* config/arm/embed.mt (SIM_OBS, SIM): Remove.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61
62 #include "memory-map.h"
63
64 /* The size to align memory write packets, when practical. The protocol
65 does not guarantee any alignment, and gdb will generate short
66 writes and unaligned writes, but even as a best-effort attempt this
67 can improve bulk transfers. For instance, if a write is misaligned
68 relative to the target's data bus, the stub may need to make an extra
69 round trip fetching data from the target. This doesn't make a
70 huge difference, but it's easy to do, so we try to be helpful.
71
72 The alignment chosen is arbitrary; usually data bus width is
73 important here, not the possibly larger cache line size. */
74 enum { REMOTE_ALIGN_WRITES = 16 };
75
76 /* Prototypes for local functions. */
77 static void cleanup_sigint_signal_handler (void *dummy);
78 static void initialize_sigint_signal_handler (void);
79 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
80
81 static void handle_remote_sigint (int);
82 static void handle_remote_sigint_twice (int);
83 static void async_remote_interrupt (gdb_client_data);
84 void async_remote_interrupt_twice (gdb_client_data);
85
86 static void remote_files_info (struct target_ops *ignore);
87
88 static void remote_prepare_to_store (struct regcache *regcache);
89
90 static void remote_fetch_registers (struct regcache *regcache, int regno);
91
92 static void remote_resume (ptid_t ptid, int step,
93 enum target_signal siggnal);
94 static void remote_async_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_open (char *name, int from_tty);
97 static void remote_async_open (char *name, int from_tty);
98
99 static void extended_remote_open (char *name, int from_tty);
100 static void extended_remote_async_open (char *name, int from_tty);
101
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
103 int async_p);
104
105 static void remote_close (int quitting);
106
107 static void remote_store_registers (struct regcache *regcache, int regno);
108
109 static void remote_mourn (void);
110 static void remote_async_mourn (void);
111
112 static void extended_remote_restart (void);
113
114 static void extended_remote_mourn (void);
115
116 static void remote_mourn_1 (struct target_ops *);
117
118 static void remote_send (char **buf, long *sizeof_buf_p);
119
120 static int readchar (int timeout);
121
122 static ptid_t remote_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124 static ptid_t remote_async_wait (ptid_t ptid,
125 struct target_waitstatus *status);
126
127 static void remote_kill (void);
128 static void remote_async_kill (void);
129
130 static int tohex (int nib);
131
132 static void remote_detach (char *args, int from_tty);
133
134 static void remote_interrupt (int signo);
135
136 static void remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_thread (int, int);
141
142 static int remote_thread_alive (ptid_t);
143
144 static void get_offsets (void);
145
146 static void skip_frame (void);
147
148 static long read_frame (char **buf_p, long *sizeof_buf);
149
150 static int hexnumlen (ULONGEST num);
151
152 static void init_remote_ops (void);
153
154 static void init_extended_remote_ops (void);
155
156 static void remote_stop (void);
157
158 static int ishex (int ch, int *val);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (char *);
169
170 static unsigned long crc32 (unsigned char *, int, unsigned int);
171
172 static void compare_sections_command (char *, int);
173
174 static void packet_command (char *, int);
175
176 static int stub_unpack_int (char *buff, int fieldlength);
177
178 static ptid_t remote_current_thread (ptid_t oldptid);
179
180 static void remote_find_new_threads (void);
181
182 static void record_currthread (int currthread);
183
184 static int fromhex (int a);
185
186 static int hex2bin (const char *hex, gdb_byte *bin, int count);
187
188 static int bin2hex (const gdb_byte *bin, char *hex, int count);
189
190 static int putpkt_binary (char *buf, int cnt);
191
192 static void check_binary_download (CORE_ADDR addr);
193
194 struct packet_config;
195
196 static void show_packet_config_cmd (struct packet_config *config);
197
198 static void update_packet_config (struct packet_config *config);
199
200 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
201 struct cmd_list_element *c);
202
203 static void show_remote_protocol_packet_cmd (struct ui_file *file,
204 int from_tty,
205 struct cmd_list_element *c,
206 const char *value);
207
208 void _initialize_remote (void);
209
210 /* For "set remote" and "show remote". */
211
212 static struct cmd_list_element *remote_set_cmdlist;
213 static struct cmd_list_element *remote_show_cmdlist;
214
215 /* Description of the remote protocol state for the currently
216 connected target. This is per-target state, and independent of the
217 selected architecture. */
218
219 struct remote_state
220 {
221 /* A buffer to use for incoming packets, and its current size. The
222 buffer is grown dynamically for larger incoming packets.
223 Outgoing packets may also be constructed in this buffer.
224 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
225 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
226 packets. */
227 char *buf;
228 long buf_size;
229
230 /* If we negotiated packet size explicitly (and thus can bypass
231 heuristics for the largest packet size that will not overflow
232 a buffer in the stub), this will be set to that packet size.
233 Otherwise zero, meaning to use the guessed size. */
234 long explicit_packet_size;
235 };
236
237 /* This data could be associated with a target, but we do not always
238 have access to the current target when we need it, so for now it is
239 static. This will be fine for as long as only one target is in use
240 at a time. */
241 static struct remote_state remote_state;
242
243 static struct remote_state *
244 get_remote_state_raw (void)
245 {
246 return &remote_state;
247 }
248
249 /* Description of the remote protocol for a given architecture. */
250
251 struct packet_reg
252 {
253 long offset; /* Offset into G packet. */
254 long regnum; /* GDB's internal register number. */
255 LONGEST pnum; /* Remote protocol register number. */
256 int in_g_packet; /* Always part of G packet. */
257 /* long size in bytes; == register_size (current_gdbarch, regnum);
258 at present. */
259 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
260 at present. */
261 };
262
263 struct remote_arch_state
264 {
265 /* Description of the remote protocol registers. */
266 long sizeof_g_packet;
267
268 /* Description of the remote protocol registers indexed by REGNUM
269 (making an array gdbarch_num_regs in size). */
270 struct packet_reg *regs;
271
272 /* This is the size (in chars) of the first response to the ``g''
273 packet. It is used as a heuristic when determining the maximum
274 size of memory-read and memory-write packets. A target will
275 typically only reserve a buffer large enough to hold the ``g''
276 packet. The size does not include packet overhead (headers and
277 trailers). */
278 long actual_register_packet_size;
279
280 /* This is the maximum size (in chars) of a non read/write packet.
281 It is also used as a cap on the size of read/write packets. */
282 long remote_packet_size;
283 };
284
285
286 /* Handle for retreving the remote protocol data from gdbarch. */
287 static struct gdbarch_data *remote_gdbarch_data_handle;
288
289 static struct remote_arch_state *
290 get_remote_arch_state (void)
291 {
292 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
293 }
294
295 /* Fetch the global remote target state. */
296
297 static struct remote_state *
298 get_remote_state (void)
299 {
300 /* Make sure that the remote architecture state has been
301 initialized, because doing so might reallocate rs->buf. Any
302 function which calls getpkt also needs to be mindful of changes
303 to rs->buf, but this call limits the number of places which run
304 into trouble. */
305 get_remote_arch_state ();
306
307 return get_remote_state_raw ();
308 }
309
310 static int
311 compare_pnums (const void *lhs_, const void *rhs_)
312 {
313 const struct packet_reg * const *lhs = lhs_;
314 const struct packet_reg * const *rhs = rhs_;
315
316 if ((*lhs)->pnum < (*rhs)->pnum)
317 return -1;
318 else if ((*lhs)->pnum == (*rhs)->pnum)
319 return 0;
320 else
321 return 1;
322 }
323
324 static void *
325 init_remote_state (struct gdbarch *gdbarch)
326 {
327 int regnum, num_remote_regs, offset;
328 struct remote_state *rs = get_remote_state_raw ();
329 struct remote_arch_state *rsa;
330 struct packet_reg **remote_regs;
331
332 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
333
334 /* Use the architecture to build a regnum<->pnum table, which will be
335 1:1 unless a feature set specifies otherwise. */
336 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
337 gdbarch_num_regs (gdbarch),
338 struct packet_reg);
339 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
340 {
341 struct packet_reg *r = &rsa->regs[regnum];
342
343 if (register_size (gdbarch, regnum) == 0)
344 /* Do not try to fetch zero-sized (placeholder) registers. */
345 r->pnum = -1;
346 else
347 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
348
349 r->regnum = regnum;
350 }
351
352 /* Define the g/G packet format as the contents of each register
353 with a remote protocol number, in order of ascending protocol
354 number. */
355
356 remote_regs = alloca (gdbarch_num_regs (gdbarch)
357 * sizeof (struct packet_reg *));
358 for (num_remote_regs = 0, regnum = 0;
359 regnum < gdbarch_num_regs (gdbarch);
360 regnum++)
361 if (rsa->regs[regnum].pnum != -1)
362 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
363
364 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
365 compare_pnums);
366
367 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
368 {
369 remote_regs[regnum]->in_g_packet = 1;
370 remote_regs[regnum]->offset = offset;
371 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
372 }
373
374 /* Record the maximum possible size of the g packet - it may turn out
375 to be smaller. */
376 rsa->sizeof_g_packet = offset;
377
378 /* Default maximum number of characters in a packet body. Many
379 remote stubs have a hardwired buffer size of 400 bytes
380 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
381 as the maximum packet-size to ensure that the packet and an extra
382 NUL character can always fit in the buffer. This stops GDB
383 trashing stubs that try to squeeze an extra NUL into what is
384 already a full buffer (As of 1999-12-04 that was most stubs). */
385 rsa->remote_packet_size = 400 - 1;
386
387 /* This one is filled in when a ``g'' packet is received. */
388 rsa->actual_register_packet_size = 0;
389
390 /* Should rsa->sizeof_g_packet needs more space than the
391 default, adjust the size accordingly. Remember that each byte is
392 encoded as two characters. 32 is the overhead for the packet
393 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
394 (``$NN:G...#NN'') is a better guess, the below has been padded a
395 little. */
396 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
397 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
398
399 /* Make sure that the packet buffer is plenty big enough for
400 this architecture. */
401 if (rs->buf_size < rsa->remote_packet_size)
402 {
403 rs->buf_size = 2 * rsa->remote_packet_size;
404 rs->buf = xrealloc (rs->buf, rs->buf_size);
405 }
406
407 return rsa;
408 }
409
410 /* Return the current allowed size of a remote packet. This is
411 inferred from the current architecture, and should be used to
412 limit the length of outgoing packets. */
413 static long
414 get_remote_packet_size (void)
415 {
416 struct remote_state *rs = get_remote_state ();
417 struct remote_arch_state *rsa = get_remote_arch_state ();
418
419 if (rs->explicit_packet_size)
420 return rs->explicit_packet_size;
421
422 return rsa->remote_packet_size;
423 }
424
425 static struct packet_reg *
426 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
427 {
428 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
429 return NULL;
430 else
431 {
432 struct packet_reg *r = &rsa->regs[regnum];
433 gdb_assert (r->regnum == regnum);
434 return r;
435 }
436 }
437
438 static struct packet_reg *
439 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
440 {
441 int i;
442 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
443 {
444 struct packet_reg *r = &rsa->regs[i];
445 if (r->pnum == pnum)
446 return r;
447 }
448 return NULL;
449 }
450
451 /* FIXME: graces/2002-08-08: These variables should eventually be
452 bound to an instance of the target object (as in gdbarch-tdep()),
453 when such a thing exists. */
454
455 /* This is set to the data address of the access causing the target
456 to stop for a watchpoint. */
457 static CORE_ADDR remote_watch_data_address;
458
459 /* This is non-zero if target stopped for a watchpoint. */
460 static int remote_stopped_by_watchpoint_p;
461
462 static struct target_ops remote_ops;
463
464 static struct target_ops extended_remote_ops;
465
466 /* Temporary target ops. Just like the remote_ops and
467 extended_remote_ops, but with asynchronous support. */
468 static struct target_ops remote_async_ops;
469
470 static struct target_ops extended_async_remote_ops;
471
472 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
473 ``forever'' still use the normal timeout mechanism. This is
474 currently used by the ASYNC code to guarentee that target reads
475 during the initial connect always time-out. Once getpkt has been
476 modified to return a timeout indication and, in turn
477 remote_wait()/wait_for_inferior() have gained a timeout parameter
478 this can go away. */
479 static int wait_forever_enabled_p = 1;
480
481
482 /* This variable chooses whether to send a ^C or a break when the user
483 requests program interruption. Although ^C is usually what remote
484 systems expect, and that is the default here, sometimes a break is
485 preferable instead. */
486
487 static int remote_break;
488
489 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
490 remote_open knows that we don't have a file open when the program
491 starts. */
492 static struct serial *remote_desc = NULL;
493
494 /* This variable sets the number of bits in an address that are to be
495 sent in a memory ("M" or "m") packet. Normally, after stripping
496 leading zeros, the entire address would be sent. This variable
497 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
498 initial implementation of remote.c restricted the address sent in
499 memory packets to ``host::sizeof long'' bytes - (typically 32
500 bits). Consequently, for 64 bit targets, the upper 32 bits of an
501 address was never sent. Since fixing this bug may cause a break in
502 some remote targets this variable is principly provided to
503 facilitate backward compatibility. */
504
505 static int remote_address_size;
506
507 /* Tempoary to track who currently owns the terminal. See
508 target_async_terminal_* for more details. */
509
510 static int remote_async_terminal_ours_p;
511
512 \f
513 /* User configurable variables for the number of characters in a
514 memory read/write packet. MIN (rsa->remote_packet_size,
515 rsa->sizeof_g_packet) is the default. Some targets need smaller
516 values (fifo overruns, et.al.) and some users need larger values
517 (speed up transfers). The variables ``preferred_*'' (the user
518 request), ``current_*'' (what was actually set) and ``forced_*''
519 (Positive - a soft limit, negative - a hard limit). */
520
521 struct memory_packet_config
522 {
523 char *name;
524 long size;
525 int fixed_p;
526 };
527
528 /* Compute the current size of a read/write packet. Since this makes
529 use of ``actual_register_packet_size'' the computation is dynamic. */
530
531 static long
532 get_memory_packet_size (struct memory_packet_config *config)
533 {
534 struct remote_state *rs = get_remote_state ();
535 struct remote_arch_state *rsa = get_remote_arch_state ();
536
537 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
538 law?) that some hosts don't cope very well with large alloca()
539 calls. Eventually the alloca() code will be replaced by calls to
540 xmalloc() and make_cleanups() allowing this restriction to either
541 be lifted or removed. */
542 #ifndef MAX_REMOTE_PACKET_SIZE
543 #define MAX_REMOTE_PACKET_SIZE 16384
544 #endif
545 /* NOTE: 20 ensures we can write at least one byte. */
546 #ifndef MIN_REMOTE_PACKET_SIZE
547 #define MIN_REMOTE_PACKET_SIZE 20
548 #endif
549 long what_they_get;
550 if (config->fixed_p)
551 {
552 if (config->size <= 0)
553 what_they_get = MAX_REMOTE_PACKET_SIZE;
554 else
555 what_they_get = config->size;
556 }
557 else
558 {
559 what_they_get = get_remote_packet_size ();
560 /* Limit the packet to the size specified by the user. */
561 if (config->size > 0
562 && what_they_get > config->size)
563 what_they_get = config->size;
564
565 /* Limit it to the size of the targets ``g'' response unless we have
566 permission from the stub to use a larger packet size. */
567 if (rs->explicit_packet_size == 0
568 && rsa->actual_register_packet_size > 0
569 && what_they_get > rsa->actual_register_packet_size)
570 what_they_get = rsa->actual_register_packet_size;
571 }
572 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
573 what_they_get = MAX_REMOTE_PACKET_SIZE;
574 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
575 what_they_get = MIN_REMOTE_PACKET_SIZE;
576
577 /* Make sure there is room in the global buffer for this packet
578 (including its trailing NUL byte). */
579 if (rs->buf_size < what_they_get + 1)
580 {
581 rs->buf_size = 2 * what_they_get;
582 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
583 }
584
585 return what_they_get;
586 }
587
588 /* Update the size of a read/write packet. If they user wants
589 something really big then do a sanity check. */
590
591 static void
592 set_memory_packet_size (char *args, struct memory_packet_config *config)
593 {
594 int fixed_p = config->fixed_p;
595 long size = config->size;
596 if (args == NULL)
597 error (_("Argument required (integer, `fixed' or `limited')."));
598 else if (strcmp (args, "hard") == 0
599 || strcmp (args, "fixed") == 0)
600 fixed_p = 1;
601 else if (strcmp (args, "soft") == 0
602 || strcmp (args, "limit") == 0)
603 fixed_p = 0;
604 else
605 {
606 char *end;
607 size = strtoul (args, &end, 0);
608 if (args == end)
609 error (_("Invalid %s (bad syntax)."), config->name);
610 #if 0
611 /* Instead of explicitly capping the size of a packet to
612 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
613 instead allowed to set the size to something arbitrarily
614 large. */
615 if (size > MAX_REMOTE_PACKET_SIZE)
616 error (_("Invalid %s (too large)."), config->name);
617 #endif
618 }
619 /* Extra checks? */
620 if (fixed_p && !config->fixed_p)
621 {
622 if (! query (_("The target may not be able to correctly handle a %s\n"
623 "of %ld bytes. Change the packet size? "),
624 config->name, size))
625 error (_("Packet size not changed."));
626 }
627 /* Update the config. */
628 config->fixed_p = fixed_p;
629 config->size = size;
630 }
631
632 static void
633 show_memory_packet_size (struct memory_packet_config *config)
634 {
635 printf_filtered (_("The %s is %ld. "), config->name, config->size);
636 if (config->fixed_p)
637 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
638 get_memory_packet_size (config));
639 else
640 printf_filtered (_("Packets are limited to %ld bytes.\n"),
641 get_memory_packet_size (config));
642 }
643
644 static struct memory_packet_config memory_write_packet_config =
645 {
646 "memory-write-packet-size",
647 };
648
649 static void
650 set_memory_write_packet_size (char *args, int from_tty)
651 {
652 set_memory_packet_size (args, &memory_write_packet_config);
653 }
654
655 static void
656 show_memory_write_packet_size (char *args, int from_tty)
657 {
658 show_memory_packet_size (&memory_write_packet_config);
659 }
660
661 static long
662 get_memory_write_packet_size (void)
663 {
664 return get_memory_packet_size (&memory_write_packet_config);
665 }
666
667 static struct memory_packet_config memory_read_packet_config =
668 {
669 "memory-read-packet-size",
670 };
671
672 static void
673 set_memory_read_packet_size (char *args, int from_tty)
674 {
675 set_memory_packet_size (args, &memory_read_packet_config);
676 }
677
678 static void
679 show_memory_read_packet_size (char *args, int from_tty)
680 {
681 show_memory_packet_size (&memory_read_packet_config);
682 }
683
684 static long
685 get_memory_read_packet_size (void)
686 {
687 long size = get_memory_packet_size (&memory_read_packet_config);
688 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
689 extra buffer size argument before the memory read size can be
690 increased beyond this. */
691 if (size > get_remote_packet_size ())
692 size = get_remote_packet_size ();
693 return size;
694 }
695
696 \f
697 /* Generic configuration support for packets the stub optionally
698 supports. Allows the user to specify the use of the packet as well
699 as allowing GDB to auto-detect support in the remote stub. */
700
701 enum packet_support
702 {
703 PACKET_SUPPORT_UNKNOWN = 0,
704 PACKET_ENABLE,
705 PACKET_DISABLE
706 };
707
708 struct packet_config
709 {
710 const char *name;
711 const char *title;
712 enum auto_boolean detect;
713 enum packet_support support;
714 };
715
716 /* Analyze a packet's return value and update the packet config
717 accordingly. */
718
719 enum packet_result
720 {
721 PACKET_ERROR,
722 PACKET_OK,
723 PACKET_UNKNOWN
724 };
725
726 static void
727 update_packet_config (struct packet_config *config)
728 {
729 switch (config->detect)
730 {
731 case AUTO_BOOLEAN_TRUE:
732 config->support = PACKET_ENABLE;
733 break;
734 case AUTO_BOOLEAN_FALSE:
735 config->support = PACKET_DISABLE;
736 break;
737 case AUTO_BOOLEAN_AUTO:
738 config->support = PACKET_SUPPORT_UNKNOWN;
739 break;
740 }
741 }
742
743 static void
744 show_packet_config_cmd (struct packet_config *config)
745 {
746 char *support = "internal-error";
747 switch (config->support)
748 {
749 case PACKET_ENABLE:
750 support = "enabled";
751 break;
752 case PACKET_DISABLE:
753 support = "disabled";
754 break;
755 case PACKET_SUPPORT_UNKNOWN:
756 support = "unknown";
757 break;
758 }
759 switch (config->detect)
760 {
761 case AUTO_BOOLEAN_AUTO:
762 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
763 config->name, support);
764 break;
765 case AUTO_BOOLEAN_TRUE:
766 case AUTO_BOOLEAN_FALSE:
767 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
768 config->name, support);
769 break;
770 }
771 }
772
773 static void
774 add_packet_config_cmd (struct packet_config *config, const char *name,
775 const char *title, int legacy)
776 {
777 char *set_doc;
778 char *show_doc;
779 char *cmd_name;
780
781 config->name = name;
782 config->title = title;
783 config->detect = AUTO_BOOLEAN_AUTO;
784 config->support = PACKET_SUPPORT_UNKNOWN;
785 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
786 name, title);
787 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
788 name, title);
789 /* set/show TITLE-packet {auto,on,off} */
790 cmd_name = xstrprintf ("%s-packet", title);
791 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
792 &config->detect, set_doc, show_doc, NULL, /* help_doc */
793 set_remote_protocol_packet_cmd,
794 show_remote_protocol_packet_cmd,
795 &remote_set_cmdlist, &remote_show_cmdlist);
796 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
797 if (legacy)
798 {
799 char *legacy_name;
800 legacy_name = xstrprintf ("%s-packet", name);
801 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
802 &remote_set_cmdlist);
803 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
804 &remote_show_cmdlist);
805 }
806 }
807
808 static enum packet_result
809 packet_check_result (const char *buf)
810 {
811 if (buf[0] != '\0')
812 {
813 /* The stub recognized the packet request. Check that the
814 operation succeeded. */
815 if (buf[0] == 'E'
816 && isxdigit (buf[1]) && isxdigit (buf[2])
817 && buf[3] == '\0')
818 /* "Enn" - definitly an error. */
819 return PACKET_ERROR;
820
821 /* Always treat "E." as an error. This will be used for
822 more verbose error messages, such as E.memtypes. */
823 if (buf[0] == 'E' && buf[1] == '.')
