2635857b25f3e99bd84358c3a6280be4beb4de6c
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void build_remote_gdbarch_data (void);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_async_resume (ptid_t ptid, int step,
99 enum target_signal siggnal);
100 static void remote_open (char *name, int from_tty);
101 static void remote_async_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104 static void extended_remote_async_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 int async_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_store_registers (struct regcache *regcache, int regno);
112
113 static void remote_mourn (void);
114 static void remote_async_mourn (void);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (void);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static ptid_t remote_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128 static ptid_t remote_async_wait (ptid_t ptid,
129 struct target_waitstatus *status);
130
131 static void remote_kill (void);
132 static void remote_async_kill (void);
133
134 static int tohex (int nib);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_thread (int, int);
145
146 static int remote_thread_alive (ptid_t);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (void);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 static int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 void _initialize_remote (void);
213
214 /* For "set remote" and "show remote". */
215
216 static struct cmd_list_element *remote_set_cmdlist;
217 static struct cmd_list_element *remote_show_cmdlist;
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 struct remote_state
224 {
225 /* A buffer to use for incoming packets, and its current size. The
226 buffer is grown dynamically for larger incoming packets.
227 Outgoing packets may also be constructed in this buffer.
228 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
229 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 packets. */
231 char *buf;
232 long buf_size;
233
234 /* If we negotiated packet size explicitly (and thus can bypass
235 heuristics for the largest packet size that will not overflow
236 a buffer in the stub), this will be set to that packet size.
237 Otherwise zero, meaning to use the guessed size. */
238 long explicit_packet_size;
239 };
240
241 /* This data could be associated with a target, but we do not always
242 have access to the current target when we need it, so for now it is
243 static. This will be fine for as long as only one target is in use
244 at a time. */
245 static struct remote_state remote_state;
246
247 static struct remote_state *
248 get_remote_state_raw (void)
249 {
250 return &remote_state;
251 }
252
253 /* Description of the remote protocol for a given architecture. */
254
255 struct packet_reg
256 {
257 long offset; /* Offset into G packet. */
258 long regnum; /* GDB's internal register number. */
259 LONGEST pnum; /* Remote protocol register number. */
260 int in_g_packet; /* Always part of G packet. */
261 /* long size in bytes; == register_size (current_gdbarch, regnum);
262 at present. */
263 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
264 at present. */
265 };
266
267 struct remote_arch_state
268 {
269 /* Description of the remote protocol registers. */
270 long sizeof_g_packet;
271
272 /* Description of the remote protocol registers indexed by REGNUM
273 (making an array gdbarch_num_regs in size). */
274 struct packet_reg *regs;
275
276 /* This is the size (in chars) of the first response to the ``g''
277 packet. It is used as a heuristic when determining the maximum
278 size of memory-read and memory-write packets. A target will
279 typically only reserve a buffer large enough to hold the ``g''
280 packet. The size does not include packet overhead (headers and
281 trailers). */
282 long actual_register_packet_size;
283
284 /* This is the maximum size (in chars) of a non read/write packet.
285 It is also used as a cap on the size of read/write packets. */
286 long remote_packet_size;
287 };
288
289
290 /* Handle for retreving the remote protocol data from gdbarch. */
291 static struct gdbarch_data *remote_gdbarch_data_handle;
292
293 static struct remote_arch_state *
294 get_remote_arch_state (void)
295 {
296 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
297 }
298
299 /* Fetch the global remote target state. */
300
301 static struct remote_state *
302 get_remote_state (void)
303 {
304 /* Make sure that the remote architecture state has been
305 initialized, because doing so might reallocate rs->buf. Any
306 function which calls getpkt also needs to be mindful of changes
307 to rs->buf, but this call limits the number of places which run
308 into trouble. */
309 get_remote_arch_state ();
310
311 return get_remote_state_raw ();
312 }
313
314 static int
315 compare_pnums (const void *lhs_, const void *rhs_)
316 {
317 const struct packet_reg * const *lhs = lhs_;
318 const struct packet_reg * const *rhs = rhs_;
319
320 if ((*lhs)->pnum < (*rhs)->pnum)
321 return -1;
322 else if ((*lhs)->pnum == (*rhs)->pnum)
323 return 0;
324 else
325 return 1;
326 }
327
328 static void *
329 init_remote_state (struct gdbarch *gdbarch)
330 {
331 int regnum, num_remote_regs, offset;
332 struct remote_state *rs = get_remote_state_raw ();
333 struct remote_arch_state *rsa;
334 struct packet_reg **remote_regs;
335
336 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
337
338 /* Use the architecture to build a regnum<->pnum table, which will be
339 1:1 unless a feature set specifies otherwise. */
340 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
341 gdbarch_num_regs (current_gdbarch),
342 struct packet_reg);
343 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
344 {
345 struct packet_reg *r = &rsa->regs[regnum];
346
347 if (register_size (current_gdbarch, regnum) == 0)
348 /* Do not try to fetch zero-sized (placeholder) registers. */
349 r->pnum = -1;
350 else
351 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
352
353 r->regnum = regnum;
354 }
355
356 /* Define the g/G packet format as the contents of each register
357 with a remote protocol number, in order of ascending protocol
358 number. */
359
360 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
361 * sizeof (struct packet_reg *));
362 for (num_remote_regs = 0, regnum = 0;
363 regnum < gdbarch_num_regs (current_gdbarch);
364 regnum++)
365 if (rsa->regs[regnum].pnum != -1)
366 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
367
368 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
369 compare_pnums);
370
371 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
372 {
373 remote_regs[regnum]->in_g_packet = 1;
374 remote_regs[regnum]->offset = offset;
375 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
376 }
377
378 /* Record the maximum possible size of the g packet - it may turn out
379 to be smaller. */
380 rsa->sizeof_g_packet = offset;
381
382 /* Default maximum number of characters in a packet body. Many
383 remote stubs have a hardwired buffer size of 400 bytes
384 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
385 as the maximum packet-size to ensure that the packet and an extra
386 NUL character can always fit in the buffer. This stops GDB
387 trashing stubs that try to squeeze an extra NUL into what is
388 already a full buffer (As of 1999-12-04 that was most stubs). */
389 rsa->remote_packet_size = 400 - 1;
390
391 /* This one is filled in when a ``g'' packet is received. */
392 rsa->actual_register_packet_size = 0;
393
394 /* Should rsa->sizeof_g_packet needs more space than the
395 default, adjust the size accordingly. Remember that each byte is
396 encoded as two characters. 32 is the overhead for the packet
397 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
398 (``$NN:G...#NN'') is a better guess, the below has been padded a
399 little. */
400 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
401 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
402
403 /* Make sure that the packet buffer is plenty big enough for
404 this architecture. */
405 if (rs->buf_size < rsa->remote_packet_size)
406 {
407 rs->buf_size = 2 * rsa->remote_packet_size;
408 rs->buf = xrealloc (rs->buf, rs->buf_size);
409 }
410
411 return rsa;
412 }
413
414 /* Return the current allowed size of a remote packet. This is
415 inferred from the current architecture, and should be used to
416 limit the length of outgoing packets. */
417 static long
418 get_remote_packet_size (void)
419 {
420 struct remote_state *rs = get_remote_state ();
421 struct remote_arch_state *rsa = get_remote_arch_state ();
422
423 if (rs->explicit_packet_size)
424 return rs->explicit_packet_size;
425
426 return rsa->remote_packet_size;
427 }
428
429 static struct packet_reg *
430 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
431 {
432 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
433 return NULL;
434 else
435 {
436 struct packet_reg *r = &rsa->regs[regnum];
437 gdb_assert (r->regnum == regnum);
438 return r;
439 }
440 }
441
442 static struct packet_reg *
443 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
444 {
445 int i;
446 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
447 {
448 struct packet_reg *r = &rsa->regs[i];
449 if (r->pnum == pnum)
450 return r;
451 }
452 return NULL;
453 }
454
455 /* FIXME: graces/2002-08-08: These variables should eventually be
456 bound to an instance of the target object (as in gdbarch-tdep()),
457 when such a thing exists. */
458
459 /* This is set to the data address of the access causing the target
460 to stop for a watchpoint. */
461 static CORE_ADDR remote_watch_data_address;
462
463 /* This is non-zero if target stopped for a watchpoint. */
464 static int remote_stopped_by_watchpoint_p;
465
466 static struct target_ops remote_ops;
467
468 static struct target_ops extended_remote_ops;
469
470 /* Temporary target ops. Just like the remote_ops and
471 extended_remote_ops, but with asynchronous support. */
472 static struct target_ops remote_async_ops;
473
474 static struct target_ops extended_async_remote_ops;
475
476 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
477 ``forever'' still use the normal timeout mechanism. This is
478 currently used by the ASYNC code to guarentee that target reads
479 during the initial connect always time-out. Once getpkt has been
480 modified to return a timeout indication and, in turn
481 remote_wait()/wait_for_inferior() have gained a timeout parameter
482 this can go away. */
483 static int wait_forever_enabled_p = 1;
484
485
486 /* This variable chooses whether to send a ^C or a break when the user
487 requests program interruption. Although ^C is usually what remote
488 systems expect, and that is the default here, sometimes a break is
489 preferable instead. */
490
491 static int remote_break;
492
493 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
494 remote_open knows that we don't have a file open when the program
495 starts. */
496 static struct serial *remote_desc = NULL;
497
498 /* This variable sets the number of bits in an address that are to be
499 sent in a memory ("M" or "m") packet. Normally, after stripping
500 leading zeros, the entire address would be sent. This variable
501 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
502 initial implementation of remote.c restricted the address sent in
503 memory packets to ``host::sizeof long'' bytes - (typically 32
504 bits). Consequently, for 64 bit targets, the upper 32 bits of an
505 address was never sent. Since fixing this bug may cause a break in
506 some remote targets this variable is principly provided to
507 facilitate backward compatibility. */
508
509 static int remote_address_size;
510
511 /* Tempoary to track who currently owns the terminal. See
512 target_async_terminal_* for more details. */
513
514 static int remote_async_terminal_ours_p;
515
516 \f
517 /* User configurable variables for the number of characters in a
518 memory read/write packet. MIN (rsa->remote_packet_size,
519 rsa->sizeof_g_packet) is the default. Some targets need smaller
520 values (fifo overruns, et.al.) and some users need larger values
521 (speed up transfers). The variables ``preferred_*'' (the user
522 request), ``current_*'' (what was actually set) and ``forced_*''
523 (Positive - a soft limit, negative - a hard limit). */
524
525 struct memory_packet_config
526 {
527 char *name;
528 long size;
529 int fixed_p;
530 };
531
532 /* Compute the current size of a read/write packet. Since this makes
533 use of ``actual_register_packet_size'' the computation is dynamic. */
534
535 static long
536 get_memory_packet_size (struct memory_packet_config *config)
537 {
538 struct remote_state *rs = get_remote_state ();
539 struct remote_arch_state *rsa = get_remote_arch_state ();
540
541 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
542 law?) that some hosts don't cope very well with large alloca()
543 calls. Eventually the alloca() code will be replaced by calls to
544 xmalloc() and make_cleanups() allowing this restriction to either
545 be lifted or removed. */
546 #ifndef MAX_REMOTE_PACKET_SIZE
547 #define MAX_REMOTE_PACKET_SIZE 16384
548 #endif
549 /* NOTE: 20 ensures we can write at least one byte. */
550 #ifndef MIN_REMOTE_PACKET_SIZE
551 #define MIN_REMOTE_PACKET_SIZE 20
552 #endif
553 long what_they_get;
554 if (config->fixed_p)
555 {
556 if (config->size <= 0)
557 what_they_get = MAX_REMOTE_PACKET_SIZE;
558 else
559 what_they_get = config->size;
560 }
561 else
562 {
563 what_they_get = get_remote_packet_size ();
564 /* Limit the packet to the size specified by the user. */
565 if (config->size > 0
566 && what_they_get > config->size)
567 what_they_get = config->size;
568
569 /* Limit it to the size of the targets ``g'' response unless we have
570 permission from the stub to use a larger packet size. */
571 if (rs->explicit_packet_size == 0
572 && rsa->actual_register_packet_size > 0
573 && what_they_get > rsa->actual_register_packet_size)
574 what_they_get = rsa->actual_register_packet_size;
575 }
576 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
577 what_they_get = MAX_REMOTE_PACKET_SIZE;
578 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
579 what_they_get = MIN_REMOTE_PACKET_SIZE;
580
581 /* Make sure there is room in the global buffer for this packet
582 (including its trailing NUL byte). */
583 if (rs->buf_size < what_they_get + 1)
584 {
585 rs->buf_size = 2 * what_they_get;
586 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
587 }
588
589 return what_they_get;
590 }
591
592 /* Update the size of a read/write packet. If they user wants
593 something really big then do a sanity check. */
594
595 static void
596 set_memory_packet_size (char *args, struct memory_packet_config *config)
597 {
598 int fixed_p = config->fixed_p;
599 long size = config->size;
600 if (args == NULL)
601 error (_("Argument required (integer, `fixed' or `limited')."));
602 else if (strcmp (args, "hard") == 0
603 || strcmp (args, "fixed") == 0)
604 fixed_p = 1;
605 else if (strcmp (args, "soft") == 0
606 || strcmp (args, "limit") == 0)
607 fixed_p = 0;
608 else
609 {
610 char *end;
611 size = strtoul (args, &end, 0);
612 if (args == end)
613 error (_("Invalid %s (bad syntax)."), config->name);
614 #if 0
615 /* Instead of explicitly capping the size of a packet to
616 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
617 instead allowed to set the size to something arbitrarily
618 large. */
619 if (size > MAX_REMOTE_PACKET_SIZE)
620 error (_("Invalid %s (too large)."), config->name);
621 #endif
622 }
623 /* Extra checks? */
624 if (fixed_p && !config->fixed_p)
625 {
626 if (! query (_("The target may not be able to correctly handle a %s\n"
627 "of %ld bytes. Change the packet size? "),
628 config->name, size))
629 error (_("Packet size not changed."));
630 }
631 /* Update the config. */
632 config->fixed_p = fixed_p;
633 config->size = size;
634 }
635
636 static void
637 show_memory_packet_size (struct memory_packet_config *config)
638 {
639 printf_filtered (_("The %s is %ld. "), config->name, config->size);
640 if (config->fixed_p)
641 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
642 get_memory_packet_size (config));
643 else
644 printf_filtered (_("Packets are limited to %ld bytes.\n"),
645 get_memory_packet_size (config));
646 }
647
648 static struct memory_packet_config memory_write_packet_config =
649 {
650 "memory-write-packet-size",
651 };
652
653 static void
654 set_memory_write_packet_size (char *args, int from_tty)
655 {
656 set_memory_packet_size (args, &memory_write_packet_config);
657 }
658
659 static void
660 show_memory_write_packet_size (char *args, int from_tty)
661 {
662 show_memory_packet_size (&memory_write_packet_config);
663 }
664
665 static long
666 get_memory_write_packet_size (void)
667 {
668 return get_memory_packet_size (&memory_write_packet_config);
669 }
670
671 static struct memory_packet_config memory_read_packet_config =
672 {
673 "memory-read-packet-size",
674 };
675
676 static void
677 set_memory_read_packet_size (char *args, int from_tty)
678 {
679 set_memory_packet_size (args, &memory_read_packet_config);
680 }
681
682 static void
683 show_memory_read_packet_size (char *args, int from_tty)
684 {
685 show_memory_packet_size (&memory_read_packet_config);
686 }
687
688 static long
689 get_memory_read_packet_size (void)
690 {
691 long size = get_memory_packet_size (&memory_read_packet_config);
692 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
693 extra buffer size argument before the memory read size can be
694 increased beyond this. */
695 if (size > get_remote_packet_size ())
696 size = get_remote_packet_size ();
697 return size;
698 }
699
700 \f
701 /* Generic configuration support for packets the stub optionally
702 supports. Allows the user to specify the use of the packet as well
703 as allowing GDB to auto-detect support in the remote stub. */
704
705 enum packet_support
706 {
707 PACKET_SUPPORT_UNKNOWN = 0,
708 PACKET_ENABLE,
709 PACKET_DISABLE
710 };
711
712 struct packet_config
713 {
714 const char *name;
715 const char *title;
716 enum auto_boolean detect;
717 enum packet_support support;
718 };
719
720 /* Analyze a packet's return value and update the packet config
721 accordingly. */
722
723 enum packet_result
724 {
725 PACKET_ERROR,
726 PACKET_OK,
727 PACKET_UNKNOWN
728 };
729
730 static void
731 update_packet_config (struct packet_config *config)
732 {
733 switch (config->detect)
734 {
735 case AUTO_BOOLEAN_TRUE:
736 config->support = PACKET_ENABLE;
737 break;
738 case AUTO_BOOLEAN_FALSE:
739 config->support = PACKET_DISABLE;
740 break;
741 case AUTO_BOOLEAN_AUTO:
742 config->support = PACKET_SUPPORT_UNKNOWN;
743 break;
744 }
745 }
746
747 static void
748 show_packet_config_cmd (struct packet_config *config)
749 {
750 char *support = "internal-error";
751 switch (config->support)
752 {
753 case PACKET_ENABLE:
754 support = "enabled";
755 break;
756 case PACKET_DISABLE:
757 support = "disabled";
758 break;
759 case PACKET_SUPPORT_UNKNOWN:
760 support = "unknown";
761 break;
762 }
763 switch (config->detect)
764 {
765 case AUTO_BOOLEAN_AUTO:
766 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
767 config->name, support);
768 break;
769 case AUTO_BOOLEAN_TRUE:
770 case AUTO_BOOLEAN_FALSE:
771 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
772 config->name, support);
773 break;
774 }
775 }
776
777 static void
778 add_packet_config_cmd (struct packet_config *config, const char *name,
779 const char *title, int legacy)
780 {
781 char *set_doc;
782 char *show_doc;
783 char *cmd_name;
784
785 config->name = name;
786 config->title = title;
787 config->detect = AUTO_BOOLEAN_AUTO;
788 config->support = PACKET_SUPPORT_UNKNOWN;
789 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
790 name, title);
791 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
792 name, title);
793 /* set/show TITLE-packet {auto,on,off} */
794 cmd_name = xstrprintf ("%s-packet", title);
795 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
796 &config->detect, set_doc, show_doc, NULL, /* help_doc */
797 set_remote_protocol_packet_cmd,
798 show_remote_protocol_packet_cmd,
799 &remote_set_cmdlist, &remote_show_cmdlist);
800 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
801 if (legacy)
802 {
803 char *legacy_name;
804 legacy_name = xstrprintf ("%s-packet", name);
805 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
806 &remote_set_cmdlist);
807 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
808 &remote_show_cmdlist);
809 }
810 }
811
812 static enum packet_result
813 packet_check_result (const char *buf)
814 {
815 if (buf[0] != '\0')
816 {
817 /* The stub recognized the packet request. Check that the
818 operation succeeded. */
819 if (buf[0] == 'E'
820 && isxdigit (buf[1]) && isxdigit (buf[2])
821 && buf[3] == '\0')
822 /* "Enn" - definitly an error. */
823 return PACKET_ERROR;
824
825 /* Always treat "E." as an error. This will be used for
826 more verbose error messages, such as E.memtypes. */
827 if (buf[0] == 'E' && buf[1] == '.')
828 return PACKET_ERROR;
829
830 /* The packet may or may not be OK. Just assume it is. */
831 return PACKET_OK;
832 }
833 else
834 /* The stub does not support the packet. */
835 return PACKET_UNKNOWN;
836 }
837
838 static enum packet_result
839 packet_ok (const char *buf, struct packet_config *config)
840 {
841 enum packet_result result;
842
843 result = packet_check_result (buf);
844 switch (result)
845 {
846 case PACKET_OK:
847 case PACKET_ERROR:
848 /* The stub recognized the packet request. */
849 switch (config->support)
850 {
851 case PACKET_SUPPORT_UNKNOWN:
852 if (remote_debug)
853 fprintf_unfiltered (gdb_stdlog,
854 "Packet %s (%s) is supported\n",
855 config->name, config->title);
856 config->support = PACKET_ENABLE;
857 break;
858 case PACKET_DISABLE:
859 internal_error (__FILE__, __LINE__,
860 _("packet_ok: attempt to use a disabled packet"));
861 break;
862 case PACKET_ENABLE:
863 break;
864 }
865 break;
866 case PACKET_UNKNOWN:
867 /* The stub does not support the packet. */
868 switch (config->support)
869 {
870 case PACKET_ENABLE:
871 if (config->detect == AUTO_BOOLEAN_AUTO)
872 /* If the stub previously indicated that the packet was
873 supported then there is a protocol error.. */
874 error (_("Protocol error: %s (%s) conflicting enabled responses."),
875 config->name, config->title);
876 else
877 /* The user set it wrong. */
878 error (_("Enabled packet %s (%s) not recognized by stub"),
879 config->name, config->title);
880 break;
881 case PACKET_SUPPORT_UNKNOWN:
882 if (remote_debug)
883 fprintf_unfiltered (gdb_stdlog,
884 "Packet %s (%s) is NOT supported\n",
885 config->name, config->title);
886 config->support = PACKET_DISABLE;
887 break;
888 case PACKET_DISABLE:
889 break;
890 }
891 break;
892 }
893
894 return result;
895 }
896
897 enum {
898 PACKET_vCont = 0,
899 PACKET_X,
900 PACKET_qSymbol,
901 PACKET_P,
902 PACKET_p,
903 PACKET_Z0,
904 PACKET_Z1,
905 PACKET_Z2,
906 PACKET_Z3,
907 PACKET_Z4,
908 PACKET_qXfer_auxv,
909 PACKET_qXfer_features,
910 PACKET_qXfer_memory_map,
911 PACKET_qXfer_spu_read,
912 PACKET_qXfer_spu_write,
913 PACKET_qGetTLSAddr,
914 PACKET_qSupported,
915 PACKET_QPassSignals,
916 PACKET_MAX
917 };
918
919 static struct packet_config remote_protocol_packets[PACKET_MAX];
920
921 static void
922 set_remote_protocol_packet_cmd (char *args, int from_tty,
923 struct cmd_list_element *c)
924 {
925 struct packet_config *packet;
926
927 for (packet = remote_protocol_packets;
928 packet < &remote_protocol_packets[PACKET_MAX];
929 packet++)
930 {
931 if (&packet->detect == c->var)
932 {
933 update_packet_config (packet);
934 return;
935 }
936 }
937 internal_error (__FILE__, __LINE__, "Could not find config for %s",
938 c->name);
939 }
940
941 static void
942 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
943 struct cmd_list_element *c,
944 const char *value)
945 {
946 struct packet_config *packet;
947
948 for (packet = remote_protocol_packets;
949 packet < &remote_protocol_packets[PACKET_MAX];
950 packet++)
951 {
952 if (&packet->detect == c->var)
953 {
954 show_packet_config_cmd (packet);
955 return;
956 }
957 }
958 internal_error (__FILE__, __LINE__, "Could not find config for %s",
959 c->name);
960 }
961
962 /* Should we try one of the 'Z' requests? */
963
964 enum Z_packet_type
965 {
966 Z_PACKET_SOFTWARE_BP,
967 Z_PACKET_HARDWARE_BP,
968 Z_PACKET_WRITE_WP,
969 Z_PACKET_READ_WP,
970 Z_PACKET_ACCESS_WP,
971 NR_Z_PACKET_TYPES
972 };
973
974 /* For compatibility with older distributions. Provide a ``set remote
975 Z-packet ...'' command that updates all the Z packet types. */
976
977 static enum auto_boolean remote_Z_packet_detect;
978
979 static void
980 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
981 struct cmd_list_element *c)
982 {
983 int i;
984 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
985 {
986 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
987 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
988 }
989 }
990
991 static void
992 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
993 struct cmd_list_element *c,
994 const char *value)
995 {
996 int i;
997 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
998 {
999 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1000 }
1001 }
1002
1003 /* Should we try the 'ThreadInfo' query packet?
