2004-01-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59
60 /* Prototypes for local functions */
61 static void cleanup_sigint_signal_handler (void *dummy);
62 static void initialize_sigint_signal_handler (void);
63 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
64
65 static void handle_remote_sigint (int);
66 static void handle_remote_sigint_twice (int);
67 static void async_remote_interrupt (gdb_client_data);
68 void async_remote_interrupt_twice (gdb_client_data);
69
70 static void build_remote_gdbarch_data (void);
71
72 static void remote_files_info (struct target_ops *ignore);
73
74 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
75 int len, int should_write,
76 struct mem_attrib *attrib,
77 struct target_ops *target);
78
79 static void remote_prepare_to_store (void);
80
81 static void remote_fetch_registers (int regno);
82
83 static void remote_resume (ptid_t ptid, int step,
84 enum target_signal siggnal);
85 static void remote_async_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static int remote_start_remote (struct ui_out *uiout, void *dummy);
88
89 static void remote_open (char *name, int from_tty);
90 static void remote_async_open (char *name, int from_tty);
91
92 static void extended_remote_open (char *name, int from_tty);
93 static void extended_remote_async_open (char *name, int from_tty);
94
95 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
96 int async_p);
97
98 static void remote_close (int quitting);
99
100 static void remote_store_registers (int regno);
101
102 static void remote_mourn (void);
103 static void remote_async_mourn (void);
104
105 static void extended_remote_restart (void);
106
107 static void extended_remote_mourn (void);
108
109 static void extended_remote_create_inferior (char *, char *, char **);
110 static void extended_remote_async_create_inferior (char *, char *, char **);
111
112 static void remote_mourn_1 (struct target_ops *);
113
114 static void remote_send (char *buf, long sizeof_buf);
115
116 static int readchar (int timeout);
117
118 static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120 static ptid_t remote_async_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124 static void remote_async_kill (void);
125
126 static int tohex (int nib);
127
128 static void remote_detach (char *args, int from_tty);
129
130 static void remote_interrupt (int signo);
131
132 static void remote_interrupt_twice (int signo);
133
134 static void interrupt_query (void);
135
136 static void set_thread (int, int);
137
138 static int remote_thread_alive (ptid_t);
139
140 static void get_offsets (void);
141
142 static long read_frame (char *buf, long sizeof_buf);
143
144 static int remote_insert_breakpoint (CORE_ADDR, char *);
145
146 static int remote_remove_breakpoint (CORE_ADDR, char *);
147
148 static int hexnumlen (ULONGEST num);
149
150 static void init_remote_ops (void);
151
152 static void init_extended_remote_ops (void);
153
154 static void init_remote_cisco_ops (void);
155
156 static struct target_ops remote_cisco_ops;
157
158 static void remote_stop (void);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int hexnumstr (char *, ULONGEST);
165
166 static int hexnumnstr (char *, ULONGEST, int);
167
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
169
170 static void print_packet (char *);
171
172 static unsigned long crc32 (unsigned char *, int, unsigned int);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (int currthread);
185
186 static int fromhex (int a);
187
188 static int hex2bin (const char *hex, char *bin, int count);
189
190 static int bin2hex (const char *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 void _initialize_remote (void);
203
204 /* Description of the remote protocol. Strictly speaking, when the
205 target is open()ed, remote.c should create a per-target description
206 of the remote protocol using that target's architecture.
207 Unfortunately, the target stack doesn't include local state. For
208 the moment keep the information in the target's architecture
209 object. Sigh.. */
210
211 struct packet_reg
212 {
213 long offset; /* Offset into G packet. */
214 long regnum; /* GDB's internal register number. */
215 LONGEST pnum; /* Remote protocol register number. */
216 int in_g_packet; /* Always part of G packet. */
217 /* long size in bytes; == DEPRECATED_REGISTER_RAW_SIZE (regnum); at present. */
218 /* char *name; == REGISTER_NAME (regnum); at present. */
219 };
220
221 struct remote_state
222 {
223 /* Description of the remote protocol registers. */
224 long sizeof_g_packet;
225
226 /* Description of the remote protocol registers indexed by REGNUM
227 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
228 struct packet_reg *regs;
229
230 /* This is the size (in chars) of the first response to the ``g''
231 packet. It is used as a heuristic when determining the maximum
232 size of memory-read and memory-write packets. A target will
233 typically only reserve a buffer large enough to hold the ``g''
234 packet. The size does not include packet overhead (headers and
235 trailers). */
236 long actual_register_packet_size;
237
238 /* This is the maximum size (in chars) of a non read/write packet.
239 It is also used as a cap on the size of read/write packets. */
240 long remote_packet_size;
241 };
242
243
244 /* Handle for retreving the remote protocol data from gdbarch. */
245 static struct gdbarch_data *remote_gdbarch_data_handle;
246
247 static struct remote_state *
248 get_remote_state (void)
249 {
250 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
251 }
252
253 static void *
254 init_remote_state (struct gdbarch *gdbarch)
255 {
256 int regnum;
257 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
258
259 if (DEPRECATED_REGISTER_BYTES != 0)
260 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
261 else
262 rs->sizeof_g_packet = 0;
263
264 /* Assume a 1:1 regnum<->pnum table. */
265 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
266 struct packet_reg);
267 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
268 {
269 struct packet_reg *r = &rs->regs[regnum];
270 r->pnum = regnum;
271 r->regnum = regnum;
272 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
273 r->in_g_packet = (regnum < NUM_REGS);
274 /* ...name = REGISTER_NAME (regnum); */
275
276 /* Compute packet size by accumulating the size of all registers. */
277 if (DEPRECATED_REGISTER_BYTES == 0)
278 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
279 }
280
281 /* Default maximum number of characters in a packet body. Many
282 remote stubs have a hardwired buffer size of 400 bytes
283 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
284 as the maximum packet-size to ensure that the packet and an extra
285 NUL character can always fit in the buffer. This stops GDB
286 trashing stubs that try to squeeze an extra NUL into what is
287 already a full buffer (As of 1999-12-04 that was most stubs. */
288 rs->remote_packet_size = 400 - 1;
289
290 /* Should rs->sizeof_g_packet needs more space than the
291 default, adjust the size accordingly. Remember that each byte is
292 encoded as two characters. 32 is the overhead for the packet
293 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
294 (``$NN:G...#NN'') is a better guess, the below has been padded a
295 little. */
296 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
297 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
298
299 /* This one is filled in when a ``g'' packet is received. */
300 rs->actual_register_packet_size = 0;
301
302 return rs;
303 }
304
305 static struct packet_reg *
306 packet_reg_from_regnum (struct remote_state *rs, long regnum)
307 {
308 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
309 return NULL;
310 else
311 {
312 struct packet_reg *r = &rs->regs[regnum];
313 gdb_assert (r->regnum == regnum);
314 return r;
315 }
316 }
317
318 static struct packet_reg *
319 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
320 {
321 int i;
322 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
323 {
324 struct packet_reg *r = &rs->regs[i];
325 if (r->pnum == pnum)
326 return r;
327 }
328 return NULL;
329 }
330
331 /* FIXME: graces/2002-08-08: These variables should eventually be
332 bound to an instance of the target object (as in gdbarch-tdep()),
333 when such a thing exists. */
334
335 /* This is set to the data address of the access causing the target
336 to stop for a watchpoint. */
337 static CORE_ADDR remote_watch_data_address;
338
339 /* This is non-zero if taregt stopped for a watchpoint. */
340 static int remote_stopped_by_watchpoint_p;
341
342
343 static struct target_ops remote_ops;
344
345 static struct target_ops extended_remote_ops;
346
347 /* Temporary target ops. Just like the remote_ops and
348 extended_remote_ops, but with asynchronous support. */
349 static struct target_ops remote_async_ops;
350
351 static struct target_ops extended_async_remote_ops;
352
353 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
354 ``forever'' still use the normal timeout mechanism. This is
355 currently used by the ASYNC code to guarentee that target reads
356 during the initial connect always time-out. Once getpkt has been
357 modified to return a timeout indication and, in turn
358 remote_wait()/wait_for_inferior() have gained a timeout parameter
359 this can go away. */
360 static int wait_forever_enabled_p = 1;
361
362
363 /* This variable chooses whether to send a ^C or a break when the user
364 requests program interruption. Although ^C is usually what remote
365 systems expect, and that is the default here, sometimes a break is
366 preferable instead. */
367
368 static int remote_break;
369
370 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
371 remote_open knows that we don't have a file open when the program
372 starts. */
373 static struct serial *remote_desc = NULL;
374
375 /* This is set by the target (thru the 'S' message)
376 to denote that the target is in kernel mode. */
377 static int cisco_kernel_mode = 0;
378
379 /* This variable sets the number of bits in an address that are to be
380 sent in a memory ("M" or "m") packet. Normally, after stripping
381 leading zeros, the entire address would be sent. This variable
382 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
383 initial implementation of remote.c restricted the address sent in
384 memory packets to ``host::sizeof long'' bytes - (typically 32
385 bits). Consequently, for 64 bit targets, the upper 32 bits of an
386 address was never sent. Since fixing this bug may cause a break in
387 some remote targets this variable is principly provided to
388 facilitate backward compatibility. */
389
390 static int remote_address_size;
391
392 /* Tempoary to track who currently owns the terminal. See
393 target_async_terminal_* for more details. */
394
395 static int remote_async_terminal_ours_p;
396
397 \f
398 /* User configurable variables for the number of characters in a
399 memory read/write packet. MIN ((rs->remote_packet_size),
400 rs->sizeof_g_packet) is the default. Some targets need smaller
401 values (fifo overruns, et.al.) and some users need larger values
402 (speed up transfers). The variables ``preferred_*'' (the user
403 request), ``current_*'' (what was actually set) and ``forced_*''
404 (Positive - a soft limit, negative - a hard limit). */
405
406 struct memory_packet_config
407 {
408 char *name;
409 long size;
410 int fixed_p;
411 };
412
413 /* Compute the current size of a read/write packet. Since this makes
414 use of ``actual_register_packet_size'' the computation is dynamic. */
415
416 static long
417 get_memory_packet_size (struct memory_packet_config *config)
418 {
419 struct remote_state *rs = get_remote_state ();
420 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
421 law?) that some hosts don't cope very well with large alloca()
422 calls. Eventually the alloca() code will be replaced by calls to
423 xmalloc() and make_cleanups() allowing this restriction to either
424 be lifted or removed. */
425 #ifndef MAX_REMOTE_PACKET_SIZE
426 #define MAX_REMOTE_PACKET_SIZE 16384
427 #endif
428 /* NOTE: 16 is just chosen at random. */
429 #ifndef MIN_REMOTE_PACKET_SIZE
430 #define MIN_REMOTE_PACKET_SIZE 16
431 #endif
432 long what_they_get;
433 if (config->fixed_p)
434 {
435 if (config->size <= 0)
436 what_they_get = MAX_REMOTE_PACKET_SIZE;
437 else
438 what_they_get = config->size;
439 }
440 else
441 {
442 what_they_get = (rs->remote_packet_size);
443 /* Limit the packet to the size specified by the user. */
444 if (config->size > 0
445 && what_they_get > config->size)
446 what_they_get = config->size;
447 /* Limit it to the size of the targets ``g'' response. */
448 if ((rs->actual_register_packet_size) > 0
449 && what_they_get > (rs->actual_register_packet_size))
450 what_they_get = (rs->actual_register_packet_size);
451 }
452 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
453 what_they_get = MAX_REMOTE_PACKET_SIZE;
454 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
455 what_they_get = MIN_REMOTE_PACKET_SIZE;
456 return what_they_get;
457 }
458
459 /* Update the size of a read/write packet. If they user wants
460 something really big then do a sanity check. */
461
462 static void
463 set_memory_packet_size (char *args, struct memory_packet_config *config)
464 {
465 int fixed_p = config->fixed_p;
466 long size = config->size;
467 if (args == NULL)
468 error ("Argument required (integer, `fixed' or `limited').");
469 else if (strcmp (args, "hard") == 0
470 || strcmp (args, "fixed") == 0)
471 fixed_p = 1;
472 else if (strcmp (args, "soft") == 0
473 || strcmp (args, "limit") == 0)
474 fixed_p = 0;
475 else
476 {
477 char *end;
478 size = strtoul (args, &end, 0);
479 if (args == end)
480 error ("Invalid %s (bad syntax).", config->name);
481 #if 0
482 /* Instead of explicitly capping the size of a packet to
483 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
484 instead allowed to set the size to something arbitrarily
485 large. */
486 if (size > MAX_REMOTE_PACKET_SIZE)
487 error ("Invalid %s (too large).", config->name);
488 #endif
489 }
490 /* Extra checks? */
491 if (fixed_p && !config->fixed_p)
492 {
493 if (! query ("The target may not be able to correctly handle a %s\n"
494 "of %ld bytes. Change the packet size? ",
495 config->name, size))
496 error ("Packet size not changed.");
497 }
498 /* Update the config. */
499 config->fixed_p = fixed_p;
500 config->size = size;
501 }
502
503 static void
504 show_memory_packet_size (struct memory_packet_config *config)
505 {
506 printf_filtered ("The %s is %ld. ", config->name, config->size);
507 if (config->fixed_p)
508 printf_filtered ("Packets are fixed at %ld bytes.\n",
509 get_memory_packet_size (config));
510 else
511 printf_filtered ("Packets are limited to %ld bytes.\n",
512 get_memory_packet_size (config));
513 }
514
515 static struct memory_packet_config memory_write_packet_config =
516 {
517 "memory-write-packet-size",
518 };
519
520 static void
521 set_memory_write_packet_size (char *args, int from_tty)
522 {
523 set_memory_packet_size (args, &memory_write_packet_config);
524 }
525
526 static void
527 show_memory_write_packet_size (char *args, int from_tty)
528 {
529 show_memory_packet_size (&memory_write_packet_config);
530 }
531
532 static long
533 get_memory_write_packet_size (void)
534 {
535 return get_memory_packet_size (&memory_write_packet_config);
536 }
537
538 static struct memory_packet_config memory_read_packet_config =
539 {
540 "memory-read-packet-size",
541 };
542
543 static void
544 set_memory_read_packet_size (char *args, int from_tty)
545 {
546 set_memory_packet_size (args, &memory_read_packet_config);
547 }
548
549 static void
550 show_memory_read_packet_size (char *args, int from_tty)
551 {
552 show_memory_packet_size (&memory_read_packet_config);
553 }
554
555 static long
556 get_memory_read_packet_size (void)
557 {
558 struct remote_state *rs = get_remote_state ();
559 long size = get_memory_packet_size (&memory_read_packet_config);
560 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
561 extra buffer size argument before the memory read size can be
562 increased beyond (rs->remote_packet_size). */
563 if (size > (rs->remote_packet_size))
564 size = (rs->remote_packet_size);
565 return size;
566 }
567
568 \f
569 /* Generic configuration support for packets the stub optionally
570 supports. Allows the user to specify the use of the packet as well
571 as allowing GDB to auto-detect support in the remote stub. */
572
573 enum packet_support
574 {
575 PACKET_SUPPORT_UNKNOWN = 0,
576 PACKET_ENABLE,
577 PACKET_DISABLE
578 };
579
580 struct packet_config
581 {
582 char *name;
583 char *title;
584 enum auto_boolean detect;
585 enum packet_support support;
586 };
587
588 /* Analyze a packet's return value and update the packet config
589 accordingly. */
590
591 enum packet_result
592 {
593 PACKET_ERROR,
594 PACKET_OK,
595 PACKET_UNKNOWN
596 };
597
598 static void
599 update_packet_config (struct packet_config *config)
600 {
601 switch (config->detect)
602 {
603 case AUTO_BOOLEAN_TRUE:
604 config->support = PACKET_ENABLE;
605 break;
606 case AUTO_BOOLEAN_FALSE:
607 config->support = PACKET_DISABLE;
608 break;
609 case AUTO_BOOLEAN_AUTO:
610 config->support = PACKET_SUPPORT_UNKNOWN;
611 break;
612 }
613 }
614
615 static void
616 show_packet_config_cmd (struct packet_config *config)
617 {
618 char *support = "internal-error";
619 switch (config->support)
620 {
621 case PACKET_ENABLE:
622 support = "enabled";
623 break;
624 case PACKET_DISABLE:
625 support = "disabled";
626 break;
627 case PACKET_SUPPORT_UNKNOWN:
628 support = "unknown";
629 break;
630 }
631 switch (config->detect)
632 {
633 case AUTO_BOOLEAN_AUTO:
634 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
635 config->name, config->title, support);
636 break;
637 case AUTO_BOOLEAN_TRUE:
638 case AUTO_BOOLEAN_FALSE:
639 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
640 config->name, config->title, support);
641 break;
642 }
643 }
644
645 static void
646 add_packet_config_cmd (struct packet_config *config,
647 char *name,
648 char *title,
649 cmd_sfunc_ftype *set_func,
650 cmd_sfunc_ftype *show_func,
651 struct cmd_list_element **set_remote_list,
652 struct cmd_list_element **show_remote_list,
653 int legacy)
654 {
655 struct cmd_list_element *set_cmd;
656 struct cmd_list_element *show_cmd;
657 char *set_doc;
658 char *show_doc;
659 char *cmd_name;
660 config->name = name;
661 config->title = title;
662 config->detect = AUTO_BOOLEAN_AUTO;
663 config->support = PACKET_SUPPORT_UNKNOWN;
664 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
665 name, title);
666 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
667 name, title);
668 /* set/show TITLE-packet {auto,on,off} */
669 xasprintf (&cmd_name, "%s-packet", title);
670 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
671 &config->detect, set_doc, show_doc,
672 set_func, show_func,
673 set_remote_list, show_remote_list);
674 /* set/show remote NAME-packet {auto,on,off} -- legacy */
675 if (legacy)
676 {
677 char *legacy_name;
678 xasprintf (&legacy_name, "%s-packet", name);
679 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
680 set_remote_list);
681 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
682 show_remote_list);
683 }
684 }
685
686 static enum packet_result
687 packet_ok (const char *buf, struct packet_config *config)
688 {
689 if (buf[0] != '\0')
690 {
691 /* The stub recognized the packet request. Check that the
692 operation succeeded. */
693 switch (config->support)
694 {
695 case PACKET_SUPPORT_UNKNOWN:
696 if (remote_debug)
697 fprintf_unfiltered (gdb_stdlog,
698 "Packet %s (%s) is supported\n",
699 config->name, config->title);
700 config->support = PACKET_ENABLE;
701 break;
702 case PACKET_DISABLE:
703 internal_error (__FILE__, __LINE__,
704 "packet_ok: attempt to use a disabled packet");
705 break;
706 case PACKET_ENABLE:
707 break;
708 }
709 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
710 /* "OK" - definitly OK. */
711 return PACKET_OK;
712 if (buf[0] == 'E'
713 && isxdigit (buf[1]) && isxdigit (buf[2])
714 && buf[3] == '\0')
715 /* "Enn" - definitly an error. */
716 return PACKET_ERROR;
717 /* The packet may or may not be OK. Just assume it is */
718 return PACKET_OK;
719 }
720 else
721 {
722 /* The stub does not support the packet. */
723 switch (config->support)
724 {
725 case PACKET_ENABLE:
726 if (config->detect == AUTO_BOOLEAN_AUTO)
727 /* If the stub previously indicated that the packet was
728 supported then there is a protocol error.. */
729 error ("Protocol error: %s (%s) conflicting enabled responses.",
730 config->name, config->title);
731 else
732 /* The user set it wrong. */
733 error ("Enabled packet %s (%s) not recognized by stub",
734 config->name, config->title);
735 break;
736 case PACKET_SUPPORT_UNKNOWN:
737 if (remote_debug)
738 fprintf_unfiltered (gdb_stdlog,
739 "Packet %s (%s) is NOT supported\n",
740 config->name, config->title);
741 config->support = PACKET_DISABLE;
742 break;
743 case PACKET_DISABLE:
744 break;
745 }
746 return PACKET_UNKNOWN;
747 }
748 }
749
750 /* Should we try the 'vCont' (descriptive resume) request? */
751 static struct packet_config remote_protocol_vcont;
752
753 static void
754 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
755 struct cmd_list_element *c)
756 {
757 update_packet_config (&remote_protocol_vcont);
758 }
759
760 static void
761 show_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
762 struct cmd_list_element *c)
763 {
764 show_packet_config_cmd (&remote_protocol_vcont);
765 }
766
767 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
768 static struct packet_config remote_protocol_qSymbol;
769
770 static void
771 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
772 struct cmd_list_element *c)
773 {
774 update_packet_config (&remote_protocol_qSymbol);
775 }
776
777 static void
778 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
779 struct cmd_list_element *c)
780 {
781 show_packet_config_cmd (&remote_protocol_qSymbol);
782 }
783
784 /* Should we try the 'e' (step over range) request? */
785 static struct packet_config remote_protocol_e;
786
787 static void
788 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 update_packet_config (&remote_protocol_e);
792 }
793
794 static void
795 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
796 struct cmd_list_element *c)
797 {
798 show_packet_config_cmd (&remote_protocol_e);
799 }
800
801
802 /* Should we try the 'E' (step over range / w signal #) request? */
803 static struct packet_config remote_protocol_E;
804
805 static void
806 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
807 struct cmd_list_element *c)
808 {
809 update_packet_config (&remote_protocol_E);
810 }
811
812 static void
813 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
814 struct cmd_list_element *c)
815 {
816 show_packet_config_cmd (&remote_protocol_E);
817 }
818
819
820 /* Should we try the 'P' (set register) request? */
821
822 static struct packet_config remote_protocol_P;
823
824 static void
825 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
826 struct cmd_list_element *c)
827 {
828 update_packet_config (&remote_protocol_P);
829 }
830
831 static void
832 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
833 struct cmd_list_element *c)
834 {
835 show_packet_config_cmd (&remote_protocol_P);
836 }
837
838 /* Should we try one of the 'Z' requests? */
839
840 enum Z_packet_type
841 {
842 Z_PACKET_SOFTWARE_BP,
843 Z_PACKET_HARDWARE_BP,
844 Z_PACKET_WRITE_WP,
845 Z_PACKET_READ_WP,
846 Z_PACKET_ACCESS_WP,
847 NR_Z_PACKET_TYPES
848 };
849
850 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
851
852 /* FIXME: Instead of having all these boiler plate functions, the
853 command callback should include a context argument. */
854
855 static void
856 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
857 struct cmd_list_element *c)
858 {
859 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
860 }
861
862 static void
863 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
864 struct cmd_list_element *c)
865 {
866 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
867 }
868
869 static void
870 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
871 struct cmd_list_element *c)
872 {
873 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
874 }
875
876 static void
877 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
878 struct cmd_list_element *c)
879 {
880 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
881 }
882
883 static void
884 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
885 struct cmd_list_element *c)
886 {
887 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
888 }
889
890 static void
891 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
892 struct cmd_list_element *c)
893 {
894 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
895 }
896
897 static void
898 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
899 struct cmd_list_element *c)
900 {
901 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
902 }
903
904 static void
905 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
906 struct cmd_list_element *c)
907 {
908 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
909 }
910
911 static void
912 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
913 struct cmd_list_element *c)
914 {
915 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
916 }
917
918 static void
919 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
921 {
922 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
923 }
924
925 /* For compatibility with older distributions. Provide a ``set remote
926 Z-packet ...'' command that updates all the Z packet types. */
927
928 static enum auto_boolean remote_Z_packet_detect;
929
930 static void
931 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
932 struct cmd_list_element *c)
933 {
934 int i;
935 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
936 {
937 remote_protocol_Z[i].detect = remote_Z_packet_detect;
938 update_packet_config (&remote_protocol_Z[i]);
939 }
940 }
941
942 static void
943 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
944 struct cmd_list_element *c)
945 {
946 int i;
947 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
948 {
949 show_packet_config_cmd (&remote_protocol_Z[i]);
950 }
951 }
952
953 /* Should we try the 'X' (remote binary download) packet?
