 int ret;
6678 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6679 &saved_remote_timeout);
6680
6681 remote_timeout = remote_flash_timeout;
6682 ret = remote_send_printf ("vFlashDone");
6683 do_cleanups (back_to);
6684
6685 switch (ret)
6686 {
6687 case PACKET_UNKNOWN:
6688 error (_("Remote target does not support vFlashDone"));
6689 case PACKET_ERROR:
6690 error (_("Error finishing flash operation"));
6691 default:
6692 break;
6693 }
6694 }
6695
6696 static void
6697 remote_files_info (struct target_ops *ignore)
6698 {
6699 puts_filtered ("Debugging a target over a serial line.\n");
6700 }
6701 \f
6702 /* Stuff for dealing with the packets which are part of this protocol.
6703 See comment at top of file for details. */
6704
6705 /* Read a single character from the remote end. */
6706
6707 static int
6708 readchar (int timeout)
6709 {
6710 int ch;
6711
6712 ch = serial_readchar (remote_desc, timeout);
6713
6714 if (ch >= 0)
6715 return ch;
6716
6717 switch ((enum serial_rc) ch)
6718 {
6719 case SERIAL_EOF:
6720 pop_target ();
6721 error (_("Remote connection closed"));
6722 /* no return */
6723 case SERIAL_ERROR:
6724 pop_target ();
6725 perror_with_name (_("Remote communication error. "
6726 "Target disconnected."));
6727 /* no return */
6728 case SERIAL_TIMEOUT:
6729 break;
6730 }
6731 return ch;
6732 }
6733
6734 /* Send the command in *BUF to the remote machine, and read the reply
6735 into *BUF. Report an error if we get an error reply. Resize
6736 *BUF using xrealloc if necessary to hold the result, and update
6737 *SIZEOF_BUF. */
6738
6739 static void
6740 remote_send (char **buf,
6741 long *sizeof_buf)
6742 {
6743 putpkt (*buf);
6744 getpkt (buf, sizeof_buf, 0);
6745
6746 if ((*buf)[0] == 'E')
6747 error (_("Remote failure reply: %s"), *buf);
6748 }
6749
6750 /* Return a pointer to an xmalloc'ed string representing an escaped
6751 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6752 etc. The caller is responsible for releasing the returned
6753 memory. */
6754
6755 static char *
6756 escape_buffer (const char *buf, int n)
6757 {
6758 struct cleanup *old_chain;
6759 struct ui_file *stb;
6760 char *str;
6761
6762 stb = mem_fileopen ();
6763 old_chain = make_cleanup_ui_file_delete (stb);
6764
6765 fputstrn_unfiltered (buf, n, 0, stb);
6766 str = ui_file_xstrdup (stb, NULL);
6767 do_cleanups (old_chain);
6768 return str;
6769 }
6770
6771 /* Display a null-terminated packet on stdout, for debugging, using C
6772 string notation. */
6773
6774 static void
6775 print_packet (char *buf)
6776 {
6777 puts_filtered ("\"");
6778 fputstr_filtered (buf, '"', gdb_stdout);
6779 puts_filtered ("\"");
6780 }
6781
6782 int
6783 putpkt (char *buf)
6784 {
6785 return putpkt_binary (buf, strlen (buf));
6786 }
6787
6788 /* Send a packet to the remote machine, with error checking. The data
6789 of the packet is in BUF. The string in BUF can be at most
6790 get_remote_packet_size () - 5 to account for the $, # and checksum,
6791 and for a possible /0 if we are debugging (remote_debug) and want
6792 to print the sent packet as a string. */
6793
6794 static int
6795 putpkt_binary (char *buf, int cnt)
6796 {
6797 struct remote_state *rs = get_remote_state ();
6798 int i;
6799 unsigned char csum = 0;
6800 char *buf2 = alloca (cnt + 6);
6801
6802 int ch;
6803 int tcount = 0;
6804 char *p;
6805
6806 /* Catch cases like trying to read memory or listing threads while
6807 we're waiting for a stop reply. The remote server wouldn't be
6808 ready to handle this request, so we'd hang and timeout. We don't
6809 have to worry about this in synchronous mode, because in that
6810 case it's not possible to issue a command while the target is
6811 running. This is not a problem in non-stop mode, because in that
6812 case, the stub is always ready to process serial input. */
6813 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6814 error (_("Cannot execute this command while the target is running."));
6815
6816 /* We're sending out a new packet. Make sure we don't look at a
6817 stale cached response. */
6818 rs->cached_wait_status = 0;
6819
6820 /* Copy the packet into buffer BUF2, encapsulating it
6821 and giving it a checksum. */
6822
6823 p = buf2;
6824 *p++ = '$';
6825
6826 for (i = 0; i < cnt; i++)
6827 {
6828 csum += buf[i];
6829 *p++ = buf[i];
6830 }
6831 *p++ = '#';
6832 *p++ = tohex ((csum >> 4) & 0xf);
6833 *p++ = tohex (csum & 0xf);
6834
6835 /* Send it over and over until we get a positive ack. */
6836
6837 while (1)
6838 {
6839 int started_error_output = 0;
6840
6841 if (remote_debug)
6842 {
6843 struct cleanup *old_chain;
6844 char *str;
6845
6846 *p = '\0';
6847 str = escape_buffer (buf2, p - buf2);
6848 old_chain = make_cleanup (xfree, str);
6849 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6850 gdb_flush (gdb_stdlog);
6851 do_cleanups (old_chain);
6852 }
6853 if (serial_write (remote_desc, buf2, p - buf2))
6854 perror_with_name (_("putpkt: write failed"));
6855
6856 /* If this is a no acks version of the remote protocol, send the
6857 packet and move on. */
6858 if (rs->noack_mode)
6859 break;
6860
6861 /* Read until either a timeout occurs (-2) or '+' is read.
6862 Handle any notification that arrives in the mean time. */
6863 while (1)
6864 {
6865 ch = readchar (remote_timeout);
6866
6867 if (remote_debug)
6868 {
6869 switch (ch)
6870 {
6871 case '+':
6872 case '-':
6873 case SERIAL_TIMEOUT:
6874 case '$':
6875 case '%':
6876 if (started_error_output)
6877 {
6878 putchar_unfiltered ('\n');
6879 started_error_output = 0;
6880 }
6881 }
6882 }
6883
6884 switch (ch)
6885 {
6886 case '+':
6887 if (remote_debug)
6888 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6889 return 1;
6890 case '-':
6891 if (remote_debug)
6892 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6893 /* FALLTHROUGH */
6894 case SERIAL_TIMEOUT:
6895 tcount++;
6896 if (tcount > 3)
6897 return 0;
6898 break; /* Retransmit buffer. */
6899 case '$':
6900 {
6901 if (remote_debug)
6902 fprintf_unfiltered (gdb_stdlog,
6903 "Packet instead of Ack, ignoring it\n");
6904 /* It's probably an old response sent because an ACK
6905 was lost. Gobble up the packet and ack it so it
6906 doesn't get retransmitted when we resend this
6907 packet. */
6908 skip_frame ();
6909 serial_write (remote_desc, "+", 1);
6910 continue; /* Now, go look for +. */
6911 }
6912
6913 case '%':
6914 {
6915 int val;
6916
6917 /* If we got a notification, handle it, and go back to looking
6918 for an ack. */
6919 /* We've found the start of a notification. Now
6920 collect the data. */
6921 val = read_frame (&rs->buf, &rs->buf_size);
6922 if (val >= 0)
6923 {
6924 if (remote_debug)
6925 {
6926 struct cleanup *old_chain;
6927 char *str;
6928
6929 str = escape_buffer (rs->buf, val);
6930 old_chain = make_cleanup (xfree, str);
6931 fprintf_unfiltered (gdb_stdlog,
6932 " Notification received: %s\n",
6933 str);
6934 do_cleanups (old_chain);
6935 }
6936 handle_notification (rs->buf, val);
6937 /* We're in sync now, rewait for the ack. */
6938 tcount = 0;
6939 }
6940 else
6941 {
6942 if (remote_debug)
6943 {
6944 if (!started_error_output)
6945 {
6946 started_error_output = 1;
6947 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6948 }
6949 fputc_unfiltered (ch & 0177, gdb_stdlog);
6950 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6951 }
6952 }
6953 continue;
6954 }
6955 /* fall-through */
6956 default:
6957 if (remote_debug)
6958 {
6959 if (!started_error_output)
6960 {
6961 started_error_output = 1;
6962 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6963 }
6964 fputc_unfiltered (ch & 0177, gdb_stdlog);
6965 }
6966 continue;
6967 }
6968 break; /* Here to retransmit. */
6969 }
6970
6971 #if 0
6972 /* This is wrong. If doing a long backtrace, the user should be
6973 able to get out next time we call QUIT, without anything as
6974 violent as interrupt_query. If we want to provide a way out of
6975 here without getting to the next QUIT, it should be based on
6976 hitting ^C twice as in remote_wait. */
6977 if (quit_flag)
6978 {
6979 quit_flag = 0;
6980 interrupt_query ();
6981 }
6982 #endif
6983 }
6984 return 0;
6985 }
6986
6987 /* Come here after finding the start of a frame when we expected an
6988 ack. Do our best to discard the rest of this packet. */
6989
6990 static void
6991 skip_frame (void)
6992 {
6993 int c;
6994
6995 while (1)
6996 {
6997 c = readchar (remote_timeout);
6998 switch (c)
6999 {
7000 case SERIAL_TIMEOUT:
7001 /* Nothing we can do. */
7002 return;
7003 case '#':
7004 /* Discard the two bytes of checksum and stop. */
7005 c = readchar (remote_timeout);
7006 if (c >= 0)
7007 c = readchar (remote_timeout);
7008
7009 return;
7010 case '*': /* Run length encoding. */
7011 /* Discard the repeat count. */
7012 c = readchar (remote_timeout);
7013 if (c < 0)
7014 return;
7015 break;
7016 default:
7017 /* A regular character. */
7018 break;
7019 }
7020 }
7021 }
7022
7023 /* Come here after finding the start of the frame. Collect the rest
7024 into *BUF, verifying the checksum, length, and handling run-length
7025 compression. NUL terminate the buffer. If there is not enough room,
7026 expand *BUF using xrealloc.
7027
7028 Returns -1 on error, number of characters in buffer (ignoring the
7029 trailing NULL) on success. (could be extended to return one of the
7030 SERIAL status indications). */
7031
7032 static long
7033 read_frame (char **buf_p,
7034 long *sizeof_buf)
7035 {
7036 unsigned char csum;
7037 long bc;
7038 int c;
7039 char *buf = *buf_p;
7040 struct remote_state *rs = get_remote_state ();
7041
7042 csum = 0;
7043 bc = 0;
7044
7045 while (1)
7046 {
7047 c = readchar (remote_timeout);
7048 switch (c)
7049 {
7050 case SERIAL_TIMEOUT:
7051 if (remote_debug)
7052 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7053 return -1;
7054 case '$':
7055 if (remote_debug)
7056 fputs_filtered ("Saw new packet start in middle of old one\n",
7057 gdb_stdlog);
7058 return -1; /* Start a new packet, count retries. */
7059 case '#':
7060 {
7061 unsigned char pktcsum;
7062 int check_0 = 0;
7063 int check_1 = 0;
7064
7065 buf[bc] = '\0';
7066
7067 check_0 = readchar (remote_timeout);
7068 if (check_0 >= 0)
7069 check_1 = readchar (remote_timeout);
7070
7071 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7072 {
7073 if (remote_debug)
7074 fputs_filtered ("Timeout in checksum, retrying\n",
7075 gdb_stdlog);
7076 return -1;
7077 }
7078 else if (check_0 < 0 || check_1 < 0)
7079 {
7080 if (remote_debug)
7081 fputs_filtered ("Communication error in checksum\n",
7082 gdb_stdlog);
7083 return -1;
7084 }
7085
7086 /* Don't recompute the checksum; with no ack packets we
7087 don't have any way to indicate a packet retransmission
7088 is necessary. */
7089 if (rs->noack_mode)
7090 return bc;
7091
7092 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7093 if (csum == pktcsum)
7094 return bc;
7095
7096 if (remote_debug)
7097 {
7098 struct cleanup *old_chain;
7099 char *str;
7100
7101 str = escape_buffer (buf, bc);
7102 old_chain = make_cleanup (xfree, str);
7103 fprintf_unfiltered (gdb_stdlog,
7104 "Bad checksum, sentsum=0x%x, "
7105 "csum=0x%x, buf=%s\n",
7106 pktcsum, csum, str);
7107 do_cleanups (old_chain);
7108 }
7109 /* Number of characters in buffer ignoring trailing
7110 NULL. */
7111 return -1;
7112 }
7113 case '*': /* Run length encoding. */
7114 {
7115 int repeat;
7116
7117 csum += c;
7118 c = readchar (remote_timeout);
7119 csum += c;
7120 repeat = c - ' ' + 3; /* Compute repeat count. */
7121
7122 /* The character before ``*'' is repeated. */
7123
7124 if (repeat > 0 && repeat <= 255 && bc > 0)
7125 {
7126 if (bc + repeat - 1 >= *sizeof_buf - 1)
7127 {
7128 /* Make some more room in the buffer. */
7129 *sizeof_buf += repeat;
7130 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7131 buf = *buf_p;
7132 }
7133
7134 memset (&buf[bc], buf[bc - 1], repeat);
7135 bc += repeat;
7136 continue;
7137 }
7138
7139 buf[bc] = '\0';
7140 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7141 return -1;
7142 }
7143 default:
7144 if (bc >= *sizeof_buf - 1)
7145 {
7146 /* Make some more room in the buffer. */
7147 *sizeof_buf *= 2;
7148 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7149 buf = *buf_p;
7150 }
7151
7152 buf[bc++] = c;
7153 csum += c;
7154 continue;
7155 }
7156 }
7157 }
7158
7159 /* Read a packet from the remote machine, with error checking, and
7160 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7161 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7162 rather than timing out; this is used (in synchronous mode) to wait
7163 for a target that is is executing user code to stop. */
7164 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7165 don't have to change all the calls to getpkt to deal with the
7166 return value, because at the moment I don't know what the right
7167 thing to do it for those. */
7168 void
7169 getpkt (char **buf,
7170 long *sizeof_buf,
7171 int forever)
7172 {
7173 int timed_out;
7174
7175 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7176 }
7177
7178
7179 /* Read a packet from the remote machine, with error checking, and
7180 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7181 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7182 rather than timing out; this is used (in synchronous mode) to wait
7183 for a target that is is executing user code to stop. If FOREVER ==
7184 0, this function is allowed to time out gracefully and return an
7185 indication of this to the caller. Otherwise return the number of
7186 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7187 enough reason to return to the caller. */
7188
7189 static int
7190 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7191 int expecting_notif)
7192 {
7193 struct remote_state *rs = get_remote_state ();
7194 int c;
7195 int tries;
7196 int timeout;
7197 int val = -1;
7198
7199 /* We're reading a new response. Make sure we don't look at a
7200 previously cached response. */
7201 rs->cached_wait_status = 0;
7202
7203 strcpy (*buf, "timeout");
7204
7205 if (forever)
7206 timeout = watchdog > 0 ? watchdog : -1;
7207 else if (expecting_notif)
7208 timeout = 0; /* There should already be a char in the buffer. If
7209 not, bail out. */
7210 else
7211 timeout = remote_timeout;
7212
7213 #define MAX_TRIES 3
7214
7215 /* Process any number of notifications, and then return when
7216 we get a packet. */
7217 for (;;)
7218 {
7219 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7220 times. */
7221 for (tries = 1; tries <= MAX_TRIES; tries++)
7222 {
7223 /* This can loop forever if the remote side sends us
7224 characters continuously, but if it pauses, we'll get
7225 SERIAL_TIMEOUT from readchar because of timeout. Then
7226 we'll count that as a retry.
7227
7228 Note that even when forever is set, we will only wait
7229 forever prior to the start of a packet. After that, we
7230 expect characters to arrive at a brisk pace. They should
7231 show up within remote_timeout intervals. */
7232 do
7233 c = readchar (timeout);
7234 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7235
7236 if (c == SERIAL_TIMEOUT)
7237 {
7238 if (expecting_notif)
7239 return -1; /* Don't complain, it's normal to not get
7240 anything in this case. */
7241
7242 if (forever) /* Watchdog went off? Kill the target. */
7243 {
7244 QUIT;
7245 pop_target ();
7246 error (_("Watchdog timeout has expired. Target detached."));
7247 }
7248 if (remote_debug)
7249 fputs_filtered ("Timed out.\n", gdb_stdlog);
7250 }
7251 else
7252 {
7253 /* We've found the start of a packet or notification.