1004
1005 This variable (NOT available to the user: auto-detect only!)
1006 determines whether GDB will use the new, simpler "ThreadInfo"
1007 query or the older, more complex syntax for thread queries.
1008 This is an auto-detect variable (set to true at each connect,
1009 and set to false when the target fails to recognize it). */
1010
1011 static int use_threadinfo_query;
1012 static int use_threadextra_query;
1013
1014 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1015 static struct async_signal_handler *sigint_remote_twice_token;
1016 static struct async_signal_handler *sigint_remote_token;
1017
1018 /* These are pointers to hook functions that may be set in order to
1019 modify resume/wait behavior for a particular architecture. */
1020
1021 void (*deprecated_target_resume_hook) (void);
1022 void (*deprecated_target_wait_loop_hook) (void);
1023 \f
1024
1025
1026 /* These are the threads which we last sent to the remote system.
1027 -1 for all or -2 for not sent yet. */
1028 static int general_thread;
1029 static int continue_thread;
1030
1031 /* Call this function as a result of
1032 1) A halt indication (T packet) containing a thread id
1033 2) A direct query of currthread
1034 3) Successful execution of set thread
1035 */
1036
1037 static void
1038 record_currthread (int currthread)
1039 {
1040 general_thread = currthread;
1041
1042 /* If this is a new thread, add it to GDB's thread list.
1043 If we leave it up to WFI to do this, bad things will happen. */
1044 if (!in_thread_list (pid_to_ptid (currthread)))
1045 {
1046 add_thread (pid_to_ptid (currthread));
1047 ui_out_text (uiout, "[New ");
1048 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1049 ui_out_text (uiout, "]\n");
1050 }
1051 }
1052
1053 static char *last_pass_packet;
1054
1055 /* If 'QPassSignals' is supported, tell the remote stub what signals
1056 it can simply pass through to the inferior without reporting. */
1057
1058 static void
1059 remote_pass_signals (void)
1060 {
1061 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1062 {
1063 char *pass_packet, *p;
1064 int numsigs = (int) TARGET_SIGNAL_LAST;
1065 int count = 0, i;
1066
1067 gdb_assert (numsigs < 256);
1068 for (i = 0; i < numsigs; i++)
1069 {
1070 if (signal_stop_state (i) == 0
1071 && signal_print_state (i) == 0
1072 && signal_pass_state (i) == 1)
1073 count++;
1074 }
1075 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1076 strcpy (pass_packet, "QPassSignals:");
1077 p = pass_packet + strlen (pass_packet);
1078 for (i = 0; i < numsigs; i++)
1079 {
1080 if (signal_stop_state (i) == 0
1081 && signal_print_state (i) == 0
1082 && signal_pass_state (i) == 1)
1083 {
1084 if (i >= 16)
1085 *p++ = tohex (i >> 4);
1086 *p++ = tohex (i & 15);
1087 if (count)
1088 *p++ = ';';
1089 else
1090 break;
1091 count--;
1092 }
1093 }
1094 *p = 0;
1095 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1096 {
1097 struct remote_state *rs = get_remote_state ();
1098 char *buf = rs->buf;
1099
1100 putpkt (pass_packet);
1101 getpkt (&rs->buf, &rs->buf_size, 0);
1102 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1103 if (last_pass_packet)
1104 xfree (last_pass_packet);
1105 last_pass_packet = pass_packet;
1106 }
1107 else
1108 xfree (pass_packet);
1109 }
1110 }
1111
1112 #define MAGIC_NULL_PID 42000
1113
1114 static void
1115 set_thread (int th, int gen)
1116 {
1117 struct remote_state *rs = get_remote_state ();
1118 char *buf = rs->buf;
1119 int state = gen ? general_thread : continue_thread;
1120
1121 if (state == th)
1122 return;
1123
1124 buf[0] = 'H';
1125 buf[1] = gen ? 'g' : 'c';
1126 if (th == MAGIC_NULL_PID)
1127 {
1128 buf[2] = '0';
1129 buf[3] = '\0';
1130 }
1131 else if (th < 0)
1132 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1133 else
1134 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1135 putpkt (buf);
1136 getpkt (&rs->buf, &rs->buf_size, 0);
1137 if (gen)
1138 general_thread = th;
1139 else
1140 continue_thread = th;
1141 }
1142 \f
1143 /* Return nonzero if the thread TH is still alive on the remote system. */
1144
1145 static int
1146 remote_thread_alive (ptid_t ptid)
1147 {
1148 struct remote_state *rs = get_remote_state ();
1149 int tid = PIDGET (ptid);
1150
1151 if (tid < 0)
1152 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1153 else
1154 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1155 putpkt (rs->buf);
1156 getpkt (&rs->buf, &rs->buf_size, 0);
1157 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1158 }
1159
1160 /* About these extended threadlist and threadinfo packets. They are
1161 variable length packets but, the fields within them are often fixed
1162 length. They are redundent enough to send over UDP as is the
1163 remote protocol in general. There is a matching unit test module
1164 in libstub. */
1165
1166 #define OPAQUETHREADBYTES 8
1167
1168 /* a 64 bit opaque identifier */
1169 typedef unsigned char threadref[OPAQUETHREADBYTES];
1170
1171 /* WARNING: This threadref data structure comes from the remote O.S.,
1172 libstub protocol encoding, and remote.c. it is not particularly
1173 changable. */
1174
1175 /* Right now, the internal structure is int. We want it to be bigger.
1176 Plan to fix this.
1177 */
1178
1179 typedef int gdb_threadref; /* Internal GDB thread reference. */
1180
1181 /* gdb_ext_thread_info is an internal GDB data structure which is
1182 equivalent to the reply of the remote threadinfo packet. */
1183
1184 struct gdb_ext_thread_info
1185 {
1186 threadref threadid; /* External form of thread reference. */
1187 int active; /* Has state interesting to GDB?
1188 regs, stack. */
1189 char display[256]; /* Brief state display, name,
1190 blocked/suspended. */
1191 char shortname[32]; /* To be used to name threads. */
1192 char more_display[256]; /* Long info, statistics, queue depth,
1193 whatever. */
1194 };
1195
1196 /* The volume of remote transfers can be limited by submitting
1197 a mask containing bits specifying the desired information.
1198 Use a union of these values as the 'selection' parameter to
1199 get_thread_info. FIXME: Make these TAG names more thread specific.
1200 */
1201
1202 #define TAG_THREADID 1
1203 #define TAG_EXISTS 2
1204 #define TAG_DISPLAY 4
1205 #define TAG_THREADNAME 8
1206 #define TAG_MOREDISPLAY 16
1207
1208 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1209
1210 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1211
1212 static char *unpack_nibble (char *buf, int *val);
1213
1214 static char *pack_nibble (char *buf, int nibble);
1215
1216 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1217
1218 static char *unpack_byte (char *buf, int *value);
1219
1220 static char *pack_int (char *buf, int value);
1221
1222 static char *unpack_int (char *buf, int *value);
1223
1224 static char *unpack_string (char *src, char *dest, int length);
1225
1226 static char *pack_threadid (char *pkt, threadref *id);
1227
1228 static char *unpack_threadid (char *inbuf, threadref *id);
1229
1230 void int_to_threadref (threadref *id, int value);
1231
1232 static int threadref_to_int (threadref *ref);
1233
1234 static void copy_threadref (threadref *dest, threadref *src);
1235
1236 static int threadmatch (threadref *dest, threadref *src);
1237
1238 static char *pack_threadinfo_request (char *pkt, int mode,
1239 threadref *id);
1240
1241 static int remote_unpack_thread_info_response (char *pkt,
1242 threadref *expectedref,
1243 struct gdb_ext_thread_info
1244 *info);
1245
1246
1247 static int remote_get_threadinfo (threadref *threadid,
1248 int fieldset, /*TAG mask */
1249 struct gdb_ext_thread_info *info);
1250
1251 static char *pack_threadlist_request (char *pkt, int startflag,
1252 int threadcount,
1253 threadref *nextthread);
1254
1255 static int parse_threadlist_response (char *pkt,
1256 int result_limit,
1257 threadref *original_echo,
1258 threadref *resultlist,
1259 int *doneflag);
1260
1261 static int remote_get_threadlist (int startflag,
1262 threadref *nextthread,
1263 int result_limit,
1264 int *done,
1265 int *result_count,
1266 threadref *threadlist);
1267
1268 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1269
1270 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1271 void *context, int looplimit);
1272
1273 static int remote_newthread_step (threadref *ref, void *context);
1274
1275 /* Encode 64 bits in 16 chars of hex. */
1276
1277 static const char hexchars[] = "0123456789abcdef";
1278
1279 static int
1280 ishex (int ch, int *val)
1281 {
1282 if ((ch >= 'a') && (ch <= 'f'))
1283 {
1284 *val = ch - 'a' + 10;
1285 return 1;
1286 }
1287 if ((ch >= 'A') && (ch <= 'F'))
1288 {
1289 *val = ch - 'A' + 10;
1290 return 1;
1291 }
1292 if ((ch >= '0') && (ch <= '9'))
1293 {
1294 *val = ch - '0';
1295 return 1;
1296 }
1297 return 0;
1298 }
1299
1300 static int
1301 stubhex (int ch)
1302 {
1303 if (ch >= 'a' && ch <= 'f')
1304 return ch - 'a' + 10;
1305 if (ch >= '0' && ch <= '9')
1306 return ch - '0';
1307 if (ch >= 'A' && ch <= 'F')
1308 return ch - 'A' + 10;
1309 return -1;
1310 }
1311
1312 static int
1313 stub_unpack_int (char *buff, int fieldlength)
1314 {
1315 int nibble;
1316 int retval = 0;
1317
1318 while (fieldlength)
1319 {
1320 nibble = stubhex (*buff++);
1321 retval |= nibble;
1322 fieldlength--;
1323 if (fieldlength)
1324 retval = retval << 4;
1325 }
1326 return retval;
1327 }
1328
1329 char *
1330 unpack_varlen_hex (char *buff, /* packet to parse */
1331 ULONGEST *result)
1332 {
1333 int nibble;
1334 ULONGEST retval = 0;
1335
1336 while (ishex (*buff, &nibble))
1337 {
1338 buff++;
1339 retval = retval << 4;
1340 retval |= nibble & 0x0f;
1341 }
1342 *result = retval;
1343 return buff;
1344 }
1345
1346 static char *
1347 unpack_nibble (char *buf, int *val)
1348 {
1349 ishex (*buf++, val);
1350 return buf;
1351 }
1352
1353 static char *
1354 pack_nibble (char *buf, int nibble)
1355 {
1356 *buf++ = hexchars[(nibble & 0x0f)];
1357 return buf;
1358 }
1359
1360 static char *
1361 pack_hex_byte (char *pkt, int byte)
1362 {
1363 *pkt++ = hexchars[(byte >> 4) & 0xf];
1364 *pkt++ = hexchars[(byte & 0xf)];
1365 return pkt;
1366 }
1367
1368 static char *
1369 unpack_byte (char *buf, int *value)
1370 {
1371 *value = stub_unpack_int (buf, 2);
1372 return buf + 2;
1373 }
1374
1375 static char *
1376 pack_int (char *buf, int value)
1377 {
1378 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1379 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1380 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1381 buf = pack_hex_byte (buf, (value & 0xff));
1382 return buf;
1383 }
1384
1385 static char *
1386 unpack_int (char *buf, int *value)
1387 {
1388 *value = stub_unpack_int (buf, 8);
1389 return buf + 8;
1390 }
1391
1392 #if 0 /* Currently unused, uncomment when needed. */
1393 static char *pack_string (char *pkt, char *string);
1394
1395 static char *
1396 pack_string (char *pkt, char *string)
1397 {
1398 char ch;
1399 int len;
1400
1401 len = strlen (string);
1402 if (len > 200)
1403 len = 200; /* Bigger than most GDB packets, junk??? */
1404 pkt = pack_hex_byte (pkt, len);
1405 while (len-- > 0)
1406 {
1407 ch = *string++;
1408 if ((ch == '\0') || (ch == '#'))
1409 ch = '*'; /* Protect encapsulation. */
1410 *pkt++ = ch;
1411 }
1412 return pkt;
1413 }
1414 #endif /* 0 (unused) */
1415
1416 static char *
1417 unpack_string (char *src, char *dest, int length)
1418 {
1419 while (length--)
1420 *dest++ = *src++;
1421 *dest = '\0';
1422 return src;
1423 }
1424
1425 static char *
1426 pack_threadid (char *pkt, threadref *id)
1427 {
1428 char *limit;
1429 unsigned char *altid;
1430
1431 altid = (unsigned char *) id;
1432 limit = pkt + BUF_THREAD_ID_SIZE;
1433 while (pkt < limit)
1434 pkt = pack_hex_byte (pkt, *altid++);
1435 return pkt;
1436 }
1437
1438
1439 static char *
1440 unpack_threadid (char *inbuf, threadref *id)
1441 {
1442 char *altref;
1443 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1444 int x, y;
1445
1446 altref = (char *) id;
1447
1448 while (inbuf < limit)
1449 {
1450 x = stubhex (*inbuf++);
1451 y = stubhex (*inbuf++);
1452 *altref++ = (x << 4) | y;
1453 }
1454 return inbuf;
1455 }
1456
1457 /* Externally, threadrefs are 64 bits but internally, they are still
1458 ints. This is due to a mismatch of specifications. We would like
1459 to use 64bit thread references internally. This is an adapter
1460 function. */
1461
1462 void
1463 int_to_threadref (threadref *id, int value)
1464 {
1465 unsigned char *scan;
1466
1467 scan = (unsigned char *) id;
1468 {
1469 int i = 4;
1470 while (i--)
1471 *scan++ = 0;
1472 }
1473 *scan++ = (value >> 24) & 0xff;
1474 *scan++ = (value >> 16) & 0xff;
1475 *scan++ = (value >> 8) & 0xff;
1476 *scan++ = (value & 0xff);
1477 }
1478
1479 static int
1480 threadref_to_int (threadref *ref)
1481 {
1482 int i, value = 0;
1483 unsigned char *scan;
1484
1485 scan = *ref;
1486 scan += 4;
1487 i = 4;
1488 while (i-- > 0)
1489 value = (value << 8) | ((*scan++) & 0xff);
1490 return value;
1491 }
1492
1493 static void
1494 copy_threadref (threadref *dest, threadref *src)
1495 {
1496 int i;
1497 unsigned char *csrc, *cdest;
1498
1499 csrc = (unsigned char *) src;
1500 cdest = (unsigned char *) dest;
1501 i = 8;
1502 while (i--)
1503 *cdest++ = *csrc++;
1504 }
1505
1506 static int
1507 threadmatch (threadref *dest, threadref *src)
1508 {
1509 /* Things are broken right now, so just assume we got a match. */
1510 #if 0
1511 unsigned char *srcp, *destp;
1512 int i, result;
1513 srcp = (char *) src;
1514 destp = (char *) dest;
1515
1516 result = 1;
1517 while (i-- > 0)
1518 result &= (*srcp++ == *destp++) ? 1 : 0;
1519 return result;
1520 #endif
1521 return 1;
1522 }
1523
1524 /*
1525 threadid:1, # always request threadid
1526 context_exists:2,
1527 display:4,
1528 unique_name:8,
1529 more_display:16
1530 */
1531
1532 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1533
1534 static char *
1535 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1536 {
1537 *pkt++ = 'q'; /* Info Query */
1538 *pkt++ = 'P'; /* process or thread info */
1539 pkt = pack_int (pkt, mode); /* mode */
1540 pkt = pack_threadid (pkt, id); /* threadid */
1541 *pkt = '\0'; /* terminate */
1542 return pkt;
1543 }
1544
1545 /* These values tag the fields in a thread info response packet. */
1546 /* Tagging the fields allows us to request specific fields and to
1547 add more fields as time goes by. */
1548
1549 #define TAG_THREADID 1 /* Echo the thread identifier. */
1550 #define TAG_EXISTS 2 /* Is this process defined enough to
1551 fetch registers and its stack? */
1552 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1553 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1554 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1555 the process. */
1556
1557 static int
1558 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1559 struct gdb_ext_thread_info *info)
1560 {
1561 struct remote_state *rs = get_remote_state ();
1562 int mask, length;
1563 int tag;
1564 threadref ref;
1565 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1566 int retval = 1;
1567
1568 /* info->threadid = 0; FIXME: implement zero_threadref. */
1569 info->active = 0;
1570 info->display[0] = '\0';
1571 info->shortname[0] = '\0';
1572 info->more_display[0] = '\0';
1573
1574 /* Assume the characters indicating the packet type have been
1575 stripped. */
1576 pkt = unpack_int (pkt, &mask); /* arg mask */
1577 pkt = unpack_threadid (pkt, &ref);
1578
1579 if (mask == 0)
1580 warning (_("Incomplete response to threadinfo request."));
1581 if (!threadmatch (&ref, expectedref))
1582 { /* This is an answer to a different request. */
1583 warning (_("ERROR RMT Thread info mismatch."));
1584 return 0;
1585 }
1586 copy_threadref (&info->threadid, &ref);
1587
1588 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1589
1590 /* Packets are terminated with nulls. */
1591 while ((pkt < limit) && mask && *pkt)
1592 {
1593 pkt = unpack_int (pkt, &tag); /* tag */
1594 pkt = unpack_byte (pkt, &length); /* length */
1595 if (!(tag & mask)) /* Tags out of synch with mask. */
1596 {
1597 warning (_("ERROR RMT: threadinfo tag mismatch."));
1598 retval = 0;
1599 break;
1600 }
1601 if (tag == TAG_THREADID)
1602 {
1603 if (length != 16)
1604 {
1605 warning (_("ERROR RMT: length of threadid is not 16."));
1606 retval = 0;
1607 break;
1608 }
1609 pkt = unpack_threadid (pkt, &ref);
1610 mask = mask & ~TAG_THREADID;
1611 continue;
1612 }
1613 if (tag == TAG_EXISTS)
1614 {
1615 info->active = stub_unpack_int (pkt, length);
1616 pkt += length;
1617 mask = mask & ~(TAG_EXISTS);
1618 if (length > 8)
1619 {
1620 warning (_("ERROR RMT: 'exists' length too long."));
1621 retval = 0;
1622 break;
1623 }
1624 continue;
1625 }
1626 if (tag == TAG_THREADNAME)
1627 {
1628 pkt = unpack_string (pkt, &info->shortname[0], length);
1629 mask = mask & ~TAG_THREADNAME;
1630 continue;
1631 }
1632 if (tag == TAG_DISPLAY)
1633 {
1634 pkt = unpack_string (pkt, &info->display[0], length);
1635 mask = mask & ~TAG_DISPLAY;
1636 continue;
1637 }
1638 if (tag == TAG_MOREDISPLAY)
1639 {
1640 pkt = unpack_string (pkt, &info->more_display[0], length);
1641 mask = mask & ~TAG_MOREDISPLAY;
1642 continue;
1643 }
1644 warning (_("ERROR RMT: unknown thread info tag."));
1645 break; /* Not a tag we know about. */
1646 }
1647 return retval;
1648 }
1649
1650 static int
1651 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1652 struct gdb_ext_thread_info *info)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 int result;
1656
1657 pack_threadinfo_request (rs->buf, fieldset, threadid);
1658 putpkt (rs->buf);
1659 getpkt (&rs->buf, &rs->buf_size, 0);
1660 result = remote_unpack_thread_info_response (rs->buf + 2,
1661 threadid, info);
1662 return result;
1663 }
1664
1665 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1666
1667 static char *
1668 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1669 threadref *nextthread)
1670 {
1671 *pkt++ = 'q'; /* info query packet */
1672 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1673 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1674 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1675 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1676 *pkt = '\0';
1677 return pkt;
1678 }
1679
1680 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1681
1682 static int
1683 parse_threadlist_response (char *pkt, int result_limit,
1684 threadref *original_echo, threadref *resultlist,
1685 int *doneflag)
1686 {
1687 struct remote_state *rs = get_remote_state ();
1688 char *limit;
1689 int count, resultcount, done;
1690
1691 resultcount = 0;
1692 /* Assume the 'q' and 'M chars have been stripped. */
1693 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1694 /* done parse past here */
1695 pkt = unpack_byte (pkt, &count); /* count field */
1696 pkt = unpack_nibble (pkt, &done);
1697 /* The first threadid is the argument threadid. */
1698 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1699 while ((count-- > 0) && (pkt < limit))
1700 {
1701 pkt = unpack_threadid (pkt, resultlist++);
1702 if (resultcount++ >= result_limit)
1703 break;
1704 }
1705 if (doneflag)
1706 *doneflag = done;
1707 return resultcount;
1708 }
1709
1710 static int
1711 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1712 int *done, int *result_count, threadref *threadlist)
1713 {
1714 struct remote_state *rs = get_remote_state ();
1715 static threadref echo_nextthread;
1716 int result = 1;
1717
1718 /* Trancate result limit to be smaller than the packet size. */
1719 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1720 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1721
1722 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1723 putpkt (rs->buf);
1724 getpkt (&rs->buf, &rs->buf_size, 0);
1725
1726 *result_count =
1727 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1728 threadlist, done);
1729
1730 if (!threadmatch (&echo_nextthread, nextthread))
1731 {
1732 /* FIXME: This is a good reason to drop the packet. */
1733 /* Possably, there is a duplicate response. */
1734 /* Possabilities :
1735 retransmit immediatly - race conditions
1736 retransmit after timeout - yes
1737 exit
1738 wait for packet, then exit
1739 */
1740 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1741 return 0; /* I choose simply exiting. */
1742 }
1743 if (*result_count <= 0)
1744 {
1745 if (*done != 1)
1746 {
1747 warning (_("RMT ERROR : failed to get remote thread list."));
1748 result = 0;
1749 }
1750 return result; /* break; */
1751 }
1752 if (*result_count > result_limit)
1753 {
1754 *result_count = 0;
1755 warning (_("RMT ERROR: threadlist response longer than requested."));
1756 return 0;
1757 }
1758 return result;
1759 }
1760
1761 /* This is the interface between remote and threads, remotes upper
1762 interface. */
1763
1764 /* remote_find_new_threads retrieves the thread list and for each
1765 thread in the list, looks up the thread in GDB's internal list,
1766 ading the thread if it does not already exist. This involves
1767 getting partial thread lists from the remote target so, polling the
1768 quit_flag is required. */
1769
1770
1771 /* About this many threadisds fit in a packet. */
1772
1773 #define MAXTHREADLISTRESULTS 32
1774
1775 static int
1776 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1777 int looplimit)
1778 {
1779 int done, i, result_count;
1780 int startflag = 1;
1781 int result = 1;
1782 int loopcount = 0;
1783 static threadref nextthread;
1784 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1785
1786 done = 0;
1787 while (!done)
1788 {
1789 if (loopcount++ > looplimit)
1790 {
1791 result = 0;
1792 warning (_("Remote fetch threadlist -infinite loop-."));
1793 break;
1794 }
1795 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1796 &done, &result_count, resultthreadlist))
1797 {
1798 result = 0;
1799 break;
1800 }
1801 /* Clear for later iterations. */
1802 startflag = 0;
1803 /* Setup to resume next batch of thread references, set nextthread. */
1804 if (result_count >= 1)
1805 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1806 i = 0;
1807 while (result_count--)
1808 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1809 break;
1810 }
1811 return result;
1812 }
1813
1814 static int
1815 remote_newthread_step (threadref *ref, void *context)
1816 {
1817 ptid_t ptid;
1818
1819 ptid = pid_to_ptid (threadref_to_int (ref));
1820
1821 if (!in_thread_list (ptid))
1822 add_thread (ptid);
1823 return 1; /* continue iterator */
1824 }
1825
1826 #define CRAZY_MAX_THREADS 1000
1827
1828 static ptid_t
1829 remote_current_thread (ptid_t oldpid)
1830 {
1831 struct remote_state *rs = get_remote_state ();
1832
1833 putpkt ("qC");
1834 getpkt (&rs->buf, &rs->buf_size, 0);
1835 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1836 /* Use strtoul here, so we'll correctly parse values whose highest
1837 bit is set. The protocol carries them as a simple series of
1838 hex digits; in the absence of a sign, strtol will see such
1839 values as positive numbers out of range for signed 'long', and
1840 return LONG_MAX to indicate an overflow. */
1841 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1842 else
1843 return oldpid;
1844 }
1845
1846 /* Find new threads for info threads command.