954
955 This variable (available to the user via "set remote X-packet")
956 dictates whether downloads are sent in binary (via the 'X' packet).
957 We assume that the stub can, and attempt to do it. This will be
958 cleared if the stub does not understand it. This switch is still
959 needed, though in cases when the packet is supported in the stub,
960 but the connection does not allow it (i.e., 7-bit serial connection
961 only). */
962
963 static struct packet_config remote_protocol_binary_download;
964
965 /* Should we try the 'ThreadInfo' query packet?
966
967 This variable (NOT available to the user: auto-detect only!)
968 determines whether GDB will use the new, simpler "ThreadInfo"
969 query or the older, more complex syntax for thread queries.
970 This is an auto-detect variable (set to true at each connect,
971 and set to false when the target fails to recognize it). */
972
973 static int use_threadinfo_query;
974 static int use_threadextra_query;
975
976 static void
977 set_remote_protocol_binary_download_cmd (char *args,
978 int from_tty,
979 struct cmd_list_element *c)
980 {
981 update_packet_config (&remote_protocol_binary_download);
982 }
983
984 static void
985 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
986 struct cmd_list_element *c)
987 {
988 show_packet_config_cmd (&remote_protocol_binary_download);
989 }
990
991
992 /* Tokens for use by the asynchronous signal handlers for SIGINT */
993 static void *sigint_remote_twice_token;
994 static void *sigint_remote_token;
995
996 /* These are pointers to hook functions that may be set in order to
997 modify resume/wait behavior for a particular architecture. */
998
999 void (*target_resume_hook) (void);
1000 void (*target_wait_loop_hook) (void);
1001 \f
1002
1003
1004 /* These are the threads which we last sent to the remote system.
1005 -1 for all or -2 for not sent yet. */
1006 static int general_thread;
1007 static int continue_thread;
1008
1009 /* Call this function as a result of
1010 1) A halt indication (T packet) containing a thread id
1011 2) A direct query of currthread
1012 3) Successful execution of set thread
1013 */
1014
1015 static void
1016 record_currthread (int currthread)
1017 {
1018 general_thread = currthread;
1019
1020 /* If this is a new thread, add it to GDB's thread list.
1021 If we leave it up to WFI to do this, bad things will happen. */
1022 if (!in_thread_list (pid_to_ptid (currthread)))
1023 {
1024 add_thread (pid_to_ptid (currthread));
1025 ui_out_text (uiout, "[New ");
1026 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1027 ui_out_text (uiout, "]\n");
1028 }
1029 }
1030
1031 #define MAGIC_NULL_PID 42000
1032
1033 static void
1034 set_thread (int th, int gen)
1035 {
1036 struct remote_state *rs = get_remote_state ();
1037 char *buf = alloca (rs->remote_packet_size);
1038 int state = gen ? general_thread : continue_thread;
1039
1040 if (state == th)
1041 return;
1042
1043 buf[0] = 'H';
1044 buf[1] = gen ? 'g' : 'c';
1045 if (th == MAGIC_NULL_PID)
1046 {
1047 buf[2] = '0';
1048 buf[3] = '\0';
1049 }
1050 else if (th < 0)
1051 sprintf (&buf[2], "-%x", -th);
1052 else
1053 sprintf (&buf[2], "%x", th);
1054 putpkt (buf);
1055 getpkt (buf, (rs->remote_packet_size), 0);
1056 if (gen)
1057 general_thread = th;
1058 else
1059 continue_thread = th;
1060 }
1061 \f
1062 /* Return nonzero if the thread TH is still alive on the remote system. */
1063
1064 static int
1065 remote_thread_alive (ptid_t ptid)
1066 {
1067 int tid = PIDGET (ptid);
1068 char buf[16];
1069
1070 if (tid < 0)
1071 sprintf (buf, "T-%08x", -tid);
1072 else
1073 sprintf (buf, "T%08x", tid);
1074 putpkt (buf);
1075 getpkt (buf, sizeof (buf), 0);
1076 return (buf[0] == 'O' && buf[1] == 'K');
1077 }
1078
1079 /* About these extended threadlist and threadinfo packets. They are
1080 variable length packets but, the fields within them are often fixed
1081 length. They are redundent enough to send over UDP as is the
1082 remote protocol in general. There is a matching unit test module
1083 in libstub. */
1084
1085 #define OPAQUETHREADBYTES 8
1086
1087 /* a 64 bit opaque identifier */
1088 typedef unsigned char threadref[OPAQUETHREADBYTES];
1089
1090 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1091 protocol encoding, and remote.c. it is not particularly changable */
1092
1093 /* Right now, the internal structure is int. We want it to be bigger.
1094 Plan to fix this.
1095 */
1096
1097 typedef int gdb_threadref; /* internal GDB thread reference */
1098
1099 /* gdb_ext_thread_info is an internal GDB data structure which is
1100 equivalint to the reply of the remote threadinfo packet */
1101
1102 struct gdb_ext_thread_info
1103 {
1104 threadref threadid; /* External form of thread reference */
1105 int active; /* Has state interesting to GDB? , regs, stack */
1106 char display[256]; /* Brief state display, name, blocked/syspended */
1107 char shortname[32]; /* To be used to name threads */
1108 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1109 };
1110
1111 /* The volume of remote transfers can be limited by submitting
1112 a mask containing bits specifying the desired information.
1113 Use a union of these values as the 'selection' parameter to
1114 get_thread_info. FIXME: Make these TAG names more thread specific.
1115 */
1116
1117 #define TAG_THREADID 1
1118 #define TAG_EXISTS 2
1119 #define TAG_DISPLAY 4
1120 #define TAG_THREADNAME 8
1121 #define TAG_MOREDISPLAY 16
1122
1123 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1124
1125 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1126
1127 static char *unpack_nibble (char *buf, int *val);
1128
1129 static char *pack_nibble (char *buf, int nibble);
1130
1131 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1132
1133 static char *unpack_byte (char *buf, int *value);
1134
1135 static char *pack_int (char *buf, int value);
1136
1137 static char *unpack_int (char *buf, int *value);
1138
1139 static char *unpack_string (char *src, char *dest, int length);
1140
1141 static char *pack_threadid (char *pkt, threadref * id);
1142
1143 static char *unpack_threadid (char *inbuf, threadref * id);
1144
1145 void int_to_threadref (threadref * id, int value);
1146
1147 static int threadref_to_int (threadref * ref);
1148
1149 static void copy_threadref (threadref * dest, threadref * src);
1150
1151 static int threadmatch (threadref * dest, threadref * src);
1152
1153 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1154
1155 static int remote_unpack_thread_info_response (char *pkt,
1156 threadref * expectedref,
1157 struct gdb_ext_thread_info
1158 *info);
1159
1160
1161 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1162 struct gdb_ext_thread_info *info);
1163
1164 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1165 int selection,
1166 struct gdb_ext_thread_info *info);
1167
1168 static char *pack_threadlist_request (char *pkt, int startflag,
1169 int threadcount,
1170 threadref * nextthread);
1171
1172 static int parse_threadlist_response (char *pkt,
1173 int result_limit,
1174 threadref * original_echo,
1175 threadref * resultlist, int *doneflag);
1176
1177 static int remote_get_threadlist (int startflag,
1178 threadref * nextthread,
1179 int result_limit,
1180 int *done,
1181 int *result_count, threadref * threadlist);
1182
1183 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1184
1185 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1186 void *context, int looplimit);
1187
1188 static int remote_newthread_step (threadref * ref, void *context);
1189
1190 /* encode 64 bits in 16 chars of hex */
1191
1192 static const char hexchars[] = "0123456789abcdef";
1193
1194 static int
1195 ishex (int ch, int *val)
1196 {
1197 if ((ch >= 'a') && (ch <= 'f'))
1198 {
1199 *val = ch - 'a' + 10;
1200 return 1;
1201 }
1202 if ((ch >= 'A') && (ch <= 'F'))
1203 {
1204 *val = ch - 'A' + 10;
1205 return 1;
1206 }
1207 if ((ch >= '0') && (ch <= '9'))
1208 {
1209 *val = ch - '0';
1210 return 1;
1211 }
1212 return 0;
1213 }
1214
1215 static int
1216 stubhex (int ch)
1217 {
1218 if (ch >= 'a' && ch <= 'f')
1219 return ch - 'a' + 10;
1220 if (ch >= '0' && ch <= '9')
1221 return ch - '0';
1222 if (ch >= 'A' && ch <= 'F')
1223 return ch - 'A' + 10;
1224 return -1;
1225 }
1226
1227 static int
1228 stub_unpack_int (char *buff, int fieldlength)
1229 {
1230 int nibble;
1231 int retval = 0;
1232
1233 while (fieldlength)
1234 {
1235 nibble = stubhex (*buff++);
1236 retval |= nibble;
1237 fieldlength--;
1238 if (fieldlength)
1239 retval = retval << 4;
1240 }
1241 return retval;
1242 }
1243
1244 char *
1245 unpack_varlen_hex (char *buff, /* packet to parse */
1246 ULONGEST *result)
1247 {
1248 int nibble;
1249 int retval = 0;
1250
1251 while (ishex (*buff, &nibble))
1252 {
1253 buff++;
1254 retval = retval << 4;
1255 retval |= nibble & 0x0f;
1256 }
1257 *result = retval;
1258 return buff;
1259 }
1260
1261 static char *
1262 unpack_nibble (char *buf, int *val)
1263 {
1264 ishex (*buf++, val);
1265 return buf;
1266 }
1267
1268 static char *
1269 pack_nibble (char *buf, int nibble)
1270 {
1271 *buf++ = hexchars[(nibble & 0x0f)];
1272 return buf;
1273 }
1274
1275 static char *
1276 pack_hex_byte (char *pkt, int byte)
1277 {
1278 *pkt++ = hexchars[(byte >> 4) & 0xf];
1279 *pkt++ = hexchars[(byte & 0xf)];
1280 return pkt;
1281 }
1282
1283 static char *
1284 unpack_byte (char *buf, int *value)
1285 {
1286 *value = stub_unpack_int (buf, 2);
1287 return buf + 2;
1288 }
1289
1290 static char *
1291 pack_int (char *buf, int value)
1292 {
1293 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1294 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1295 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1296 buf = pack_hex_byte (buf, (value & 0xff));
1297 return buf;
1298 }
1299
1300 static char *
1301 unpack_int (char *buf, int *value)
1302 {
1303 *value = stub_unpack_int (buf, 8);
1304 return buf + 8;
1305 }
1306
1307 #if 0 /* currently unused, uncomment when needed */
1308 static char *pack_string (char *pkt, char *string);
1309
1310 static char *
1311 pack_string (char *pkt, char *string)
1312 {
1313 char ch;
1314 int len;
1315
1316 len = strlen (string);
1317 if (len > 200)
1318 len = 200; /* Bigger than most GDB packets, junk??? */
1319 pkt = pack_hex_byte (pkt, len);
1320 while (len-- > 0)
1321 {
1322 ch = *string++;
1323 if ((ch == '\0') || (ch == '#'))
1324 ch = '*'; /* Protect encapsulation */
1325 *pkt++ = ch;
1326 }
1327 return pkt;
1328 }
1329 #endif /* 0 (unused) */
1330
1331 static char *
1332 unpack_string (char *src, char *dest, int length)
1333 {
1334 while (length--)
1335 *dest++ = *src++;
1336 *dest = '\0';
1337 return src;
1338 }
1339
1340 static char *
1341 pack_threadid (char *pkt, threadref *id)
1342 {
1343 char *limit;
1344 unsigned char *altid;
1345
1346 altid = (unsigned char *) id;
1347 limit = pkt + BUF_THREAD_ID_SIZE;
1348 while (pkt < limit)
1349 pkt = pack_hex_byte (pkt, *altid++);
1350 return pkt;
1351 }
1352
1353
1354 static char *
1355 unpack_threadid (char *inbuf, threadref *id)
1356 {
1357 char *altref;
1358 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1359 int x, y;
1360
1361 altref = (char *) id;
1362
1363 while (inbuf < limit)
1364 {
1365 x = stubhex (*inbuf++);
1366 y = stubhex (*inbuf++);
1367 *altref++ = (x << 4) | y;
1368 }
1369 return inbuf;
1370 }
1371
1372 /* Externally, threadrefs are 64 bits but internally, they are still
1373 ints. This is due to a mismatch of specifications. We would like
1374 to use 64bit thread references internally. This is an adapter
1375 function. */
1376
1377 void
1378 int_to_threadref (threadref *id, int value)
1379 {
1380 unsigned char *scan;
1381
1382 scan = (unsigned char *) id;
1383 {
1384 int i = 4;
1385 while (i--)
1386 *scan++ = 0;
1387 }
1388 *scan++ = (value >> 24) & 0xff;
1389 *scan++ = (value >> 16) & 0xff;
1390 *scan++ = (value >> 8) & 0xff;
1391 *scan++ = (value & 0xff);
1392 }
1393
1394 static int
1395 threadref_to_int (threadref *ref)
1396 {
1397 int i, value = 0;
1398 unsigned char *scan;
1399
1400 scan = (char *) ref;
1401 scan += 4;
1402 i = 4;
1403 while (i-- > 0)
1404 value = (value << 8) | ((*scan++) & 0xff);
1405 return value;
1406 }
1407
1408 static void
1409 copy_threadref (threadref *dest, threadref *src)
1410 {
1411 int i;
1412 unsigned char *csrc, *cdest;
1413
1414 csrc = (unsigned char *) src;
1415 cdest = (unsigned char *) dest;
1416 i = 8;
1417 while (i--)
1418 *cdest++ = *csrc++;
1419 }
1420
1421 static int
1422 threadmatch (threadref *dest, threadref *src)
1423 {
1424 /* things are broken right now, so just assume we got a match */
1425 #if 0
1426 unsigned char *srcp, *destp;
1427 int i, result;
1428 srcp = (char *) src;
1429 destp = (char *) dest;
1430
1431 result = 1;
1432 while (i-- > 0)
1433 result &= (*srcp++ == *destp++) ? 1 : 0;
1434 return result;
1435 #endif
1436 return 1;
1437 }
1438
1439 /*
1440 threadid:1, # always request threadid
1441 context_exists:2,
1442 display:4,
1443 unique_name:8,
1444 more_display:16
1445 */
1446
1447 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1448
1449 static char *
1450 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1451 {
1452 *pkt++ = 'q'; /* Info Query */
1453 *pkt++ = 'P'; /* process or thread info */
1454 pkt = pack_int (pkt, mode); /* mode */
1455 pkt = pack_threadid (pkt, id); /* threadid */
1456 *pkt = '\0'; /* terminate */
1457 return pkt;
1458 }
1459
1460 /* These values tag the fields in a thread info response packet */
1461 /* Tagging the fields allows us to request specific fields and to
1462 add more fields as time goes by */
1463
1464 #define TAG_THREADID 1 /* Echo the thread identifier */
1465 #define TAG_EXISTS 2 /* Is this process defined enough to
1466 fetch registers and its stack */
1467 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1468 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1469 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1470 the process */
1471
1472 static int
1473 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1474 struct gdb_ext_thread_info *info)
1475 {
1476 struct remote_state *rs = get_remote_state ();
1477 int mask, length;
1478 unsigned int tag;
1479 threadref ref;
1480 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1481 int retval = 1;
1482
1483 /* info->threadid = 0; FIXME: implement zero_threadref */
1484 info->active = 0;
1485 info->display[0] = '\0';
1486 info->shortname[0] = '\0';
1487 info->more_display[0] = '\0';
1488
1489 /* Assume the characters indicating the packet type have been stripped */
1490 pkt = unpack_int (pkt, &mask); /* arg mask */
1491 pkt = unpack_threadid (pkt, &ref);
1492
1493 if (mask == 0)
1494 warning ("Incomplete response to threadinfo request\n");
1495 if (!threadmatch (&ref, expectedref))
1496 { /* This is an answer to a different request */
1497 warning ("ERROR RMT Thread info mismatch\n");
1498 return 0;
1499 }
1500 copy_threadref (&info->threadid, &ref);
1501
1502 /* Loop on tagged fields , try to bail if somthing goes wrong */
1503
1504 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1505 {
1506 pkt = unpack_int (pkt, &tag); /* tag */
1507 pkt = unpack_byte (pkt, &length); /* length */
1508 if (!(tag & mask)) /* tags out of synch with mask */
1509 {
1510 warning ("ERROR RMT: threadinfo tag mismatch\n");
1511 retval = 0;
1512 break;
1513 }
1514 if (tag == TAG_THREADID)
1515 {
1516 if (length != 16)
1517 {
1518 warning ("ERROR RMT: length of threadid is not 16\n");
1519 retval = 0;
1520 break;
1521 }
1522 pkt = unpack_threadid (pkt, &ref);
1523 mask = mask & ~TAG_THREADID;
1524 continue;
1525 }
1526 if (tag == TAG_EXISTS)
1527 {
1528 info->active = stub_unpack_int (pkt, length);
1529 pkt += length;
1530 mask = mask & ~(TAG_EXISTS);
1531 if (length > 8)
1532 {
1533 warning ("ERROR RMT: 'exists' length too long\n");
1534 retval = 0;
1535 break;
1536 }
1537 continue;
1538 }
1539 if (tag == TAG_THREADNAME)
1540 {
1541 pkt = unpack_string (pkt, &info->shortname[0], length);
1542 mask = mask & ~TAG_THREADNAME;
1543 continue;
1544 }
1545 if (tag == TAG_DISPLAY)
1546 {
1547 pkt = unpack_string (pkt, &info->display[0], length);
1548 mask = mask & ~TAG_DISPLAY;
1549 continue;
1550 }
1551 if (tag == TAG_MOREDISPLAY)
1552 {
1553 pkt = unpack_string (pkt, &info->more_display[0], length);
1554 mask = mask & ~TAG_MOREDISPLAY;
1555 continue;
1556 }
1557 warning ("ERROR RMT: unknown thread info tag\n");
1558 break; /* Not a tag we know about */
1559 }
1560 return retval;
1561 }
1562
1563 static int
1564 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1565 struct gdb_ext_thread_info *info)
1566 {
1567 struct remote_state *rs = get_remote_state ();
1568 int result;
1569 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1570
1571 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1572 putpkt (threadinfo_pkt);
1573 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1574 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1575 info);
1576 return result;
1577 }
1578
1579 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1580 representation of a threadid. */
1581
1582 static int
1583 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1584 struct gdb_ext_thread_info *info)
1585 {
1586 threadref lclref;
1587
1588 int_to_threadref (&lclref, *ref);
1589 return remote_get_threadinfo (&lclref, selection, info);
1590 }
1591
1592 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1593
1594 static char *
1595 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1596 threadref *nextthread)
1597 {
1598 *pkt++ = 'q'; /* info query packet */
1599 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1600 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1601 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1602 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1603 *pkt = '\0';
1604 return pkt;
1605 }
1606
1607 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1608
1609 static int
1610 parse_threadlist_response (char *pkt, int result_limit,
1611 threadref *original_echo, threadref *resultlist,
1612 int *doneflag)
1613 {
1614 struct remote_state *rs = get_remote_state ();
1615 char *limit;
1616 int count, resultcount, done;
1617
1618 resultcount = 0;
1619 /* Assume the 'q' and 'M chars have been stripped. */
1620 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1621 pkt = unpack_byte (pkt, &count); /* count field */
1622 pkt = unpack_nibble (pkt, &done);
1623 /* The first threadid is the argument threadid. */
1624 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1625 while ((count-- > 0) && (pkt < limit))
1626 {
1627 pkt = unpack_threadid (pkt, resultlist++);
1628 if (resultcount++ >= result_limit)
1629 break;
1630 }
1631 if (doneflag)
1632 *doneflag = done;
1633 return resultcount;
1634 }
1635
1636 static int
1637 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1638 int *done, int *result_count, threadref *threadlist)
1639 {
1640 struct remote_state *rs = get_remote_state ();
1641 static threadref echo_nextthread;
1642 char *threadlist_packet = alloca (rs->remote_packet_size);
1643 char *t_response = alloca (rs->remote_packet_size);
1644 int result = 1;
1645
1646 /* Trancate result limit to be smaller than the packet size */
1647 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1648 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1649
1650 pack_threadlist_request (threadlist_packet,
1651 startflag, result_limit, nextthread);
1652 putpkt (threadlist_packet);
1653 getpkt (t_response, (rs->remote_packet_size), 0);
1654
1655 *result_count =
1656 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1657 threadlist, done);
1658
1659 if (!threadmatch (&echo_nextthread, nextthread))
1660 {
1661 /* FIXME: This is a good reason to drop the packet */
1662 /* Possably, there is a duplicate response */
1663 /* Possabilities :
1664 retransmit immediatly - race conditions
1665 retransmit after timeout - yes
1666 exit
1667 wait for packet, then exit
1668 */
1669 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1670 return 0; /* I choose simply exiting */
1671 }
1672 if (*result_count <= 0)
1673 {
1674 if (*done != 1)
1675 {
1676 warning ("RMT ERROR : failed to get remote thread list\n");
1677 result = 0;
1678 }
1679 return result; /* break; */
1680 }
1681 if (*result_count > result_limit)
1682 {
1683 *result_count = 0;
1684 warning ("RMT ERROR: threadlist response longer than requested\n");
1685 return 0;
1686 }
1687 return result;
1688 }
1689
1690 /* This is the interface between remote and threads, remotes upper interface */
1691
1692 /* remote_find_new_threads retrieves the thread list and for each
1693 thread in the list, looks up the thread in GDB's internal list,
1694 ading the thread if it does not already exist. This involves
1695 getting partial thread lists from the remote target so, polling the
1696 quit_flag is required. */
1697
1698
1699 /* About this many threadisds fit in a packet. */
1700
1701 #define MAXTHREADLISTRESULTS 32
1702
1703 static int
1704 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1705 int looplimit)
1706 {
1707 int done, i, result_count;
1708 int startflag = 1;
1709 int result = 1;
1710 int loopcount = 0;
1711 static threadref nextthread;
1712 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1713
1714 done = 0;
1715 while (!done)
1716 {
1717 if (loopcount++ > looplimit)
1718 {
1719 result = 0;
1720 warning ("Remote fetch threadlist -infinite loop-\n");
1721 break;
1722 }
1723 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1724 &done, &result_count, resultthreadlist))
1725 {
1726 result = 0;
1727 break;
1728 }
1729 /* clear for later iterations */
1730 startflag = 0;
1731 /* Setup to resume next batch of thread references, set nextthread. */
1732 if (result_count >= 1)
1733 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1734 i = 0;
1735 while (result_count--)
1736 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1737 break;
1738 }
1739 return result;
1740 }
1741
1742 static int
1743 remote_newthread_step (threadref *ref, void *context)
1744 {
1745 ptid_t ptid;
1746
1747 ptid = pid_to_ptid (threadref_to_int (ref));
1748
1749 if (!in_thread_list (ptid))
1750 add_thread (ptid);
1751 return 1; /* continue iterator */
1752 }
1753
1754 #define CRAZY_MAX_THREADS 1000
1755
1756 static ptid_t
1757 remote_current_thread (ptid_t oldpid)
1758 {
1759 struct remote_state *rs = get_remote_state ();
1760 char *buf = alloca (rs->remote_packet_size);
1761
1762 putpkt ("qC");
1763 getpkt (buf, (rs->remote_packet_size), 0);
1764 if (buf[0] == 'Q' && buf[1] == 'C')
1765 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1766 else
1767 return oldpid;
1768 }
1769
1770 /* Find new threads for info threads command.