824 return PACKET_ERROR;
825
826 /* The packet may or may not be OK. Just assume it is. */
827 return PACKET_OK;
828 }
829 else
830 /* The stub does not support the packet. */
831 return PACKET_UNKNOWN;
832 }
833
834 static enum packet_result
835 packet_ok (const char *buf, struct packet_config *config)
836 {
837 enum packet_result result;
838
839 result = packet_check_result (buf);
840 switch (result)
841 {
842 case PACKET_OK:
843 case PACKET_ERROR:
844 /* The stub recognized the packet request. */
845 switch (config->support)
846 {
847 case PACKET_SUPPORT_UNKNOWN:
848 if (remote_debug)
849 fprintf_unfiltered (gdb_stdlog,
850 "Packet %s (%s) is supported\n",
851 config->name, config->title);
852 config->support = PACKET_ENABLE;
853 break;
854 case PACKET_DISABLE:
855 internal_error (__FILE__, __LINE__,
856 _("packet_ok: attempt to use a disabled packet"));
857 break;
858 case PACKET_ENABLE:
859 break;
860 }
861 break;
862 case PACKET_UNKNOWN:
863 /* The stub does not support the packet. */
864 switch (config->support)
865 {
866 case PACKET_ENABLE:
867 if (config->detect == AUTO_BOOLEAN_AUTO)
868 /* If the stub previously indicated that the packet was
869 supported then there is a protocol error.. */
870 error (_("Protocol error: %s (%s) conflicting enabled responses."),
871 config->name, config->title);
872 else
873 /* The user set it wrong. */
874 error (_("Enabled packet %s (%s) not recognized by stub"),
875 config->name, config->title);
876 break;
877 case PACKET_SUPPORT_UNKNOWN:
878 if (remote_debug)
879 fprintf_unfiltered (gdb_stdlog,
880 "Packet %s (%s) is NOT supported\n",
881 config->name, config->title);
882 config->support = PACKET_DISABLE;
883 break;
884 case PACKET_DISABLE:
885 break;
886 }
887 break;
888 }
889
890 return result;
891 }
892
893 enum {
894 PACKET_vCont = 0,
895 PACKET_X,
896 PACKET_qSymbol,
897 PACKET_P,
898 PACKET_p,
899 PACKET_Z0,
900 PACKET_Z1,
901 PACKET_Z2,
902 PACKET_Z3,
903 PACKET_Z4,
904 PACKET_qXfer_auxv,
905 PACKET_qXfer_features,
906 PACKET_qXfer_libraries,
907 PACKET_qXfer_memory_map,
908 PACKET_qXfer_spu_read,
909 PACKET_qXfer_spu_write,
910 PACKET_qGetTLSAddr,
911 PACKET_qSupported,
912 PACKET_QPassSignals,
913 PACKET_MAX
914 };
915
916 static struct packet_config remote_protocol_packets[PACKET_MAX];
917
918 static void
919 set_remote_protocol_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
921 {
922 struct packet_config *packet;
923
924 for (packet = remote_protocol_packets;
925 packet < &remote_protocol_packets[PACKET_MAX];
926 packet++)
927 {
928 if (&packet->detect == c->var)
929 {
930 update_packet_config (packet);
931 return;
932 }
933 }
934 internal_error (__FILE__, __LINE__, "Could not find config for %s",
935 c->name);
936 }
937
938 static void
939 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
940 struct cmd_list_element *c,
941 const char *value)
942 {
943 struct packet_config *packet;
944
945 for (packet = remote_protocol_packets;
946 packet < &remote_protocol_packets[PACKET_MAX];
947 packet++)
948 {
949 if (&packet->detect == c->var)
950 {
951 show_packet_config_cmd (packet);
952 return;
953 }
954 }
955 internal_error (__FILE__, __LINE__, "Could not find config for %s",
956 c->name);
957 }
958
959 /* Should we try one of the 'Z' requests? */
960
961 enum Z_packet_type
962 {
963 Z_PACKET_SOFTWARE_BP,
964 Z_PACKET_HARDWARE_BP,
965 Z_PACKET_WRITE_WP,
966 Z_PACKET_READ_WP,
967 Z_PACKET_ACCESS_WP,
968 NR_Z_PACKET_TYPES
969 };
970
971 /* For compatibility with older distributions. Provide a ``set remote
972 Z-packet ...'' command that updates all the Z packet types. */
973
974 static enum auto_boolean remote_Z_packet_detect;
975
976 static void
977 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
978 struct cmd_list_element *c)
979 {
980 int i;
981 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
982 {
983 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
984 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
985 }
986 }
987
988 static void
989 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
990 struct cmd_list_element *c,
991 const char *value)
992 {
993 int i;
994 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
995 {
996 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
997 }
998 }
999
1000 /* Should we try the 'ThreadInfo' query packet?
1001
1002 This variable (NOT available to the user: auto-detect only!)
1003 determines whether GDB will use the new, simpler "ThreadInfo"
1004 query or the older, more complex syntax for thread queries.
1005 This is an auto-detect variable (set to true at each connect,
1006 and set to false when the target fails to recognize it). */
1007
1008 static int use_threadinfo_query;
1009 static int use_threadextra_query;
1010
1011 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1012 static struct async_signal_handler *sigint_remote_twice_token;
1013 static struct async_signal_handler *sigint_remote_token;
1014
1015 /* These are pointers to hook functions that may be set in order to
1016 modify resume/wait behavior for a particular architecture. */
1017
1018 void (*deprecated_target_resume_hook) (void);
1019 void (*deprecated_target_wait_loop_hook) (void);
1020 \f
1021
1022
1023 /* These are the threads which we last sent to the remote system.
1024 -1 for all or -2 for not sent yet. */
1025 static int general_thread;
1026 static int continue_thread;
1027
1028 /* Call this function as a result of
1029 1) A halt indication (T packet) containing a thread id
1030 2) A direct query of currthread
1031 3) Successful execution of set thread
1032 */
1033
1034 static void
1035 record_currthread (int currthread)
1036 {
1037 general_thread = currthread;
1038
1039 /* If this is a new thread, add it to GDB's thread list.
1040 If we leave it up to WFI to do this, bad things will happen. */
1041 if (!in_thread_list (pid_to_ptid (currthread)))
1042 {
1043 add_thread (pid_to_ptid (currthread));
1044 ui_out_text (uiout, "[New ");
1045 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1046 ui_out_text (uiout, "]\n");
1047 }
1048 }
1049
1050 static char *last_pass_packet;
1051
1052 /* If 'QPassSignals' is supported, tell the remote stub what signals
1053 it can simply pass through to the inferior without reporting. */
1054
1055 static void
1056 remote_pass_signals (void)
1057 {
1058 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1059 {
1060 char *pass_packet, *p;
1061 int numsigs = (int) TARGET_SIGNAL_LAST;
1062 int count = 0, i;
1063
1064 gdb_assert (numsigs < 256);
1065 for (i = 0; i < numsigs; i++)
1066 {
1067 if (signal_stop_state (i) == 0
1068 && signal_print_state (i) == 0
1069 && signal_pass_state (i) == 1)
1070 count++;
1071 }
1072 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1073 strcpy (pass_packet, "QPassSignals:");
1074 p = pass_packet + strlen (pass_packet);
1075 for (i = 0; i < numsigs; i++)
1076 {
1077 if (signal_stop_state (i) == 0
1078 && signal_print_state (i) == 0
1079 && signal_pass_state (i) == 1)
1080 {
1081 if (i >= 16)
1082 *p++ = tohex (i >> 4);
1083 *p++ = tohex (i & 15);
1084 if (count)
1085 *p++ = ';';
1086 else
1087 break;
1088 count--;
1089 }
1090 }
1091 *p = 0;
1092 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1093 {
1094 struct remote_state *rs = get_remote_state ();
1095 char *buf = rs->buf;
1096
1097 putpkt (pass_packet);
1098 getpkt (&rs->buf, &rs->buf_size, 0);
1099 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1100 if (last_pass_packet)
1101 xfree (last_pass_packet);
1102 last_pass_packet = pass_packet;
1103 }
1104 else
1105 xfree (pass_packet);
1106 }
1107 }
1108
1109 #define MAGIC_NULL_PID 42000
1110
1111 static void
1112 set_thread (int th, int gen)
1113 {
1114 struct remote_state *rs = get_remote_state ();
1115 char *buf = rs->buf;
1116 int state = gen ? general_thread : continue_thread;
1117
1118 if (state == th)
1119 return;
1120
1121 buf[0] = 'H';
1122 buf[1] = gen ? 'g' : 'c';
1123 if (th == MAGIC_NULL_PID)
1124 {
1125 buf[2] = '0';
1126 buf[3] = '\0';
1127 }
1128 else if (th < 0)
1129 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1130 else
1131 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1132 putpkt (buf);
1133 getpkt (&rs->buf, &rs->buf_size, 0);
1134 if (gen)
1135 general_thread = th;
1136 else
1137 continue_thread = th;
1138 }
1139 \f
1140 /* Return nonzero if the thread TH is still alive on the remote system. */
1141
1142 static int
1143 remote_thread_alive (ptid_t ptid)
1144 {
1145 struct remote_state *rs = get_remote_state ();
1146 int tid = PIDGET (ptid);
1147
1148 if (tid < 0)
1149 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1150 else
1151 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1152 putpkt (rs->buf);
1153 getpkt (&rs->buf, &rs->buf_size, 0);
1154 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1155 }
1156
1157 /* About these extended threadlist and threadinfo packets. They are
1158 variable length packets but, the fields within them are often fixed
1159 length. They are redundent enough to send over UDP as is the
1160 remote protocol in general. There is a matching unit test module
1161 in libstub. */
1162
1163 #define OPAQUETHREADBYTES 8
1164
1165 /* a 64 bit opaque identifier */
1166 typedef unsigned char threadref[OPAQUETHREADBYTES];
1167
1168 /* WARNING: This threadref data structure comes from the remote O.S.,
1169 libstub protocol encoding, and remote.c. it is not particularly
1170 changable. */
1171
1172 /* Right now, the internal structure is int. We want it to be bigger.
1173 Plan to fix this.
1174 */
1175
1176 typedef int gdb_threadref; /* Internal GDB thread reference. */
1177
1178 /* gdb_ext_thread_info is an internal GDB data structure which is
1179 equivalent to the reply of the remote threadinfo packet. */
1180
1181 struct gdb_ext_thread_info
1182 {
1183 threadref threadid; /* External form of thread reference. */
1184 int active; /* Has state interesting to GDB?
1185 regs, stack. */
1186 char display[256]; /* Brief state display, name,
1187 blocked/suspended. */
1188 char shortname[32]; /* To be used to name threads. */
1189 char more_display[256]; /* Long info, statistics, queue depth,
1190 whatever. */
1191 };
1192
1193 /* The volume of remote transfers can be limited by submitting
1194 a mask containing bits specifying the desired information.
1195 Use a union of these values as the 'selection' parameter to
1196 get_thread_info. FIXME: Make these TAG names more thread specific.
1197 */
1198
1199 #define TAG_THREADID 1
1200 #define TAG_EXISTS 2
1201 #define TAG_DISPLAY 4
1202 #define TAG_THREADNAME 8
1203 #define TAG_MOREDISPLAY 16
1204
1205 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1206
1207 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1208
1209 static char *unpack_nibble (char *buf, int *val);
1210
1211 static char *pack_nibble (char *buf, int nibble);
1212
1213 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1214
1215 static char *unpack_byte (char *buf, int *value);
1216
1217 static char *pack_int (char *buf, int value);
1218
1219 static char *unpack_int (char *buf, int *value);
1220
1221 static char *unpack_string (char *src, char *dest, int length);
1222
1223 static char *pack_threadid (char *pkt, threadref *id);
1224
1225 static char *unpack_threadid (char *inbuf, threadref *id);
1226
1227 void int_to_threadref (threadref *id, int value);
1228
1229 static int threadref_to_int (threadref *ref);
1230
1231 static void copy_threadref (threadref *dest, threadref *src);
1232
1233 static int threadmatch (threadref *dest, threadref *src);
1234
1235 static char *pack_threadinfo_request (char *pkt, int mode,
1236 threadref *id);
1237
1238 static int remote_unpack_thread_info_response (char *pkt,
1239 threadref *expectedref,
1240 struct gdb_ext_thread_info
1241 *info);
1242
1243
1244 static int remote_get_threadinfo (threadref *threadid,
1245 int fieldset, /*TAG mask */
1246 struct gdb_ext_thread_info *info);
1247
1248 static char *pack_threadlist_request (char *pkt, int startflag,
1249 int threadcount,
1250 threadref *nextthread);
1251
1252 static int parse_threadlist_response (char *pkt,
1253 int result_limit,
1254 threadref *original_echo,
1255 threadref *resultlist,
1256 int *doneflag);
1257
1258 static int remote_get_threadlist (int startflag,
1259 threadref *nextthread,
1260 int result_limit,
1261 int *done,
1262 int *result_count,
1263 threadref *threadlist);
1264
1265 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1266
1267 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1268 void *context, int looplimit);
1269
1270 static int remote_newthread_step (threadref *ref, void *context);
1271
1272 /* Encode 64 bits in 16 chars of hex. */
1273
1274 static const char hexchars[] = "0123456789abcdef";
1275
1276 static int
1277 ishex (int ch, int *val)
1278 {
1279 if ((ch >= 'a') && (ch <= 'f'))
1280 {
1281 *val = ch - 'a' + 10;
1282 return 1;
1283 }
1284 if ((ch >= 'A') && (ch <= 'F'))
1285 {
1286 *val = ch - 'A' + 10;
1287 return 1;
1288 }
1289 if ((ch >= '0') && (ch <= '9'))
1290 {
1291 *val = ch - '0';
1292 return 1;
1293 }
1294 return 0;
1295 }
1296
1297 static int
1298 stubhex (int ch)
1299 {
1300 if (ch >= 'a' && ch <= 'f')
1301 return ch - 'a' + 10;
1302 if (ch >= '0' && ch <= '9')
1303 return ch - '0';
1304 if (ch >= 'A' && ch <= 'F')
1305 return ch - 'A' + 10;
1306 return -1;
1307 }
1308
1309 static int
1310 stub_unpack_int (char *buff, int fieldlength)
1311 {
1312 int nibble;
1313 int retval = 0;
1314
1315 while (fieldlength)
1316 {
1317 nibble = stubhex (*buff++);
1318 retval |= nibble;
1319 fieldlength--;
1320 if (fieldlength)
1321 retval = retval << 4;
1322 }
1323 return retval;
1324 }
1325
1326 char *
1327 unpack_varlen_hex (char *buff, /* packet to parse */
1328 ULONGEST *result)
1329 {
1330 int nibble;
1331 ULONGEST retval = 0;
1332
1333 while (ishex (*buff, &nibble))
1334 {
1335 buff++;
1336 retval = retval << 4;
1337 retval |= nibble & 0x0f;
1338 }
1339 *result = retval;
1340 return buff;
1341 }
1342
1343 static char *
1344 unpack_nibble (char *buf, int *val)
1345 {
1346 ishex (*buf++, val);
1347 return buf;
1348 }
1349
1350 static char *
1351 pack_nibble (char *buf, int nibble)
1352 {
1353 *buf++ = hexchars[(nibble & 0x0f)];
1354 return buf;
1355 }
1356
1357 static char *
1358 pack_hex_byte (char *pkt, int byte)
1359 {
1360 *pkt++ = hexchars[(byte >> 4) & 0xf];
1361 *pkt++ = hexchars[(byte & 0xf)];
1362 return pkt;
1363 }
1364
1365 static char *
1366 unpack_byte (char *buf, int *value)
1367 {
1368 *value = stub_unpack_int (buf, 2);
1369 return buf + 2;
1370 }
1371
1372 static char *
1373 pack_int (char *buf, int value)
1374 {
1375 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1376 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1377 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1378 buf = pack_hex_byte (buf, (value & 0xff));
1379 return buf;
1380 }
1381
1382 static char *
1383 unpack_int (char *buf, int *value)
1384 {
1385 *value = stub_unpack_int (buf, 8);
1386 return buf + 8;
1387 }
1388
1389 #if 0 /* Currently unused, uncomment when needed. */
1390 static char *pack_string (char *pkt, char *string);
1391
1392 static char *
1393 pack_string (char *pkt, char *string)
1394 {
1395 char ch;
1396 int len;
1397
1398 len = strlen (string);
1399 if (len > 200)
1400 len = 200; /* Bigger than most GDB packets, junk??? */
1401 pkt = pack_hex_byte (pkt, len);
1402 while (len-- > 0)
1403 {
1404 ch = *string++;
1405 if ((ch == '\0') || (ch == '#'))
1406 ch = '*'; /* Protect encapsulation. */
1407 *pkt++ = ch;
1408 }
1409 return pkt;
1410 }
1411 #endif /* 0 (unused) */
1412
1413 static char *
1414 unpack_string (char *src, char *dest, int length)
1415 {
1416 while (length--)
1417 *dest++ = *src++;
1418 *dest = '\0';
1419 return src;
1420 }
1421
1422 static char *
1423 pack_threadid (char *pkt, threadref *id)
1424 {
1425 char *limit;
1426 unsigned char *altid;
1427
1428 altid = (unsigned char *) id;
1429 limit = pkt + BUF_THREAD_ID_SIZE;
1430 while (pkt < limit)
1431 pkt = pack_hex_byte (pkt, *altid++);
1432 return pkt;
1433 }
1434
1435
1436 static char *
1437 unpack_threadid (char *inbuf, threadref *id)
1438 {
1439 char *altref;
1440 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1441 int x, y;
1442
1443 altref = (char *) id;
1444
1445 while (inbuf < limit)
1446 {
1447 x = stubhex (*inbuf++);
1448 y = stubhex (*inbuf++);
1449 *altref++ = (x << 4) | y;
1450 }
1451 return inbuf;
1452 }
1453
1454 /* Externally, threadrefs are 64 bits but internally, they are still
1455 ints. This is due to a mismatch of specifications. We would like
1456 to use 64bit thread references internally. This is an adapter
1457 function. */
1458
1459 void
1460 int_to_threadref (threadref *id, int value)
1461 {
1462 unsigned char *scan;
1463
1464 scan = (unsigned char *) id;
1465 {
1466 int i = 4;
1467 while (i--)
1468 *scan++ = 0;
1469 }
1470 *scan++ = (value >> 24) & 0xff;
1471 *scan++ = (value >> 16) & 0xff;
1472 *scan++ = (value >> 8) & 0xff;
1473 *scan++ = (value & 0xff);
1474 }
1475
1476 static int
1477 threadref_to_int (threadref *ref)
1478 {
1479 int i, value = 0;
1480 unsigned char *scan;
1481
1482 scan = *ref;
1483 scan += 4;
1484 i = 4;
1485 while (i-- > 0)
1486 value = (value << 8) | ((*scan++) & 0xff);
1487 return value;
1488 }
1489
1490 static void
1491 copy_threadref (threadref *dest, threadref *src)
1492 {
1493 int i;
1494 unsigned char *csrc, *cdest;
1495
1496 csrc = (unsigned char *) src;
1497 cdest = (unsigned char *) dest;
1498 i = 8;
1499 while (i--)
1500 *cdest++ = *csrc++;
1501 }
1502
1503 static int
1504 threadmatch (threadref *dest, threadref *src)
1505 {
1506 /* Things are broken right now, so just assume we got a match. */
1507 #if 0
1508 unsigned char *srcp, *destp;
1509 int i, result;
1510 srcp = (char *) src;
1511 destp = (char *) dest;
1512
1513 result = 1;
1514 while (i-- > 0)
1515 result &= (*srcp++ == *destp++) ? 1 : 0;
1516 return result;
1517 #endif
1518 return 1;
1519 }
1520
1521 /*
1522 threadid:1, # always request threadid
1523 context_exists:2,
1524 display:4,
1525 unique_name:8,
1526 more_display:16
1527 */
1528
1529 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1530
1531 static char *
1532 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1533 {
1534 *pkt++ = 'q'; /* Info Query */
1535 *pkt++ = 'P'; /* process or thread info */
1536 pkt = pack_int (pkt, mode); /* mode */
1537 pkt = pack_threadid (pkt, id); /* threadid */
1538 *pkt = '\0'; /* terminate */
1539 return pkt;
1540 }
1541
1542 /* These values tag the fields in a thread info response packet. */
1543 /* Tagging the fields allows us to request specific fields and to
1544 add more fields as time goes by. */
1545
1546 #define TAG_THREADID 1 /* Echo the thread identifier. */
1547 #define TAG_EXISTS 2 /* Is this process defined enough to
1548 fetch registers and its stack? */
1549 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1550 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1551 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1552 the process. */
1553
1554 static int
1555 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1556 struct gdb_ext_thread_info *info)
1557 {
1558 struct remote_state *rs = get_remote_state ();
1559 int mask, length;
1560 int tag;
1561 threadref ref;
1562 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1563 int retval = 1;
1564
1565 /* info->threadid = 0; FIXME: implement zero_threadref. */
1566 info->active = 0;
1567 info->display[0] = '\0';
1568 info->shortname[0] = '\0';
1569 info->more_display[0] = '\0';
1570
1571 /* Assume the characters indicating the packet type have been
1572 stripped. */
1573 pkt = unpack_int (pkt, &mask); /* arg mask */
1574 pkt = unpack_threadid (pkt, &ref);
1575
1576 if (mask == 0)
1577 warning (_("Incomplete response to threadinfo request."));
1578 if (!threadmatch (&ref, expectedref))
1579 { /* This is an answer to a different request. */
1580 warning (_("ERROR RMT Thread info mismatch."));
1581 return 0;
1582 }
1583 copy_threadref (&info->threadid, &ref);
1584
1585 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1586
1587 /* Packets are terminated with nulls. */
1588 while ((pkt < limit) && mask && *pkt)
1589 {
1590 pkt = unpack_int (pkt, &tag); /* tag */
1591 pkt = unpack_byte (pkt, &length); /* length */
1592 if (!(tag & mask)) /* Tags out of synch with mask. */
1593 {
1594 warning (_("ERROR RMT: threadinfo tag mismatch."));
1595 retval = 0;
1596 break;
1597 }
1598 if (tag == TAG_THREADID)
1599 {
1600 if (length != 16)
1601 {
1602 warning (_("ERROR RMT: length of threadid is not 16."));
1603 retval = 0;
1604 break;
1605 }
1606 pkt = unpack_threadid (pkt, &ref);
1607 mask = mask & ~TAG_THREADID;
1608 continue;
1609 }
1610 if (tag == TAG_EXISTS)
1611 {
1612 info->active = stub_unpack_int (pkt, length);
1613 pkt += length;
1614 mask = mask & ~(TAG_EXISTS);
1615 if (length > 8)
1616 {
1617 warning (_("ERROR RMT: 'exists' length too long."));
1618 retval = 0;
1619 break;
1620 }
1621 continue;
1622 }
1623 if (tag == TAG_THREADNAME)
1624 {
1625 pkt = unpack_string (pkt, &info->shortname[0], length);
1626 mask = mask & ~TAG_THREADNAME;
1627 continue;
1628 }
1629 if (tag == TAG_DISPLAY)
1630 {
1631 pkt = unpack_string (pkt, &info->display[0], length);
1632 mask = mask & ~TAG_DISPLAY;
1633 continue;
1634 }
1635 if (tag == TAG_MOREDISPLAY)
1636 {
1637 pkt = unpack_string (pkt, &info->more_display[0], length);
1638 mask = mask & ~TAG_MOREDISPLAY;
1639 continue;
1640 }
1641 warning (_("ERROR RMT: unknown thread info tag."));
1642 break; /* Not a tag we know about. */
1643 }
1644 return retval;
1645 }
1646
1647 static int
1648 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1649 struct gdb_ext_thread_info *info)
1650 {
1651 struct remote_state *rs = get_remote_state ();
1652 int result;
1653
1654 pack_threadinfo_request (rs->buf, fieldset, threadid);
1655 putpkt (rs->buf);
1656 getpkt (&rs->buf, &rs->buf_size, 0);
1657 result = remote_unpack_thread_info_response (rs->buf + 2,
1658 threadid, info);
1659 return result;
1660 }
1661
1662 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1663
1664 static char *
1665 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1666 threadref *nextthread)
1667 {
1668 *pkt++ = 'q'; /* info query packet */
1669 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1670 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1671 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1672 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1673 *pkt = '\0';
1674 return pkt;
1675 }
1676
1677 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1678
1679 static int
1680 parse_threadlist_response (char *pkt, int result_limit,
1681 threadref *original_echo, threadref *resultlist,
1682 int *doneflag)
1683 {
1684 struct remote_state *rs = get_remote_state ();
1685 char *limit;
1686 int count, resultcount, done;
1687
1688 resultcount = 0;
1689 /* Assume the 'q' and 'M chars have been stripped. */
1690 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1691 /* done parse past here */
1692 pkt = unpack_byte (pkt, &count); /* count field */
1693 pkt = unpack_nibble (pkt, &done);
1694 /* The first threadid is the argument threadid. */
1695 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1696 while ((count-- > 0) && (pkt < limit))
1697 {
1698 pkt = unpack_threadid (pkt, resultlist++);
1699 if (resultcount++ >= result_limit)
1700 break;
1701 }
1702 if (doneflag)
1703 *doneflag = done;
1704 return resultcount;
1705 }
1706
1707 static int
1708 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1709 int *done, int *result_count, threadref *threadlist)
1710 {
1711 struct remote_state *rs = get_remote_state ();
1712 static threadref echo_nextthread;
1713 int result = 1;
1714
1715 /* Trancate result limit to be smaller than the packet size. */
1716 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1717 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1718
1719 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1720 putpkt (rs->buf);
1721 getpkt (&rs->buf, &rs->buf_size, 0);
1722
1723 *result_count =
1724 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1725 threadlist, done);
1726
1727 if (!threadmatch (&echo_nextthread, nextthread))
1728 {
1729 /* FIXME: This is a good reason to drop the packet. */
1730 /* Possably, there is a duplicate response. */
1731 /* Possabilities :
1732 retransmit immediatly - race conditions
1733 retransmit after timeout - yes
1734 exit
1735 wait for packet, then exit
1736 */
1737 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1738 return 0; /* I choose simply exiting. */
1739 }
1740 if (*result_count <= 0)
1741 {
1742 if (*done != 1)
1743 {
1744 warning (_("RMT ERROR : failed to get remote thread list."));
1745 result = 0;
1746 }
1747 return result; /* break; */
1748 }
1749 if (*result_count > result_limit)
1750 {
1751 *result_count = 0;
1752 warning (_("RMT ERROR: threadlist response longer than requested."));
1753 return 0;
1754 }
1755 return result;
1756 }
1757
1758 /* This is the interface between remote and threads, remotes upper
1759 interface. */
1760
1761 /* remote_find_new_threads retrieves the thread list and for each
1762 thread in the list, looks up the thread in GDB's internal list,
1763 ading the thread if it does not already exist. This involves
1764 getting partial thread lists from the remote target so, polling the
1765 quit_flag is required. */
1766
1767
1768 /* About this many threadisds fit in a packet. */
1769
1770 #define MAXTHREADLISTRESULTS 32
1771
1772 static int
1773 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1774 int looplimit)
1775 {
1776 int done, i, result_count;
1777 int startflag = 1;
1778 int result = 1;
1779 int loopcount = 0;
1780 static threadref nextthread;
1781 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1782
1783 done = 0;
1784 while (!done)
1785 {
1786 if (loopcount++ > looplimit)
1787 {
1788 result = 0;
1789 warning (_("Remote fetch threadlist -infinite loop-."));
1790 break;
1791 }
1792 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1793 &done, &result_count, resultthreadlist))
1794 {
1795 result = 0;
1796 break;
1797 }
1798 /* Clear for later iterations. */
1799 startflag = 0;
1800 /* Setup to resume next batch of thread references, set nextthread. */
1801 if (result_count >= 1)
1802 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1803 i = 0;
1804 while (result_count--)
1805 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1806 break;
1807 }
1808 return result;
1809 }
1810
1811 static int
1812 remote_newthread_step (threadref *ref, void *context)
1813 {
1814 ptid_t ptid;
1815
1816 ptid = pid_to_ptid (threadref_to_int (ref));
1817
1818 if (!in_thread_list (ptid))
1819 add_thread (ptid);
1820 return 1; /* continue iterator */
1821 }
1822
1823 #define CRAZY_MAX_THREADS 1000
1824
1825 static ptid_t
1826 remote_current_thread (ptid_t oldpid)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829
1830 putpkt ("qC");
1831 getpkt (&rs->buf, &rs->buf_size, 0);
1832 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1833 /* Use strtoul here, so we'll correctly parse values whose highest
1834 bit is set. The protocol carries them as a simple series of
1835 hex digits; in the absence of a sign, strtol will see such
1836 values as positive numbers out of range for signed 'long', and
1837 return LONG_MAX to indicate an overflow. */
1838 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1839 else
1840 return oldpid;
1841 }
1842
1843 /* Find new threads for info threads command.