7254 Now collect the data. */
7255 val = read_frame (buf, sizeof_buf);
7256 if (val >= 0)
7257 break;
7258 }
7259
7260 serial_write (remote_desc, "-", 1);
7261 }
7262
7263 if (tries > MAX_TRIES)
7264 {
7265 /* We have tried hard enough, and just can't receive the
7266 packet/notification. Give up. */
7267 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7268
7269 /* Skip the ack char if we're in no-ack mode. */
7270 if (!rs->noack_mode)
7271 serial_write (remote_desc, "+", 1);
7272 return -1;
7273 }
7274
7275 /* If we got an ordinary packet, return that to our caller. */
7276 if (c == '$')
7277 {
7278 if (remote_debug)
7279 {
7280 struct cleanup *old_chain;
7281 char *str;
7282
7283 str = escape_buffer (*buf, val);
7284 old_chain = make_cleanup (xfree, str);
7285 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7286 do_cleanups (old_chain);
7287 }
7288
7289 /* Skip the ack char if we're in no-ack mode. */
7290 if (!rs->noack_mode)
7291 serial_write (remote_desc, "+", 1);
7292 return val;
7293 }
7294
7295 /* If we got a notification, handle it, and go back to looking
7296 for a packet. */
7297 else
7298 {
7299 gdb_assert (c == '%');
7300
7301 if (remote_debug)
7302 {
7303 struct cleanup *old_chain;
7304 char *str;
7305
7306 str = escape_buffer (*buf, val);
7307 old_chain = make_cleanup (xfree, str);
7308 fprintf_unfiltered (gdb_stdlog,
7309 " Notification received: %s\n",
7310 str);
7311 do_cleanups (old_chain);
7312 }
7313
7314 handle_notification (*buf, val);
7315
7316 /* Notifications require no acknowledgement. */
7317
7318 if (expecting_notif)
7319 return -1;
7320 }
7321 }
7322 }
7323
7324 static int
7325 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7326 {
7327 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7328 }
7329
7330 static int
7331 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7332 {
7333 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7334 }
7335
7336 \f
7337 static void
7338 remote_kill (struct target_ops *ops)
7339 {
7340 /* Use catch_errors so the user can quit from gdb even when we
7341 aren't on speaking terms with the remote system. */
7342 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7343
7344 /* Don't wait for it to die. I'm not really sure it matters whether
7345 we do or not. For the existing stubs, kill is a noop. */
7346 target_mourn_inferior ();
7347 }
7348
7349 static int
7350 remote_vkill (int pid, struct remote_state *rs)
7351 {
7352 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7353 return -1;
7354
7355 /* Tell the remote target to detach. */
7356 sprintf (rs->buf, "vKill;%x", pid);
7357 putpkt (rs->buf);
7358 getpkt (&rs->buf, &rs->buf_size, 0);
7359
7360 if (packet_ok (rs->buf,
7361 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7362 return 0;
7363 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7364 return -1;
7365 else
7366 return 1;
7367 }
7368
7369 static void
7370 extended_remote_kill (struct target_ops *ops)
7371 {
7372 int res;
7373 int pid = ptid_get_pid (inferior_ptid);
7374 struct remote_state *rs = get_remote_state ();
7375
7376 res = remote_vkill (pid, rs);
7377 if (res == -1 && !remote_multi_process_p (rs))
7378 {
7379 /* Don't try 'k' on a multi-process aware stub -- it has no way
7380 to specify the pid. */
7381
7382 putpkt ("k");
7383 #if 0
7384 getpkt (&rs->buf, &rs->buf_size, 0);
7385 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7386 res = 1;
7387 #else
7388 /* Don't wait for it to die. I'm not really sure it matters whether
7389 we do or not. For the existing stubs, kill is a noop. */
7390 res = 0;
7391 #endif
7392 }
7393
7394 if (res != 0)
7395 error (_("Can't kill process"));
7396
7397 target_mourn_inferior ();
7398 }
7399
7400 static void
7401 remote_mourn (struct target_ops *ops)
7402 {
7403 remote_mourn_1 (ops);
7404 }
7405
7406 /* Worker function for remote_mourn. */
7407 static void
7408 remote_mourn_1 (struct target_ops *target)
7409 {
7410 unpush_target (target);
7411
7412 /* remote_close takes care of doing most of the clean up. */
7413 generic_mourn_inferior ();
7414 }
7415
7416 static void
7417 extended_remote_mourn_1 (struct target_ops *target)
7418 {
7419 struct remote_state *rs = get_remote_state ();
7420
7421 /* In case we got here due to an error, but we're going to stay
7422 connected. */
7423 rs->waiting_for_stop_reply = 0;
7424
7425 /* We're no longer interested in these events. */
7426 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7427
7428 /* If the current general thread belonged to the process we just
7429 detached from or has exited, the remote side current general
7430 thread becomes undefined. Considering a case like this:
7431
7432 - We just got here due to a detach.
7433 - The process that we're detaching from happens to immediately
7434 report a global breakpoint being hit in non-stop mode, in the
7435 same thread we had selected before.
7436 - GDB attaches to this process again.
7437 - This event happens to be the next event we handle.
7438
7439 GDB would consider that the current general thread didn't need to
7440 be set on the stub side (with Hg), since for all it knew,
7441 GENERAL_THREAD hadn't changed.
7442
7443 Notice that although in all-stop mode, the remote server always
7444 sets the current thread to the thread reporting the stop event,
7445 that doesn't happen in non-stop mode; in non-stop, the stub *must
7446 not* change the current thread when reporting a breakpoint hit,
7447 due to the decoupling of event reporting and event handling.
7448
7449 To keep things simple, we always invalidate our notion of the
7450 current thread. */
7451 record_currthread (minus_one_ptid);
7452
7453 /* Unlike "target remote", we do not want to unpush the target; then
7454 the next time the user says "run", we won't be connected. */
7455
7456 /* Call common code to mark the inferior as not running. */
7457 generic_mourn_inferior ();
7458
7459 if (!have_inferiors ())
7460 {
7461 if (!remote_multi_process_p (rs))
7462 {
7463 /* Check whether the target is running now - some remote stubs
7464 automatically restart after kill. */
7465 putpkt ("?");
7466 getpkt (&rs->buf, &rs->buf_size, 0);
7467
7468 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7469 {
7470 /* Assume that the target has been restarted. Set
7471 inferior_ptid so that bits of core GDB realizes
7472 there's something here, e.g., so that the user can
7473 say "kill" again. */
7474 inferior_ptid = magic_null_ptid;
7475 }
7476 }
7477 }
7478 }
7479
7480 static void
7481 extended_remote_mourn (struct target_ops *ops)
7482 {
7483 extended_remote_mourn_1 (ops);
7484 }
7485
7486 static int
7487 extended_remote_run (char *args)
7488 {
7489 struct remote_state *rs = get_remote_state ();
7490 int len;
7491
7492 /* If the user has disabled vRun support, or we have detected that
7493 support is not available, do not try it. */
7494 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7495 return -1;
7496
7497 strcpy (rs->buf, "vRun;");
7498 len = strlen (rs->buf);
7499
7500 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7501 error (_("Remote file name too long for run packet"));
7502 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7503
7504 gdb_assert (args != NULL);
7505 if (*args)
7506 {
7507 struct cleanup *back_to;
7508 int i;
7509 char **argv;
7510
7511 argv = gdb_buildargv (args);
7512 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7513 for (i = 0; argv[i] != NULL; i++)
7514 {
7515 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7516 error (_("Argument list too long for run packet"));
7517 rs->buf[len++] = ';';
7518 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7519 }
7520 do_cleanups (back_to);
7521 }
7522
7523 rs->buf[len++] = '\0';
7524
7525 putpkt (rs->buf);
7526 getpkt (&rs->buf, &rs->buf_size, 0);
7527
7528 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7529 {
7530 /* We have a wait response; we don't need it, though. All is well. */
7531 return 0;
7532 }
7533 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7534 /* It wasn't disabled before, but it is now. */
7535 return -1;
7536 else
7537 {
7538 if (remote_exec_file[0] == '\0')
7539 error (_("Running the default executable on the remote target failed; "
7540 "try \"set remote exec-file\"?"));
7541 else
7542 error (_("Running \"%s\" on the remote target failed"),
7543 remote_exec_file);
7544 }
7545 }
7546
7547 /* In the extended protocol we want to be able to do things like
7548 "run" and have them basically work as expected. So we need
7549 a special create_inferior function. We support changing the
7550 executable file and the command line arguments, but not the
7551 environment. */
7552
7553 static void
7554 extended_remote_create_inferior_1 (char *exec_file, char *args,
7555 char **env, int from_tty)
7556 {
7557 /* If running asynchronously, register the target file descriptor
7558 with the event loop. */
7559 if (target_can_async_p ())
7560 target_async (inferior_event_handler, 0);
7561
7562 /* Now restart the remote server. */
7563 if (extended_remote_run (args) == -1)
7564 {
7565 /* vRun was not supported. Fail if we need it to do what the
7566 user requested. */
7567 if (remote_exec_file[0])
7568 error (_("Remote target does not support \"set remote exec-file\""));
7569 if (args[0])
7570 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7571
7572 /* Fall back to "R". */
7573 extended_remote_restart ();
7574 }
7575
7576 if (!have_inferiors ())
7577 {
7578 /* Clean up from the last time we ran, before we mark the target
7579 running again. This will mark breakpoints uninserted, and
7580 get_offsets may insert breakpoints. */
7581 init_thread_list ();
7582 init_wait_for_inferior ();
7583 }
7584
7585 /* Now mark the inferior as running before we do anything else. */
7586 inferior_ptid = magic_null_ptid;
7587
7588 /* Now, if we have thread information, update inferior_ptid. */
7589 inferior_ptid = remote_current_thread (inferior_ptid);
7590
7591 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7592 add_thread_silent (inferior_ptid);
7593
7594 /* Get updated offsets, if the stub uses qOffsets. */
7595 get_offsets ();
7596 }
7597
7598 static void
7599 extended_remote_create_inferior (struct target_ops *ops,
7600 char *exec_file, char *args,
7601 char **env, int from_tty)
7602 {
7603 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7604 }
7605 \f
7606
7607 /* Insert a breakpoint. On targets that have software breakpoint
7608 support, we ask the remote target to do the work; on targets
7609 which don't, we insert a traditional memory breakpoint. */
7610
7611 static int
7612 remote_insert_breakpoint (struct gdbarch *gdbarch,
7613 struct bp_target_info *bp_tgt)
7614 {
7615 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7616 If it succeeds, then set the support to PACKET_ENABLE. If it
7617 fails, and the user has explicitly requested the Z support then
7618 report an error, otherwise, mark it disabled and go on. */
7619
7620 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7621 {
7622 CORE_ADDR addr = bp_tgt->placed_address;
7623 struct remote_state *rs;
7624 char *p;
7625 int bpsize;
7626
7627 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7628
7629 rs = get_remote_state ();
7630 p = rs->buf;
7631
7632 *(p++) = 'Z';
7633 *(p++) = '0';
7634 *(p++) = ',';
7635 addr = (ULONGEST) remote_address_masked (addr);
7636 p += hexnumstr (p, addr);
7637 sprintf (p, ",%d", bpsize);
7638
7639 putpkt (rs->buf);
7640 getpkt (&rs->buf, &rs->buf_size, 0);
7641
7642 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7643 {
7644 case PACKET_ERROR:
7645 return -1;
7646 case PACKET_OK:
7647 bp_tgt->placed_address = addr;
7648 bp_tgt->placed_size = bpsize;
7649 return 0;
7650 case PACKET_UNKNOWN:
7651 break;
7652 }
7653 }
7654
7655 return memory_insert_breakpoint (gdbarch, bp_tgt);
7656 }
7657
7658 static int
7659 remote_remove_breakpoint (struct gdbarch *gdbarch,
7660 struct bp_target_info *bp_tgt)
7661 {
7662 CORE_ADDR addr = bp_tgt->placed_address;
7663 struct remote_state *rs = get_remote_state ();
7664
7665 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7666 {
7667 char *p = rs->buf;
7668
7669 *(p++) = 'z';
7670 *(p++) = '0';
7671 *(p++) = ',';
7672
7673 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7674 p += hexnumstr (p, addr);
7675 sprintf (p, ",%d", bp_tgt->placed_size);
7676
7677 putpkt (rs->buf);
7678 getpkt (&rs->buf, &rs->buf_size, 0);
7679
7680 return (rs->buf[0] == 'E');
7681 }
7682
7683 return memory_remove_breakpoint (gdbarch, bp_tgt);
7684 }
7685
7686 static int
7687 watchpoint_to_Z_packet (int type)
7688 {
7689 switch (type)
7690 {
7691 case hw_write:
7692 return Z_PACKET_WRITE_WP;
7693 break;
7694 case hw_read:
7695 return Z_PACKET_READ_WP;
7696 break;
7697 case hw_access:
7698 return Z_PACKET_ACCESS_WP;
7699 break;
7700 default:
7701 internal_error (__FILE__, __LINE__,
7702 _("hw_bp_to_z: bad watchpoint type %d"), type);
7703 }
7704 }
7705
7706 static int
7707 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7708 struct expression *cond)
7709 {
7710 struct remote_state *rs = get_remote_state ();
7711 char *p;
7712 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7713
7714 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7715 return 1;
7716
7717 sprintf (rs->buf, "Z%x,", packet);
7718 p = strchr (rs->buf, '\0');
7719 addr = remote_address_masked (addr);
7720 p += hexnumstr (p, (ULONGEST) addr);
7721 sprintf (p, ",%x", len);
7722
7723 putpkt (rs->buf);
7724 getpkt (&rs->buf, &rs->buf_size, 0);
7725
7726 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7727 {
7728 case PACKET_ERROR:
7729 return -1;
7730 case PACKET_UNKNOWN:
7731 return 1;
7732 case PACKET_OK:
7733 return 0;
7734 }
7735 internal_error (__FILE__, __LINE__,
7736 _("remote_insert_watchpoint: reached end of function"));
7737 }
7738
7739
7740 static int
7741 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7742 struct expression *cond)
7743 {
7744 struct remote_state *rs = get_remote_state ();
7745 char *p;
7746 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7747
7748 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7749 return -1;
7750
7751 sprintf (rs->buf, "z%x,", packet);
7752 p = strchr (rs->buf, '\0');
7753 addr = remote_address_masked (addr);
7754 p += hexnumstr (p, (ULONGEST) addr);
7755 sprintf (p, ",%x", len);
7756 putpkt (rs->buf);
7757 getpkt (&rs->buf, &rs->buf_size, 0);
7758
7759 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7760 {
7761 case PACKET_ERROR:
7762 case PACKET_UNKNOWN:
7763 return -1;
7764 case PACKET_OK:
7765 return 0;
7766 }
7767 internal_error (__FILE__, __LINE__,
7768 _("remote_remove_watchpoint: reached end of function"));
7769 }
7770
7771
7772 int remote_hw_watchpoint_limit = -1;
7773 int remote_hw_watchpoint_length_limit = -1;
7774 int remote_hw_breakpoint_limit = -1;
7775
7776 static int
7777 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
7778 {
7779 if (remote_hw_watchpoint_length_limit == 0)
7780 return 0;
7781 else if (remote_hw_watchpoint_length_limit < 0)
7782 return 1;
7783 else if (len <= remote_hw_watchpoint_length_limit)
7784 return 1;
7785 else
7786 return 0;
7787 }
7788
7789 static int
7790 remote_check_watch_resources (int type, int cnt, int ot)
7791 {
7792 if (type == bp_hardware_breakpoint)
7793 {
7794 if (remote_hw_breakpoint_limit == 0)
7795 return 0;
7796 else if (remote_hw_breakpoint_limit < 0)
7797 return 1;
7798 else if (cnt <= remote_hw_breakpoint_limit)
7799 return 1;
7800 }
7801 else
7802 {
7803 if (remote_hw_watchpoint_limit == 0)
7804 return 0;
7805 else if (remote_hw_watchpoint_limit < 0)
7806 return 1;
7807 else if (ot)
7808 return -1;
7809 else if (cnt <= remote_hw_watchpoint_limit)
7810 return 1;
7811 }
7812 return -1;
7813 }
7814
7815 static int
7816 remote_stopped_by_watchpoint (void)
7817 {
7818 return remote_stopped_by_watchpoint_p;
7819 }
7820
7821 static int
7822 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7823 {
7824 int rc = 0;
7825
7826 if (remote_stopped_by_watchpoint ())
7827 {
7828 *addr_p = remote_watch_data_address;
7829 rc = 1;
7830 }
7831
7832 return rc;
7833 }
7834
7835
7836 static int
7837 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7838 struct bp_target_info *bp_tgt)
7839 {
7840 CORE_ADDR addr;
7841 struct remote_state *rs;
7842 char *p;
7843
7844 /* The length field should be set to the size of a breakpoint
7845 instruction, even though we aren't inserting one ourselves. */
7846
7847 gdbarch_remote_breakpoint_from_pc
7848 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7849
7850 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7851 return -1;
7852
7853 rs = get_remote_state ();
7854 p = rs->buf;
7855
7856 *(p++) = 'Z';
7857 *(p++) = '1';
7858 *(p++) = ',';
7859
7860 addr = remote_address_masked (bp_tgt->placed_address);
7861 p += hexnumstr (p, (ULONGEST) addr);
7862 sprintf (p, ",%x", bp_tgt->placed_size);
7863
7864 putpkt (rs->buf);
7865 getpkt (&rs->buf, &rs->buf_size, 0);
7866
7867 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7868 {
7869 case PACKET_ERROR:
7870 case PACKET_UNKNOWN:
7871 return -1;
7872 case PACKET_OK:
7873 return 0;
7874 }
7875 internal_error (__FILE__, __LINE__,
7876 _("remote_insert_hw_breakpoint: reached end of function"));
7877 }
7878
7879
7880 static int
7881 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7882 struct bp_target_info *bp_tgt)
7883 {
7884 CORE_ADDR addr;
7885 struct remote_state *rs = get_remote_state ();
7886 char *p = rs->buf;
7887
7888 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7889 return -1;
7890
7891 *(p++) = 'z';
7892 *(p++) = '1';
7893 *(p++) = ',';
7894
7895 addr = remote_address_masked (bp_tgt->placed_address);
7896 p += hexnumstr (p, (ULONGEST) addr);
7897 sprintf (p, ",%x", bp_tgt->placed_size);
7898
7899 putpkt (rs->buf);
7900 getpkt (&rs->buf, &rs->buf_size, 0);
7901
7902 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7903 {
7904 case PACKET_ERROR:
7905 case PACKET_UNKNOWN:
7906 return -1;
7907 case PACKET_OK:
7908 return 0;
7909 }
7910 internal_error (__FILE__, __LINE__,
7911 _("remote_remove_hw_breakpoint: reached end of function"));
7912 }
7913
7914 /* Table used by the crc32 function to calcuate the checksum. */
7915
7916 static unsigned long crc32_table[256] =
7917 {0, 0};
7918
7919 static unsigned long
7920 crc32 (const unsigned char *buf, int len, unsigned int crc)
7921 {
7922 if (!crc32_table[1])
7923 {
7924 /* Initialize the CRC table and the decoding table. */
7925 int i, j;
7926 unsigned int c;
7927
7928 for (i = 0; i < 256; i++)
7929 {
7930 for (c = i << 24, j = 8; j > 0; --j)
7931 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7932 crc32_table[i] = c;
7933 }
7934 }
7935
7936 while (len--)
7937 {
7938 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7939 buf++;
7940 }
7941 return crc;
7942 }
7943
7944 /* Verify memory using the "qCRC:" request. */
7945
7946 static int
7947 remote_verify_memory (struct target_ops *ops,
7948 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7949 {
7950 struct remote_state *rs = get_remote_state ();
7951 unsigned long host_crc, target_crc;
7952 char *tmp;
7953
7954 /* FIXME: assumes lma can fit into long. */
7955 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7956 (long) lma, (long) size);
7957 putpkt (rs->buf);
7958
7959 /* Be clever; compute the host_crc before waiting for target
7960 reply. */
7961 host_crc = crc32 (data, size, 0xffffffff);
7962
7963 getpkt (&rs->buf, &rs->buf_size, 0);
7964 if (rs->buf[0] == 'E')
7965 return -1;
7966
7967 if (rs->buf[0] != 'C')
7968 error (_("remote target does not support this operation"));
7969
7970 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7971 target_crc = target_crc * 16 + fromhex (*tmp);
7972
7973 return (host_crc == target_crc);
7974 }
7975
7976 /* compare-sections command
7977
7978 With no arguments, compares each loadable section in the exec bfd
7979 with the same memory range on the target, and reports mismatches.