1771 * Original version, using John Metzler's thread protocol.
1772 */
1773
1774 static void
1775 remote_find_new_threads (void)
1776 {
1777 remote_threadlist_iterator (remote_newthread_step, 0,
1778 CRAZY_MAX_THREADS);
1779 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1780 inferior_ptid = remote_current_thread (inferior_ptid);
1781 }
1782
1783 /*
1784 * Find all threads for info threads command.
1785 * Uses new thread protocol contributed by Cisco.
1786 * Falls back and attempts to use the older method (above)
1787 * if the target doesn't respond to the new method.
1788 */
1789
1790 static void
1791 remote_threads_info (void)
1792 {
1793 struct remote_state *rs = get_remote_state ();
1794 char *buf = alloca (rs->remote_packet_size);
1795 char *bufp;
1796 int tid;
1797
1798 if (remote_desc == 0) /* paranoia */
1799 error ("Command can only be used when connected to the remote target.");
1800
1801 if (use_threadinfo_query)
1802 {
1803 putpkt ("qfThreadInfo");
1804 bufp = buf;
1805 getpkt (bufp, (rs->remote_packet_size), 0);
1806 if (bufp[0] != '\0') /* q packet recognized */
1807 {
1808 while (*bufp++ == 'm') /* reply contains one or more TID */
1809 {
1810 do
1811 {
1812 tid = strtol (bufp, &bufp, 16);
1813 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1814 add_thread (pid_to_ptid (tid));
1815 }
1816 while (*bufp++ == ','); /* comma-separated list */
1817 putpkt ("qsThreadInfo");
1818 bufp = buf;
1819 getpkt (bufp, (rs->remote_packet_size), 0);
1820 }
1821 return; /* done */
1822 }
1823 }
1824
1825 /* Else fall back to old method based on jmetzler protocol. */
1826 use_threadinfo_query = 0;
1827 remote_find_new_threads ();
1828 return;
1829 }
1830
1831 /*
1832 * Collect a descriptive string about the given thread.
1833 * The target may say anything it wants to about the thread
1834 * (typically info about its blocked / runnable state, name, etc.).
1835 * This string will appear in the info threads display.
1836 *
1837 * Optional: targets are not required to implement this function.
1838 */
1839
1840 static char *
1841 remote_threads_extra_info (struct thread_info *tp)
1842 {
1843 struct remote_state *rs = get_remote_state ();
1844 int result;
1845 int set;
1846 threadref id;
1847 struct gdb_ext_thread_info threadinfo;
1848 static char display_buf[100]; /* arbitrary... */
1849 char *bufp = alloca (rs->remote_packet_size);
1850 int n = 0; /* position in display_buf */
1851
1852 if (remote_desc == 0) /* paranoia */
1853 internal_error (__FILE__, __LINE__,
1854 "remote_threads_extra_info");
1855
1856 if (use_threadextra_query)
1857 {
1858 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1859 putpkt (bufp);
1860 getpkt (bufp, (rs->remote_packet_size), 0);
1861 if (bufp[0] != 0)
1862 {
1863 n = min (strlen (bufp) / 2, sizeof (display_buf));
1864 result = hex2bin (bufp, display_buf, n);
1865 display_buf [result] = '\0';
1866 return display_buf;
1867 }
1868 }
1869
1870 /* If the above query fails, fall back to the old method. */
1871 use_threadextra_query = 0;
1872 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1873 | TAG_MOREDISPLAY | TAG_DISPLAY;
1874 int_to_threadref (&id, PIDGET (tp->ptid));
1875 if (remote_get_threadinfo (&id, set, &threadinfo))
1876 if (threadinfo.active)
1877 {
1878 if (*threadinfo.shortname)
1879 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1880 if (*threadinfo.display)
1881 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1882 if (*threadinfo.more_display)
1883 n += sprintf(&display_buf[n], " Priority: %s",
1884 threadinfo.more_display);
1885
1886 if (n > 0)
1887 {
1888 /* for purely cosmetic reasons, clear up trailing commas */
1889 if (',' == display_buf[n-1])
1890 display_buf[n-1] = ' ';
1891 return display_buf;
1892 }
1893 }
1894 return NULL;
1895 }
1896
1897 \f
1898
1899 /* Restart the remote side; this is an extended protocol operation. */
1900
1901 static void
1902 extended_remote_restart (void)
1903 {
1904 struct remote_state *rs = get_remote_state ();
1905 char *buf = alloca (rs->remote_packet_size);
1906
1907 /* Send the restart command; for reasons I don't understand the
1908 remote side really expects a number after the "R". */
1909 buf[0] = 'R';
1910 sprintf (&buf[1], "%x", 0);
1911 putpkt (buf);
1912
1913 /* Now query for status so this looks just like we restarted
1914 gdbserver from scratch. */
1915 putpkt ("?");
1916 getpkt (buf, (rs->remote_packet_size), 0);
1917 }
1918 \f
1919 /* Clean up connection to a remote debugger. */
1920
1921 static void
1922 remote_close (int quitting)
1923 {
1924 if (remote_desc)
1925 serial_close (remote_desc);
1926 remote_desc = NULL;
1927 }
1928
1929 /* Query the remote side for the text, data and bss offsets. */
1930
1931 static void
1932 get_offsets (void)
1933 {
1934 struct remote_state *rs = get_remote_state ();
1935 char *buf = alloca (rs->remote_packet_size);
1936 char *ptr;
1937 int lose;
1938 CORE_ADDR text_addr, data_addr, bss_addr;
1939 struct section_offsets *offs;
1940
1941 putpkt ("qOffsets");
1942
1943 getpkt (buf, (rs->remote_packet_size), 0);
1944
1945 if (buf[0] == '\000')
1946 return; /* Return silently. Stub doesn't support
1947 this command. */
1948 if (buf[0] == 'E')
1949 {
1950 warning ("Remote failure reply: %s", buf);
1951 return;
1952 }
1953
1954 /* Pick up each field in turn. This used to be done with scanf, but
1955 scanf will make trouble if CORE_ADDR size doesn't match
1956 conversion directives correctly. The following code will work
1957 with any size of CORE_ADDR. */
1958 text_addr = data_addr = bss_addr = 0;
1959 ptr = buf;
1960 lose = 0;
1961
1962 if (strncmp (ptr, "Text=", 5) == 0)
1963 {
1964 ptr += 5;
1965 /* Don't use strtol, could lose on big values. */
1966 while (*ptr && *ptr != ';')
1967 text_addr = (text_addr << 4) + fromhex (*ptr++);
1968 }
1969 else
1970 lose = 1;
1971
1972 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1973 {
1974 ptr += 6;
1975 while (*ptr && *ptr != ';')
1976 data_addr = (data_addr << 4) + fromhex (*ptr++);
1977 }
1978 else
1979 lose = 1;
1980
1981 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1982 {
1983 ptr += 5;
1984 while (*ptr && *ptr != ';')
1985 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1986 }
1987 else
1988 lose = 1;
1989
1990 if (lose)
1991 error ("Malformed response to offset query, %s", buf);
1992
1993 if (symfile_objfile == NULL)
1994 return;
1995
1996 offs = ((struct section_offsets *)
1997 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1998 memcpy (offs, symfile_objfile->section_offsets,
1999 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2000
2001 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2002
2003 /* This is a temporary kludge to force data and bss to use the same offsets
2004 because that's what nlmconv does now. The real solution requires changes
2005 to the stub and remote.c that I don't have time to do right now. */
2006
2007 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2008 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2009
2010 objfile_relocate (symfile_objfile, offs);
2011 }
2012
2013 /*
2014 * Cisco version of section offsets:
2015 *
2016 * Instead of having GDB query the target for the section offsets,
2017 * Cisco lets the target volunteer the information! It's also in
2018 * a different format, so here are the functions that will decode
2019 * a section offset packet from a Cisco target.
2020 */
2021
2022 /*
2023 * Function: remote_cisco_section_offsets
2024 *
2025 * Returns: zero for success, non-zero for failure
2026 */
2027
2028 static int
2029 remote_cisco_section_offsets (bfd_vma text_addr,
2030 bfd_vma data_addr,
2031 bfd_vma bss_addr,
2032 bfd_signed_vma *text_offs,
2033 bfd_signed_vma *data_offs,
2034 bfd_signed_vma *bss_offs)
2035 {
2036 bfd_vma text_base, data_base, bss_base;
2037 struct minimal_symbol *start;
2038 asection *sect;
2039 bfd *abfd;
2040 int len;
2041
2042 if (symfile_objfile == NULL)
2043 return -1; /* no can do nothin' */
2044
2045 start = lookup_minimal_symbol ("_start", NULL, NULL);
2046 if (start == NULL)
2047 return -1; /* Can't find "_start" symbol */
2048
2049 data_base = bss_base = 0;
2050 text_base = SYMBOL_VALUE_ADDRESS (start);
2051
2052 abfd = symfile_objfile->obfd;
2053 for (sect = abfd->sections;
2054 sect != 0;
2055 sect = sect->next)
2056 {
2057 const char *p = bfd_get_section_name (abfd, sect);
2058 len = strlen (p);
2059 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2060 if (data_base == 0 ||
2061 data_base > bfd_get_section_vma (abfd, sect))
2062 data_base = bfd_get_section_vma (abfd, sect);
2063 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2064 if (bss_base == 0 ||
2065 bss_base > bfd_get_section_vma (abfd, sect))
2066 bss_base = bfd_get_section_vma (abfd, sect);
2067 }
2068 *text_offs = text_addr - text_base;
2069 *data_offs = data_addr - data_base;
2070 *bss_offs = bss_addr - bss_base;
2071 if (remote_debug)
2072 {
2073 char tmp[128];
2074
2075 sprintf (tmp, "VMA: text = 0x");
2076 sprintf_vma (tmp + strlen (tmp), text_addr);
2077 sprintf (tmp + strlen (tmp), " data = 0x");
2078 sprintf_vma (tmp + strlen (tmp), data_addr);
2079 sprintf (tmp + strlen (tmp), " bss = 0x");
2080 sprintf_vma (tmp + strlen (tmp), bss_addr);
2081 fputs_filtered (tmp, gdb_stdlog);
2082 fprintf_filtered (gdb_stdlog,
2083 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2084 paddr_nz (*text_offs),
2085 paddr_nz (*data_offs),
2086 paddr_nz (*bss_offs));
2087 }
2088
2089 return 0;
2090 }
2091
2092 /*
2093 * Function: remote_cisco_objfile_relocate
2094 *
2095 * Relocate the symbol file for a remote target.
2096 */
2097
2098 void
2099 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2100 bfd_signed_vma bss_off)
2101 {
2102 struct section_offsets *offs;
2103
2104 if (text_off != 0 || data_off != 0 || bss_off != 0)
2105 {
2106 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2107 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2108 simple canonical representation for this stuff. */
2109
2110 offs = (struct section_offsets *)
2111 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2112 memcpy (offs, symfile_objfile->section_offsets,
2113 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2114
2115 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2116 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2117 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2118
2119 /* First call the standard objfile_relocate. */
2120 objfile_relocate (symfile_objfile, offs);
2121
2122 /* Now we need to fix up the section entries already attached to
2123 the exec target. These entries will control memory transfers
2124 from the exec file. */
2125
2126 exec_set_section_offsets (text_off, data_off, bss_off);
2127 }
2128 }
2129
2130 /* Stub for catch_errors. */
2131
2132 static int
2133 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2134 {
2135 start_remote (); /* Initialize gdb process mechanisms */
2136 /* NOTE: Return something >=0. A -ve value is reserved for
2137 catch_exceptions. */
2138 return 1;
2139 }
2140
2141 static int
2142 remote_start_remote (struct ui_out *uiout, void *dummy)
2143 {
2144 immediate_quit++; /* Allow user to interrupt it */
2145
2146 /* Ack any packet which the remote side has already sent. */
2147 serial_write (remote_desc, "+", 1);
2148
2149 /* Let the stub know that we want it to return the thread. */
2150 set_thread (-1, 0);
2151
2152 inferior_ptid = remote_current_thread (inferior_ptid);
2153
2154 get_offsets (); /* Get text, data & bss offsets */
2155
2156 putpkt ("?"); /* initiate a query from remote machine */
2157 immediate_quit--;
2158
2159 /* NOTE: See comment above in remote_start_remote_dummy(). This
2160 function returns something >=0. */
2161 return remote_start_remote_dummy (uiout, dummy);
2162 }
2163
2164 /* Open a connection to a remote debugger.
2165 NAME is the filename used for communication. */
2166
2167 static void
2168 remote_open (char *name, int from_tty)
2169 {
2170 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2171 }
2172
2173 /* Just like remote_open, but with asynchronous support. */
2174 static void
2175 remote_async_open (char *name, int from_tty)
2176 {
2177 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2178 }
2179
2180 /* Open a connection to a remote debugger using the extended
2181 remote gdb protocol. NAME is the filename used for communication. */
2182
2183 static void
2184 extended_remote_open (char *name, int from_tty)
2185 {
2186 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2187 0 /* async_p */);
2188 }
2189
2190 /* Just like extended_remote_open, but with asynchronous support. */
2191 static void
2192 extended_remote_async_open (char *name, int from_tty)
2193 {
2194 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2195 1 /*extended_p */, 1 /* async_p */);
2196 }
2197
2198 /* Generic code for opening a connection to a remote target. */
2199
2200 static void
2201 init_all_packet_configs (void)
2202 {
2203 int i;
2204 update_packet_config (&remote_protocol_e);
2205 update_packet_config (&remote_protocol_E);
2206 update_packet_config (&remote_protocol_P);
2207 update_packet_config (&remote_protocol_qSymbol);
2208 update_packet_config (&remote_protocol_vcont);
2209 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2210 update_packet_config (&remote_protocol_Z[i]);
2211 /* Force remote_write_bytes to check whether target supports binary
2212 downloading. */
2213 update_packet_config (&remote_protocol_binary_download);
2214 }
2215
2216 /* Symbol look-up. */
2217
2218 static void
2219 remote_check_symbols (struct objfile *objfile)
2220 {
2221 struct remote_state *rs = get_remote_state ();
2222 char *msg, *reply, *tmp;
2223 struct minimal_symbol *sym;
2224 int end;
2225
2226 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2227 return;
2228
2229 msg = alloca (rs->remote_packet_size);
2230 reply = alloca (rs->remote_packet_size);
2231
2232 /* Invite target to request symbol lookups. */
2233
2234 putpkt ("qSymbol::");
2235 getpkt (reply, (rs->remote_packet_size), 0);
2236 packet_ok (reply, &remote_protocol_qSymbol);
2237
2238 while (strncmp (reply, "qSymbol:", 8) == 0)
2239 {
2240 tmp = &reply[8];
2241 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2242 msg[end] = '\0';
2243 sym = lookup_minimal_symbol (msg, NULL, NULL);
2244 if (sym == NULL)
2245 sprintf (msg, "qSymbol::%s", &reply[8]);
2246 else
2247 sprintf (msg, "qSymbol:%s:%s",
2248 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2249 &reply[8]);
2250 putpkt (msg);
2251 getpkt (reply, (rs->remote_packet_size), 0);
2252 }
2253 }
2254
2255 static struct serial *
2256 remote_serial_open (char *name)
2257 {
2258 static int udp_warning = 0;
2259
2260 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2261 of in ser-tcp.c, because it is the remote protocol assuming that the
2262 serial connection is reliable and not the serial connection promising
2263 to be. */
2264 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2265 {
2266 warning ("The remote protocol may be unreliable over UDP.");
2267 warning ("Some events may be lost, rendering further debugging "
2268 "impossible.");
2269 udp_warning = 1;
2270 }
2271
2272 return serial_open (name);
2273 }
2274
2275 static void
2276 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2277 int extended_p, int async_p)
2278 {
2279 int ex;
2280 struct remote_state *rs = get_remote_state ();
2281 if (name == 0)
2282 error ("To open a remote debug connection, you need to specify what\n"
2283 "serial device is attached to the remote system\n"
2284 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2285
2286 /* See FIXME above */
2287 if (!async_p)
2288 wait_forever_enabled_p = 1;
2289
2290 target_preopen (from_tty);
2291
2292 unpush_target (target);
2293
2294 remote_desc = remote_serial_open (name);
2295 if (!remote_desc)
2296 perror_with_name (name);
2297
2298 if (baud_rate != -1)
2299 {
2300 if (serial_setbaudrate (remote_desc, baud_rate))
2301 {
2302 /* The requested speed could not be set. Error out to
2303 top level after closing remote_desc. Take care to
2304 set remote_desc to NULL to avoid closing remote_desc
2305 more than once. */
2306 serial_close (remote_desc);
2307 remote_desc = NULL;
2308 perror_with_name (name);
2309 }
2310 }
2311
2312 serial_raw (remote_desc);
2313
2314 /* If there is something sitting in the buffer we might take it as a
2315 response to a command, which would be bad. */
2316 serial_flush_input (remote_desc);
2317
2318 if (from_tty)
2319 {
2320 puts_filtered ("Remote debugging using ");
2321 puts_filtered (name);
2322 puts_filtered ("\n");
2323 }
2324 push_target (target); /* Switch to using remote target now */
2325
2326 init_all_packet_configs ();
2327
2328 general_thread = -2;
2329 continue_thread = -2;
2330
2331 /* Probe for ability to use "ThreadInfo" query, as required. */
2332 use_threadinfo_query = 1;
2333 use_threadextra_query = 1;
2334
2335 /* Without this, some commands which require an active target (such
2336 as kill) won't work. This variable serves (at least) double duty
2337 as both the pid of the target process (if it has such), and as a
2338 flag indicating that a target is active. These functions should
2339 be split out into seperate variables, especially since GDB will
2340 someday have a notion of debugging several processes. */
2341
2342 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2343
2344 if (async_p)
2345 {
2346 /* With this target we start out by owning the terminal. */
2347 remote_async_terminal_ours_p = 1;
2348
2349 /* FIXME: cagney/1999-09-23: During the initial connection it is
2350 assumed that the target is already ready and able to respond to
2351 requests. Unfortunately remote_start_remote() eventually calls
2352 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2353 around this. Eventually a mechanism that allows
2354 wait_for_inferior() to expect/get timeouts will be
2355 implemented. */
2356 wait_forever_enabled_p = 0;
2357 }
2358
2359 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2360 /* First delete any symbols previously loaded from shared libraries. */
2361 no_shared_libraries (NULL, 0);
2362 #endif
2363
2364 /* Start the remote connection. If error() or QUIT, discard this
2365 target (we'd otherwise be in an inconsistent state) and then
2366 propogate the error on up the exception chain. This ensures that
2367 the caller doesn't stumble along blindly assuming that the
2368 function succeeded. The CLI doesn't have this problem but other
2369 UI's, such as MI do.
2370
2371 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2372 this function should return an error indication letting the
2373 caller restore the previous state. Unfortunately the command
2374 ``target remote'' is directly wired to this function making that
2375 impossible. On a positive note, the CLI side of this problem has
2376 been fixed - the function set_cmd_context() makes it possible for
2377 all the ``target ....'' commands to share a common callback
2378 function. See cli-dump.c. */
2379 ex = catch_exceptions (uiout,
2380 remote_start_remote, NULL,
2381 "Couldn't establish connection to remote"
2382 " target\n",
2383 RETURN_MASK_ALL);
2384 if (ex < 0)
2385 {
2386 pop_target ();
2387 if (async_p)
2388 wait_forever_enabled_p = 1;
2389 throw_exception (ex);
2390 }
2391
2392 if (async_p)
2393 wait_forever_enabled_p = 1;
2394
2395 if (extended_p)
2396 {
2397 /* Tell the remote that we are using the extended protocol. */
2398 char *buf = alloca (rs->remote_packet_size);
2399 putpkt ("!");
2400 getpkt (buf, (rs->remote_packet_size), 0);
2401 }
2402 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2403 /* FIXME: need a master target_open vector from which all
2404 remote_opens can be called, so that stuff like this can
2405 go there. Failing that, the following code must be copied
2406 to the open function for any remote target that wants to
2407 support svr4 shared libraries. */
2408
2409 /* Set up to detect and load shared libraries. */
2410 if (exec_bfd) /* No use without an exec file. */
2411 {
2412 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2413 remote_check_symbols (symfile_objfile);
2414 }
2415 #endif
2416 }
2417
2418 /* This takes a program previously attached to and detaches it. After
2419 this is done, GDB can be used to debug some other program. We
2420 better not have left any breakpoints in the target program or it'll
2421 die when it hits one. */
2422
2423 static void
2424 remote_detach (char *args, int from_tty)
2425 {
2426 struct remote_state *rs = get_remote_state ();
2427 char *buf = alloca (rs->remote_packet_size);
2428
2429 if (args)
2430 error ("Argument given to \"detach\" when remotely debugging.");
2431
2432 /* Tell the remote target to detach. */
2433 strcpy (buf, "D");
2434 remote_send (buf, (rs->remote_packet_size));
2435
2436 /* Unregister the file descriptor from the event loop. */
2437 if (target_is_async_p ())
2438 serial_async (remote_desc, NULL, 0);
2439
2440 target_mourn_inferior ();
2441 if (from_tty)
2442 puts_filtered ("Ending remote debugging.\n");
2443 }
2444
2445 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2446
2447 static void
2448 remote_disconnect (char *args, int from_tty)
2449 {
2450 struct remote_state *rs = get_remote_state ();
2451 char *buf = alloca (rs->remote_packet_size);
2452
2453 if (args)
2454 error ("Argument given to \"detach\" when remotely debugging.");
2455
2456 /* Unregister the file descriptor from the event loop. */
2457 if (target_is_async_p ())
2458 serial_async (remote_desc, NULL, 0);
2459
2460 target_mourn_inferior ();
2461 if (from_tty)
2462 puts_filtered ("Ending remote debugging.\n");
2463 }
2464
2465 /* Convert hex digit A to a number. */
2466
2467 static int
2468 fromhex (int a)
2469 {
2470 if (a >= '0' && a <= '9')
2471 return a - '0';
2472 else if (a >= 'a' && a <= 'f')
2473 return a - 'a' + 10;
2474 else if (a >= 'A' && a <= 'F')
2475 return a - 'A' + 10;
2476 else
2477 error ("Reply contains invalid hex digit %d", a);
2478 }
2479
2480 static int
2481 hex2bin (const char *hex, char *bin, int count)
2482 {
2483 int i;
2484
2485 for (i = 0; i < count; i++)
2486 {
2487 if (hex[0] == 0 || hex[1] == 0)
2488 {
2489 /* Hex string is short, or of uneven length.