1844 * Original version, using John Metzler's thread protocol.
1845 */
1846
1847 static void
1848 remote_find_new_threads (void)
1849 {
1850 remote_threadlist_iterator (remote_newthread_step, 0,
1851 CRAZY_MAX_THREADS);
1852 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1853 inferior_ptid = remote_current_thread (inferior_ptid);
1854 }
1855
1856 /*
1857 * Find all threads for info threads command.
1858 * Uses new thread protocol contributed by Cisco.
1859 * Falls back and attempts to use the older method (above)
1860 * if the target doesn't respond to the new method.
1861 */
1862
1863 static void
1864 remote_threads_info (void)
1865 {
1866 struct remote_state *rs = get_remote_state ();
1867 char *bufp;
1868 int tid;
1869
1870 if (remote_desc == 0) /* paranoia */
1871 error (_("Command can only be used when connected to the remote target."));
1872
1873 if (use_threadinfo_query)
1874 {
1875 putpkt ("qfThreadInfo");
1876 getpkt (&rs->buf, &rs->buf_size, 0);
1877 bufp = rs->buf;
1878 if (bufp[0] != '\0') /* q packet recognized */
1879 {
1880 while (*bufp++ == 'm') /* reply contains one or more TID */
1881 {
1882 do
1883 {
1884 /* Use strtoul here, so we'll correctly parse values
1885 whose highest bit is set. The protocol carries
1886 them as a simple series of hex digits; in the
1887 absence of a sign, strtol will see such values as
1888 positive numbers out of range for signed 'long',
1889 and return LONG_MAX to indicate an overflow. */
1890 tid = strtoul (bufp, &bufp, 16);
1891 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1892 add_thread (pid_to_ptid (tid));
1893 }
1894 while (*bufp++ == ','); /* comma-separated list */
1895 putpkt ("qsThreadInfo");
1896 getpkt (&rs->buf, &rs->buf_size, 0);
1897 bufp = rs->buf;
1898 }
1899 return; /* done */
1900 }
1901 }
1902
1903 /* Else fall back to old method based on jmetzler protocol. */
1904 use_threadinfo_query = 0;
1905 remote_find_new_threads ();
1906 return;
1907 }
1908
1909 /*
1910 * Collect a descriptive string about the given thread.
1911 * The target may say anything it wants to about the thread
1912 * (typically info about its blocked / runnable state, name, etc.).
1913 * This string will appear in the info threads display.
1914 *
1915 * Optional: targets are not required to implement this function.
1916 */
1917
1918 static char *
1919 remote_threads_extra_info (struct thread_info *tp)
1920 {
1921 struct remote_state *rs = get_remote_state ();
1922 int result;
1923 int set;
1924 threadref id;
1925 struct gdb_ext_thread_info threadinfo;
1926 static char display_buf[100]; /* arbitrary... */
1927 int n = 0; /* position in display_buf */
1928
1929 if (remote_desc == 0) /* paranoia */
1930 internal_error (__FILE__, __LINE__,
1931 _("remote_threads_extra_info"));
1932
1933 if (use_threadextra_query)
1934 {
1935 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1936 PIDGET (tp->ptid));
1937 putpkt (rs->buf);
1938 getpkt (&rs->buf, &rs->buf_size, 0);
1939 if (rs->buf[0] != 0)
1940 {
1941 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1942 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1943 display_buf [result] = '\0';
1944 return display_buf;
1945 }
1946 }
1947
1948 /* If the above query fails, fall back to the old method. */
1949 use_threadextra_query = 0;
1950 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1951 | TAG_MOREDISPLAY | TAG_DISPLAY;
1952 int_to_threadref (&id, PIDGET (tp->ptid));
1953 if (remote_get_threadinfo (&id, set, &threadinfo))
1954 if (threadinfo.active)
1955 {
1956 if (*threadinfo.shortname)
1957 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1958 " Name: %s,", threadinfo.shortname);
1959 if (*threadinfo.display)
1960 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1961 " State: %s,", threadinfo.display);
1962 if (*threadinfo.more_display)
1963 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1964 " Priority: %s", threadinfo.more_display);
1965
1966 if (n > 0)
1967 {
1968 /* For purely cosmetic reasons, clear up trailing commas. */
1969 if (',' == display_buf[n-1])
1970 display_buf[n-1] = ' ';
1971 return display_buf;
1972 }
1973 }
1974 return NULL;
1975 }
1976 \f
1977
1978 /* Restart the remote side; this is an extended protocol operation. */
1979
1980 static void
1981 extended_remote_restart (void)
1982 {
1983 struct remote_state *rs = get_remote_state ();
1984
1985 /* Send the restart command; for reasons I don't understand the
1986 remote side really expects a number after the "R". */
1987 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1988 putpkt (rs->buf);
1989
1990 remote_fileio_reset ();
1991
1992 /* Now query for status so this looks just like we restarted
1993 gdbserver from scratch. */
1994 putpkt ("?");
1995 getpkt (&rs->buf, &rs->buf_size, 0);
1996 }
1997 \f
1998 /* Clean up connection to a remote debugger. */
1999
2000 static void
2001 remote_close (int quitting)
2002 {
2003 if (remote_desc)
2004 serial_close (remote_desc);
2005 remote_desc = NULL;
2006 }
2007
2008 /* Query the remote side for the text, data and bss offsets. */
2009
2010 static void
2011 get_offsets (void)
2012 {
2013 struct remote_state *rs = get_remote_state ();
2014 char *buf;
2015 char *ptr;
2016 int lose, num_segments = 0, do_sections, do_segments;
2017 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2018 struct section_offsets *offs;
2019 struct symfile_segment_data *data;
2020
2021 if (symfile_objfile == NULL)
2022 return;
2023
2024 putpkt ("qOffsets");
2025 getpkt (&rs->buf, &rs->buf_size, 0);
2026 buf = rs->buf;
2027
2028 if (buf[0] == '\000')
2029 return; /* Return silently. Stub doesn't support
2030 this command. */
2031 if (buf[0] == 'E')
2032 {
2033 warning (_("Remote failure reply: %s"), buf);
2034 return;
2035 }
2036
2037 /* Pick up each field in turn. This used to be done with scanf, but
2038 scanf will make trouble if CORE_ADDR size doesn't match
2039 conversion directives correctly. The following code will work
2040 with any size of CORE_ADDR. */
2041 text_addr = data_addr = bss_addr = 0;
2042 ptr = buf;
2043 lose = 0;
2044
2045 if (strncmp (ptr, "Text=", 5) == 0)
2046 {
2047 ptr += 5;
2048 /* Don't use strtol, could lose on big values. */
2049 while (*ptr && *ptr != ';')
2050 text_addr = (text_addr << 4) + fromhex (*ptr++);
2051
2052 if (strncmp (ptr, ";Data=", 6) == 0)
2053 {
2054 ptr += 6;
2055 while (*ptr && *ptr != ';')
2056 data_addr = (data_addr << 4) + fromhex (*ptr++);
2057 }
2058 else
2059 lose = 1;
2060
2061 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2062 {
2063 ptr += 5;
2064 while (*ptr && *ptr != ';')
2065 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2066
2067 if (bss_addr != data_addr)
2068 warning (_("Target reported unsupported offsets: %s"), buf);
2069 }
2070 else
2071 lose = 1;
2072 }
2073 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2074 {
2075 ptr += 8;
2076 /* Don't use strtol, could lose on big values. */
2077 while (*ptr && *ptr != ';')
2078 text_addr = (text_addr << 4) + fromhex (*ptr++);
2079 num_segments = 1;
2080
2081 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2082 {
2083 ptr += 9;
2084 while (*ptr && *ptr != ';')
2085 data_addr = (data_addr << 4) + fromhex (*ptr++);
2086 num_segments++;
2087 }
2088 }
2089 else
2090 lose = 1;
2091
2092 if (lose)
2093 error (_("Malformed response to offset query, %s"), buf);
2094 else if (*ptr != '\0')
2095 warning (_("Target reported unsupported offsets: %s"), buf);
2096
2097 offs = ((struct section_offsets *)
2098 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2099 memcpy (offs, symfile_objfile->section_offsets,
2100 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2101
2102 data = get_symfile_segment_data (symfile_objfile->obfd);
2103 do_segments = (data != NULL);
2104 do_sections = num_segments == 0;
2105
2106 if (num_segments > 0)
2107 {
2108 segments[0] = text_addr;
2109 segments[1] = data_addr;
2110 }
2111 /* If we have two segments, we can still try to relocate everything
2112 by assuming that the .text and .data offsets apply to the whole
2113 text and data segments. Convert the offsets given in the packet
2114 to base addresses for symfile_map_offsets_to_segments. */
2115 else if (data && data->num_segments == 2)
2116 {
2117 segments[0] = data->segment_bases[0] + text_addr;
2118 segments[1] = data->segment_bases[1] + data_addr;
2119 num_segments = 2;
2120 }
2121 /* There's no way to relocate by segment. */
2122 else
2123 do_segments = 0;
2124
2125 if (do_segments)
2126 {
2127 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2128 offs, num_segments, segments);
2129
2130 if (ret == 0 && !do_sections)
2131 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2132
2133 if (ret > 0)
2134 do_sections = 0;
2135 }
2136
2137 if (data)
2138 free_symfile_segment_data (data);
2139
2140 if (do_sections)
2141 {
2142 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2143
2144 /* This is a temporary kludge to force data and bss to use the same offsets
2145 because that's what nlmconv does now. The real solution requires changes
2146 to the stub and remote.c that I don't have time to do right now. */
2147
2148 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2149 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2150 }
2151
2152 objfile_relocate (symfile_objfile, offs);
2153 }
2154
2155 /* Stub for catch_exception. */
2156
2157 static void
2158 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2159 {
2160 int from_tty = * (int *) from_tty_p;
2161
2162 immediate_quit++; /* Allow user to interrupt it. */
2163
2164 /* Ack any packet which the remote side has already sent. */
2165 serial_write (remote_desc, "+", 1);
2166
2167 /* Let the stub know that we want it to return the thread. */
2168 set_thread (-1, 0);
2169
2170 inferior_ptid = remote_current_thread (inferior_ptid);
2171
2172 get_offsets (); /* Get text, data & bss offsets. */
2173
2174 putpkt ("?"); /* Initiate a query from remote machine. */
2175 immediate_quit--;
2176
2177 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2178 }
2179
2180 /* Open a connection to a remote debugger.
2181 NAME is the filename used for communication. */
2182
2183 static void
2184 remote_open (char *name, int from_tty)
2185 {
2186 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2187 }
2188
2189 /* Just like remote_open, but with asynchronous support. */
2190 static void
2191 remote_async_open (char *name, int from_tty)
2192 {
2193 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2194 }
2195
2196 /* Open a connection to a remote debugger using the extended
2197 remote gdb protocol. NAME is the filename used for communication. */
2198
2199 static void
2200 extended_remote_open (char *name, int from_tty)
2201 {
2202 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2203 0 /* async_p */);
2204 }
2205
2206 /* Just like extended_remote_open, but with asynchronous support. */
2207 static void
2208 extended_remote_async_open (char *name, int from_tty)
2209 {
2210 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2211 1 /*extended_p */, 1 /* async_p */);
2212 }
2213
2214 /* Generic code for opening a connection to a remote target. */
2215
2216 static void
2217 init_all_packet_configs (void)
2218 {
2219 int i;
2220 for (i = 0; i < PACKET_MAX; i++)
2221 update_packet_config (&remote_protocol_packets[i]);
2222 }
2223
2224 /* Symbol look-up. */
2225
2226 static void
2227 remote_check_symbols (struct objfile *objfile)
2228 {
2229 struct remote_state *rs = get_remote_state ();
2230 char *msg, *reply, *tmp;
2231 struct minimal_symbol *sym;
2232 int end;
2233
2234 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2235 return;
2236
2237 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2238 because we need both at the same time. */
2239 msg = alloca (get_remote_packet_size ());
2240
2241 /* Invite target to request symbol lookups. */
2242
2243 putpkt ("qSymbol::");
2244 getpkt (&rs->buf, &rs->buf_size, 0);
2245 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2246 reply = rs->buf;
2247
2248 while (strncmp (reply, "qSymbol:", 8) == 0)
2249 {
2250 tmp = &reply[8];
2251 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2252 msg[end] = '\0';
2253 sym = lookup_minimal_symbol (msg, NULL, NULL);
2254 if (sym == NULL)
2255 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2256 else
2257 {
2258 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2259
2260 /* If this is a function address, return the start of code
2261 instead of any data function descriptor. */
2262 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2263 sym_addr,
2264 &current_target);
2265
2266 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2267 paddr_nz (sym_addr), &reply[8]);
2268 }
2269
2270 putpkt (msg);
2271 getpkt (&rs->buf, &rs->buf_size, 0);
2272 reply = rs->buf;
2273 }
2274 }
2275
2276 static struct serial *
2277 remote_serial_open (char *name)
2278 {
2279 static int udp_warning = 0;
2280
2281 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2282 of in ser-tcp.c, because it is the remote protocol assuming that the
2283 serial connection is reliable and not the serial connection promising
2284 to be. */
2285 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2286 {
2287 warning (_("\
2288 The remote protocol may be unreliable over UDP.\n\
2289 Some events may be lost, rendering further debugging impossible."));
2290 udp_warning = 1;
2291 }
2292
2293 return serial_open (name);
2294 }
2295
2296 /* This type describes each known response to the qSupported
2297 packet. */
2298 struct protocol_feature
2299 {
2300 /* The name of this protocol feature. */
2301 const char *name;
2302
2303 /* The default for this protocol feature. */
2304 enum packet_support default_support;
2305
2306 /* The function to call when this feature is reported, or after
2307 qSupported processing if the feature is not supported.
2308 The first argument points to this structure. The second
2309 argument indicates whether the packet requested support be
2310 enabled, disabled, or probed (or the default, if this function
2311 is being called at the end of processing and this feature was
2312 not reported). The third argument may be NULL; if not NULL, it
2313 is a NUL-terminated string taken from the packet following
2314 this feature's name and an equals sign. */
2315 void (*func) (const struct protocol_feature *, enum packet_support,
2316 const char *);
2317
2318 /* The corresponding packet for this feature. Only used if
2319 FUNC is remote_supported_packet. */
2320 int packet;
2321 };
2322
2323 static void
2324 remote_supported_packet (const struct protocol_feature *feature,
2325 enum packet_support support,
2326 const char *argument)
2327 {
2328 if (argument)
2329 {
2330 warning (_("Remote qSupported response supplied an unexpected value for"
2331 " \"%s\"."), feature->name);
2332 return;
2333 }
2334
2335 if (remote_protocol_packets[feature->packet].support
2336 == PACKET_SUPPORT_UNKNOWN)
2337 remote_protocol_packets[feature->packet].support = support;
2338 }
2339
2340 static void
2341 remote_packet_size (const struct protocol_feature *feature,
2342 enum packet_support support, const char *value)
2343 {
2344 struct remote_state *rs = get_remote_state ();
2345
2346 int packet_size;
2347 char *value_end;
2348
2349 if (support != PACKET_ENABLE)
2350 return;
2351
2352 if (value == NULL || *value == '\0')
2353 {
2354 warning (_("Remote target reported \"%s\" without a size."),
2355 feature->name);
2356 return;
2357 }
2358
2359 errno = 0;
2360 packet_size = strtol (value, &value_end, 16);
2361 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2362 {
2363 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2364 feature->name, value);
2365 return;
2366 }
2367
2368 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2369 {
2370 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2371 packet_size, MAX_REMOTE_PACKET_SIZE);
2372 packet_size = MAX_REMOTE_PACKET_SIZE;
2373 }
2374
2375 /* Record the new maximum packet size. */
2376 rs->explicit_packet_size = packet_size;
2377 }
2378
2379 static struct protocol_feature remote_protocol_features[] = {
2380 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2381 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2382 PACKET_qXfer_auxv },
2383 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2384 PACKET_qXfer_features },
2385 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2386 PACKET_qXfer_libraries },
2387 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2388 PACKET_qXfer_memory_map },
2389 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2390 PACKET_qXfer_spu_read },
2391 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2392 PACKET_qXfer_spu_write },
2393 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2394 PACKET_QPassSignals },
2395 };
2396
2397 static void
2398 remote_query_supported (void)
2399 {
2400 struct remote_state *rs = get_remote_state ();
2401 char *next;
2402 int i;
2403 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2404
2405 /* The packet support flags are handled differently for this packet
2406 than for most others. We treat an error, a disabled packet, and
2407 an empty response identically: any features which must be reported
2408 to be used will be automatically disabled. An empty buffer
2409 accomplishes this, since that is also the representation for a list
2410 containing no features. */
2411
2412 rs->buf[0] = 0;
2413 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2414 {
2415 putpkt ("qSupported");
2416 getpkt (&rs->buf, &rs->buf_size, 0);
2417
2418 /* If an error occured, warn, but do not return - just reset the
2419 buffer to empty and go on to disable features. */
2420 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2421 == PACKET_ERROR)
2422 {
2423 warning (_("Remote failure reply: %s"), rs->buf);
2424 rs->buf[0] = 0;
2425 }
2426 }
2427
2428 memset (seen, 0, sizeof (seen));
2429
2430 next = rs->buf;
2431 while (*next)
2432 {
2433 enum packet_support is_supported;
2434 char *p, *end, *name_end, *value;
2435
2436 /* First separate out this item from the rest of the packet. If
2437 there's another item after this, we overwrite the separator
2438 (terminated strings are much easier to work with). */
2439 p = next;
2440 end = strchr (p, ';');
2441 if (end == NULL)
2442 {
2443 end = p + strlen (p);
2444 next = end;
2445 }
2446 else
2447 {
2448 *end = '\0';
2449 next = end + 1;
2450
2451 if (end == p)
2452 {
2453 warning (_("empty item in \"qSupported\" response"));
2454 continue;
2455 }
2456 }
2457
2458 name_end = strchr (p, '=');
2459 if (name_end)
2460 {
2461 /* This is a name=value entry. */
2462 is_supported = PACKET_ENABLE;
2463 value = name_end + 1;
2464 *name_end = '\0';
2465 }
2466 else
2467 {
2468 value = NULL;
2469 switch (end[-1])
2470 {
2471 case '+':
2472 is_supported = PACKET_ENABLE;
2473 break;
2474
2475 case '-':
2476 is_supported = PACKET_DISABLE;
2477 break;
2478
2479 case '?':
2480 is_supported = PACKET_SUPPORT_UNKNOWN;
2481 break;
2482
2483 default:
2484 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2485 continue;
2486 }
2487 end[-1] = '\0';
2488 }
2489
2490 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2491 if (strcmp (remote_protocol_features[i].name, p) == 0)
2492 {
2493 const struct protocol_feature *feature;
2494
2495 seen[i] = 1;
2496 feature = &remote_protocol_features[i];
2497 feature->func (feature, is_supported, value);
2498 break;
2499 }
2500 }
2501
2502 /* If we increased the packet size, make sure to increase the global
2503 buffer size also. We delay this until after parsing the entire
2504 qSupported packet, because this is the same buffer we were
2505 parsing. */
2506 if (rs->buf_size < rs->explicit_packet_size)
2507 {
2508 rs->buf_size = rs->explicit_packet_size;
2509 rs->buf = xrealloc (rs->buf, rs->buf_size);
2510 }
2511
2512 /* Handle the defaults for unmentioned features. */
2513 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2514 if (!seen[i])
2515 {
2516 const struct protocol_feature *feature;
2517
2518 feature = &remote_protocol_features[i];
2519 feature->func (feature, feature->default_support, NULL);
2520 }
2521 }
2522
2523
2524 static void
2525 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2526 int extended_p, int async_p)
2527 {
2528 struct remote_state *rs = get_remote_state ();
2529 if (name == 0)
2530 error (_("To open a remote debug connection, you need to specify what\n"
2531 "serial device is attached to the remote system\n"
2532 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2533
2534 /* See FIXME above. */
2535 if (!async_p)
2536 wait_forever_enabled_p = 1;
2537
2538 target_preopen (from_tty);
2539
2540 unpush_target (target);
2541
2542 /* Make sure we send the passed signals list the next time we resume. */
2543 xfree (last_pass_packet);
2544 last_pass_packet = NULL;
2545
2546 remote_fileio_reset ();
2547 reopen_exec_file ();
2548 reread_symbols ();
2549
2550 remote_desc = remote_serial_open (name);
2551 if (!remote_desc)
2552 perror_with_name (name);
2553
2554 if (baud_rate != -1)
2555 {
2556 if (serial_setbaudrate (remote_desc, baud_rate))
2557 {
2558 /* The requested speed could not be set. Error out to
2559 top level after closing remote_desc. Take care to
2560 set remote_desc to NULL to avoid closing remote_desc
2561 more than once. */
2562 serial_close (remote_desc);
2563 remote_desc = NULL;
2564 perror_with_name (name);
2565 }
2566 }
2567
2568 serial_raw (remote_desc);
2569
2570 /* If there is something sitting in the buffer we might take it as a
2571 response to a command, which would be bad. */
2572 serial_flush_input (remote_desc);
2573
2574 if (from_tty)
2575 {
2576 puts_filtered ("Remote debugging using ");
2577 puts_filtered (name);
2578 puts_filtered ("\n");
2579 }
2580 push_target (target); /* Switch to using remote target now. */
2581
2582 /* Reset the target state; these things will be queried either by
2583 remote_query_supported or as they are needed. */
2584 init_all_packet_configs ();
2585 rs->explicit_packet_size = 0;
2586
2587 general_thread = -2;
2588 continue_thread = -2;
2589
2590 /* Probe for ability to use "ThreadInfo" query, as required. */
2591 use_threadinfo_query = 1;
2592 use_threadextra_query = 1;
2593
2594 /* The first packet we send to the target is the optional "supported
2595 packets" request. If the target can answer this, it will tell us
2596 which later probes to skip. */
2597 remote_query_supported ();
2598
2599 /* Next, if the target can specify a description, read it. We do
2600 this before anything involving memory or registers. */
2601 target_find_description ();
2602
2603 /* Without this, some commands which require an active target (such
2604 as kill) won't work. This variable serves (at least) double duty
2605 as both the pid of the target process (if it has such), and as a
2606 flag indicating that a target is active. These functions should
2607 be split out into seperate variables, especially since GDB will
2608 someday have a notion of debugging several processes. */
2609
2610 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2611
2612 if (async_p)
2613 {
2614 /* With this target we start out by owning the terminal. */
2615 remote_async_terminal_ours_p = 1;
2616
2617 /* FIXME: cagney/1999-09-23: During the initial connection it is
2618 assumed that the target is already ready and able to respond to
2619 requests. Unfortunately remote_start_remote() eventually calls
2620 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2621 around this. Eventually a mechanism that allows
2622 wait_for_inferior() to expect/get timeouts will be
2623 implemented. */
2624 wait_forever_enabled_p = 0;
2625 }
2626
2627 /* First delete any symbols previously loaded from shared libraries. */
2628 no_shared_libraries (NULL, 0);
