*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46
47 #include <ctype.h>
48 #include <sys/time.h>
49
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include "inf-loop.h"
53
54 #include <signal.h>
55 #include "serial.h"
56
57 #include "gdbcore.h" /* for exec_bfd */
58
59 #include "remote-fileio.h"
60
61 /* Prototypes for local functions. */
62 static void cleanup_sigint_signal_handler (void *dummy);
63 static void initialize_sigint_signal_handler (void);
64 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
65
66 static void handle_remote_sigint (int);
67 static void handle_remote_sigint_twice (int);
68 static void async_remote_interrupt (gdb_client_data);
69 void async_remote_interrupt_twice (gdb_client_data);
70
71 static void build_remote_gdbarch_data (void);
72
73 static void remote_files_info (struct target_ops *ignore);
74
75 static void remote_prepare_to_store (void);
76
77 static void remote_fetch_registers (int regno);
78
79 static void remote_resume (ptid_t ptid, int step,
80 enum target_signal siggnal);
81 static void remote_async_resume (ptid_t ptid, int step,
82 enum target_signal siggnal);
83 static void remote_open (char *name, int from_tty);
84 static void remote_async_open (char *name, int from_tty);
85
86 static void extended_remote_open (char *name, int from_tty);
87 static void extended_remote_async_open (char *name, int from_tty);
88
89 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
90 int async_p);
91
92 static void remote_close (int quitting);
93
94 static void remote_store_registers (int regno);
95
96 static void remote_mourn (void);
97 static void remote_async_mourn (void);
98
99 static void extended_remote_restart (void);
100
101 static void extended_remote_mourn (void);
102
103 static void remote_mourn_1 (struct target_ops *);
104
105 static void remote_send (char *buf, long sizeof_buf);
106
107 static int readchar (int timeout);
108
109 static ptid_t remote_wait (ptid_t ptid,
110 struct target_waitstatus *status);
111 static ptid_t remote_async_wait (ptid_t ptid,
112 struct target_waitstatus *status);
113
114 static void remote_kill (void);
115 static void remote_async_kill (void);
116
117 static int tohex (int nib);
118
119 static void remote_detach (char *args, int from_tty);
120
121 static void remote_interrupt (int signo);
122
123 static void remote_interrupt_twice (int signo);
124
125 static void interrupt_query (void);
126
127 static void set_thread (int, int);
128
129 static int remote_thread_alive (ptid_t);
130
131 static void get_offsets (void);
132
133 static long read_frame (char *buf, long sizeof_buf);
134
135 static int remote_insert_breakpoint (CORE_ADDR, bfd_byte *);
136
137 static int remote_remove_breakpoint (CORE_ADDR, bfd_byte *);
138
139 static int hexnumlen (ULONGEST num);
140
141 static void init_remote_ops (void);
142
143 static void init_extended_remote_ops (void);
144
145 static void remote_stop (void);
146
147 static int ishex (int ch, int *val);
148
149 static int stubhex (int ch);
150
151 static int hexnumstr (char *, ULONGEST);
152
153 static int hexnumnstr (char *, ULONGEST, int);
154
155 static CORE_ADDR remote_address_masked (CORE_ADDR);
156
157 static void print_packet (char *);
158
159 static unsigned long crc32 (unsigned char *, int, unsigned int);
160
161 static void compare_sections_command (char *, int);
162
163 static void packet_command (char *, int);
164
165 static int stub_unpack_int (char *buff, int fieldlength);
166
167 static ptid_t remote_current_thread (ptid_t oldptid);
168
169 static void remote_find_new_threads (void);
170
171 static void record_currthread (int currthread);
172
173 static int fromhex (int a);
174
175 static int hex2bin (const char *hex, gdb_byte *bin, int count);
176
177 static int bin2hex (const gdb_byte *bin, char *hex, int count);
178
179 static int putpkt_binary (char *buf, int cnt);
180
181 static void check_binary_download (CORE_ADDR addr);
182
183 struct packet_config;
184
185 static void show_packet_config_cmd (struct packet_config *config);
186
187 static void update_packet_config (struct packet_config *config);
188
189 void _initialize_remote (void);
190
191 /* Description of the remote protocol. Strictly speaking, when the
192 target is open()ed, remote.c should create a per-target description
193 of the remote protocol using that target's architecture.