2490 Return the count that has been converted so far. */
2491 return i;
2492 }
2493 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2494 hex += 2;
2495 }
2496 return i;
2497 }
2498
2499 /* Convert number NIB to a hex digit. */
2500
2501 static int
2502 tohex (int nib)
2503 {
2504 if (nib < 10)
2505 return '0' + nib;
2506 else
2507 return 'a' + nib - 10;
2508 }
2509
2510 static int
2511 bin2hex (const char *bin, char *hex, int count)
2512 {
2513 int i;
2514 /* May use a length, or a nul-terminated string as input. */
2515 if (count == 0)
2516 count = strlen (bin);
2517
2518 for (i = 0; i < count; i++)
2519 {
2520 *hex++ = tohex ((*bin >> 4) & 0xf);
2521 *hex++ = tohex (*bin++ & 0xf);
2522 }
2523 *hex = 0;
2524 return i;
2525 }
2526 \f
2527 /* Check for the availability of vCont. This function should also check
2528 the response. */
2529
2530 static void
2531 remote_vcont_probe (struct remote_state *rs, char *buf)
2532 {
2533 strcpy (buf, "vCont?");
2534 putpkt (buf);
2535 getpkt (buf, rs->remote_packet_size, 0);
2536
2537 /* Make sure that the features we assume are supported. */
2538 if (strncmp (buf, "vCont", 5) == 0)
2539 {
2540 char *p = &buf[5];
2541 int support_s, support_S, support_c, support_C;
2542
2543 support_s = 0;
2544 support_S = 0;
2545 support_c = 0;
2546 support_C = 0;
2547 while (p && *p == ';')
2548 {
2549 p++;
2550 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2551 support_s = 1;
2552 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2553 support_S = 1;
2554 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2555 support_c = 1;
2556 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2557 support_C = 1;
2558
2559 p = strchr (p, ';');
2560 }
2561
2562 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2563 BUF will make packet_ok disable the packet. */
2564 if (!support_s || !support_S || !support_c || !support_C)
2565 buf[0] = 0;
2566 }
2567
2568 packet_ok (buf, &remote_protocol_vcont);
2569 }
2570
2571 /* Resume the remote inferior by using a "vCont" packet. The thread
2572 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2573 resumed thread should be single-stepped and/or signalled. If PTID's
2574 PID is -1, then all threads are resumed; the thread to be stepped and/or
2575 signalled is given in the global INFERIOR_PTID. This function returns
2576 non-zero iff it resumes the inferior.
2577
2578 This function issues a strict subset of all possible vCont commands at the
2579 moment. */
2580
2581 static int
2582 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2583 {
2584 struct remote_state *rs = get_remote_state ();
2585 int pid = PIDGET (ptid);
2586 char *buf = NULL;
2587 struct cleanup *old_cleanup;
2588
2589 buf = xmalloc (rs->remote_packet_size);
2590 old_cleanup = make_cleanup (xfree, buf);
2591
2592 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2593 remote_vcont_probe (rs, buf);
2594
2595 if (remote_protocol_vcont.support == PACKET_DISABLE)
2596 {
2597 do_cleanups (old_cleanup);
2598 return 0;
2599 }
2600
2601 /* If we could generate a wider range of packets, we'd have to worry
2602 about overflowing BUF. Should there be a generic
2603 "multi-part-packet" packet? */
2604
2605 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2606 {
2607 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2608 don't have any PID numbers the inferior will understand. Make sure
2609 to only send forms that do not specify a PID. */
2610 if (step && siggnal != TARGET_SIGNAL_0)
2611 sprintf (buf, "vCont;S%02x", siggnal);
2612 else if (step)
2613 sprintf (buf, "vCont;s");
2614 else if (siggnal != TARGET_SIGNAL_0)
2615 sprintf (buf, "vCont;C%02x", siggnal);
2616 else
2617 sprintf (buf, "vCont;c");
2618 }
2619 else if (pid == -1)
2620 {
2621 /* Resume all threads, with preference for INFERIOR_PTID. */
2622 if (step && siggnal != TARGET_SIGNAL_0)
2623 sprintf (buf, "vCont;S%02x:%x;c", siggnal, PIDGET (inferior_ptid));
2624 else if (step)
2625 sprintf (buf, "vCont;s:%x;c", PIDGET (inferior_ptid));
2626 else if (siggnal != TARGET_SIGNAL_0)
2627 sprintf (buf, "vCont;C%02x:%x;c", siggnal, PIDGET (inferior_ptid));
2628 else
2629 sprintf (buf, "vCont;c");
2630 }
2631 else
2632 {
2633 /* Scheduler locking; resume only PTID. */
2634 if (step && siggnal != TARGET_SIGNAL_0)
2635 sprintf (buf, "vCont;S%02x:%x", siggnal, pid);
2636 else if (step)
2637 sprintf (buf, "vCont;s:%x", pid);
2638 else if (siggnal != TARGET_SIGNAL_0)
2639 sprintf (buf, "vCont;C%02x:%x", siggnal, pid);
2640 else
2641 sprintf (buf, "vCont;c:%x", pid);
2642 }
2643
2644 putpkt (buf);
2645
2646 do_cleanups (old_cleanup);
2647
2648 return 1;
2649 }
2650
2651 /* Tell the remote machine to resume. */
2652
2653 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2654
2655 static int last_sent_step;
2656
2657 static void
2658 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2659 {
2660 struct remote_state *rs = get_remote_state ();
2661 char *buf = alloca (rs->remote_packet_size);
2662 int pid = PIDGET (ptid);
2663 char *p;
2664
2665 last_sent_signal = siggnal;
2666 last_sent_step = step;
2667
2668 /* A hook for when we need to do something at the last moment before
2669 resumption. */
2670 if (target_resume_hook)
2671 (*target_resume_hook) ();
2672
2673 /* The vCont packet doesn't need to specify threads via Hc. */
2674 if (remote_vcont_resume (ptid, step, siggnal))
2675 return;
2676
2677 /* All other supported resume packets do use Hc, so call set_thread. */
2678 if (pid == -1)
2679 set_thread (0, 0); /* run any thread */
2680 else
2681 set_thread (pid, 0); /* run this thread */
2682
2683 /* The s/S/c/C packets do not return status. So if the target does
2684 not support the S or C packets, the debug agent returns an empty
2685 string which is detected in remote_wait(). This protocol defect
2686 is fixed in the e/E packets. */
2687
2688 if (step && step_range_end)
2689 {
2690 /* If the target does not support the 'E' packet, we try the 'S'
2691 packet. Ideally we would fall back to the 'e' packet if that
2692 too is not supported. But that would require another copy of
2693 the code to issue the 'e' packet (and fall back to 's' if not
2694 supported) in remote_wait(). */
2695
2696 if (siggnal != TARGET_SIGNAL_0)
2697 {
2698 if (remote_protocol_E.support != PACKET_DISABLE)
2699 {
2700 p = buf;
2701 *p++ = 'E';
2702 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2703 *p++ = tohex (((int) siggnal) & 0xf);
2704 *p++ = ',';
2705 p += hexnumstr (p, (ULONGEST) step_range_start);
2706 *p++ = ',';
2707 p += hexnumstr (p, (ULONGEST) step_range_end);
2708 *p++ = 0;
2709
2710 putpkt (buf);
2711 getpkt (buf, (rs->remote_packet_size), 0);
2712
2713 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2714 return;
2715 }
2716 }
2717 else
2718 {
2719 if (remote_protocol_e.support != PACKET_DISABLE)
2720 {
2721 p = buf;
2722 *p++ = 'e';
2723 p += hexnumstr (p, (ULONGEST) step_range_start);
2724 *p++ = ',';
2725 p += hexnumstr (p, (ULONGEST) step_range_end);
2726 *p++ = 0;
2727
2728 putpkt (buf);
2729 getpkt (buf, (rs->remote_packet_size), 0);
2730
2731 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2732 return;
2733 }
2734 }
2735 }
2736
2737 if (siggnal != TARGET_SIGNAL_0)
2738 {
2739 buf[0] = step ? 'S' : 'C';
2740 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2741 buf[2] = tohex (((int) siggnal) & 0xf);
2742 buf[3] = '\0';
2743 }
2744 else
2745 strcpy (buf, step ? "s" : "c");
2746
2747 putpkt (buf);
2748 }
2749
2750 /* Same as remote_resume, but with async support. */
2751 static void
2752 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2753 {
2754 remote_resume (ptid, step, siggnal);
2755
2756 /* We are about to start executing the inferior, let's register it
2757 with the event loop. NOTE: this is the one place where all the
2758 execution commands end up. We could alternatively do this in each
2759 of the execution commands in infcmd.c.*/
2760 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2761 into infcmd.c in order to allow inferior function calls to work
2762 NOT asynchronously. */
2763 if (event_loop_p && target_can_async_p ())
2764 target_async (inferior_event_handler, 0);
2765 /* Tell the world that the target is now executing. */
2766 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2767 this? Instead, should the client of target just assume (for
2768 async targets) that the target is going to start executing? Is
2769 this information already found in the continuation block? */
2770 if (target_is_async_p ())
2771 target_executing = 1;
2772 }
2773 \f
2774
2775 /* Set up the signal handler for SIGINT, while the target is
2776 executing, ovewriting the 'regular' SIGINT signal handler. */
2777 static void
2778 initialize_sigint_signal_handler (void)
2779 {
2780 sigint_remote_token =
2781 create_async_signal_handler (async_remote_interrupt, NULL);
2782 signal (SIGINT, handle_remote_sigint);
2783 }
2784
2785 /* Signal handler for SIGINT, while the target is executing. */
2786 static void
2787 handle_remote_sigint (int sig)
2788 {
2789 signal (sig, handle_remote_sigint_twice);
2790 sigint_remote_twice_token =
2791 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2792 mark_async_signal_handler_wrapper (sigint_remote_token);
2793 }
2794
2795 /* Signal handler for SIGINT, installed after SIGINT has already been
2796 sent once. It will take effect the second time that the user sends
2797 a ^C. */
2798 static void
2799 handle_remote_sigint_twice (int sig)
2800 {
2801 signal (sig, handle_sigint);
2802 sigint_remote_twice_token =
2803 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2804 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2805 }
2806
2807 /* Perform the real interruption of the target execution, in response
2808 to a ^C. */
2809 static void
2810 async_remote_interrupt (gdb_client_data arg)
2811 {
2812 if (remote_debug)
2813 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2814
2815 target_stop ();
2816 }
2817
2818 /* Perform interrupt, if the first attempt did not succeed. Just give
2819 up on the target alltogether. */
2820 void
2821 async_remote_interrupt_twice (gdb_client_data arg)
2822 {
2823 if (remote_debug)
2824 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2825 /* Do something only if the target was not killed by the previous
2826 cntl-C. */
2827 if (target_executing)
2828 {
2829 interrupt_query ();
2830 signal (SIGINT, handle_remote_sigint);
2831 }
2832 }
2833
2834 /* Reinstall the usual SIGINT handlers, after the target has
2835 stopped. */
2836 static void
2837 cleanup_sigint_signal_handler (void *dummy)
2838 {
2839 signal (SIGINT, handle_sigint);
2840 if (sigint_remote_twice_token)
2841 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2842 if (sigint_remote_token)
2843 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2844 }
2845
2846 /* Send ^C to target to halt it. Target will respond, and send us a
2847 packet. */
2848 static void (*ofunc) (int);
2849
2850 /* The command line interface's stop routine. This function is installed
2851 as a signal handler for SIGINT. The first time a user requests a
2852 stop, we call remote_stop to send a break or ^C. If there is no
2853 response from the target (it didn't stop when the user requested it),
2854 we ask the user if he'd like to detach from the target. */
2855 static void
2856 remote_interrupt (int signo)
2857 {
2858 /* If this doesn't work, try more severe steps. */
2859 signal (signo, remote_interrupt_twice);
2860
2861 if (remote_debug)
2862 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2863
2864 target_stop ();
2865 }
2866
2867 /* The user typed ^C twice. */
2868
2869 static void
2870 remote_interrupt_twice (int signo)
2871 {
2872 signal (signo, ofunc);
2873 interrupt_query ();
2874 signal (signo, remote_interrupt);
2875 }
2876
2877 /* This is the generic stop called via the target vector. When a target
2878 interrupt is requested, either by the command line or the GUI, we
2879 will eventually end up here. */
2880 static void
2881 remote_stop (void)
2882 {
2883 /* Send a break or a ^C, depending on user preference. */
2884 if (remote_debug)
2885 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2886
2887 if (remote_break)
2888 serial_send_break (remote_desc);
2889 else
2890 serial_write (remote_desc, "\003", 1);
2891 }
2892
2893 /* Ask the user what to do when an interrupt is received. */
2894
2895 static void
2896 interrupt_query (void)
2897 {
2898 target_terminal_ours ();
2899
2900 if (query ("Interrupted while waiting for the program.\n\
2901 Give up (and stop debugging it)? "))
2902 {
2903 target_mourn_inferior ();
2904 throw_exception (RETURN_QUIT);
2905 }
2906
2907 target_terminal_inferior ();
2908 }
2909
2910 /* Enable/disable target terminal ownership. Most targets can use
2911 terminal groups to control terminal ownership. Remote targets are
2912 different in that explicit transfer of ownership to/from GDB/target
2913 is required. */
2914
2915 static void
2916 remote_async_terminal_inferior (void)
2917 {
2918 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2919 sync_execution here. This function should only be called when
2920 GDB is resuming the inferior in the forground. A background
2921 resume (``run&'') should leave GDB in control of the terminal and
2922 consequently should not call this code. */
2923 if (!sync_execution)
2924 return;
2925 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2926 calls target_terminal_*() idenpotent. The event-loop GDB talking
2927 to an asynchronous target with a synchronous command calls this
2928 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2929 stops trying to transfer the terminal to the target when it
2930 shouldn't this guard can go away. */
2931 if (!remote_async_terminal_ours_p)
2932 return;
2933 delete_file_handler (input_fd);
2934 remote_async_terminal_ours_p = 0;
2935 initialize_sigint_signal_handler ();
2936 /* NOTE: At this point we could also register our selves as the
2937 recipient of all input. Any characters typed could then be
2938 passed on down to the target. */
2939 }
2940
2941 static void
2942 remote_async_terminal_ours (void)
2943 {
2944 /* See FIXME in remote_async_terminal_inferior. */
2945 if (!sync_execution)
2946 return;
2947 /* See FIXME in remote_async_terminal_inferior. */
2948 if (remote_async_terminal_ours_p)
2949 return;
2950 cleanup_sigint_signal_handler (NULL);
2951 add_file_handler (input_fd, stdin_event_handler, 0);
2952 remote_async_terminal_ours_p = 1;
2953 }
2954
2955 /* If nonzero, ignore the next kill. */
2956
2957 int kill_kludge;
2958
2959 void
2960 remote_console_output (char *msg)
2961 {
2962 char *p;
2963
2964 for (p = msg; p[0] && p[1]; p += 2)
2965 {
2966 char tb[2];
2967 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2968 tb[0] = c;
2969 tb[1] = 0;
2970 fputs_unfiltered (tb, gdb_stdtarg);
2971 }
2972 gdb_flush (gdb_stdtarg);
2973 }
2974
2975 /* Wait until the remote machine stops, then return,
2976 storing status in STATUS just as `wait' would.
2977 Returns "pid", which in the case of a multi-threaded
2978 remote OS, is the thread-id. */
2979
2980 static ptid_t
2981 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2982 {
2983 struct remote_state *rs = get_remote_state ();
2984 unsigned char *buf = alloca (rs->remote_packet_size);
2985 ULONGEST thread_num = -1;
2986 ULONGEST addr;
2987
2988 status->kind = TARGET_WAITKIND_EXITED;
2989 status->value.integer = 0;
2990
2991 while (1)
2992 {
2993 unsigned char *p;
2994
2995 ofunc = signal (SIGINT, remote_interrupt);
2996 getpkt (buf, (rs->remote_packet_size), 1);
2997 signal (SIGINT, ofunc);
2998
2999 /* This is a hook for when we need to do something (perhaps the
3000 collection of trace data) every time the target stops. */
3001 if (target_wait_loop_hook)
3002 (*target_wait_loop_hook) ();
3003
3004 remote_stopped_by_watchpoint_p = 0;
3005
3006 switch (buf[0])
3007 {
3008 case 'E': /* Error of some sort */
3009 warning ("Remote failure reply: %s", buf);
3010 continue;
3011 case 'F': /* File-I/O request */
3012 remote_fileio_request (buf);
3013 continue;
3014 case 'T': /* Status with PC, SP, FP, ... */
3015 {
3016 int i;
3017 char regs[MAX_REGISTER_SIZE];
3018
3019 /* Expedited reply, containing Signal, {regno, reg} repeat */
3020 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3021 ss = signal number
3022 n... = register number
3023 r... = register contents
3024 */
3025 p = &buf[3]; /* after Txx */
3026
3027 while (*p)
3028 {
3029 unsigned char *p1;
3030 char *p_temp;
3031 int fieldsize;
3032 LONGEST pnum = 0;
3033
3034 /* If the packet contains a register number save it in pnum
3035 and set p1 to point to the character following it.
3036 Otherwise p1 points to p. */
3037
3038 /* If this packet is an awatch packet, don't parse the 'a'
3039 as a register number. */
3040
3041 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3042 {
3043 /* Read the ``P'' register number. */
3044 pnum = strtol (p, &p_temp, 16);
3045 p1 = (unsigned char *) p_temp;
3046 }
3047 else
3048 p1 = p;
3049
3050 if (p1 == p) /* No register number present here */
3051 {
3052 p1 = (unsigned char *) strchr (p, ':');
3053 if (p1 == NULL)
3054 warning ("Malformed packet(a) (missing colon): %s\n\
3055 Packet: '%s'\n",
3056 p, buf);
3057 if (strncmp (p, "thread", p1 - p) == 0)
3058 {
3059 p_temp = unpack_varlen_hex (++p1, &thread_num);
3060 record_currthread (thread_num);
3061 p = (unsigned char *) p_temp;
3062 }
3063 else if ((strncmp (p, "watch", p1 - p) == 0)
3064 || (strncmp (p, "rwatch", p1 - p) == 0)
3065 || (strncmp (p, "awatch", p1 - p) == 0))
3066 {
3067 remote_stopped_by_watchpoint_p = 1;
3068 p = unpack_varlen_hex (++p1, &addr);
3069 remote_watch_data_address = (CORE_ADDR)addr;
3070 }
3071 else
3072 {
3073 /* Silently skip unknown optional info. */
3074 p_temp = strchr (p1 + 1, ';');
3075 if (p_temp)
3076 p = (unsigned char *) p_temp;
3077 }
3078 }
3079 else
3080 {
3081 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3082 p = p1;
3083
3084 if (*p++ != ':')
3085 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3086 p, buf);
3087
3088 if (reg == NULL)
3089 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n",
3090 phex_nz (pnum, 0), p, buf);
3091
3092 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3093 p += 2 * fieldsize;
3094 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3095 warning ("Remote reply is too short: %s", buf);
3096 supply_register (reg->regnum, regs);
3097 }
3098
3099 if (*p++ != ';')
3100 error ("Remote register badly formatted: %s\nhere: %s", buf, p);
3101 }
3102 }
3103 /* fall through */
3104 case 'S': /* Old style status, just signal only */
3105 status->kind = TARGET_WAITKIND_STOPPED;
3106 status->value.sig = (enum target_signal)
3107 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3108
3109 if (buf[3] == 'p')
3110 {
3111 /* Export Cisco kernel mode as a convenience variable
3112 (so that it can be used in the GDB prompt if desired). */
3113
3114 if (cisco_kernel_mode == 1)
3115 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3116 value_from_string ("PDEBUG-"));
3117 cisco_kernel_mode = 0;
3118 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3119 record_currthread (thread_num);
3120 }
3121 else if (buf[3] == 'k')
3122 {
3123 /* Export Cisco kernel mode as a convenience variable
3124 (so that it can be used in the GDB prompt if desired). */
3125
3126 if (cisco_kernel_mode == 1)
3127 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3128 value_from_string ("KDEBUG-"));
3129 cisco_kernel_mode = 1;
3130 }
3131 goto got_status;
3132 case 'N': /* Cisco special: status and offsets */
3133 {
3134 bfd_vma text_addr, data_addr, bss_addr;
3135 bfd_signed_vma text_off, data_off, bss_off;
3136 unsigned char *p1;
3137
3138 status->kind = TARGET_WAITKIND_STOPPED;
3139 status->value.sig = (enum target_signal)
3140 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3141
3142 if (symfile_objfile == NULL)
3143 {
3144 warning ("Relocation packet received with no symbol file. \
3145 Packet Dropped");
3146 goto got_status;
3147 }
3148
3149 /* Relocate object file. Buffer format is NAATT;DD;BB
3150 * where AA is the signal number, TT is the new text
3151 * address, DD * is the new data address, and BB is the
3152 * new bss address. */
3153
3154 p = &buf[3];
3155 text_addr = strtoul (p, (char **) &p1, 16);
3156 if (p1 == p || *p1 != ';')
3157 warning ("Malformed relocation packet: Packet '%s'", buf);
3158 p = p1 + 1;
3159 data_addr = strtoul (p, (char **) &p1, 16);
3160 if (p1 == p || *p1 != ';')
3161 warning ("Malformed relocation packet: Packet '%s'", buf);
3162 p = p1 + 1;
3163 bss_addr = strtoul (p, (char **) &p1, 16);
3164 if (p1 == p)
3165 warning ("Malformed relocation packet: Packet '%s'", buf);
3166
3167 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3168 &text_off, &data_off, &bss_off)
3169 == 0)
3170 if (text_off != 0 || data_off != 0 || bss_off != 0)
3171 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3172
3173 goto got_status;
3174 }
3175 case 'W': /* Target exited */
3176 {
3177 /* The remote process exited. */
3178 status->kind = TARGET_WAITKIND_EXITED;
3179 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3180 goto got_status;
3181 }
3182 case 'X':
3183 status->kind = TARGET_WAITKIND_SIGNALLED;
3184 status->value.sig = (enum target_signal)
3185 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3186 kill_kludge = 1;
3187
3188 goto got_status;
3189 case 'O': /* Console output */
3190 remote_console_output (buf + 1);
3191 continue;
3192 case '\0':
3193 if (last_sent_signal != TARGET_SIGNAL_0)
3194 {
3195 /* Zero length reply means that we tried 'S' or 'C' and
3196 the remote system doesn't support it. */
3197 target_terminal_ours_for_output ();
3198 printf_filtered
3199 ("Can't send signals to this remote system. %s not sent.\n",
3200 target_signal_to_name (last_sent_signal));
3201 last_sent_signal = TARGET_SIGNAL_0;
3202 target_terminal_inferior ();
3203
3204 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3205 putpkt ((char *) buf);
3206 continue;
3207 }
3208 /* else fallthrough */
3209 default:
3210 warning ("Invalid remote reply: %s", buf);
3211 continue;
3212 }
3213 }
3214 got_status:
3215 if (thread_num != -1)
3216 {
3217 return pid_to_ptid (thread_num);
3218 }
3219 return inferior_ptid;
3220 }
3221
3222 /* Async version of remote_wait. */
3223 static ptid_t
3224 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3225 {
3226 struct remote_state *rs = get_remote_state ();
3227 unsigned char *buf = alloca (rs->remote_packet_size);
3228 ULONGEST thread_num = -1;
3229 ULONGEST addr;
3230
3231 status->kind = TARGET_WAITKIND_EXITED;
3232 status->value.integer = 0;
3233
3234 remote_stopped_by_watchpoint_p = 0;
3235
3236 while (1)
3237 {
3238 unsigned char *p;
3239
3240 if (!target_is_async_p ())
3241 ofunc = signal (SIGINT, remote_interrupt);
3242 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3243 _never_ wait for ever -> test on target_is_async_p().