2629
2630 /* Start the remote connection. If error() or QUIT, discard this
2631 target (we'd otherwise be in an inconsistent state) and then
2632 propogate the error on up the exception chain. This ensures that
2633 the caller doesn't stumble along blindly assuming that the
2634 function succeeded. The CLI doesn't have this problem but other
2635 UI's, such as MI do.
2636
2637 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2638 this function should return an error indication letting the
2639 caller restore the previous state. Unfortunately the command
2640 ``target remote'' is directly wired to this function making that
2641 impossible. On a positive note, the CLI side of this problem has
2642 been fixed - the function set_cmd_context() makes it possible for
2643 all the ``target ....'' commands to share a common callback
2644 function. See cli-dump.c. */
2645 {
2646 struct gdb_exception ex
2647 = catch_exception (uiout, remote_start_remote, &from_tty,
2648 RETURN_MASK_ALL);
2649 if (ex.reason < 0)
2650 {
2651 pop_target ();
2652 if (async_p)
2653 wait_forever_enabled_p = 1;
2654 throw_exception (ex);
2655 }
2656 }
2657
2658 if (async_p)
2659 wait_forever_enabled_p = 1;
2660
2661 if (extended_p)
2662 {
2663 /* Tell the remote that we are using the extended protocol. */
2664 putpkt ("!");
2665 getpkt (&rs->buf, &rs->buf_size, 0);
2666 }
2667
2668 if (exec_bfd) /* No use without an exec file. */
2669 remote_check_symbols (symfile_objfile);
2670 }
2671
2672 /* This takes a program previously attached to and detaches it. After
2673 this is done, GDB can be used to debug some other program. We
2674 better not have left any breakpoints in the target program or it'll
2675 die when it hits one. */
2676
2677 static void
2678 remote_detach (char *args, int from_tty)
2679 {
2680 struct remote_state *rs = get_remote_state ();
2681
2682 if (args)
2683 error (_("Argument given to \"detach\" when remotely debugging."));
2684
2685 /* Tell the remote target to detach. */
2686 strcpy (rs->buf, "D");
2687 putpkt (rs->buf);
2688 getpkt (&rs->buf, &rs->buf_size, 0);
2689
2690 if (rs->buf[0] == 'E')
2691 error (_("Can't detach process."));
2692
2693 /* Unregister the file descriptor from the event loop. */
2694 if (target_is_async_p ())
2695 serial_async (remote_desc, NULL, 0);
2696
2697 target_mourn_inferior ();
2698 if (from_tty)
2699 puts_filtered ("Ending remote debugging.\n");
2700 }
2701
2702 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2703
2704 static void
2705 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2706 {
2707 if (args)
2708 error (_("Argument given to \"detach\" when remotely debugging."));
2709
2710 /* Unregister the file descriptor from the event loop. */
2711 if (target_is_async_p ())
2712 serial_async (remote_desc, NULL, 0);
2713
2714 target_mourn_inferior ();
2715 if (from_tty)
2716 puts_filtered ("Ending remote debugging.\n");
2717 }
2718
2719 /* Convert hex digit A to a number. */
2720
2721 static int
2722 fromhex (int a)
2723 {
2724 if (a >= '0' && a <= '9')
2725 return a - '0';
2726 else if (a >= 'a' && a <= 'f')
2727 return a - 'a' + 10;
2728 else if (a >= 'A' && a <= 'F')
2729 return a - 'A' + 10;
2730 else
2731 error (_("Reply contains invalid hex digit %d"), a);
2732 }
2733
2734 static int
2735 hex2bin (const char *hex, gdb_byte *bin, int count)
2736 {
2737 int i;
2738
2739 for (i = 0; i < count; i++)
2740 {
2741 if (hex[0] == 0 || hex[1] == 0)
2742 {
2743 /* Hex string is short, or of uneven length.
2744 Return the count that has been converted so far. */
2745 return i;
2746 }
2747 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2748 hex += 2;
2749 }
2750 return i;
2751 }
2752
2753 /* Convert number NIB to a hex digit. */
2754
2755 static int
2756 tohex (int nib)
2757 {
2758 if (nib < 10)
2759 return '0' + nib;
2760 else
2761 return 'a' + nib - 10;
2762 }
2763
2764 static int
2765 bin2hex (const gdb_byte *bin, char *hex, int count)
2766 {
2767 int i;
2768 /* May use a length, or a nul-terminated string as input. */
2769 if (count == 0)
2770 count = strlen ((char *) bin);
2771
2772 for (i = 0; i < count; i++)
2773 {
2774 *hex++ = tohex ((*bin >> 4) & 0xf);
2775 *hex++ = tohex (*bin++ & 0xf);
2776 }
2777 *hex = 0;
2778 return i;
2779 }
2780 \f
2781 /* Check for the availability of vCont. This function should also check
2782 the response. */
2783
2784 static void
2785 remote_vcont_probe (struct remote_state *rs)
2786 {
2787 char *buf;
2788
2789 strcpy (rs->buf, "vCont?");
2790 putpkt (rs->buf);
2791 getpkt (&rs->buf, &rs->buf_size, 0);
2792 buf = rs->buf;
2793
2794 /* Make sure that the features we assume are supported. */
2795 if (strncmp (buf, "vCont", 5) == 0)
2796 {
2797 char *p = &buf[5];
2798 int support_s, support_S, support_c, support_C;
2799
2800 support_s = 0;
2801 support_S = 0;
2802 support_c = 0;
2803 support_C = 0;
2804 while (p && *p == ';')
2805 {
2806 p++;
2807 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2808 support_s = 1;
2809 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2810 support_S = 1;
2811 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2812 support_c = 1;
2813 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2814 support_C = 1;
2815
2816 p = strchr (p, ';');
2817 }
2818
2819 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2820 BUF will make packet_ok disable the packet. */
2821 if (!support_s || !support_S || !support_c || !support_C)
2822 buf[0] = 0;
2823 }
2824
2825 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2826 }
2827
2828 /* Resume the remote inferior by using a "vCont" packet. The thread
2829 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2830 resumed thread should be single-stepped and/or signalled. If PTID's
2831 PID is -1, then all threads are resumed; the thread to be stepped and/or
2832 signalled is given in the global INFERIOR_PTID. This function returns
2833 non-zero iff it resumes the inferior.
2834
2835 This function issues a strict subset of all possible vCont commands at the
2836 moment. */
2837
2838 static int
2839 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2840 {
2841 struct remote_state *rs = get_remote_state ();
2842 int pid = PIDGET (ptid);
2843 char *buf = NULL, *outbuf;
2844 struct cleanup *old_cleanup;
2845
2846 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2847 remote_vcont_probe (rs);
2848
2849 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2850 return 0;
2851
2852 /* If we could generate a wider range of packets, we'd have to worry
2853 about overflowing BUF. Should there be a generic
2854 "multi-part-packet" packet? */
2855
2856 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2857 {
2858 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2859 don't have any PID numbers the inferior will understand. Make sure
2860 to only send forms that do not specify a PID. */
2861 if (step && siggnal != TARGET_SIGNAL_0)
2862 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2863 else if (step)
2864 outbuf = xstrprintf ("vCont;s");
2865 else if (siggnal != TARGET_SIGNAL_0)
2866 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2867 else
2868 outbuf = xstrprintf ("vCont;c");
2869 }
2870 else if (pid == -1)
2871 {
2872 /* Resume all threads, with preference for INFERIOR_PTID. */
2873 if (step && siggnal != TARGET_SIGNAL_0)
2874 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2875 PIDGET (inferior_ptid));
2876 else if (step)
2877 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2878 else if (siggnal != TARGET_SIGNAL_0)
2879 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2880 PIDGET (inferior_ptid));
2881 else
2882 outbuf = xstrprintf ("vCont;c");
2883 }
2884 else
2885 {
2886 /* Scheduler locking; resume only PTID. */
2887 if (step && siggnal != TARGET_SIGNAL_0)
2888 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2889 else if (step)
2890 outbuf = xstrprintf ("vCont;s:%x", pid);
2891 else if (siggnal != TARGET_SIGNAL_0)
2892 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2893 else
2894 outbuf = xstrprintf ("vCont;c:%x", pid);
2895 }
2896
2897 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2898 old_cleanup = make_cleanup (xfree, outbuf);
2899
2900 putpkt (outbuf);
2901
2902 do_cleanups (old_cleanup);
2903
2904 return 1;
2905 }
2906
2907 /* Tell the remote machine to resume. */
2908
2909 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2910
2911 static int last_sent_step;
2912
2913 static void
2914 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2915 {
2916 struct remote_state *rs = get_remote_state ();
2917 char *buf;
2918 int pid = PIDGET (ptid);
2919
2920 last_sent_signal = siggnal;
2921 last_sent_step = step;
2922
2923 /* A hook for when we need to do something at the last moment before
2924 resumption. */
2925 if (deprecated_target_resume_hook)
2926 (*deprecated_target_resume_hook) ();
2927
2928 /* Update the inferior on signals to silently pass, if they've changed. */
2929 remote_pass_signals ();
2930
2931 /* The vCont packet doesn't need to specify threads via Hc. */
2932 if (remote_vcont_resume (ptid, step, siggnal))
2933 return;
2934
2935 /* All other supported resume packets do use Hc, so call set_thread. */
2936 if (pid == -1)
2937 set_thread (0, 0); /* Run any thread. */
2938 else
2939 set_thread (pid, 0); /* Run this thread. */
2940
2941 buf = rs->buf;
2942 if (siggnal != TARGET_SIGNAL_0)
2943 {
2944 buf[0] = step ? 'S' : 'C';
2945 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2946 buf[2] = tohex (((int) siggnal) & 0xf);
2947 buf[3] = '\0';
2948 }
2949 else
2950 strcpy (buf, step ? "s" : "c");
2951
2952 putpkt (buf);
2953 }
2954
2955 /* Same as remote_resume, but with async support. */
2956 static void
2957 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2958 {
2959 remote_resume (ptid, step, siggnal);
2960
2961 /* We are about to start executing the inferior, let's register it
2962 with the event loop. NOTE: this is the one place where all the
2963 execution commands end up. We could alternatively do this in each
2964 of the execution commands in infcmd.c. */
2965 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2966 into infcmd.c in order to allow inferior function calls to work
2967 NOT asynchronously. */
2968 if (target_can_async_p ())
2969 target_async (inferior_event_handler, 0);
2970 /* Tell the world that the target is now executing. */
2971 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2972 this? Instead, should the client of target just assume (for
2973 async targets) that the target is going to start executing? Is
2974 this information already found in the continuation block? */
2975 if (target_is_async_p ())
2976 target_executing = 1;
2977 }
2978 \f
2979
2980 /* Set up the signal handler for SIGINT, while the target is
2981 executing, ovewriting the 'regular' SIGINT signal handler. */
2982 static void
2983 initialize_sigint_signal_handler (void)
2984 {
2985 sigint_remote_token =
2986 create_async_signal_handler (async_remote_interrupt, NULL);
2987 signal (SIGINT, handle_remote_sigint);
2988 }
2989
2990 /* Signal handler for SIGINT, while the target is executing. */
2991 static void
2992 handle_remote_sigint (int sig)
2993 {
2994 signal (sig, handle_remote_sigint_twice);
2995 sigint_remote_twice_token =
2996 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2997 mark_async_signal_handler_wrapper (sigint_remote_token);
2998 }
2999
3000 /* Signal handler for SIGINT, installed after SIGINT has already been
3001 sent once. It will take effect the second time that the user sends
3002 a ^C. */
3003 static void
3004 handle_remote_sigint_twice (int sig)
3005 {
3006 signal (sig, handle_sigint);
3007 sigint_remote_twice_token =
3008 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3009 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3010 }
3011
3012 /* Perform the real interruption of the target execution, in response
3013 to a ^C. */
3014 static void
3015 async_remote_interrupt (gdb_client_data arg)
3016 {
3017 if (remote_debug)
3018 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3019
3020 target_stop ();
3021 }
3022
3023 /* Perform interrupt, if the first attempt did not succeed. Just give
3024 up on the target alltogether. */
3025 void
3026 async_remote_interrupt_twice (gdb_client_data arg)
3027 {
3028 if (remote_debug)
3029 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3030 /* Do something only if the target was not killed by the previous
3031 cntl-C. */
3032 if (target_executing)
3033 {
3034 interrupt_query ();
3035 signal (SIGINT, handle_remote_sigint);
3036 }
3037 }
3038
3039 /* Reinstall the usual SIGINT handlers, after the target has
3040 stopped. */
3041 static void
3042 cleanup_sigint_signal_handler (void *dummy)
3043 {
3044 signal (SIGINT, handle_sigint);
3045 if (sigint_remote_twice_token)
3046 delete_async_signal_handler (&sigint_remote_twice_token);
3047 if (sigint_remote_token)
3048 delete_async_signal_handler (&sigint_remote_token);
3049 }
3050
3051 /* Send ^C to target to halt it. Target will respond, and send us a
3052 packet. */
3053 static void (*ofunc) (int);
3054
3055 /* The command line interface's stop routine. This function is installed
3056 as a signal handler for SIGINT. The first time a user requests a
3057 stop, we call remote_stop to send a break or ^C. If there is no
3058 response from the target (it didn't stop when the user requested it),
3059 we ask the user if he'd like to detach from the target. */
3060 static void
3061 remote_interrupt (int signo)
3062 {
3063 /* If this doesn't work, try more severe steps. */
3064 signal (signo, remote_interrupt_twice);
3065
3066 if (remote_debug)
3067 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3068
3069 target_stop ();
3070 }
3071
3072 /* The user typed ^C twice. */
3073
3074 static void
3075 remote_interrupt_twice (int signo)
3076 {
3077 signal (signo, ofunc);
3078 interrupt_query ();
3079 signal (signo, remote_interrupt);
3080 }
3081
3082 /* This is the generic stop called via the target vector. When a target
3083 interrupt is requested, either by the command line or the GUI, we
3084 will eventually end up here. */
3085 static void
3086 remote_stop (void)
3087 {
3088 /* Send a break or a ^C, depending on user preference. */
3089 if (remote_debug)
3090 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3091
3092 if (remote_break)
3093 serial_send_break (remote_desc);
3094 else
3095 serial_write (remote_desc, "\003", 1);
3096 }
3097
3098 /* Ask the user what to do when an interrupt is received. */
3099
3100 static void
3101 interrupt_query (void)
3102 {
3103 target_terminal_ours ();
3104
3105 if (query ("Interrupted while waiting for the program.\n\
3106 Give up (and stop debugging it)? "))
3107 {
3108 target_mourn_inferior ();
3109 deprecated_throw_reason (RETURN_QUIT);
3110 }
3111
3112 target_terminal_inferior ();
3113 }
3114
3115 /* Enable/disable target terminal ownership. Most targets can use
3116 terminal groups to control terminal ownership. Remote targets are
3117 different in that explicit transfer of ownership to/from GDB/target
3118 is required. */
3119
3120 static void
3121 remote_async_terminal_inferior (void)
3122 {
3123 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3124 sync_execution here. This function should only be called when
3125 GDB is resuming the inferior in the forground. A background
3126 resume (``run&'') should leave GDB in control of the terminal and
3127 consequently should not call this code. */
3128 if (!sync_execution)
3129 return;
3130 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3131 calls target_terminal_*() idenpotent. The event-loop GDB talking
3132 to an asynchronous target with a synchronous command calls this
3133 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3134 stops trying to transfer the terminal to the target when it
3135 shouldn't this guard can go away. */
3136 if (!remote_async_terminal_ours_p)
3137 return;
3138 delete_file_handler (input_fd);
3139 remote_async_terminal_ours_p = 0;
3140 initialize_sigint_signal_handler ();
3141 /* NOTE: At this point we could also register our selves as the
3142 recipient of all input. Any characters typed could then be
3143 passed on down to the target. */
3144 }
3145
3146 static void
3147 remote_async_terminal_ours (void)
3148 {
3149 /* See FIXME in remote_async_terminal_inferior. */
3150 if (!sync_execution)
3151 return;
3152 /* See FIXME in remote_async_terminal_inferior. */
3153 if (remote_async_terminal_ours_p)
3154 return;
3155 cleanup_sigint_signal_handler (NULL);
3156 add_file_handler (input_fd, stdin_event_handler, 0);
3157 remote_async_terminal_ours_p = 1;
3158 }
3159
3160 /* If nonzero, ignore the next kill. */
3161
3162 int kill_kludge;
3163
3164 void
3165 remote_console_output (char *msg)
3166 {
3167 char *p;
3168
3169 for (p = msg; p[0] && p[1]; p += 2)
3170 {
3171 char tb[2];
3172 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3173 tb[0] = c;
3174 tb[1] = 0;
3175 fputs_unfiltered (tb, gdb_stdtarg);
3176 }
3177 gdb_flush (gdb_stdtarg);
3178 }
3179
3180 /* Wait until the remote machine stops, then return,
3181 storing status in STATUS just as `wait' would.
3182 Returns "pid", which in the case of a multi-threaded
3183 remote OS, is the thread-id. */
3184
3185 static ptid_t
3186 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3187 {
3188 struct remote_state *rs = get_remote_state ();
3189 struct remote_arch_state *rsa = get_remote_arch_state ();
3190 ULONGEST thread_num = -1;
3191 ULONGEST addr;
3192 int solibs_changed = 0;
3193
3194 status->kind = TARGET_WAITKIND_EXITED;
3195 status->value.integer = 0;
3196
3197 while (1)
3198 {
3199 char *buf, *p;
3200
3201 ofunc = signal (SIGINT, remote_interrupt);
3202 getpkt (&rs->buf, &rs->buf_size, 1);
3203 signal (SIGINT, ofunc);
3204
3205 buf = rs->buf;
3206
3207 /* This is a hook for when we need to do something (perhaps the
3208 collection of trace data) every time the target stops. */
3209 if (deprecated_target_wait_loop_hook)
3210 (*deprecated_target_wait_loop_hook) ();
3211
3212 remote_stopped_by_watchpoint_p = 0;
3213
3214 switch (buf[0])
3215 {
3216 case 'E': /* Error of some sort. */
3217 warning (_("Remote failure reply: %s"), buf);
3218 continue;
3219 case 'F': /* File-I/O request. */
3220 remote_fileio_request (buf);
3221 continue;
3222 case 'T': /* Status with PC, SP, FP, ... */
3223 {
3224 gdb_byte regs[MAX_REGISTER_SIZE];
3225
3226 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3227 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3228 ss = signal number
3229 n... = register number
3230 r... = register contents
3231 */
3232 p = &buf[3]; /* after Txx */
3233
3234 while (*p)
3235 {
3236 char *p1;
3237 char *p_temp;
3238 int fieldsize;
3239 LONGEST pnum = 0;
3240
3241 /* If the packet contains a register number save it in
3242 pnum and set p1 to point to the character following
3243 it. Otherwise p1 points to p. */
3244
3245 /* If this packet is an awatch packet, don't parse the
3246 'a' as a register number. */
3247
3248 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3249 {
3250 /* Read the ``P'' register number. */
3251 pnum = strtol (p, &p_temp, 16);
3252 p1 = p_temp;
3253 }
3254 else
3255 p1 = p;
3256
3257 if (p1 == p) /* No register number present here. */
3258 {
3259 p1 = strchr (p, ':');
3260 if (p1 == NULL)
3261 error (_("Malformed packet(a) (missing colon): %s\n\
3262 Packet: '%s'\n"),
3263 p, buf);
3264 if (strncmp (p, "thread", p1 - p) == 0)
3265 {
3266 p_temp = unpack_varlen_hex (++p1, &thread_num);
3267 record_currthread (thread_num);
3268 p = p_temp;
3269 }
3270 else if ((strncmp (p, "watch", p1 - p) == 0)
3271 || (strncmp (p, "rwatch", p1 - p) == 0)
3272 || (strncmp (p, "awatch", p1 - p) == 0))
3273 {
3274 remote_stopped_by_watchpoint_p = 1;
3275 p = unpack_varlen_hex (++p1, &addr);
3276 remote_watch_data_address = (CORE_ADDR)addr;
3277 }
3278 else if (strncmp (p, "library", p1 - p) == 0)
3279 {
3280 p1++;
3281 p_temp = p1;
3282 while (*p_temp && *p_temp != ';')
3283 p_temp++;
3284
3285 solibs_changed = 1;
3286 p = p_temp;
3287 }
3288 else
3289 {
3290 /* Silently skip unknown optional info. */
3291 p_temp = strchr (p1 + 1, ';');
3292 if (p_temp)
3293 p = p_temp;
3294 }
3295 }
3296 else
3297 {
3298 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3299 p = p1;
3300
3301 if (*p++ != ':')
3302 error (_("Malformed packet(b) (missing colon): %s\n\
3303 Packet: '%s'\n"),
3304 p, buf);
3305
3306 if (reg == NULL)
3307 error (_("Remote sent bad register number %s: %s\n\
3308 Packet: '%s'\n"),
3309 phex_nz (pnum, 0), p, buf);
3310
3311 fieldsize = hex2bin (p, regs,
3312 register_size (current_gdbarch,
3313 reg->regnum));
3314 p += 2 * fieldsize;
3315 if (fieldsize < register_size (current_gdbarch,
3316 reg->regnum))
3317 warning (_("Remote reply is too short: %s"), buf);
3318 regcache_raw_supply (get_current_regcache (),
3319 reg->regnum, regs);
3320 }
3321
3322 if (*p++ != ';')
3323 error (_("Remote register badly formatted: %s\nhere: %s"),
3324 buf, p);
3325 }
3326 }
3327 /* fall through */
3328 case 'S': /* Old style status, just signal only. */
3329 if (solibs_changed)
3330 status->kind = TARGET_WAITKIND_LOADED;
3331 else
3332 {
3333 status->kind = TARGET_WAITKIND_STOPPED;
3334 status->value.sig = (enum target_signal)
3335 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3336 }
3337
3338 if (buf[3] == 'p')
3339 {
3340 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3341 record_currthread (thread_num);
3342 }
3343 goto got_status;
3344 case 'W': /* Target exited. */
3345 {
3346 /* The remote process exited. */
3347 status->kind = TARGET_WAITKIND_EXITED;
3348 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3349 goto got_status;
3350 }
3351 case 'X':
3352 status->kind = TARGET_WAITKIND_SIGNALLED;
3353 status->value.sig = (enum target_signal)
3354 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3355 kill_kludge = 1;
3356
3357 goto got_status;
3358 case 'O': /* Console output. */
3359 remote_console_output (buf + 1);
3360 continue;
3361 case '\0':
3362 if (last_sent_signal != TARGET_SIGNAL_0)
3363 {
3364 /* Zero length reply means that we tried 'S' or 'C' and
3365 the remote system doesn't support it. */
3366 target_terminal_ours_for_output ();
3367 printf_filtered
3368 ("Can't send signals to this remote system. %s not sent.\n",
3369 target_signal_to_name (last_sent_signal));
3370 last_sent_signal = TARGET_SIGNAL_0;
3371 target_terminal_inferior ();
3372
3373 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3374 putpkt ((char *) buf);
3375 continue;
3376 }
3377 /* else fallthrough */
3378 default:
3379 warning (_("Invalid remote reply: %s"), buf);
3380 continue;
3381 }
3382 }
3383 got_status:
3384 if (thread_num != -1)
3385 {
3386 return pid_to_ptid (thread_num);
3387 }
3388 return inferior_ptid;
3389 }
3390
3391 /* Async version of remote_wait. */
3392 static ptid_t
3393 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3394 {
3395 struct remote_state *rs = get_remote_state ();
3396 struct remote_arch_state *rsa = get_remote_arch_state ();
3397 ULONGEST thread_num = -1;
3398 ULONGEST addr;
3399 int solibs_changed = 0;
3400
3401 status->kind = TARGET_WAITKIND_EXITED;
3402 status->value.integer = 0;
3403
3404 remote_stopped_by_watchpoint_p = 0;
3405
3406 while (1)
3407 {
3408 char *buf, *p;
3409
3410 if (!target_is_async_p ())
3411 ofunc = signal (SIGINT, remote_interrupt);
3412 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3413 _never_ wait for ever -> test on target_is_async_p().