7980 Useful for verifying the image on the target against the exec file. */
7981
7982 static void
7983 compare_sections_command (char *args, int from_tty)
7984 {
7985 asection *s;
7986 struct cleanup *old_chain;
7987 char *sectdata;
7988 const char *sectname;
7989 bfd_size_type size;
7990 bfd_vma lma;
7991 int matched = 0;
7992 int mismatched = 0;
7993 int res;
7994
7995 if (!exec_bfd)
7996 error (_("command cannot be used without an exec file"));
7997
7998 for (s = exec_bfd->sections; s; s = s->next)
7999 {
8000 if (!(s->flags & SEC_LOAD))
8001 continue; /* Skip non-loadable section. */
8002
8003 size = bfd_get_section_size (s);
8004 if (size == 0)
8005 continue; /* Skip zero-length section. */
8006
8007 sectname = bfd_get_section_name (exec_bfd, s);
8008 if (args && strcmp (args, sectname) != 0)
8009 continue; /* Not the section selected by user. */
8010
8011 matched = 1; /* Do this section. */
8012 lma = s->lma;
8013
8014 sectdata = xmalloc (size);
8015 old_chain = make_cleanup (xfree, sectdata);
8016 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8017
8018 res = target_verify_memory (sectdata, lma, size);
8019
8020 if (res == -1)
8021 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8022 paddress (target_gdbarch, lma),
8023 paddress (target_gdbarch, lma + size));
8024
8025 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8026 paddress (target_gdbarch, lma),
8027 paddress (target_gdbarch, lma + size));
8028 if (res)
8029 printf_filtered ("matched.\n");
8030 else
8031 {
8032 printf_filtered ("MIS-MATCHED!\n");
8033 mismatched++;
8034 }
8035
8036 do_cleanups (old_chain);
8037 }
8038 if (mismatched > 0)
8039 warning (_("One or more sections of the remote executable does not match\n\
8040 the loaded file\n"));
8041 if (args && !matched)
8042 printf_filtered (_("No loaded section named '%s'.\n"), args);
8043 }
8044
8045 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8046 into remote target. The number of bytes written to the remote
8047 target is returned, or -1 for error. */
8048
8049 static LONGEST
8050 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8051 const char *annex, const gdb_byte *writebuf,
8052 ULONGEST offset, LONGEST len,
8053 struct packet_config *packet)
8054 {
8055 int i, buf_len;
8056 ULONGEST n;
8057 struct remote_state *rs = get_remote_state ();
8058 int max_size = get_memory_write_packet_size ();
8059
8060 if (packet->support == PACKET_DISABLE)
8061 return -1;
8062
8063 /* Insert header. */
8064 i = snprintf (rs->buf, max_size,
8065 "qXfer:%s:write:%s:%s:",
8066 object_name, annex ? annex : "",
8067 phex_nz (offset, sizeof offset));
8068 max_size -= (i + 1);
8069
8070 /* Escape as much data as fits into rs->buf. */
8071 buf_len = remote_escape_output
8072 (writebuf, len, (rs->buf + i), &max_size, max_size);
8073
8074 if (putpkt_binary (rs->buf, i + buf_len) < 0
8075 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8076 || packet_ok (rs->buf, packet) != PACKET_OK)
8077 return -1;
8078
8079 unpack_varlen_hex (rs->buf, &n);
8080 return n;
8081 }
8082
8083 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8084 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8085 number of bytes read is returned, or 0 for EOF, or -1 for error.
8086 The number of bytes read may be less than LEN without indicating an
8087 EOF. PACKET is checked and updated to indicate whether the remote
8088 target supports this object. */
8089
8090 static LONGEST
8091 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8092 const char *annex,
8093 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8094 struct packet_config *packet)
8095 {
8096 static char *finished_object;
8097 static char *finished_annex;
8098 static ULONGEST finished_offset;
8099
8100 struct remote_state *rs = get_remote_state ();
8101 LONGEST i, n, packet_len;
8102
8103 if (packet->support == PACKET_DISABLE)
8104 return -1;
8105
8106 /* Check whether we've cached an end-of-object packet that matches
8107 this request. */
8108 if (finished_object)
8109 {
8110 if (strcmp (object_name, finished_object) == 0
8111 && strcmp (annex ? annex : "", finished_annex) == 0
8112 && offset == finished_offset)
8113 return 0;
8114
8115 /* Otherwise, we're now reading something different. Discard
8116 the cache. */
8117 xfree (finished_object);
8118 xfree (finished_annex);
8119 finished_object = NULL;
8120 finished_annex = NULL;
8121 }
8122
8123 /* Request only enough to fit in a single packet. The actual data
8124 may not, since we don't know how much of it will need to be escaped;
8125 the target is free to respond with slightly less data. We subtract
8126 five to account for the response type and the protocol frame. */
8127 n = min (get_remote_packet_size () - 5, len);
8128 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8129 object_name, annex ? annex : "",
8130 phex_nz (offset, sizeof offset),
8131 phex_nz (n, sizeof n));
8132 i = putpkt (rs->buf);
8133 if (i < 0)
8134 return -1;
8135
8136 rs->buf[0] = '\0';
8137 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8138 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8139 return -1;
8140
8141 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8142 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8143
8144 /* 'm' means there is (or at least might be) more data after this
8145 batch. That does not make sense unless there's at least one byte
8146 of data in this reply. */
8147 if (rs->buf[0] == 'm' && packet_len == 1)
8148 error (_("Remote qXfer reply contained no data."));
8149
8150 /* Got some data. */
8151 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8152
8153 /* 'l' is an EOF marker, possibly including a final block of data,
8154 or possibly empty. If we have the final block of a non-empty
8155 object, record this fact to bypass a subsequent partial read. */
8156 if (rs->buf[0] == 'l' && offset + i > 0)
8157 {
8158 finished_object = xstrdup (object_name);
8159 finished_annex = xstrdup (annex ? annex : "");
8160 finished_offset = offset + i;
8161 }
8162
8163 return i;
8164 }
8165
8166 static LONGEST
8167 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8168 const char *annex, gdb_byte *readbuf,
8169 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8170 {
8171 struct remote_state *rs;
8172 int i;
8173 char *p2;
8174 char query_type;
8175
8176 set_remote_traceframe ();
8177 set_general_thread (inferior_ptid);
8178
8179 rs = get_remote_state ();
8180
8181 /* Handle memory using the standard memory routines. */
8182 if (object == TARGET_OBJECT_MEMORY)
8183 {
8184 int xfered;
8185
8186 errno = 0;
8187
8188 /* If the remote target is connected but not running, we should
8189 pass this request down to a lower stratum (e.g. the executable
8190 file). */
8191 if (!target_has_execution)
8192 return 0;
8193
8194 if (writebuf != NULL)
8195 xfered = remote_write_bytes (offset, writebuf, len);
8196 else
8197 xfered = remote_read_bytes (offset, readbuf, len);
8198
8199 if (xfered > 0)
8200 return xfered;
8201 else if (xfered == 0 && errno == 0)
8202 return 0;
8203 else
8204 return -1;
8205 }
8206
8207 /* Handle SPU memory using qxfer packets. */
8208 if (object == TARGET_OBJECT_SPU)
8209 {
8210 if (readbuf)
8211 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8212 &remote_protocol_packets
8213 [PACKET_qXfer_spu_read]);
8214 else
8215 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8216 &remote_protocol_packets
8217 [PACKET_qXfer_spu_write]);
8218 }
8219
8220 /* Handle extra signal info using qxfer packets. */
8221 if (object == TARGET_OBJECT_SIGNAL_INFO)
8222 {
8223 if (readbuf)
8224 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8225 &remote_protocol_packets
8226 [PACKET_qXfer_siginfo_read]);
8227 else
8228 return remote_write_qxfer (ops, "siginfo", annex,
8229 writebuf, offset, len,
8230 &remote_protocol_packets
8231 [PACKET_qXfer_siginfo_write]);
8232 }
8233
8234 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8235 {
8236 if (readbuf)
8237 return remote_read_qxfer (ops, "statictrace", annex,
8238 readbuf, offset, len,
8239 &remote_protocol_packets
8240 [PACKET_qXfer_statictrace_read]);
8241 else
8242 return -1;
8243 }
8244
8245 /* Only handle flash writes. */
8246 if (writebuf != NULL)
8247 {
8248 LONGEST xfered;
8249
8250 switch (object)
8251 {
8252 case TARGET_OBJECT_FLASH:
8253 xfered = remote_flash_write (ops, offset, len, writebuf);
8254
8255 if (xfered > 0)
8256 return xfered;
8257 else if (xfered == 0 && errno == 0)
8258 return 0;
8259 else
8260 return -1;
8261
8262 default:
8263 return -1;
8264 }
8265 }
8266
8267 /* Map pre-existing objects onto letters. DO NOT do this for new
8268 objects!!! Instead specify new query packets. */
8269 switch (object)
8270 {
8271 case TARGET_OBJECT_AVR:
8272 query_type = 'R';
8273 break;
8274
8275 case TARGET_OBJECT_AUXV:
8276 gdb_assert (annex == NULL);
8277 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8278 &remote_protocol_packets[PACKET_qXfer_auxv]);
8279
8280 case TARGET_OBJECT_AVAILABLE_FEATURES:
8281 return remote_read_qxfer
8282 (ops, "features", annex, readbuf, offset, len,
8283 &remote_protocol_packets[PACKET_qXfer_features]);
8284
8285 case TARGET_OBJECT_LIBRARIES:
8286 return remote_read_qxfer
8287 (ops, "libraries", annex, readbuf, offset, len,
8288 &remote_protocol_packets[PACKET_qXfer_libraries]);
8289
8290 case TARGET_OBJECT_MEMORY_MAP:
8291 gdb_assert (annex == NULL);
8292 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8293 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8294
8295 case TARGET_OBJECT_OSDATA:
8296 /* Should only get here if we're connected. */
8297 gdb_assert (remote_desc);
8298 return remote_read_qxfer
8299 (ops, "osdata", annex, readbuf, offset, len,
8300 &remote_protocol_packets[PACKET_qXfer_osdata]);
8301
8302 case TARGET_OBJECT_THREADS:
8303 gdb_assert (annex == NULL);
8304 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8305 &remote_protocol_packets[PACKET_qXfer_threads]);
8306
8307 case TARGET_OBJECT_TRACEFRAME_INFO:
8308 gdb_assert (annex == NULL);
8309 return remote_read_qxfer
8310 (ops, "traceframe-info", annex, readbuf, offset, len,
8311 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8312
8313 case TARGET_OBJECT_FDPIC:
8314 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8315 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8316 default:
8317 return -1;
8318 }
8319
8320 /* Note: a zero OFFSET and LEN can be used to query the minimum
8321 buffer size. */
8322 if (offset == 0 && len == 0)
8323 return (get_remote_packet_size ());
8324 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8325 large enough let the caller deal with it. */
8326 if (len < get_remote_packet_size ())
8327 return -1;
8328 len = get_remote_packet_size ();
8329
8330 /* Except for querying the minimum buffer size, target must be open. */
8331 if (!remote_desc)
8332 error (_("remote query is only available after target open"));
8333
8334 gdb_assert (annex != NULL);
8335 gdb_assert (readbuf != NULL);
8336
8337 p2 = rs->buf;
8338 *p2++ = 'q';
8339 *p2++ = query_type;
8340
8341 /* We used one buffer char for the remote protocol q command and
8342 another for the query type. As the remote protocol encapsulation
8343 uses 4 chars plus one extra in case we are debugging
8344 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8345 string. */
8346 i = 0;
8347 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8348 {
8349 /* Bad caller may have sent forbidden characters. */
8350 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8351 *p2++ = annex[i];
8352 i++;
8353 }
8354 *p2 = '\0';
8355 gdb_assert (annex[i] == '\0');
8356
8357 i = putpkt (rs->buf);
8358 if (i < 0)
8359 return i;
8360
8361 getpkt (&rs->buf, &rs->buf_size, 0);
8362 strcpy ((char *) readbuf, rs->buf);
8363
8364 return strlen ((char *) readbuf);
8365 }
8366
8367 static int
8368 remote_search_memory (struct target_ops* ops,
8369 CORE_ADDR start_addr, ULONGEST search_space_len,
8370 const gdb_byte *pattern, ULONGEST pattern_len,
8371 CORE_ADDR *found_addrp)
8372 {
8373 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8374 struct remote_state *rs = get_remote_state ();
8375 int max_size = get_memory_write_packet_size ();
8376 struct packet_config *packet =
8377 &remote_protocol_packets[PACKET_qSearch_memory];
8378 /* Number of packet bytes used to encode the pattern;
8379 this could be more than PATTERN_LEN due to escape characters. */
8380 int escaped_pattern_len;
8381 /* Amount of pattern that was encodable in the packet. */
8382 int used_pattern_len;
8383 int i;
8384 int found;
8385 ULONGEST found_addr;
8386
8387 /* Don't go to the target if we don't have to.