1847 * Original version, using John Metzler's thread protocol.
1848 */
1849
1850 static void
1851 remote_find_new_threads (void)
1852 {
1853 remote_threadlist_iterator (remote_newthread_step, 0,
1854 CRAZY_MAX_THREADS);
1855 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1856 inferior_ptid = remote_current_thread (inferior_ptid);
1857 }
1858
1859 /*
1860 * Find all threads for info threads command.
1861 * Uses new thread protocol contributed by Cisco.
1862 * Falls back and attempts to use the older method (above)
1863 * if the target doesn't respond to the new method.
1864 */
1865
1866 static void
1867 remote_threads_info (void)
1868 {
1869 struct remote_state *rs = get_remote_state ();
1870 char *bufp;
1871 int tid;
1872
1873 if (remote_desc == 0) /* paranoia */
1874 error (_("Command can only be used when connected to the remote target."));
1875
1876 if (use_threadinfo_query)
1877 {
1878 putpkt ("qfThreadInfo");
1879 getpkt (&rs->buf, &rs->buf_size, 0);
1880 bufp = rs->buf;
1881 if (bufp[0] != '\0') /* q packet recognized */
1882 {
1883 while (*bufp++ == 'm') /* reply contains one or more TID */
1884 {
1885 do
1886 {
1887 /* Use strtoul here, so we'll correctly parse values
1888 whose highest bit is set. The protocol carries
1889 them as a simple series of hex digits; in the
1890 absence of a sign, strtol will see such values as
1891 positive numbers out of range for signed 'long',
1892 and return LONG_MAX to indicate an overflow. */
1893 tid = strtoul (bufp, &bufp, 16);
1894 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1895 add_thread (pid_to_ptid (tid));
1896 }
1897 while (*bufp++ == ','); /* comma-separated list */
1898 putpkt ("qsThreadInfo");
1899 getpkt (&rs->buf, &rs->buf_size, 0);
1900 bufp = rs->buf;
1901 }
1902 return; /* done */
1903 }
1904 }
1905
1906 /* Else fall back to old method based on jmetzler protocol. */
1907 use_threadinfo_query = 0;
1908 remote_find_new_threads ();
1909 return;
1910 }
1911
1912 /*
1913 * Collect a descriptive string about the given thread.
1914 * The target may say anything it wants to about the thread
1915 * (typically info about its blocked / runnable state, name, etc.).
1916 * This string will appear in the info threads display.
1917 *
1918 * Optional: targets are not required to implement this function.
1919 */
1920
1921 static char *
1922 remote_threads_extra_info (struct thread_info *tp)
1923 {
1924 struct remote_state *rs = get_remote_state ();
1925 int result;
1926 int set;
1927 threadref id;
1928 struct gdb_ext_thread_info threadinfo;
1929 static char display_buf[100]; /* arbitrary... */
1930 int n = 0; /* position in display_buf */
1931
1932 if (remote_desc == 0) /* paranoia */
1933 internal_error (__FILE__, __LINE__,
1934 _("remote_threads_extra_info"));
1935
1936 if (use_threadextra_query)
1937 {
1938 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1939 PIDGET (tp->ptid));
1940 putpkt (rs->buf);
1941 getpkt (&rs->buf, &rs->buf_size, 0);
1942 if (rs->buf[0] != 0)
1943 {
1944 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1945 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1946 display_buf [result] = '\0';
1947 return display_buf;
1948 }
1949 }
1950
1951 /* If the above query fails, fall back to the old method. */
1952 use_threadextra_query = 0;
1953 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1954 | TAG_MOREDISPLAY | TAG_DISPLAY;
1955 int_to_threadref (&id, PIDGET (tp->ptid));
1956 if (remote_get_threadinfo (&id, set, &threadinfo))
1957 if (threadinfo.active)
1958 {
1959 if (*threadinfo.shortname)
1960 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1961 " Name: %s,", threadinfo.shortname);
1962 if (*threadinfo.display)
1963 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1964 " State: %s,", threadinfo.display);
1965 if (*threadinfo.more_display)
1966 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1967 " Priority: %s", threadinfo.more_display);
1968
1969 if (n > 0)
1970 {
1971 /* For purely cosmetic reasons, clear up trailing commas. */
1972 if (',' == display_buf[n-1])
1973 display_buf[n-1] = ' ';
1974 return display_buf;
1975 }
1976 }
1977 return NULL;
1978 }
1979 \f
1980
1981 /* Restart the remote side; this is an extended protocol operation. */
1982
1983 static void
1984 extended_remote_restart (void)
1985 {
1986 struct remote_state *rs = get_remote_state ();
1987
1988 /* Send the restart command; for reasons I don't understand the
1989 remote side really expects a number after the "R". */
1990 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1991 putpkt (rs->buf);
1992
1993 remote_fileio_reset ();
1994
1995 /* Now query for status so this looks just like we restarted
1996 gdbserver from scratch. */
1997 putpkt ("?");
1998 getpkt (&rs->buf, &rs->buf_size, 0);
1999 }
2000 \f
2001 /* Clean up connection to a remote debugger. */
2002
2003 static void
2004 remote_close (int quitting)
2005 {
2006 if (remote_desc)
2007 serial_close (remote_desc);
2008 remote_desc = NULL;
2009 }
2010
2011 /* Query the remote side for the text, data and bss offsets. */
2012
2013 static void
2014 get_offsets (void)
2015 {
2016 struct remote_state *rs = get_remote_state ();
2017 char *buf;
2018 char *ptr;
2019 int lose;
2020 CORE_ADDR text_addr, data_addr, bss_addr;
2021 struct section_offsets *offs;
2022
2023 putpkt ("qOffsets");
2024 getpkt (&rs->buf, &rs->buf_size, 0);
2025 buf = rs->buf;
2026
2027 if (buf[0] == '\000')
2028 return; /* Return silently. Stub doesn't support
2029 this command. */
2030 if (buf[0] == 'E')
2031 {
2032 warning (_("Remote failure reply: %s"), buf);
2033 return;
2034 }
2035
2036 /* Pick up each field in turn. This used to be done with scanf, but
2037 scanf will make trouble if CORE_ADDR size doesn't match
2038 conversion directives correctly. The following code will work
2039 with any size of CORE_ADDR. */
2040 text_addr = data_addr = bss_addr = 0;
2041 ptr = buf;
2042 lose = 0;
2043
2044 if (strncmp (ptr, "Text=", 5) == 0)
2045 {
2046 ptr += 5;
2047 /* Don't use strtol, could lose on big values. */
2048 while (*ptr && *ptr != ';')
2049 text_addr = (text_addr << 4) + fromhex (*ptr++);
2050 }
2051 else
2052 lose = 1;
2053
2054 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
2055 {
2056 ptr += 6;
2057 while (*ptr && *ptr != ';')
2058 data_addr = (data_addr << 4) + fromhex (*ptr++);
2059 }
2060 else
2061 lose = 1;
2062
2063 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2064 {
2065 ptr += 5;
2066 while (*ptr && *ptr != ';')
2067 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2068 }
2069 else
2070 lose = 1;
2071
2072 if (lose)
2073 error (_("Malformed response to offset query, %s"), buf);
2074
2075 if (symfile_objfile == NULL)
2076 return;
2077
2078 offs = ((struct section_offsets *)
2079 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2080 memcpy (offs, symfile_objfile->section_offsets,
2081 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2082
2083 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2084
2085 /* This is a temporary kludge to force data and bss to use the same offsets
2086 because that's what nlmconv does now. The real solution requires changes
2087 to the stub and remote.c that I don't have time to do right now. */
2088
2089 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2090 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2091
2092 objfile_relocate (symfile_objfile, offs);
2093 }
2094
2095 /* Stub for catch_exception. */
2096
2097 static void
2098 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2099 {
2100 int from_tty = * (int *) from_tty_p;
2101
2102 immediate_quit++; /* Allow user to interrupt it. */
2103
2104 /* Ack any packet which the remote side has already sent. */
2105 serial_write (remote_desc, "+", 1);
2106
2107 /* Let the stub know that we want it to return the thread. */
2108 set_thread (-1, 0);
2109
2110 inferior_ptid = remote_current_thread (inferior_ptid);
2111
2112 get_offsets (); /* Get text, data & bss offsets. */
2113
2114 putpkt ("?"); /* Initiate a query from remote machine. */
2115 immediate_quit--;
2116
2117 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2118 }
2119
2120 /* Open a connection to a remote debugger.
2121 NAME is the filename used for communication. */
2122
2123 static void
2124 remote_open (char *name, int from_tty)
2125 {
2126 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2127 }
2128
2129 /* Just like remote_open, but with asynchronous support. */
2130 static void
2131 remote_async_open (char *name, int from_tty)
2132 {
2133 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2134 }
2135
2136 /* Open a connection to a remote debugger using the extended
2137 remote gdb protocol. NAME is the filename used for communication. */
2138
2139 static void
2140 extended_remote_open (char *name, int from_tty)
2141 {
2142 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2143 0 /* async_p */);
2144 }
2145
2146 /* Just like extended_remote_open, but with asynchronous support. */
2147 static void
2148 extended_remote_async_open (char *name, int from_tty)
2149 {
2150 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2151 1 /*extended_p */, 1 /* async_p */);
2152 }
2153
2154 /* Generic code for opening a connection to a remote target. */
2155
2156 static void
2157 init_all_packet_configs (void)
2158 {
2159 int i;
2160 for (i = 0; i < PACKET_MAX; i++)
2161 update_packet_config (&remote_protocol_packets[i]);
2162 }
2163
2164 /* Symbol look-up. */
2165
2166 static void
2167 remote_check_symbols (struct objfile *objfile)
2168 {
2169 struct remote_state *rs = get_remote_state ();
2170 char *msg, *reply, *tmp;
2171 struct minimal_symbol *sym;
2172 int end;
2173
2174 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2175 return;
2176
2177 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2178 because we need both at the same time. */
2179 msg = alloca (get_remote_packet_size ());
2180
2181 /* Invite target to request symbol lookups. */
2182
2183 putpkt ("qSymbol::");
2184 getpkt (&rs->buf, &rs->buf_size, 0);
2185 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2186 reply = rs->buf;
2187
2188 while (strncmp (reply, "qSymbol:", 8) == 0)
2189 {
2190 tmp = &reply[8];
2191 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2192 msg[end] = '\0';
2193 sym = lookup_minimal_symbol (msg, NULL, NULL);
2194 if (sym == NULL)
2195 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2196 else
2197 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2198 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2199 &reply[8]);
2200 putpkt (msg);
2201 getpkt (&rs->buf, &rs->buf_size, 0);
2202 reply = rs->buf;
2203 }
2204 }
2205
2206 static struct serial *
2207 remote_serial_open (char *name)
2208 {
2209 static int udp_warning = 0;
2210
2211 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2212 of in ser-tcp.c, because it is the remote protocol assuming that the
2213 serial connection is reliable and not the serial connection promising
2214 to be. */
2215 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2216 {
2217 warning (_("\
2218 The remote protocol may be unreliable over UDP.\n\
2219 Some events may be lost, rendering further debugging impossible."));
2220 udp_warning = 1;
2221 }
2222
2223 return serial_open (name);
2224 }
2225
2226 /* This type describes each known response to the qSupported
2227 packet. */
2228 struct protocol_feature
2229 {
2230 /* The name of this protocol feature. */
2231 const char *name;
2232
2233 /* The default for this protocol feature. */
2234 enum packet_support default_support;
2235
2236 /* The function to call when this feature is reported, or after
2237 qSupported processing if the feature is not supported.
2238 The first argument points to this structure. The second
2239 argument indicates whether the packet requested support be
2240 enabled, disabled, or probed (or the default, if this function
2241 is being called at the end of processing and this feature was
2242 not reported). The third argument may be NULL; if not NULL, it
2243 is a NUL-terminated string taken from the packet following
2244 this feature's name and an equals sign. */
2245 void (*func) (const struct protocol_feature *, enum packet_support,
2246 const char *);
2247
2248 /* The corresponding packet for this feature. Only used if
2249 FUNC is remote_supported_packet. */
2250 int packet;
2251 };
2252
2253 static void
2254 remote_supported_packet (const struct protocol_feature *feature,
2255 enum packet_support support,
2256 const char *argument)
2257 {
2258 if (argument)
2259 {
2260 warning (_("Remote qSupported response supplied an unexpected value for"
2261 " \"%s\"."), feature->name);
2262 return;
2263 }
2264
2265 if (remote_protocol_packets[feature->packet].support
2266 == PACKET_SUPPORT_UNKNOWN)
2267 remote_protocol_packets[feature->packet].support = support;
2268 }
2269
2270 static void
2271 remote_packet_size (const struct protocol_feature *feature,
2272 enum packet_support support, const char *value)
2273 {
2274 struct remote_state *rs = get_remote_state ();
2275
2276 int packet_size;
2277 char *value_end;
2278
2279 if (support != PACKET_ENABLE)
2280 return;
2281
2282 if (value == NULL || *value == '\0')
2283 {
2284 warning (_("Remote target reported \"%s\" without a size."),
2285 feature->name);
2286 return;
2287 }
2288
2289 errno = 0;
2290 packet_size = strtol (value, &value_end, 16);
2291 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2292 {
2293 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2294 feature->name, value);
2295 return;
2296 }
2297
2298 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2299 {
2300 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2301 packet_size, MAX_REMOTE_PACKET_SIZE);
2302 packet_size = MAX_REMOTE_PACKET_SIZE;
2303 }
2304
2305 /* Record the new maximum packet size. */
2306 rs->explicit_packet_size = packet_size;
2307 }
2308
2309 static struct protocol_feature remote_protocol_features[] = {
2310 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2311 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2312 PACKET_qXfer_auxv },
2313 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2314 PACKET_qXfer_features },
2315 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2316 PACKET_qXfer_memory_map },
2317 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2318 PACKET_QPassSignals },
2319 };
2320
2321 static void
2322 remote_query_supported (void)
2323 {
2324 struct remote_state *rs = get_remote_state ();
2325 char *next;
2326 int i;
2327 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2328
2329 /* The packet support flags are handled differently for this packet
2330 than for most others. We treat an error, a disabled packet, and
2331 an empty response identically: any features which must be reported
2332 to be used will be automatically disabled. An empty buffer
2333 accomplishes this, since that is also the representation for a list
2334 containing no features. */
2335
2336 rs->buf[0] = 0;
2337 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2338 {
2339 putpkt ("qSupported");
2340 getpkt (&rs->buf, &rs->buf_size, 0);
2341
2342 /* If an error occured, warn, but do not return - just reset the
2343 buffer to empty and go on to disable features. */
2344 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2345 == PACKET_ERROR)
2346 {
2347 warning (_("Remote failure reply: %s"), rs->buf);
2348 rs->buf[0] = 0;
2349 }
2350 }
2351
2352 memset (seen, 0, sizeof (seen));
2353
2354 next = rs->buf;
2355 while (*next)
2356 {
2357 enum packet_support is_supported;
2358 char *p, *end, *name_end, *value;
2359
2360 /* First separate out this item from the rest of the packet. If
2361 there's another item after this, we overwrite the separator
2362 (terminated strings are much easier to work with). */
2363 p = next;
2364 end = strchr (p, ';');
2365 if (end == NULL)
2366 {
2367 end = p + strlen (p);
2368 next = end;
2369 }
2370 else
2371 {
2372 *end = '\0';
2373 next = end + 1;
2374
2375 if (end == p)
2376 {
2377 warning (_("empty item in \"qSupported\" response"));
2378 continue;
2379 }
2380 }
2381
2382 name_end = strchr (p, '=');
2383 if (name_end)
2384 {
2385 /* This is a name=value entry. */
2386 is_supported = PACKET_ENABLE;
2387 value = name_end + 1;
2388 *name_end = '\0';
2389 }
2390 else
2391 {
2392 value = NULL;
2393 switch (end[-1])
2394 {
2395 case '+':
2396 is_supported = PACKET_ENABLE;
2397 break;
2398
2399 case '-':
2400 is_supported = PACKET_DISABLE;
2401 break;
2402
2403 case '?':
2404 is_supported = PACKET_SUPPORT_UNKNOWN;
2405 break;
2406
2407 default:
2408 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2409 continue;
2410 }
2411 end[-1] = '\0';
2412 }
2413
2414 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2415 if (strcmp (remote_protocol_features[i].name, p) == 0)
2416 {
2417 const struct protocol_feature *feature;
2418
2419 seen[i] = 1;
2420 feature = &remote_protocol_features[i];
2421 feature->func (feature, is_supported, value);
2422 break;
2423 }
2424 }
2425
2426 /* If we increased the packet size, make sure to increase the global
2427 buffer size also. We delay this until after parsing the entire
2428 qSupported packet, because this is the same buffer we were
2429 parsing. */
2430 if (rs->buf_size < rs->explicit_packet_size)
2431 {
2432 rs->buf_size = rs->explicit_packet_size;
2433 rs->buf = xrealloc (rs->buf, rs->buf_size);
2434 }
2435
2436 /* Handle the defaults for unmentioned features. */
2437 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2438 if (!seen[i])
2439 {
2440 const struct protocol_feature *feature;
2441
2442 feature = &remote_protocol_features[i];
2443 feature->func (feature, feature->default_support, NULL);
2444 }
2445 }
2446
2447
2448 static void
2449 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2450 int extended_p, int async_p)
2451 {
2452 struct remote_state *rs = get_remote_state ();
2453 if (name == 0)
2454 error (_("To open a remote debug connection, you need to specify what\n"
2455 "serial device is attached to the remote system\n"
2456 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2457
2458 /* See FIXME above. */
2459 if (!async_p)
2460 wait_forever_enabled_p = 1;
2461
2462 target_preopen (from_tty);
2463
2464 unpush_target (target);
2465
2466 /* Make sure we send the passed signals list the next time we resume. */
2467 xfree (last_pass_packet);
2468 last_pass_packet = NULL;
2469
2470 remote_fileio_reset ();
2471 reopen_exec_file ();
2472 reread_symbols ();
2473
2474 remote_desc = remote_serial_open (name);
2475 if (!remote_desc)
2476 perror_with_name (name);
2477
2478 if (baud_rate != -1)
2479 {
2480 if (serial_setbaudrate (remote_desc, baud_rate))
2481 {
2482 /* The requested speed could not be set. Error out to
2483 top level after closing remote_desc. Take care to
2484 set remote_desc to NULL to avoid closing remote_desc
2485 more than once. */
2486 serial_close (remote_desc);
2487 remote_desc = NULL;
2488 perror_with_name (name);
2489 }
2490 }
2491
2492 serial_raw (remote_desc);
2493
2494 /* If there is something sitting in the buffer we might take it as a
2495 response to a command, which would be bad. */
2496 serial_flush_input (remote_desc);
2497
2498 if (from_tty)
2499 {
2500 puts_filtered ("Remote debugging using ");
2501 puts_filtered (name);
2502 puts_filtered ("\n");
2503 }
2504 push_target (target); /* Switch to using remote target now. */
2505
2506 /* Reset the target state; these things will be queried either by
2507 remote_query_supported or as they are needed. */
2508 init_all_packet_configs ();
2509 rs->explicit_packet_size = 0;
2510
2511 general_thread = -2;
2512 continue_thread = -2;
2513
2514 /* Probe for ability to use "ThreadInfo" query, as required. */
2515 use_threadinfo_query = 1;
2516 use_threadextra_query = 1;
2517
2518 /* The first packet we send to the target is the optional "supported
2519 packets" request. If the target can answer this, it will tell us
2520 which later probes to skip. */
2521 remote_query_supported ();
2522
2523 /* Next, if the target can specify a description, read it. We do
2524 this before anything involving memory or registers. */
2525 target_find_description ();
2526
2527 /* Without this, some commands which require an active target (such
2528 as kill) won't work. This variable serves (at least) double duty
2529 as both the pid of the target process (if it has such), and as a
2530 flag indicating that a target is active. These functions should
2531 be split out into seperate variables, especially since GDB will
2532 someday have a notion of debugging several processes. */
2533
2534 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2535
2536 if (async_p)
2537 {
2538 /* With this target we start out by owning the terminal. */
2539 remote_async_terminal_ours_p = 1;
2540
2541 /* FIXME: cagney/1999-09-23: During the initial connection it is
2542 assumed that the target is already ready and able to respond to
2543 requests. Unfortunately remote_start_remote() eventually calls
2544 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2545 around this. Eventually a mechanism that allows
2546 wait_for_inferior() to expect/get timeouts will be
2547 implemented. */
2548 wait_forever_enabled_p = 0;
2549 }
2550
2551 /* First delete any symbols previously loaded from shared libraries. */
2552 no_shared_libraries (NULL, 0);
2553
2554 /* Start the remote connection. If error() or QUIT, discard this
2555 target (we'd otherwise be in an inconsistent state) and then
2556 propogate the error on up the exception chain. This ensures that
2557 the caller doesn't stumble along blindly assuming that the
2558 function succeeded. The CLI doesn't have this problem but other
2559 UI's, such as MI do.
2560
2561 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2562 this function should return an error indication letting the
2563 caller restore the previous state. Unfortunately the command
2564 ``target remote'' is directly wired to this function making that
2565 impossible. On a positive note, the CLI side of this problem has
2566 been fixed - the function set_cmd_context() makes it possible for
2567 all the ``target ....'' commands to share a common callback
2568 function. See cli-dump.c. */
2569 {
2570 struct gdb_exception ex
2571 = catch_exception (uiout, remote_start_remote, &from_tty,
2572 RETURN_MASK_ALL);
2573 if (ex.reason < 0)
2574 {
2575 pop_target ();
2576 if (async_p)
2577 wait_forever_enabled_p = 1;
2578 throw_exception (ex);
2579 }
2580 }
2581
2582 if (async_p)
2583 wait_forever_enabled_p = 1;
2584
2585 if (extended_p)
2586 {
2587 /* Tell the remote that we are using the extended protocol. */
2588 putpkt ("!");
2589 getpkt (&rs->buf, &rs->buf_size, 0);
2590 }
2591
2592 if (exec_bfd) /* No use without an exec file. */
2593 remote_check_symbols (symfile_objfile);
2594 }
2595
2596 /* This takes a program previously attached to and detaches it. After
2597 this is done, GDB can be used to debug some other program. We
2598 better not have left any breakpoints in the target program or it'll
2599 die when it hits one. */
2600
2601 static void
2602 remote_detach (char *args, int from_tty)
2603 {
2604 struct remote_state *rs = get_remote_state ();
2605
2606 if (args)
2607 error (_("Argument given to \"detach\" when remotely debugging."));
2608
2609 /* Tell the remote target to detach. */
2610 strcpy (rs->buf, "D");
2611 putpkt (rs->buf);
2612 getpkt (&rs->buf, &rs->buf_size, 0);
2613
2614 if (rs->buf[0] == 'E')
2615 error (_("Can't detach process."));
2616
2617 /* Unregister the file descriptor from the event loop. */
2618 if (target_is_async_p ())
2619 serial_async (remote_desc, NULL, 0);
2620
2621 target_mourn_inferior ();
2622 if (from_tty)
2623 puts_filtered ("Ending remote debugging.\n");
2624 }
2625
2626 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2627
2628 static void
2629 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2630 {
2631 if (args)
2632 error (_("Argument given to \"detach\" when remotely debugging."));
2633
2634 /* Unregister the file descriptor from the event loop. */
2635 if (target_is_async_p ())
2636 serial_async (remote_desc, NULL, 0);
2637
2638 target_mourn_inferior ();
2639 if (from_tty)
2640 puts_filtered ("Ending remote debugging.\n");
2641 }
2642
2643 /* Convert hex digit A to a number. */
2644
2645 static int
2646 fromhex (int a)
2647 {
2648 if (a >= '0' && a <= '9')
2649 return a - '0';
2650 else if (a >= 'a' && a <= 'f')
2651 return a - 'a' + 10;
2652 else if (a >= 'A' && a <= 'F')
2653 return a - 'A' + 10;
2654 else
2655 error (_("Reply contains invalid hex digit %d"), a);
2656 }
2657
2658 static int
2659 hex2bin (const char *hex, gdb_byte *bin, int count)
2660 {
2661 int i;
2662
2663 for (i = 0; i < count; i++)
2664 {
2665 if (hex[0] == 0 || hex[1] == 0)
2666 {
2667 /* Hex string is short, or of uneven length.