194 Unfortunately, the target stack doesn't include local state. For
195 the moment keep the information in the target's architecture
196 object. Sigh.. */
197
198 struct packet_reg
199 {
200 long offset; /* Offset into G packet. */
201 long regnum; /* GDB's internal register number. */
202 LONGEST pnum; /* Remote protocol register number. */
203 int in_g_packet; /* Always part of G packet. */
204 /* long size in bytes; == register_size (current_gdbarch, regnum);
205 at present. */
206 /* char *name; == REGISTER_NAME (regnum); at present. */
207 };
208
209 struct remote_state
210 {
211 /* Description of the remote protocol registers. */
212 long sizeof_g_packet;
213
214 /* Description of the remote protocol registers indexed by REGNUM
215 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
216 struct packet_reg *regs;
217
218 /* This is the size (in chars) of the first response to the ``g''
219 packet. It is used as a heuristic when determining the maximum
220 size of memory-read and memory-write packets. A target will
221 typically only reserve a buffer large enough to hold the ``g''
222 packet. The size does not include packet overhead (headers and
223 trailers). */
224 long actual_register_packet_size;
225
226 /* This is the maximum size (in chars) of a non read/write packet.
227 It is also used as a cap on the size of read/write packets. */
228 long remote_packet_size;
229 };
230
231
232 /* Handle for retreving the remote protocol data from gdbarch. */
233 static struct gdbarch_data *remote_gdbarch_data_handle;
234
235 static struct remote_state *
236 get_remote_state (void)
237 {
238 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
239 }
240
241 static void *
242 init_remote_state (struct gdbarch *gdbarch)
243 {
244 int regnum;
245 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
246
247 rs->sizeof_g_packet = 0;
248
249 /* Assume a 1:1 regnum<->pnum table. */
250 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
251 struct packet_reg);
252 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
253 {
254 struct packet_reg *r = &rs->regs[regnum];
255 r->pnum = regnum;
256 r->regnum = regnum;
257 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
258 r->in_g_packet = (regnum < NUM_REGS);
259 /* ...name = REGISTER_NAME (regnum); */
260
261 /* Compute packet size by accumulating the size of all registers. */
262 if (regnum < NUM_REGS)
263 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
264 }
265
266 /* Default maximum number of characters in a packet body. Many
267 remote stubs have a hardwired buffer size of 400 bytes
268 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
269 as the maximum packet-size to ensure that the packet and an extra
270 NUL character can always fit in the buffer. This stops GDB
271 trashing stubs that try to squeeze an extra NUL into what is
272 already a full buffer (As of 1999-12-04 that was most stubs. */
273 rs->remote_packet_size = 400 - 1;
274
275 /* Should rs->sizeof_g_packet needs more space than the
276 default, adjust the size accordingly. Remember that each byte is
277 encoded as two characters. 32 is the overhead for the packet
278 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
279 (``$NN:G...#NN'') is a better guess, the below has been padded a
280 little. */
281 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
282 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
283
284 /* This one is filled in when a ``g'' packet is received. */
285 rs->actual_register_packet_size = 0;
286
287 return rs;
288 }
289
290 static struct packet_reg *
291 packet_reg_from_regnum (struct remote_state *rs, long regnum)
292 {
293 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
294 return NULL;
295 else
296 {
297 struct packet_reg *r = &rs->regs[regnum];
298 gdb_assert (r->regnum == regnum);
299 return r;
300 }
301 }
302
303 static struct packet_reg *
304 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
305 {
306 int i;