3244 However, before we do that we need to ensure that the caller
3245 knows how to take the target into/out of async mode. */
3246 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3247 if (!target_is_async_p ())
3248 signal (SIGINT, ofunc);
3249
3250 /* This is a hook for when we need to do something (perhaps the
3251 collection of trace data) every time the target stops. */
3252 if (target_wait_loop_hook)
3253 (*target_wait_loop_hook) ();
3254
3255 switch (buf[0])
3256 {
3257 case 'E': /* Error of some sort */
3258 warning ("Remote failure reply: %s", buf);
3259 continue;
3260 case 'F': /* File-I/O request */
3261 remote_fileio_request (buf);
3262 continue;
3263 case 'T': /* Status with PC, SP, FP, ... */
3264 {
3265 int i;
3266 char regs[MAX_REGISTER_SIZE];
3267
3268 /* Expedited reply, containing Signal, {regno, reg} repeat */
3269 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3270 ss = signal number
3271 n... = register number
3272 r... = register contents
3273 */
3274 p = &buf[3]; /* after Txx */
3275
3276 while (*p)
3277 {
3278 unsigned char *p1;
3279 char *p_temp;
3280 int fieldsize;
3281 long pnum = 0;
3282
3283 /* If the packet contains a register number, save it in pnum
3284 and set p1 to point to the character following it.
3285 Otherwise p1 points to p. */
3286
3287 /* If this packet is an awatch packet, don't parse the 'a'
3288 as a register number. */
3289
3290 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3291 {
3292 /* Read the register number. */
3293 pnum = strtol (p, &p_temp, 16);
3294 p1 = (unsigned char *) p_temp;
3295 }
3296 else
3297 p1 = p;
3298
3299 if (p1 == p) /* No register number present here */
3300 {
3301 p1 = (unsigned char *) strchr (p, ':');
3302 if (p1 == NULL)
3303 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n",
3304 p, buf);
3305 if (strncmp (p, "thread", p1 - p) == 0)
3306 {
3307 p_temp = unpack_varlen_hex (++p1, &thread_num);
3308 record_currthread (thread_num);
3309 p = (unsigned char *) p_temp;
3310 }
3311 else if ((strncmp (p, "watch", p1 - p) == 0)
3312 || (strncmp (p, "rwatch", p1 - p) == 0)
3313 || (strncmp (p, "awatch", p1 - p) == 0))
3314 {
3315 remote_stopped_by_watchpoint_p = 1;
3316 p = unpack_varlen_hex (++p1, &addr);
3317 remote_watch_data_address = (CORE_ADDR)addr;
3318 }
3319 else
3320 {
3321 /* Silently skip unknown optional info. */
3322 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3323 if (p_temp)
3324 p = p_temp;
3325 }
3326 }
3327
3328 else
3329 {
3330 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3331 p = p1;
3332 if (*p++ != ':')
3333 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3334 p, buf);
3335
3336 if (reg == NULL)
3337 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n",
3338 pnum, p, buf);
3339
3340 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3341 p += 2 * fieldsize;
3342 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3343 warning ("Remote reply is too short: %s", buf);
3344 supply_register (reg->regnum, regs);
3345 }
3346
3347 if (*p++ != ';')
3348 error ("Remote register badly formatted: %s\nhere: %s",
3349 buf, p);
3350 }
3351 }
3352 /* fall through */
3353 case 'S': /* Old style status, just signal only */
3354 status->kind = TARGET_WAITKIND_STOPPED;
3355 status->value.sig = (enum target_signal)
3356 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3357
3358 if (buf[3] == 'p')
3359 {
3360 /* Export Cisco kernel mode as a convenience variable
3361 (so that it can be used in the GDB prompt if desired). */
3362
3363 if (cisco_kernel_mode == 1)
3364 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3365 value_from_string ("PDEBUG-"));
3366 cisco_kernel_mode = 0;
3367 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3368 record_currthread (thread_num);
3369 }
3370 else if (buf[3] == 'k')
3371 {
3372 /* Export Cisco kernel mode as a convenience variable
3373 (so that it can be used in the GDB prompt if desired). */
3374
3375 if (cisco_kernel_mode == 1)
3376 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3377 value_from_string ("KDEBUG-"));
3378 cisco_kernel_mode = 1;
3379 }
3380 goto got_status;
3381 case 'N': /* Cisco special: status and offsets */
3382 {
3383 bfd_vma text_addr, data_addr, bss_addr;
3384 bfd_signed_vma text_off, data_off, bss_off;
3385 unsigned char *p1;
3386
3387 status->kind = TARGET_WAITKIND_STOPPED;
3388 status->value.sig = (enum target_signal)
3389 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3390
3391 if (symfile_objfile == NULL)
3392 {
3393 warning ("Relocation packet recieved with no symbol file. \
3394 Packet Dropped");
3395 goto got_status;
3396 }
3397
3398 /* Relocate object file. Buffer format is NAATT;DD;BB
3399 * where AA is the signal number, TT is the new text
3400 * address, DD * is the new data address, and BB is the
3401 * new bss address. */
3402
3403 p = &buf[3];
3404 text_addr = strtoul (p, (char **) &p1, 16);
3405 if (p1 == p || *p1 != ';')
3406 warning ("Malformed relocation packet: Packet '%s'", buf);
3407 p = p1 + 1;
3408 data_addr = strtoul (p, (char **) &p1, 16);
3409 if (p1 == p || *p1 != ';')
3410 warning ("Malformed relocation packet: Packet '%s'", buf);
3411 p = p1 + 1;
3412 bss_addr = strtoul (p, (char **) &p1, 16);
3413 if (p1 == p)
3414 warning ("Malformed relocation packet: Packet '%s'", buf);
3415
3416 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3417 &text_off, &data_off, &bss_off)
3418 == 0)
3419 if (text_off != 0 || data_off != 0 || bss_off != 0)
3420 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3421
3422 goto got_status;
3423 }
3424 case 'W': /* Target exited */
3425 {
3426 /* The remote process exited. */
3427 status->kind = TARGET_WAITKIND_EXITED;
3428 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3429 goto got_status;
3430 }
3431 case 'X':
3432 status->kind = TARGET_WAITKIND_SIGNALLED;
3433 status->value.sig = (enum target_signal)
3434 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3435 kill_kludge = 1;
3436
3437 goto got_status;
3438 case 'O': /* Console output */
3439 remote_console_output (buf + 1);
3440 /* Return immediately to the event loop. The event loop will
3441 still be waiting on the inferior afterwards. */
3442 status->kind = TARGET_WAITKIND_IGNORE;
3443 goto got_status;
3444 case '\0':
3445 if (last_sent_signal != TARGET_SIGNAL_0)
3446 {
3447 /* Zero length reply means that we tried 'S' or 'C' and
3448 the remote system doesn't support it. */
3449 target_terminal_ours_for_output ();
3450 printf_filtered
3451 ("Can't send signals to this remote system. %s not sent.\n",
3452 target_signal_to_name (last_sent_signal));
3453 last_sent_signal = TARGET_SIGNAL_0;
3454 target_terminal_inferior ();
3455
3456 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3457 putpkt ((char *) buf);
3458 continue;
3459 }
3460 /* else fallthrough */
3461 default:
3462 warning ("Invalid remote reply: %s", buf);
3463 continue;
3464 }
3465 }
3466 got_status:
3467 if (thread_num != -1)
3468 {
3469 return pid_to_ptid (thread_num);
3470 }
3471 return inferior_ptid;
3472 }
3473
3474 /* Number of bytes of registers this stub implements. */
3475
3476 static int register_bytes_found;
3477
3478 /* Read the remote registers into the block REGS. */
3479 /* Currently we just read all the registers, so we don't use regnum. */
3480
3481 static void
3482 remote_fetch_registers (int regnum)
3483 {
3484 struct remote_state *rs = get_remote_state ();
3485 char *buf = alloca (rs->remote_packet_size);
3486 int i;
3487 char *p;
3488 char *regs = alloca (rs->sizeof_g_packet);
3489
3490 set_thread (PIDGET (inferior_ptid), 1);
3491
3492 if (regnum >= 0)
3493 {
3494 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3495 gdb_assert (reg != NULL);
3496 if (!reg->in_g_packet)
3497 internal_error (__FILE__, __LINE__,
3498 "Attempt to fetch a non G-packet register when this "
3499 "remote.c does not support the p-packet.");
3500 }
3501
3502 sprintf (buf, "g");
3503 remote_send (buf, (rs->remote_packet_size));
3504
3505 /* Save the size of the packet sent to us by the target. Its used
3506 as a heuristic when determining the max size of packets that the
3507 target can safely receive. */
3508 if ((rs->actual_register_packet_size) == 0)
3509 (rs->actual_register_packet_size) = strlen (buf);
3510
3511 /* Unimplemented registers read as all bits zero. */
3512 memset (regs, 0, rs->sizeof_g_packet);
3513
3514 /* We can get out of synch in various cases. If the first character
3515 in the buffer is not a hex character, assume that has happened
3516 and try to fetch another packet to read. */
3517 while ((buf[0] < '0' || buf[0] > '9')
3518 && (buf[0] < 'a' || buf[0] > 'f')
3519 && buf[0] != 'x') /* New: unavailable register value */
3520 {
3521 if (remote_debug)
3522 fprintf_unfiltered (gdb_stdlog,
3523 "Bad register packet; fetching a new packet\n");
3524 getpkt (buf, (rs->remote_packet_size), 0);
3525 }
3526
3527 /* Reply describes registers byte by byte, each byte encoded as two
3528 hex characters. Suck them all up, then supply them to the
3529 register cacheing/storage mechanism. */
3530
3531 p = buf;
3532 for (i = 0; i < rs->sizeof_g_packet; i++)
3533 {
3534 if (p[0] == 0)
3535 break;
3536 if (p[1] == 0)
3537 {
3538 warning ("Remote reply is of odd length: %s", buf);
3539 /* Don't change register_bytes_found in this case, and don't
3540 print a second warning. */
3541 goto supply_them;
3542 }
3543 if (p[0] == 'x' && p[1] == 'x')
3544 regs[i] = 0; /* 'x' */
3545 else
3546 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3547 p += 2;
3548 }
3549
3550 if (i != register_bytes_found)
3551 {
3552 register_bytes_found = i;
3553 if (REGISTER_BYTES_OK_P ()
3554 && !REGISTER_BYTES_OK (i))
3555 warning ("Remote reply is too short: %s", buf);
3556 }
3557
3558 supply_them:
3559 {
3560 int i;
3561 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3562 {
3563 struct packet_reg *r = &rs->regs[i];
3564 if (r->in_g_packet)
3565 {
3566 if (r->offset * 2 >= strlen (buf))
3567 /* A short packet that didn't include the register's
3568 value, this implies that the register is zero (and
3569 not that the register is unavailable). Supply that
3570 zero value. */
3571 regcache_raw_supply (current_regcache, r->regnum, NULL);
3572 else if (buf[r->offset * 2] == 'x')
3573 {
3574 gdb_assert (r->offset * 2 < strlen (buf));
3575 /* The register isn't available, mark it as such (at
3576 the same time setting the value to zero). */
3577 regcache_raw_supply (current_regcache, r->regnum, NULL);
3578 set_register_cached (i, -1);
3579 }
3580 else
3581 regcache_raw_supply (current_regcache, r->regnum,
3582 regs + r->offset);
3583 }
3584 }
3585 }
3586 }
3587
3588 /* Prepare to store registers. Since we may send them all (using a
3589 'G' request), we have to read out the ones we don't want to change
3590 first. */
3591
3592 static void
3593 remote_prepare_to_store (void)
3594 {
3595 struct remote_state *rs = get_remote_state ();
3596 int i;
3597 char buf[MAX_REGISTER_SIZE];
3598
3599 /* Make sure the entire registers array is valid. */
3600 switch (remote_protocol_P.support)
3601 {
3602 case PACKET_DISABLE:
3603 case PACKET_SUPPORT_UNKNOWN:
3604 /* Make sure all the necessary registers are cached. */
3605 for (i = 0; i < NUM_REGS; i++)
3606 if (rs->regs[i].in_g_packet)
3607 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3608 break;
3609 case PACKET_ENABLE:
3610 break;
3611 }
3612 }
3613
3614 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3615 packet was not recognized. */
3616
3617 static int
3618 store_register_using_P (int regnum)
3619 {
3620 struct remote_state *rs = get_remote_state ();
3621 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3622 /* Try storing a single register. */
3623 char *buf = alloca (rs->remote_packet_size);
3624 char regp[MAX_REGISTER_SIZE];
3625 char *p;
3626 int i;
3627
3628 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3629 p = buf + strlen (buf);
3630 regcache_collect (reg->regnum, regp);
3631 bin2hex (regp, p, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3632 remote_send (buf, rs->remote_packet_size);
3633
3634 return buf[0] != '\0';
3635 }
3636
3637
3638 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3639 of the register cache buffer. FIXME: ignores errors. */
3640
3641 static void
3642 remote_store_registers (int regnum)
3643 {
3644 struct remote_state *rs = get_remote_state ();
3645 char *buf;
3646 char *regs;
3647 int i;
3648 char *p;
3649
3650 set_thread (PIDGET (inferior_ptid), 1);
3651
3652 if (regnum >= 0)
3653 {
3654 switch (remote_protocol_P.support)
3655 {
3656 case PACKET_DISABLE:
3657 break;
3658 case PACKET_ENABLE:
3659 if (store_register_using_P (regnum))
3660 return;
3661 else
3662 error ("Protocol error: P packet not recognized by stub");
3663 case PACKET_SUPPORT_UNKNOWN:
3664 if (store_register_using_P (regnum))
3665 {
3666 /* The stub recognized the 'P' packet. Remember this. */
3667 remote_protocol_P.support = PACKET_ENABLE;
3668 return;
3669 }
3670 else
3671 {
3672 /* The stub does not support the 'P' packet. Use 'G'
3673 instead, and don't try using 'P' in the future (it
3674 will just waste our time). */
3675 remote_protocol_P.support = PACKET_DISABLE;
3676 break;
3677 }
3678 }
3679 }
3680
3681 /* Extract all the registers in the regcache copying them into a
3682 local buffer. */
3683 {
3684 int i;
3685 regs = alloca (rs->sizeof_g_packet);
3686 memset (regs, rs->sizeof_g_packet, 0);
3687 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3688 {
3689 struct packet_reg *r = &rs->regs[i];
3690 if (r->in_g_packet)
3691 regcache_collect (r->regnum, regs + r->offset);
3692 }
3693 }
3694
3695 /* Command describes registers byte by byte,
3696 each byte encoded as two hex characters. */
3697 buf = alloca (rs->remote_packet_size);
3698 p = buf;
3699 *p++ = 'G';
3700 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3701 bin2hex (regs, p, register_bytes_found);
3702 remote_send (buf, (rs->remote_packet_size));
3703 }
3704 \f
3705
3706 /* Return the number of hex digits in num. */
3707
3708 static int
3709 hexnumlen (ULONGEST num)
3710 {
3711 int i;
3712
3713 for (i = 0; num != 0; i++)
3714 num >>= 4;
3715
3716 return max (i, 1);
3717 }
3718
3719 /* Set BUF to the minimum number of hex digits representing NUM. */
3720
3721 static int
3722 hexnumstr (char *buf, ULONGEST num)
3723 {
3724 int len = hexnumlen (num);
3725 return hexnumnstr (buf, num, len);
3726 }
3727
3728
3729 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3730
3731 static int
3732 hexnumnstr (char *buf, ULONGEST num, int width)
3733 {
3734 int i;
3735
3736 buf[width] = '\0';
3737
3738 for (i = width - 1; i >= 0; i--)
3739 {
3740 buf[i] = "0123456789abcdef"[(num & 0xf)];
3741 num >>= 4;
3742 }
3743
3744 return width;
3745 }
3746
3747 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3748
3749 static CORE_ADDR
3750 remote_address_masked (CORE_ADDR addr)
3751 {
3752 if (remote_address_size > 0
3753 && remote_address_size < (sizeof (ULONGEST) * 8))
3754 {
3755 /* Only create a mask when that mask can safely be constructed
3756 in a ULONGEST variable. */
3757 ULONGEST mask = 1;
3758 mask = (mask << remote_address_size) - 1;
3759 addr &= mask;
3760 }
3761 return addr;
3762 }
3763
3764 /* Determine whether the remote target supports binary downloading.
3765 This is accomplished by sending a no-op memory write of zero length
3766 to the target at the specified address. It does not suffice to send
3767 the whole packet, since many stubs strip the eighth bit and subsequently
3768 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3769
3770 NOTE: This can still lose if the serial line is not eight-bit
3771 clean. In cases like this, the user should clear "remote
3772 X-packet". */
3773
3774 static void
3775 check_binary_download (CORE_ADDR addr)
3776 {
3777 struct remote_state *rs = get_remote_state ();
3778 switch (remote_protocol_binary_download.support)
3779 {
3780 case PACKET_DISABLE:
3781 break;
3782 case PACKET_ENABLE:
3783 break;
3784 case PACKET_SUPPORT_UNKNOWN:
3785 {
3786 char *buf = alloca (rs->remote_packet_size);
3787 char *p;
3788
3789 p = buf;
3790 *p++ = 'X';
3791 p += hexnumstr (p, (ULONGEST) addr);
3792 *p++ = ',';
3793 p += hexnumstr (p, (ULONGEST) 0);
3794 *p++ = ':';
3795 *p = '\0';
3796
3797 putpkt_binary (buf, (int) (p - buf));
3798 getpkt (buf, (rs->remote_packet_size), 0);
3799
3800 if (buf[0] == '\0')
3801 {
3802 if (remote_debug)
3803 fprintf_unfiltered (gdb_stdlog,
3804 "binary downloading NOT suppported by target\n");
3805 remote_protocol_binary_download.support = PACKET_DISABLE;
3806 }
3807 else
3808 {
3809 if (remote_debug)
3810 fprintf_unfiltered (gdb_stdlog,
3811 "binary downloading suppported by target\n");
3812 remote_protocol_binary_download.support = PACKET_ENABLE;
3813 }
3814 break;
3815 }
3816 }
3817 }
3818
3819 /* Write memory data directly to the remote machine.
3820 This does not inform the data cache; the data cache uses this.
3821 MEMADDR is the address in the remote memory space.
3822 MYADDR is the address of the buffer in our space.
3823 LEN is the number of bytes.
3824
3825 Returns number of bytes transferred, or 0 (setting errno) for
3826 error. Only transfer a single packet. */
3827
3828 int
3829 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3830 {
3831 unsigned char *buf;
3832 unsigned char *p;
3833 unsigned char *plen;
3834 long sizeof_buf;
3835 int plenlen;
3836 int todo;
3837 int nr_bytes;
3838 int payload_size;
3839 unsigned char *payload_start;
3840
3841 /* Verify that the target can support a binary download. */
3842 check_binary_download (memaddr);
3843
3844 /* Compute the size, and then allocate space for the largest
3845 possible packet. Include space for an extra trailing NUL. */
3846 sizeof_buf = get_memory_write_packet_size () + 1;
3847 buf = alloca (sizeof_buf);
3848
3849 /* Compute the size of the actual payload by subtracting out the
3850 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3851 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3852 + hexnumlen (memaddr)
3853 + hexnumlen (len)));
3854
3855 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3856
3857 /* Append "[XM]". Compute a best guess of the number of bytes
3858 actually transfered. */
3859 p = buf;
3860 switch (remote_protocol_binary_download.support)
3861 {
3862 case PACKET_ENABLE:
3863 *p++ = 'X';
3864 /* Best guess at number of bytes that will fit. */
3865 todo = min (len, payload_size);
3866 break;
3867 case PACKET_DISABLE:
3868 *p++ = 'M';
3869 /* num bytes that will fit */
3870 todo = min (len, payload_size / 2);
3871 break;
3872 case PACKET_SUPPORT_UNKNOWN:
3873 internal_error (__FILE__, __LINE__,
3874 "remote_write_bytes: bad internal state");
3875 default:
3876 internal_error (__FILE__, __LINE__, "bad switch");
3877 }
3878
3879 /* Append "<memaddr>". */
3880 memaddr = remote_address_masked (memaddr);
3881 p += hexnumstr (p, (ULONGEST) memaddr);
3882
3883 /* Append ",". */
3884 *p++ = ',';
3885
3886 /* Append <len>. Retain the location/size of <len>. It may need to
3887 be adjusted once the packet body has been created. */
3888 plen = p;
3889 plenlen = hexnumstr (p, (ULONGEST) todo);
3890 p += plenlen;
3891
3892 /* Append ":". */
3893 *p++ = ':';
3894 *p = '\0';
3895
3896 /* Append the packet body. */
3897 payload_start = p;
3898 switch (remote_protocol_binary_download.support)
3899 {
3900 case PACKET_ENABLE:
3901 /* Binary mode. Send target system values byte by byte, in
3902 increasing byte addresses. Only escape certain critical
3903 characters. */
3904 for (nr_bytes = 0;
3905 (nr_bytes < todo) && (p - payload_start) < payload_size;
3906 nr_bytes++)
3907 {
3908 switch (myaddr[nr_bytes] & 0xff)
3909 {
3910 case '$':
3911 case '#':
3912 case 0x7d:
3913 /* These must be escaped */
3914 *p++ = 0x7d;
3915 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3916 break;
3917 default:
3918 *p++ = myaddr[nr_bytes] & 0xff;
3919 break;
3920 }
3921 }
3922 if (nr_bytes < todo)
3923 {
3924 /* Escape chars have filled up the buffer prematurely,
3925 and we have actually sent fewer bytes than planned.
3926 Fix-up the length field of the packet. Use the same
3927 number of characters as before. */
3928 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3929 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3930 }
3931 break;
3932 case PACKET_DISABLE:
3933 /* Normal mode: Send target system values byte by byte, in
3934 increasing byte addresses. Each byte is encoded as a two hex
3935 value. */
3936 nr_bytes = bin2hex (myaddr, p, todo);
3937 p += 2 * nr_bytes;
3938 break;
3939 case PACKET_SUPPORT_UNKNOWN:
3940 internal_error (__FILE__, __LINE__,
3941 "remote_write_bytes: bad internal state");
3942 default:
3943 internal_error (__FILE__, __LINE__, "bad switch");
3944 }
3945
3946 putpkt_binary (buf, (int) (p - buf));
3947 getpkt (buf, sizeof_buf, 0);
3948
3949 if (buf[0] == 'E')
3950 {
3951 /* There is no correspondance between what the remote protocol
3952 uses for errors and errno codes. We would like a cleaner way
3953 of representing errors (big enough to include errno codes,
3954 bfd_error codes, and others). But for now just return EIO. */
3955 errno = EIO;
3956 return 0;
3957 }
3958
3959 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3960 bytes than we'd planned. */
3961 return nr_bytes;
3962 }
3963
3964 /* Read memory data directly from the remote machine.
3965 This does not use the data cache; the data cache uses this.
3966 MEMADDR is the address in the remote memory space.
3967 MYADDR is the address of the buffer in our space.
3968 LEN is the number of bytes.
3969
3970 Returns number of bytes transferred, or 0 for error. */
3971
3972 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3973 remote targets) shouldn't attempt to read the entire buffer.