8388 This is done before checking packet->support to avoid the possibility that
8389 a success for this edge case means the facility works in general. */
8390 if (pattern_len > search_space_len)
8391 return 0;
8392 if (pattern_len == 0)
8393 {
8394 *found_addrp = start_addr;
8395 return 1;
8396 }
8397
8398 /* If we already know the packet isn't supported, fall back to the simple
8399 way of searching memory. */
8400
8401 if (packet->support == PACKET_DISABLE)
8402 {
8403 /* Target doesn't provided special support, fall back and use the
8404 standard support (copy memory and do the search here). */
8405 return simple_search_memory (ops, start_addr, search_space_len,
8406 pattern, pattern_len, found_addrp);
8407 }
8408
8409 /* Insert header. */
8410 i = snprintf (rs->buf, max_size,
8411 "qSearch:memory:%s;%s;",
8412 phex_nz (start_addr, addr_size),
8413 phex_nz (search_space_len, sizeof (search_space_len)));
8414 max_size -= (i + 1);
8415
8416 /* Escape as much data as fits into rs->buf. */
8417 escaped_pattern_len =
8418 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8419 &used_pattern_len, max_size);
8420
8421 /* Bail if the pattern is too large. */
8422 if (used_pattern_len != pattern_len)
8423 error (_("Pattern is too large to transmit to remote target."));
8424
8425 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8426 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8427 || packet_ok (rs->buf, packet) != PACKET_OK)
8428 {
8429 /* The request may not have worked because the command is not
8430 supported. If so, fall back to the simple way. */
8431 if (packet->support == PACKET_DISABLE)
8432 {
8433 return simple_search_memory (ops, start_addr, search_space_len,
8434 pattern, pattern_len, found_addrp);
8435 }
8436 return -1;
8437 }
8438
8439 if (rs->buf[0] == '0')
8440 found = 0;
8441 else if (rs->buf[0] == '1')
8442 {
8443 found = 1;
8444 if (rs->buf[1] != ',')
8445 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8446 unpack_varlen_hex (rs->buf + 2, &found_addr);
8447 *found_addrp = found_addr;
8448 }
8449 else
8450 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8451
8452 return found;
8453 }
8454
8455 static void
8456 remote_rcmd (char *command,
8457 struct ui_file *outbuf)
8458 {
8459 struct remote_state *rs = get_remote_state ();
8460 char *p = rs->buf;
8461
8462 if (!remote_desc)
8463 error (_("remote rcmd is only available after target open"));
8464
8465 /* Send a NULL command across as an empty command. */
8466 if (command == NULL)
8467 command = "";
8468
8469 /* The query prefix. */
8470 strcpy (rs->buf, "qRcmd,");
8471 p = strchr (rs->buf, '\0');
8472
8473 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8474 > get_remote_packet_size ())
8475 error (_("\"monitor\" command ``%s'' is too long."), command);
8476
8477 /* Encode the actual command. */
8478 bin2hex ((gdb_byte *) command, p, 0);
8479
8480 if (putpkt (rs->buf) < 0)
8481 error (_("Communication problem with target."));
8482
8483 /* get/display the response */
8484 while (1)
8485 {
8486 char *buf;
8487
8488 /* XXX - see also remote_get_noisy_reply(). */
8489 rs->buf[0] = '\0';
8490 getpkt (&rs->buf, &rs->buf_size, 0);
8491 buf = rs->buf;
8492 if (buf[0] == '\0')
8493 error (_("Target does not support this command."));
8494 if (buf[0] == 'O' && buf[1] != 'K')
8495 {
8496 remote_console_output (buf + 1); /* 'O' message from stub. */
8497 continue;
8498 }
8499 if (strcmp (buf, "OK") == 0)
8500 break;
8501 if (strlen (buf) == 3 && buf[0] == 'E'
8502 && isdigit (buf[1]) && isdigit (buf[2]))
8503 {
8504 error (_("Protocol error with Rcmd"));
8505 }
8506 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8507 {
8508 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8509
8510 fputc_unfiltered (c, outbuf);
8511 }
8512 break;
8513 }
8514 }
8515
8516 static VEC(mem_region_s) *
8517 remote_memory_map (struct target_ops *ops)
8518 {
8519 VEC(mem_region_s) *result = NULL;
8520 char *text = target_read_stralloc (&current_target,
8521 TARGET_OBJECT_MEMORY_MAP, NULL);
8522
8523 if (text)
8524 {
8525 struct cleanup *back_to = make_cleanup (xfree, text);
8526
8527 result = parse_memory_map (text);
8528 do_cleanups (back_to);
8529 }
8530
8531 return result;
8532 }
8533
8534 static void
8535 packet_command (char *args, int from_tty)
8536 {
8537 struct remote_state *rs = get_remote_state ();
8538
8539 if (!remote_desc)
8540 error (_("command can only be used with remote target"));
8541
8542 if (!args)
8543 error (_("remote-packet command requires packet text as argument"));
8544
8545 puts_filtered ("sending: ");
8546 print_packet (args);
8547 puts_filtered ("\n");
8548 putpkt (args);
8549
8550 getpkt (&rs->buf, &rs->buf_size, 0);
8551 puts_filtered ("received: ");
8552 print_packet (rs->buf);
8553 puts_filtered ("\n");
8554 }
8555
8556 #if 0
8557 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8558
8559 static void display_thread_info (struct gdb_ext_thread_info *info);
8560
8561 static void threadset_test_cmd (char *cmd, int tty);
8562
8563 static void threadalive_test (char *cmd, int tty);
8564
8565 static void threadlist_test_cmd (char *cmd, int tty);
8566
8567 int get_and_display_threadinfo (threadref *ref);
8568
8569 static void threadinfo_test_cmd (char *cmd, int tty);
8570
8571 static int thread_display_step (threadref *ref, void *context);
8572
8573 static void threadlist_update_test_cmd (char *cmd, int tty);
8574
8575 static void init_remote_threadtests (void);
8576
8577 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8578
8579 static void
8580 threadset_test_cmd (char *cmd, int tty)
8581 {
8582 int sample_thread = SAMPLE_THREAD;
8583
8584 printf_filtered (_("Remote threadset test\n"));
8585 set_general_thread (sample_thread);
8586 }
8587
8588
8589 static void
8590 threadalive_test (char *cmd, int tty)
8591 {
8592 int sample_thread = SAMPLE_THREAD;
8593 int pid = ptid_get_pid (inferior_ptid);
8594 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8595
8596 if (remote_thread_alive (ptid))
8597 printf_filtered ("PASS: Thread alive test\n");
8598 else
8599 printf_filtered ("FAIL: Thread alive test\n");
8600 }
8601
8602 void output_threadid (char *title, threadref *ref);
8603
8604 void
8605 output_threadid (char *title, threadref *ref)
8606 {
8607 char hexid[20];
8608
8609 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8610 hexid[16] = 0;
8611 printf_filtered ("%s %s\n", title, (&hexid[0]));
8612 }
8613
8614 static void
8615 threadlist_test_cmd (char *cmd, int tty)
8616 {
8617 int startflag = 1;
8618 threadref nextthread;
8619 int done, result_count;
8620 threadref threadlist[3];
8621
8622 printf_filtered ("Remote Threadlist test\n");
8623 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8624 &result_count, &threadlist[0]))
8625 printf_filtered ("FAIL: threadlist test\n");
8626 else
8627 {
8628 threadref *scan = threadlist;
8629 threadref *limit = scan + result_count;
8630
8631 while (scan < limit)
8632 output_threadid (" thread ", scan++);
8633 }
8634 }
8635
8636 void
8637 display_thread_info (struct gdb_ext_thread_info *info)
8638 {
8639 output_threadid ("Threadid: ", &info->threadid);
8640 printf_filtered ("Name: %s\n ", info->shortname);
8641 printf_filtered ("State: %s\n", info->display);
8642 printf_filtered ("other: %s\n\n", info->more_display);
8643 }
8644
8645 int
8646 get_and_display_threadinfo (threadref *ref)
8647 {
8648 int result;
8649 int set;
8650 struct gdb_ext_thread_info threadinfo;
8651
8652 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8653 | TAG_MOREDISPLAY | TAG_DISPLAY;
8654 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8655 display_thread_info (&threadinfo);
8656 return result;
8657 }
8658
8659 static void
8660 threadinfo_test_cmd (char *cmd, int tty)
8661 {
8662 int athread = SAMPLE_THREAD;
8663 threadref thread;
8664 int set;
8665
8666 int_to_threadref (&thread, athread);
8667 printf_filtered ("Remote Threadinfo test\n");
8668 if (!get_and_display_threadinfo (&thread))
8669 printf_filtered ("FAIL cannot get thread info\n");
8670 }
8671
8672 static int
8673 thread_display_step (threadref *ref, void *context)
8674 {
8675 /* output_threadid(" threadstep ",ref); *//* simple test */
8676 return get_and_display_threadinfo (ref);
8677 }
8678
8679 static void
8680 threadlist_update_test_cmd (char *cmd, int tty)
8681 {
8682 printf_filtered ("Remote Threadlist update test\n");
8683 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8684 }
8685
8686 static void
8687 init_remote_threadtests (void)
8688 {
8689 add_com ("tlist", class_obscure, threadlist_test_cmd,
8690 _("Fetch and print the remote list of "
8691 "thread identifiers, one pkt only"));
8692 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8693 _("Fetch and display info about one thread"));
8694 add_com ("tset", class_obscure, threadset_test_cmd,
8695 _("Test setting to a different thread"));
8696 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8697 _("Iterate through updating all remote thread info"));
8698 add_com ("talive", class_obscure, threadalive_test,
8699 _(" Remote thread alive test "));
8700 }
8701
8702 #endif /* 0 */
8703
8704 /* Convert a thread ID to a string. Returns the string in a static
8705 buffer. */
8706
8707 static char *
8708 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8709 {
8710 static char buf[64];
8711 struct remote_state *rs = get_remote_state ();
8712
8713 if (ptid_is_pid (ptid))
8714 {
8715 /* Printing an inferior target id. */
8716
8717 /* When multi-process extensions are off, there's no way in the
8718 remote protocol to know the remote process id, if there's any
8719 at all. There's one exception --- when we're connected with
8720 target extended-remote, and we manually attached to a process
8721 with "attach PID". We don't record anywhere a flag that
8722 allows us to distinguish that case from the case of
8723 connecting with extended-remote and the stub already being
8724 attached to a process, and reporting yes to qAttached, hence
8725 no smart special casing here. */
8726 if (!remote_multi_process_p (rs))
8727 {
8728 xsnprintf (buf, sizeof buf, "Remote target");
8729 return buf;
8730 }
8731
8732 return normal_pid_to_str (ptid);
8733 }
8734 else
8735 {
8736 if (ptid_equal (magic_null_ptid, ptid))
8737 xsnprintf (buf, sizeof buf, "Thread <main>");
8738 else if (remote_multi_process_p (rs))
8739 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8740 ptid_get_pid (ptid), ptid_get_tid (ptid));
8741 else
8742 xsnprintf (buf, sizeof buf, "Thread %ld",
8743 ptid_get_tid (ptid));
8744 return buf;
8745 }
8746 }
8747
8748 /* Get the address of the thread local variable in OBJFILE which is
8749 stored at OFFSET within the thread local storage for thread PTID. */
8750
8751 static CORE_ADDR
8752 remote_get_thread_local_address (struct target_ops *ops,
8753 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8754 {
8755 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8756 {
8757 struct remote_state *rs = get_remote_state ();
8758 char *p = rs->buf;
8759 char *endp = rs->buf + get_remote_packet_size ();
8760 enum packet_result result;
8761
8762 strcpy (p, "qGetTLSAddr:");
8763 p += strlen (p);
8764 p = write_ptid (p, endp, ptid);
8765 *p++ = ',';
8766 p += hexnumstr (p, offset);
8767 *p++ = ',';
8768 p += hexnumstr (p, lm);
8769 *p++ = '\0';
8770
8771 putpkt (rs->buf);
8772 getpkt (&rs->buf, &rs->buf_size, 0);
8773 result = packet_ok (rs->buf,
8774 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8775 if (result == PACKET_OK)
8776 {
8777 ULONGEST result;
8778
8779 unpack_varlen_hex (rs->buf, &result);
8780 return result;
8781 }
8782 else if (result == PACKET_UNKNOWN)
8783 throw_error (TLS_GENERIC_ERROR,
8784 _("Remote target doesn't support qGetTLSAddr packet"));
8785 else
8786 throw_error (TLS_GENERIC_ERROR,
8787 _("Remote target failed to process qGetTLSAddr request"));
8788 }
8789 else
8790 throw_error (TLS_GENERIC_ERROR,
8791 _("TLS not supported or disabled on this target"));
8792 /* Not reached. */
8793 return 0;
8794 }
8795
8796 /* Provide thread local base, i.e. Thread Information Block address.