307 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
308 {
309 struct packet_reg *r = &rs->regs[i];
310 if (r->pnum == pnum)
311 return r;
312 }
313 return NULL;
314 }
315
316 /* FIXME: graces/2002-08-08: These variables should eventually be
317 bound to an instance of the target object (as in gdbarch-tdep()),
318 when such a thing exists. */
319
320 /* This is set to the data address of the access causing the target
321 to stop for a watchpoint. */
322 static CORE_ADDR remote_watch_data_address;
323
324 /* This is non-zero if taregt stopped for a watchpoint. */
325 static int remote_stopped_by_watchpoint_p;
326
327
328 static struct target_ops remote_ops;
329
330 static struct target_ops extended_remote_ops;
331
332 /* Temporary target ops. Just like the remote_ops and
333 extended_remote_ops, but with asynchronous support. */
334 static struct target_ops remote_async_ops;
335
336 static struct target_ops extended_async_remote_ops;
337
338 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
339 ``forever'' still use the normal timeout mechanism. This is
340 currently used by the ASYNC code to guarentee that target reads
341 during the initial connect always time-out. Once getpkt has been
342 modified to return a timeout indication and, in turn
343 remote_wait()/wait_for_inferior() have gained a timeout parameter
344 this can go away. */
345 static int wait_forever_enabled_p = 1;
346
347
348 /* This variable chooses whether to send a ^C or a break when the user
349 requests program interruption. Although ^C is usually what remote
350 systems expect, and that is the default here, sometimes a break is
351 preferable instead. */
352
353 static int remote_break;
354
355 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
356 remote_open knows that we don't have a file open when the program
357 starts. */
358 static struct serial *remote_desc = NULL;
359
360 /* This variable sets the number of bits in an address that are to be
361 sent in a memory ("M" or "m") packet. Normally, after stripping
362 leading zeros, the entire address would be sent. This variable
363 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
364 initial implementation of remote.c restricted the address sent in
365 memory packets to ``host::sizeof long'' bytes - (typically 32
366 bits). Consequently, for 64 bit targets, the upper 32 bits of an
367 address was never sent. Since fixing this bug may cause a break in
368 some remote targets this variable is principly provided to
369 facilitate backward compatibility. */
370
371 static int remote_address_size;
372
373 /* Tempoary to track who currently owns the terminal. See
374 target_async_terminal_* for more details. */
375
376 static int remote_async_terminal_ours_p;
377
378 \f
379 /* User configurable variables for the number of characters in a
380 memory read/write packet. MIN (rs->remote_packet_size,
381 rs->sizeof_g_packet) is the default. Some targets need smaller
382 values (fifo overruns, et.al.) and some users need larger values
383 (speed up transfers). The variables ``preferred_*'' (the user
384 request), ``current_*'' (what was actually set) and ``forced_*''
385 (Positive - a soft limit, negative - a hard limit). */
386
387 struct memory_packet_config
388 {
389 char *name;
390 long size;
391 int fixed_p;
392 };
393
394 /* Compute the current size of a read/write packet. Since this makes
395 use of ``actual_register_packet_size'' the computation is dynamic. */
396
397 static long
398 get_memory_packet_size (struct memory_packet_config *config)
399 {
400 struct remote_state *rs = get_remote_state ();
401 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
402 law?) that some hosts don't cope very well with large alloca()
403 calls. Eventually the alloca() code will be replaced by calls to
404 xmalloc() and make_cleanups() allowing this restriction to either
405 be lifted or removed. */
406 #ifndef MAX_REMOTE_PACKET_SIZE
407 #define MAX_REMOTE_PACKET_SIZE 16384
408 #endif