3974 Instead it should read a single packet worth of data and then
3975 return the byte size of that packet to the caller. The caller (its
3976 caller and its callers caller ;-) already contains code for
3977 handling partial reads. */
3978
3979 int
3980 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3981 {
3982 char *buf;
3983 int max_buf_size; /* Max size of packet output buffer */
3984 long sizeof_buf;
3985 int origlen;
3986
3987 /* Create a buffer big enough for this packet. */
3988 max_buf_size = get_memory_read_packet_size ();
3989 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3990 buf = alloca (sizeof_buf);
3991
3992 origlen = len;
3993 while (len > 0)
3994 {
3995 char *p;
3996 int todo;
3997 int i;
3998
3999 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4000
4001 /* construct "m"<memaddr>","<len>" */
4002 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4003 memaddr = remote_address_masked (memaddr);
4004 p = buf;
4005 *p++ = 'm';
4006 p += hexnumstr (p, (ULONGEST) memaddr);
4007 *p++ = ',';
4008 p += hexnumstr (p, (ULONGEST) todo);
4009 *p = '\0';
4010
4011 putpkt (buf);
4012 getpkt (buf, sizeof_buf, 0);
4013
4014 if (buf[0] == 'E'
4015 && isxdigit (buf[1]) && isxdigit (buf[2])
4016 && buf[3] == '\0')
4017 {
4018 /* There is no correspondance between what the remote protocol uses
4019 for errors and errno codes. We would like a cleaner way of
4020 representing errors (big enough to include errno codes, bfd_error
4021 codes, and others). But for now just return EIO. */
4022 errno = EIO;
4023 return 0;
4024 }
4025
4026 /* Reply describes memory byte by byte,
4027 each byte encoded as two hex characters. */
4028
4029 p = buf;
4030 if ((i = hex2bin (p, myaddr, todo)) < todo)
4031 {
4032 /* Reply is short. This means that we were able to read
4033 only part of what we wanted to. */
4034 return i + (origlen - len);
4035 }
4036 myaddr += todo;
4037 memaddr += todo;
4038 len -= todo;
4039 }
4040 return origlen;
4041 }
4042 \f
4043 /* Read or write LEN bytes from inferior memory at MEMADDR,
4044 transferring to or from debugger address BUFFER. Write to inferior if
4045 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
4046 for error. TARGET is unused. */
4047
4048 static int
4049 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
4050 int should_write, struct mem_attrib *attrib,
4051 struct target_ops *target)
4052 {
4053 CORE_ADDR targ_addr;
4054 int targ_len;
4055 int res;
4056
4057 /* Should this be the selected frame? */
4058 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
4059 mem_addr, mem_len,
4060 &targ_addr, &targ_len);
4061 if (targ_len <= 0)
4062 return 0;
4063
4064 if (should_write)
4065 res = remote_write_bytes (targ_addr, buffer, targ_len);
4066 else
4067 res = remote_read_bytes (targ_addr, buffer, targ_len);
4068
4069 return res;
4070 }
4071
4072 static void
4073 remote_files_info (struct target_ops *ignore)
4074 {
4075 puts_filtered ("Debugging a target over a serial line.\n");
4076 }
4077 \f
4078 /* Stuff for dealing with the packets which are part of this protocol.
4079 See comment at top of file for details. */
4080
4081 /* Read a single character from the remote end, masking it down to 7 bits. */
4082
4083 static int
4084 readchar (int timeout)
4085 {
4086 int ch;
4087
4088 ch = serial_readchar (remote_desc, timeout);
4089
4090 if (ch >= 0)
4091 return (ch & 0x7f);
4092
4093 switch ((enum serial_rc) ch)
4094 {
4095 case SERIAL_EOF:
4096 target_mourn_inferior ();
4097 error ("Remote connection closed");
4098 /* no return */
4099 case SERIAL_ERROR:
4100 perror_with_name ("Remote communication error");
4101 /* no return */
4102 case SERIAL_TIMEOUT:
4103 break;
4104 }
4105 return ch;
4106 }
4107
4108 /* Send the command in BUF to the remote machine, and read the reply
4109 into BUF. Report an error if we get an error reply. */
4110
4111 static void
4112 remote_send (char *buf,
4113 long sizeof_buf)
4114 {
4115 putpkt (buf);
4116 getpkt (buf, sizeof_buf, 0);
4117
4118 if (buf[0] == 'E')
4119 error ("Remote failure reply: %s", buf);
4120 }
4121
4122 /* Display a null-terminated packet on stdout, for debugging, using C
4123 string notation. */
4124
4125 static void
4126 print_packet (char *buf)
4127 {
4128 puts_filtered ("\"");
4129 fputstr_filtered (buf, '"', gdb_stdout);
4130 puts_filtered ("\"");
4131 }
4132
4133 int
4134 putpkt (char *buf)
4135 {
4136 return putpkt_binary (buf, strlen (buf));
4137 }
4138
4139 /* Send a packet to the remote machine, with error checking. The data
4140 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4141 to account for the $, # and checksum, and for a possible /0 if we are
4142 debugging (remote_debug) and want to print the sent packet as a string */
4143
4144 static int
4145 putpkt_binary (char *buf, int cnt)
4146 {
4147 struct remote_state *rs = get_remote_state ();
4148 int i;
4149 unsigned char csum = 0;
4150 char *buf2 = alloca (cnt + 6);
4151 long sizeof_junkbuf = (rs->remote_packet_size);
4152 char *junkbuf = alloca (sizeof_junkbuf);
4153
4154 int ch;
4155 int tcount = 0;
4156 char *p;
4157
4158 /* Copy the packet into buffer BUF2, encapsulating it
4159 and giving it a checksum. */
4160
4161 p = buf2;
4162 *p++ = '$';
4163
4164 for (i = 0; i < cnt; i++)
4165 {
4166 csum += buf[i];
4167 *p++ = buf[i];
4168 }
4169 *p++ = '#';
4170 *p++ = tohex ((csum >> 4) & 0xf);
4171 *p++ = tohex (csum & 0xf);
4172
4173 /* Send it over and over until we get a positive ack. */
4174
4175 while (1)
4176 {
4177 int started_error_output = 0;
4178
4179 if (remote_debug)
4180 {
4181 *p = '\0';
4182 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4183 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4184 fprintf_unfiltered (gdb_stdlog, "...");
4185 gdb_flush (gdb_stdlog);
4186 }
4187 if (serial_write (remote_desc, buf2, p - buf2))
4188 perror_with_name ("putpkt: write failed");
4189
4190 /* read until either a timeout occurs (-2) or '+' is read */
4191 while (1)
4192 {
4193 ch = readchar (remote_timeout);
4194
4195 if (remote_debug)
4196 {
4197 switch (ch)
4198 {
4199 case '+':
4200 case '-':
4201 case SERIAL_TIMEOUT:
4202 case '$':
4203 if (started_error_output)
4204 {
4205 putchar_unfiltered ('\n');
4206 started_error_output = 0;
4207 }
4208 }
4209 }
4210
4211 switch (ch)
4212 {
4213 case '+':
4214 if (remote_debug)
4215 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4216 return 1;
4217 case '-':
4218 if (remote_debug)
4219 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4220 case SERIAL_TIMEOUT:
4221 tcount++;
4222 if (tcount > 3)
4223 return 0;
4224 break; /* Retransmit buffer */
4225 case '$':
4226 {
4227 if (remote_debug)
4228 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4229 /* It's probably an old response, and we're out of sync.
4230 Just gobble up the packet and ignore it. */
4231 read_frame (junkbuf, sizeof_junkbuf);
4232 continue; /* Now, go look for + */
4233 }
4234 default:
4235 if (remote_debug)
4236 {
4237 if (!started_error_output)
4238 {
4239 started_error_output = 1;
4240 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4241 }
4242 fputc_unfiltered (ch & 0177, gdb_stdlog);
4243 }
4244 continue;
4245 }
4246 break; /* Here to retransmit */
4247 }
4248
4249 #if 0
4250 /* This is wrong. If doing a long backtrace, the user should be
4251 able to get out next time we call QUIT, without anything as
4252 violent as interrupt_query. If we want to provide a way out of
4253 here without getting to the next QUIT, it should be based on
4254 hitting ^C twice as in remote_wait. */
4255 if (quit_flag)
4256 {
4257 quit_flag = 0;
4258 interrupt_query ();
4259 }
4260 #endif
4261 }
4262 }
4263
4264 static int remote_cisco_mode;
4265
4266 /* Come here after finding the start of the frame. Collect the rest
4267 into BUF, verifying the checksum, length, and handling run-length
4268 compression. No more than sizeof_buf-1 characters are read so that
4269 the buffer can be NUL terminated.
4270
4271 Returns -1 on error, number of characters in buffer (ignoring the
4272 trailing NULL) on success. (could be extended to return one of the
4273 SERIAL status indications). */
4274
4275 static long
4276 read_frame (char *buf,
4277 long sizeof_buf)
4278 {
4279 unsigned char csum;
4280 long bc;
4281 int c;
4282
4283 csum = 0;
4284 bc = 0;
4285
4286 while (1)
4287 {
4288 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4289 c = readchar (remote_timeout);
4290 switch (c)
4291 {
4292 case SERIAL_TIMEOUT:
4293 if (remote_debug)
4294 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4295 return -1;
4296 case '$':
4297 if (remote_debug)
4298 fputs_filtered ("Saw new packet start in middle of old one\n",
4299 gdb_stdlog);
4300 return -1; /* Start a new packet, count retries */
4301 case '#':
4302 {
4303 unsigned char pktcsum;
4304 int check_0 = 0;
4305 int check_1 = 0;
4306
4307 buf[bc] = '\0';
4308
4309 check_0 = readchar (remote_timeout);
4310 if (check_0 >= 0)
4311 check_1 = readchar (remote_timeout);
4312
4313 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4314 {
4315 if (remote_debug)
4316 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4317 return -1;
4318 }
4319 else if (check_0 < 0 || check_1 < 0)
4320 {
4321 if (remote_debug)
4322 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4323 return -1;
4324 }
4325
4326 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4327 if (csum == pktcsum)
4328 return bc;
4329
4330 if (remote_debug)
4331 {
4332 fprintf_filtered (gdb_stdlog,
4333 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4334 pktcsum, csum);
4335 fputs_filtered (buf, gdb_stdlog);
4336 fputs_filtered ("\n", gdb_stdlog);
4337 }
4338 /* Number of characters in buffer ignoring trailing
4339 NUL. */
4340 return -1;
4341 }
4342 case '*': /* Run length encoding */
4343 {
4344 int repeat;
4345 csum += c;
4346
4347 if (remote_cisco_mode == 0)
4348 {
4349 c = readchar (remote_timeout);
4350 csum += c;
4351 repeat = c - ' ' + 3; /* Compute repeat count */
4352 }
4353 else
4354 {
4355 /* Cisco's run-length encoding variant uses two
4356 hex chars to represent the repeat count. */
4357
4358 c = readchar (remote_timeout);
4359 csum += c;
4360 repeat = fromhex (c) << 4;
4361 c = readchar (remote_timeout);
4362 csum += c;
4363 repeat += fromhex (c);
4364 }
4365
4366 /* The character before ``*'' is repeated. */
4367
4368 if (repeat > 0 && repeat <= 255
4369 && bc > 0
4370 && bc + repeat - 1 < sizeof_buf - 1)
4371 {
4372 memset (&buf[bc], buf[bc - 1], repeat);
4373 bc += repeat;
4374 continue;
4375 }
4376
4377 buf[bc] = '\0';
4378 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4379 puts_filtered (buf);
4380 puts_filtered ("\n");
4381 return -1;
4382 }
4383 default:
4384 if (bc < sizeof_buf - 1)
4385 {
4386 buf[bc++] = c;
4387 csum += c;
4388 continue;
4389 }
4390
4391 buf[bc] = '\0';
4392 puts_filtered ("Remote packet too long: ");
4393 puts_filtered (buf);
4394 puts_filtered ("\n");
4395
4396 return -1;
4397 }
4398 }
4399 }
4400
4401 /* Read a packet from the remote machine, with error checking, and
4402 store it in BUF. If FOREVER, wait forever rather than timing out;
4403 this is used (in synchronous mode) to wait for a target that is is
4404 executing user code to stop. */
4405 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4406 don't have to change all the calls to getpkt to deal with the
4407 return value, because at the moment I don't know what the right
4408 thing to do it for those. */
4409 void
4410 getpkt (char *buf,
4411 long sizeof_buf,
4412 int forever)
4413 {
4414 int timed_out;
4415
4416 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4417 }
4418
4419
4420 /* Read a packet from the remote machine, with error checking, and
4421 store it in BUF. If FOREVER, wait forever rather than timing out;
4422 this is used (in synchronous mode) to wait for a target that is is
4423 executing user code to stop. If FOREVER == 0, this function is
4424 allowed to time out gracefully and return an indication of this to
4425 the caller. */
4426 static int
4427 getpkt_sane (char *buf,
4428 long sizeof_buf,
4429 int forever)
4430 {
4431 int c;
4432 int tries;
4433 int timeout;
4434 int val;
4435
4436 strcpy (buf, "timeout");
4437
4438 if (forever)
4439 {
4440 timeout = watchdog > 0 ? watchdog : -1;
4441 }
4442
4443 else
4444 timeout = remote_timeout;
4445
4446 #define MAX_TRIES 3
4447
4448 for (tries = 1; tries <= MAX_TRIES; tries++)
4449 {
4450 /* This can loop forever if the remote side sends us characters
4451 continuously, but if it pauses, we'll get a zero from readchar
4452 because of timeout. Then we'll count that as a retry. */
4453
4454 /* Note that we will only wait forever prior to the start of a packet.
4455 After that, we expect characters to arrive at a brisk pace. They
4456 should show up within remote_timeout intervals. */
4457
4458 do
4459 {
4460 c = readchar (timeout);
4461
4462 if (c == SERIAL_TIMEOUT)
4463 {
4464 if (forever) /* Watchdog went off? Kill the target. */
4465 {
4466 QUIT;
4467 target_mourn_inferior ();
4468 error ("Watchdog has expired. Target detached.\n");
4469 }
4470 if (remote_debug)
4471 fputs_filtered ("Timed out.\n", gdb_stdlog);
4472 goto retry;
4473 }
4474 }
4475 while (c != '$');
4476
4477 /* We've found the start of a packet, now collect the data. */
4478
4479 val = read_frame (buf, sizeof_buf);
4480
4481 if (val >= 0)
4482 {
4483 if (remote_debug)
4484 {
4485 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4486 fputstr_unfiltered (buf, 0, gdb_stdlog);
4487 fprintf_unfiltered (gdb_stdlog, "\n");
4488 }
4489 serial_write (remote_desc, "+", 1);
4490 return 0;
4491 }
4492
4493 /* Try the whole thing again. */
4494 retry:
4495 serial_write (remote_desc, "-", 1);
4496 }
4497
4498 /* We have tried hard enough, and just can't receive the packet. Give up. */
4499
4500 printf_unfiltered ("Ignoring packet error, continuing...\n");
4501 serial_write (remote_desc, "+", 1);
4502 return 1;
4503 }
4504 \f
4505 static void
4506 remote_kill (void)
4507 {
4508 /* For some mysterious reason, wait_for_inferior calls kill instead of
4509 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4510 if (kill_kludge)
4511 {
4512 kill_kludge = 0;
4513 target_mourn_inferior ();
4514 return;
4515 }
4516
4517 /* Use catch_errors so the user can quit from gdb even when we aren't on
4518 speaking terms with the remote system. */
4519 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4520
4521 /* Don't wait for it to die. I'm not really sure it matters whether
4522 we do or not. For the existing stubs, kill is a noop. */
4523 target_mourn_inferior ();
4524 }
4525
4526 /* Async version of remote_kill. */
4527 static void
4528 remote_async_kill (void)
4529 {
4530 /* Unregister the file descriptor from the event loop. */
4531 if (target_is_async_p ())
4532 serial_async (remote_desc, NULL, 0);
4533
4534 /* For some mysterious reason, wait_for_inferior calls kill instead of
4535 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4536 if (kill_kludge)
4537 {
4538 kill_kludge = 0;
4539 target_mourn_inferior ();
4540 return;
4541 }
4542
4543 /* Use catch_errors so the user can quit from gdb even when we aren't on
4544 speaking terms with the remote system. */
4545 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4546
4547 /* Don't wait for it to die. I'm not really sure it matters whether
4548 we do or not. For the existing stubs, kill is a noop. */
4549 target_mourn_inferior ();
4550 }
4551
4552 static void
4553 remote_mourn (void)
4554 {
4555 remote_mourn_1 (&remote_ops);
4556 }
4557
4558 static void
4559 remote_async_mourn (void)
4560 {
4561 remote_mourn_1 (&remote_async_ops);
4562 }
4563
4564 static void
4565 extended_remote_mourn (void)
4566 {
4567 /* We do _not_ want to mourn the target like this; this will
4568 remove the extended remote target from the target stack,
4569 and the next time the user says "run" it'll fail.
4570
4571 FIXME: What is the right thing to do here? */
4572 #if 0
4573 remote_mourn_1 (&extended_remote_ops);
4574 #endif
4575 }
4576
4577 /* Worker function for remote_mourn. */
4578 static void
4579 remote_mourn_1 (struct target_ops *target)
4580 {
4581 unpush_target (target);
4582 generic_mourn_inferior ();
4583 }
4584
4585 /* In the extended protocol we want to be able to do things like
4586 "run" and have them basically work as expected. So we need
4587 a special create_inferior function.
4588
4589 FIXME: One day add support for changing the exec file
4590 we're debugging, arguments and an environment. */
4591
4592 static void
4593 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4594 {
4595 /* Rip out the breakpoints; we'll reinsert them after restarting
4596 the remote server. */
4597 remove_breakpoints ();
4598
4599 /* Now restart the remote server. */
4600 extended_remote_restart ();
4601
4602 /* Now put the breakpoints back in. This way we're safe if the
4603 restart function works via a unix fork on the remote side. */
4604 insert_breakpoints ();
4605
4606 /* Clean up from the last time we were running. */
4607 clear_proceed_status ();
4608
4609 /* Let the remote process run. */
4610 proceed (-1, TARGET_SIGNAL_0, 0);
4611 }
4612
4613 /* Async version of extended_remote_create_inferior. */
4614 static void
4615 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4616 {
4617 /* Rip out the breakpoints; we'll reinsert them after restarting
4618 the remote server. */
4619 remove_breakpoints ();
4620
4621 /* If running asynchronously, register the target file descriptor
4622 with the event loop. */
4623 if (event_loop_p && target_can_async_p ())
4624 target_async (inferior_event_handler, 0);
4625
4626 /* Now restart the remote server. */
4627 extended_remote_restart ();
4628
4629 /* Now put the breakpoints back in. This way we're safe if the
4630 restart function works via a unix fork on the remote side. */
4631 insert_breakpoints ();
4632
4633 /* Clean up from the last time we were running. */
4634 clear_proceed_status ();
4635
4636 /* Let the remote process run. */
4637 proceed (-1, TARGET_SIGNAL_0, 0);
4638 }
4639 \f
4640
4641 /* On some machines, e.g. 68k, we may use a different breakpoint
4642 instruction than other targets; in those use
4643 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4644 Also, bi-endian targets may define
4645 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4646 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4647 just call the standard routines that are in mem-break.c. */
4648
4649 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4650 target should use an identical BREAKPOINT_FROM_PC. As for native,
4651 the ARCH-OS-tdep.c code can override the default. */
4652
4653 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4654 #define DEPRECATED_REMOTE_BREAKPOINT
4655 #endif
4656
4657 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4658
4659 /* If the target isn't bi-endian, just pretend it is. */
4660 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4661 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4662 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4663 #endif
4664
4665 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4666 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4667
4668 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4669
4670 /* Insert a breakpoint on targets that don't have any better
4671 breakpoint support. We read the contents of the target location
4672 and stash it, then overwrite it with a breakpoint instruction.
4673 ADDR is the target location in the target machine. CONTENTS_CACHE
4674 is a pointer to memory allocated for saving the target contents.