8797 Returns 1 if ptid is found and thread_local_base is non zero. */
8798
8799 int
8800 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8801 {
8802 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8803 {
8804 struct remote_state *rs = get_remote_state ();
8805 char *p = rs->buf;
8806 char *endp = rs->buf + get_remote_packet_size ();
8807 enum packet_result result;
8808
8809 strcpy (p, "qGetTIBAddr:");
8810 p += strlen (p);
8811 p = write_ptid (p, endp, ptid);
8812 *p++ = '\0';
8813
8814 putpkt (rs->buf);
8815 getpkt (&rs->buf, &rs->buf_size, 0);
8816 result = packet_ok (rs->buf,
8817 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8818 if (result == PACKET_OK)
8819 {
8820 ULONGEST result;
8821
8822 unpack_varlen_hex (rs->buf, &result);
8823 if (addr)
8824 *addr = (CORE_ADDR) result;
8825 return 1;
8826 }
8827 else if (result == PACKET_UNKNOWN)
8828 error (_("Remote target doesn't support qGetTIBAddr packet"));
8829 else
8830 error (_("Remote target failed to process qGetTIBAddr request"));
8831 }
8832 else
8833 error (_("qGetTIBAddr not supported or disabled on this target"));
8834 /* Not reached. */
8835 return 0;
8836 }
8837
8838 /* Support for inferring a target description based on the current
8839 architecture and the size of a 'g' packet. While the 'g' packet
8840 can have any size (since optional registers can be left off the
8841 end), some sizes are easily recognizable given knowledge of the
8842 approximate architecture. */
8843
8844 struct remote_g_packet_guess
8845 {
8846 int bytes;
8847 const struct target_desc *tdesc;
8848 };
8849 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8850 DEF_VEC_O(remote_g_packet_guess_s);
8851
8852 struct remote_g_packet_data
8853 {
8854 VEC(remote_g_packet_guess_s) *guesses;
8855 };
8856
8857 static struct gdbarch_data *remote_g_packet_data_handle;
8858
8859 static void *
8860 remote_g_packet_data_init (struct obstack *obstack)
8861 {
8862 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8863 }
8864
8865 void
8866 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8867 const struct target_desc *tdesc)
8868 {
8869 struct remote_g_packet_data *data
8870 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8871 struct remote_g_packet_guess new_guess, *guess;
8872 int ix;
8873
8874 gdb_assert (tdesc != NULL);
8875
8876 for (ix = 0;
8877 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8878 ix++)
8879 if (guess->bytes == bytes)
8880 internal_error (__FILE__, __LINE__,
8881 _("Duplicate g packet description added for size %d"),
8882 bytes);
8883
8884 new_guess.bytes = bytes;
8885 new_guess.tdesc = tdesc;
8886 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8887 }
8888
8889 /* Return 1 if remote_read_description would do anything on this target
8890 and architecture, 0 otherwise. */
8891
8892 static int
8893 remote_read_description_p (struct target_ops *target)
8894 {
8895 struct remote_g_packet_data *data
8896 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8897
8898 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8899 return 1;
8900
8901 return 0;
8902 }
8903
8904 static const struct target_desc *
8905 remote_read_description (struct target_ops *target)
8906 {
8907 struct remote_g_packet_data *data
8908 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8909
8910 /* Do not try this during initial connection, when we do not know
8911 whether there is a running but stopped thread. */
8912 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8913 return NULL;
8914
8915 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8916 {
8917 struct remote_g_packet_guess *guess;
8918 int ix;
8919 int bytes = send_g_packet ();
8920
8921 for (ix = 0;
8922 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8923 ix++)
8924 if (guess->bytes == bytes)
8925 return guess->tdesc;
8926
8927 /* We discard the g packet. A minor optimization would be to
8928 hold on to it, and fill the register cache once we have selected
8929 an architecture, but it's too tricky to do safely. */
8930 }
8931
8932 return NULL;
8933 }
8934
8935 /* Remote file transfer support. This is host-initiated I/O, not
8936 target-initiated; for target-initiated, see remote-fileio.c. */
8937
8938 /* If *LEFT is at least the length of STRING, copy STRING to
8939 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8940 decrease *LEFT. Otherwise raise an error. */
8941
8942 static void
8943 remote_buffer_add_string (char **buffer, int *left, char *string)
8944 {
8945 int len = strlen (string);
8946
8947 if (len > *left)
8948 error (_("Packet too long for target."));
8949
8950 memcpy (*buffer, string, len);
8951 *buffer += len;
8952 *left -= len;
8953
8954 /* NUL-terminate the buffer as a convenience, if there is
8955 room. */
8956 if (*left)
8957 **buffer = '\0';
8958 }
8959
8960 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8961 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8962 decrease *LEFT. Otherwise raise an error. */
8963
8964 static void
8965 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8966 int len)
8967 {
8968 if (2 * len > *left)
8969 error (_("Packet too long for target."));
8970
8971 bin2hex (bytes, *buffer, len);
8972 *buffer += 2 * len;
8973 *left -= 2 * len;
8974
8975 /* NUL-terminate the buffer as a convenience, if there is
8976 room. */
8977 if (*left)
8978 **buffer = '\0';
8979 }
8980
8981 /* If *LEFT is large enough, convert VALUE to hex and add it to
8982 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8983 decrease *LEFT. Otherwise raise an error. */
8984
8985 static void
8986 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8987 {
8988 int len = hexnumlen (value);
8989
8990 if (len > *left)
8991 error (_("Packet too long for target."));
8992
8993 hexnumstr (*buffer, value);
8994 *buffer += len;
8995 *left -= len;
8996
8997 /* NUL-terminate the buffer as a convenience, if there is
8998 room. */
8999 if (*left)
9000 **buffer = '\0';
9001 }
9002
9003 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9004 value, *REMOTE_ERRNO to the remote error number or zero if none
9005 was included, and *ATTACHMENT to point to the start of the annex
9006 if any. The length of the packet isn't needed here; there may
9007 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9008
9009 Return 0 if the packet could be parsed, -1 if it could not. If
9010 -1 is returned, the other variables may not be initialized. */
9011
9012 static int
9013 remote_hostio_parse_result (char *buffer, int *retcode,
9014 int *remote_errno, char **attachment)
9015 {
9016 char *p, *p2;
9017
9018 *remote_errno = 0;
9019 *attachment = NULL;
9020
9021 if (buffer[0] != 'F')
9022 return -1;
9023
9024 errno = 0;
9025 *retcode = strtol (&buffer[1], &p, 16);
9026 if (errno != 0 || p == &buffer[1])
9027 return -1;
9028
9029 /* Check for ",errno". */
9030 if (*p == ',')
9031 {
9032 errno = 0;
9033 *remote_errno = strtol (p + 1, &p2, 16);
9034 if (errno != 0 || p + 1 == p2)
9035 return -1;
9036 p = p2;
9037 }
9038
9039 /* Check for ";attachment". If there is no attachment, the
9040 packet should end here. */
9041 if (*p == ';')
9042 {
9043 *attachment = p + 1;
9044 return 0;
9045 }
9046 else if (*p == '\0')
9047 return 0;
9048 else
9049 return -1;
9050 }
9051
9052 /* Send a prepared I/O packet to the target and read its response.
9053 The prepared packet is in the global RS->BUF before this function
9054 is called, and the answer is there when we return.
9055
9056 COMMAND_BYTES is the length of the request to send, which may include
9057 binary data. WHICH_PACKET is the packet configuration to check
9058 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9059 is set to the error number and -1 is returned. Otherwise the value
9060 returned by the function is returned.
9061
9062 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9063 attachment is expected; an error will be reported if there's a
9064 mismatch. If one is found, *ATTACHMENT will be set to point into
9065 the packet buffer and *ATTACHMENT_LEN will be set to the
9066 attachment's length. */
9067
9068 static int
9069 remote_hostio_send_command (int command_bytes, int which_packet,
9070 int *remote_errno, char **attachment,
9071 int *attachment_len)
9072 {
9073 struct remote_state *rs = get_remote_state ();
9074 int ret, bytes_read;
9075 char *attachment_tmp;
9076
9077 if (!remote_desc
9078 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9079 {
9080 *remote_errno = FILEIO_ENOSYS;
9081 return -1;
9082 }
9083
9084 putpkt_binary (rs->buf, command_bytes);
9085 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9086
9087 /* If it timed out, something is wrong. Don't try to parse the
9088 buffer. */
9089 if (bytes_read < 0)
9090 {
9091 *remote_errno = FILEIO_EINVAL;
9092 return -1;
9093 }
9094
9095 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9096 {
9097 case PACKET_ERROR:
9098 *remote_errno = FILEIO_EINVAL;
9099 return -1;
9100 case PACKET_UNKNOWN:
9101 *remote_errno = FILEIO_ENOSYS;
9102 return -1;
9103 case PACKET_OK:
9104 break;
9105 }
9106
9107 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9108 &attachment_tmp))
9109 {
9110 *remote_errno = FILEIO_EINVAL;
9111 return -1;
9112 }
9113
9114 /* Make sure we saw an attachment if and only if we expected one. */
9115 if ((attachment_tmp == NULL && attachment != NULL)
9116 || (attachment_tmp != NULL && attachment == NULL))
9117 {
9118 *remote_errno = FILEIO_EINVAL;
9119 return -1;
9120 }
9121
9122 /* If an attachment was found, it must point into the packet buffer;
9123 work out how many bytes there were. */
9124 if (attachment_tmp != NULL)
9125 {
9126 *attachment = attachment_tmp;
9127 *attachment_len = bytes_read - (*attachment - rs->buf);
9128 }
9129
9130 return ret;
9131 }
9132
9133 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9134 remote file descriptor, or -1 if an error occurs (and set
9135 *REMOTE_ERRNO). */
9136
9137 static int
9138 remote_hostio_open (const char *filename, int flags, int mode,
9139 int *remote_errno)
9140 {
9141 struct remote_state *rs = get_remote_state ();
9142 char *p = rs->buf;
9143 int left = get_remote_packet_size () - 1;
9144
9145 remote_buffer_add_string (&p, &left, "vFile:open:");
9146
9147 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9148 strlen (filename));
9149 remote_buffer_add_string (&p, &left, ",");
9150
9151 remote_buffer_add_int (&p, &left, flags);
9152 remote_buffer_add_string (&p, &left, ",");
9153
9154 remote_buffer_add_int (&p, &left, mode);
9155
9156 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9157 remote_errno, NULL, NULL);
9158 }
9159
9160 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9161 Return the number of bytes written, or -1 if an error occurs (and
9162 set *REMOTE_ERRNO). */
9163
9164 static int
9165 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9166 ULONGEST offset, int *remote_errno)
9167 {
9168 struct remote_state *rs = get_remote_state ();
9169 char *p = rs->buf;
9170 int left = get_remote_packet_size ();
9171 int out_len;
9172
9173 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9174
9175 remote_buffer_add_int (&p, &left, fd);
9176 remote_buffer_add_string (&p, &left, ",");
9177
9178 remote_buffer_add_int (&p, &left, offset);
9179 remote_buffer_add_string (&p, &left, ",");
9180
9181 p += remote_escape_output (write_buf, len, p, &out_len,
9182 get_remote_packet_size () - (p - rs->buf));
9183
9184 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9185 remote_errno, NULL, NULL);
9186 }
9187
9188 /* Read up to LEN bytes FD on the remote target into READ_BUF
9189 Return the number of bytes read, or -1 if an error occurs (and
9190 set *REMOTE_ERRNO). */
9191
9192 static int
9193 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9194 ULONGEST offset, int *remote_errno)
9195 {
9196 struct remote_state *rs = get_remote_state ();
9197 char *p = rs->buf;
9198 char *attachment;
9199 int left = get_remote_packet_size ();
9200 int ret, attachment_len;
9201 int read_len;
9202
9203 remote_buffer_add_string (&p, &left, "vFile:pread:");
9204
9205 remote_buffer_add_int (&p, &left, fd);
9206 remote_buffer_add_string (&p, &left, ",");
9207
9208 remote_buffer_add_int (&p, &left, len);
9209 remote_buffer_add_string (&p, &left, ",");
9210
9211 remote_buffer_add_int (&p, &left, offset);
9212
9213 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9214 remote_errno, &attachment,
9215 &attachment_len);
9216
9217 if (ret < 0)
9218 return ret;
9219
9220 read_len = remote_unescape_input (attachment, attachment_len,
9221 read_buf, len);
9222 if (read_len != ret)
9223 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9224
9225 return ret;
9226 }
9227
9228 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9229 (and set *REMOTE_ERRNO). */
9230
9231 static int
9232 remote_hostio_close (int fd, int *remote_errno)
9233 {
9234 struct remote_state *rs = get_remote_state ();
9235 char *p = rs->buf;
9236 int left = get_remote_packet_size () - 1;
9237
9238 remote_buffer_add_string (&p, &left, "vFile:close:");
9239
9240 remote_buffer_add_int (&p, &left, fd);
9241
9242 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9243 remote_errno, NULL, NULL);
9244 }
9245
9246 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9247 occurs (and set *REMOTE_ERRNO). */
9248
9249 static int
9250 remote_hostio_unlink (const char *filename, int *remote_errno)
9251 {
9252 struct remote_state *rs = get_remote_state ();
9253 char *p = rs->buf;
9254 int left = get_remote_packet_size () - 1;
9255
9256 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9257
9258 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9259 strlen (filename));
9260
9261 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9262 remote_errno, NULL, NULL);
9263 }
9264
9265 static int
9266 remote_fileio_errno_to_host (int errnum)
9267 {
9268 switch (errnum)
9269 {
9270 case FILEIO_EPERM:
9271 return EPERM;
9272 case FILEIO_ENOENT:
9273 return ENOENT;
9274 case FILEIO_EINTR:
9275 return EINTR;
9276 case FILEIO_EIO:
9277 return EIO;
9278 case FILEIO_EBADF:
9279 return EBADF;
9280 case FILEIO_EACCES:
9281 return EACCES;
9282 case FILEIO_EFAULT:
9283 return EFAULT;
9284 case FILEIO_EBUSY:
9285 return EBUSY;
9286 case FILEIO_EEXIST:
9287 return EEXIST;
9288 case FILEIO_ENODEV:
9289 return ENODEV;
9290 case FILEIO_ENOTDIR:
9291 return ENOTDIR;
9292 case FILEIO_EISDIR:
9293 return EISDIR;
9294 case FILEIO_EINVAL:
9295 return EINVAL;
9296 case FILEIO_ENFILE:
9297 return ENFILE;
9298 case FILEIO_EMFILE:
9299 return EMFILE;
9300 case FILEIO_EFBIG:
9301 return EFBIG;
9302 case FILEIO_ENOSPC:
9303 return ENOSPC;
9304 case FILEIO_ESPIPE:
9305 return ESPIPE;
9306 case FILEIO_EROFS:
9307 return EROFS;
9308 case FILEIO_ENOSYS:
9309 return ENOSYS;
9310 case FILEIO_ENAMETOOLONG:
9311 return ENAMETOOLONG;
9312 }
9313 return -1;
9314 }
9315
9316 static char *
9317 remote_hostio_error (int errnum)
9318 {
9319 int host_error = remote_fileio_errno_to_host (errnum);
9320
9321 if (host_error == -1)
9322 error (_("Unknown remote I/O error %d"), errnum);
9323 else
9324 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9325 }
9326
9327 static void
9328 remote_hostio_close_cleanup (void *opaque)
9329 {
9330 int fd = *(int *) opaque;
9331 int remote_errno;
9332
9333 remote_hostio_close (fd, &remote_errno);
9334 }
9335
9336
9337 static void *
9338 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9339 {
9340 const char *filename = bfd_get_filename (abfd);
9341 int fd, remote_errno;
9342 int *stream;
9343
9344 gdb_assert (remote_filename_p (filename));
9345
9346 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9347 if (fd == -1)
9348 {
9349 errno = remote_fileio_errno_to_host (remote_errno);
9350 bfd_set_error (bfd_error_system_call);
9351 return NULL;
9352 }
9353
9354 stream = xmalloc (sizeof (int));
9355 *stream = fd;
9356 return stream;
9357 }
9358
9359 static int
9360 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9361 {
9362 int fd = *(int *)stream;
9363 int remote_errno;
9364
9365 xfree (stream);
9366
9367 /* Ignore errors on close; these may happen if the remote
9368 connection was already torn down. */
9369 remote_hostio_close (fd, &remote_errno);
9370
9371 return 1;
9372 }
9373
9374 static file_ptr
9375 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9376 file_ptr nbytes, file_ptr offset)
9377 {
9378 int fd = *(int *)stream;
9379 int remote_errno;
9380 file_ptr pos, bytes;
9381
9382 pos = 0;
9383 while (nbytes > pos)
9384 {
9385 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9386 offset + pos, &remote_errno);
9387 if (bytes == 0)
9388 /* Success, but no bytes, means end-of-file. */
9389 break;
9390 if (bytes == -1)
9391 {
9392 errno = remote_fileio_errno_to_host (remote_errno);
9393 bfd_set_error (bfd_error_system_call);
9394 return -1;
9395 }
9396
9397 pos += bytes;
9398 }
9399
9400 return pos;
9401 }
9402
9403 static int
9404 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9405 {
9406 /* FIXME: We should probably implement remote_hostio_stat. */
9407 sb->st_size = INT_MAX;
9408 return 0;
9409 }
9410
9411 int
9412 remote_filename_p (const char *filename)
9413 {
9414 return strncmp (filename, "remote:", 7) == 0;
9415 }
9416
9417 bfd *
9418 remote_bfd_open (const char *remote_file, const char *target)
9419 {
9420 return bfd_openr_iovec (remote_file, target,
9421 remote_bfd_iovec_open, NULL,
9422 remote_bfd_iovec_pread,
9423 remote_bfd_iovec_close,
9424 remote_bfd_iovec_stat);
9425 }
9426
9427 void
9428 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9429 {