409 /* NOTE: 20 ensures we can write at least one byte. */
410 #ifndef MIN_REMOTE_PACKET_SIZE
411 #define MIN_REMOTE_PACKET_SIZE 20
412 #endif
413 long what_they_get;
414 if (config->fixed_p)
415 {
416 if (config->size <= 0)
417 what_they_get = MAX_REMOTE_PACKET_SIZE;
418 else
419 what_they_get = config->size;
420 }
421 else
422 {
423 what_they_get = rs->remote_packet_size;
424 /* Limit the packet to the size specified by the user. */
425 if (config->size > 0
426 && what_they_get > config->size)
427 what_they_get = config->size;
428 /* Limit it to the size of the targets ``g'' response. */
429 if ((rs->actual_register_packet_size) > 0
430 && what_they_get > (rs->actual_register_packet_size))
431 what_they_get = (rs->actual_register_packet_size);
432 }
433 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
434 what_they_get = MAX_REMOTE_PACKET_SIZE;
435 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
436 what_they_get = MIN_REMOTE_PACKET_SIZE;
437 return what_they_get;
438 }
439
440 /* Update the size of a read/write packet. If they user wants
441 something really big then do a sanity check. */
442
443 static void
444 set_memory_packet_size (char *args, struct memory_packet_config *config)
445 {
446 int fixed_p = config->fixed_p;
447 long size = config->size;
448 if (args == NULL)
449 error (_("Argument required (integer, `fixed' or `limited')."));
450 else if (strcmp (args, "hard") == 0
451 || strcmp (args, "fixed") == 0)
452 fixed_p = 1;
453 else if (strcmp (args, "soft") == 0
454 || strcmp (args, "limit") == 0)
455 fixed_p = 0;
456 else
457 {
458 char *end;
459 size = strtoul (args, &end, 0);
460 if (args == end)
461 error (_("Invalid %s (bad syntax)."), config->name);
462 #if 0
463 /* Instead of explicitly capping the size of a packet to
464 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
465 instead allowed to set the size to something arbitrarily
466 large. */
467 if (size > MAX_REMOTE_PACKET_SIZE)
468 error (_("Invalid %s (too large)."), config->name);
469 #endif
470 }
471 /* Extra checks? */
472 if (fixed_p && !config->fixed_p)
473 {
474 if (! query (_("The target may not be able to correctly handle a %s\n"
475 "of %ld bytes. Change the packet size? "),
476 config->name, size))
477 error (_("Packet size not changed."));
478 }
479 /* Update the config. */
480 config->fixed_p = fixed_p;
481 config->size = size;
482 }
483
484 static void
485 show_memory_packet_size (struct memory_packet_config *config)
486 {
487 printf_filtered (_("The %s is %ld. "), config->name, config->size);
488 if (config->fixed_p)
489 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
490 get_memory_packet_size (config));
491 else
492 printf_filtered (_("Packets are limited to %ld bytes.\n"),
493 get_memory_packet_size (config));
494 }
495
496 static struct memory_packet_config memory_write_packet_config =
497 {
498 "memory-write-packet-size",
499 };
500
501 static void
502 set_memory_write_packet_size (char *args, int from_tty)
503 {
504 set_memory_packet_size (args, &memory_write_packet_config);
505 }
506
507 static void
508 show_memory_write_packet_size (char *args, int from_tty)
509 {
510 show_memory_packet_size (&memory_write_packet_config);
511 }
512
513 static long
514 get_memory_write_packet_size (void)
515 {
516 return get_memory_packet_size (&memory_write_packet_config);
517 }
518
519 static struct memory_packet_config memory_read_packet_config =
520 {
521 "memory-read-packet-size",
522 };
523
524 static void
525 set_memory_read_packet_size (char *args, int from_tty)
526 {
527 set_memory_packet_size (args, &memory_read_packet_config);
528 }
529
530 static void
531 show_memory_read_packet_size (char *args, int from_tty)
532 {
533 show_memory_packet_size (&memory_read_packet_config);
534 }
535
536 static long
537 get_memory_read_packet_size (void)
538 {
539 struct remote_state *rs = get_remote_state ();
540 long size = get_memory_packet_size (&memory_read_packet_config);
541 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