4675 It is guaranteed by the caller to be long enough to save the number
4676 of bytes returned by BREAKPOINT_FROM_PC. */
4677
4678 static int
4679 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4680 {
4681 struct remote_state *rs = get_remote_state ();
4682 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4683 int val;
4684 #endif
4685 int bp_size;
4686
4687 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4688 If it succeeds, then set the support to PACKET_ENABLE. If it
4689 fails, and the user has explicitly requested the Z support then
4690 report an error, otherwise, mark it disabled and go on. */
4691
4692 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4693 {
4694 char *buf = alloca (rs->remote_packet_size);
4695 char *p = buf;
4696
4697 addr = remote_address_masked (addr);
4698 *(p++) = 'Z';
4699 *(p++) = '0';
4700 *(p++) = ',';
4701 p += hexnumstr (p, (ULONGEST) addr);
4702 BREAKPOINT_FROM_PC (&addr, &bp_size);
4703 sprintf (p, ",%d", bp_size);
4704
4705 putpkt (buf);
4706 getpkt (buf, (rs->remote_packet_size), 0);
4707
4708 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4709 {
4710 case PACKET_ERROR:
4711 return -1;
4712 case PACKET_OK:
4713 return 0;
4714 case PACKET_UNKNOWN:
4715 break;
4716 }
4717 }
4718
4719 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4720 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4721
4722 if (val == 0)
4723 {
4724 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4725 val = target_write_memory (addr, (char *) big_break_insn,
4726 sizeof big_break_insn);
4727 else
4728 val = target_write_memory (addr, (char *) little_break_insn,
4729 sizeof little_break_insn);
4730 }
4731
4732 return val;
4733 #else
4734 return memory_insert_breakpoint (addr, contents_cache);
4735 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4736 }
4737
4738 static int
4739 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4740 {
4741 struct remote_state *rs = get_remote_state ();
4742 int bp_size;
4743
4744 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4745 {
4746 char *buf = alloca (rs->remote_packet_size);
4747 char *p = buf;
4748
4749 *(p++) = 'z';
4750 *(p++) = '0';
4751 *(p++) = ',';
4752
4753 addr = remote_address_masked (addr);
4754 p += hexnumstr (p, (ULONGEST) addr);
4755 BREAKPOINT_FROM_PC (&addr, &bp_size);
4756 sprintf (p, ",%d", bp_size);
4757
4758 putpkt (buf);
4759 getpkt (buf, (rs->remote_packet_size), 0);
4760
4761 return (buf[0] == 'E');
4762 }
4763
4764 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4765 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4766 #else
4767 return memory_remove_breakpoint (addr, contents_cache);
4768 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4769 }
4770
4771 static int
4772 watchpoint_to_Z_packet (int type)
4773 {
4774 switch (type)
4775 {
4776 case hw_write:
4777 return 2;
4778 break;
4779 case hw_read:
4780 return 3;
4781 break;
4782 case hw_access:
4783 return 4;
4784 break;
4785 default:
4786 internal_error (__FILE__, __LINE__,
4787 "hw_bp_to_z: bad watchpoint type %d", type);
4788 }
4789 }
4790
4791 static int
4792 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4793 {
4794 struct remote_state *rs = get_remote_state ();
4795 char *buf = alloca (rs->remote_packet_size);
4796 char *p;
4797 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4798
4799 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4800 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4801 remote_protocol_Z[packet].name,
4802 remote_protocol_Z[packet].title);
4803
4804 sprintf (buf, "Z%x,", packet);
4805 p = strchr (buf, '\0');
4806 addr = remote_address_masked (addr);
4807 p += hexnumstr (p, (ULONGEST) addr);
4808 sprintf (p, ",%x", len);
4809
4810 putpkt (buf);
4811 getpkt (buf, (rs->remote_packet_size), 0);
4812
4813 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4814 {
4815 case PACKET_ERROR:
4816 case PACKET_UNKNOWN:
4817 return -1;
4818 case PACKET_OK:
4819 return 0;
4820 }
4821 internal_error (__FILE__, __LINE__,
4822 "remote_insert_watchpoint: reached end of function");
4823 }
4824
4825
4826 static int
4827 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4828 {
4829 struct remote_state *rs = get_remote_state ();
4830 char *buf = alloca (rs->remote_packet_size);
4831 char *p;
4832 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4833
4834 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4835 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4836 remote_protocol_Z[packet].name,
4837 remote_protocol_Z[packet].title);
4838
4839 sprintf (buf, "z%x,", packet);
4840 p = strchr (buf, '\0');
4841 addr = remote_address_masked (addr);
4842 p += hexnumstr (p, (ULONGEST) addr);
4843 sprintf (p, ",%x", len);
4844 putpkt (buf);
4845 getpkt (buf, (rs->remote_packet_size), 0);
4846
4847 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4848 {
4849 case PACKET_ERROR:
4850 case PACKET_UNKNOWN:
4851 return -1;
4852 case PACKET_OK:
4853 return 0;
4854 }
4855 internal_error (__FILE__, __LINE__,
4856 "remote_remove_watchpoint: reached end of function");
4857 }
4858
4859
4860 int remote_hw_watchpoint_limit = -1;
4861 int remote_hw_breakpoint_limit = -1;
4862
4863 static int
4864 remote_check_watch_resources (int type, int cnt, int ot)
4865 {
4866 if (type == bp_hardware_breakpoint)
4867 {
4868 if (remote_hw_breakpoint_limit == 0)
4869 return 0;
4870 else if (remote_hw_breakpoint_limit < 0)
4871 return 1;
4872 else if (cnt <= remote_hw_breakpoint_limit)
4873 return 1;
4874 }
4875 else
4876 {
4877 if (remote_hw_watchpoint_limit == 0)
4878 return 0;
4879 else if (remote_hw_watchpoint_limit < 0)
4880 return 1;
4881 else if (ot)
4882 return -1;
4883 else if (cnt <= remote_hw_watchpoint_limit)
4884 return 1;
4885 }
4886 return -1;
4887 }
4888
4889 static int
4890 remote_stopped_by_watchpoint (void)
4891 {
4892 return remote_stopped_by_watchpoint_p;
4893 }
4894
4895 static CORE_ADDR
4896 remote_stopped_data_address (void)
4897 {
4898 if (remote_stopped_by_watchpoint ())
4899 return remote_watch_data_address;
4900 return (CORE_ADDR)0;
4901 }
4902
4903
4904 static int
4905 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4906 {
4907 int len = 0;
4908 struct remote_state *rs = get_remote_state ();
4909 char *buf = alloca (rs->remote_packet_size);
4910 char *p = buf;
4911
4912 /* The length field should be set to the size of a breakpoint
4913 instruction. */
4914
4915 BREAKPOINT_FROM_PC (&addr, &len);
4916
4917 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4918 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4919 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4920 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4921
4922 *(p++) = 'Z';
4923 *(p++) = '1';
4924 *(p++) = ',';
4925
4926 addr = remote_address_masked (addr);
4927 p += hexnumstr (p, (ULONGEST) addr);
4928 sprintf (p, ",%x", len);
4929
4930 putpkt (buf);
4931 getpkt (buf, (rs->remote_packet_size), 0);
4932
4933 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4934 {
4935 case PACKET_ERROR:
4936 case PACKET_UNKNOWN:
4937 return -1;
4938 case PACKET_OK:
4939 return 0;
4940 }
4941 internal_error (__FILE__, __LINE__,
4942 "remote_insert_hw_breakpoint: reached end of function");
4943 }
4944
4945
4946 static int
4947 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4948 {
4949 int len;
4950 struct remote_state *rs = get_remote_state ();
4951 char *buf = alloca (rs->remote_packet_size);
4952 char *p = buf;
4953
4954 /* The length field should be set to the size of a breakpoint
4955 instruction. */
4956
4957 BREAKPOINT_FROM_PC (&addr, &len);
4958
4959 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4960 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4961 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4962 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4963
4964 *(p++) = 'z';
4965 *(p++) = '1';
4966 *(p++) = ',';
4967
4968 addr = remote_address_masked (addr);
4969 p += hexnumstr (p, (ULONGEST) addr);
4970 sprintf (p, ",%x", len);
4971
4972 putpkt(buf);
4973 getpkt (buf, (rs->remote_packet_size), 0);
4974
4975 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4976 {
4977 case PACKET_ERROR:
4978 case PACKET_UNKNOWN:
4979 return -1;
4980 case PACKET_OK:
4981 return 0;
4982 }
4983 internal_error (__FILE__, __LINE__,
4984 "remote_remove_hw_breakpoint: reached end of function");
4985 }
4986
4987 /* Some targets are only capable of doing downloads, and afterwards
4988 they switch to the remote serial protocol. This function provides
4989 a clean way to get from the download target to the remote target.
4990 It's basically just a wrapper so that we don't have to expose any
4991 of the internal workings of remote.c.
4992
4993 Prior to calling this routine, you should shutdown the current
4994 target code, else you will get the "A program is being debugged
4995 already..." message. Usually a call to pop_target() suffices. */
4996
4997 void
4998 push_remote_target (char *name, int from_tty)
4999 {
5000 printf_filtered ("Switching to remote protocol\n");
5001 remote_open (name, from_tty);
5002 }
5003
5004 /* Table used by the crc32 function to calcuate the checksum. */
5005
5006 static unsigned long crc32_table[256] =
5007 {0, 0};
5008
5009 static unsigned long
5010 crc32 (unsigned char *buf, int len, unsigned int crc)
5011 {
5012 if (!crc32_table[1])
5013 {
5014 /* Initialize the CRC table and the decoding table. */
5015 int i, j;
5016 unsigned int c;
5017
5018 for (i = 0; i < 256; i++)
5019 {
5020 for (c = i << 24, j = 8; j > 0; --j)
5021 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5022 crc32_table[i] = c;
5023 }
5024 }
5025
5026 while (len--)
5027 {
5028 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5029 buf++;
5030 }
5031 return crc;
5032 }
5033
5034 /* compare-sections command
5035
5036 With no arguments, compares each loadable section in the exec bfd
5037 with the same memory range on the target, and reports mismatches.
5038 Useful for verifying the image on the target against the exec file.
5039 Depends on the target understanding the new "qCRC:" request. */
5040
5041 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5042 target method (target verify memory) and generic version of the
5043 actual command. This will allow other high-level code (especially
5044 generic_load()) to make use of this target functionality. */
5045
5046 static void
5047 compare_sections_command (char *args, int from_tty)
5048 {
5049 struct remote_state *rs = get_remote_state ();
5050 asection *s;
5051 unsigned long host_crc, target_crc;
5052 extern bfd *exec_bfd;
5053 struct cleanup *old_chain;
5054 char *tmp;
5055 char *sectdata;
5056 const char *sectname;
5057 char *buf = alloca (rs->remote_packet_size);
5058 bfd_size_type size;
5059 bfd_vma lma;
5060 int matched = 0;
5061 int mismatched = 0;
5062
5063 if (!exec_bfd)
5064 error ("command cannot be used without an exec file");
5065 if (!current_target.to_shortname ||
5066 strcmp (current_target.to_shortname, "remote") != 0)
5067 error ("command can only be used with remote target");
5068
5069 for (s = exec_bfd->sections; s; s = s->next)
5070 {
5071 if (!(s->flags & SEC_LOAD))
5072 continue; /* skip non-loadable section */
5073
5074 size = bfd_get_section_size_before_reloc (s);
5075 if (size == 0)
5076 continue; /* skip zero-length section */
5077
5078 sectname = bfd_get_section_name (exec_bfd, s);
5079 if (args && strcmp (args, sectname) != 0)
5080 continue; /* not the section selected by user */
5081
5082 matched = 1; /* do this section */
5083 lma = s->lma;
5084 /* FIXME: assumes lma can fit into long */
5085 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5086 putpkt (buf);
5087
5088 /* be clever; compute the host_crc before waiting for target reply */
5089 sectdata = xmalloc (size);
5090 old_chain = make_cleanup (xfree, sectdata);
5091 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5092 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5093
5094 getpkt (buf, (rs->remote_packet_size), 0);
5095 if (buf[0] == 'E')
5096 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5097 sectname, paddr (lma), paddr (lma + size));
5098 if (buf[0] != 'C')
5099 error ("remote target does not support this operation");
5100
5101 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5102 target_crc = target_crc * 16 + fromhex (*tmp);
5103
5104 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5105 sectname, paddr (lma), paddr (lma + size));
5106 if (host_crc == target_crc)
5107 printf_filtered ("matched.\n");
5108 else
5109 {
5110 printf_filtered ("MIS-MATCHED!\n");
5111 mismatched++;
5112 }
5113
5114 do_cleanups (old_chain);
5115 }
5116 if (mismatched > 0)
5117 warning ("One or more sections of the remote executable does not match\n\
5118 the loaded file\n");
5119 if (args && !matched)
5120 printf_filtered ("No loaded section named '%s'.\n", args);
5121 }
5122
5123 static LONGEST
5124 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5125 const char *annex, void *readbuf, const void *writebuf,
5126 ULONGEST offset, LONGEST len)
5127 {
5128 struct remote_state *rs = get_remote_state ();
5129 int i;
5130 char *buf2 = alloca (rs->remote_packet_size);
5131 char *p2 = &buf2[0];
5132 char query_type;
5133
5134 /* Only handle reads. */
5135 if (writebuf != NULL || readbuf == NULL)
5136 return -1;
5137
5138 /* Map pre-existing objects onto letters. DO NOT do this for new
5139 objects!!! Instead specify new query packets. */
5140 switch (object)
5141 {
5142 case TARGET_OBJECT_KOD:
5143 query_type = 'K';
5144 break;
5145 case TARGET_OBJECT_AVR:
5146 query_type = 'R';
5147 break;
5148 default:
5149 return -1;
5150 }
5151
5152 /* Note: a zero OFFSET and LEN can be used to query the minimum
5153 buffer size. */
5154 if (offset == 0 && len == 0)
5155 return (rs->remote_packet_size);
5156 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
5157 not large enough let the caller. */
5158 if (len < (rs->remote_packet_size))
5159 return -1;
5160 len = rs->remote_packet_size;
5161
5162 /* except for querying the minimum buffer size, target must be open */
5163 if (!remote_desc)
5164 error ("remote query is only available after target open");
5165
5166 gdb_assert (annex != NULL);
5167 gdb_assert (readbuf != NULL);
5168
5169 *p2++ = 'q';
5170 *p2++ = query_type;
5171
5172 /* we used one buffer char for the remote protocol q command and another
5173 for the query type. As the remote protocol encapsulation uses 4 chars
5174 plus one extra in case we are debugging (remote_debug),
5175 we have PBUFZIZ - 7 left to pack the query string */
5176 i = 0;
5177 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
5178 {
5179 /* Bad caller may have sent forbidden characters. */
5180 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5181 *p2++ = annex[i];
5182 i++;
5183 }
5184 *p2 = '\0';
5185 gdb_assert (annex[i] == '\0');
5186
5187 i = putpkt (buf2);
5188 if (i < 0)
5189 return i;
5190
5191 getpkt (readbuf, len, 0);
5192
5193 return strlen (readbuf);
5194 }
5195
5196 static void
5197 remote_rcmd (char *command,
5198 struct ui_file *outbuf)
5199 {
5200 struct remote_state *rs = get_remote_state ();
5201 int i;
5202 char *buf = alloca (rs->remote_packet_size);
5203 char *p = buf;
5204
5205 if (!remote_desc)
5206 error ("remote rcmd is only available after target open");
5207
5208 /* Send a NULL command across as an empty command */
5209 if (command == NULL)
5210 command = "";
5211
5212 /* The query prefix */
5213 strcpy (buf, "qRcmd,");
5214 p = strchr (buf, '\0');
5215
5216 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5217 error ("\"monitor\" command ``%s'' is too long\n", command);
5218
5219 /* Encode the actual command */
5220 bin2hex (command, p, 0);
5221
5222 if (putpkt (buf) < 0)
5223 error ("Communication problem with target\n");
5224
5225 /* get/display the response */
5226 while (1)
5227 {
5228 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5229 buf[0] = '\0';
5230 getpkt (buf, (rs->remote_packet_size), 0);
5231 if (buf[0] == '\0')
5232 error ("Target does not support this command\n");
5233 if (buf[0] == 'O' && buf[1] != 'K')
5234 {
5235 remote_console_output (buf + 1); /* 'O' message from stub */
5236 continue;
5237 }
5238 if (strcmp (buf, "OK") == 0)
5239 break;
5240 if (strlen (buf) == 3 && buf[0] == 'E'
5241 && isdigit (buf[1]) && isdigit (buf[2]))
5242 {
5243 error ("Protocol error with Rcmd");
5244 }
5245 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5246 {
5247 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5248 fputc_unfiltered (c, outbuf);
5249 }
5250 break;
5251 }
5252 }
5253
5254 static void
5255 packet_command (char *args, int from_tty)
5256 {
5257 struct remote_state *rs = get_remote_state ();
5258 char *buf = alloca (rs->remote_packet_size);
5259
5260 if (!remote_desc)
5261 error ("command can only be used with remote target");
5262
5263 if (!args)
5264 error ("remote-packet command requires packet text as argument");
5265
5266 puts_filtered ("sending: ");
5267 print_packet (args);
5268 puts_filtered ("\n");
5269 putpkt (args);
5270
5271 getpkt (buf, (rs->remote_packet_size), 0);
5272 puts_filtered ("received: ");
5273 print_packet (buf);
5274 puts_filtered ("\n");
5275 }
5276
5277 #if 0
5278 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5279
5280 static void display_thread_info (struct gdb_ext_thread_info *info);
5281
5282 static void threadset_test_cmd (char *cmd, int tty);
5283
5284 static void threadalive_test (char *cmd, int tty);
5285
5286 static void threadlist_test_cmd (char *cmd, int tty);
5287
5288 int get_and_display_threadinfo (threadref * ref);
5289
5290 static void threadinfo_test_cmd (char *cmd, int tty);
5291
5292 static int thread_display_step (threadref * ref, void *context);
5293
5294 static void threadlist_update_test_cmd (char *cmd, int tty);
5295
5296 static void init_remote_threadtests (void);
5297
5298 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5299
5300 static void
5301 threadset_test_cmd (char *cmd, int tty)
5302 {
5303 int sample_thread = SAMPLE_THREAD;
5304
5305 printf_filtered ("Remote threadset test\n");
5306 set_thread (sample_thread, 1);
5307 }
5308
5309
5310 static void
5311 threadalive_test (char *cmd, int tty)
5312 {
5313 int sample_thread = SAMPLE_THREAD;
5314
5315 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5316 printf_filtered ("PASS: Thread alive test\n");
5317 else
5318 printf_filtered ("FAIL: Thread alive test\n");
5319 }
5320
5321 void output_threadid (char *title, threadref * ref);
5322
5323 void
5324 output_threadid (char *title, threadref *ref)
5325 {
5326 char hexid[20];
5327
5328 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5329 hexid[16] = 0;
5330 printf_filtered ("%s %s\n", title, (&hexid[0]));
5331 }
5332
5333 static void
5334 threadlist_test_cmd (char *cmd, int tty)
5335 {
5336 int startflag = 1;
5337 threadref nextthread;
5338 int done, result_count;
5339 threadref threadlist[3];
5340
5341 printf_filtered ("Remote Threadlist test\n");
5342 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5343 &result_count, &threadlist[0]))
5344 printf_filtered ("FAIL: threadlist test\n");
5345 else
5346 {
5347 threadref *scan = threadlist;
5348 threadref *limit = scan + result_count;
5349
5350 while (scan < limit)
5351 output_threadid (" thread ", scan++);
5352 }
5353 }
5354
5355 void
5356 display_thread_info (struct gdb_ext_thread_info *info)
5357 {
5358 output_threadid ("Threadid: ", &info->threadid);
5359 printf_filtered ("Name: %s\n ", info->shortname);
5360 printf_filtered ("State: %s\n", info->display);
5361 printf_filtered ("other: %s\n\n", info->more_display);
5362 }
5363
5364 int
5365 get_and_display_threadinfo (threadref *ref)
5366 {
5367 int result;
5368 int set;
5369 struct gdb_ext_thread_info threadinfo;
5370
5371 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5372 | TAG_MOREDISPLAY | TAG_DISPLAY;
5373 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5374 display_thread_info (&threadinfo);
5375 return result;
5376 }
5377
5378 static void
5379 threadinfo_test_cmd (char *cmd, int tty)
5380 {
5381 int athread = SAMPLE_THREAD;
5382 threadref thread;
5383 int set;
5384
5385 int_to_threadref (&thread, athread);
5386 printf_filtered ("Remote Threadinfo test\n");
5387 if (!get_and_display_threadinfo (&thread))
5388 printf_filtered ("FAIL cannot get thread info\n");
5389 }
5390
5391 static int
5392 thread_display_step (threadref *ref, void *context)
5393 {
5394 /* output_threadid(" threadstep ",ref); *//* simple test */
5395 return get_and_display_threadinfo (ref);
5396 }
5397
5398 static void
5399 threadlist_update_test_cmd (char *cmd, int tty)
5400 {
5401 printf_filtered ("Remote Threadlist update test\n");
5402 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5403 }
5404
5405 static void
5406 init_remote_threadtests (void)
5407 {
5408 add_com ("tlist", class_obscure, threadlist_test_cmd,
5409 "Fetch and print the remote list of thread identifiers, one pkt only");
5410 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5411 "Fetch and display info about one thread");
5412 add_com ("tset", class_obscure, threadset_test_cmd,
5413 "Test setting to a different thread");
5414 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5415 "Iterate through updating all remote thread info");
5416 add_com ("talive", class_obscure, threadalive_test,
5417 " Remote thread alive test ");
5418 }
5419
5420 #endif /* 0 */
5421
5422 /* Convert a thread ID to a string. Returns the string in a static
5423 buffer. */
5424
5425 static char *
5426 remote_pid_to_str (ptid_t ptid)
5427 {
5428 static char buf[30];
5429
5430 sprintf (buf, "Thread %d", PIDGET (ptid));
5431 return buf;
5432 }
5433
5434 static void
5435 init_remote_ops (void)
5436 {
5437 remote_ops.to_shortname = "remote";
5438 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5439 remote_ops.to_doc =
5440 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5441 Specify the serial device it is connected to\n\
5442 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5443 remote_ops.to_open = remote_open;
5444 remote_ops.to_close = remote_close;
5445 remote_ops.to_detach = remote_detach;
5446 remote_ops.to_disconnect = remote_disconnect;
5447 remote_ops.to_resume = remote_resume;
5448 remote_ops.to_wait = remote_wait;
5449 remote_ops.to_fetch_registers = remote_fetch_registers;
5450 remote_ops.to_store_registers = remote_store_registers;
5451 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5452 remote_ops.to_xfer_memory = remote_xfer_memory;
5453 remote_ops.to_files_info = remote_files_info;
5454 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5455 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5456 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5457 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5458 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5459 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5460 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5461 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5462 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5463 remote_ops.to_kill = remote_kill;
5464 remote_ops.to_load = generic_load;
5465 remote_ops.to_mourn_inferior = remote_mourn;
5466 remote_ops.to_thread_alive = remote_thread_alive;
5467 remote_ops.to_find_new_threads = remote_threads_info;
5468 remote_ops.to_pid_to_str = remote_pid_to_str;
5469 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5470 remote_ops.to_stop = remote_stop;
5471 remote_ops.to_xfer_partial = remote_xfer_partial;
5472 remote_ops.to_rcmd = remote_rcmd;
5473 remote_ops.to_stratum = process_stratum;
5474 remote_ops.to_has_all_memory = 1;
5475 remote_ops.to_has_memory = 1;
5476 remote_ops.to_has_stack = 1;
5477 remote_ops.to_has_registers = 1;
5478 remote_ops.to_has_execution = 1;
5479 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5480 remote_ops.to_magic = OPS_MAGIC;
5481 }
5482
5483 /* Set up the extended remote vector by making a copy of the standard
5484 remote vector and adding to it. */
5485
5486 static void
5487 init_extended_remote_ops (void)
5488 {
5489 extended_remote_ops = remote_ops;
5490
5491 extended_remote_ops.to_shortname = "extended-remote";
5492 extended_remote_ops.to_longname =
5493 "Extended remote serial target in gdb-specific protocol";
5494 extended_remote_ops.to_doc =
5495 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5496 Specify the serial device it is connected to (e.g. /dev/ttya).",
5497 extended_remote_ops.to_open = extended_remote_open;
5498 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5499 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5500 }
5501
5502 /*
5503 * Command: info remote-process
5504 *
5505 * This implements Cisco's version of the "info proc" command.
5506 *
5507 * This query allows the target stub to return an arbitrary string
5508 * (or strings) giving arbitrary information about the target process.
5509 * This is optional; the target stub isn't required to implement it.
5510 *
5511 * Syntax: qfProcessInfo request first string
5512 * qsProcessInfo request subsequent string
5513 * reply: 'O'<hex-encoded-string>
5514 * 'l' last reply (empty)
5515 */
5516
5517 static void
5518 remote_info_process (char *args, int from_tty)
5519 {
5520 struct remote_state *rs = get_remote_state ();
5521 char *buf = alloca (rs->remote_packet_size);
5522
5523 if (remote_desc == 0)
5524 error ("Command can only be used when connected to the remote target.");
5525
5526 putpkt ("qfProcessInfo");
5527 getpkt (buf, (rs->remote_packet_size), 0);
5528 if (buf[0] == 0)
5529 return; /* Silently: target does not support this feature. */
5530
5531 if (buf[0] == 'E')
5532 error ("info proc: target error.");
5533
5534 while (buf[0] == 'O') /* Capitol-O packet */
5535 {
5536 remote_console_output (&buf[1]);
5537 putpkt ("qsProcessInfo");
5538 getpkt (buf, (rs->remote_packet_size), 0);
5539 }
5540 }
5541
5542 /*
5543 * Target Cisco
5544 */
5545
5546 static void
5547 remote_cisco_open (char *name, int from_tty)
5548 {
5549 int ex;
5550 if (name == 0)
5551 error ("To open a remote debug connection, you need to specify what \n"
5552 "device is attached to the remote system (e.g. host:port).");
5553
5554 /* See FIXME above */
5555 wait_forever_enabled_p = 1;
5556
5557 target_preopen (from_tty);
5558
5559 unpush_target (&remote_cisco_ops);
5560
5561 remote_desc = remote_serial_open (name);
5562 if (!remote_desc)
5563 perror_with_name (name);
5564
5565 /*
5566 * If a baud rate was specified on the gdb command line it will
5567 * be greater than the initial value of -1. If it is, use it otherwise
5568 * default to 9600
5569 */
5570
5571 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5572 if (serial_setbaudrate (remote_desc, baud_rate))
5573 {
5574 /* The requested speed could not be set. Error out to
5575 top level after closing remote_desc. Take care to
5576 set remote_desc to NULL to avoid closing remote_desc
5577 more than once. */
5578 serial_close (remote_desc);
5579 remote_desc = NULL;
5580 perror_with_name (name);
5581 }
5582
5583 serial_raw (remote_desc);
5584
5585 /* If there is something sitting in the buffer we might take it as a
5586 response to a command, which would be bad. */
5587 serial_flush_input (remote_desc);
5588
5589 if (from_tty)
5590 {
5591 puts_filtered ("Remote debugging using ");
5592 puts_filtered (name);
5593 puts_filtered ("\n");
5594 }
5595
5596 remote_cisco_mode = 1;
5597
5598 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5599
5600 init_all_packet_configs ();
5601
5602 general_thread = -2;
5603 continue_thread = -2;
5604
5605 /* Probe for ability to use "ThreadInfo" query, as required. */
5606 use_threadinfo_query = 1;
5607 use_threadextra_query = 1;
5608
5609 /* Without this, some commands which require an active target (such
5610 as kill) won't work. This variable serves (at least) double duty
5611 as both the pid of the target process (if it has such), and as a
5612 flag indicating that a target is active. These functions should
5613 be split out into seperate variables, especially since GDB will
5614 someday have a notion of debugging several processes. */
5615 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5616
5617 /* Start the remote connection; if error, discard this target. See
5618 the comments in remote_open_1() for further details such as the
5619 need to re-throw the exception. */
5620 ex = catch_exceptions (uiout,
5621 remote_start_remote_dummy, NULL,
5622 "Couldn't establish connection to remote"
5623 " target\n",
5624 RETURN_MASK_ALL);
5625 if (ex < 0)
5626 {
5627 pop_target ();
5628 throw_exception (ex);
5629 }
5630 }
5631
5632 static void
5633 remote_cisco_close (int quitting)
5634 {
5635 remote_cisco_mode = 0;
5636 remote_close (quitting);
5637 }
5638
5639 static void
5640 remote_cisco_mourn (void)
5641 {
5642 remote_mourn_1 (&remote_cisco_ops);
5643 }
5644
5645 enum
5646 {
5647 READ_MORE,
5648 FATAL_ERROR,
5649 ENTER_DEBUG,
5650 DISCONNECT_TELNET
5651 }
5652 minitelnet_return;
5653
5654 /* Shared between readsocket() and readtty(). The size is arbitrary,
5655 however all targets are known to support a 400 character packet. */
5656 static char tty_input[400];
5657
5658 static int escape_count;
5659 static int echo_check;
5660 extern int quit_flag;
5661
5662 static int
5663 readsocket (void)
5664 {
5665 int data;
5666
5667 /* Loop until the socket doesn't have any more data */
5668
5669 while ((data = readchar (0)) >= 0)
5670 {
5671 /* Check for the escape sequence */
5672 if (data == '|')
5673 {
5674 /* If this is the fourth escape, get out */
5675 if (++escape_count == 4)
5676 {
5677 return ENTER_DEBUG;
5678 }
5679 else
5680 { /* This is a '|', but not the fourth in a row.