9430 struct cleanup *back_to, *close_cleanup;
9431 int retcode, fd, remote_errno, bytes, io_size;
9432 FILE *file;
9433 gdb_byte *buffer;
9434 int bytes_in_buffer;
9435 int saw_eof;
9436 ULONGEST offset;
9437
9438 if (!remote_desc)
9439 error (_("command can only be used with remote target"));
9440
9441 file = fopen (local_file, "rb");
9442 if (file == NULL)
9443 perror_with_name (local_file);
9444 back_to = make_cleanup_fclose (file);
9445
9446 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9447 | FILEIO_O_TRUNC),
9448 0700, &remote_errno);
9449 if (fd == -1)
9450 remote_hostio_error (remote_errno);
9451
9452 /* Send up to this many bytes at once. They won't all fit in the
9453 remote packet limit, so we'll transfer slightly fewer. */
9454 io_size = get_remote_packet_size ();
9455 buffer = xmalloc (io_size);
9456 make_cleanup (xfree, buffer);
9457
9458 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9459
9460 bytes_in_buffer = 0;
9461 saw_eof = 0;
9462 offset = 0;
9463 while (bytes_in_buffer || !saw_eof)
9464 {
9465 if (!saw_eof)
9466 {
9467 bytes = fread (buffer + bytes_in_buffer, 1,
9468 io_size - bytes_in_buffer,
9469 file);
9470 if (bytes == 0)
9471 {
9472 if (ferror (file))
9473 error (_("Error reading %s."), local_file);
9474 else
9475 {
9476 /* EOF. Unless there is something still in the
9477 buffer from the last iteration, we are done. */
9478 saw_eof = 1;
9479 if (bytes_in_buffer == 0)
9480 break;
9481 }
9482 }
9483 }
9484 else
9485 bytes = 0;
9486
9487 bytes += bytes_in_buffer;
9488 bytes_in_buffer = 0;
9489
9490 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9491 offset, &remote_errno);
9492
9493 if (retcode < 0)
9494 remote_hostio_error (remote_errno);
9495 else if (retcode == 0)
9496 error (_("Remote write of %d bytes returned 0!"), bytes);
9497 else if (retcode < bytes)
9498 {
9499 /* Short write. Save the rest of the read data for the next
9500 write. */
9501 bytes_in_buffer = bytes - retcode;
9502 memmove (buffer, buffer + retcode, bytes_in_buffer);
9503 }
9504
9505 offset += retcode;
9506 }
9507
9508 discard_cleanups (close_cleanup);
9509 if (remote_hostio_close (fd, &remote_errno))
9510 remote_hostio_error (remote_errno);
9511
9512 if (from_tty)
9513 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9514 do_cleanups (back_to);
9515 }
9516
9517 void
9518 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9519 {
9520 struct cleanup *back_to, *close_cleanup;
9521 int fd, remote_errno, bytes, io_size;
9522 FILE *file;
9523 gdb_byte *buffer;
9524 ULONGEST offset;
9525
9526 if (!remote_desc)
9527 error (_("command can only be used with remote target"));
9528
9529 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9530 if (fd == -1)
9531 remote_hostio_error (remote_errno);
9532
9533 file = fopen (local_file, "wb");
9534 if (file == NULL)
9535 perror_with_name (local_file);
9536 back_to = make_cleanup_fclose (file);
9537
9538 /* Send up to this many bytes at once. They won't all fit in the
9539 remote packet limit, so we'll transfer slightly fewer. */
9540 io_size = get_remote_packet_size ();
9541 buffer = xmalloc (io_size);
9542 make_cleanup (xfree, buffer);
9543
9544 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9545
9546 offset = 0;
9547 while (1)
9548 {
9549 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9550 if (bytes == 0)
9551 /* Success, but no bytes, means end-of-file. */
9552 break;
9553 if (bytes == -1)
9554 remote_hostio_error (remote_errno);
9555
9556 offset += bytes;
9557
9558 bytes = fwrite (buffer, 1, bytes, file);
9559 if (bytes == 0)
9560 perror_with_name (local_file);
9561 }
9562
9563 discard_cleanups (close_cleanup);
9564 if (remote_hostio_close (fd, &remote_errno))
9565 remote_hostio_error (remote_errno);
9566
9567 if (from_tty)
9568 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9569 do_cleanups (back_to);
9570 }
9571
9572 void
9573 remote_file_delete (const char *remote_file, int from_tty)
9574 {
9575 int retcode, remote_errno;
9576
9577 if (!remote_desc)
9578 error (_("command can only be used with remote target"));
9579
9580 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9581 if (retcode == -1)
9582 remote_hostio_error (remote_errno);
9583
9584 if (from_tty)
9585 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9586 }
9587
9588 static void
9589 remote_put_command (char *args, int from_tty)
9590 {
9591 struct cleanup *back_to;
9592 char **argv;
9593
9594 if (args == NULL)
9595 error_no_arg (_("file to put"));
9596
9597 argv = gdb_buildargv (args);
9598 back_to = make_cleanup_freeargv (argv);
9599 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9600 error (_("Invalid parameters to remote put"));
9601
9602 remote_file_put (argv[0], argv[1], from_tty);
9603
9604 do_cleanups (back_to);
9605 }
9606
9607 static void
9608 remote_get_command (char *args, int from_tty)
9609 {
9610 struct cleanup *back_to;
9611 char **argv;
9612
9613 if (args == NULL)
9614 error_no_arg (_("file to get"));
9615
9616 argv = gdb_buildargv (args);
9617 back_to = make_cleanup_freeargv (argv);
9618 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9619 error (_("Invalid parameters to remote get"));
9620
9621 remote_file_get (argv[0], argv[1], from_tty);
9622
9623 do_cleanups (back_to);
9624 }
9625
9626 static void
9627 remote_delete_command (char *args, int from_tty)
9628 {
9629 struct cleanup *back_to;
9630 char **argv;
9631
9632 if (args == NULL)
9633 error_no_arg (_("file to delete"));
9634
9635 argv = gdb_buildargv (args);
9636 back_to = make_cleanup_freeargv (argv);
9637 if (argv[0] == NULL || argv[1] != NULL)
9638 error (_("Invalid parameters to remote delete"));
9639
9640 remote_file_delete (argv[0], from_tty);
9641
9642 do_cleanups (back_to);
9643 }
9644
9645 static void
9646 remote_command (char *args, int from_tty)
9647 {
9648 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9649 }
9650
9651 static int
9652 remote_can_execute_reverse (void)
9653 {
9654 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9655 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9656 return 1;
9657 else
9658 return 0;
9659 }
9660
9661 static int
9662 remote_supports_non_stop (void)
9663 {
9664 return 1;
9665 }
9666
9667 static int
9668 remote_supports_multi_process (void)
9669 {
9670 struct remote_state *rs = get_remote_state ();
9671
9672 return remote_multi_process_p (rs);
9673 }
9674
9675 int
9676 remote_supports_cond_tracepoints (void)
9677 {
9678 struct remote_state *rs = get_remote_state ();
9679
9680 return rs->cond_tracepoints;
9681 }
9682
9683 int
9684 remote_supports_fast_tracepoints (void)
9685 {
9686 struct remote_state *rs = get_remote_state ();
9687
9688 return rs->fast_tracepoints;
9689 }
9690
9691 static int
9692 remote_supports_static_tracepoints (void)
9693 {
9694 struct remote_state *rs = get_remote_state ();
9695
9696 return rs->static_tracepoints;
9697 }
9698
9699 static int
9700 remote_supports_enable_disable_tracepoint (void)
9701 {
9702 struct remote_state *rs = get_remote_state ();
9703
9704 return rs->enable_disable_tracepoints;
9705 }
9706
9707 static void
9708 remote_trace_init (void)
9709 {
9710 putpkt ("QTinit");
9711 remote_get_noisy_reply (&target_buf, &target_buf_size);
9712 if (strcmp (target_buf, "OK") != 0)
9713 error (_("Target does not support this command."));
9714 }
9715
9716 static void free_actions_list (char **actions_list);
9717 static void free_actions_list_cleanup_wrapper (void *);
9718 static void
9719 free_actions_list_cleanup_wrapper (void *al)
9720 {
9721 free_actions_list (al);
9722 }
9723
9724 static void
9725 free_actions_list (char **actions_list)
9726 {
9727 int ndx;
9728
9729 if (actions_list == 0)
9730 return;
9731
9732 for (ndx = 0; actions_list[ndx]; ndx++)
9733 xfree (actions_list[ndx]);
9734
9735 xfree (actions_list);
9736 }
9737
9738 /* Recursive routine to walk through command list including loops, and
9739 download packets for each command. */
9740
9741 static void
9742 remote_download_command_source (int num, ULONGEST addr,
9743 struct command_line *cmds)
9744 {
9745 struct remote_state *rs = get_remote_state ();
9746 struct command_line *cmd;
9747
9748 for (cmd = cmds; cmd; cmd = cmd->next)
9749 {
9750 QUIT; /* Allow user to bail out with ^C. */
9751 strcpy (rs->buf, "QTDPsrc:");
9752 encode_source_string (num, addr, "cmd", cmd->line,
9753 rs->buf + strlen (rs->buf),
9754 rs->buf_size - strlen (rs->buf));
9755 putpkt (rs->buf);
9756 remote_get_noisy_reply (&target_buf, &target_buf_size);
9757 if (strcmp (target_buf, "OK"))
9758 warning (_("Target does not support source download."));
9759
9760 if (cmd->control_type == while_control
9761 || cmd->control_type == while_stepping_control)
9762 {
9763 remote_download_command_source (num, addr, *cmd->body_list);
9764
9765 QUIT; /* Allow user to bail out with ^C. */
9766 strcpy (rs->buf, "QTDPsrc:");
9767 encode_source_string (num, addr, "cmd", "end",
9768 rs->buf + strlen (rs->buf),
9769 rs->buf_size - strlen (rs->buf));
9770 putpkt (rs->buf);
9771 remote_get_noisy_reply (&target_buf, &target_buf_size);
9772 if (strcmp (target_buf, "OK"))
9773 warning (_("Target does not support source download."));
9774 }
9775 }
9776 }
9777
9778 static void
9779 remote_download_tracepoint (struct breakpoint *b)
9780 {
9781 struct bp_location *loc;
9782 CORE_ADDR tpaddr;
9783 char addrbuf[40];
9784 char buf[2048];
9785 char **tdp_actions;
9786 char **stepping_actions;
9787 int ndx;
9788 struct cleanup *old_chain = NULL;
9789 struct agent_expr *aexpr;
9790 struct cleanup *aexpr_chain = NULL;
9791 char *pkt;
9792 struct tracepoint *t = (struct tracepoint *) b;
9793
9794 /* Iterate over all the tracepoint locations. It's up to the target to
9795 notice multiple tracepoint packets with the same number but different
9796 addresses, and treat them as multiple locations. */
9797 for (loc = b->loc; loc; loc = loc->next)
9798 {
9799 encode_actions (b, loc, &tdp_actions, &stepping_actions);
9800 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9801 tdp_actions);
9802 (void) make_cleanup (free_actions_list_cleanup_wrapper,
9803 stepping_actions);
9804
9805 tpaddr = loc->address;
9806 sprintf_vma (addrbuf, tpaddr);
9807 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", b->number,
9808 addrbuf, /* address */
9809 (b->enable_state == bp_enabled ? 'E' : 'D'),
9810 t->step_count, t->pass_count);
9811 /* Fast tracepoints are mostly handled by the target, but we can
9812 tell the target how big of an instruction block should be moved
9813 around. */
9814 if (b->type == bp_fast_tracepoint)
9815 {
9816 /* Only test for support at download time; we may not know
9817 target capabilities at definition time. */
9818 if (remote_supports_fast_tracepoints ())
9819 {
9820 int isize;
9821
9822 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9823 tpaddr, &isize, NULL))
9824 sprintf (buf + strlen (buf), ":F%x", isize);
9825 else
9826 /* If it passed validation at definition but fails now,
9827 something is very wrong. */
9828 internal_error (__FILE__, __LINE__,
9829 _("Fast tracepoint not "
9830 "valid during download"));
9831 }
9832 else
9833 /* Fast tracepoints are functionally identical to regular
9834 tracepoints, so don't take lack of support as a reason to
9835 give up on the trace run. */
9836 warning (_("Target does not support fast tracepoints, "
9837 "downloading %d as regular tracepoint"), b->number);
9838 }
9839 else if (b->type == bp_static_tracepoint)
9840 {
9841 /* Only test for support at download time; we may not know
9842 target capabilities at definition time. */
9843 if (remote_supports_static_tracepoints ())
9844 {
9845 struct static_tracepoint_marker marker;
9846
9847 if (target_static_tracepoint_marker_at (tpaddr, &marker))
9848 strcat (buf, ":S");
9849 else
9850 error (_("Static tracepoint not valid during download"));
9851 }
9852 else
9853 /* Fast tracepoints are functionally identical to regular
9854 tracepoints, so don't take lack of support as a reason
9855 to give up on the trace run. */
9856 error (_("Target does not support static tracepoints"));
9857 }
9858 /* If the tracepoint has a conditional, make it into an agent
9859 expression and append to the definition. */
9860 if (loc->cond)
9861 {
9862 /* Only test support at download time, we may not know target
9863 capabilities at definition time. */
9864 if (remote_supports_cond_tracepoints ())
9865 {
9866 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9867 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9868 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9869 pkt = buf + strlen (buf);
9870 for (ndx = 0; ndx < aexpr->len; ++ndx)
9871 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9872 *pkt = '\0';
9873 do_cleanups (aexpr_chain);
9874 }
9875 else
9876 warning (_("Target does not support conditional tracepoints, "
9877 "ignoring tp %d cond"), b->number);
9878 }
9879
9880 if (b->commands || *default_collect)
9881 strcat (buf, "-");
9882 putpkt (buf);
9883 remote_get_noisy_reply (&target_buf, &target_buf_size);
9884 if (strcmp (target_buf, "OK"))
9885 error (_("Target does not support tracepoints."));
9886
9887 /* do_single_steps (t); */
9888 if (tdp_actions)
9889 {
9890 for (ndx = 0; tdp_actions[ndx]; ndx++)
9891 {
9892 QUIT; /* Allow user to bail out with ^C. */
9893 sprintf (buf, "QTDP:-%x:%s:%s%c",
9894 b->number, addrbuf, /* address */
9895 tdp_actions[ndx],
9896 ((tdp_actions[ndx + 1] || stepping_actions)
9897 ? '-' : 0));
9898 putpkt (buf);
9899 remote_get_noisy_reply (&target_buf,
9900 &target_buf_size);
9901 if (strcmp (target_buf, "OK"))
9902 error (_("Error on target while setting tracepoints."));
9903 }
9904 }
9905 if (stepping_actions)
9906 {
9907 for (ndx = 0; stepping_actions[ndx]; ndx++)
9908 {
9909 QUIT; /* Allow user to bail out with ^C. */
9910 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9911 b->number, addrbuf, /* address */
9912 ((ndx == 0) ? "S" : ""),
9913 stepping_actions[ndx],
9914 (stepping_actions[ndx + 1] ? "-" : ""));
9915 putpkt (buf);
9916 remote_get_noisy_reply (&target_buf,
9917 &target_buf_size);
9918 if (strcmp (target_buf, "OK"))
9919 error (_("Error on target while setting tracepoints."));
9920 }
9921 }
9922
9923 if (remote_protocol_packets[PACKET_TracepointSource].support
9924 == PACKET_ENABLE)
9925 {
9926 if (b->addr_string)
9927 {
9928 strcpy (buf, "QTDPsrc:");
9929 encode_source_string (b->number, loc->address,
9930 "at", b->addr_string, buf + strlen (buf),
9931 2048 - strlen (buf));
9932
9933 putpkt (buf);
9934 remote_get_noisy_reply (&target_buf, &target_buf_size);
9935 if (strcmp (target_buf, "OK"))
9936 warning (_("Target does not support source download."));
9937 }
9938 if (b->cond_string)
9939 {
9940 strcpy (buf, "QTDPsrc:");
9941 encode_source_string (b->number, loc->address,
9942 "cond", b->cond_string, buf + strlen (buf),
9943 2048 - strlen (buf));
9944 putpkt (buf);
9945 remote_get_noisy_reply (&target_buf, &target_buf_size);
9946 if (strcmp (target_buf, "OK"))
9947 warning (_("Target does not support source download."));
9948 }
9949 remote_download_command_source (b->number, loc->address,
9950 breakpoint_commands (b));
9951 }
9952
9953 do_cleanups (old_chain);
9954 }
9955 }
9956
9957 static void
9958 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9959 {
9960 struct remote_state *rs = get_remote_state ();
9961 char *p;
9962
9963 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9964 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9965 p = rs->buf + strlen (rs->buf);
9966 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9967 error (_("Trace state variable name too long for tsv definition packet"));
9968 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9969 *p++ = '\0';
9970 putpkt (rs->buf);
9971 remote_get_noisy_reply (&target_buf, &target_buf_size);
9972 if (*target_buf == '\0')
9973 error (_("Target does not support this command."));
9974 if (strcmp (target_buf, "OK") != 0)
9975 error (_("Error on target while downloading trace state variable."));
9976 }
9977
9978 static void
9979 remote_enable_tracepoint (struct bp_location *location)
9980 {
9981 struct remote_state *rs = get_remote_state ();
9982 char addr_buf[40];
9983
9984 sprintf_vma (addr_buf, location->address);
9985 sprintf (rs->buf, "QTEnable:%x:%s", location->owner->number, addr_buf);
9986 putpkt (rs->buf);
9987 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
9988 if (*rs->buf == '\0')
9989 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
9990 if (strcmp (rs->buf, "OK") != 0)
9991 error (_("Error on target while enabling tracepoint."));
9992 }
9993
9994 static void
9995 remote_disable_tracepoint (struct bp_location *location)
9996 {
9997 struct remote_state *rs = get_remote_state ();
9998 char addr_buf[40];
9999
10000 sprintf_vma (addr_buf, location->address);
10001 sprintf (rs->buf, "QTDisable:%x:%s", location->owner->number, addr_buf);
10002 putpkt (rs->buf);
10003 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10004 if (*rs->buf == '\0')
10005 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10006 if (strcmp (rs->buf, "OK") != 0)
10007 error (_("Error on target while disabling tracepoint."));
10008 }
10009
10010 static void
10011 remote_trace_set_readonly_regions (void)
10012 {
10013 asection *s;
10014 bfd_size_type size;
10015 bfd_vma vma;
10016 int anysecs = 0;
10017 int offset = 0;
10018
10019 if (!exec_bfd)
10020 return; /* No information to give. */
10021
10022 strcpy (target_buf, "QTro");
10023 for (s = exec_bfd->sections; s; s = s->next)
10024 {
10025 char tmp1[40], tmp2[40];
10026 int sec_length;