3414 However, before we do that we need to ensure that the caller
3415 knows how to take the target into/out of async mode. */
3416 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3417 if (!target_is_async_p ())
3418 signal (SIGINT, ofunc);
3419
3420 buf = rs->buf;
3421
3422 /* This is a hook for when we need to do something (perhaps the
3423 collection of trace data) every time the target stops. */
3424 if (deprecated_target_wait_loop_hook)
3425 (*deprecated_target_wait_loop_hook) ();
3426
3427 switch (buf[0])
3428 {
3429 case 'E': /* Error of some sort. */
3430 warning (_("Remote failure reply: %s"), buf);
3431 continue;
3432 case 'F': /* File-I/O request. */
3433 remote_fileio_request (buf);
3434 continue;
3435 case 'T': /* Status with PC, SP, FP, ... */
3436 {
3437 gdb_byte regs[MAX_REGISTER_SIZE];
3438
3439 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3440 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3441 ss = signal number
3442 n... = register number
3443 r... = register contents
3444 */
3445 p = &buf[3]; /* after Txx */
3446
3447 while (*p)
3448 {
3449 char *p1;
3450 char *p_temp;
3451 int fieldsize;
3452 long pnum = 0;
3453
3454 /* If the packet contains a register number, save it
3455 in pnum and set p1 to point to the character
3456 following it. Otherwise p1 points to p. */
3457
3458 /* If this packet is an awatch packet, don't parse the 'a'
3459 as a register number. */
3460
3461 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3462 {
3463 /* Read the register number. */
3464 pnum = strtol (p, &p_temp, 16);
3465 p1 = p_temp;
3466 }
3467 else
3468 p1 = p;
3469
3470 if (p1 == p) /* No register number present here. */
3471 {
3472 p1 = strchr (p, ':');
3473 if (p1 == NULL)
3474 error (_("Malformed packet(a) (missing colon): %s\n\
3475 Packet: '%s'\n"),
3476 p, buf);
3477 if (strncmp (p, "thread", p1 - p) == 0)
3478 {
3479 p_temp = unpack_varlen_hex (++p1, &thread_num);
3480 record_currthread (thread_num);
3481 p = p_temp;
3482 }
3483 else if ((strncmp (p, "watch", p1 - p) == 0)
3484 || (strncmp (p, "rwatch", p1 - p) == 0)
3485 || (strncmp (p, "awatch", p1 - p) == 0))
3486 {
3487 remote_stopped_by_watchpoint_p = 1;
3488 p = unpack_varlen_hex (++p1, &addr);
3489 remote_watch_data_address = (CORE_ADDR)addr;
3490 }
3491 else if (strncmp (p, "library", p1 - p) == 0)
3492 {
3493 p1++;
3494 p_temp = p1;
3495 while (*p_temp && *p_temp != ';')
3496 p_temp++;
3497
3498 solibs_changed = 1;
3499 p = p_temp;
3500 }
3501 else
3502 {
3503 /* Silently skip unknown optional info. */
3504 p_temp = strchr (p1 + 1, ';');
3505 if (p_temp)
3506 p = p_temp;
3507 }
3508 }
3509
3510 else
3511 {
3512 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3513 p = p1;
3514 if (*p++ != ':')
3515 error (_("Malformed packet(b) (missing colon): %s\n\
3516 Packet: '%s'\n"),
3517 p, buf);
3518
3519 if (reg == NULL)
3520 error (_("Remote sent bad register number %ld: %s\n\
3521 Packet: '%s'\n"),
3522 pnum, p, buf);
3523
3524 fieldsize = hex2bin (p, regs,
3525 register_size (current_gdbarch,
3526 reg->regnum));
3527 p += 2 * fieldsize;
3528 if (fieldsize < register_size (current_gdbarch,
3529 reg->regnum))
3530 warning (_("Remote reply is too short: %s"), buf);
3531 regcache_raw_supply (get_current_regcache (),
3532 reg->regnum, regs);
3533 }
3534
3535 if (*p++ != ';')
3536 error (_("Remote register badly formatted: %s\nhere: %s"),
3537 buf, p);
3538 }
3539 }
3540 /* fall through */
3541 case 'S': /* Old style status, just signal only. */
3542 if (solibs_changed)
3543 status->kind = TARGET_WAITKIND_LOADED;
3544 else
3545 {
3546 status->kind = TARGET_WAITKIND_STOPPED;
3547 status->value.sig = (enum target_signal)
3548 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3549 }
3550
3551 if (buf[3] == 'p')
3552 {
3553 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3554 record_currthread (thread_num);
3555 }
3556 goto got_status;
3557 case 'W': /* Target exited. */
3558 {
3559 /* The remote process exited. */
3560 status->kind = TARGET_WAITKIND_EXITED;
3561 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3562 goto got_status;
3563 }
3564 case 'X':
3565 status->kind = TARGET_WAITKIND_SIGNALLED;
3566 status->value.sig = (enum target_signal)
3567 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3568 kill_kludge = 1;
3569
3570 goto got_status;
3571 case 'O': /* Console output. */
3572 remote_console_output (buf + 1);
3573 /* Return immediately to the event loop. The event loop will
3574 still be waiting on the inferior afterwards. */
3575 status->kind = TARGET_WAITKIND_IGNORE;
3576 goto got_status;
3577 case '\0':
3578 if (last_sent_signal != TARGET_SIGNAL_0)
3579 {
3580 /* Zero length reply means that we tried 'S' or 'C' and
3581 the remote system doesn't support it. */
3582 target_terminal_ours_for_output ();
3583 printf_filtered
3584 ("Can't send signals to this remote system. %s not sent.\n",
3585 target_signal_to_name (last_sent_signal));
3586 last_sent_signal = TARGET_SIGNAL_0;
3587 target_terminal_inferior ();
3588
3589 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3590 putpkt ((char *) buf);
3591 continue;
3592 }
3593 /* else fallthrough */
3594 default:
3595 warning (_("Invalid remote reply: %s"), buf);
3596 continue;
3597 }
3598 }
3599 got_status:
3600 if (thread_num != -1)
3601 {
3602 return pid_to_ptid (thread_num);
3603 }
3604 return inferior_ptid;
3605 }
3606
3607 /* Fetch a single register using a 'p' packet. */
3608
3609 static int
3610 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3611 {
3612 struct remote_state *rs = get_remote_state ();
3613 char *buf, *p;
3614 char regp[MAX_REGISTER_SIZE];
3615 int i;
3616
3617 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3618 return 0;
3619
3620 if (reg->pnum == -1)
3621 return 0;
3622
3623 p = rs->buf;
3624 *p++ = 'p';
3625 p += hexnumstr (p, reg->pnum);
3626 *p++ = '\0';
3627 remote_send (&rs->buf, &rs->buf_size);
3628
3629 buf = rs->buf;
3630
3631 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3632 {
3633 case PACKET_OK:
3634 break;
3635 case PACKET_UNKNOWN:
3636 return 0;
3637 case PACKET_ERROR:
3638 error (_("Could not fetch register \"%s\""),
3639 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3640 }
3641
3642 /* If this register is unfetchable, tell the regcache. */
3643 if (buf[0] == 'x')
3644 {
3645 regcache_raw_supply (regcache, reg->regnum, NULL);
3646 return 1;
3647 }
3648
3649 /* Otherwise, parse and supply the value. */
3650 p = buf;
3651 i = 0;
3652 while (p[0] != 0)
3653 {
3654 if (p[1] == 0)
3655 error (_("fetch_register_using_p: early buf termination"));
3656
3657 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3658 p += 2;
3659 }
3660 regcache_raw_supply (regcache, reg->regnum, regp);
3661 return 1;
3662 }
3663
3664 /* Fetch the registers included in the target's 'g' packet. */
3665
3666 static int
3667 send_g_packet (void)
3668 {
3669 struct remote_state *rs = get_remote_state ();
3670 int i, buf_len;
3671 char *p;
3672 char *regs;
3673
3674 sprintf (rs->buf, "g");
3675 remote_send (&rs->buf, &rs->buf_size);
3676
3677 /* We can get out of synch in various cases. If the first character
3678 in the buffer is not a hex character, assume that has happened
3679 and try to fetch another packet to read. */
3680 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3681 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3682 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3683 && rs->buf[0] != 'x') /* New: unavailable register value. */
3684 {
3685 if (remote_debug)
3686 fprintf_unfiltered (gdb_stdlog,
3687 "Bad register packet; fetching a new packet\n");
3688 getpkt (&rs->buf, &rs->buf_size, 0);
3689 }
3690
3691 buf_len = strlen (rs->buf);
3692
3693 /* Sanity check the received packet. */
3694 if (buf_len % 2 != 0)
3695 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3696
3697 return buf_len / 2;
3698 }
3699
3700 static void
3701 process_g_packet (struct regcache *regcache)
3702 {
3703 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3704 struct remote_state *rs = get_remote_state ();
3705 struct remote_arch_state *rsa = get_remote_arch_state ();
3706 int i, buf_len;
3707 char *p;
3708 char *regs;
3709
3710 buf_len = strlen (rs->buf);
3711
3712 /* Further sanity checks, with knowledge of the architecture. */
3713 if (buf_len > 2 * rsa->sizeof_g_packet)
3714 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3715
3716 /* Save the size of the packet sent to us by the target. It is used
3717 as a heuristic when determining the max size of packets that the
3718 target can safely receive. */
3719 if (rsa->actual_register_packet_size == 0)
3720 rsa->actual_register_packet_size = buf_len;
3721
3722 /* If this is smaller than we guessed the 'g' packet would be,
3723 update our records. A 'g' reply that doesn't include a register's
3724 value implies either that the register is not available, or that
3725 the 'p' packet must be used. */
3726 if (buf_len < 2 * rsa->sizeof_g_packet)
3727 {
3728 rsa->sizeof_g_packet = buf_len / 2;
3729
3730 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3731 {
3732 if (rsa->regs[i].pnum == -1)
3733 continue;
3734
3735 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3736 rsa->regs[i].in_g_packet = 0;
3737 else
3738 rsa->regs[i].in_g_packet = 1;
3739 }
3740 }
3741
3742 regs = alloca (rsa->sizeof_g_packet);
3743
3744 /* Unimplemented registers read as all bits zero. */
3745 memset (regs, 0, rsa->sizeof_g_packet);
3746
3747 /* Reply describes registers byte by byte, each byte encoded as two
3748 hex characters. Suck them all up, then supply them to the
3749 register cacheing/storage mechanism. */
3750
3751 p = rs->buf;
3752 for (i = 0; i < rsa->sizeof_g_packet; i++)
3753 {
3754 if (p[0] == 0 || p[1] == 0)
3755 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3756 internal_error (__FILE__, __LINE__,
3757 "unexpected end of 'g' packet reply");
3758
3759 if (p[0] == 'x' && p[1] == 'x')
3760 regs[i] = 0; /* 'x' */
3761 else
3762 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3763 p += 2;
3764 }
3765
3766 {
3767 int i;
3768 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3769 {
3770 struct packet_reg *r = &rsa->regs[i];
3771 if (r->in_g_packet)
3772 {
3773 if (r->offset * 2 >= strlen (rs->buf))
3774 /* This shouldn't happen - we adjusted in_g_packet above. */
3775 internal_error (__FILE__, __LINE__,
3776 "unexpected end of 'g' packet reply");
3777 else if (rs->buf[r->offset * 2] == 'x')
3778 {
3779 gdb_assert (r->offset * 2 < strlen (rs->buf));
3780 /* The register isn't available, mark it as such (at
3781 the same time setting the value to zero). */
3782 regcache_raw_supply (regcache, r->regnum, NULL);
3783 }
3784 else
3785 regcache_raw_supply (regcache, r->regnum,
3786 regs + r->offset);
3787 }
3788 }
3789 }
3790 }
3791
3792 static void
3793 fetch_registers_using_g (struct regcache *regcache)
3794 {
3795 send_g_packet ();
3796 process_g_packet (regcache);
3797 }
3798
3799 static void
3800 remote_fetch_registers (struct regcache *regcache, int regnum)
3801 {
3802 struct remote_state *rs = get_remote_state ();
3803 struct remote_arch_state *rsa = get_remote_arch_state ();
3804 int i;
3805
3806 set_thread (PIDGET (inferior_ptid), 1);
3807
3808 if (regnum >= 0)
3809 {
3810 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3811 gdb_assert (reg != NULL);
3812
3813 /* If this register might be in the 'g' packet, try that first -
3814 we are likely to read more than one register. If this is the
3815 first 'g' packet, we might be overly optimistic about its
3816 contents, so fall back to 'p'. */
3817 if (reg->in_g_packet)
3818 {
3819 fetch_registers_using_g (regcache);
3820 if (reg->in_g_packet)
3821 return;
3822 }
3823
3824 if (fetch_register_using_p (regcache, reg))
3825 return;
3826
3827 /* This register is not available. */
3828 regcache_raw_supply (regcache, reg->regnum, NULL);
3829
3830 return;
3831 }
3832
3833 fetch_registers_using_g (regcache);
3834
3835 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3836 if (!rsa->regs[i].in_g_packet)
3837 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3838 {
3839 /* This register is not available. */
3840 regcache_raw_supply (regcache, i, NULL);
3841 }
3842 }
3843
3844 /* Prepare to store registers. Since we may send them all (using a
3845 'G' request), we have to read out the ones we don't want to change
3846 first. */
3847
3848 static void
3849 remote_prepare_to_store (struct regcache *regcache)
3850 {
3851 struct remote_arch_state *rsa = get_remote_arch_state ();
3852 int i;
3853 gdb_byte buf[MAX_REGISTER_SIZE];
3854
3855 /* Make sure the entire registers array is valid. */
3856 switch (remote_protocol_packets[PACKET_P].support)
3857 {
3858 case PACKET_DISABLE:
3859 case PACKET_SUPPORT_UNKNOWN:
3860 /* Make sure all the necessary registers are cached. */
3861 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3862 if (rsa->regs[i].in_g_packet)
3863 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3864 break;
3865 case PACKET_ENABLE:
3866 break;
3867 }
3868 }
3869
3870 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3871 packet was not recognized. */
3872
3873 static int
3874 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3875 {
3876 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3877 struct remote_state *rs = get_remote_state ();
3878 struct remote_arch_state *rsa = get_remote_arch_state ();
3879 /* Try storing a single register. */
3880 char *buf = rs->buf;
3881 gdb_byte regp[MAX_REGISTER_SIZE];
3882 char *p;
3883
3884 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3885 return 0;
3886
3887 if (reg->pnum == -1)
3888 return 0;
3889
3890 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3891 p = buf + strlen (buf);
3892 regcache_raw_collect (regcache, reg->regnum, regp);
3893 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
3894 remote_send (&rs->buf, &rs->buf_size);
3895
3896 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3897 {
3898 case PACKET_OK:
3899 return 1;
3900 case PACKET_ERROR:
3901 error (_("Could not write register \"%s\""),
3902 gdbarch_register_name (gdbarch, reg->regnum));
3903 case PACKET_UNKNOWN:
3904 return 0;
3905 default:
3906 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3907 }
3908 }
3909
3910 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3911 contents of the register cache buffer. FIXME: ignores errors. */
3912
3913 static void
3914 store_registers_using_G (const struct regcache *regcache)
3915 {
3916 struct remote_state *rs = get_remote_state ();
3917 struct remote_arch_state *rsa = get_remote_arch_state ();
3918 gdb_byte *regs;
3919 char *p;
3920
3921 /* Extract all the registers in the regcache copying them into a
3922 local buffer. */
3923 {
3924 int i;
3925 regs = alloca (rsa->sizeof_g_packet);
3926 memset (regs, 0, rsa->sizeof_g_packet);
3927 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3928 {
3929 struct packet_reg *r = &rsa->regs[i];
3930 if (r->in_g_packet)
3931 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3932 }
3933 }
3934
3935 /* Command describes registers byte by byte,
3936 each byte encoded as two hex characters. */
3937 p = rs->buf;
3938 *p++ = 'G';
3939 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3940 updated. */
3941 bin2hex (regs, p, rsa->sizeof_g_packet);
3942 remote_send (&rs->buf, &rs->buf_size);
3943 }
3944
3945 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3946 of the register cache buffer. FIXME: ignores errors. */
3947
3948 static void
3949 remote_store_registers (struct regcache *regcache, int regnum)
3950 {
3951 struct remote_state *rs = get_remote_state ();
3952 struct remote_arch_state *rsa = get_remote_arch_state ();
3953 int i;
3954
3955 set_thread (PIDGET (inferior_ptid), 1);
3956
3957 if (regnum >= 0)
3958 {
3959 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3960 gdb_assert (reg != NULL);
3961
3962 /* Always prefer to store registers using the 'P' packet if
3963 possible; we often change only a small number of registers.
3964 Sometimes we change a larger number; we'd need help from a
3965 higher layer to know to use 'G'. */
3966 if (store_register_using_P (regcache, reg))
3967 return;
3968
3969 /* For now, don't complain if we have no way to write the
3970 register. GDB loses track of unavailable registers too
3971 easily. Some day, this may be an error. We don't have
3972 any way to read the register, either... */
3973 if (!reg->in_g_packet)
3974 return;
3975
3976 store_registers_using_G (regcache);
3977 return;
3978 }
3979
3980 store_registers_using_G (regcache);
3981
3982 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3983 if (!rsa->regs[i].in_g_packet)
3984 if (!store_register_using_P (regcache, &rsa->regs[i]))
3985 /* See above for why we do not issue an error here. */
3986 continue;
3987 }
3988 \f
3989
3990 /* Return the number of hex digits in num. */
3991
3992 static int
3993 hexnumlen (ULONGEST num)
3994 {
3995 int i;
3996
3997 for (i = 0; num != 0; i++)
3998 num >>= 4;
3999
4000 return max (i, 1);
4001 }
4002
4003 /* Set BUF to the minimum number of hex digits representing NUM. */
4004
4005 static int
4006 hexnumstr (char *buf, ULONGEST num)
4007 {
4008 int len = hexnumlen (num);
4009 return hexnumnstr (buf, num, len);
4010 }
4011
4012
4013 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4014
4015 static int
4016 hexnumnstr (char *buf, ULONGEST num, int width)
4017 {
4018 int i;
4019
4020 buf[width] = '\0';
4021
4022 for (i = width - 1; i >= 0; i--)
4023 {
4024 buf[i] = "0123456789abcdef"[(num & 0xf)];
4025 num >>= 4;
4026 }
4027
4028 return width;
4029 }
4030
4031 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4032
4033 static CORE_ADDR
4034 remote_address_masked (CORE_ADDR addr)
4035 {
4036 int address_size = remote_address_size;
4037 /* If "remoteaddresssize" was not set, default to target address size. */
4038 if (!address_size)
4039 address_size = gdbarch_addr_bit (current_gdbarch);
4040
4041 if (address_size > 0
4042 && address_size < (sizeof (ULONGEST) * 8))
4043 {
4044 /* Only create a mask when that mask can safely be constructed
4045 in a ULONGEST variable. */
4046 ULONGEST mask = 1;
4047 mask = (mask << address_size) - 1;
4048 addr &= mask;
4049 }
4050 return addr;
4051 }
4052
4053 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4054 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4055 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4056 (which may be more than *OUT_LEN due to escape characters). The
4057 total number of bytes in the output buffer will be at most
4058 OUT_MAXLEN. */
4059
4060 static int
4061 remote_escape_output (const gdb_byte *buffer, int len,
4062 gdb_byte *out_buf, int *out_len,
4063 int out_maxlen)
4064 {
4065 int input_index, output_index;
4066
4067 output_index = 0;
4068 for (input_index = 0; input_index < len; input_index++)
4069 {
4070 gdb_byte b = buffer[input_index];
4071
4072 if (b == '$' || b == '#' || b == '}')
4073 {
4074 /* These must be escaped. */
4075 if (output_index + 2 > out_maxlen)
4076 break;
4077 out_buf[output_index++] = '}';
4078 out_buf[output_index++] = b ^ 0x20;
4079 }
4080 else
4081 {
4082 if (output_index + 1 > out_maxlen)
4083 break;
4084 out_buf[output_index++] = b;
4085 }
4086 }
4087
4088 *out_len = input_index;
4089 return output_index;
4090 }
4091
4092 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4093 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4094 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4095
4096 This function reverses remote_escape_output. It allows more
4097 escaped characters than that function does, in particular because
4098 '*' must be escaped to avoid the run-length encoding processing
4099 in reading packets. */
4100
4101 static int
4102 remote_unescape_input (const gdb_byte *buffer, int len,
4103 gdb_byte *out_buf, int out_maxlen)
4104 {
4105 int input_index, output_index;
4106 int escaped;
4107
4108 output_index = 0;
4109 escaped = 0;
4110 for (input_index = 0; input_index < len; input_index++)
4111 {
4112 gdb_byte b = buffer[input_index];
4113
4114 if (output_index + 1 > out_maxlen)
4115 {
4116 warning (_("Received too much data from remote target;"
4117 " ignoring overflow."));
4118 return output_index;
4119 }
4120
4121 if (escaped)
4122 {
4123 out_buf[output_index++] = b ^ 0x20;
4124 escaped = 0;
4125 }
4126 else if (b == '}')
4127 escaped = 1;
4128 else
4129 out_buf[output_index++] = b;
4130 }
4131
4132 if (escaped)
4133 error (_("Unmatched escape character in target response."));
4134
4135 return output_index;
4136 }
4137
4138 /* Determine whether the remote target supports binary downloading.
4139 This is accomplished by sending a no-op memory write of zero length
4140 to the target at the specified address. It does not suffice to send
4141 the whole packet, since many stubs strip the eighth bit and
4142 subsequently compute a wrong checksum, which causes real havoc with
4143 remote_write_bytes.
4144
4145 NOTE: This can still lose if the serial line is not eight-bit
4146 clean. In cases like this, the user should clear "remote
4147 X-packet". */
4148
4149 static void
4150 check_binary_download (CORE_ADDR addr)
4151 {
4152 struct remote_state *rs = get_remote_state ();
4153
4154 switch (remote_protocol_packets[PACKET_X].support)
4155 {
4156 case PACKET_DISABLE:
4157 break;
4158 case PACKET_ENABLE:
4159 break;
4160 case PACKET_SUPPORT_UNKNOWN:
4161 {
4162 char *p;
4163
4164 p = rs->buf;
4165 *p++ = 'X';
4166 p += hexnumstr (p, (ULONGEST) addr);
4167 *p++ = ',';
4168 p += hexnumstr (p, (ULONGEST) 0);
4169 *p++ = ':';
4170 *p = '\0';
4171
4172 putpkt_binary (rs->buf, (int) (p - rs->buf));
4173 getpkt (&rs->buf, &rs->buf_size, 0);
4174
4175 if (rs->buf[0] == '\0')
4176 {
4177 if (remote_debug)
4178 fprintf_unfiltered (gdb_stdlog,
4179 "binary downloading NOT suppported by target\n");
4180 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4181 }
4182 else
4183 {
4184 if (remote_debug)
4185 fprintf_unfiltered (gdb_stdlog,
4186 "binary downloading suppported by target\n");
4187 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4188 }
4189 break;
4190 }
4191 }
4192 }
4193
4194 /* Write memory data directly to the remote machine.
4195 This does not inform the data cache; the data cache uses this.
4196 HEADER is the starting part of the packet.
4197 MEMADDR is the address in the remote memory space.
4198 MYADDR is the address of the buffer in our space.
4199 LEN is the number of bytes.
4200 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4201 should send data as binary ('X'), or hex-encoded ('M').
4202
4203 The function creates packet of the form
4204 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4205
4206 where encoding of <DATA> is termined by PACKET_FORMAT.
4207
4208 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4209 are omitted.
4210
4211 Returns the number of bytes transferred, or 0 (setting errno) for
4212 error. Only transfer a single packet. */
4213
4214 static int
4215 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4216 const gdb_byte *myaddr, int len,
4217 char packet_format, int use_length)
4218 {
4219 struct remote_state *rs = get_remote_state ();
4220 char *p;
4221 char *plen = NULL;
4222 int plenlen = 0;
4223 int todo;
4224 int nr_bytes;
4225 int payload_size;
4226 int payload_length;
4227 int header_length;
4228
4229 if (packet_format != 'X' && packet_format != 'M')
4230 internal_error (__FILE__, __LINE__,
4231 "remote_write_bytes_aux: bad packet format");
4232
4233 if (len <= 0)
4234 return 0;
4235
4236 payload_size = get_memory_write_packet_size ();
4237
4238 /* The packet buffer will be large enough for the payload;
4239 get_memory_packet_size ensures this. */
4240 rs->buf[0] = '\0';
4241
4242 /* Compute the size of the actual payload by subtracting out the
4243 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4244 */
4245 payload_size -= strlen ("$,:#NN");
4246 if (!use_length)
4247 /* The comma won't be used. */
4248 payload_size += 1;
4249 header_length = strlen (header);
4250 payload_size -= header_length;
4251 payload_size -= hexnumlen (memaddr);
4252
4253 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4254
4255 strcat (rs->buf, header);
4256 p = rs->buf + strlen (header);
4257
4258 /* Compute a best guess of the number of bytes actually transfered. */
4259 if (packet_format == 'X')
4260 {
4261 /* Best guess at number of bytes that will fit. */
4262 todo = min (len, payload_size);
4263 if (use_length)
4264 payload_size -= hexnumlen (todo);
4265 todo = min (todo, payload_size);
4266 }
4267 else
4268 {
4269 /* Num bytes that will fit. */
4270 todo = min (len, payload_size / 2);
4271 if (use_length)
4272 payload_size -= hexnumlen (todo);
4273 todo = min (todo, payload_size / 2);
4274 }
4275
4276 if (todo <= 0)
4277 internal_error (__FILE__, __LINE__,
4278 _("minumum packet size too small to write data"));
4279
4280 /* If we already need another packet, then try to align the end
4281 of this packet to a useful boundary. */
4282 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4283 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4284
4285 /* Append "<memaddr>". */
4286 memaddr = remote_address_masked (memaddr);
4287 p += hexnumstr (p, (ULONGEST) memaddr);
4288
4289 if (use_length)
4290 {
4291 /* Append ",". */
4292 *p++ = ',';
4293
4294 /* Append <len>. Retain the location/size of <len>. It may need to
4295 be adjusted once the packet body has been created. */
4296 plen = p;
4297 plenlen = hexnumstr (p, (ULONGEST) todo);
4298 p += plenlen;
4299 }
4300
4301 /* Append ":". */
4302 *p++ = ':';
4303 *p = '\0';
4304
4305 /* Append the packet body. */
4306 if (packet_format == 'X')
4307 {
4308 /* Binary mode. Send target system values byte by byte, in
4309 increasing byte addresses. Only escape certain critical
4310 characters. */
4311 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4312 payload_size);
4313
4314 /* If not all TODO bytes fit, then we'll need another packet. Make
4315 a second try to keep the end of the packet aligned. Don't do
4316 this if the packet is tiny. */
4317 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4318 {
4319 int new_nr_bytes;
4320
4321 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4322 - memaddr);
4323 if (new_nr_bytes != nr_bytes)
4324 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4325 p, &nr_bytes,
4326 payload_size);
4327 }
4328
4329 p += payload_length;
4330 if (use_length && nr_bytes < todo)
4331 {
4332 /* Escape chars have filled up the buffer prematurely,
4333 and we have actually sent fewer bytes than planned.