2668 Return the count that has been converted so far. */
2669 return i;
2670 }
2671 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2672 hex += 2;
2673 }
2674 return i;
2675 }
2676
2677 /* Convert number NIB to a hex digit. */
2678
2679 static int
2680 tohex (int nib)
2681 {
2682 if (nib < 10)
2683 return '0' + nib;
2684 else
2685 return 'a' + nib - 10;
2686 }
2687
2688 static int
2689 bin2hex (const gdb_byte *bin, char *hex, int count)
2690 {
2691 int i;
2692 /* May use a length, or a nul-terminated string as input. */
2693 if (count == 0)
2694 count = strlen ((char *) bin);
2695
2696 for (i = 0; i < count; i++)
2697 {
2698 *hex++ = tohex ((*bin >> 4) & 0xf);
2699 *hex++ = tohex (*bin++ & 0xf);
2700 }
2701 *hex = 0;
2702 return i;
2703 }
2704 \f
2705 /* Check for the availability of vCont. This function should also check
2706 the response. */
2707
2708 static void
2709 remote_vcont_probe (struct remote_state *rs)
2710 {
2711 char *buf;
2712
2713 strcpy (rs->buf, "vCont?");
2714 putpkt (rs->buf);
2715 getpkt (&rs->buf, &rs->buf_size, 0);
2716 buf = rs->buf;
2717
2718 /* Make sure that the features we assume are supported. */
2719 if (strncmp (buf, "vCont", 5) == 0)
2720 {
2721 char *p = &buf[5];
2722 int support_s, support_S, support_c, support_C;
2723
2724 support_s = 0;
2725 support_S = 0;
2726 support_c = 0;
2727 support_C = 0;
2728 while (p && *p == ';')
2729 {
2730 p++;
2731 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2732 support_s = 1;
2733 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2734 support_S = 1;
2735 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2736 support_c = 1;
2737 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2738 support_C = 1;
2739
2740 p = strchr (p, ';');
2741 }
2742
2743 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2744 BUF will make packet_ok disable the packet. */
2745 if (!support_s || !support_S || !support_c || !support_C)
2746 buf[0] = 0;
2747 }
2748
2749 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2750 }
2751
2752 /* Resume the remote inferior by using a "vCont" packet. The thread
2753 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2754 resumed thread should be single-stepped and/or signalled. If PTID's
2755 PID is -1, then all threads are resumed; the thread to be stepped and/or
2756 signalled is given in the global INFERIOR_PTID. This function returns
2757 non-zero iff it resumes the inferior.
2758
2759 This function issues a strict subset of all possible vCont commands at the
2760 moment. */
2761
2762 static int
2763 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2764 {
2765 struct remote_state *rs = get_remote_state ();
2766 int pid = PIDGET (ptid);
2767 char *buf = NULL, *outbuf;
2768 struct cleanup *old_cleanup;
2769
2770 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2771 remote_vcont_probe (rs);
2772
2773 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2774 return 0;
2775
2776 /* If we could generate a wider range of packets, we'd have to worry
2777 about overflowing BUF. Should there be a generic
2778 "multi-part-packet" packet? */
2779
2780 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2781 {
2782 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2783 don't have any PID numbers the inferior will understand. Make sure
2784 to only send forms that do not specify a PID. */
2785 if (step && siggnal != TARGET_SIGNAL_0)
2786 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2787 else if (step)
2788 outbuf = xstrprintf ("vCont;s");
2789 else if (siggnal != TARGET_SIGNAL_0)
2790 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2791 else
2792 outbuf = xstrprintf ("vCont;c");
2793 }
2794 else if (pid == -1)
2795 {
2796 /* Resume all threads, with preference for INFERIOR_PTID. */
2797 if (step && siggnal != TARGET_SIGNAL_0)
2798 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2799 PIDGET (inferior_ptid));
2800 else if (step)
2801 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2802 else if (siggnal != TARGET_SIGNAL_0)
2803 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2804 PIDGET (inferior_ptid));
2805 else
2806 outbuf = xstrprintf ("vCont;c");
2807 }
2808 else
2809 {
2810 /* Scheduler locking; resume only PTID. */
2811 if (step && siggnal != TARGET_SIGNAL_0)
2812 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2813 else if (step)
2814 outbuf = xstrprintf ("vCont;s:%x", pid);
2815 else if (siggnal != TARGET_SIGNAL_0)
2816 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2817 else
2818 outbuf = xstrprintf ("vCont;c:%x", pid);
2819 }
2820
2821 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2822 old_cleanup = make_cleanup (xfree, outbuf);
2823
2824 putpkt (outbuf);
2825
2826 do_cleanups (old_cleanup);
2827
2828 return 1;
2829 }
2830
2831 /* Tell the remote machine to resume. */
2832
2833 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2834
2835 static int last_sent_step;
2836
2837 static void
2838 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2839 {
2840 struct remote_state *rs = get_remote_state ();
2841 char *buf;
2842 int pid = PIDGET (ptid);
2843
2844 last_sent_signal = siggnal;
2845 last_sent_step = step;
2846
2847 /* A hook for when we need to do something at the last moment before
2848 resumption. */
2849 if (deprecated_target_resume_hook)
2850 (*deprecated_target_resume_hook) ();
2851
2852 /* Update the inferior on signals to silently pass, if they've changed. */
2853 remote_pass_signals ();
2854
2855 /* The vCont packet doesn't need to specify threads via Hc. */
2856 if (remote_vcont_resume (ptid, step, siggnal))
2857 return;
2858
2859 /* All other supported resume packets do use Hc, so call set_thread. */
2860 if (pid == -1)
2861 set_thread (0, 0); /* Run any thread. */
2862 else
2863 set_thread (pid, 0); /* Run this thread. */
2864
2865 buf = rs->buf;
2866 if (siggnal != TARGET_SIGNAL_0)
2867 {
2868 buf[0] = step ? 'S' : 'C';
2869 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2870 buf[2] = tohex (((int) siggnal) & 0xf);
2871 buf[3] = '\0';
2872 }
2873 else
2874 strcpy (buf, step ? "s" : "c");
2875
2876 putpkt (buf);
2877 }
2878
2879 /* Same as remote_resume, but with async support. */
2880 static void
2881 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2882 {
2883 remote_resume (ptid, step, siggnal);
2884
2885 /* We are about to start executing the inferior, let's register it
2886 with the event loop. NOTE: this is the one place where all the
2887 execution commands end up. We could alternatively do this in each
2888 of the execution commands in infcmd.c. */
2889 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2890 into infcmd.c in order to allow inferior function calls to work
2891 NOT asynchronously. */
2892 if (target_can_async_p ())
2893 target_async (inferior_event_handler, 0);
2894 /* Tell the world that the target is now executing. */
2895 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2896 this? Instead, should the client of target just assume (for
2897 async targets) that the target is going to start executing? Is
2898 this information already found in the continuation block? */
2899 if (target_is_async_p ())
2900 target_executing = 1;
2901 }
2902 \f
2903
2904 /* Set up the signal handler for SIGINT, while the target is
2905 executing, ovewriting the 'regular' SIGINT signal handler. */
2906 static void
2907 initialize_sigint_signal_handler (void)
2908 {
2909 sigint_remote_token =
2910 create_async_signal_handler (async_remote_interrupt, NULL);
2911 signal (SIGINT, handle_remote_sigint);
2912 }
2913
2914 /* Signal handler for SIGINT, while the target is executing. */
2915 static void
2916 handle_remote_sigint (int sig)
2917 {
2918 signal (sig, handle_remote_sigint_twice);
2919 sigint_remote_twice_token =
2920 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2921 mark_async_signal_handler_wrapper (sigint_remote_token);
2922 }
2923
2924 /* Signal handler for SIGINT, installed after SIGINT has already been
2925 sent once. It will take effect the second time that the user sends
2926 a ^C. */
2927 static void
2928 handle_remote_sigint_twice (int sig)
2929 {
2930 signal (sig, handle_sigint);
2931 sigint_remote_twice_token =
2932 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2933 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2934 }
2935
2936 /* Perform the real interruption of the target execution, in response
2937 to a ^C. */
2938 static void
2939 async_remote_interrupt (gdb_client_data arg)
2940 {
2941 if (remote_debug)
2942 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2943
2944 target_stop ();
2945 }
2946
2947 /* Perform interrupt, if the first attempt did not succeed. Just give
2948 up on the target alltogether. */
2949 void
2950 async_remote_interrupt_twice (gdb_client_data arg)
2951 {
2952 if (remote_debug)
2953 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2954 /* Do something only if the target was not killed by the previous
2955 cntl-C. */
2956 if (target_executing)
2957 {
2958 interrupt_query ();
2959 signal (SIGINT, handle_remote_sigint);
2960 }
2961 }
2962
2963 /* Reinstall the usual SIGINT handlers, after the target has
2964 stopped. */
2965 static void
2966 cleanup_sigint_signal_handler (void *dummy)
2967 {
2968 signal (SIGINT, handle_sigint);
2969 if (sigint_remote_twice_token)
2970 delete_async_signal_handler (&sigint_remote_twice_token);
2971 if (sigint_remote_token)
2972 delete_async_signal_handler (&sigint_remote_token);
2973 }
2974
2975 /* Send ^C to target to halt it. Target will respond, and send us a
2976 packet. */
2977 static void (*ofunc) (int);
2978
2979 /* The command line interface's stop routine. This function is installed
2980 as a signal handler for SIGINT. The first time a user requests a
2981 stop, we call remote_stop to send a break or ^C. If there is no
2982 response from the target (it didn't stop when the user requested it),
2983 we ask the user if he'd like to detach from the target. */
2984 static void
2985 remote_interrupt (int signo)
2986 {
2987 /* If this doesn't work, try more severe steps. */
2988 signal (signo, remote_interrupt_twice);
2989
2990 if (remote_debug)
2991 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2992
2993 target_stop ();
2994 }
2995
2996 /* The user typed ^C twice. */
2997
2998 static void
2999 remote_interrupt_twice (int signo)
3000 {
3001 signal (signo, ofunc);
3002 interrupt_query ();
3003 signal (signo, remote_interrupt);
3004 }
3005
3006 /* This is the generic stop called via the target vector. When a target
3007 interrupt is requested, either by the command line or the GUI, we
3008 will eventually end up here. */
3009 static void
3010 remote_stop (void)
3011 {
3012 /* Send a break or a ^C, depending on user preference. */
3013 if (remote_debug)
3014 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3015
3016 if (remote_break)
3017 serial_send_break (remote_desc);
3018 else
3019 serial_write (remote_desc, "\003", 1);
3020 }
3021
3022 /* Ask the user what to do when an interrupt is received. */
3023
3024 static void
3025 interrupt_query (void)
3026 {
3027 target_terminal_ours ();
3028
3029 if (query ("Interrupted while waiting for the program.\n\
3030 Give up (and stop debugging it)? "))
3031 {
3032 target_mourn_inferior ();
3033 deprecated_throw_reason (RETURN_QUIT);
3034 }
3035
3036 target_terminal_inferior ();
3037 }
3038
3039 /* Enable/disable target terminal ownership. Most targets can use
3040 terminal groups to control terminal ownership. Remote targets are
3041 different in that explicit transfer of ownership to/from GDB/target
3042 is required. */
3043
3044 static void
3045 remote_async_terminal_inferior (void)
3046 {
3047 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3048 sync_execution here. This function should only be called when
3049 GDB is resuming the inferior in the forground. A background
3050 resume (``run&'') should leave GDB in control of the terminal and
3051 consequently should not call this code. */
3052 if (!sync_execution)
3053 return;
3054 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3055 calls target_terminal_*() idenpotent. The event-loop GDB talking
3056 to an asynchronous target with a synchronous command calls this
3057 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3058 stops trying to transfer the terminal to the target when it
3059 shouldn't this guard can go away. */
3060 if (!remote_async_terminal_ours_p)
3061 return;
3062 delete_file_handler (input_fd);
3063 remote_async_terminal_ours_p = 0;
3064 initialize_sigint_signal_handler ();
3065 /* NOTE: At this point we could also register our selves as the
3066 recipient of all input. Any characters typed could then be
3067 passed on down to the target. */
3068 }
3069
3070 static void
3071 remote_async_terminal_ours (void)
3072 {
3073 /* See FIXME in remote_async_terminal_inferior. */
3074 if (!sync_execution)
3075 return;
3076 /* See FIXME in remote_async_terminal_inferior. */
3077 if (remote_async_terminal_ours_p)
3078 return;
3079 cleanup_sigint_signal_handler (NULL);
3080 add_file_handler (input_fd, stdin_event_handler, 0);
3081 remote_async_terminal_ours_p = 1;
3082 }
3083
3084 /* If nonzero, ignore the next kill. */
3085
3086 int kill_kludge;
3087
3088 void
3089 remote_console_output (char *msg)
3090 {
3091 char *p;
3092
3093 for (p = msg; p[0] && p[1]; p += 2)
3094 {
3095 char tb[2];
3096 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3097 tb[0] = c;
3098 tb[1] = 0;
3099 fputs_unfiltered (tb, gdb_stdtarg);
3100 }
3101 gdb_flush (gdb_stdtarg);
3102 }
3103
3104 /* Wait until the remote machine stops, then return,
3105 storing status in STATUS just as `wait' would.
3106 Returns "pid", which in the case of a multi-threaded
3107 remote OS, is the thread-id. */
3108
3109 static ptid_t
3110 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3111 {
3112 struct remote_state *rs = get_remote_state ();
3113 struct remote_arch_state *rsa = get_remote_arch_state ();
3114 ULONGEST thread_num = -1;
3115 ULONGEST addr;
3116
3117 status->kind = TARGET_WAITKIND_EXITED;
3118 status->value.integer = 0;
3119
3120 while (1)
3121 {
3122 char *buf, *p;
3123
3124 ofunc = signal (SIGINT, remote_interrupt);
3125 getpkt (&rs->buf, &rs->buf_size, 1);
3126 signal (SIGINT, ofunc);
3127
3128 buf = rs->buf;
3129
3130 /* This is a hook for when we need to do something (perhaps the
3131 collection of trace data) every time the target stops. */
3132 if (deprecated_target_wait_loop_hook)
3133 (*deprecated_target_wait_loop_hook) ();
3134
3135 remote_stopped_by_watchpoint_p = 0;
3136
3137 switch (buf[0])
3138 {
3139 case 'E': /* Error of some sort. */
3140 warning (_("Remote failure reply: %s"), buf);
3141 continue;
3142 case 'F': /* File-I/O request. */
3143 remote_fileio_request (buf);
3144 continue;
3145 case 'T': /* Status with PC, SP, FP, ... */
3146 {
3147 gdb_byte regs[MAX_REGISTER_SIZE];
3148
3149 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3150 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3151 ss = signal number
3152 n... = register number
3153 r... = register contents
3154 */
3155 p = &buf[3]; /* after Txx */
3156
3157 while (*p)
3158 {
3159 char *p1;
3160 char *p_temp;
3161 int fieldsize;
3162 LONGEST pnum = 0;
3163
3164 /* If the packet contains a register number save it in
3165 pnum and set p1 to point to the character following
3166 it. Otherwise p1 points to p. */
3167
3168 /* If this packet is an awatch packet, don't parse the
3169 'a' as a register number. */
3170
3171 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3172 {
3173 /* Read the ``P'' register number. */
3174 pnum = strtol (p, &p_temp, 16);
3175 p1 = p_temp;
3176 }
3177 else
3178 p1 = p;
3179
3180 if (p1 == p) /* No register number present here. */
3181 {
3182 p1 = strchr (p, ':');
3183 if (p1 == NULL)
3184 error (_("Malformed packet(a) (missing colon): %s\n\
3185 Packet: '%s'\n"),
3186 p, buf);
3187 if (strncmp (p, "thread", p1 - p) == 0)
3188 {
3189 p_temp = unpack_varlen_hex (++p1, &thread_num);
3190 record_currthread (thread_num);
3191 p = p_temp;
3192 }
3193 else if ((strncmp (p, "watch", p1 - p) == 0)
3194 || (strncmp (p, "rwatch", p1 - p) == 0)
3195 || (strncmp (p, "awatch", p1 - p) == 0))
3196 {
3197 remote_stopped_by_watchpoint_p = 1;
3198 p = unpack_varlen_hex (++p1, &addr);
3199 remote_watch_data_address = (CORE_ADDR)addr;
3200 }
3201 else
3202 {
3203 /* Silently skip unknown optional info. */
3204 p_temp = strchr (p1 + 1, ';');
3205 if (p_temp)
3206 p = p_temp;
3207 }
3208 }
3209 else
3210 {
3211 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3212 p = p1;
3213
3214 if (*p++ != ':')
3215 error (_("Malformed packet(b) (missing colon): %s\n\
3216 Packet: '%s'\n"),
3217 p, buf);
3218
3219 if (reg == NULL)
3220 error (_("Remote sent bad register number %s: %s\n\
3221 Packet: '%s'\n"),
3222 phex_nz (pnum, 0), p, buf);
3223
3224 fieldsize = hex2bin (p, regs,
3225 register_size (current_gdbarch,
3226 reg->regnum));
3227 p += 2 * fieldsize;
3228 if (fieldsize < register_size (current_gdbarch,
3229 reg->regnum))
3230 warning (_("Remote reply is too short: %s"), buf);
3231 regcache_raw_supply (current_regcache,
3232 reg->regnum, regs);
3233 }
3234
3235 if (*p++ != ';')
3236 error (_("Remote register badly formatted: %s\nhere: %s"),
3237 buf, p);
3238 }
3239 }
3240 /* fall through */
3241 case 'S': /* Old style status, just signal only. */
3242 status->kind = TARGET_WAITKIND_STOPPED;
3243 status->value.sig = (enum target_signal)
3244 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3245
3246 if (buf[3] == 'p')
3247 {
3248 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3249 record_currthread (thread_num);
3250 }
3251 goto got_status;
3252 case 'W': /* Target exited. */
3253 {
3254 /* The remote process exited. */
3255 status->kind = TARGET_WAITKIND_EXITED;
3256 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3257 goto got_status;
3258 }
3259 case 'X':
3260 status->kind = TARGET_WAITKIND_SIGNALLED;
3261 status->value.sig = (enum target_signal)
3262 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3263 kill_kludge = 1;
3264
3265 goto got_status;
3266 case 'O': /* Console output. */
3267 remote_console_output (buf + 1);
3268 continue;
3269 case '\0':
3270 if (last_sent_signal != TARGET_SIGNAL_0)
3271 {
3272 /* Zero length reply means that we tried 'S' or 'C' and
3273 the remote system doesn't support it. */
3274 target_terminal_ours_for_output ();
3275 printf_filtered
3276 ("Can't send signals to this remote system. %s not sent.\n",
3277 target_signal_to_name (last_sent_signal));
3278 last_sent_signal = TARGET_SIGNAL_0;
3279 target_terminal_inferior ();
3280
3281 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3282 putpkt ((char *) buf);
3283 continue;
3284 }
3285 /* else fallthrough */
3286 default:
3287 warning (_("Invalid remote reply: %s"), buf);
3288 continue;
3289 }
3290 }
3291 got_status:
3292 if (thread_num != -1)
3293 {
3294 return pid_to_ptid (thread_num);
3295 }
3296 return inferior_ptid;
3297 }
3298
3299 /* Async version of remote_wait. */
3300 static ptid_t
3301 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3302 {
3303 struct remote_state *rs = get_remote_state ();
3304 struct remote_arch_state *rsa = get_remote_arch_state ();
3305 ULONGEST thread_num = -1;
3306 ULONGEST addr;
3307
3308 status->kind = TARGET_WAITKIND_EXITED;
3309 status->value.integer = 0;
3310
3311 remote_stopped_by_watchpoint_p = 0;
3312
3313 while (1)
3314 {
3315 char *buf, *p;
3316
3317 if (!target_is_async_p ())
3318 ofunc = signal (SIGINT, remote_interrupt);
3319 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3320 _never_ wait for ever -> test on target_is_async_p().