10027
10028 if ((s->flags & SEC_LOAD) == 0 ||
10029 /* (s->flags & SEC_CODE) == 0 || */
10030 (s->flags & SEC_READONLY) == 0)
10031 continue;
10032
10033 anysecs = 1;
10034 vma = bfd_get_section_vma (,s);
10035 size = bfd_get_section_size (s);
10036 sprintf_vma (tmp1, vma);
10037 sprintf_vma (tmp2, vma + size);
10038 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10039 if (offset + sec_length + 1 > target_buf_size)
10040 {
10041 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10042 != PACKET_ENABLE)
10043 warning (_("\
10044 Too many sections for read-only sections definition packet."));
10045 break;
10046 }
10047 sprintf (target_buf + offset, ":%s,%s", tmp1, tmp2);
10048 offset += sec_length;
10049 }
10050 if (anysecs)
10051 {
10052 putpkt (target_buf);
10053 getpkt (&target_buf, &target_buf_size, 0);
10054 }
10055 }
10056
10057 static void
10058 remote_trace_start (void)
10059 {
10060 putpkt ("QTStart");
10061 remote_get_noisy_reply (&target_buf, &target_buf_size);
10062 if (*target_buf == '\0')
10063 error (_("Target does not support this command."));
10064 if (strcmp (target_buf, "OK") != 0)
10065 error (_("Bogus reply from target: %s"), target_buf);
10066 }
10067
10068 static int
10069 remote_get_trace_status (struct trace_status *ts)
10070 {
10071 /* Initialize it just to avoid a GCC false warning. */
10072 char *p = NULL;
10073 /* FIXME we need to get register block size some other way. */
10074 extern int trace_regblock_size;
10075 volatile struct gdb_exception ex;
10076
10077 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10078
10079 putpkt ("qTStatus");
10080
10081 TRY_CATCH (ex, RETURN_MASK_ERROR)
10082 {
10083 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10084 }
10085 if (ex.reason < 0)
10086 {
10087 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10088 return -1;
10089 }
10090
10091 /* If the remote target doesn't do tracing, flag it. */
10092 if (*p == '\0')
10093 return -1;
10094
10095 /* We're working with a live target. */
10096 ts->from_file = 0;
10097
10098 /* Set some defaults. */
10099 ts->running_known = 0;
10100 ts->stop_reason = trace_stop_reason_unknown;
10101 ts->traceframe_count = -1;
10102 ts->buffer_free = 0;
10103
10104 if (*p++ != 'T')
10105 error (_("Bogus trace status reply from target: %s"), target_buf);
10106
10107 parse_trace_status (p, ts);
10108
10109 return ts->running;
10110 }
10111
10112 static void
10113 remote_trace_stop (void)
10114 {
10115 putpkt ("QTStop");
10116 remote_get_noisy_reply (&target_buf, &target_buf_size);
10117 if (*target_buf == '\0')
10118 error (_("Target does not support this command."));
10119 if (strcmp (target_buf, "OK") != 0)
10120 error (_("Bogus reply from target: %s"), target_buf);
10121 }
10122
10123 static int
10124 remote_trace_find (enum trace_find_type type, int num,
10125 ULONGEST addr1, ULONGEST addr2,
10126 int *tpp)
10127 {
10128 struct remote_state *rs = get_remote_state ();
10129 char *p, *reply;
10130 int target_frameno = -1, target_tracept = -1;
10131
10132 /* Lookups other than by absolute frame number depend on the current
10133 trace selected, so make sure it is correct on the remote end
10134 first. */
10135 if (type != tfind_number)
10136 set_remote_traceframe ();
10137
10138 p = rs->buf;
10139 strcpy (p, "QTFrame:");
10140 p = strchr (p, '\0');
10141 switch (type)
10142 {
10143 case tfind_number:
10144 sprintf (p, "%x", num);
10145 break;
10146 case tfind_pc:
10147 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10148 break;
10149 case tfind_tp:
10150 sprintf (p, "tdp:%x", num);
10151 break;
10152 case tfind_range:
10153 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10154 break;
10155 case tfind_outside:
10156 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10157 break;
10158 default:
10159 error (_("Unknown trace find type %d"), type);
10160 }
10161
10162 putpkt (rs->buf);
10163 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10164 if (*reply == '\0')
10165 error (_("Target does not support this command."));
10166
10167 while (reply && *reply)
10168 switch (*reply)
10169 {
10170 case 'F':
10171 p = ++reply;
10172 target_frameno = (int) strtol (p, &reply, 16);
10173 if (reply == p)
10174 error (_("Unable to parse trace frame number"));
10175 /* Don't update our remote traceframe number cache on failure
10176 to select a remote traceframe. */
10177 if (target_frameno == -1)
10178 return -1;
10179 break;
10180 case 'T':
10181 p = ++reply;
10182 target_tracept = (int) strtol (p, &reply, 16);
10183 if (reply == p)
10184 error (_("Unable to parse tracepoint number"));
10185 break;
10186 case 'O': /* "OK"? */
10187 if (reply[1] == 'K' && reply[2] == '\0')
10188 reply += 2;
10189 else
10190 error (_("Bogus reply from target: %s"), reply);
10191 break;
10192 default:
10193 error (_("Bogus reply from target: %s"), reply);
10194 }
10195 if (tpp)
10196 *tpp = target_tracept;
10197
10198 remote_traceframe_number = target_frameno;
10199 return target_frameno;
10200 }
10201
10202 static int
10203 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10204 {
10205 struct remote_state *rs = get_remote_state ();
10206 char *reply;
10207 ULONGEST uval;
10208
10209 set_remote_traceframe ();
10210
10211 sprintf (rs->buf, "qTV:%x", tsvnum);
10212 putpkt (rs->buf);
10213 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10214 if (reply && *reply)
10215 {
10216 if (*reply == 'V')
10217 {
10218 unpack_varlen_hex (reply + 1, &uval);
10219 *val = (LONGEST) uval;
10220 return 1;
10221 }
10222 }
10223 return 0;
10224 }
10225
10226 static int
10227 remote_save_trace_data (const char *filename)
10228 {
10229 struct remote_state *rs = get_remote_state ();
10230 char *p, *reply;
10231
10232 p = rs->buf;
10233 strcpy (p, "QTSave:");
10234 p += strlen (p);
10235 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10236 error (_("Remote file name too long for trace save packet"));
10237 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10238 *p++ = '\0';
10239 putpkt (rs->buf);
10240 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10241 if (*reply != '\0')
10242 error (_("Target does not support this command."));
10243 if (strcmp (reply, "OK") != 0)
10244 error (_("Bogus reply from target: %s"), reply);
10245 return 0;
10246 }
10247
10248 /* This is basically a memory transfer, but needs to be its own packet
10249 because we don't know how the target actually organizes its trace
10250 memory, plus we want to be able to ask for as much as possible, but
10251 not be unhappy if we don't get as much as we ask for. */
10252
10253 static LONGEST
10254 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10255 {
10256 struct remote_state *rs = get_remote_state ();
10257 char *reply;
10258 char *p;
10259 int rslt;
10260
10261 p = rs->buf;
10262 strcpy (p, "qTBuffer:");
10263 p += strlen (p);
10264 p += hexnumstr (p, offset);
10265 *p++ = ',';
10266 p += hexnumstr (p, len);
10267 *p++ = '\0';
10268
10269 putpkt (rs->buf);
10270 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10271 if (reply && *reply)
10272 {
10273 /* 'l' by itself means we're at the end of the buffer and
10274 there is nothing more to get. */
10275 if (*reply == 'l')
10276 return 0;
10277
10278 /* Convert the reply into binary. Limit the number of bytes to
10279 convert according to our passed-in buffer size, rather than
10280 what was returned in the packet; if the target is
10281 unexpectedly generous and gives us a bigger reply than we
10282 asked for, we don't want to crash. */
10283 rslt = hex2bin (target_buf, buf, len);
10284 return rslt;
10285 }
10286
10287 /* Something went wrong, flag as an error. */
10288 return -1;
10289 }
10290
10291 static void
10292 remote_set_disconnected_tracing (int val)
10293 {
10294 struct remote_state *rs = get_remote_state ();
10295
10296 if (rs->disconnected_tracing)
10297 {
10298 char *reply;
10299
10300 sprintf (rs->buf, "QTDisconnected:%x", val);
10301 putpkt (rs->buf);
10302 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10303 if (*reply == '\0')
10304 error (_("Target does not support this command."));
10305 if (strcmp (reply, "OK") != 0)
10306 error (_("Bogus reply from target: %s"), reply);
10307 }
10308 else if (val)
10309 warning (_("Target does not support disconnected tracing."));
10310 }
10311
10312 static int
10313 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10314 {
10315 struct thread_info *info = find_thread_ptid (ptid);
10316
10317 if (info && info->private)
10318 return info->private->core;
10319 return -1;
10320 }
10321
10322 static void
10323 remote_set_circular_trace_buffer (int val)
10324 {
10325 struct remote_state *rs = get_remote_state ();
10326 char *reply;
10327
10328 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10329 putpkt (rs->buf);
10330 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10331 if (*reply == '\0')
10332 error (_("Target does not support this command."));
10333 if (strcmp (reply, "OK") != 0)
10334 error (_("Bogus reply from target: %s"), reply);
10335 }
10336
10337 static struct traceframe_info *
10338 remote_traceframe_info (void)
10339 {
10340 char *text;
10341
10342 text = target_read_stralloc (&current_target,
10343 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10344 if (text != NULL)
10345 {
10346 struct traceframe_info *info;
10347 struct cleanup *back_to = make_cleanup (xfree, text);
10348
10349 info = parse_traceframe_info (text);
10350 do_cleanups (back_to);
10351 return info;
10352 }
10353
10354 return NULL;
10355 }
10356
10357 static void
10358 init_remote_ops (void)
10359 {
10360 remote_ops.to_shortname = "remote";
10361 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10362 remote_ops.to_doc =
10363 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10364 Specify the serial device it is connected to\n\
10365 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10366 remote_ops.to_open = remote_open;
10367 remote_ops.to_close = remote_close;
10368 remote_ops.to_detach = remote_detach;
10369 remote_ops.to_disconnect = remote_disconnect;
10370 remote_ops.to_resume = remote_resume;
10371 remote_ops.to_wait = remote_wait;
10372 remote_ops.to_fetch_registers = remote_fetch_registers;
10373 remote_ops.to_store_registers = remote_store_registers;
10374 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10375 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10376 remote_ops.to_files_info = remote_files_info;
10377 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10378 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10379 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10380 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10381 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10382 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10383 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10384 remote_ops.to_region_ok_for_hw_watchpoint
10385 = remote_region_ok_for_hw_watchpoint;
10386 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10387 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10388 remote_ops.to_kill = remote_kill;
10389 remote_ops.to_load = generic_load;
10390 remote_ops.to_mourn_inferior = remote_mourn;
10391 remote_ops.to_pass_signals = remote_pass_signals;
10392 remote_ops.to_thread_alive = remote_thread_alive;
10393 remote_ops.to_find_new_threads = remote_threads_info;
10394 remote_ops.to_pid_to_str = remote_pid_to_str;
10395 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10396 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10397 remote_ops.to_stop = remote_stop;
10398 remote_ops.to_xfer_partial = remote_xfer_partial;
10399 remote_ops.to_rcmd = remote_rcmd;
10400 remote_ops.to_log_command = serial_log_command;
10401 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10402 remote_ops.to_stratum = process_stratum;
10403 remote_ops.to_has_all_memory = default_child_has_all_memory;
10404 remote_ops.to_has_memory = default_child_has_memory;
10405 remote_ops.to_has_stack = default_child_has_stack;
10406 remote_ops.to_has_registers = default_child_has_registers;
10407 remote_ops.to_has_execution = default_child_has_execution;
10408 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10409 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10410 remote_ops.to_magic = OPS_MAGIC;
10411 remote_ops.to_memory_map = remote_memory_map;
10412 remote_ops.to_flash_erase = remote_flash_erase;
10413 remote_ops.to_flash_done = remote_flash_done;
10414 remote_ops.to_read_description = remote_read_description;
10415 remote_ops.to_search_memory = remote_search_memory;
10416 remote_ops.to_can_async_p = remote_can_async_p;
10417 remote_ops.to_is_async_p = remote_is_async_p;
10418 remote_ops.to_async = remote_async;
10419 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10420 remote_ops.to_terminal_ours = remote_terminal_ours;
10421 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10422 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10423 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
10424 remote_ops.to_trace_init = remote_trace_init;
10425 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10426 remote_ops.to_download_trace_state_variable
10427 = remote_download_trace_state_variable;
10428 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
10429 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
10430 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10431 remote_ops.to_trace_start = remote_trace_start;
10432 remote_ops.to_get_trace_status = remote_get_trace_status;
10433 remote_ops.to_trace_stop = remote_trace_stop;
10434 remote_ops.to_trace_find = remote_trace_find;
10435 remote_ops.to_get_trace_state_variable_value
10436 = remote_get_trace_state_variable_value;
10437 remote_ops.to_save_trace_data = remote_save_trace_data;
10438 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10439 remote_ops.to_upload_trace_state_variables
10440 = remote_upload_trace_state_variables;
10441 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10442 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10443 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10444 remote_ops.to_core_of_thread = remote_core_of_thread;
10445 remote_ops.to_verify_memory = remote_verify_memory;
10446 remote_ops.to_get_tib_address = remote_get_tib_address;
10447 remote_ops.to_set_permissions = remote_set_permissions;
10448 remote_ops.to_static_tracepoint_marker_at
10449 = remote_static_tracepoint_marker_at;
10450 remote_ops.to_static_tracepoint_markers_by_strid
10451 = remote_static_tracepoint_markers_by_strid;
10452 remote_ops.to_traceframe_info = remote_traceframe_info;
10453 }
10454
10455 /* Set up the extended remote vector by making a copy of the standard
10456 remote vector and adding to it. */
10457
10458 static void
10459 init_extended_remote_ops (void)
10460 {
10461 extended_remote_ops = remote_ops;
10462
10463 extended_remote_ops.to_shortname = "extended-remote";
10464 extended_remote_ops.to_longname =
10465 "Extended remote serial target in gdb-specific protocol";
10466 extended_remote_ops.to_doc =
10467 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10468 Specify the serial device it is connected to (e.g. /dev/ttya).";
10469 extended_remote_ops.to_open = extended_remote_open;
10470 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10471 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10472 extended_remote_ops.to_detach = extended_remote_detach;
10473 extended_remote_ops.to_attach = extended_remote_attach;
10474 extended_remote_ops.to_kill = extended_remote_kill;
10475 }
10476
10477 static int
10478 remote_can_async_p (void)
10479 {
10480 if (!target_async_permitted)
10481 /* We only enable async when the user specifically asks for it. */
10482 return 0;
10483
10484 /* We're async whenever the serial device is. */
10485 return serial_can_async_p (remote_desc);
10486 }
10487
10488 static int
10489 remote_is_async_p (void)
10490 {
10491 if (!target_async_permitted)
10492 /* We only enable async when the user specifically asks for it. */
10493 return 0;
10494
10495 /* We're async whenever the serial device is. */
10496 return serial_is_async_p (remote_desc);
10497 }
10498
10499 /* Pass the SERIAL event on and up to the client. One day this code
10500 will be able to delay notifying the client of an event until the
10501 point where an entire packet has been received. */
10502
10503 static void (*async_client_callback) (enum inferior_event_type event_type,
10504 void *context);
10505 static void *async_client_context;
10506 static serial_event_ftype remote_async_serial_handler;
10507
10508 static void
10509 remote_async_serial_handler (struct serial *scb, void *context)
10510 {
10511 /* Don't propogate error information up to the client. Instead let
10512 the client find out about the error by querying the target. */
10513 async_client_callback (INF_REG_EVENT, async_client_context);
10514 }
10515
10516 static void
10517 remote_async_inferior_event_handler (gdb_client_data data)
10518 {
10519 inferior_event_handler (INF_REG_EVENT, NULL);
10520 }
10521
10522 static void
10523 remote_async_get_pending_events_handler (gdb_client_data data)
10524 {
10525 remote_get_pending_stop_replies ();
10526 }
10527
10528 static void
10529 remote_async (void (*callback) (enum inferior_event_type event_type,
10530 void *context), void *context)
10531 {
10532 if (callback != NULL)
10533 {
10534 serial_async (remote_desc, remote_async_serial_handler, NULL);
10535 async_client_callback = callback;
10536 async_client_context = context;