4334 Fix-up the length field of the packet. Use the same
4335 number of characters as before. */
4336 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4337 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4338 }
4339 }
4340 else
4341 {
4342 /* Normal mode: Send target system values byte by byte, in
4343 increasing byte addresses. Each byte is encoded as a two hex
4344 value. */
4345 nr_bytes = bin2hex (myaddr, p, todo);
4346 p += 2 * nr_bytes;
4347 }
4348
4349 putpkt_binary (rs->buf, (int) (p - rs->buf));
4350 getpkt (&rs->buf, &rs->buf_size, 0);
4351
4352 if (rs->buf[0] == 'E')
4353 {
4354 /* There is no correspondance between what the remote protocol
4355 uses for errors and errno codes. We would like a cleaner way
4356 of representing errors (big enough to include errno codes,
4357 bfd_error codes, and others). But for now just return EIO. */
4358 errno = EIO;
4359 return 0;
4360 }
4361
4362 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4363 fewer bytes than we'd planned. */
4364 return nr_bytes;
4365 }
4366
4367 /* Write memory data directly to the remote machine.
4368 This does not inform the data cache; the data cache uses this.
4369 MEMADDR is the address in the remote memory space.
4370 MYADDR is the address of the buffer in our space.
4371 LEN is the number of bytes.
4372
4373 Returns number of bytes transferred, or 0 (setting errno) for
4374 error. Only transfer a single packet. */
4375
4376 int
4377 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4378 {
4379 char *packet_format = 0;
4380
4381 /* Check whether the target supports binary download. */
4382 check_binary_download (memaddr);
4383
4384 switch (remote_protocol_packets[PACKET_X].support)
4385 {
4386 case PACKET_ENABLE:
4387 packet_format = "X";
4388 break;
4389 case PACKET_DISABLE:
4390 packet_format = "M";
4391 break;
4392 case PACKET_SUPPORT_UNKNOWN:
4393 internal_error (__FILE__, __LINE__,
4394 _("remote_write_bytes: bad internal state"));
4395 default:
4396 internal_error (__FILE__, __LINE__, _("bad switch"));
4397 }
4398
4399 return remote_write_bytes_aux (packet_format,
4400 memaddr, myaddr, len, packet_format[0], 1);
4401 }
4402
4403 /* Read memory data directly from the remote machine.
4404 This does not use the data cache; the data cache uses this.
4405 MEMADDR is the address in the remote memory space.
4406 MYADDR is the address of the buffer in our space.
4407 LEN is the number of bytes.
4408
4409 Returns number of bytes transferred, or 0 for error. */
4410
4411 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4412 remote targets) shouldn't attempt to read the entire buffer.
4413 Instead it should read a single packet worth of data and then
4414 return the byte size of that packet to the caller. The caller (its
4415 caller and its callers caller ;-) already contains code for
4416 handling partial reads. */
4417
4418 int
4419 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4420 {
4421 struct remote_state *rs = get_remote_state ();
4422 int max_buf_size; /* Max size of packet output buffer. */
4423 int origlen;
4424
4425 if (len <= 0)
4426 return 0;
4427
4428 max_buf_size = get_memory_read_packet_size ();
4429 /* The packet buffer will be large enough for the payload;
4430 get_memory_packet_size ensures this. */
4431
4432 origlen = len;
4433 while (len > 0)
4434 {
4435 char *p;
4436 int todo;
4437 int i;
4438
4439 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4440
4441 /* construct "m"<memaddr>","<len>" */
4442 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4443 memaddr = remote_address_masked (memaddr);
4444 p = rs->buf;
4445 *p++ = 'm';
4446 p += hexnumstr (p, (ULONGEST) memaddr);
4447 *p++ = ',';
4448 p += hexnumstr (p, (ULONGEST) todo);
4449 *p = '\0';
4450
4451 putpkt (rs->buf);
4452 getpkt (&rs->buf, &rs->buf_size, 0);
4453
4454 if (rs->buf[0] == 'E'
4455 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4456 && rs->buf[3] == '\0')
4457 {
4458 /* There is no correspondance between what the remote
4459 protocol uses for errors and errno codes. We would like
4460 a cleaner way of representing errors (big enough to
4461 include errno codes, bfd_error codes, and others). But
4462 for now just return EIO. */
4463 errno = EIO;
4464 return 0;
4465 }
4466
4467 /* Reply describes memory byte by byte,
4468 each byte encoded as two hex characters. */
4469
4470 p = rs->buf;
4471 if ((i = hex2bin (p, myaddr, todo)) < todo)
4472 {
4473 /* Reply is short. This means that we were able to read
4474 only part of what we wanted to. */
4475 return i + (origlen - len);
4476 }
4477 myaddr += todo;
4478 memaddr += todo;
4479 len -= todo;
4480 }
4481 return origlen;
4482 }
4483 \f
4484 /* Read or write LEN bytes from inferior memory at MEMADDR,
4485 transferring to or from debugger address BUFFER. Write to inferior
4486 if SHOULD_WRITE is nonzero. Returns length of data written or
4487 read; 0 for error. TARGET is unused. */
4488
4489 static int
4490 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4491 int should_write, struct mem_attrib *attrib,
4492 struct target_ops *target)
4493 {
4494 int res;
4495
4496 if (should_write)
4497 res = remote_write_bytes (mem_addr, buffer, mem_len);
4498 else
4499 res = remote_read_bytes (mem_addr, buffer, mem_len);
4500
4501 return res;
4502 }
4503
4504 /* Sends a packet with content determined by the printf format string
4505 FORMAT and the remaining arguments, then gets the reply. Returns
4506 whether the packet was a success, a failure, or unknown. */
4507
4508 enum packet_result
4509 remote_send_printf (const char *format, ...)
4510 {
4511 struct remote_state *rs = get_remote_state ();
4512 int max_size = get_remote_packet_size ();
4513
4514 va_list ap;
4515 va_start (ap, format);
4516
4517 rs->buf[0] = '\0';
4518 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4519 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4520
4521 if (putpkt (rs->buf) < 0)
4522 error (_("Communication problem with target."));
4523
4524 rs->buf[0] = '\0';
4525 getpkt (&rs->buf, &rs->buf_size, 0);
4526
4527 return packet_check_result (rs->buf);
4528 }
4529
4530 static void
4531 restore_remote_timeout (void *p)
4532 {
4533 int value = *(int *)p;
4534 remote_timeout = value;
4535 }
4536
4537 /* Flash writing can take quite some time. We'll set
4538 effectively infinite timeout for flash operations.
4539 In future, we'll need to decide on a better approach. */
4540 static const int remote_flash_timeout = 1000;
4541
4542 static void
4543 remote_flash_erase (struct target_ops *ops,
4544 ULONGEST address, LONGEST length)
4545 {
4546 int saved_remote_timeout = remote_timeout;
4547 enum packet_result ret;
4548
4549 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4550 &saved_remote_timeout);
4551 remote_timeout = remote_flash_timeout;
4552
4553 ret = remote_send_printf ("vFlashErase:%s,%s",
4554 paddr (address),
4555 phex (length, 4));
4556 switch (ret)
4557 {
4558 case PACKET_UNKNOWN:
4559 error (_("Remote target does not support flash erase"));
4560 case PACKET_ERROR:
4561 error (_("Error erasing flash with vFlashErase packet"));
4562 default:
4563 break;
4564 }
4565
4566 do_cleanups (back_to);
4567 }
4568
4569 static LONGEST
4570 remote_flash_write (struct target_ops *ops,
4571 ULONGEST address, LONGEST length,
4572 const gdb_byte *data)
4573 {
4574 int saved_remote_timeout = remote_timeout;
4575 int ret;
4576 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4577 &saved_remote_timeout);
4578
4579 remote_timeout = remote_flash_timeout;
4580 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4581 do_cleanups (back_to);
4582
4583 return ret;
4584 }
4585
4586 static void
4587 remote_flash_done (struct target_ops *ops)
4588 {
4589 int saved_remote_timeout = remote_timeout;
4590 int ret;
4591 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4592 &saved_remote_timeout);
4593
4594 remote_timeout = remote_flash_timeout;
4595 ret = remote_send_printf ("vFlashDone");
4596 do_cleanups (back_to);
4597
4598 switch (ret)
4599 {
4600 case PACKET_UNKNOWN:
4601 error (_("Remote target does not support vFlashDone"));
4602 case PACKET_ERROR:
4603 error (_("Error finishing flash operation"));
4604 default:
4605 break;
4606 }
4607 }
4608
4609 static void
4610 remote_files_info (struct target_ops *ignore)
4611 {
4612 puts_filtered ("Debugging a target over a serial line.\n");
4613 }
4614 \f
4615 /* Stuff for dealing with the packets which are part of this protocol.
4616 See comment at top of file for details. */
4617
4618 /* Read a single character from the remote end. */
4619
4620 static int
4621 readchar (int timeout)
4622 {
4623 int ch;
4624
4625 ch = serial_readchar (remote_desc, timeout);
4626
4627 if (ch >= 0)
4628 return ch;
4629
4630 switch ((enum serial_rc) ch)
4631 {
4632 case SERIAL_EOF:
4633 target_mourn_inferior ();
4634 error (_("Remote connection closed"));
4635 /* no return */
4636 case SERIAL_ERROR:
4637 perror_with_name (_("Remote communication error"));
4638 /* no return */
4639 case SERIAL_TIMEOUT:
4640 break;
4641 }
4642 return ch;
4643 }
4644
4645 /* Send the command in *BUF to the remote machine, and read the reply
4646 into *BUF. Report an error if we get an error reply. Resize
4647 *BUF using xrealloc if necessary to hold the result, and update
4648 *SIZEOF_BUF. */
4649
4650 static void
4651 remote_send (char **buf,
4652 long *sizeof_buf)
4653 {
4654 putpkt (*buf);
4655 getpkt (buf, sizeof_buf, 0);
4656
4657 if ((*buf)[0] == 'E')
4658 error (_("Remote failure reply: %s"), *buf);
4659 }
4660
4661 /* Display a null-terminated packet on stdout, for debugging, using C
4662 string notation. */
4663
4664 static void
4665 print_packet (char *buf)
4666 {
4667 puts_filtered ("\"");
4668 fputstr_filtered (buf, '"', gdb_stdout);
4669 puts_filtered ("\"");
4670 }
4671
4672 int
4673 putpkt (char *buf)
4674 {
4675 return putpkt_binary (buf, strlen (buf));
4676 }
4677
4678 /* Send a packet to the remote machine, with error checking. The data
4679 of the packet is in BUF. The string in BUF can be at most
4680 get_remote_packet_size () - 5 to account for the $, # and checksum,
4681 and for a possible /0 if we are debugging (remote_debug) and want
4682 to print the sent packet as a string. */
4683
4684 static int
4685 putpkt_binary (char *buf, int cnt)
4686 {
4687 int i;
4688 unsigned char csum = 0;
4689 char *buf2 = alloca (cnt + 6);
4690
4691 int ch;
4692 int tcount = 0;
4693 char *p;
4694
4695 /* Copy the packet into buffer BUF2, encapsulating it
4696 and giving it a checksum. */
4697
4698 p = buf2;
4699 *p++ = '$';
4700
4701 for (i = 0; i < cnt; i++)
4702 {
4703 csum += buf[i];
4704 *p++ = buf[i];
4705 }
4706 *p++ = '#';
4707 *p++ = tohex ((csum >> 4) & 0xf);
4708 *p++ = tohex (csum & 0xf);
4709
4710 /* Send it over and over until we get a positive ack. */
4711
4712 while (1)
4713 {
4714 int started_error_output = 0;
4715
4716 if (remote_debug)
4717 {
4718 *p = '\0';
4719 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4720 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4721 fprintf_unfiltered (gdb_stdlog, "...");
4722 gdb_flush (gdb_stdlog);
4723 }
4724 if (serial_write (remote_desc, buf2, p - buf2))
4725 perror_with_name (_("putpkt: write failed"));
4726
4727 /* Read until either a timeout occurs (-2) or '+' is read. */
4728 while (1)
4729 {
4730 ch = readchar (remote_timeout);
4731
4732 if (remote_debug)
4733 {
4734 switch (ch)
4735 {
4736 case '+':
4737 case '-':
4738 case SERIAL_TIMEOUT:
4739 case '$':
4740 if (started_error_output)
4741 {
4742 putchar_unfiltered ('\n');
4743 started_error_output = 0;
4744 }
4745 }
4746 }
4747
4748 switch (ch)
4749 {
4750 case '+':
4751 if (remote_debug)
4752 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4753 return 1;
4754 case '-':
4755 if (remote_debug)
4756 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4757 case SERIAL_TIMEOUT:
4758 tcount++;
4759 if (tcount > 3)
4760 return 0;
4761 break; /* Retransmit buffer. */
4762 case '$':
4763 {
4764 if (remote_debug)
4765 fprintf_unfiltered (gdb_stdlog,
4766 "Packet instead of Ack, ignoring it\n");
4767 /* It's probably an old response sent because an ACK
4768 was lost. Gobble up the packet and ack it so it
4769 doesn't get retransmitted when we resend this
4770 packet. */
4771 skip_frame ();
4772 serial_write (remote_desc, "+", 1);
4773 continue; /* Now, go look for +. */
4774 }
4775 default:
4776 if (remote_debug)
4777 {
4778 if (!started_error_output)
4779 {
4780 started_error_output = 1;
4781 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4782 }
4783 fputc_unfiltered (ch & 0177, gdb_stdlog);
4784 }
4785 continue;
4786 }
4787 break; /* Here to retransmit. */
4788 }
4789
4790 #if 0
4791 /* This is wrong. If doing a long backtrace, the user should be
4792 able to get out next time we call QUIT, without anything as
4793 violent as interrupt_query. If we want to provide a way out of
4794 here without getting to the next QUIT, it should be based on
4795 hitting ^C twice as in remote_wait. */
4796 if (quit_flag)
4797 {
4798 quit_flag = 0;
4799 interrupt_query ();
4800 }
4801 #endif
4802 }
4803 }
4804
4805 /* Come here after finding the start of a frame when we expected an
4806 ack. Do our best to discard the rest of this packet. */
4807
4808 static void
4809 skip_frame (void)
4810 {
4811 int c;
4812
4813 while (1)
4814 {
4815 c = readchar (remote_timeout);
4816 switch (c)
4817 {
4818 case SERIAL_TIMEOUT:
4819 /* Nothing we can do. */
4820 return;
4821 case '#':
4822 /* Discard the two bytes of checksum and stop. */
4823 c = readchar (remote_timeout);
4824 if (c >= 0)
4825 c = readchar (remote_timeout);
4826
4827 return;
4828 case '*': /* Run length encoding. */
4829 /* Discard the repeat count. */
4830 c = readchar (remote_timeout);
4831 if (c < 0)
4832 return;
4833 break;
4834 default:
4835 /* A regular character. */
4836 break;
4837 }
4838 }
4839 }
4840
4841 /* Come here after finding the start of the frame. Collect the rest
4842 into *BUF, verifying the checksum, length, and handling run-length
4843 compression. NUL terminate the buffer. If there is not enough room,
4844 expand *BUF using xrealloc.
4845
4846 Returns -1 on error, number of characters in buffer (ignoring the
4847 trailing NULL) on success. (could be extended to return one of the
4848 SERIAL status indications). */
4849
4850 static long
4851 read_frame (char **buf_p,
4852 long *sizeof_buf)
4853 {
4854 unsigned char csum;
4855 long bc;
4856 int c;
4857 char *buf = *buf_p;
4858
4859 csum = 0;
4860 bc = 0;
4861
4862 while (1)
4863 {
4864 c = readchar (remote_timeout);
4865 switch (c)
4866 {
4867 case SERIAL_TIMEOUT:
4868 if (remote_debug)
4869 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4870 return -1;
4871 case '$':
4872 if (remote_debug)
4873 fputs_filtered ("Saw new packet start in middle of old one\n",
4874 gdb_stdlog);
4875 return -1; /* Start a new packet, count retries. */
4876 case '#':
4877 {
4878 unsigned char pktcsum;
4879 int check_0 = 0;
4880 int check_1 = 0;
4881
4882 buf[bc] = '\0';
4883
4884 check_0 = readchar (remote_timeout);
4885 if (check_0 >= 0)
4886 check_1 = readchar (remote_timeout);
4887
4888 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4889 {
4890 if (remote_debug)
4891 fputs_filtered ("Timeout in checksum, retrying\n",
4892 gdb_stdlog);
4893 return -1;
4894 }
4895 else if (check_0 < 0 || check_1 < 0)
4896 {
4897 if (remote_debug)
4898 fputs_filtered ("Communication error in checksum\n",
4899 gdb_stdlog);
4900 return -1;
4901 }
4902
4903 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4904 if (csum == pktcsum)
4905 return bc;
4906
4907 if (remote_debug)
4908 {
4909 fprintf_filtered (gdb_stdlog,
4910 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4911 pktcsum, csum);
4912 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4913 fputs_filtered ("\n", gdb_stdlog);
4914 }
4915 /* Number of characters in buffer ignoring trailing
4916 NULL. */
4917 return -1;
4918 }
4919 case '*': /* Run length encoding. */
4920 {
4921 int repeat;
4922 csum += c;
4923
4924 c = readchar (remote_timeout);
4925 csum += c;
4926 repeat = c - ' ' + 3; /* Compute repeat count. */
4927
4928 /* The character before ``*'' is repeated. */
4929
4930 if (repeat > 0 && repeat <= 255 && bc > 0)
4931 {
4932 if (bc + repeat - 1 >= *sizeof_buf - 1)
4933 {
4934 /* Make some more room in the buffer. */
4935 *sizeof_buf += repeat;
4936 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4937 buf = *buf_p;
4938 }
4939
4940 memset (&buf[bc], buf[bc - 1], repeat);
4941 bc += repeat;
4942 continue;
4943 }
4944
4945 buf[bc] = '\0';
4946 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4947 return -1;
4948 }
4949 default:
4950 if (bc >= *sizeof_buf - 1)
4951 {
4952 /* Make some more room in the buffer. */
4953 *sizeof_buf *= 2;
4954 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4955 buf = *buf_p;
4956 }
4957
4958 buf[bc++] = c;
4959 csum += c;
4960 continue;
4961 }
4962 }
4963 }
4964
4965 /* Read a packet from the remote machine, with error checking, and
4966 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4967 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4968 rather than timing out; this is used (in synchronous mode) to wait
4969 for a target that is is executing user code to stop. */
4970 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4971 don't have to change all the calls to getpkt to deal with the
4972 return value, because at the moment I don't know what the right
4973 thing to do it for those. */
4974 void
4975 getpkt (char **buf,
4976 long *sizeof_buf,
4977 int forever)
4978 {
4979 int timed_out;
4980
4981 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4982 }
4983
4984
4985 /* Read a packet from the remote machine, with error checking, and
4986 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4987 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4988 rather than timing out; this is used (in synchronous mode) to wait
4989 for a target that is is executing user code to stop. If FOREVER ==
4990 0, this function is allowed to time out gracefully and return an
4991 indication of this to the caller. Otherwise return the number
4992 of bytes read. */
4993 static int
4994 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4995 {
4996 int c;
4997 int tries;
4998 int timeout;
4999 int val;
5000
5001 strcpy (*buf, "timeout");
5002
5003 if (forever)
5004 {
5005 timeout = watchdog > 0 ? watchdog : -1;
5006 }
5007
5008 else
5009 timeout = remote_timeout;
5010
5011 #define MAX_TRIES 3
5012
5013 for (tries = 1; tries <= MAX_TRIES; tries++)
5014 {
5015 /* This can loop forever if the remote side sends us characters
5016 continuously, but if it pauses, we'll get a zero from
5017 readchar because of timeout. Then we'll count that as a
5018 retry. */
5019
5020 /* Note that we will only wait forever prior to the start of a
5021 packet. After that, we expect characters to arrive at a
5022 brisk pace. They should show up within remote_timeout
5023 intervals. */
5024
5025 do
5026 {
5027 c = readchar (timeout);
5028
5029 if (c == SERIAL_TIMEOUT)
5030 {
5031 if (forever) /* Watchdog went off? Kill the target. */
5032 {
5033 QUIT;
5034 target_mourn_inferior ();
5035 error (_("Watchdog timeout has expired. Target detached."));
5036 }
5037 if (remote_debug)
5038 fputs_filtered ("Timed out.\n", gdb_stdlog);
5039 goto retry;
5040 }
5041 }
5042 while (c != '$');
5043
5044 /* We've found the start of a packet, now collect the data. */
5045
5046 val = read_frame (buf, sizeof_buf);
5047
5048 if (val >= 0)
5049 {
5050 if (remote_debug)
5051 {
5052 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5053 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5054 fprintf_unfiltered (gdb_stdlog, "\n");
5055 }
5056 serial_write (remote_desc, "+", 1);
5057 return val;
5058 }
5059
5060 /* Try the whole thing again. */
5061 retry:
5062 serial_write (remote_desc, "-", 1);
5063 }
5064
5065 /* We have tried hard enough, and just can't receive the packet.
5066 Give up. */
5067
5068 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5069 serial_write (remote_desc, "+", 1);
5070 return -1;
5071 }
5072 \f
5073 static void
5074 remote_kill (void)
5075 {
5076 /* For some mysterious reason, wait_for_inferior calls kill instead of
5077 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5078 if (kill_kludge)
5079 {
5080 kill_kludge = 0;
5081 target_mourn_inferior ();
5082 return;
5083 }
5084
5085 /* Use catch_errors so the user can quit from gdb even when we aren't on
5086 speaking terms with the remote system. */
5087 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5088
5089 /* Don't wait for it to die. I'm not really sure it matters whether
5090 we do or not. For the existing stubs, kill is a noop. */
5091 target_mourn_inferior ();
5092 }
5093
5094 /* Async version of remote_kill. */
5095 static void
5096 remote_async_kill (void)
5097 {
5098 /* Unregister the file descriptor from the event loop. */
5099 if (target_is_async_p ())
5100 serial_async (remote_desc, NULL, 0);
5101
5102 /* For some mysterious reason, wait_for_inferior calls kill instead of
5103 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5104 if (kill_kludge)
5105 {
5106 kill_kludge = 0;
5107 target_mourn_inferior ();
5108 return;
5109 }
5110
5111 /* Use catch_errors so the user can quit from gdb even when we
5112 aren't on speaking terms with the remote system. */
5113 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5114
5115 /* Don't wait for it to die. I'm not really sure it matters whether
5116 we do or not. For the existing stubs, kill is a noop. */
5117 target_mourn_inferior ();
5118 }
5119
5120 static void
5121 remote_mourn (void)
5122 {
5123 remote_mourn_1 (&remote_ops);
5124 }
5125
5126 static void
5127 remote_async_mourn (void)
5128 {
5129 remote_mourn_1 (&remote_async_ops);
5130 }
5131
5132 static void
5133 extended_remote_mourn (void)
5134 {
5135 /* We do _not_ want to mourn the target like this; this will
5136 remove the extended remote target from the target stack,
5137 and the next time the user says "run" it'll fail.