3321 However, before we do that we need to ensure that the caller
3322 knows how to take the target into/out of async mode. */
3323 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3324 if (!target_is_async_p ())
3325 signal (SIGINT, ofunc);
3326
3327 buf = rs->buf;
3328
3329 /* This is a hook for when we need to do something (perhaps the
3330 collection of trace data) every time the target stops. */
3331 if (deprecated_target_wait_loop_hook)
3332 (*deprecated_target_wait_loop_hook) ();
3333
3334 switch (buf[0])
3335 {
3336 case 'E': /* Error of some sort. */
3337 warning (_("Remote failure reply: %s"), buf);
3338 continue;
3339 case 'F': /* File-I/O request. */
3340 remote_fileio_request (buf);
3341 continue;
3342 case 'T': /* Status with PC, SP, FP, ... */
3343 {
3344 gdb_byte regs[MAX_REGISTER_SIZE];
3345
3346 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3347 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3348 ss = signal number
3349 n... = register number
3350 r... = register contents
3351 */
3352 p = &buf[3]; /* after Txx */
3353
3354 while (*p)
3355 {
3356 char *p1;
3357 char *p_temp;
3358 int fieldsize;
3359 long pnum = 0;
3360
3361 /* If the packet contains a register number, save it
3362 in pnum and set p1 to point to the character
3363 following it. Otherwise p1 points to p. */
3364
3365 /* If this packet is an awatch packet, don't parse the 'a'
3366 as a register number. */
3367
3368 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3369 {
3370 /* Read the register number. */
3371 pnum = strtol (p, &p_temp, 16);
3372 p1 = p_temp;
3373 }
3374 else
3375 p1 = p;
3376
3377 if (p1 == p) /* No register number present here. */
3378 {
3379 p1 = strchr (p, ':');
3380 if (p1 == NULL)
3381 error (_("Malformed packet(a) (missing colon): %s\n\
3382 Packet: '%s'\n"),
3383 p, buf);
3384 if (strncmp (p, "thread", p1 - p) == 0)
3385 {
3386 p_temp = unpack_varlen_hex (++p1, &thread_num);
3387 record_currthread (thread_num);
3388 p = p_temp;
3389 }
3390 else if ((strncmp (p, "watch", p1 - p) == 0)
3391 || (strncmp (p, "rwatch", p1 - p) == 0)
3392 || (strncmp (p, "awatch", p1 - p) == 0))
3393 {
3394 remote_stopped_by_watchpoint_p = 1;
3395 p = unpack_varlen_hex (++p1, &addr);
3396 remote_watch_data_address = (CORE_ADDR)addr;
3397 }
3398 else
3399 {
3400 /* Silently skip unknown optional info. */
3401 p_temp = strchr (p1 + 1, ';');
3402 if (p_temp)
3403 p = p_temp;
3404 }
3405 }
3406
3407 else
3408 {
3409 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3410 p = p1;
3411 if (*p++ != ':')
3412 error (_("Malformed packet(b) (missing colon): %s\n\
3413 Packet: '%s'\n"),
3414 p, buf);
3415
3416 if (reg == NULL)
3417 error (_("Remote sent bad register number %ld: %s\n\
3418 Packet: '%s'\n"),
3419 pnum, p, buf);
3420
3421 fieldsize = hex2bin (p, regs,
3422 register_size (current_gdbarch,
3423 reg->regnum));
3424 p += 2 * fieldsize;
3425 if (fieldsize < register_size (current_gdbarch,
3426 reg->regnum))
3427 warning (_("Remote reply is too short: %s"), buf);
3428 regcache_raw_supply (current_regcache, reg->regnum, regs);
3429 }
3430
3431 if (*p++ != ';')
3432 error (_("Remote register badly formatted: %s\nhere: %s"),
3433 buf, p);
3434 }
3435 }
3436 /* fall through */
3437 case 'S': /* Old style status, just signal only. */
3438 status->kind = TARGET_WAITKIND_STOPPED;
3439 status->value.sig = (enum target_signal)
3440 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3441
3442 if (buf[3] == 'p')
3443 {
3444 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3445 record_currthread (thread_num);
3446 }
3447 goto got_status;
3448 case 'W': /* Target exited. */
3449 {
3450 /* The remote process exited. */
3451 status->kind = TARGET_WAITKIND_EXITED;
3452 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3453 goto got_status;
3454 }
3455 case 'X':
3456 status->kind = TARGET_WAITKIND_SIGNALLED;
3457 status->value.sig = (enum target_signal)
3458 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3459 kill_kludge = 1;
3460
3461 goto got_status;
3462 case 'O': /* Console output. */
3463 remote_console_output (buf + 1);
3464 /* Return immediately to the event loop. The event loop will
3465 still be waiting on the inferior afterwards. */
3466 status->kind = TARGET_WAITKIND_IGNORE;
3467 goto got_status;
3468 case '\0':
3469 if (last_sent_signal != TARGET_SIGNAL_0)
3470 {
3471 /* Zero length reply means that we tried 'S' or 'C' and
3472 the remote system doesn't support it. */
3473 target_terminal_ours_for_output ();
3474 printf_filtered
3475 ("Can't send signals to this remote system. %s not sent.\n",
3476 target_signal_to_name (last_sent_signal));
3477 last_sent_signal = TARGET_SIGNAL_0;
3478 target_terminal_inferior ();
3479
3480 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3481 putpkt ((char *) buf);
3482 continue;
3483 }
3484 /* else fallthrough */
3485 default:
3486 warning (_("Invalid remote reply: %s"), buf);
3487 continue;
3488 }
3489 }
3490 got_status:
3491 if (thread_num != -1)
3492 {
3493 return pid_to_ptid (thread_num);
3494 }
3495 return inferior_ptid;
3496 }
3497
3498 /* Fetch a single register using a 'p' packet. */
3499
3500 static int
3501 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3502 {
3503 struct remote_state *rs = get_remote_state ();
3504 char *buf, *p;
3505 char regp[MAX_REGISTER_SIZE];
3506 int i;
3507
3508 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3509 return 0;
3510
3511 if (reg->pnum == -1)
3512 return 0;
3513
3514 p = rs->buf;
3515 *p++ = 'p';
3516 p += hexnumstr (p, reg->pnum);
3517 *p++ = '\0';
3518 remote_send (&rs->buf, &rs->buf_size);
3519
3520 buf = rs->buf;
3521
3522 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3523 {
3524 case PACKET_OK:
3525 break;
3526 case PACKET_UNKNOWN:
3527 return 0;
3528 case PACKET_ERROR:
3529 error (_("Could not fetch register \"%s\""),
3530 gdbarch_register_name (current_gdbarch, reg->regnum));
3531 }
3532
3533 /* If this register is unfetchable, tell the regcache. */
3534 if (buf[0] == 'x')
3535 {
3536 regcache_raw_supply (regcache, reg->regnum, NULL);
3537 return 1;
3538 }
3539
3540 /* Otherwise, parse and supply the value. */
3541 p = buf;
3542 i = 0;
3543 while (p[0] != 0)
3544 {
3545 if (p[1] == 0)
3546 error (_("fetch_register_using_p: early buf termination"));
3547
3548 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3549 p += 2;
3550 }
3551 regcache_raw_supply (regcache, reg->regnum, regp);
3552 return 1;
3553 }
3554
3555 /* Fetch the registers included in the target's 'g' packet. */
3556
3557 static int
3558 send_g_packet (void)
3559 {
3560 struct remote_state *rs = get_remote_state ();
3561 int i, buf_len;
3562 char *p;
3563 char *regs;
3564
3565 sprintf (rs->buf, "g");
3566 remote_send (&rs->buf, &rs->buf_size);
3567
3568 /* We can get out of synch in various cases. If the first character
3569 in the buffer is not a hex character, assume that has happened
3570 and try to fetch another packet to read. */
3571 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3572 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3573 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3574 && rs->buf[0] != 'x') /* New: unavailable register value. */
3575 {
3576 if (remote_debug)
3577 fprintf_unfiltered (gdb_stdlog,
3578 "Bad register packet; fetching a new packet\n");
3579 getpkt (&rs->buf, &rs->buf_size, 0);
3580 }
3581
3582 buf_len = strlen (rs->buf);
3583
3584 /* Sanity check the received packet. */
3585 if (buf_len % 2 != 0)
3586 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3587
3588 return buf_len / 2;
3589 }
3590
3591 static void
3592 process_g_packet (struct regcache *regcache)
3593 {
3594 struct remote_state *rs = get_remote_state ();
3595 struct remote_arch_state *rsa = get_remote_arch_state ();
3596 int i, buf_len;
3597 char *p;
3598 char *regs;
3599
3600 buf_len = strlen (rs->buf);
3601
3602 /* Further sanity checks, with knowledge of the architecture. */
3603 if (buf_len > 2 * rsa->sizeof_g_packet)
3604 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3605
3606 /* Save the size of the packet sent to us by the target. It is used
3607 as a heuristic when determining the max size of packets that the
3608 target can safely receive. */
3609 if (rsa->actual_register_packet_size == 0)
3610 rsa->actual_register_packet_size = buf_len;
3611
3612 /* If this is smaller than we guessed the 'g' packet would be,
3613 update our records. A 'g' reply that doesn't include a register's
3614 value implies either that the register is not available, or that
3615 the 'p' packet must be used. */
3616 if (buf_len < 2 * rsa->sizeof_g_packet)
3617 {
3618 rsa->sizeof_g_packet = buf_len / 2;
3619
3620 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3621 {
3622 if (rsa->regs[i].pnum == -1)
3623 continue;
3624
3625 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3626 rsa->regs[i].in_g_packet = 0;
3627 else
3628 rsa->regs[i].in_g_packet = 1;
3629 }
3630 }
3631
3632 regs = alloca (rsa->sizeof_g_packet);
3633
3634 /* Unimplemented registers read as all bits zero. */
3635 memset (regs, 0, rsa->sizeof_g_packet);
3636
3637 /* Reply describes registers byte by byte, each byte encoded as two
3638 hex characters. Suck them all up, then supply them to the
3639 register cacheing/storage mechanism. */
3640
3641 p = rs->buf;
3642 for (i = 0; i < rsa->sizeof_g_packet; i++)
3643 {
3644 if (p[0] == 0 || p[1] == 0)
3645 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3646 internal_error (__FILE__, __LINE__,
3647 "unexpected end of 'g' packet reply");
3648
3649 if (p[0] == 'x' && p[1] == 'x')
3650 regs[i] = 0; /* 'x' */
3651 else
3652 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3653 p += 2;
3654 }
3655
3656 {
3657 int i;
3658 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3659 {
3660 struct packet_reg *r = &rsa->regs[i];
3661 if (r->in_g_packet)
3662 {
3663 if (r->offset * 2 >= strlen (rs->buf))
3664 /* This shouldn't happen - we adjusted in_g_packet above. */
3665 internal_error (__FILE__, __LINE__,
3666 "unexpected end of 'g' packet reply");
3667 else if (rs->buf[r->offset * 2] == 'x')
3668 {
3669 gdb_assert (r->offset * 2 < strlen (rs->buf));
3670 /* The register isn't available, mark it as such (at
3671 the same time setting the value to zero). */
3672 regcache_raw_supply (regcache, r->regnum, NULL);
3673 }
3674 else
3675 regcache_raw_supply (regcache, r->regnum,
3676 regs + r->offset);
3677 }
3678 }
3679 }
3680 }
3681
3682 static void
3683 fetch_registers_using_g (struct regcache *regcache)
3684 {
3685 send_g_packet ();
3686 process_g_packet (regcache);
3687 }
3688
3689 static void
3690 remote_fetch_registers (struct regcache *regcache, int regnum)
3691 {
3692 struct remote_state *rs = get_remote_state ();
3693 struct remote_arch_state *rsa = get_remote_arch_state ();
3694 int i;
3695
3696 set_thread (PIDGET (inferior_ptid), 1);
3697
3698 if (regnum >= 0)
3699 {
3700 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3701 gdb_assert (reg != NULL);
3702
3703 /* If this register might be in the 'g' packet, try that first -
3704 we are likely to read more than one register. If this is the
3705 first 'g' packet, we might be overly optimistic about its
3706 contents, so fall back to 'p'. */
3707 if (reg->in_g_packet)
3708 {
3709 fetch_registers_using_g (regcache);
3710 if (reg->in_g_packet)
3711 return;
3712 }
3713
3714 if (fetch_register_using_p (regcache, reg))
3715 return;
3716
3717 /* This register is not available. */
3718 regcache_raw_supply (regcache, reg->regnum, NULL);
3719
3720 return;
3721 }
3722
3723 fetch_registers_using_g (regcache);
3724
3725 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3726 if (!rsa->regs[i].in_g_packet)
3727 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3728 {
3729 /* This register is not available. */
3730 regcache_raw_supply (regcache, i, NULL);
3731 }
3732 }
3733
3734 /* Prepare to store registers. Since we may send them all (using a
3735 'G' request), we have to read out the ones we don't want to change
3736 first. */
3737
3738 static void
3739 remote_prepare_to_store (struct regcache *regcache)
3740 {
3741 struct remote_arch_state *rsa = get_remote_arch_state ();
3742 int i;
3743 gdb_byte buf[MAX_REGISTER_SIZE];
3744
3745 /* Make sure the entire registers array is valid. */
3746 switch (remote_protocol_packets[PACKET_P].support)
3747 {
3748 case PACKET_DISABLE:
3749 case PACKET_SUPPORT_UNKNOWN:
3750 /* Make sure all the necessary registers are cached. */
3751 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3752 if (rsa->regs[i].in_g_packet)
3753 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3754 break;
3755 case PACKET_ENABLE:
3756 break;
3757 }
3758 }
3759
3760 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3761 packet was not recognized. */
3762
3763 static int
3764 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3765 {
3766 struct remote_state *rs = get_remote_state ();
3767 struct remote_arch_state *rsa = get_remote_arch_state ();
3768 /* Try storing a single register. */
3769 char *buf = rs->buf;
3770 gdb_byte regp[MAX_REGISTER_SIZE];
3771 char *p;
3772
3773 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3774 return 0;
3775
3776 if (reg->pnum == -1)
3777 return 0;
3778
3779 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3780 p = buf + strlen (buf);
3781 regcache_raw_collect (regcache, reg->regnum, regp);
3782 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3783 remote_send (&rs->buf, &rs->buf_size);
3784
3785 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3786 {
3787 case PACKET_OK:
3788 return 1;
3789 case PACKET_ERROR:
3790 error (_("Could not write register \"%s\""),
3791 gdbarch_register_name (current_gdbarch, reg->regnum));
3792 case PACKET_UNKNOWN:
3793 return 0;
3794 default:
3795 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3796 }
3797 }
3798
3799 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3800 contents of the register cache buffer. FIXME: ignores errors. */
3801
3802 static void
3803 store_registers_using_G (const struct regcache *regcache)
3804 {
3805 struct remote_state *rs = get_remote_state ();
3806 struct remote_arch_state *rsa = get_remote_arch_state ();
3807 gdb_byte *regs;
3808 char *p;
3809
3810 /* Extract all the registers in the regcache copying them into a
3811 local buffer. */
3812 {
3813 int i;
3814 regs = alloca (rsa->sizeof_g_packet);
3815 memset (regs, 0, rsa->sizeof_g_packet);
3816 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3817 {
3818 struct packet_reg *r = &rsa->regs[i];
3819 if (r->in_g_packet)
3820 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3821 }
3822 }
3823
3824 /* Command describes registers byte by byte,
3825 each byte encoded as two hex characters. */
3826 p = rs->buf;
3827 *p++ = 'G';
3828 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3829 updated. */
3830 bin2hex (regs, p, rsa->sizeof_g_packet);
3831 remote_send (&rs->buf, &rs->buf_size);
3832 }
3833
3834 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3835 of the register cache buffer. FIXME: ignores errors. */
3836
3837 static void
3838 remote_store_registers (struct regcache *regcache, int regnum)
3839 {
3840 struct remote_state *rs = get_remote_state ();
3841 struct remote_arch_state *rsa = get_remote_arch_state ();
3842 int i;
3843
3844 set_thread (PIDGET (inferior_ptid), 1);
3845
3846 if (regnum >= 0)
3847 {
3848 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3849 gdb_assert (reg != NULL);
3850
3851 /* Always prefer to store registers using the 'P' packet if
3852 possible; we often change only a small number of registers.
3853 Sometimes we change a larger number; we'd need help from a
3854 higher layer to know to use 'G'. */
3855 if (store_register_using_P (regcache, reg))
3856 return;
3857
3858 /* For now, don't complain if we have no way to write the
3859 register. GDB loses track of unavailable registers too
3860 easily. Some day, this may be an error. We don't have
3861 any way to read the register, either... */
3862 if (!reg->in_g_packet)
3863 return;
3864
3865 store_registers_using_G (regcache);
3866 return;
3867 }
3868
3869 store_registers_using_G (regcache);
3870
3871 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3872 if (!rsa->regs[i].in_g_packet)
3873 if (!store_register_using_P (regcache, &rsa->regs[i]))
3874 /* See above for why we do not issue an error here. */
3875 continue;
3876 }
3877 \f
3878
3879 /* Return the number of hex digits in num. */
3880
3881 static int
3882 hexnumlen (ULONGEST num)
3883 {
3884 int i;
3885
3886 for (i = 0; num != 0; i++)
3887 num >>= 4;
3888
3889 return max (i, 1);
3890 }
3891
3892 /* Set BUF to the minimum number of hex digits representing NUM. */
3893
3894 static int
3895 hexnumstr (char *buf, ULONGEST num)
3896 {
3897 int len = hexnumlen (num);
3898 return hexnumnstr (buf, num, len);
3899 }
3900
3901
3902 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3903
3904 static int
3905 hexnumnstr (char *buf, ULONGEST num, int width)
3906 {
3907 int i;
3908
3909 buf[width] = '\0';
3910
3911 for (i = width - 1; i >= 0; i--)
3912 {
3913 buf[i] = "0123456789abcdef"[(num & 0xf)];
3914 num >>= 4;
3915 }
3916
3917 return width;
3918 }
3919
3920 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3921
3922 static CORE_ADDR
3923 remote_address_masked (CORE_ADDR addr)
3924 {
3925 if (remote_address_size > 0
3926 && remote_address_size < (sizeof (ULONGEST) * 8))
3927 {
3928 /* Only create a mask when that mask can safely be constructed
3929 in a ULONGEST variable. */
3930 ULONGEST mask = 1;
3931 mask = (mask << remote_address_size) - 1;
3932 addr &= mask;
3933 }
3934 return addr;
3935 }
3936
3937 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3938 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3939 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3940 (which may be more than *OUT_LEN due to escape characters). The
3941 total number of bytes in the output buffer will be at most
3942 OUT_MAXLEN. */
3943
3944 static int
3945 remote_escape_output (const gdb_byte *buffer, int len,
3946 gdb_byte *out_buf, int *out_len,
3947 int out_maxlen)
3948 {
3949 int input_index, output_index;
3950
3951 output_index = 0;
3952 for (input_index = 0; input_index < len; input_index++)
3953 {
3954 gdb_byte b = buffer[input_index];
3955
3956 if (b == '$' || b == '#' || b == '}')
3957 {
3958 /* These must be escaped. */
3959 if (output_index + 2 > out_maxlen)
3960 break;
3961 out_buf[output_index++] = '}';
3962 out_buf[output_index++] = b ^ 0x20;
3963 }
3964 else
3965 {
3966 if (output_index + 1 > out_maxlen)
3967 break;
3968 out_buf[output_index++] = b;
3969 }
3970 }
3971
3972 *out_len = input_index;
3973 return output_index;
3974 }
3975
3976 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3977 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3978 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3979
3980 This function reverses remote_escape_output. It allows more
3981 escaped characters than that function does, in particular because
3982 '*' must be escaped to avoid the run-length encoding processing
3983 in reading packets. */
3984
3985 static int
3986 remote_unescape_input (const gdb_byte *buffer, int len,
3987 gdb_byte *out_buf, int out_maxlen)
3988 {
3989 int input_index, output_index;
3990 int escaped;
3991
3992 output_index = 0;
3993 escaped = 0;
3994 for (input_index = 0; input_index < len; input_index++)
3995 {
3996 gdb_byte b = buffer[input_index];
3997
3998 if (output_index + 1 > out_maxlen)
3999 {
4000 warning (_("Received too much data from remote target;"
4001 " ignoring overflow."));
4002 return output_index;
4003 }
4004
4005 if (escaped)
4006 {
4007 out_buf[output_index++] = b ^ 0x20;
4008 escaped = 0;
4009 }
4010 else if (b == '}')
4011 escaped = 1;
4012 else
4013 out_buf[output_index++] = b;
4014 }
4015
4016 if (escaped)
4017 error (_("Unmatched escape character in target response."));
4018
4019 return output_index;
4020 }
4021
4022 /* Determine whether the remote target supports binary downloading.
4023 This is accomplished by sending a no-op memory write of zero length
4024 to the target at the specified address. It does not suffice to send
4025 the whole packet, since many stubs strip the eighth bit and
4026 subsequently compute a wrong checksum, which causes real havoc with
4027 remote_write_bytes.
4028
4029 NOTE: This can still lose if the serial line is not eight-bit
4030 clean. In cases like this, the user should clear "remote
4031 X-packet". */
4032
4033 static void
4034 check_binary_download (CORE_ADDR addr)
4035 {
4036 struct remote_state *rs = get_remote_state ();
4037
4038 switch (remote_protocol_packets[PACKET_X].support)
4039 {
4040 case PACKET_DISABLE:
4041 break;
4042 case PACKET_ENABLE:
4043 break;
4044 case PACKET_SUPPORT_UNKNOWN:
4045 {
4046 char *p;
4047
4048 p = rs->buf;
4049 *p++ = 'X';
4050 p += hexnumstr (p, (ULONGEST) addr);
4051 *p++ = ',';
4052 p += hexnumstr (p, (ULONGEST) 0);
4053 *p++ = ':';
4054 *p = '\0';
4055
4056 putpkt_binary (rs->buf, (int) (p - rs->buf));
4057 getpkt (&rs->buf, &rs->buf_size, 0);
4058
4059 if (rs->buf[0] == '\0')
4060 {
4061 if (remote_debug)
4062 fprintf_unfiltered (gdb_stdlog,
4063 "binary downloading NOT suppported by target\n");
4064 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4065 }
4066 else
4067 {
4068 if (remote_debug)
4069 fprintf_unfiltered (gdb_stdlog,
4070 "binary downloading suppported by target\n");
4071 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4072 }
4073 break;
4074 }
4075 }
4076 }
4077
4078 /* Write memory data directly to the remote machine.
4079 This does not inform the data cache; the data cache uses this.
4080 HEADER is the starting part of the packet.
4081 MEMADDR is the address in the remote memory space.
4082 MYADDR is the address of the buffer in our space.
4083 LEN is the number of bytes.
4084 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4085 should send data as binary ('X'), or hex-encoded ('M').
4086
4087 The function creates packet of the form
4088 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4089
4090 where encoding of <DATA> is termined by PACKET_FORMAT.
4091
4092 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4093 are omitted.
4094
4095 Returns the number of bytes transferred, or 0 (setting errno) for
4096 error. Only transfer a single packet. */
4097
4098 static int
4099 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4100 const gdb_byte *myaddr, int len,
4101 char packet_format, int use_length)
4102 {
4103 struct remote_state *rs = get_remote_state ();
4104 char *p;
4105 char *plen = NULL;
4106 int plenlen = 0;
4107 int todo;
4108 int nr_bytes;
4109 int payload_size;
4110 int payload_length;
4111 int header_length;
4112
4113 if (packet_format != 'X' && packet_format != 'M')
4114 internal_error (__FILE__, __LINE__,
4115 "remote_write_bytes_aux: bad packet format");
4116
4117 if (len <= 0)
4118 return 0;
4119
4120 payload_size = get_memory_write_packet_size ();
4121
4122 /* The packet buffer will be large enough for the payload;
4123 get_memory_packet_size ensures this. */
4124 rs->buf[0] = '\0';
4125
4126 /* Compute the size of the actual payload by subtracting out the
4127 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4128 */
4129 payload_size -= strlen ("$,:#NN");
4130 if (!use_length)
4131 /* The comma won't be used. */
4132 payload_size += 1;
4133 header_length = strlen (header);
4134 payload_size -= header_length;
4135 payload_size -= hexnumlen (memaddr);
4136
4137 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4138
4139 strcat (rs->buf, header);
4140 p = rs->buf + strlen (header);
4141
4142 /* Compute a best guess of the number of bytes actually transfered. */
4143 if (packet_format == 'X')
4144 {
4145 /* Best guess at number of bytes that will fit. */
4146 todo = min (len, payload_size);
4147 if (use_length)
4148 payload_size -= hexnumlen (todo);
4149 todo = min (todo, payload_size);
4150 }
4151 else
4152 {
4153 /* Num bytes that will fit. */
4154 todo = min (len, payload_size / 2);
4155 if (use_length)
4156 payload_size -= hexnumlen (todo);
4157 todo = min (todo, payload_size / 2);
4158 }
4159
4160 if (todo <= 0)
4161 internal_error (__FILE__, __LINE__,
4162 _("minumum packet size too small to write data"));
4163
4164 /* If we already need another packet, then try to align the end
4165 of this packet to a useful boundary. */
4166 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4167 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4168
4169 /* Append "<memaddr>". */
4170 memaddr = remote_address_masked (memaddr);
4171 p += hexnumstr (p, (ULONGEST) memaddr);
4172
4173 if (use_length)
4174 {
4175 /* Append ",". */
4176 *p++ = ',';
4177
4178 /* Append <len>. Retain the location/size of <len>. It may need to
4179 be adjusted once the packet body has been created. */
4180 plen = p;
4181 plenlen = hexnumstr (p, (ULONGEST) todo);
4182 p += plenlen;
4183 }
4184
4185 /* Append ":". */
4186 *p++ = ':';
4187 *p = '\0';
4188
4189 /* Append the packet body. */
4190 if (packet_format == 'X')
4191 {
4192 /* Binary mode. Send target system values byte by byte, in
4193 increasing byte addresses. Only escape certain critical
4194 characters. */
4195 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4196 payload_size);
4197
4198 /* If not all TODO bytes fit, then we'll need another packet. Make
4199 a second try to keep the end of the packet aligned. Don't do
4200 this if the packet is tiny. */
4201 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4202 {
4203 int new_nr_bytes;
4204
4205 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4206 - memaddr);
4207 if (new_nr_bytes != nr_bytes)
4208 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4209 p, &nr_bytes,
4210 payload_size);
4211 }
4212
4213 p += payload_length;
4214 if (use_length && nr_bytes < todo)
4215 {
4216 /* Escape chars have filled up the buffer prematurely,
4217 and we have actually sent fewer bytes than planned.
4218 Fix-up the length field of the packet. Use the same
4219 number of characters as before. */
4220 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4221 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4222 }
4223 }
4224 else
4225 {
4226 /* Normal mode: Send target system values byte by byte, in
4227 increasing byte addresses. Each byte is encoded as a two hex
4228 value. */
4229 nr_bytes = bin2hex (myaddr, p, todo);
4230 p += 2 * nr_bytes;
4231 }
4232
4233 putpkt_binary (rs->buf, (int) (p - rs->buf));
4234 getpkt (&rs->buf, &rs->buf_size, 0);
4235
4236 if (rs->buf[0] == 'E')
4237 {
4238 /* There is no correspondance between what the remote protocol
4239 uses for errors and errno codes. We would like a cleaner way
4240 of representing errors (big enough to include errno codes,
4241 bfd_error codes, and others). But for now just return EIO. */
4242 errno = EIO;
4243 return 0;
4244 }
4245
4246 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4247 fewer bytes than we'd planned. */
4248 return nr_bytes;
4249 }
4250
4251 /* Write memory data directly to the remote machine.