5681 Continue without echoing it. If it isn't actually
5682 one of four in a row, it'll be echoed later. */
5683 continue;
5684 }
5685 }
5686 else
5687 /* Not a '|' */
5688 {
5689 /* Ensure any pending '|'s are flushed. */
5690
5691 for (; escape_count > 0; escape_count--)
5692 putchar ('|');
5693 }
5694
5695 if (data == '\r') /* If this is a return character, */
5696 continue; /* - just supress it. */
5697
5698 if (echo_check != -1) /* Check for echo of user input. */
5699 {
5700 if (tty_input[echo_check] == data)
5701 {
5702 gdb_assert (echo_check <= sizeof (tty_input));
5703 echo_check++; /* Character matched user input: */
5704 continue; /* Continue without echoing it. */
5705 }
5706 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5707 { /* End of the line (and of echo checking). */
5708 echo_check = -1; /* No more echo supression */
5709 continue; /* Continue without echoing. */
5710 }
5711 else
5712 { /* Failed check for echo of user input.
5713 We now have some suppressed output to flush! */
5714 int j;
5715
5716 for (j = 0; j < echo_check; j++)
5717 putchar (tty_input[j]);
5718 echo_check = -1;
5719 }
5720 }
5721 putchar (data); /* Default case: output the char. */
5722 }
5723
5724 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5725 return READ_MORE; /* Try to read some more */
5726 else
5727 return FATAL_ERROR; /* Trouble, bail out */
5728 }
5729
5730 static int
5731 readtty (void)
5732 {
5733 int tty_bytecount;
5734
5735 /* First, read a buffer full from the terminal */
5736 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5737 if (tty_bytecount == -1)
5738 {
5739 perror ("readtty: read failed");
5740 return FATAL_ERROR;
5741 }
5742
5743 /* Remove a quoted newline. */
5744 if (tty_input[tty_bytecount - 1] == '\n' &&
5745 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5746 {
5747 tty_input[--tty_bytecount] = 0; /* remove newline */
5748 tty_input[--tty_bytecount] = 0; /* remove backslash */
5749 }
5750
5751 /* Turn trailing newlines into returns */
5752 if (tty_input[tty_bytecount - 1] == '\n')
5753 tty_input[tty_bytecount - 1] = '\r';
5754
5755 /* If the line consists of a ~, enter debugging mode. */
5756 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5757 return ENTER_DEBUG;
5758
5759 /* Make this a zero terminated string and write it out */
5760 tty_input[tty_bytecount] = 0;
5761 if (serial_write (remote_desc, tty_input, tty_bytecount))
5762 {
5763 perror_with_name ("readtty: write failed");
5764 return FATAL_ERROR;
5765 }
5766
5767 return READ_MORE;
5768 }
5769
5770 static int
5771 minitelnet (void)
5772 {
5773 fd_set input; /* file descriptors for select */
5774 int tablesize; /* max number of FDs for select */
5775 int status;
5776 int quit_count = 0;
5777
5778 escape_count = 0;
5779 echo_check = -1;
5780
5781 tablesize = 8 * sizeof (input);
5782
5783 for (;;)
5784 {
5785 /* Check for anything from our socket - doesn't block. Note that
5786 this must be done *before* the select as there may be
5787 buffered I/O waiting to be processed. */
5788
5789 if ((status = readsocket ()) == FATAL_ERROR)
5790 {
5791 error ("Debugging terminated by communications error");
5792 }
5793 else if (status != READ_MORE)
5794 {
5795 return (status);
5796 }
5797
5798 fflush (stdout); /* Flush output before blocking */
5799
5800 /* Now block on more socket input or TTY input */
5801
5802 FD_ZERO (&input);
5803 FD_SET (fileno (stdin), &input);
5804 FD_SET (deprecated_serial_fd (remote_desc), &input);
5805
5806 status = select (tablesize, &input, 0, 0, 0);
5807 if ((status == -1) && (errno != EINTR))
5808 {
5809 error ("Communications error on select %d", errno);
5810 }
5811
5812 /* Handle Control-C typed */
5813
5814 if (quit_flag)
5815 {
5816 if ((++quit_count) == 2)
5817 {
5818 if (query ("Interrupt GDB? "))
5819 {
5820 printf_filtered ("Interrupted by user.\n");
5821 throw_exception (RETURN_QUIT);
5822 }
5823 quit_count = 0;
5824 }
5825 quit_flag = 0;
5826
5827 if (remote_break)
5828 serial_send_break (remote_desc);
5829 else
5830 serial_write (remote_desc, "\003", 1);
5831
5832 continue;
5833 }
5834
5835 /* Handle console input */
5836
5837 if (FD_ISSET (fileno (stdin), &input))
5838 {
5839 quit_count = 0;
5840 echo_check = 0;
5841 status = readtty ();
5842 if (status == READ_MORE)
5843 continue;
5844
5845 return status; /* telnet session ended */
5846 }
5847 }
5848 }
5849
5850 static ptid_t
5851 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5852 {
5853 if (minitelnet () != ENTER_DEBUG)
5854 {
5855 error ("Debugging session terminated by protocol error");
5856 }
5857 putpkt ("?");
5858 return remote_wait (ptid, status);
5859 }
5860
5861 static void
5862 init_remote_cisco_ops (void)
5863 {
5864 remote_cisco_ops.to_shortname = "cisco";
5865 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5866 remote_cisco_ops.to_doc =
5867 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5868 Specify the serial device it is connected to (e.g. host:2020).";
5869 remote_cisco_ops.to_open = remote_cisco_open;
5870 remote_cisco_ops.to_close = remote_cisco_close;
5871 remote_cisco_ops.to_detach = remote_detach;
5872 remote_cisco_ops.to_disconnect = remote_disconnect;
5873 remote_cisco_ops.to_resume = remote_resume;
5874 remote_cisco_ops.to_wait = remote_cisco_wait;
5875 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5876 remote_cisco_ops.to_store_registers = remote_store_registers;
5877 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5878 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5879 remote_cisco_ops.to_files_info = remote_files_info;
5880 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5881 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5882 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5883 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5884 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5885 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5886 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5887 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5888 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5889 remote_cisco_ops.to_kill = remote_kill;
5890 remote_cisco_ops.to_load = generic_load;
5891 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5892 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5893 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5894 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5895 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5896 remote_cisco_ops.to_stratum = process_stratum;
5897 remote_cisco_ops.to_has_all_memory = 1;
5898 remote_cisco_ops.to_has_memory = 1;
5899 remote_cisco_ops.to_has_stack = 1;
5900 remote_cisco_ops.to_has_registers = 1;
5901 remote_cisco_ops.to_has_execution = 1;
5902 remote_cisco_ops.to_magic = OPS_MAGIC;
5903 }
5904
5905 static int
5906 remote_can_async_p (void)
5907 {
5908 /* We're async whenever the serial device is. */
5909 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5910 }
5911
5912 static int
5913 remote_is_async_p (void)
5914 {
5915 /* We're async whenever the serial device is. */
5916 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5917 }
5918
5919 /* Pass the SERIAL event on and up to the client. One day this code
5920 will be able to delay notifying the client of an event until the
5921 point where an entire packet has been received. */
5922
5923 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5924 static void *async_client_context;
5925 static serial_event_ftype remote_async_serial_handler;
5926
5927 static void
5928 remote_async_serial_handler (struct serial *scb, void *context)
5929 {
5930 /* Don't propogate error information up to the client. Instead let
5931 the client find out about the error by querying the target. */
5932 async_client_callback (INF_REG_EVENT, async_client_context);
5933 }
5934
5935 static void
5936 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5937 {
5938 if (current_target.to_async_mask_value == 0)
5939 internal_error (__FILE__, __LINE__,
5940 "Calling remote_async when async is masked");
5941
5942 if (callback != NULL)
5943 {
5944 serial_async (remote_desc, remote_async_serial_handler, NULL);
5945 async_client_callback = callback;
5946 async_client_context = context;
5947 }
5948 else
5949 serial_async (remote_desc, NULL, NULL);
5950 }
5951
5952 /* Target async and target extended-async.
5953
5954 This are temporary targets, until it is all tested. Eventually
5955 async support will be incorporated int the usual 'remote'
5956 target. */
5957
5958 static void
5959 init_remote_async_ops (void)
5960 {
5961 remote_async_ops.to_shortname = "async";
5962 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5963 remote_async_ops.to_doc =
5964 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5965 Specify the serial device it is connected to (e.g. /dev/ttya).";
5966 remote_async_ops.to_open = remote_async_open;
5967 remote_async_ops.to_close = remote_close;
5968 remote_async_ops.to_detach = remote_detach;
5969 remote_async_ops.to_disconnect = remote_disconnect;
5970 remote_async_ops.to_resume = remote_async_resume;
5971 remote_async_ops.to_wait = remote_async_wait;
5972 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5973 remote_async_ops.to_store_registers = remote_store_registers;
5974 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5975 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5976 remote_async_ops.to_files_info = remote_files_info;
5977 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5978 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5979 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5980 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5981 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5982 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5983 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5984 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5985 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5986 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5987 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5988 remote_async_ops.to_kill = remote_async_kill;
5989 remote_async_ops.to_load = generic_load;
5990 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5991 remote_async_ops.to_thread_alive = remote_thread_alive;
5992 remote_async_ops.to_find_new_threads = remote_threads_info;
5993 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5994 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5995 remote_async_ops.to_stop = remote_stop;
5996 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5997 remote_async_ops.to_rcmd = remote_rcmd;
5998 remote_async_ops.to_stratum = process_stratum;
5999 remote_async_ops.to_has_all_memory = 1;
6000 remote_async_ops.to_has_memory = 1;
6001 remote_async_ops.to_has_stack = 1;
6002 remote_async_ops.to_has_registers = 1;
6003 remote_async_ops.to_has_execution = 1;
6004 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6005 remote_async_ops.to_can_async_p = remote_can_async_p;
6006 remote_async_ops.to_is_async_p = remote_is_async_p;
6007 remote_async_ops.to_async = remote_async;
6008 remote_async_ops.to_async_mask_value = 1;
6009 remote_async_ops.to_magic = OPS_MAGIC;
6010 }
6011
6012 /* Set up the async extended remote vector by making a copy of the standard
6013 remote vector and adding to it. */
6014
6015 static void
6016 init_extended_async_remote_ops (void)
6017 {
6018 extended_async_remote_ops = remote_async_ops;
6019
6020 extended_async_remote_ops.to_shortname = "extended-async";
6021 extended_async_remote_ops.to_longname =
6022 "Extended remote serial target in async gdb-specific protocol";
6023 extended_async_remote_ops.to_doc =
6024 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6025 Specify the serial device it is connected to (e.g. /dev/ttya).",
6026 extended_async_remote_ops.to_open = extended_remote_async_open;
6027 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6028 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6029 }
6030
6031 static void
6032 set_remote_cmd (char *args, int from_tty)
6033 {
6034 }
6035
6036 static void
6037 show_remote_cmd (char *args, int from_tty)
6038 {
6039 /* FIXME: cagney/2002-06-15: This function should iterate over
6040 remote_show_cmdlist for a list of sub commands to show. */
6041 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
6042 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
6043 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
6044 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
6045 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
6046 show_remote_protocol_vcont_packet_cmd (args, from_tty, NULL);
6047 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
6048 }
6049
6050 static void
6051 build_remote_gdbarch_data (void)
6052 {
6053 remote_address_size = TARGET_ADDR_BIT;
6054 }
6055
6056 /* Saved pointer to previous owner of the new_objfile event. */
6057 static void (*remote_new_objfile_chain) (struct objfile *);
6058
6059 /* Function to be called whenever a new objfile (shlib) is detected. */
6060 static void
6061 remote_new_objfile (struct objfile *objfile)
6062 {
6063 if (remote_desc != 0) /* Have a remote connection */
6064 {
6065 remote_check_symbols (objfile);
6066 }
6067 /* Call predecessor on chain, if any. */
6068 if (remote_new_objfile_chain != 0 &&
6069 remote_desc == 0)
6070 remote_new_objfile_chain (objfile);
6071 }
6072
6073 void
6074 _initialize_remote (void)
6075 {
6076 static struct cmd_list_element *remote_set_cmdlist;
6077 static struct cmd_list_element *remote_show_cmdlist;
6078 struct cmd_list_element *tmpcmd;
6079
6080 /* architecture specific data */
6081 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state);
6082
6083 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6084 that the remote protocol has been initialized. */
6085 register_gdbarch_swap (&remote_address_size,
6086 sizeof (&remote_address_size), NULL);
6087 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6088
6089 init_remote_ops ();
6090 add_target (&remote_ops);
6091
6092 init_extended_remote_ops ();
6093 add_target (&extended_remote_ops);
6094
6095 init_remote_async_ops ();
6096 add_target (&remote_async_ops);
6097
6098 init_extended_async_remote_ops ();
6099 add_target (&extended_async_remote_ops);
6100
6101 init_remote_cisco_ops ();
6102 add_target (&remote_cisco_ops);
6103
6104 /* Hook into new objfile notification. */
6105 remote_new_objfile_chain = target_new_objfile_hook;
6106 target_new_objfile_hook = remote_new_objfile;
6107
6108 #if 0
6109 init_remote_threadtests ();
6110 #endif
6111
6112 /* set/show remote ... */
6113
6114 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6115 Remote protocol specific variables\n\
6116 Configure various remote-protocol specific variables such as\n\
6117 the packets being used",
6118 &remote_set_cmdlist, "set remote ",
6119 0/*allow-unknown*/, &setlist);
6120 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6121 Remote protocol specific variables\n\
6122 Configure various remote-protocol specific variables such as\n\
6123 the packets being used",
6124 &remote_show_cmdlist, "show remote ",
6125 0/*allow-unknown*/, &showlist);
6126
6127 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6128 "Compare section data on target to the exec file.\n\
6129 Argument is a single section name (default: all loaded sections).",
6130 &cmdlist);
6131
6132 add_cmd ("packet", class_maintenance, packet_command,
6133 "Send an arbitrary packet to a remote target.\n\
6134 maintenance packet TEXT\n\
6135 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6136 this command sends the string TEXT to the inferior, and displays the\n\
6137 response packet. GDB supplies the initial `$' character, and the\n\
6138 terminating `#' character and checksum.",
6139 &maintenancelist);
6140
6141 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6142 "Set whether to send break if interrupted.\n",
6143 "Show whether to send break if interrupted.\n",
6144 NULL, NULL,
6145 &setlist, &showlist);
6146
6147 /* Install commands for configuring memory read/write packets. */
6148
6149 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6150 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6151 &setlist);
6152 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6153 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6154 &showlist);
6155 add_cmd ("memory-write-packet-size", no_class,
6156 set_memory_write_packet_size,
6157 "Set the maximum number of bytes per memory-write packet.\n"
6158 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6159 "default packet size. The actual limit is further reduced\n"
6160 "dependent on the target. Specify ``fixed'' to disable the\n"
6161 "further restriction and ``limit'' to enable that restriction\n",
6162 &remote_set_cmdlist);
6163 add_cmd ("memory-read-packet-size", no_class,
6164 set_memory_read_packet_size,
6165 "Set the maximum number of bytes per memory-read packet.\n"
6166 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6167 "default packet size. The actual limit is further reduced\n"
6168 "dependent on the target. Specify ``fixed'' to disable the\n"
6169 "further restriction and ``limit'' to enable that restriction\n",
6170 &remote_set_cmdlist);
6171 add_cmd ("memory-write-packet-size", no_class,
6172 show_memory_write_packet_size,
6173 "Show the maximum number of bytes per memory-write packet.\n",
6174 &remote_show_cmdlist);
6175 add_cmd ("memory-read-packet-size", no_class,
6176 show_memory_read_packet_size,
6177 "Show the maximum number of bytes per memory-read packet.\n",
6178 &remote_show_cmdlist);
6179
6180 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
6181 var_zinteger, &remote_hw_watchpoint_limit, "\
6182 Set the maximum number of target hardware watchpoints.\n\
6183 Specify a negative limit for unlimited.", "\
6184 Show the maximum number of target hardware watchpoints.\n",
6185 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6186 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
6187 var_zinteger, &remote_hw_breakpoint_limit, "\
6188 Set the maximum number of target hardware breakpoints.\n\
6189 Specify a negative limit for unlimited.", "\
6190 Show the maximum number of target hardware breakpoints.\n",
6191 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6192
6193 add_show_from_set
6194 (add_set_cmd ("remoteaddresssize", class_obscure,
6195 var_integer, (char *) &remote_address_size,
6196 "Set the maximum size of the address (in bits) \
6197 in a memory packet.\n",
6198 &setlist),
6199 &showlist);
6200
6201 add_packet_config_cmd (&remote_protocol_binary_download,
6202 "X", "binary-download",
6203 set_remote_protocol_binary_download_cmd,
6204 show_remote_protocol_binary_download_cmd,
6205 &remote_set_cmdlist, &remote_show_cmdlist,
6206 1);
6207 #if 0
6208 /* XXXX - should ``set remotebinarydownload'' be retained for
6209 compatibility. */
6210 add_show_from_set
6211 (add_set_cmd ("remotebinarydownload", no_class,
6212 var_boolean, (char *) &remote_binary_download,
6213 "Set binary downloads.\n", &setlist),
6214 &showlist);
6215 #endif
6216
6217 add_info ("remote-process", remote_info_process,
6218 "Query the remote system for process info.");
6219
6220 add_packet_config_cmd (&remote_protocol_vcont,
6221 "vCont", "verbose-resume",
6222 set_remote_protocol_vcont_packet_cmd,
6223 show_remote_protocol_vcont_packet_cmd,
6224 &remote_set_cmdlist, &remote_show_cmdlist,
6225 0);
6226
6227 add_packet_config_cmd (&remote_protocol_qSymbol,
6228 "qSymbol", "symbol-lookup",
6229 set_remote_protocol_qSymbol_packet_cmd,
6230 show_remote_protocol_qSymbol_packet_cmd,
6231 &remote_set_cmdlist, &remote_show_cmdlist,
6232 0);
6233
6234 add_packet_config_cmd (&remote_protocol_e,
6235 "e", "step-over-range",
6236 set_remote_protocol_e_packet_cmd,
6237 show_remote_protocol_e_packet_cmd,
6238 &remote_set_cmdlist, &remote_show_cmdlist,
6239 0);
6240 /* Disable by default. The ``e'' packet has nasty interactions with
6241 the threading code - it relies on global state. */
6242 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6243 update_packet_config (&remote_protocol_e);
6244
6245 add_packet_config_cmd (&remote_protocol_E,
6246 "E", "step-over-range-w-signal",
6247 set_remote_protocol_E_packet_cmd,
6248 show_remote_protocol_E_packet_cmd,
6249 &remote_set_cmdlist, &remote_show_cmdlist,
6250 0);
6251 /* Disable by default. The ``e'' packet has nasty interactions with
6252 the threading code - it relies on global state. */
6253 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6254 update_packet_config (&remote_protocol_E);
6255
6256 add_packet_config_cmd (&remote_protocol_P,
6257 "P", "set-register",
6258 set_remote_protocol_P_packet_cmd,
6259 show_remote_protocol_P_packet_cmd,
6260 &remote_set_cmdlist, &remote_show_cmdlist,
6261 1);
6262
6263 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6264 "Z0", "software-breakpoint",
6265 set_remote_protocol_Z_software_bp_packet_cmd,
6266 show_remote_protocol_Z_software_bp_packet_cmd,
6267 &remote_set_cmdlist, &remote_show_cmdlist,
6268 0);
6269
6270 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6271 "Z1", "hardware-breakpoint",
6272 set_remote_protocol_Z_hardware_bp_packet_cmd,
6273 show_remote_protocol_Z_hardware_bp_packet_cmd,
6274 &remote_set_cmdlist, &remote_show_cmdlist,
6275 0);
6276
6277 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6278 "Z2", "write-watchpoint",
6279 set_remote_protocol_Z_write_wp_packet_cmd,
6280 show_remote_protocol_Z_write_wp_packet_cmd,
6281 &remote_set_cmdlist, &remote_show_cmdlist,
6282 0);
6283
6284 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6285 "Z3", "read-watchpoint",
6286 set_remote_protocol_Z_read_wp_packet_cmd,
6287 show_remote_protocol_Z_read_wp_packet_cmd,
6288 &remote_set_cmdlist, &remote_show_cmdlist,
6289 0);
6290
6291 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6292 "Z4", "access-watchpoint",
6293 set_remote_protocol_Z_access_wp_packet_cmd,
6294 show_remote_protocol_Z_access_wp_packet_cmd,
6295 &remote_set_cmdlist, &remote_show_cmdlist,
6296 0);
6297
6298 /* Keep the old ``set remote Z-packet ...'' working. */
6299 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6300 &remote_Z_packet_detect, "\
6301 Set use of remote protocol `Z' packets",
6302 "Show use of remote protocol `Z' packets ",
6303 set_remote_protocol_Z_packet_cmd,
6304 show_remote_protocol_Z_packet_cmd,
6305 &remote_set_cmdlist, &remote_show_cmdlist);
6306
6307 /* Eventually initialize fileio. See fileio.c */
6308 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6309 }
This page took 0.172178 seconds and 4 git commands to generate.