5138
5139 FIXME: What is the right thing to do here? */
5140 #if 0
5141 remote_mourn_1 (&extended_remote_ops);
5142 #endif
5143 }
5144
5145 /* Worker function for remote_mourn. */
5146 static void
5147 remote_mourn_1 (struct target_ops *target)
5148 {
5149 unpush_target (target);
5150 generic_mourn_inferior ();
5151 }
5152
5153 /* In the extended protocol we want to be able to do things like
5154 "run" and have them basically work as expected. So we need
5155 a special create_inferior function.
5156
5157 FIXME: One day add support for changing the exec file
5158 we're debugging, arguments and an environment. */
5159
5160 static void
5161 extended_remote_create_inferior (char *exec_file, char *args,
5162 char **env, int from_tty)
5163 {
5164 /* Rip out the breakpoints; we'll reinsert them after restarting
5165 the remote server. */
5166 remove_breakpoints ();
5167
5168 /* Now restart the remote server. */
5169 extended_remote_restart ();
5170
5171 /* NOTE: We don't need to recheck for a target description here; but
5172 if we gain the ability to switch the remote executable we may
5173 need to, if for instance we are running a process which requested
5174 different emulated hardware from the operating system. A
5175 concrete example of this is ARM GNU/Linux, where some binaries
5176 will have a legacy FPA coprocessor emulated and others may have
5177 access to a hardware VFP unit. */
5178
5179 /* Now put the breakpoints back in. This way we're safe if the
5180 restart function works via a unix fork on the remote side. */
5181 insert_breakpoints ();
5182
5183 /* Clean up from the last time we were running. */
5184 clear_proceed_status ();
5185 }
5186
5187 /* Async version of extended_remote_create_inferior. */
5188 static void
5189 extended_remote_async_create_inferior (char *exec_file, char *args,
5190 char **env, int from_tty)
5191 {
5192 /* Rip out the breakpoints; we'll reinsert them after restarting
5193 the remote server. */
5194 remove_breakpoints ();
5195
5196 /* If running asynchronously, register the target file descriptor
5197 with the event loop. */
5198 if (target_can_async_p ())
5199 target_async (inferior_event_handler, 0);
5200
5201 /* Now restart the remote server. */
5202 extended_remote_restart ();
5203
5204 /* NOTE: We don't need to recheck for a target description here; but
5205 if we gain the ability to switch the remote executable we may
5206 need to, if for instance we are running a process which requested
5207 different emulated hardware from the operating system. A
5208 concrete example of this is ARM GNU/Linux, where some binaries
5209 will have a legacy FPA coprocessor emulated and others may have
5210 access to a hardware VFP unit. */
5211
5212 /* Now put the breakpoints back in. This way we're safe if the
5213 restart function works via a unix fork on the remote side. */
5214 insert_breakpoints ();
5215
5216 /* Clean up from the last time we were running. */
5217 clear_proceed_status ();
5218 }
5219 \f
5220
5221 /* Insert a breakpoint. On targets that have software breakpoint
5222 support, we ask the remote target to do the work; on targets
5223 which don't, we insert a traditional memory breakpoint. */
5224
5225 static int
5226 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5227 {
5228 CORE_ADDR addr = bp_tgt->placed_address;
5229 struct remote_state *rs = get_remote_state ();
5230
5231 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5232 If it succeeds, then set the support to PACKET_ENABLE. If it
5233 fails, and the user has explicitly requested the Z support then
5234 report an error, otherwise, mark it disabled and go on. */
5235
5236 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5237 {
5238 char *p = rs->buf;
5239
5240 *(p++) = 'Z';
5241 *(p++) = '0';
5242 *(p++) = ',';
5243 gdbarch_breakpoint_from_pc
5244 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5245 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5246 p += hexnumstr (p, addr);
5247 sprintf (p, ",%d", bp_tgt->placed_size);
5248
5249 putpkt (rs->buf);
5250 getpkt (&rs->buf, &rs->buf_size, 0);
5251
5252 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5253 {
5254 case PACKET_ERROR:
5255 return -1;
5256 case PACKET_OK:
5257 return 0;
5258 case PACKET_UNKNOWN:
5259 break;
5260 }
5261 }
5262
5263 return memory_insert_breakpoint (bp_tgt);
5264 }
5265
5266 static int
5267 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5268 {
5269 CORE_ADDR addr = bp_tgt->placed_address;
5270 struct remote_state *rs = get_remote_state ();
5271 int bp_size;
5272
5273 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5274 {
5275 char *p = rs->buf;
5276
5277 *(p++) = 'z';
5278 *(p++) = '0';
5279 *(p++) = ',';
5280
5281 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5282 p += hexnumstr (p, addr);
5283 sprintf (p, ",%d", bp_tgt->placed_size);
5284
5285 putpkt (rs->buf);
5286 getpkt (&rs->buf, &rs->buf_size, 0);
5287
5288 return (rs->buf[0] == 'E');
5289 }
5290
5291 return memory_remove_breakpoint (bp_tgt);
5292 }
5293
5294 static int
5295 watchpoint_to_Z_packet (int type)
5296 {
5297 switch (type)
5298 {
5299 case hw_write:
5300 return Z_PACKET_WRITE_WP;
5301 break;
5302 case hw_read:
5303 return Z_PACKET_READ_WP;
5304 break;
5305 case hw_access:
5306 return Z_PACKET_ACCESS_WP;
5307 break;
5308 default:
5309 internal_error (__FILE__, __LINE__,
5310 _("hw_bp_to_z: bad watchpoint type %d"), type);
5311 }
5312 }
5313
5314 static int
5315 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5316 {
5317 struct remote_state *rs = get_remote_state ();
5318 char *p;
5319 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5320
5321 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5322 return -1;
5323
5324 sprintf (rs->buf, "Z%x,", packet);
5325 p = strchr (rs->buf, '\0');
5326 addr = remote_address_masked (addr);
5327 p += hexnumstr (p, (ULONGEST) addr);
5328 sprintf (p, ",%x", len);
5329
5330 putpkt (rs->buf);
5331 getpkt (&rs->buf, &rs->buf_size, 0);
5332
5333 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5334 {
5335 case PACKET_ERROR:
5336 case PACKET_UNKNOWN:
5337 return -1;
5338 case PACKET_OK:
5339 return 0;
5340 }
5341 internal_error (__FILE__, __LINE__,
5342 _("remote_insert_watchpoint: reached end of function"));
5343 }
5344
5345
5346 static int
5347 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5348 {
5349 struct remote_state *rs = get_remote_state ();
5350 char *p;
5351 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5352
5353 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5354 return -1;
5355
5356 sprintf (rs->buf, "z%x,", packet);
5357 p = strchr (rs->buf, '\0');
5358 addr = remote_address_masked (addr);
5359 p += hexnumstr (p, (ULONGEST) addr);
5360 sprintf (p, ",%x", len);
5361 putpkt (rs->buf);
5362 getpkt (&rs->buf, &rs->buf_size, 0);
5363
5364 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5365 {
5366 case PACKET_ERROR:
5367 case PACKET_UNKNOWN:
5368 return -1;
5369 case PACKET_OK:
5370 return 0;
5371 }
5372 internal_error (__FILE__, __LINE__,
5373 _("remote_remove_watchpoint: reached end of function"));
5374 }
5375
5376
5377 int remote_hw_watchpoint_limit = -1;
5378 int remote_hw_breakpoint_limit = -1;
5379
5380 static int
5381 remote_check_watch_resources (int type, int cnt, int ot)
5382 {
5383 if (type == bp_hardware_breakpoint)
5384 {
5385 if (remote_hw_breakpoint_limit == 0)
5386 return 0;
5387 else if (remote_hw_breakpoint_limit < 0)
5388 return 1;
5389 else if (cnt <= remote_hw_breakpoint_limit)
5390 return 1;
5391 }
5392 else
5393 {
5394 if (remote_hw_watchpoint_limit == 0)
5395 return 0;
5396 else if (remote_hw_watchpoint_limit < 0)
5397 return 1;
5398 else if (ot)
5399 return -1;
5400 else if (cnt <= remote_hw_watchpoint_limit)
5401 return 1;
5402 }
5403 return -1;
5404 }
5405
5406 static int
5407 remote_stopped_by_watchpoint (void)
5408 {
5409 return remote_stopped_by_watchpoint_p;
5410 }
5411
5412 static int
5413 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5414 {
5415 int rc = 0;
5416 if (remote_stopped_by_watchpoint ())
5417 {
5418 *addr_p = remote_watch_data_address;
5419 rc = 1;
5420 }
5421
5422 return rc;
5423 }
5424
5425
5426 static int
5427 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5428 {
5429 CORE_ADDR addr;
5430 struct remote_state *rs = get_remote_state ();
5431 char *p = rs->buf;
5432
5433 /* The length field should be set to the size of a breakpoint
5434 instruction, even though we aren't inserting one ourselves. */
5435
5436 gdbarch_breakpoint_from_pc
5437 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5438
5439 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5440 return -1;
5441
5442 *(p++) = 'Z';
5443 *(p++) = '1';
5444 *(p++) = ',';
5445
5446 addr = remote_address_masked (bp_tgt->placed_address);
5447 p += hexnumstr (p, (ULONGEST) addr);
5448 sprintf (p, ",%x", bp_tgt->placed_size);
5449
5450 putpkt (rs->buf);
5451 getpkt (&rs->buf, &rs->buf_size, 0);
5452
5453 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5454 {
5455 case PACKET_ERROR:
5456 case PACKET_UNKNOWN:
5457 return -1;
5458 case PACKET_OK:
5459 return 0;
5460 }
5461 internal_error (__FILE__, __LINE__,
5462 _("remote_insert_hw_breakpoint: reached end of function"));
5463 }
5464
5465
5466 static int
5467 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5468 {
5469 CORE_ADDR addr;
5470 struct remote_state *rs = get_remote_state ();
5471 char *p = rs->buf;
5472
5473 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5474 return -1;
5475
5476 *(p++) = 'z';
5477 *(p++) = '1';
5478 *(p++) = ',';
5479
5480 addr = remote_address_masked (bp_tgt->placed_address);
5481 p += hexnumstr (p, (ULONGEST) addr);
5482 sprintf (p, ",%x", bp_tgt->placed_size);
5483
5484 putpkt (rs->buf);
5485 getpkt (&rs->buf, &rs->buf_size, 0);
5486
5487 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5488 {
5489 case PACKET_ERROR:
5490 case PACKET_UNKNOWN:
5491 return -1;
5492 case PACKET_OK:
5493 return 0;
5494 }
5495 internal_error (__FILE__, __LINE__,
5496 _("remote_remove_hw_breakpoint: reached end of function"));
5497 }
5498
5499 /* Some targets are only capable of doing downloads, and afterwards
5500 they switch to the remote serial protocol. This function provides
5501 a clean way to get from the download target to the remote target.
5502 It's basically just a wrapper so that we don't have to expose any
5503 of the internal workings of remote.c.
5504
5505 Prior to calling this routine, you should shutdown the current
5506 target code, else you will get the "A program is being debugged
5507 already..." message. Usually a call to pop_target() suffices. */
5508
5509 void
5510 push_remote_target (char *name, int from_tty)
5511 {
5512 printf_filtered (_("Switching to remote protocol\n"));
5513 remote_open (name, from_tty);
5514 }
5515
5516 /* Table used by the crc32 function to calcuate the checksum. */
5517
5518 static unsigned long crc32_table[256] =
5519 {0, 0};
5520
5521 static unsigned long
5522 crc32 (unsigned char *buf, int len, unsigned int crc)
5523 {
5524 if (!crc32_table[1])
5525 {
5526 /* Initialize the CRC table and the decoding table. */
5527 int i, j;
5528 unsigned int c;
5529
5530 for (i = 0; i < 256; i++)
5531 {
5532 for (c = i << 24, j = 8; j > 0; --j)
5533 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5534 crc32_table[i] = c;
5535 }
5536 }
5537
5538 while (len--)
5539 {
5540 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5541 buf++;
5542 }
5543 return crc;
5544 }
5545
5546 /* compare-sections command
5547
5548 With no arguments, compares each loadable section in the exec bfd
5549 with the same memory range on the target, and reports mismatches.
5550 Useful for verifying the image on the target against the exec file.
5551 Depends on the target understanding the new "qCRC:" request. */
5552
5553 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5554 target method (target verify memory) and generic version of the
5555 actual command. This will allow other high-level code (especially
5556 generic_load()) to make use of this target functionality. */
5557
5558 static void
5559 compare_sections_command (char *args, int from_tty)
5560 {
5561 struct remote_state *rs = get_remote_state ();
5562 asection *s;
5563 unsigned long host_crc, target_crc;
5564 extern bfd *exec_bfd;
5565 struct cleanup *old_chain;
5566 char *tmp;
5567 char *sectdata;
5568 const char *sectname;
5569 bfd_size_type size;
5570 bfd_vma lma;
5571 int matched = 0;
5572 int mismatched = 0;
5573
5574 if (!exec_bfd)
5575 error (_("command cannot be used without an exec file"));
5576 if (!current_target.to_shortname ||
5577 strcmp (current_target.to_shortname, "remote") != 0)
5578 error (_("command can only be used with remote target"));
5579
5580 for (s = exec_bfd->sections; s; s = s->next)
5581 {
5582 if (!(s->flags & SEC_LOAD))
5583 continue; /* skip non-loadable section */
5584
5585 size = bfd_get_section_size (s);
5586 if (size == 0)
5587 continue; /* skip zero-length section */
5588
5589 sectname = bfd_get_section_name (exec_bfd, s);
5590 if (args && strcmp (args, sectname) != 0)
5591 continue; /* not the section selected by user */
5592
5593 matched = 1; /* do this section */
5594 lma = s->lma;
5595 /* FIXME: assumes lma can fit into long. */
5596 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5597 (long) lma, (long) size);
5598 putpkt (rs->buf);
5599
5600 /* Be clever; compute the host_crc before waiting for target
5601 reply. */
5602 sectdata = xmalloc (size);
5603 old_chain = make_cleanup (xfree, sectdata);
5604 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5605 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5606
5607 getpkt (&rs->buf, &rs->buf_size, 0);
5608 if (rs->buf[0] == 'E')
5609 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5610 sectname, paddr (lma), paddr (lma + size));
5611 if (rs->buf[0] != 'C')
5612 error (_("remote target does not support this operation"));
5613
5614 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5615 target_crc = target_crc * 16 + fromhex (*tmp);
5616
5617 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5618 sectname, paddr (lma), paddr (lma + size));
5619 if (host_crc == target_crc)
5620 printf_filtered ("matched.\n");
5621 else
5622 {
5623 printf_filtered ("MIS-MATCHED!\n");
5624 mismatched++;
5625 }
5626
5627 do_cleanups (old_chain);
5628 }
5629 if (mismatched > 0)
5630 warning (_("One or more sections of the remote executable does not match\n\
5631 the loaded file\n"));
5632 if (args && !matched)
5633 printf_filtered (_("No loaded section named '%s'.\n"), args);
5634 }
5635
5636 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5637 into remote target. The number of bytes written to the remote
5638 target is returned, or -1 for error. */
5639
5640 static LONGEST
5641 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5642 const char *annex, const gdb_byte *writebuf,
5643 ULONGEST offset, LONGEST len,
5644 struct packet_config *packet)
5645 {
5646 int i, buf_len;
5647 ULONGEST n;
5648 gdb_byte *wbuf;
5649 struct remote_state *rs = get_remote_state ();
5650 int max_size = get_memory_write_packet_size ();
5651
5652 if (packet->support == PACKET_DISABLE)
5653 return -1;
5654
5655 /* Insert header. */
5656 i = snprintf (rs->buf, max_size,
5657 "qXfer:%s:write:%s:%s:",
5658 object_name, annex ? annex : "",
5659 phex_nz (offset, sizeof offset));
5660 max_size -= (i + 1);
5661
5662 /* Escape as much data as fits into rs->buf. */
5663 buf_len = remote_escape_output
5664 (writebuf, len, (rs->buf + i), &max_size, max_size);
5665
5666 if (putpkt_binary (rs->buf, i + buf_len) < 0
5667 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5668 || packet_ok (rs->buf, packet) != PACKET_OK)
5669 return -1;
5670
5671 unpack_varlen_hex (rs->buf, &n);
5672 return n;
5673 }
5674
5675 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5676 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5677 number of bytes read is returned, or 0 for EOF, or -1 for error.
5678 The number of bytes read may be less than LEN without indicating an
5679 EOF. PACKET is checked and updated to indicate whether the remote
5680 target supports this object. */
5681
5682 static LONGEST
5683 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5684 const char *annex,
5685 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5686 struct packet_config *packet)
5687 {
5688 static char *finished_object;
5689 static char *finished_annex;
5690 static ULONGEST finished_offset;
5691
5692 struct remote_state *rs = get_remote_state ();
5693 unsigned int total = 0;
5694 LONGEST i, n, packet_len;
5695
5696 if (packet->support == PACKET_DISABLE)
5697 return -1;
5698
5699 /* Check whether we've cached an end-of-object packet that matches
5700 this request. */
5701 if (finished_object)
5702 {
5703 if (strcmp (object_name, finished_object) == 0
5704 && strcmp (annex ? annex : "", finished_annex) == 0
5705 && offset == finished_offset)
5706 return 0;
5707
5708 /* Otherwise, we're now reading something different. Discard
5709 the cache. */
5710 xfree (finished_object);
5711 xfree (finished_annex);
5712 finished_object = NULL;
5713 finished_annex = NULL;
5714 }
5715
5716 /* Request only enough to fit in a single packet. The actual data
5717 may not, since we don't know how much of it will need to be escaped;
5718 the target is free to respond with slightly less data. We subtract
5719 five to account for the response type and the protocol frame. */
5720 n = min (get_remote_packet_size () - 5, len);
5721 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5722 object_name, annex ? annex : "",
5723 phex_nz (offset, sizeof offset),
5724 phex_nz (n, sizeof n));
5725 i = putpkt (rs->buf);
5726 if (i < 0)
5727 return -1;
5728
5729 rs->buf[0] = '\0';
5730 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5731 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5732 return -1;
5733
5734 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5735 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5736
5737 /* 'm' means there is (or at least might be) more data after this
5738 batch. That does not make sense unless there's at least one byte
5739 of data in this reply. */
5740 if (rs->buf[0] == 'm' && packet_len == 1)
5741 error (_("Remote qXfer reply contained no data."));
5742
5743 /* Got some data. */
5744 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5745
5746 /* 'l' is an EOF marker, possibly including a final block of data,
5747 or possibly empty. If we have the final block of a non-empty
5748 object, record this fact to bypass a subsequent partial read. */
5749 if (rs->buf[0] == 'l' && offset + i > 0)
5750 {
5751 finished_object = xstrdup (object_name);
5752 finished_annex = xstrdup (annex ? annex : "");
5753 finished_offset = offset + i;
5754 }
5755
5756 return i;
5757 }
5758
5759 static LONGEST
5760 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5761 const char *annex, gdb_byte *readbuf,
5762 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5763 {
5764 struct remote_state *rs = get_remote_state ();
5765 int i;
5766 char *p2;
5767 char query_type;
5768
5769 /* Handle memory using the standard memory routines. */
5770 if (object == TARGET_OBJECT_MEMORY)
5771 {
5772 int xfered;
5773 errno = 0;
5774
5775 if (writebuf != NULL)
5776 xfered = remote_write_bytes (offset, writebuf, len);
5777 else
5778 xfered = remote_read_bytes (offset, readbuf, len);
5779
5780 if (xfered > 0)
5781 return xfered;
5782 else if (xfered == 0 && errno == 0)
5783 return 0;
5784 else
5785 return -1;
5786 }
5787
5788 /* Handle SPU memory using qxfer packets. */
5789 if (object == TARGET_OBJECT_SPU)
5790 {
5791 if (readbuf)
5792 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5793 &remote_protocol_packets
5794 [PACKET_qXfer_spu_read]);
5795 else
5796 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5797 &remote_protocol_packets
5798 [PACKET_qXfer_spu_write]);
5799 }
5800
5801 /* Only handle flash writes. */
5802 if (writebuf != NULL)
5803 {
5804 LONGEST xfered;
5805
5806 switch (object)
5807 {
5808 case TARGET_OBJECT_FLASH:
5809 xfered = remote_flash_write (ops, offset, len, writebuf);
5810
5811 if (xfered > 0)
5812 return xfered;
5813 else if (xfered == 0 && errno == 0)
5814 return 0;
5815 else
5816 return -1;
5817
5818 default:
5819 return -1;
5820 }
5821 }
5822
5823 /* Map pre-existing objects onto letters. DO NOT do this for new
5824 objects!!! Instead specify new query packets. */
5825 switch (object)
5826 {
5827 case TARGET_OBJECT_AVR:
5828 query_type = 'R';
5829 break;
5830
5831 case TARGET_OBJECT_AUXV:
5832 gdb_assert (annex == NULL);
5833 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5834 &remote_protocol_packets[PACKET_qXfer_auxv]);
5835
5836 case TARGET_OBJECT_AVAILABLE_FEATURES:
5837 return remote_read_qxfer
5838 (ops, "features", annex, readbuf, offset, len,
5839 &remote_protocol_packets[PACKET_qXfer_features]);
5840
5841 case TARGET_OBJECT_LIBRARIES:
5842 return remote_read_qxfer
5843 (ops, "libraries", annex, readbuf, offset, len,
5844 &remote_protocol_packets[PACKET_qXfer_libraries]);
5845
5846 case TARGET_OBJECT_MEMORY_MAP:
5847 gdb_assert (annex == NULL);
5848 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5849 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5850
5851 default:
5852 return -1;
5853 }
5854
5855 /* Note: a zero OFFSET and LEN can be used to query the minimum
5856 buffer size. */
5857 if (offset == 0 && len == 0)
5858 return (get_remote_packet_size ());
5859 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5860 large enough let the caller deal with it. */
5861 if (len < get_remote_packet_size ())
5862 return -1;
5863 len = get_remote_packet_size ();
5864
5865 /* Except for querying the minimum buffer size, target must be open. */
5866 if (!remote_desc)
5867 error (_("remote query is only available after target open"));
5868
5869 gdb_assert (annex != NULL);
5870 gdb_assert (readbuf != NULL);
5871
5872 p2 = rs->buf;
5873 *p2++ = 'q';
5874 *p2++ = query_type;
5875
5876 /* We used one buffer char for the remote protocol q command and
5877 another for the query type. As the remote protocol encapsulation
5878 uses 4 chars plus one extra in case we are debugging
5879 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5880 string. */
5881 i = 0;
5882 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5883 {
5884 /* Bad caller may have sent forbidden characters. */
5885 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5886 *p2++ = annex[i];
5887 i++;
5888 }
5889 *p2 = '\0';
5890 gdb_assert (annex[i] == '\0');
5891
5892 i = putpkt (rs->buf);
5893 if (i < 0)
5894 return i;
5895
5896 getpkt (&rs->buf, &rs->buf_size, 0);
5897 strcpy ((char *) readbuf, rs->buf);
5898
5899 return strlen ((char *) readbuf);
5900 }
5901
5902 static void
5903 remote_rcmd (char *command,
5904 struct ui_file *outbuf)
5905 {
5906 struct remote_state *rs = get_remote_state ();
5907 char *p = rs->buf;
5908
5909 if (!remote_desc)
5910 error (_("remote rcmd is only available after target open"));
5911
5912 /* Send a NULL command across as an empty command. */
5913 if (command == NULL)
5914 command = "";
5915
5916 /* The query prefix. */
5917 strcpy (rs->buf, "qRcmd,");
5918 p = strchr (rs->buf, '\0');
5919
5920 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5921 error (_("\"monitor\" command ``%s'' is too long."), command);
5922
5923 /* Encode the actual command. */
5924 bin2hex ((gdb_byte *) command, p, 0);
5925
5926 if (putpkt (rs->buf) < 0)
5927 error (_("Communication problem with target."));
5928
5929 /* get/display the response */
5930 while (1)
5931 {
5932 char *buf;
5933
5934 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5935 rs->buf[0] = '\0';
5936 getpkt (&rs->buf, &rs->buf_size, 0);
5937 buf = rs->buf;
5938 if (buf[0] == '\0')
5939 error (_("Target does not support this command."));
5940 if (buf[0] == 'O' && buf[1] != 'K')
5941 {
5942 remote_console_output (buf + 1); /* 'O' message from stub. */
5943 continue;
5944 }
5945 if (strcmp (buf, "OK") == 0)
5946 break;
5947 if (strlen (buf) == 3 && buf[0] == 'E'
5948 && isdigit (buf[1]) && isdigit (buf[2]))
5949 {
5950 error (_("Protocol error with Rcmd"));
5951 }
5952 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5953 {
5954 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5955 fputc_unfiltered (c, outbuf);
5956 }
5957 break;
5958 }
5959 }
5960
5961 static VEC(mem_region_s) *
5962 remote_memory_map (struct target_ops *ops)
5963 {
5964 VEC(mem_region_s) *result = NULL;
5965 char *text = target_read_stralloc (&current_target,
5966 TARGET_OBJECT_MEMORY_MAP, NULL);
5967
5968 if (text)
5969 {
5970 struct cleanup *back_to = make_cleanup (xfree, text);
5971 result = parse_memory_map (text);
5972 do_cleanups (back_to);
5973 }
5974
5975 return result;
5976 }
5977
5978 static void
5979 packet_command (char *args, int from_tty)
5980 {
5981 struct remote_state *rs = get_remote_state ();
5982
5983 if (!remote_desc)
5984 error (_("command can only be used with remote target"));
5985
5986 if (!args)
5987 error (_("remote-packet command requires packet text as argument"));
5988
5989 puts_filtered ("sending: ");
5990 print_packet (args);
5991 puts_filtered ("\n");
5992 putpkt (args);
5993
5994 getpkt (&rs->buf, &rs->buf_size, 0);
5995 puts_filtered ("received: ");
5996 print_packet (rs->buf);
5997 puts_filtered ("\n");
5998 }
5999
6000 #if 0
6001 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6002
6003 static void display_thread_info (struct gdb_ext_thread_info *info);
6004
6005 static void threadset_test_cmd (char *cmd, int tty);
6006
6007 static void threadalive_test (char *cmd, int tty);
6008
6009 static void threadlist_test_cmd (char *cmd, int tty);
6010
6011 int get_and_display_threadinfo (threadref *ref);
6012
6013 static void threadinfo_test_cmd (char *cmd, int tty);
6014
6015 static int thread_display_step (threadref *ref, void *context);
6016
6017 static void threadlist_update_test_cmd (char *cmd, int tty);
6018
6019 static void init_remote_threadtests (void);
6020