4252 This does not inform the data cache; the data cache uses this.
4253 MEMADDR is the address in the remote memory space.
4254 MYADDR is the address of the buffer in our space.
4255 LEN is the number of bytes.
4256
4257 Returns number of bytes transferred, or 0 (setting errno) for
4258 error. Only transfer a single packet. */
4259
4260 int
4261 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4262 {
4263 char *packet_format = 0;
4264
4265 /* Check whether the target supports binary download. */
4266 check_binary_download (memaddr);
4267
4268 switch (remote_protocol_packets[PACKET_X].support)
4269 {
4270 case PACKET_ENABLE:
4271 packet_format = "X";
4272 break;
4273 case PACKET_DISABLE:
4274 packet_format = "M";
4275 break;
4276 case PACKET_SUPPORT_UNKNOWN:
4277 internal_error (__FILE__, __LINE__,
4278 _("remote_write_bytes: bad internal state"));
4279 default:
4280 internal_error (__FILE__, __LINE__, _("bad switch"));
4281 }
4282
4283 return remote_write_bytes_aux (packet_format,
4284 memaddr, myaddr, len, packet_format[0], 1);
4285 }
4286
4287 /* Read memory data directly from the remote machine.
4288 This does not use the data cache; the data cache uses this.
4289 MEMADDR is the address in the remote memory space.
4290 MYADDR is the address of the buffer in our space.
4291 LEN is the number of bytes.
4292
4293 Returns number of bytes transferred, or 0 for error. */
4294
4295 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4296 remote targets) shouldn't attempt to read the entire buffer.
4297 Instead it should read a single packet worth of data and then
4298 return the byte size of that packet to the caller. The caller (its
4299 caller and its callers caller ;-) already contains code for
4300 handling partial reads. */
4301
4302 int
4303 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4304 {
4305 struct remote_state *rs = get_remote_state ();
4306 int max_buf_size; /* Max size of packet output buffer. */
4307 int origlen;
4308
4309 if (len <= 0)
4310 return 0;
4311
4312 max_buf_size = get_memory_read_packet_size ();
4313 /* The packet buffer will be large enough for the payload;
4314 get_memory_packet_size ensures this. */
4315
4316 origlen = len;
4317 while (len > 0)
4318 {
4319 char *p;
4320 int todo;
4321 int i;
4322
4323 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4324
4325 /* construct "m"<memaddr>","<len>" */
4326 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4327 memaddr = remote_address_masked (memaddr);
4328 p = rs->buf;
4329 *p++ = 'm';
4330 p += hexnumstr (p, (ULONGEST) memaddr);
4331 *p++ = ',';
4332 p += hexnumstr (p, (ULONGEST) todo);
4333 *p = '\0';
4334
4335 putpkt (rs->buf);
4336 getpkt (&rs->buf, &rs->buf_size, 0);
4337
4338 if (rs->buf[0] == 'E'
4339 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4340 && rs->buf[3] == '\0')
4341 {
4342 /* There is no correspondance between what the remote
4343 protocol uses for errors and errno codes. We would like
4344 a cleaner way of representing errors (big enough to
4345 include errno codes, bfd_error codes, and others). But
4346 for now just return EIO. */
4347 errno = EIO;
4348 return 0;
4349 }
4350
4351 /* Reply describes memory byte by byte,
4352 each byte encoded as two hex characters. */
4353
4354 p = rs->buf;
4355 if ((i = hex2bin (p, myaddr, todo)) < todo)
4356 {
4357 /* Reply is short. This means that we were able to read
4358 only part of what we wanted to. */
4359 return i + (origlen - len);
4360 }
4361 myaddr += todo;
4362 memaddr += todo;
4363 len -= todo;
4364 }
4365 return origlen;
4366 }
4367 \f
4368 /* Read or write LEN bytes from inferior memory at MEMADDR,
4369 transferring to or from debugger address BUFFER. Write to inferior
4370 if SHOULD_WRITE is nonzero. Returns length of data written or
4371 read; 0 for error. TARGET is unused. */
4372
4373 static int
4374 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4375 int should_write, struct mem_attrib *attrib,
4376 struct target_ops *target)
4377 {
4378 int res;
4379
4380 if (should_write)
4381 res = remote_write_bytes (mem_addr, buffer, mem_len);
4382 else
4383 res = remote_read_bytes (mem_addr, buffer, mem_len);
4384
4385 return res;
4386 }
4387
4388 /* Sends a packet with content determined by the printf format string
4389 FORMAT and the remaining arguments, then gets the reply. Returns
4390 whether the packet was a success, a failure, or unknown. */
4391
4392 enum packet_result
4393 remote_send_printf (const char *format, ...)
4394 {
4395 struct remote_state *rs = get_remote_state ();
4396 int max_size = get_remote_packet_size ();
4397
4398 va_list ap;
4399 va_start (ap, format);
4400
4401 rs->buf[0] = '\0';
4402 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4403 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4404
4405 if (putpkt (rs->buf) < 0)
4406 error (_("Communication problem with target."));
4407
4408 rs->buf[0] = '\0';
4409 getpkt (&rs->buf, &rs->buf_size, 0);
4410
4411 return packet_check_result (rs->buf);
4412 }
4413
4414 static void
4415 restore_remote_timeout (void *p)
4416 {
4417 int value = *(int *)p;
4418 remote_timeout = value;
4419 }
4420
4421 /* Flash writing can take quite some time. We'll set
4422 effectively infinite timeout for flash operations.
4423 In future, we'll need to decide on a better approach. */
4424 static const int remote_flash_timeout = 1000;
4425
4426 static void
4427 remote_flash_erase (struct target_ops *ops,
4428 ULONGEST address, LONGEST length)
4429 {
4430 int saved_remote_timeout = remote_timeout;
4431 enum packet_result ret;
4432
4433 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4434 &saved_remote_timeout);
4435 remote_timeout = remote_flash_timeout;
4436
4437 ret = remote_send_printf ("vFlashErase:%s,%s",
4438 paddr (address),
4439 phex (length, 4));
4440 switch (ret)
4441 {
4442 case PACKET_UNKNOWN:
4443 error (_("Remote target does not support flash erase"));
4444 case PACKET_ERROR:
4445 error (_("Error erasing flash with vFlashErase packet"));
4446 default:
4447 break;
4448 }
4449
4450 do_cleanups (back_to);
4451 }
4452
4453 static LONGEST
4454 remote_flash_write (struct target_ops *ops,
4455 ULONGEST address, LONGEST length,
4456 const gdb_byte *data)
4457 {
4458 int saved_remote_timeout = remote_timeout;
4459 int ret;
4460 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4461 &saved_remote_timeout);
4462
4463 remote_timeout = remote_flash_timeout;
4464 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4465 do_cleanups (back_to);
4466
4467 return ret;
4468 }
4469
4470 static void
4471 remote_flash_done (struct target_ops *ops)
4472 {
4473 int saved_remote_timeout = remote_timeout;
4474 int ret;
4475 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4476 &saved_remote_timeout);
4477
4478 remote_timeout = remote_flash_timeout;
4479 ret = remote_send_printf ("vFlashDone");
4480 do_cleanups (back_to);
4481
4482 switch (ret)
4483 {
4484 case PACKET_UNKNOWN:
4485 error (_("Remote target does not support vFlashDone"));
4486 case PACKET_ERROR:
4487 error (_("Error finishing flash operation"));
4488 default:
4489 break;
4490 }
4491 }
4492
4493 static void
4494 remote_files_info (struct target_ops *ignore)
4495 {
4496 puts_filtered ("Debugging a target over a serial line.\n");
4497 }
4498 \f
4499 /* Stuff for dealing with the packets which are part of this protocol.
4500 See comment at top of file for details. */
4501
4502 /* Read a single character from the remote end. */
4503
4504 static int
4505 readchar (int timeout)
4506 {
4507 int ch;
4508
4509 ch = serial_readchar (remote_desc, timeout);
4510
4511 if (ch >= 0)
4512 return ch;
4513
4514 switch ((enum serial_rc) ch)
4515 {
4516 case SERIAL_EOF:
4517 target_mourn_inferior ();
4518 error (_("Remote connection closed"));
4519 /* no return */
4520 case SERIAL_ERROR:
4521 perror_with_name (_("Remote communication error"));
4522 /* no return */
4523 case SERIAL_TIMEOUT:
4524 break;
4525 }
4526 return ch;
4527 }
4528
4529 /* Send the command in *BUF to the remote machine, and read the reply
4530 into *BUF. Report an error if we get an error reply. Resize
4531 *BUF using xrealloc if necessary to hold the result, and update
4532 *SIZEOF_BUF. */
4533
4534 static void
4535 remote_send (char **buf,
4536 long *sizeof_buf)
4537 {
4538 putpkt (*buf);
4539 getpkt (buf, sizeof_buf, 0);
4540
4541 if ((*buf)[0] == 'E')
4542 error (_("Remote failure reply: %s"), *buf);
4543 }
4544
4545 /* Display a null-terminated packet on stdout, for debugging, using C
4546 string notation. */
4547
4548 static void
4549 print_packet (char *buf)
4550 {
4551 puts_filtered ("\"");
4552 fputstr_filtered (buf, '"', gdb_stdout);
4553 puts_filtered ("\"");
4554 }
4555
4556 int
4557 putpkt (char *buf)
4558 {
4559 return putpkt_binary (buf, strlen (buf));
4560 }
4561
4562 /* Send a packet to the remote machine, with error checking. The data
4563 of the packet is in BUF. The string in BUF can be at most
4564 get_remote_packet_size () - 5 to account for the $, # and checksum,
4565 and for a possible /0 if we are debugging (remote_debug) and want
4566 to print the sent packet as a string. */
4567
4568 static int
4569 putpkt_binary (char *buf, int cnt)
4570 {
4571 int i;
4572 unsigned char csum = 0;
4573 char *buf2 = alloca (cnt + 6);
4574
4575 int ch;
4576 int tcount = 0;
4577 char *p;
4578
4579 /* Copy the packet into buffer BUF2, encapsulating it
4580 and giving it a checksum. */
4581
4582 p = buf2;
4583 *p++ = '$';
4584
4585 for (i = 0; i < cnt; i++)
4586 {
4587 csum += buf[i];
4588 *p++ = buf[i];
4589 }
4590 *p++ = '#';
4591 *p++ = tohex ((csum >> 4) & 0xf);
4592 *p++ = tohex (csum & 0xf);
4593
4594 /* Send it over and over until we get a positive ack. */
4595
4596 while (1)
4597 {
4598 int started_error_output = 0;
4599
4600 if (remote_debug)
4601 {
4602 *p = '\0';
4603 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4604 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4605 fprintf_unfiltered (gdb_stdlog, "...");
4606 gdb_flush (gdb_stdlog);
4607 }
4608 if (serial_write (remote_desc, buf2, p - buf2))
4609 perror_with_name (_("putpkt: write failed"));
4610
4611 /* Read until either a timeout occurs (-2) or '+' is read. */
4612 while (1)
4613 {
4614 ch = readchar (remote_timeout);
4615
4616 if (remote_debug)
4617 {
4618 switch (ch)
4619 {
4620 case '+':
4621 case '-':
4622 case SERIAL_TIMEOUT:
4623 case '$':
4624 if (started_error_output)
4625 {
4626 putchar_unfiltered ('\n');
4627 started_error_output = 0;
4628 }
4629 }
4630 }
4631
4632 switch (ch)
4633 {
4634 case '+':
4635 if (remote_debug)
4636 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4637 return 1;
4638 case '-':
4639 if (remote_debug)
4640 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4641 case SERIAL_TIMEOUT:
4642 tcount++;
4643 if (tcount > 3)
4644 return 0;
4645 break; /* Retransmit buffer. */
4646 case '$':
4647 {
4648 if (remote_debug)
4649 fprintf_unfiltered (gdb_stdlog,
4650 "Packet instead of Ack, ignoring it\n");
4651 /* It's probably an old response sent because an ACK
4652 was lost. Gobble up the packet and ack it so it
4653 doesn't get retransmitted when we resend this
4654 packet. */
4655 skip_frame ();
4656 serial_write (remote_desc, "+", 1);
4657 continue; /* Now, go look for +. */
4658 }
4659 default:
4660 if (remote_debug)
4661 {
4662 if (!started_error_output)
4663 {
4664 started_error_output = 1;
4665 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4666 }
4667 fputc_unfiltered (ch & 0177, gdb_stdlog);
4668 }
4669 continue;
4670 }
4671 break; /* Here to retransmit. */
4672 }
4673
4674 #if 0
4675 /* This is wrong. If doing a long backtrace, the user should be
4676 able to get out next time we call QUIT, without anything as
4677 violent as interrupt_query. If we want to provide a way out of
4678 here without getting to the next QUIT, it should be based on
4679 hitting ^C twice as in remote_wait. */
4680 if (quit_flag)
4681 {
4682 quit_flag = 0;
4683 interrupt_query ();
4684 }
4685 #endif
4686 }
4687 }
4688
4689 /* Come here after finding the start of a frame when we expected an
4690 ack. Do our best to discard the rest of this packet. */
4691
4692 static void
4693 skip_frame (void)
4694 {
4695 int c;
4696
4697 while (1)
4698 {
4699 c = readchar (remote_timeout);
4700 switch (c)
4701 {
4702 case SERIAL_TIMEOUT:
4703 /* Nothing we can do. */
4704 return;
4705 case '#':
4706 /* Discard the two bytes of checksum and stop. */
4707 c = readchar (remote_timeout);
4708 if (c >= 0)
4709 c = readchar (remote_timeout);
4710
4711 return;
4712 case '*': /* Run length encoding. */
4713 /* Discard the repeat count. */
4714 c = readchar (remote_timeout);
4715 if (c < 0)
4716 return;
4717 break;
4718 default:
4719 /* A regular character. */
4720 break;
4721 }
4722 }
4723 }
4724
4725 /* Come here after finding the start of the frame. Collect the rest
4726 into *BUF, verifying the checksum, length, and handling run-length
4727 compression. NUL terminate the buffer. If there is not enough room,
4728 expand *BUF using xrealloc.
4729
4730 Returns -1 on error, number of characters in buffer (ignoring the
4731 trailing NULL) on success. (could be extended to return one of the
4732 SERIAL status indications). */
4733
4734 static long
4735 read_frame (char **buf_p,
4736 long *sizeof_buf)
4737 {
4738 unsigned char csum;
4739 long bc;
4740 int c;
4741 char *buf = *buf_p;
4742
4743 csum = 0;
4744 bc = 0;
4745
4746 while (1)
4747 {
4748 c = readchar (remote_timeout);
4749 switch (c)
4750 {
4751 case SERIAL_TIMEOUT:
4752 if (remote_debug)
4753 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4754 return -1;
4755 case '$':
4756 if (remote_debug)
4757 fputs_filtered ("Saw new packet start in middle of old one\n",
4758 gdb_stdlog);
4759 return -1; /* Start a new packet, count retries. */
4760 case '#':
4761 {
4762 unsigned char pktcsum;
4763 int check_0 = 0;
4764 int check_1 = 0;
4765
4766 buf[bc] = '\0';
4767
4768 check_0 = readchar (remote_timeout);
4769 if (check_0 >= 0)
4770 check_1 = readchar (remote_timeout);
4771
4772 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4773 {
4774 if (remote_debug)
4775 fputs_filtered ("Timeout in checksum, retrying\n",
4776 gdb_stdlog);
4777 return -1;
4778 }
4779 else if (check_0 < 0 || check_1 < 0)
4780 {
4781 if (remote_debug)
4782 fputs_filtered ("Communication error in checksum\n",
4783 gdb_stdlog);
4784 return -1;
4785 }
4786
4787 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4788 if (csum == pktcsum)
4789 return bc;
4790
4791 if (remote_debug)
4792 {
4793 fprintf_filtered (gdb_stdlog,
4794 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4795 pktcsum, csum);
4796 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4797 fputs_filtered ("\n", gdb_stdlog);
4798 }
4799 /* Number of characters in buffer ignoring trailing
4800 NULL. */
4801 return -1;
4802 }
4803 case '*': /* Run length encoding. */
4804 {
4805 int repeat;
4806 csum += c;
4807
4808 c = readchar (remote_timeout);
4809 csum += c;
4810 repeat = c - ' ' + 3; /* Compute repeat count. */
4811
4812 /* The character before ``*'' is repeated. */
4813
4814 if (repeat > 0 && repeat <= 255 && bc > 0)
4815 {
4816 if (bc + repeat - 1 >= *sizeof_buf - 1)
4817 {
4818 /* Make some more room in the buffer. */
4819 *sizeof_buf += repeat;
4820 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4821 buf = *buf_p;
4822 }
4823
4824 memset (&buf[bc], buf[bc - 1], repeat);
4825 bc += repeat;
4826 continue;
4827 }
4828
4829 buf[bc] = '\0';
4830 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4831 return -1;
4832 }
4833 default:
4834 if (bc >= *sizeof_buf - 1)
4835 {
4836 /* Make some more room in the buffer. */
4837 *sizeof_buf *= 2;
4838 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4839 buf = *buf_p;
4840 }
4841
4842 buf[bc++] = c;
4843 csum += c;
4844 continue;
4845 }
4846 }
4847 }
4848
4849 /* Read a packet from the remote machine, with error checking, and
4850 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4851 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4852 rather than timing out; this is used (in synchronous mode) to wait
4853 for a target that is is executing user code to stop. */
4854 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4855 don't have to change all the calls to getpkt to deal with the
4856 return value, because at the moment I don't know what the right
4857 thing to do it for those. */
4858 void
4859 getpkt (char **buf,
4860 long *sizeof_buf,
4861 int forever)
4862 {
4863 int timed_out;
4864
4865 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4866 }
4867
4868
4869 /* Read a packet from the remote machine, with error checking, and
4870 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4871 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4872 rather than timing out; this is used (in synchronous mode) to wait
4873 for a target that is is executing user code to stop. If FOREVER ==
4874 0, this function is allowed to time out gracefully and return an
4875 indication of this to the caller. Otherwise return the number
4876 of bytes read. */
4877 static int
4878 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4879 {
4880 int c;
4881 int tries;
4882 int timeout;
4883 int val;
4884
4885 strcpy (*buf, "timeout");
4886
4887 if (forever)
4888 {
4889 timeout = watchdog > 0 ? watchdog : -1;
4890 }
4891
4892 else
4893 timeout = remote_timeout;
4894
4895 #define MAX_TRIES 3
4896
4897 for (tries = 1; tries <= MAX_TRIES; tries++)
4898 {
4899 /* This can loop forever if the remote side sends us characters
4900 continuously, but if it pauses, we'll get a zero from
4901 readchar because of timeout. Then we'll count that as a
4902 retry. */
4903
4904 /* Note that we will only wait forever prior to the start of a
4905 packet. After that, we expect characters to arrive at a
4906 brisk pace. They should show up within remote_timeout
4907 intervals. */
4908
4909 do
4910 {
4911 c = readchar (timeout);
4912
4913 if (c == SERIAL_TIMEOUT)
4914 {
4915 if (forever) /* Watchdog went off? Kill the target. */
4916 {
4917 QUIT;
4918 target_mourn_inferior ();
4919 error (_("Watchdog has expired. Target detached."));
4920 }
4921 if (remote_debug)
4922 fputs_filtered ("Timed out.\n", gdb_stdlog);
4923 goto retry;
4924 }
4925 }
4926 while (c != '$');
4927
4928 /* We've found the start of a packet, now collect the data. */
4929
4930 val = read_frame (buf, sizeof_buf);
4931
4932 if (val >= 0)
4933 {
4934 if (remote_debug)
4935 {
4936 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4937 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4938 fprintf_unfiltered (gdb_stdlog, "\n");
4939 }
4940 serial_write (remote_desc, "+", 1);
4941 return val;
4942 }
4943
4944 /* Try the whole thing again. */
4945 retry:
4946 serial_write (remote_desc, "-", 1);
4947 }
4948
4949 /* We have tried hard enough, and just can't receive the packet.
4950 Give up. */
4951
4952 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4953 serial_write (remote_desc, "+", 1);
4954 return -1;
4955 }
4956 \f
4957 static void
4958 remote_kill (void)
4959 {
4960 /* For some mysterious reason, wait_for_inferior calls kill instead of
4961 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4962 if (kill_kludge)
4963 {
4964 kill_kludge = 0;
4965 target_mourn_inferior ();
4966 return;
4967 }
4968
4969 /* Use catch_errors so the user can quit from gdb even when we aren't on
4970 speaking terms with the remote system. */
4971 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4972
4973 /* Don't wait for it to die. I'm not really sure it matters whether
4974 we do or not. For the existing stubs, kill is a noop. */
4975 target_mourn_inferior ();
4976 }
4977
4978 /* Async version of remote_kill. */
4979 static void
4980 remote_async_kill (void)
4981 {
4982 /* Unregister the file descriptor from the event loop. */
4983 if (target_is_async_p ())
4984 serial_async (remote_desc, NULL, 0);
4985
4986 /* For some mysterious reason, wait_for_inferior calls kill instead of
4987 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4988 if (kill_kludge)
4989 {
4990 kill_kludge = 0;
4991 target_mourn_inferior ();
4992 return;
4993 }
4994
4995 /* Use catch_errors so the user can quit from gdb even when we
4996 aren't on speaking terms with the remote system. */
4997 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4998
4999 /* Don't wait for it to die. I'm not really sure it matters whether
5000 we do or not. For the existing stubs, kill is a noop. */
5001 target_mourn_inferior ();
5002 }
5003
5004 static void
5005 remote_mourn (void)
5006 {
5007 remote_mourn_1 (&remote_ops);
5008 }
5009
5010 static void
5011 remote_async_mourn (void)
5012 {
5013 remote_mourn_1 (&remote_async_ops);
5014 }
5015
5016 static void
5017 extended_remote_mourn (void)
5018 {
5019 /* We do _not_ want to mourn the target like this; this will
5020 remove the extended remote target from the target stack,
5021 and the next time the user says "run" it'll fail.
5022
5023 FIXME: What is the right thing to do here? */
5024 #if 0
5025 remote_mourn_1 (&extended_remote_ops);
5026 #endif
5027 }
5028
5029 /* Worker function for remote_mourn. */
5030 static void
5031 remote_mourn_1 (struct target_ops *target)
5032 {
5033 unpush_target (target);
5034 generic_mourn_inferior ();
5035 }
5036
5037 /* In the extended protocol we want to be able to do things like
5038 "run" and have them basically work as expected. So we need
5039 a special create_inferior function.