10537 }
10538 else
10539 serial_async (remote_desc, NULL, NULL);
10540 }
10541
10542 static void
10543 set_remote_cmd (char *args, int from_tty)
10544 {
10545 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10546 }
10547
10548 static void
10549 show_remote_cmd (char *args, int from_tty)
10550 {
10551 /* We can't just use cmd_show_list here, because we want to skip
10552 the redundant "show remote Z-packet" and the legacy aliases. */
10553 struct cleanup *showlist_chain;
10554 struct cmd_list_element *list = remote_show_cmdlist;
10555 struct ui_out *uiout = current_uiout;
10556
10557 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10558 for (; list != NULL; list = list->next)
10559 if (strcmp (list->name, "Z-packet") == 0)
10560 continue;
10561 else if (list->type == not_set_cmd)
10562 /* Alias commands are exactly like the original, except they
10563 don't have the normal type. */
10564 continue;
10565 else
10566 {
10567 struct cleanup *option_chain
10568 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10569
10570 ui_out_field_string (uiout, "name", list->name);
10571 ui_out_text (uiout, ": ");
10572 if (list->type == show_cmd)
10573 do_setshow_command ((char *) NULL, from_tty, list);
10574 else
10575 cmd_func (list, NULL, from_tty);
10576 /* Close the tuple. */
10577 do_cleanups (option_chain);
10578 }
10579
10580 /* Close the tuple. */
10581 do_cleanups (showlist_chain);
10582 }
10583
10584
10585 /* Function to be called whenever a new objfile (shlib) is detected. */
10586 static void
10587 remote_new_objfile (struct objfile *objfile)
10588 {
10589 if (remote_desc != 0) /* Have a remote connection. */
10590 remote_check_symbols (objfile);
10591 }
10592
10593 /* Pull all the tracepoints defined on the target and create local
10594 data structures representing them. We don't want to create real
10595 tracepoints yet, we don't want to mess up the user's existing
10596 collection. */
10597
10598 static int
10599 remote_upload_tracepoints (struct uploaded_tp **utpp)
10600 {
10601 struct remote_state *rs = get_remote_state ();
10602 char *p;
10603
10604 /* Ask for a first packet of tracepoint definition. */
10605 putpkt ("qTfP");
10606 getpkt (&rs->buf, &rs->buf_size, 0);
10607 p = rs->buf;
10608 while (*p && *p != 'l')
10609 {
10610 parse_tracepoint_definition (p, utpp);
10611 /* Ask for another packet of tracepoint definition. */
10612 putpkt ("qTsP");
10613 getpkt (&rs->buf, &rs->buf_size, 0);
10614 p = rs->buf;
10615 }
10616 return 0;
10617 }
10618
10619 static int
10620 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10621 {
10622 struct remote_state *rs = get_remote_state ();
10623 char *p;
10624
10625 /* Ask for a first packet of variable definition. */
10626 putpkt ("qTfV");
10627 getpkt (&rs->buf, &rs->buf_size, 0);
10628 p = rs->buf;
10629 while (*p && *p != 'l')
10630 {
10631 parse_tsv_definition (p, utsvp);
10632 /* Ask for another packet of variable definition. */
10633 putpkt ("qTsV");
10634 getpkt (&rs->buf, &rs->buf_size, 0);
10635 p = rs->buf;
10636 }
10637 return 0;
10638 }
10639
10640 void
10641 _initialize_remote (void)
10642 {
10643 struct remote_state *rs;
10644 struct cmd_list_element *cmd;
10645 char *cmd_name;
10646
10647 /* architecture specific data */
10648 remote_gdbarch_data_handle =
10649 gdbarch_data_register_post_init (init_remote_state);
10650 remote_g_packet_data_handle =
10651 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10652
10653 /* Initialize the per-target state. At the moment there is only one
10654 of these, not one per target. Only one target is active at a
10655 time. The default buffer size is unimportant; it will be expanded
10656 whenever a larger buffer is needed. */
10657 rs = get_remote_state_raw ();
10658 rs->buf_size = 400;
10659 rs->buf = xmalloc (rs->buf_size);
10660
10661 init_remote_ops ();
10662 add_target (&remote_ops);
10663
10664 init_extended_remote_ops ();
10665 add_target (&extended_remote_ops);
10666
10667 /* Hook into new objfile notification. */
10668 observer_attach_new_objfile (remote_new_objfile);
10669
10670 /* Set up signal handlers. */
10671 sigint_remote_token =
10672 create_async_signal_handler (async_remote_interrupt, NULL);
10673 sigint_remote_twice_token =
10674 create_async_signal_handler (async_remote_interrupt_twice, NULL);
10675
10676 #if 0
10677 init_remote_threadtests ();
10678 #endif
10679
10680 /* set/show remote ... */
10681
10682 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10683 Remote protocol specific variables\n\
10684 Configure various remote-protocol specific variables such as\n\
10685 the packets being used"),
10686 &remote_set_cmdlist, "set remote ",
10687 0 /* allow-unknown */, &setlist);
10688 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10689 Remote protocol specific variables\n\
10690 Configure various remote-protocol specific variables such as\n\
10691 the packets being used"),
10692 &remote_show_cmdlist, "show remote ",
10693 0 /* allow-unknown */, &showlist);
10694
10695 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10696 Compare section data on target to the exec file.\n\
10697 Argument is a single section name (default: all loaded sections)."),
10698 &cmdlist);
10699
10700 add_cmd ("packet", class_maintenance, packet_command, _("\
10701 Send an arbitrary packet to a remote target.\n\
10702 maintenance packet TEXT\n\
10703 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10704 this command sends the string TEXT to the inferior, and displays the\n\
10705 response packet. GDB supplies the initial `$' character, and the\n\
10706 terminating `#' character and checksum."),
10707 &maintenancelist);
10708
10709 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10710 Set whether to send break if interrupted."), _("\
10711 Show whether to send break if interrupted."), _("\
10712 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10713 set_remotebreak, show_remotebreak,
10714 &setlist, &showlist);
10715 cmd_name = "remotebreak";
10716 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10717 deprecate_cmd (cmd, "set remote interrupt-sequence");
10718 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10719 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10720 deprecate_cmd (cmd, "show remote interrupt-sequence");
10721
10722 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10723 interrupt_sequence_modes, &interrupt_sequence_mode,
10724 _("\
10725 Set interrupt sequence to remote target."), _("\
10726 Show interrupt sequence to remote target."), _("\
10727 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10728 NULL, show_interrupt_sequence,
10729 &remote_set_cmdlist,
10730 &remote_show_cmdlist);
10731
10732 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10733 &interrupt_on_connect, _("\
10734 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10735 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10736 If set, interrupt sequence is sent to remote target."),
10737 NULL, NULL,
10738 &remote_set_cmdlist, &remote_show_cmdlist);
10739
10740 /* Install commands for configuring memory read/write packets. */
10741
10742 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10743 Set the maximum number of bytes per memory write packet (deprecated)."),
10744 &setlist);
10745 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10746 Show the maximum number of bytes per memory write packet (deprecated)."),
10747 &showlist);
10748 add_cmd ("memory-write-packet-size", no_class,
10749 set_memory_write_packet_size, _("\
10750 Set the maximum number of bytes per memory-write packet.\n\
10751 Specify the number of bytes in a packet or 0 (zero) for the\n\
10752 default packet size. The actual limit is further reduced\n\
10753 dependent on the target. Specify ``fixed'' to disable the\n\
10754 further restriction and ``limit'' to enable that restriction."),
10755 &remote_set_cmdlist);
10756 add_cmd ("memory-read-packet-size", no_class,
10757 set_memory_read_packet_size, _("\
10758 Set the maximum number of bytes per memory-read packet.\n\
10759 Specify the number of bytes in a packet or 0 (zero) for the\n\
10760 default packet size. The actual limit is further reduced\n\
10761 dependent on the target. Specify ``fixed'' to disable the\n\
10762 further restriction and ``limit'' to enable that restriction."),
10763 &remote_set_cmdlist);
10764 add_cmd ("memory-write-packet-size", no_class,
10765 show_memory_write_packet_size,
10766 _("Show the maximum number of bytes per memory-write packet."),
10767 &remote_show_cmdlist);
10768 add_cmd ("memory-read-packet-size", no_class,
10769 show_memory_read_packet_size,
10770 _("Show the maximum number of bytes per memory-read packet."),
10771 &remote_show_cmdlist);
10772
10773 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10774 &remote_hw_watchpoint_limit, _("\
10775 Set the maximum number of target hardware watchpoints."), _("\
10776 Show the maximum number of target hardware watchpoints."), _("\
10777 Specify a negative limit for unlimited."),
10778 NULL, NULL, /* FIXME: i18n: The maximum
10779 number of target hardware
10780 watchpoints is %s. */
10781 &remote_set_cmdlist, &remote_show_cmdlist);
10782 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
10783 &remote_hw_watchpoint_length_limit, _("\
10784 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
10785 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
10786 Specify a negative limit for unlimited."),
10787 NULL, NULL, /* FIXME: i18n: The maximum
10788 length (in bytes) of a target
10789 hardware watchpoint is %s. */
10790 &remote_set_cmdlist, &remote_show_cmdlist);
10791 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10792 &remote_hw_breakpoint_limit, _("\
10793 Set the maximum number of target hardware breakpoints."), _("\
10794 Show the maximum number of target hardware breakpoints."), _("\
10795 Specify a negative limit for unlimited."),
10796 NULL, NULL, /* FIXME: i18n: The maximum
10797 number of target hardware
10798 breakpoints is %s. */
10799 &remote_set_cmdlist, &remote_show_cmdlist);
10800
10801 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10802 &remote_address_size, _("\
10803 Set the maximum size of the address (in bits) in a memory packet."), _("\
10804 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10805 NULL,
10806 NULL, /* FIXME: i18n: */
10807 &setlist, &showlist);
10808
10809 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10810 "X", "binary-download", 1);
10811
10812 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10813 "vCont", "verbose-resume", 0);
10814
10815 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10816 "QPassSignals", "pass-signals", 0);
10817
10818 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10819 "qSymbol", "symbol-lookup", 0);
10820
10821 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10822 "P", "set-register", 1);
10823
10824 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10825 "p", "fetch-register", 1);
10826
10827 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10828 "Z0", "software-breakpoint", 0);
10829
10830 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10831 "Z1", "hardware-breakpoint", 0);
10832
10833 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10834 "Z2", "write-watchpoint", 0);
10835
10836 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10837 "Z3", "read-watchpoint", 0);
10838
10839 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10840 "Z4", "access-watchpoint", 0);
10841
10842 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10843 "qXfer:auxv:read", "read-aux-vector", 0);
10844
10845 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10846 "qXfer:features:read", "target-features", 0);
10847
10848 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10849 "qXfer:libraries:read", "library-info", 0);
10850
10851 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10852 "qXfer:memory-map:read", "memory-map", 0);
10853
10854 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10855 "qXfer:spu:read", "read-spu-object", 0);
10856
10857 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10858 "qXfer:spu:write", "write-spu-object", 0);
10859
10860 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10861 "qXfer:osdata:read", "osdata", 0);
10862
10863 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10864 "qXfer:threads:read", "threads", 0);
10865
10866 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10867 "qXfer:siginfo:read", "read-siginfo-object", 0);
10868
10869 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10870 "qXfer:siginfo:write", "write-siginfo-object", 0);
10871
10872 add_packet_config_cmd
10873 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
10874 "qXfer:trace-frame-info:read", "traceframe-info", 0);
10875
10876 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10877 "qGetTLSAddr", "get-thread-local-storage-address",
10878 0);
10879
10880 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10881 "qGetTIBAddr", "get-thread-information-block-address",
10882 0);
10883
10884 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10885 "bc", "reverse-continue", 0);
10886
10887 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10888 "bs", "reverse-step", 0);
10889
10890 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10891 "qSupported", "supported-packets", 0);
10892
10893 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10894 "qSearch:memory", "search-memory", 0);
10895
10896 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10897 "vFile:open", "hostio-open", 0);
10898
10899 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10900 "vFile:pread", "hostio-pread", 0);
10901
10902 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10903 "vFile:pwrite", "hostio-pwrite", 0);
10904
10905 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10906 "vFile:close", "hostio-close", 0);
10907
10908 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10909 "vFile:unlink", "hostio-unlink", 0);
10910
10911 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10912 "vAttach", "attach", 0);
10913
10914 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10915 "vRun", "run", 0);
10916
10917 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10918 "QStartNoAckMode", "noack", 0);
10919
10920 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10921 "vKill", "kill", 0);
10922
10923 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10924 "qAttached", "query-attached", 0);
10925
10926 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10927 "ConditionalTracepoints",
10928 "conditional-tracepoints", 0);
10929 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10930 "FastTracepoints", "fast-tracepoints", 0);
10931
10932 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10933 "TracepointSource", "TracepointSource", 0);
10934
10935 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
10936 "QAllow", "allow", 0);
10937
10938 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
10939 "StaticTracepoints", "static-tracepoints", 0);
10940
10941 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
10942 "qXfer:statictrace:read", "read-sdata-object", 0);
10943
10944 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
10945 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
10946
10947 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10948 Z sub-packet has its own set and show commands, but users may
10949 have sets to this variable in their .gdbinit files (or in their
10950 documentation). */
10951 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10952 &remote_Z_packet_detect, _("\
10953 Set use of remote protocol `Z' packets"), _("\
10954 Show use of remote protocol `Z' packets "), _("\
10955 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10956 packets."),
10957 set_remote_protocol_Z_packet_cmd,
10958 show_remote_protocol_Z_packet_cmd,
10959 /* FIXME: i18n: Use of remote protocol
10960 `Z' packets is %s. */
10961 &remote_set_cmdlist, &remote_show_cmdlist);
10962
10963 add_prefix_cmd ("remote", class_files, remote_command, _("\
10964 Manipulate files on the remote system\n\
10965 Transfer files to and from the remote target system."),
10966 &remote_cmdlist, "remote ",
10967 0 /* allow-unknown */, &cmdlist);
10968
10969 add_cmd ("put", class_files, remote_put_command,
10970 _("Copy a local file to the remote system."),
10971 &remote_cmdlist);
10972
10973 add_cmd ("get", class_files, remote_get_command,
10974 _("Copy a remote file to the local system."),
10975 &remote_cmdlist);
10976
10977 add_cmd ("delete", class_files, remote_delete_command,
10978 _("Delete a remote file."),
10979 &remote_cmdlist);
10980
10981 remote_exec_file = xstrdup ("");
10982 add_setshow_string_noescape_cmd ("exec-file", class_files,
10983 &remote_exec_file, _("\
10984 Set the remote pathname for \"run\""), _("\
10985 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10986 &remote_set_cmdlist, &remote_show_cmdlist);
10987
10988 /* Eventually initialize fileio. See fileio.c */
10989 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10990
10991 /* Take advantage of the fact that the LWP field is not used, to tag
10992 special ptids with it set to != 0. */
10993 magic_null_ptid = ptid_build (42000, 1, -1);
10994 not_sent_ptid = ptid_build (42000, 1, -2);
10995 any_thread_ptid = ptid_build (42000, 1, 0);
10996
10997 target_buf_size = 2048;
10998 target_buf = xmalloc (target_buf_size);
10999 }
11000
This page took 0.262052 seconds and 4 git commands to generate.