6021 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6022
6023 static void
6024 threadset_test_cmd (char *cmd, int tty)
6025 {
6026 int sample_thread = SAMPLE_THREAD;
6027
6028 printf_filtered (_("Remote threadset test\n"));
6029 set_thread (sample_thread, 1);
6030 }
6031
6032
6033 static void
6034 threadalive_test (char *cmd, int tty)
6035 {
6036 int sample_thread = SAMPLE_THREAD;
6037
6038 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6039 printf_filtered ("PASS: Thread alive test\n");
6040 else
6041 printf_filtered ("FAIL: Thread alive test\n");
6042 }
6043
6044 void output_threadid (char *title, threadref *ref);
6045
6046 void
6047 output_threadid (char *title, threadref *ref)
6048 {
6049 char hexid[20];
6050
6051 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6052 hexid[16] = 0;
6053 printf_filtered ("%s %s\n", title, (&hexid[0]));
6054 }
6055
6056 static void
6057 threadlist_test_cmd (char *cmd, int tty)
6058 {
6059 int startflag = 1;
6060 threadref nextthread;
6061 int done, result_count;
6062 threadref threadlist[3];
6063
6064 printf_filtered ("Remote Threadlist test\n");
6065 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6066 &result_count, &threadlist[0]))
6067 printf_filtered ("FAIL: threadlist test\n");
6068 else
6069 {
6070 threadref *scan = threadlist;
6071 threadref *limit = scan + result_count;
6072
6073 while (scan < limit)
6074 output_threadid (" thread ", scan++);
6075 }
6076 }
6077
6078 void
6079 display_thread_info (struct gdb_ext_thread_info *info)
6080 {
6081 output_threadid ("Threadid: ", &info->threadid);
6082 printf_filtered ("Name: %s\n ", info->shortname);
6083 printf_filtered ("State: %s\n", info->display);
6084 printf_filtered ("other: %s\n\n", info->more_display);
6085 }
6086
6087 int
6088 get_and_display_threadinfo (threadref *ref)
6089 {
6090 int result;
6091 int set;
6092 struct gdb_ext_thread_info threadinfo;
6093
6094 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6095 | TAG_MOREDISPLAY | TAG_DISPLAY;
6096 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6097 display_thread_info (&threadinfo);
6098 return result;
6099 }
6100
6101 static void
6102 threadinfo_test_cmd (char *cmd, int tty)
6103 {
6104 int athread = SAMPLE_THREAD;
6105 threadref thread;
6106 int set;
6107
6108 int_to_threadref (&thread, athread);
6109 printf_filtered ("Remote Threadinfo test\n");
6110 if (!get_and_display_threadinfo (&thread))
6111 printf_filtered ("FAIL cannot get thread info\n");
6112 }
6113
6114 static int
6115 thread_display_step (threadref *ref, void *context)
6116 {
6117 /* output_threadid(" threadstep ",ref); *//* simple test */
6118 return get_and_display_threadinfo (ref);
6119 }
6120
6121 static void
6122 threadlist_update_test_cmd (char *cmd, int tty)
6123 {
6124 printf_filtered ("Remote Threadlist update test\n");
6125 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6126 }
6127
6128 static void
6129 init_remote_threadtests (void)
6130 {
6131 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6132 Fetch and print the remote list of thread identifiers, one pkt only"));
6133 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6134 _("Fetch and display info about one thread"));
6135 add_com ("tset", class_obscure, threadset_test_cmd,
6136 _("Test setting to a different thread"));
6137 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6138 _("Iterate through updating all remote thread info"));
6139 add_com ("talive", class_obscure, threadalive_test,
6140 _(" Remote thread alive test "));
6141 }
6142
6143 #endif /* 0 */
6144
6145 /* Convert a thread ID to a string. Returns the string in a static
6146 buffer. */
6147
6148 static char *
6149 remote_pid_to_str (ptid_t ptid)
6150 {
6151 static char buf[32];
6152
6153 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6154 return buf;
6155 }
6156
6157 /* Get the address of the thread local variable in OBJFILE which is
6158 stored at OFFSET within the thread local storage for thread PTID. */
6159
6160 static CORE_ADDR
6161 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6162 {
6163 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6164 {
6165 struct remote_state *rs = get_remote_state ();
6166 char *p = rs->buf;
6167 enum packet_result result;
6168
6169 strcpy (p, "qGetTLSAddr:");
6170 p += strlen (p);
6171 p += hexnumstr (p, PIDGET (ptid));
6172 *p++ = ',';
6173 p += hexnumstr (p, offset);
6174 *p++ = ',';
6175 p += hexnumstr (p, lm);
6176 *p++ = '\0';
6177
6178 putpkt (rs->buf);
6179 getpkt (&rs->buf, &rs->buf_size, 0);
6180 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6181 if (result == PACKET_OK)
6182 {
6183 ULONGEST result;
6184
6185 unpack_varlen_hex (rs->buf, &result);
6186 return result;
6187 }
6188 else if (result == PACKET_UNKNOWN)
6189 throw_error (TLS_GENERIC_ERROR,
6190 _("Remote target doesn't support qGetTLSAddr packet"));
6191 else
6192 throw_error (TLS_GENERIC_ERROR,
6193 _("Remote target failed to process qGetTLSAddr request"));
6194 }
6195 else
6196 throw_error (TLS_GENERIC_ERROR,
6197 _("TLS not supported or disabled on this target"));
6198 /* Not reached. */
6199 return 0;
6200 }
6201
6202 /* Support for inferring a target description based on the current
6203 architecture and the size of a 'g' packet. While the 'g' packet
6204 can have any size (since optional registers can be left off the
6205 end), some sizes are easily recognizable given knowledge of the
6206 approximate architecture. */
6207
6208 struct remote_g_packet_guess
6209 {
6210 int bytes;
6211 const struct target_desc *tdesc;
6212 };
6213 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6214 DEF_VEC_O(remote_g_packet_guess_s);
6215
6216 struct remote_g_packet_data
6217 {
6218 VEC(remote_g_packet_guess_s) *guesses;
6219 };
6220
6221 static struct gdbarch_data *remote_g_packet_data_handle;
6222
6223 static void *
6224 remote_g_packet_data_init (struct obstack *obstack)
6225 {
6226 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6227 }
6228
6229 void
6230 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6231 const struct target_desc *tdesc)
6232 {
6233 struct remote_g_packet_data *data
6234 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6235 struct remote_g_packet_guess new_guess, *guess;
6236 int ix;
6237
6238 gdb_assert (tdesc != NULL);
6239
6240 for (ix = 0;
6241 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6242 ix++)
6243 if (guess->bytes == bytes)
6244 internal_error (__FILE__, __LINE__,
6245 "Duplicate g packet description added for size %d",
6246 bytes);
6247
6248 new_guess.bytes = bytes;
6249 new_guess.tdesc = tdesc;
6250 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6251 }
6252
6253 static const struct target_desc *
6254 remote_read_description (struct target_ops *target)
6255 {
6256 struct remote_g_packet_data *data
6257 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6258
6259 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6260 {
6261 struct remote_g_packet_guess *guess;
6262 int ix;
6263 int bytes = send_g_packet ();
6264
6265 for (ix = 0;
6266 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6267 ix++)
6268 if (guess->bytes == bytes)
6269 return guess->tdesc;
6270
6271 /* We discard the g packet. A minor optimization would be to
6272 hold on to it, and fill the register cache once we have selected
6273 an architecture, but it's too tricky to do safely. */
6274 }
6275
6276 return NULL;
6277 }
6278
6279 static void
6280 init_remote_ops (void)
6281 {
6282 remote_ops.to_shortname = "remote";
6283 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6284 remote_ops.to_doc =
6285 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6286 Specify the serial device it is connected to\n\
6287 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6288 remote_ops.to_open = remote_open;
6289 remote_ops.to_close = remote_close;
6290 remote_ops.to_detach = remote_detach;
6291 remote_ops.to_disconnect = remote_disconnect;
6292 remote_ops.to_resume = remote_resume;
6293 remote_ops.to_wait = remote_wait;
6294 remote_ops.to_fetch_registers = remote_fetch_registers;
6295 remote_ops.to_store_registers = remote_store_registers;
6296 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6297 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6298 remote_ops.to_files_info = remote_files_info;
6299 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6300 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6301 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6302 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6303 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6304 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6305 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6306 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6307 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6308 remote_ops.to_kill = remote_kill;
6309 remote_ops.to_load = generic_load;
6310 remote_ops.to_mourn_inferior = remote_mourn;
6311 remote_ops.to_thread_alive = remote_thread_alive;
6312 remote_ops.to_find_new_threads = remote_threads_info;
6313 remote_ops.to_pid_to_str = remote_pid_to_str;
6314 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6315 remote_ops.to_stop = remote_stop;
6316 remote_ops.to_xfer_partial = remote_xfer_partial;
6317 remote_ops.to_rcmd = remote_rcmd;
6318 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6319 remote_ops.to_stratum = process_stratum;
6320 remote_ops.to_has_all_memory = 1;
6321 remote_ops.to_has_memory = 1;
6322 remote_ops.to_has_stack = 1;
6323 remote_ops.to_has_registers = 1;
6324 remote_ops.to_has_execution = 1;
6325 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6326 remote_ops.to_magic = OPS_MAGIC;
6327 remote_ops.to_memory_map = remote_memory_map;
6328 remote_ops.to_flash_erase = remote_flash_erase;
6329 remote_ops.to_flash_done = remote_flash_done;
6330 remote_ops.to_read_description = remote_read_description;
6331 }
6332
6333 /* Set up the extended remote vector by making a copy of the standard
6334 remote vector and adding to it. */
6335
6336 static void
6337 init_extended_remote_ops (void)
6338 {
6339 extended_remote_ops = remote_ops;
6340
6341 extended_remote_ops.to_shortname = "extended-remote";
6342 extended_remote_ops.to_longname =
6343 "Extended remote serial target in gdb-specific protocol";
6344 extended_remote_ops.to_doc =
6345 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6346 Specify the serial device it is connected to (e.g. /dev/ttya).",
6347 extended_remote_ops.to_open = extended_remote_open;
6348 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6349 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6350 }
6351
6352 static int
6353 remote_can_async_p (void)
6354 {
6355 /* We're async whenever the serial device is. */
6356 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6357 }
6358
6359 static int
6360 remote_is_async_p (void)
6361 {
6362 /* We're async whenever the serial device is. */
6363 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6364 }
6365
6366 /* Pass the SERIAL event on and up to the client. One day this code
6367 will be able to delay notifying the client of an event until the
6368 point where an entire packet has been received. */
6369
6370 static void (*async_client_callback) (enum inferior_event_type event_type,
6371 void *context);
6372 static void *async_client_context;
6373 static serial_event_ftype remote_async_serial_handler;
6374
6375 static void
6376 remote_async_serial_handler (struct serial *scb, void *context)
6377 {
6378 /* Don't propogate error information up to the client. Instead let
6379 the client find out about the error by querying the target. */
6380 async_client_callback (INF_REG_EVENT, async_client_context);
6381 }
6382
6383 static void
6384 remote_async (void (*callback) (enum inferior_event_type event_type,
6385 void *context), void *context)
6386 {
6387 if (current_target.to_async_mask_value == 0)
6388 internal_error (__FILE__, __LINE__,
6389 _("Calling remote_async when async is masked"));
6390
6391 if (callback != NULL)
6392 {
6393 serial_async (remote_desc, remote_async_serial_handler, NULL);
6394 async_client_callback = callback;
6395 async_client_context = context;
6396 }
6397 else
6398 serial_async (remote_desc, NULL, NULL);
6399 }
6400
6401 /* Target async and target extended-async.
6402
6403 This are temporary targets, until it is all tested. Eventually
6404 async support will be incorporated int the usual 'remote'
6405 target. */
6406
6407 static void
6408 init_remote_async_ops (void)
6409 {
6410 remote_async_ops.to_shortname = "async";
6411 remote_async_ops.to_longname =
6412 "Remote serial target in async version of the gdb-specific protocol";
6413 remote_async_ops.to_doc =
6414 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6415 Specify the serial device it is connected to (e.g. /dev/ttya).";
6416 remote_async_ops.to_open = remote_async_open;
6417 remote_async_ops.to_close = remote_close;
6418 remote_async_ops.to_detach = remote_detach;
6419 remote_async_ops.to_disconnect = remote_disconnect;
6420 remote_async_ops.to_resume = remote_async_resume;
6421 remote_async_ops.to_wait = remote_async_wait;
6422 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6423 remote_async_ops.to_store_registers = remote_store_registers;
6424 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6425 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6426 remote_async_ops.to_files_info = remote_files_info;
6427 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6428 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6429 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6430 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6431 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6432 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6433 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6434 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6435 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6436 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6437 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6438 remote_async_ops.to_kill = remote_async_kill;
6439 remote_async_ops.to_load = generic_load;
6440 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6441 remote_async_ops.to_thread_alive = remote_thread_alive;
6442 remote_async_ops.to_find_new_threads = remote_threads_info;
6443 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6444 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6445 remote_async_ops.to_stop = remote_stop;
6446 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6447 remote_async_ops.to_rcmd = remote_rcmd;
6448 remote_async_ops.to_stratum = process_stratum;
6449 remote_async_ops.to_has_all_memory = 1;
6450 remote_async_ops.to_has_memory = 1;
6451 remote_async_ops.to_has_stack = 1;
6452 remote_async_ops.to_has_registers = 1;
6453 remote_async_ops.to_has_execution = 1;
6454 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6455 remote_async_ops.to_can_async_p = remote_can_async_p;
6456 remote_async_ops.to_is_async_p = remote_is_async_p;
6457 remote_async_ops.to_async = remote_async;
6458 remote_async_ops.to_async_mask_value = 1;
6459 remote_async_ops.to_magic = OPS_MAGIC;
6460 remote_async_ops.to_memory_map = remote_memory_map;
6461 remote_async_ops.to_flash_erase = remote_flash_erase;
6462 remote_async_ops.to_flash_done = remote_flash_done;
6463 remote_async_ops.to_read_description = remote_read_description;
6464 }
6465
6466 /* Set up the async extended remote vector by making a copy of the standard
6467 remote vector and adding to it. */
6468
6469 static void
6470 init_extended_async_remote_ops (void)
6471 {
6472 extended_async_remote_ops = remote_async_ops;
6473
6474 extended_async_remote_ops.to_shortname = "extended-async";
6475 extended_async_remote_ops.to_longname =
6476 "Extended remote serial target in async gdb-specific protocol";
6477 extended_async_remote_ops.to_doc =
6478 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6479 Specify the serial device it is connected to (e.g. /dev/ttya).",
6480 extended_async_remote_ops.to_open = extended_remote_async_open;
6481 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6482 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6483 }
6484
6485 static void
6486 set_remote_cmd (char *args, int from_tty)
6487 {
6488 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6489 }
6490
6491 static void
6492 show_remote_cmd (char *args, int from_tty)
6493 {
6494 /* We can't just use cmd_show_list here, because we want to skip
6495 the redundant "show remote Z-packet" and the legacy aliases. */
6496 struct cleanup *showlist_chain;
6497 struct cmd_list_element *list = remote_show_cmdlist;
6498
6499 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6500 for (; list != NULL; list = list->next)
6501 if (strcmp (list->name, "Z-packet") == 0)
6502 continue;
6503 else if (list->type == not_set_cmd)
6504 /* Alias commands are exactly like the original, except they
6505 don't have the normal type. */
6506 continue;
6507 else
6508 {
6509 struct cleanup *option_chain
6510 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6511 ui_out_field_string (uiout, "name", list->name);
6512 ui_out_text (uiout, ": ");
6513 if (list->type == show_cmd)
6514 do_setshow_command ((char *) NULL, from_tty, list);
6515 else
6516 cmd_func (list, NULL, from_tty);
6517 /* Close the tuple. */
6518 do_cleanups (option_chain);
6519 }
6520
6521 /* Close the tuple. */
6522 do_cleanups (showlist_chain);
6523 }
6524
6525
6526 /* Function to be called whenever a new objfile (shlib) is detected. */
6527 static void
6528 remote_new_objfile (struct objfile *objfile)
6529 {
6530 if (remote_desc != 0) /* Have a remote connection. */
6531 remote_check_symbols (objfile);
6532 }
6533
6534 void
6535 _initialize_remote (void)
6536 {
6537 struct remote_state *rs;
6538
6539 /* architecture specific data */
6540 remote_gdbarch_data_handle =
6541 gdbarch_data_register_post_init (init_remote_state);
6542 remote_g_packet_data_handle =
6543 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6544
6545 /* Initialize the per-target state. At the moment there is only one
6546 of these, not one per target. Only one target is active at a
6547 time. The default buffer size is unimportant; it will be expanded
6548 whenever a larger buffer is needed. */
6549 rs = get_remote_state_raw ();
6550 rs->buf_size = 400;
6551 rs->buf = xmalloc (rs->buf_size);
6552
6553 init_remote_ops ();
6554 add_target (&remote_ops);
6555
6556 init_extended_remote_ops ();
6557 add_target (&extended_remote_ops);
6558
6559 init_remote_async_ops ();
6560 add_target (&remote_async_ops);
6561
6562 init_extended_async_remote_ops ();
6563 add_target (&extended_async_remote_ops);
6564
6565 /* Hook into new objfile notification. */
6566 observer_attach_new_objfile (remote_new_objfile);
6567
6568 #if 0
6569 init_remote_threadtests ();
6570 #endif
6571
6572 /* set/show remote ... */
6573
6574 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6575 Remote protocol specific variables\n\
6576 Configure various remote-protocol specific variables such as\n\
6577 the packets being used"),
6578 &remote_set_cmdlist, "set remote ",
6579 0 /* allow-unknown */, &setlist);
6580 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6581 Remote protocol specific variables\n\
6582 Configure various remote-protocol specific variables such as\n\
6583 the packets being used"),
6584 &remote_show_cmdlist, "show remote ",
6585 0 /* allow-unknown */, &showlist);
6586
6587 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6588 Compare section data on target to the exec file.\n\
6589 Argument is a single section name (default: all loaded sections)."),
6590 &cmdlist);
6591
6592 add_cmd ("packet", class_maintenance, packet_command, _("\
6593 Send an arbitrary packet to a remote target.\n\
6594 maintenance packet TEXT\n\
6595 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6596 this command sends the string TEXT to the inferior, and displays the\n\
6597 response packet. GDB supplies the initial `$' character, and the\n\
6598 terminating `#' character and checksum."),
6599 &maintenancelist);
6600
6601 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6602 Set whether to send break if interrupted."), _("\
6603 Show whether to send break if interrupted."), _("\
6604 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6605 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6606 &setlist, &showlist);
6607
6608 /* Install commands for configuring memory read/write packets. */
6609
6610 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6611 Set the maximum number of bytes per memory write packet (deprecated)."),
6612 &setlist);
6613 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6614 Show the maximum number of bytes per memory write packet (deprecated)."),
6615 &showlist);
6616 add_cmd ("memory-write-packet-size", no_class,
6617 set_memory_write_packet_size, _("\
6618 Set the maximum number of bytes per memory-write packet.\n\
6619 Specify the number of bytes in a packet or 0 (zero) for the\n\
6620 default packet size. The actual limit is further reduced\n\
6621 dependent on the target. Specify ``fixed'' to disable the\n\
6622 further restriction and ``limit'' to enable that restriction."),
6623 &remote_set_cmdlist);
6624 add_cmd ("memory-read-packet-size", no_class,
6625 set_memory_read_packet_size, _("\
6626 Set the maximum number of bytes per memory-read packet.\n\
6627 Specify the number of bytes in a packet or 0 (zero) for the\n\
6628 default packet size. The actual limit is further reduced\n\
6629 dependent on the target. Specify ``fixed'' to disable the\n\
6630 further restriction and ``limit'' to enable that restriction."),
6631 &remote_set_cmdlist);
6632 add_cmd ("memory-write-packet-size", no_class,
6633 show_memory_write_packet_size,
6634 _("Show the maximum number of bytes per memory-write packet."),
6635 &remote_show_cmdlist);
6636 add_cmd ("memory-read-packet-size", no_class,
6637 show_memory_read_packet_size,
6638 _("Show the maximum number of bytes per memory-read packet."),
6639 &remote_show_cmdlist);
6640
6641 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6642 &remote_hw_watchpoint_limit, _("\
6643 Set the maximum number of target hardware watchpoints."), _("\
6644 Show the maximum number of target hardware watchpoints."), _("\
6645 Specify a negative limit for unlimited."),
6646 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6647 &remote_set_cmdlist, &remote_show_cmdlist);
6648 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6649 &remote_hw_breakpoint_limit, _("\
6650 Set the maximum number of target hardware breakpoints."), _("\
6651 Show the maximum number of target hardware breakpoints."), _("\
6652 Specify a negative limit for unlimited."),
6653 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6654 &remote_set_cmdlist, &remote_show_cmdlist);
6655
6656 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6657 &remote_address_size, _("\
6658 Set the maximum size of the address (in bits) in a memory packet."), _("\
6659 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6660 NULL,
6661 NULL, /* FIXME: i18n: */
6662 &setlist, &showlist);
6663
6664 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6665 "X", "binary-download", 1);
6666
6667 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6668 "vCont", "verbose-resume", 0);
6669
6670 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6671 "QPassSignals", "pass-signals", 0);
6672
6673 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6674 "qSymbol", "symbol-lookup", 0);
6675
6676 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6677 "P", "set-register", 1);
6678
6679 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6680 "p", "fetch-register", 1);
6681
6682 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6683 "Z0", "software-breakpoint", 0);
6684
6685 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6686 "Z1", "hardware-breakpoint", 0);
6687
6688 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6689 "Z2", "write-watchpoint", 0);
6690
6691 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6692 "Z3", "read-watchpoint", 0);
6693
6694 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6695 "Z4", "access-watchpoint", 0);
6696
6697 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6698 "qXfer:auxv:read", "read-aux-vector", 0);
6699
6700 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6701 "qXfer:features:read", "target-features", 0);
6702
6703 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
6704 "qXfer:libraries:read", "library-info", 0);
6705
6706 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6707 "qXfer:memory-map:read", "memory-map", 0);
6708
6709 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6710 "qXfer:spu:read", "read-spu-object", 0);
6711
6712 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6713 "qXfer:spu:write", "write-spu-object", 0);
6714
6715 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6716 "qGetTLSAddr", "get-thread-local-storage-address",
6717 0);
6718
6719 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6720 "qSupported", "supported-packets", 0);
6721
6722 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6723 Z sub-packet has its own set and show commands, but users may
6724 have sets to this variable in their .gdbinit files (or in their
6725 documentation). */
6726 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6727 &remote_Z_packet_detect, _("\
6728 Set use of remote protocol `Z' packets"), _("\
6729 Show use of remote protocol `Z' packets "), _("\
6730 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6731 packets."),
6732 set_remote_protocol_Z_packet_cmd,
6733 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6734 &remote_set_cmdlist, &remote_show_cmdlist);
6735
6736 /* Eventually initialize fileio. See fileio.c */
6737 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6738 }
This page took 0.193937 seconds and 4 git commands to generate.