5040
5041 FIXME: One day add support for changing the exec file
5042 we're debugging, arguments and an environment. */
5043
5044 static void
5045 extended_remote_create_inferior (char *exec_file, char *args,
5046 char **env, int from_tty)
5047 {
5048 /* Rip out the breakpoints; we'll reinsert them after restarting
5049 the remote server. */
5050 remove_breakpoints ();
5051
5052 /* Now restart the remote server. */
5053 extended_remote_restart ();
5054
5055 /* NOTE: We don't need to recheck for a target description here; but
5056 if we gain the ability to switch the remote executable we may
5057 need to, if for instance we are running a process which requested
5058 different emulated hardware from the operating system. A
5059 concrete example of this is ARM GNU/Linux, where some binaries
5060 will have a legacy FPA coprocessor emulated and others may have
5061 access to a hardware VFP unit. */
5062
5063 /* Now put the breakpoints back in. This way we're safe if the
5064 restart function works via a unix fork on the remote side. */
5065 insert_breakpoints ();
5066
5067 /* Clean up from the last time we were running. */
5068 clear_proceed_status ();
5069 }
5070
5071 /* Async version of extended_remote_create_inferior. */
5072 static void
5073 extended_remote_async_create_inferior (char *exec_file, char *args,
5074 char **env, int from_tty)
5075 {
5076 /* Rip out the breakpoints; we'll reinsert them after restarting
5077 the remote server. */
5078 remove_breakpoints ();
5079
5080 /* If running asynchronously, register the target file descriptor
5081 with the event loop. */
5082 if (target_can_async_p ())
5083 target_async (inferior_event_handler, 0);
5084
5085 /* Now restart the remote server. */
5086 extended_remote_restart ();
5087
5088 /* NOTE: We don't need to recheck for a target description here; but
5089 if we gain the ability to switch the remote executable we may
5090 need to, if for instance we are running a process which requested
5091 different emulated hardware from the operating system. A
5092 concrete example of this is ARM GNU/Linux, where some binaries
5093 will have a legacy FPA coprocessor emulated and others may have
5094 access to a hardware VFP unit. */
5095
5096 /* Now put the breakpoints back in. This way we're safe if the
5097 restart function works via a unix fork on the remote side. */
5098 insert_breakpoints ();
5099
5100 /* Clean up from the last time we were running. */
5101 clear_proceed_status ();
5102 }
5103 \f
5104
5105 /* Insert a breakpoint. On targets that have software breakpoint
5106 support, we ask the remote target to do the work; on targets
5107 which don't, we insert a traditional memory breakpoint. */
5108
5109 static int
5110 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5111 {
5112 CORE_ADDR addr = bp_tgt->placed_address;
5113 struct remote_state *rs = get_remote_state ();
5114
5115 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5116 If it succeeds, then set the support to PACKET_ENABLE. If it
5117 fails, and the user has explicitly requested the Z support then
5118 report an error, otherwise, mark it disabled and go on. */
5119
5120 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5121 {
5122 char *p = rs->buf;
5123
5124 *(p++) = 'Z';
5125 *(p++) = '0';
5126 *(p++) = ',';
5127 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5128 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5129 p += hexnumstr (p, addr);
5130 sprintf (p, ",%d", bp_tgt->placed_size);
5131
5132 putpkt (rs->buf);
5133 getpkt (&rs->buf, &rs->buf_size, 0);
5134
5135 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5136 {
5137 case PACKET_ERROR:
5138 return -1;
5139 case PACKET_OK:
5140 return 0;
5141 case PACKET_UNKNOWN:
5142 break;
5143 }
5144 }
5145
5146 return memory_insert_breakpoint (bp_tgt);
5147 }
5148
5149 static int
5150 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5151 {
5152 CORE_ADDR addr = bp_tgt->placed_address;
5153 struct remote_state *rs = get_remote_state ();
5154 int bp_size;
5155
5156 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5157 {
5158 char *p = rs->buf;
5159
5160 *(p++) = 'z';
5161 *(p++) = '0';
5162 *(p++) = ',';
5163
5164 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5165 p += hexnumstr (p, addr);
5166 sprintf (p, ",%d", bp_tgt->placed_size);
5167
5168 putpkt (rs->buf);
5169 getpkt (&rs->buf, &rs->buf_size, 0);
5170
5171 return (rs->buf[0] == 'E');
5172 }
5173
5174 return memory_remove_breakpoint (bp_tgt);
5175 }
5176
5177 static int
5178 watchpoint_to_Z_packet (int type)
5179 {
5180 switch (type)
5181 {
5182 case hw_write:
5183 return Z_PACKET_WRITE_WP;
5184 break;
5185 case hw_read:
5186 return Z_PACKET_READ_WP;
5187 break;
5188 case hw_access:
5189 return Z_PACKET_ACCESS_WP;
5190 break;
5191 default:
5192 internal_error (__FILE__, __LINE__,
5193 _("hw_bp_to_z: bad watchpoint type %d"), type);
5194 }
5195 }
5196
5197 static int
5198 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5199 {
5200 struct remote_state *rs = get_remote_state ();
5201 char *p;
5202 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5203
5204 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5205 return -1;
5206
5207 sprintf (rs->buf, "Z%x,", packet);
5208 p = strchr (rs->buf, '\0');
5209 addr = remote_address_masked (addr);
5210 p += hexnumstr (p, (ULONGEST) addr);
5211 sprintf (p, ",%x", len);
5212
5213 putpkt (rs->buf);
5214 getpkt (&rs->buf, &rs->buf_size, 0);
5215
5216 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5217 {
5218 case PACKET_ERROR:
5219 case PACKET_UNKNOWN:
5220 return -1;
5221 case PACKET_OK:
5222 return 0;
5223 }
5224 internal_error (__FILE__, __LINE__,
5225 _("remote_insert_watchpoint: reached end of function"));
5226 }
5227
5228
5229 static int
5230 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5231 {
5232 struct remote_state *rs = get_remote_state ();
5233 char *p;
5234 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5235
5236 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5237 return -1;
5238
5239 sprintf (rs->buf, "z%x,", packet);
5240 p = strchr (rs->buf, '\0');
5241 addr = remote_address_masked (addr);
5242 p += hexnumstr (p, (ULONGEST) addr);
5243 sprintf (p, ",%x", len);
5244 putpkt (rs->buf);
5245 getpkt (&rs->buf, &rs->buf_size, 0);
5246
5247 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5248 {
5249 case PACKET_ERROR:
5250 case PACKET_UNKNOWN:
5251 return -1;
5252 case PACKET_OK:
5253 return 0;
5254 }
5255 internal_error (__FILE__, __LINE__,
5256 _("remote_remove_watchpoint: reached end of function"));
5257 }
5258
5259
5260 int remote_hw_watchpoint_limit = -1;
5261 int remote_hw_breakpoint_limit = -1;
5262
5263 static int
5264 remote_check_watch_resources (int type, int cnt, int ot)
5265 {
5266 if (type == bp_hardware_breakpoint)
5267 {
5268 if (remote_hw_breakpoint_limit == 0)
5269 return 0;
5270 else if (remote_hw_breakpoint_limit < 0)
5271 return 1;
5272 else if (cnt <= remote_hw_breakpoint_limit)
5273 return 1;
5274 }
5275 else
5276 {
5277 if (remote_hw_watchpoint_limit == 0)
5278 return 0;
5279 else if (remote_hw_watchpoint_limit < 0)
5280 return 1;
5281 else if (ot)
5282 return -1;
5283 else if (cnt <= remote_hw_watchpoint_limit)
5284 return 1;
5285 }
5286 return -1;
5287 }
5288
5289 static int
5290 remote_stopped_by_watchpoint (void)
5291 {
5292 return remote_stopped_by_watchpoint_p;
5293 }
5294
5295 extern int stepped_after_stopped_by_watchpoint;
5296
5297 static int
5298 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5299 {
5300 int rc = 0;
5301 if (remote_stopped_by_watchpoint ()
5302 || stepped_after_stopped_by_watchpoint)
5303 {
5304 *addr_p = remote_watch_data_address;
5305 rc = 1;
5306 }
5307
5308 return rc;
5309 }
5310
5311
5312 static int
5313 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5314 {
5315 CORE_ADDR addr;
5316 struct remote_state *rs = get_remote_state ();
5317 char *p = rs->buf;
5318
5319 /* The length field should be set to the size of a breakpoint
5320 instruction, even though we aren't inserting one ourselves. */
5321
5322 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5323
5324 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5325 return -1;
5326
5327 *(p++) = 'Z';
5328 *(p++) = '1';
5329 *(p++) = ',';
5330
5331 addr = remote_address_masked (bp_tgt->placed_address);
5332 p += hexnumstr (p, (ULONGEST) addr);
5333 sprintf (p, ",%x", bp_tgt->placed_size);
5334
5335 putpkt (rs->buf);
5336 getpkt (&rs->buf, &rs->buf_size, 0);
5337
5338 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5339 {
5340 case PACKET_ERROR:
5341 case PACKET_UNKNOWN:
5342 return -1;
5343 case PACKET_OK:
5344 return 0;
5345 }
5346 internal_error (__FILE__, __LINE__,
5347 _("remote_insert_hw_breakpoint: reached end of function"));
5348 }
5349
5350
5351 static int
5352 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5353 {
5354 CORE_ADDR addr;
5355 struct remote_state *rs = get_remote_state ();
5356 char *p = rs->buf;
5357
5358 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5359 return -1;
5360
5361 *(p++) = 'z';
5362 *(p++) = '1';
5363 *(p++) = ',';
5364
5365 addr = remote_address_masked (bp_tgt->placed_address);
5366 p += hexnumstr (p, (ULONGEST) addr);
5367 sprintf (p, ",%x", bp_tgt->placed_size);
5368
5369 putpkt (rs->buf);
5370 getpkt (&rs->buf, &rs->buf_size, 0);
5371
5372 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5373 {
5374 case PACKET_ERROR:
5375 case PACKET_UNKNOWN:
5376 return -1;
5377 case PACKET_OK:
5378 return 0;
5379 }
5380 internal_error (__FILE__, __LINE__,
5381 _("remote_remove_hw_breakpoint: reached end of function"));
5382 }
5383
5384 /* Some targets are only capable of doing downloads, and afterwards
5385 they switch to the remote serial protocol. This function provides
5386 a clean way to get from the download target to the remote target.
5387 It's basically just a wrapper so that we don't have to expose any
5388 of the internal workings of remote.c.
5389
5390 Prior to calling this routine, you should shutdown the current
5391 target code, else you will get the "A program is being debugged
5392 already..." message. Usually a call to pop_target() suffices. */
5393
5394 void
5395 push_remote_target (char *name, int from_tty)
5396 {
5397 printf_filtered (_("Switching to remote protocol\n"));
5398 remote_open (name, from_tty);
5399 }
5400
5401 /* Table used by the crc32 function to calcuate the checksum. */
5402
5403 static unsigned long crc32_table[256] =
5404 {0, 0};
5405
5406 static unsigned long
5407 crc32 (unsigned char *buf, int len, unsigned int crc)
5408 {
5409 if (!crc32_table[1])
5410 {
5411 /* Initialize the CRC table and the decoding table. */
5412 int i, j;
5413 unsigned int c;
5414
5415 for (i = 0; i < 256; i++)
5416 {
5417 for (c = i << 24, j = 8; j > 0; --j)
5418 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5419 crc32_table[i] = c;
5420 }
5421 }
5422
5423 while (len--)
5424 {
5425 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5426 buf++;
5427 }
5428 return crc;
5429 }
5430
5431 /* compare-sections command
5432
5433 With no arguments, compares each loadable section in the exec bfd
5434 with the same memory range on the target, and reports mismatches.
5435 Useful for verifying the image on the target against the exec file.
5436 Depends on the target understanding the new "qCRC:" request. */
5437
5438 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5439 target method (target verify memory) and generic version of the
5440 actual command. This will allow other high-level code (especially
5441 generic_load()) to make use of this target functionality. */
5442
5443 static void
5444 compare_sections_command (char *args, int from_tty)
5445 {
5446 struct remote_state *rs = get_remote_state ();
5447 asection *s;
5448 unsigned long host_crc, target_crc;
5449 extern bfd *exec_bfd;
5450 struct cleanup *old_chain;
5451 char *tmp;
5452 char *sectdata;
5453 const char *sectname;
5454 bfd_size_type size;
5455 bfd_vma lma;
5456 int matched = 0;
5457 int mismatched = 0;
5458
5459 if (!exec_bfd)
5460 error (_("command cannot be used without an exec file"));
5461 if (!current_target.to_shortname ||
5462 strcmp (current_target.to_shortname, "remote") != 0)
5463 error (_("command can only be used with remote target"));
5464
5465 for (s = exec_bfd->sections; s; s = s->next)
5466 {
5467 if (!(s->flags & SEC_LOAD))
5468 continue; /* skip non-loadable section */
5469
5470 size = bfd_get_section_size (s);
5471 if (size == 0)
5472 continue; /* skip zero-length section */
5473
5474 sectname = bfd_get_section_name (exec_bfd, s);
5475 if (args && strcmp (args, sectname) != 0)
5476 continue; /* not the section selected by user */
5477
5478 matched = 1; /* do this section */
5479 lma = s->lma;
5480 /* FIXME: assumes lma can fit into long. */
5481 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5482 (long) lma, (long) size);
5483 putpkt (rs->buf);
5484
5485 /* Be clever; compute the host_crc before waiting for target
5486 reply. */
5487 sectdata = xmalloc (size);
5488 old_chain = make_cleanup (xfree, sectdata);
5489 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5490 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5491
5492 getpkt (&rs->buf, &rs->buf_size, 0);
5493 if (rs->buf[0] == 'E')
5494 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5495 sectname, paddr (lma), paddr (lma + size));
5496 if (rs->buf[0] != 'C')
5497 error (_("remote target does not support this operation"));
5498
5499 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5500 target_crc = target_crc * 16 + fromhex (*tmp);
5501
5502 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5503 sectname, paddr (lma), paddr (lma + size));
5504 if (host_crc == target_crc)
5505 printf_filtered ("matched.\n");
5506 else
5507 {
5508 printf_filtered ("MIS-MATCHED!\n");
5509 mismatched++;
5510 }
5511
5512 do_cleanups (old_chain);
5513 }
5514 if (mismatched > 0)
5515 warning (_("One or more sections of the remote executable does not match\n\
5516 the loaded file\n"));
5517 if (args && !matched)
5518 printf_filtered (_("No loaded section named '%s'.\n"), args);
5519 }
5520
5521 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5522 into remote target. The number of bytes written to the remote
5523 target is returned, or -1 for error. */
5524
5525 static LONGEST
5526 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5527 const char *annex, const gdb_byte *writebuf,
5528 ULONGEST offset, LONGEST len,
5529 struct packet_config *packet)
5530 {
5531 int i, buf_len;
5532 ULONGEST n;
5533 gdb_byte *wbuf;
5534 struct remote_state *rs = get_remote_state ();
5535 int max_size = get_memory_write_packet_size ();
5536
5537 if (packet->support == PACKET_DISABLE)
5538 return -1;
5539
5540 /* Insert header. */
5541 i = snprintf (rs->buf, max_size,
5542 "qXfer:%s:write:%s:%s:",
5543 object_name, annex ? annex : "",
5544 phex_nz (offset, sizeof offset));
5545 max_size -= (i + 1);
5546
5547 /* Escape as much data as fits into rs->buf. */
5548 buf_len = remote_escape_output
5549 (writebuf, len, (rs->buf + i), &max_size, max_size);
5550
5551 if (putpkt_binary (rs->buf, i + buf_len) < 0
5552 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5553 || packet_ok (rs->buf, packet) != PACKET_OK)
5554 return -1;
5555
5556 unpack_varlen_hex (rs->buf, &n);
5557 return n;
5558 }
5559
5560 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5561 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5562 number of bytes read is returned, or 0 for EOF, or -1 for error.
5563 The number of bytes read may be less than LEN without indicating an
5564 EOF. PACKET is checked and updated to indicate whether the remote
5565 target supports this object. */
5566
5567 static LONGEST
5568 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5569 const char *annex,
5570 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5571 struct packet_config *packet)
5572 {
5573 static char *finished_object;
5574 static char *finished_annex;
5575 static ULONGEST finished_offset;
5576
5577 struct remote_state *rs = get_remote_state ();
5578 unsigned int total = 0;
5579 LONGEST i, n, packet_len;
5580
5581 if (packet->support == PACKET_DISABLE)
5582 return -1;
5583
5584 /* Check whether we've cached an end-of-object packet that matches
5585 this request. */
5586 if (finished_object)
5587 {
5588 if (strcmp (object_name, finished_object) == 0
5589 && strcmp (annex ? annex : "", finished_annex) == 0
5590 && offset == finished_offset)
5591 return 0;
5592
5593 /* Otherwise, we're now reading something different. Discard
5594 the cache. */
5595 xfree (finished_object);
5596 xfree (finished_annex);
5597 finished_object = NULL;
5598 finished_annex = NULL;
5599 }
5600
5601 /* Request only enough to fit in a single packet. The actual data
5602 may not, since we don't know how much of it will need to be escaped;
5603 the target is free to respond with slightly less data. We subtract
5604 five to account for the response type and the protocol frame. */
5605 n = min (get_remote_packet_size () - 5, len);
5606 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5607 object_name, annex ? annex : "",
5608 phex_nz (offset, sizeof offset),
5609 phex_nz (n, sizeof n));
5610 i = putpkt (rs->buf);
5611 if (i < 0)
5612 return -1;
5613
5614 rs->buf[0] = '\0';
5615 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5616 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5617 return -1;
5618
5619 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5620 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5621
5622 /* 'm' means there is (or at least might be) more data after this
5623 batch. That does not make sense unless there's at least one byte
5624 of data in this reply. */
5625 if (rs->buf[0] == 'm' && packet_len == 1)
5626 error (_("Remote qXfer reply contained no data."));
5627
5628 /* Got some data. */
5629 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5630
5631 /* 'l' is an EOF marker, possibly including a final block of data,
5632 or possibly empty. If we have the final block of a non-empty
5633 object, record this fact to bypass a subsequent partial read. */
5634 if (rs->buf[0] == 'l' && offset + i > 0)
5635 {
5636 finished_object = xstrdup (object_name);
5637 finished_annex = xstrdup (annex ? annex : "");
5638 finished_offset = offset + i;
5639 }
5640
5641 return i;
5642 }
5643
5644 static LONGEST
5645 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5646 const char *annex, gdb_byte *readbuf,
5647 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5648 {
5649 struct remote_state *rs = get_remote_state ();
5650 int i;
5651 char *p2;
5652 char query_type;
5653
5654 /* Handle memory using the standard memory routines. */
5655 if (object == TARGET_OBJECT_MEMORY)
5656 {
5657 int xfered;
5658 errno = 0;
5659
5660 if (writebuf != NULL)
5661 xfered = remote_write_bytes (offset, writebuf, len);
5662 else
5663 xfered = remote_read_bytes (offset, readbuf, len);
5664
5665 if (xfered > 0)
5666 return xfered;
5667 else if (xfered == 0 && errno == 0)
5668 return 0;
5669 else
5670 return -1;
5671 }
5672
5673 /* Handle SPU memory using qxfer packets. */
5674 if (object == TARGET_OBJECT_SPU)
5675 {
5676 if (readbuf)
5677 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5678 &remote_protocol_packets
5679 [PACKET_qXfer_spu_read]);
5680 else
5681 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5682 &remote_protocol_packets
5683 [PACKET_qXfer_spu_write]);
5684 }
5685
5686 /* Only handle flash writes. */
5687 if (writebuf != NULL)
5688 {
5689 LONGEST xfered;
5690
5691 switch (object)
5692 {
5693 case TARGET_OBJECT_FLASH:
5694 xfered = remote_flash_write (ops, offset, len, writebuf);
5695
5696 if (xfered > 0)
5697 return xfered;
5698 else if (xfered == 0 && errno == 0)
5699 return 0;
5700 else
5701 return -1;
5702
5703 default:
5704 return -1;
5705 }
5706 }
5707
5708 /* Map pre-existing objects onto letters. DO NOT do this for new
5709 objects!!! Instead specify new query packets. */
5710 switch (object)
5711 {
5712 case TARGET_OBJECT_AVR:
5713 query_type = 'R';
5714 break;
5715
5716 case TARGET_OBJECT_AUXV:
5717 gdb_assert (annex == NULL);
5718 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5719 &remote_protocol_packets[PACKET_qXfer_auxv]);
5720
5721 case TARGET_OBJECT_AVAILABLE_FEATURES:
5722 return remote_read_qxfer
5723 (ops, "features", annex, readbuf, offset, len,
5724 &remote_protocol_packets[PACKET_qXfer_features]);
5725
5726 case TARGET_OBJECT_MEMORY_MAP:
5727 gdb_assert (annex == NULL);
5728 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5729 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5730
5731 default:
5732 return -1;
5733 }
5734
5735 /* Note: a zero OFFSET and LEN can be used to query the minimum
5736 buffer size. */
5737 if (offset == 0 && len == 0)
5738 return (get_remote_packet_size ());
5739 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5740 large enough let the caller deal with it. */
5741 if (len < get_remote_packet_size ())
5742 return -1;
5743 len = get_remote_packet_size ();
5744
5745 /* Except for querying the minimum buffer size, target must be open. */
5746 if (!remote_desc)
5747 error (_("remote query is only available after target open"));
5748
5749 gdb_assert (annex != NULL);
5750 gdb_assert (readbuf != NULL);
5751
5752 p2 = rs->buf;
5753 *p2++ = 'q';
5754 *p2++ = query_type;
5755
5756 /* We used one buffer char for the remote protocol q command and
5757 another for the query type. As the remote protocol encapsulation
5758 uses 4 chars plus one extra in case we are debugging
5759 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5760 string. */
5761 i = 0;
5762 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5763 {
5764 /* Bad caller may have sent forbidden characters. */
5765 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5766 *p2++ = annex[i];
5767 i++;
5768 }
5769 *p2 = '\0';
5770 gdb_assert (annex[i] == '\0');
5771
5772 i = putpkt (rs->buf);
5773 if (i < 0)
5774 return i;
5775
5776 getpkt (&rs->buf, &rs->buf_size, 0);
5777 strcpy ((char *) readbuf, rs->buf);
5778
5779 return strlen ((char *) readbuf);
5780 }
5781
5782 static void
5783 remote_rcmd (char *command,
5784 struct ui_file *outbuf)
5785 {
5786 struct remote_state *rs = get_remote_state ();
5787 char *p = rs->buf;
5788
5789 if (!remote_desc)
5790 error (_("remote rcmd is only available after target open"));
5791
5792 /* Send a NULL command across as an empty command. */
5793 if (command == NULL)
5794 command = "";
5795
5796 /* The query prefix. */
5797 strcpy (rs->buf, "qRcmd,");
5798 p = strchr (rs->buf, '\0');
5799
5800 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5801 error (_("\"monitor\" command ``%s'' is too long."), command);
5802
5803 /* Encode the actual command. */
5804 bin2hex ((gdb_byte *) command, p, 0);
5805
5806 if (putpkt (rs->buf) < 0)
5807 error (_("Communication problem with target."));
5808
5809 /* get/display the response */
5810 while (1)
5811 {
5812 char *buf;
5813
5814 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5815 rs->buf[0] = '\0';
5816 getpkt (&rs->buf, &rs->buf_size, 0);
5817 buf = rs->buf;
5818 if (buf[0] == '\0')
5819 error (_("Target does not support this command."));
5820 if (buf[0] == 'O' && buf[1] != 'K')
5821 {
5822 remote_console_output (buf + 1); /* 'O' message from stub. */
5823 continue;
5824 }
5825 if (strcmp (buf, "OK") == 0)
5826 break;
5827 if (strlen (buf) == 3 && buf[0] == 'E'
5828 && isdigit (buf[1]) && isdigit (buf[2]))
5829 {
5830 error (_("Protocol error with Rcmd"));
5831 }
5832 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5833 {
5834 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5835 fputc_unfiltered (c, outbuf);
5836 }
5837 break;
5838 }
5839 }
5840
5841 static VEC(mem_region_s) *
5842 remote_memory_map (struct target_ops *ops)
5843 {
5844 VEC(mem_region_s) *result = NULL;
5845 char *text = target_read_stralloc (&current_target,
5846 TARGET_OBJECT_MEMORY_MAP, NULL);
5847
5848 if (text)
5849 {
5850 struct cleanup *back_to = make_cleanup (xfree, text);
5851 result = parse_memory_map (text);
5852 do_cleanups (back_to);
5853 }
5854
5855 return result;
5856 }
5857
5858 static void
5859 packet_command (char *args, int from_tty)
5860 {
5861 struct remote_state *rs = get_remote_state ();
5862
5863 if (!remote_desc)
5864 error (_("command can only be used with remote target"));
5865
5866 if (!args)
5867 error (_("remote-packet command requires packet text as argument"));
5868
5869 puts_filtered ("sending: ");
5870 print_packet (args);
5871 puts_filtered ("\n");
5872 putpkt (args);
5873
5874 getpkt (&rs->buf, &rs->buf_size, 0);
5875 puts_filtered ("received: ");
5876 print_packet (rs->buf);
5877 puts_filtered ("\n");
5878 }
5879
5880 #if 0
5881 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5882
5883 static void display_thread_info (struct gdb_ext_thread_info *info);
5884
5885 static void threadset_test_cmd (char *cmd, int tty);
5886
5887 static void threadalive_test (char *cmd, int tty);
5888
5889 static void threadlist_test_cmd (char *cmd, int tty);
5890
5891 int get_and_display_threadinfo (threadref *ref);
5892
5893 static void threadinfo_test_cmd (char *cmd, int tty);
5894
5895 static int thread_display_step (threadref *ref, void *context);
5896
5897 static void threadlist_update_test_cmd (char *cmd, int tty);
5898
5899 static void init_remote_threadtests (void);
5900
5901 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5902
5903 static void
5904 threadset_test_cmd (char *cmd, int tty)
5905 {
5906 int sample_thread = SAMPLE_THREAD;
5907
5908 printf_filtered (_("Remote threadset test\n"));
5909 set_thread (sample_thread, 1);
5910 }
5911
5912
5913 static void
5914 threadalive_test (char *cmd, int tty)
5915 {
5916 int sample_thread = SAMPLE_THREAD;
5917
5918 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5919 printf_filtered ("PASS: Thread alive test\n");
5920 else
5921 printf_filtered ("FAIL: Thread alive test\n");
5922 }
5923
5924 void output_threadid (char *title, threadref *ref);
5925
5926 void
5927 output_threadid (char *title, threadref *ref)
5928 {
5929 char hexid[20];
5930
5931 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5932 hexid[16] = 0;
5933 printf_filtered ("%s %s\n", title, (&hexid[0]));
5934 }
5935
5936 static void
5937 threadlist_test_cmd (char *cmd, int tty)
5938 {
5939 int startflag = 1;
5940 threadref nextthread;
5941 int done, result_count;
5942 threadref threadlist[3];
5943
5944 printf_filtered ("Remote Threadlist test\n");
5945 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5946 &result_count, &threadlist[0]))
5947 printf_filtered ("FAIL: threadlist test\n");
5948 else
5949 {
5950 threadref *scan = threadlist;
5951 threadref *limit = scan + result_count;
5952
5953 while (scan < limit)
5954 output_threadid (" thread ", scan++);
5955 }
5956 }
5957
5958 void
5959 display_thread_info (struct gdb_ext_thread_info *info)
5960 {
5961 output_threadid ("Threadid: ", &info->threadid);
5962 printf_filtered ("Name: %s\n ", info->shortname);
5963 printf_filtered ("State: %s\n", info->display);
5964 printf_filtered ("other: %s\n\n", info->more_display);
5965 }
5966
5967 int
5968 get_and_display_threadinfo (threadref *ref)
5969 {
5970 int result;
5971 int set;
5972 struct gdb_ext_thread_info threadinfo;
5973
5974 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5975 | TAG_MOREDISPLAY | TAG_DISPLAY;
5976 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5977 display_thread_info (&threadinfo);
5978 return result;
5979 }
5980
5981 static void
5982 threadinfo_test_cmd (char *cmd, int tty)
5983 {
5984 int athread = SAMPLE_THREAD;
5985 threadref thread;
5986 int set;
5987
5988 int_to_threadref (&thread, athread);
5989 printf_filtered ("Remote Threadinfo test\n");
5990 if (!get_and_display_threadinfo (&thread))
5991 printf_filtered ("FAIL cannot get thread info\n");
5992 }
5993
5994 static int
5995 thread_display_step (threadref *ref, void *context)
5996 {
5997 /* output_threadid(" threadstep ",ref); *//* simple test */
5998 return get_and_display_threadinfo (ref);
5999 }
6000
6001 static void
6002 threadlist_update_test_cmd (char *cmd, int tty)
6003 {
6004 printf_filtered ("Remote Threadlist update test\n");
6005 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6006 }
6007
6008 static void
6009 init_remote_threadtests (void)
6010 {
6011 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6012 Fetch and print the remote list of thread identifiers, one pkt only"));
6013 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6014 _("Fetch and display info about one thread"));
6015 add_com ("tset", class_obscure, threadset_test_cmd,
6016 _("Test setting to a different thread"));
6017 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6018 _("Iterate through updating all remote thread info"));
6019 add_com ("talive", class_obscure, threadalive_test,
6020 _(" Remote thread alive test "));
6021 }
6022
6023 #endif /* 0 */
6024
6025 /* Convert a thread ID to a string. Returns the string in a static
6026 buffer. */
6027
6028 static char *
6029 remote_pid_to_str (ptid_t ptid)
6030 {
6031 static char buf[32];
6032
6033 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6034 return buf;
6035 }
6036
6037 /* Get the address of the thread local variable in OBJFILE which is
6038 stored at OFFSET within the thread local storage for thread PTID. */
6039
6040 static CORE_ADDR
6041 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6042 {
6043 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6044 {
6045 struct remote_state *rs = get_remote_state ();
6046 char *p = rs->buf;
6047 enum packet_result result;
6048
6049 strcpy (p, "qGetTLSAddr:");
6050 p += strlen (p);
6051 p += hexnumstr (p, PIDGET (ptid));
6052 *p++ = ',';
6053 p += hexnumstr (p, offset);
6054 *p++ = ',';
6055 p += hexnumstr (p, lm);
6056 *p++ = '\0';
6057
6058 putpkt (rs->buf);
6059 getpkt (&rs->buf, &rs->buf_size, 0);
6060 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6061 if (result == PACKET_OK)
6062 {
6063 ULONGEST result;
6064
6065 unpack_varlen_hex (rs->buf, &result);
6066 return result;
6067 }
6068 else if (result == PACKET_UNKNOWN)
6069 throw_error (TLS_GENERIC_ERROR,
6070 _("Remote target doesn't support qGetTLSAddr packet"));
6071 else
6072 throw_error (TLS_GENERIC_ERROR,
6073 _("Remote target failed to process qGetTLSAddr request"));
6074 }
6075 else
6076 throw_error (TLS_GENERIC_ERROR,
6077 _("TLS not supported or disabled on this target"));
6078 /* Not reached. */
6079 return 0;
6080 }
6081
6082 /* Support for inferring a target description based on the current
6083 architecture and the size of a 'g' packet. While the 'g' packet
6084 can have any size (since optional registers can be left off the
6085 end), some sizes are easily recognizable given knowledge of the
6086 approximate architecture. */
6087
6088 struct remote_g_packet_guess
6089 {
6090 int bytes;
6091 const struct target_desc *tdesc;
6092 };
6093 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6094 DEF_VEC_O(remote_g_packet_guess_s);
6095
6096 struct remote_g_packet_data
6097 {
6098 VEC(remote_g_packet_guess_s) *guesses;
6099 };
6100
6101 static struct gdbarch_data *remote_g_packet_data_handle;
6102
6103 static void *
6104 remote_g_packet_data_init (struct obstack *obstack)
6105 {
6106 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6107 }
6108
6109 void
6110 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6111 const struct target_desc *tdesc)
6112 {
6113 struct remote_g_packet_data *data
6114 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6115 struct remote_g_packet_guess new_guess, *guess;
6116 int ix;
6117
6118 gdb_assert (tdesc != NULL);
6119
6120 for (ix = 0;
6121 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6122 ix++)
6123 if (guess->bytes == bytes)
6124 internal_error (__FILE__, __LINE__,
6125 "Duplicate g packet description added for size %d",
6126 bytes);
6127
6128 new_guess.bytes = bytes;
6129 new_guess.tdesc = tdesc;
6130 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6131 }
6132
6133 static const struct target_desc *
6134 remote_read_description (struct target_ops *target)
6135 {
6136 struct remote_g_packet_data *data
6137 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6138
6139 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6140 {
6141 struct remote_g_packet_guess *guess;
6142 int ix;
6143 int bytes = send_g_packet ();
6144
6145 for (ix = 0;
6146 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6147 ix++)
6148 if (guess->bytes == bytes)
6149 return guess->tdesc;
6150
6151 /* We discard the g packet. A minor optimization would be to
6152 hold on to it, and fill the register cache once we have selected
6153 an architecture, but it's too tricky to do safely. */
6154 }
6155
6156 return NULL;
6157 }
6158
6159 static void
6160 init_remote_ops (void)
6161 {
6162 remote_ops.to_shortname = "remote";
6163 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6164 remote_ops.to_doc =
6165 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6166 Specify the serial device it is connected to\n\
6167 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6168 remote_ops.to_open = remote_open;
6169 remote_ops.to_close = remote_close;
6170 remote_ops.to_detach = remote_detach;
6171 remote_ops.to_disconnect = remote_disconnect;
6172 remote_ops.to_resume = remote_resume;
6173 remote_ops.to_wait = remote_wait;
6174 remote_ops.to_fetch_registers = remote_fetch_registers;
6175 remote_ops.to_store_registers = remote_store_registers;
6176 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6177 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6178 remote_ops.to_files_info = remote_files_info;
6179 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6180 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6181 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6182 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6183 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6184 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6185 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6186 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6187 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6188 remote_ops.to_kill = remote_kill;
6189 remote_ops.to_load = generic_load;
6190 remote_ops.to_mourn_inferior = remote_mourn;
6191 remote_ops.to_thread_alive = remote_thread_alive;
6192 remote_ops.to_find_new_threads = remote_threads_info;
6193 remote_ops.to_pid_to_str = remote_pid_to_str;
6194 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6195 remote_ops.to_stop = remote_stop;
6196 remote_ops.to_xfer_partial = remote_xfer_partial;
6197 remote_ops.to_rcmd = remote_rcmd;
6198 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6199 remote_ops.to_stratum = process_stratum;
6200 remote_ops.to_has_all_memory = 1;
6201 remote_ops.to_has_memory = 1;
6202 remote_ops.to_has_stack = 1;
6203 remote_ops.to_has_registers = 1;
6204 remote_ops.to_has_execution = 1;
6205 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6206 remote_ops.to_magic = OPS_MAGIC;
6207 remote_ops.to_memory_map = remote_memory_map;
6208 remote_ops.to_flash_erase = remote_flash_erase;
6209 remote_ops.to_flash_done = remote_flash_done;
6210 remote_ops.to_read_description = remote_read_description;
6211 }
6212
6213 /* Set up the extended remote vector by making a copy of the standard
6214 remote vector and adding to it. */
6215
6216 static void
6217 init_extended_remote_ops (void)
6218 {
6219 extended_remote_ops = remote_ops;
6220
6221 extended_remote_ops.to_shortname = "extended-remote";
6222 extended_remote_ops.to_longname =
6223 "Extended remote serial target in gdb-specific protocol";
6224 extended_remote_ops.to_doc =
6225 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6226 Specify the serial device it is connected to (e.g. /dev/ttya).",
6227 extended_remote_ops.to_open = extended_remote_open;
6228 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6229 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6230 }
6231
6232 static int
6233 remote_can_async_p (void)
6234 {
6235 /* We're async whenever the serial device is. */
6236 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6237 }
6238
6239 static int
6240 remote_is_async_p (void)
6241 {
6242 /* We're async whenever the serial device is. */
6243 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6244 }
6245
6246 /* Pass the SERIAL event on and up to the client. One day this code
6247 will be able to delay notifying the client of an event until the
6248 point where an entire packet has been received. */
6249
6250 static void (*async_client_callback) (enum inferior_event_type event_type,
6251 void *context);
6252 static void *async_client_context;
6253 static serial_event_ftype remote_async_serial_handler;
6254
6255 static void
6256 remote_async_serial_handler (struct serial *scb, void *context)
6257 {
6258 /* Don't propogate error information up to the client. Instead let
6259 the client find out about the error by querying the target. */
6260 async_client_callback (INF_REG_EVENT, async_client_context);
6261 }
6262
6263 static void
6264 remote_async (void (*callback) (enum inferior_event_type event_type,
6265 void *context), void *context)
6266 {
6267 if (current_target.to_async_mask_value == 0)
6268 internal_error (__FILE__, __LINE__,
6269 _("Calling remote_async when async is masked"));
6270
6271 if (callback != NULL)
6272 {
6273 serial_async (remote_desc, remote_async_serial_handler, NULL);
6274 async_client_callback = callback;
6275 async_client_context = context;
6276 }
6277 else
6278 serial_async (remote_desc, NULL, NULL);
6279 }
6280
6281 /* Target async and target extended-async.
6282
6283 This are temporary targets, until it is all tested. Eventually
6284 async support will be incorporated int the usual 'remote'
6285 target. */
6286
6287 static void
6288 init_remote_async_ops (void)
6289 {
6290 remote_async_ops.to_shortname = "async";
6291 remote_async_ops.to_longname =
6292 "Remote serial target in async version of the gdb-specific protocol";
6293 remote_async_ops.to_doc =
6294 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6295 Specify the serial device it is connected to (e.g. /dev/ttya).";
6296 remote_async_ops.to_open = remote_async_open;
6297 remote_async_ops.to_close = remote_close;
6298 remote_async_ops.to_detach = remote_detach;
6299 remote_async_ops.to_disconnect = remote_disconnect;
6300 remote_async_ops.to_resume = remote_async_resume;
6301 remote_async_ops.to_wait = remote_async_wait;
6302 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6303 remote_async_ops.to_store_registers = remote_store_registers;
6304 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6305 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6306 remote_async_ops.to_files_info = remote_files_info;
6307 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6308 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6309 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6310 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6311 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6312 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6313 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6314 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6315 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6316 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6317 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6318 remote_async_ops.to_kill = remote_async_kill;
6319 remote_async_ops.to_load = generic_load;
6320 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6321 remote_async_ops.to_thread_alive = remote_thread_alive;
6322 remote_async_ops.to_find_new_threads = remote_threads_info;
6323 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6324 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6325 remote_async_ops.to_stop = remote_stop;
6326 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6327 remote_async_ops.to_rcmd = remote_rcmd;
6328 remote_async_ops.to_stratum = process_stratum;
6329 remote_async_ops.to_has_all_memory = 1;
6330 remote_async_ops.to_has_memory = 1;
6331 remote_async_ops.to_has_stack = 1;
6332 remote_async_ops.to_has_registers = 1;
6333 remote_async_ops.to_has_execution = 1;
6334 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6335 remote_async_ops.to_can_async_p = remote_can_async_p;
6336 remote_async_ops.to_is_async_p = remote_is_async_p;
6337 remote_async_ops.to_async = remote_async;
6338 remote_async_ops.to_async_mask_value = 1;
6339 remote_async_ops.to_magic = OPS_MAGIC;
6340 remote_async_ops.to_memory_map = remote_memory_map;
6341 remote_async_ops.to_flash_erase = remote_flash_erase;
6342 remote_async_ops.to_flash_done = remote_flash_done;
6343 remote_ops.to_read_description = remote_read_description;
6344 }
6345
6346 /* Set up the async extended remote vector by making a copy of the standard
6347 remote vector and adding to it. */
6348
6349 static void
6350 init_extended_async_remote_ops (void)
6351 {
6352 extended_async_remote_ops = remote_async_ops;
6353
6354 extended_async_remote_ops.to_shortname = "extended-async";
6355 extended_async_remote_ops.to_longname =
6356 "Extended remote serial target in async gdb-specific protocol";
6357 extended_async_remote_ops.to_doc =
6358 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6359 Specify the serial device it is connected to (e.g. /dev/ttya).",
6360 extended_async_remote_ops.to_open = extended_remote_async_open;
6361 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6362 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6363 }
6364
6365 static void
6366 set_remote_cmd (char *args, int from_tty)
6367 {
6368 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6369 }
6370
6371 static void
6372 show_remote_cmd (char *args, int from_tty)
6373 {
6374 /* We can't just use cmd_show_list here, because we want to skip
6375 the redundant "show remote Z-packet" and the legacy aliases. */
6376 struct cleanup *showlist_chain;
6377 struct cmd_list_element *list = remote_show_cmdlist;
6378
6379 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6380 for (; list != NULL; list = list->next)
6381 if (strcmp (list->name, "Z-packet") == 0)
6382 continue;
6383 else if (list->type == not_set_cmd)
6384 /* Alias commands are exactly like the original, except they
6385 don't have the normal type. */
6386 continue;
6387 else
6388 {
6389 struct cleanup *option_chain
6390 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6391 ui_out_field_string (uiout, "name", list->name);
6392 ui_out_text (uiout, ": ");
6393 if (list->type == show_cmd)
6394 do_setshow_command ((char *) NULL, from_tty, list);
6395 else
6396 cmd_func (list, NULL, from_tty);
6397 /* Close the tuple. */
6398 do_cleanups (option_chain);
6399 }
6400
6401 /* Close the tuple. */
6402 do_cleanups (showlist_chain);
6403 }
6404
6405 static void
6406 build_remote_gdbarch_data (void)
6407 {
6408 remote_address_size = TARGET_ADDR_BIT;
6409 }
6410
6411 /* Function to be called whenever a new objfile (shlib) is detected. */
6412 static void
6413 remote_new_objfile (struct objfile *objfile)
6414 {
6415 if (remote_desc != 0) /* Have a remote connection. */
6416 remote_check_symbols (objfile);
6417 }
6418
6419 void
6420 _initialize_remote (void)
6421 {
6422 struct remote_state *rs;
6423
6424 /* architecture specific data */
6425 remote_gdbarch_data_handle =
6426 gdbarch_data_register_post_init (init_remote_state);
6427 remote_g_packet_data_handle =
6428 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6429
6430 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6431 that the remote protocol has been initialized. */
6432 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6433 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6434
6435 /* Initialize the per-target state. At the moment there is only one
6436 of these, not one per target. Only one target is active at a
6437 time. The default buffer size is unimportant; it will be expanded
6438 whenever a larger buffer is needed. */
6439 rs = get_remote_state_raw ();
6440 rs->buf_size = 400;
6441 rs->buf = xmalloc (rs->buf_size);
6442
6443 init_remote_ops ();
6444 add_target (&remote_ops);
6445
6446 init_extended_remote_ops ();
6447 add_target (&extended_remote_ops);
6448
6449 init_remote_async_ops ();
6450 add_target (&remote_async_ops);
6451
6452 init_extended_async_remote_ops ();
6453 add_target (&extended_async_remote_ops);
6454
6455 /* Hook into new objfile notification. */
6456 observer_attach_new_objfile (remote_new_objfile);
6457
6458 #if 0
6459 init_remote_threadtests ();
6460 #endif
6461
6462 /* set/show remote ... */
6463
6464 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6465 Remote protocol specific variables\n\
6466 Configure various remote-protocol specific variables such as\n\
6467 the packets being used"),
6468 &remote_set_cmdlist, "set remote ",
6469 0 /* allow-unknown */, &setlist);
6470 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6471 Remote protocol specific variables\n\
6472 Configure various remote-protocol specific variables such as\n\
6473 the packets being used"),
6474 &remote_show_cmdlist, "show remote ",
6475 0 /* allow-unknown */, &showlist);
6476
6477 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6478 Compare section data on target to the exec file.\n\
6479 Argument is a single section name (default: all loaded sections)."),
6480 &cmdlist);
6481
6482 add_cmd ("packet", class_maintenance, packet_command, _("\
6483 Send an arbitrary packet to a remote target.\n\
6484 maintenance packet TEXT\n\
6485 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6486 this command sends the string TEXT to the inferior, and displays the\n\
6487 response packet. GDB supplies the initial `$' character, and the\n\
6488 terminating `#' character and checksum."),
6489 &maintenancelist);
6490
6491 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6492 Set whether to send break if interrupted."), _("\
6493 Show whether to send break if interrupted."), _("\
6494 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6495 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6496 &setlist, &showlist);
6497
6498 /* Install commands for configuring memory read/write packets. */
6499
6500 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6501 Set the maximum number of bytes per memory write packet (deprecated)."),
6502 &setlist);
6503 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6504 Show the maximum number of bytes per memory write packet (deprecated)."),
6505 &showlist);
6506 add_cmd ("memory-write-packet-size", no_class,
6507 set_memory_write_packet_size, _("\
6508 Set the maximum number of bytes per memory-write packet.\n\
6509 Specify the number of bytes in a packet or 0 (zero) for the\n\
6510 default packet size. The actual limit is further reduced\n\
6511 dependent on the target. Specify ``fixed'' to disable the\n\
6512 further restriction and ``limit'' to enable that restriction."),
6513 &remote_set_cmdlist);
6514 add_cmd ("memory-read-packet-size", no_class,
6515 set_memory_read_packet_size, _("\
6516 Set the maximum number of bytes per memory-read packet.\n\
6517 Specify the number of bytes in a packet or 0 (zero) for the\n\
6518 default packet size. The actual limit is further reduced\n\
6519 dependent on the target. Specify ``fixed'' to disable the\n\
6520 further restriction and ``limit'' to enable that restriction."),
6521 &remote_set_cmdlist);
6522 add_cmd ("memory-write-packet-size", no_class,
6523 show_memory_write_packet_size,
6524 _("Show the maximum number of bytes per memory-write packet."),
6525 &remote_show_cmdlist);
6526 add_cmd ("memory-read-packet-size", no_class,
6527 show_memory_read_packet_size,
6528 _("Show the maximum number of bytes per memory-read packet."),
6529 &remote_show_cmdlist);
6530
6531 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6532 &remote_hw_watchpoint_limit, _("\
6533 Set the maximum number of target hardware watchpoints."), _("\
6534 Show the maximum number of target hardware watchpoints."), _("\
6535 Specify a negative limit for unlimited."),
6536 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6537 &remote_set_cmdlist, &remote_show_cmdlist);
6538 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6539 &remote_hw_breakpoint_limit, _("\
6540 Set the maximum number of target hardware breakpoints."), _("\
6541 Show the maximum number of target hardware breakpoints."), _("\
6542 Specify a negative limit for unlimited."),
6543 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6544 &remote_set_cmdlist, &remote_show_cmdlist);
6545
6546 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6547 &remote_address_size, _("\
6548 Set the maximum size of the address (in bits) in a memory packet."), _("\
6549 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6550 NULL,
6551 NULL, /* FIXME: i18n: */
6552 &setlist, &showlist);
6553
6554 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6555 "X", "binary-download", 1);
6556
6557 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6558 "vCont", "verbose-resume", 0);
6559
6560 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6561 "QPassSignals", "pass-signals", 0);
6562
6563 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6564 "qSymbol", "symbol-lookup", 0);
6565
6566 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6567 "P", "set-register", 1);
6568
6569 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6570 "p", "fetch-register", 1);
6571
6572 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6573 "Z0", "software-breakpoint", 0);
6574
6575 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6576 "Z1", "hardware-breakpoint", 0);
6577
6578 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6579 "Z2", "write-watchpoint", 0);
6580
6581 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6582 "Z3", "read-watchpoint", 0);
6583
6584 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6585 "Z4", "access-watchpoint", 0);
6586
6587 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6588 "qXfer:auxv:read", "read-aux-vector", 0);
6589
6590 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6591 "qXfer:features:read", "target-features", 0);
6592
6593 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6594 "qXfer:memory-map:read", "memory-map", 0);
6595
6596 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6597 "qXfer:spu:read", "read-spu-object", 0);
6598
6599 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6600 "qXfer:spu:write", "write-spu-object", 0);
6601
6602 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6603 "qGetTLSAddr", "get-thread-local-storage-address",
6604 0);
6605
6606 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6607 "qSupported", "supported-packets", 0);
6608
6609 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6610 Z sub-packet has its own set and show commands, but users may
6611 have sets to this variable in their .gdbinit files (or in their
6612 documentation). */
6613 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6614 &remote_Z_packet_detect, _("\
6615 Set use of remote protocol `Z' packets"), _("\
6616 Show use of remote protocol `Z' packets "), _("\
6617 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6618 packets."),
6619 set_remote_protocol_Z_packet_cmd,
6620 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6621 &remote_set_cmdlist, &remote_show_cmdlist);
6622
6623 /* Eventually initialize fileio. See fileio.c */
6624 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6625 }
This page took 0.158776 seconds and 3 git commands to generate.