542 extra buffer size argument before the memory read size can be
543 increased beyond RS->remote_packet_size. */
544 if (size > rs->remote_packet_size)
545 size = rs->remote_packet_size;
546 return size;
547 }
548
549 \f
550 /* Generic configuration support for packets the stub optionally
551 supports. Allows the user to specify the use of the packet as well
552 as allowing GDB to auto-detect support in the remote stub. */
553
554 enum packet_support
555 {
556 PACKET_SUPPORT_UNKNOWN = 0,
557 PACKET_ENABLE,
558 PACKET_DISABLE
559 };
560
561 struct packet_config
562 {
563 char *name;
564 char *title;
565 enum auto_boolean detect;
566 enum packet_support support;
567 };
568
569 /* Analyze a packet's return value and update the packet config
570 accordingly. */
571
572 enum packet_result
573 {
574 PACKET_ERROR,
575 PACKET_OK,
576 PACKET_UNKNOWN
577 };
578
579 static void
580 update_packet_config (struct packet_config *config)
581 {
582 switch (config->detect)
583 {
584 case AUTO_BOOLEAN_TRUE:
585 config->support = PACKET_ENABLE;
586 break;
587 case AUTO_BOOLEAN_FALSE:
588 config->support = PACKET_DISABLE;
589 break;
590 case AUTO_BOOLEAN_AUTO:
591 config->support = PACKET_SUPPORT_UNKNOWN;
592 break;
593 }
594 }
595
596 static void
597 show_packet_config_cmd (struct packet_config *config)
598 {
599 char *support = "internal-error";
600 switch (config->support)
601 {
602 case PACKET_ENABLE:
603 support = "enabled";
604 break;
605 case PACKET_DISABLE:
606 support = "disabled";
607 break;
608 case PACKET_SUPPORT_UNKNOWN:
609 support = "unknown";
610 break;
611 }
612 switch (config->detect)
613 {
614 case AUTO_BOOLEAN_AUTO:
615 printf_filtered (_("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n"),
616 config->name, config->title, support);
617 break;
618 case AUTO_BOOLEAN_TRUE:
619 case AUTO_BOOLEAN_FALSE:
620 printf_filtered (_("Support for remote protocol `%s' (%s) packet is currently %s.\n"),
621 config->name, config->title, support);
622 break;
623 }
624 }
625
626 static void
627 add_packet_config_cmd (struct packet_config *config,
628 char *name,
629 char *title,
630 cmd_sfunc_ftype *set_func,
631 show_value_ftype *show_func,
632 struct cmd_list_element **set_remote_list,
633 struct cmd_list_element **show_remote_list,
634 int legacy)
635 {
636 char *set_doc;
637 char *show_doc;
638 char *cmd_name;
639
640 config->name = name;
641 config->title = title;
642 config->detect = AUTO_BOOLEAN_AUTO;
643 config->support = PACKET_SUPPORT_UNKNOWN;
644 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
645 name, title);
646 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
647 name, title);
648 /* set/show TITLE-packet {auto,on,off} */
649 cmd_name = xstrprintf ("%s-packet", title);
650 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
651 &config->detect, set_doc, show_doc, NULL, /* help_doc */
652 set_func, show_func,
653 set_remote_list, show_remote_list);
654 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
655 if (legacy)
656 {
657 char *legacy_name;
658 legacy_name = xstrprintf ("%s-packet", name);
659 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
660 set_remote_list);
661 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
662 show_remote_list);
663 }
664 }
665
666 static enum packet_result
667 packet_ok (const char *buf, struct packet_config *config)
668 {
669 if (buf[0] != '\0')
670 {
671 /* The stub recognized the packet request. Check that the
672 operation succeeded. */
673 switch (config->support)
674 {
675 case PACKET_SUPPORT_UNKNOWN:
676 if (remote_debug)
677 fprintf_unfiltered (gdb_stdlog,
678 "Packet %s (%s) is supported\n",
679 config->name, config->title);
680 config->support = PACKET_ENABLE;
681 break;
682 case PACKET_DISABLE:
683 internal_error (__FILE__, __LINE__,
684 _("packet_ok: attempt to use a disabled packet"));
685 break;
686 case PACKET_ENABLE:
687 break;
688 }
689 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
690 /* "OK" - definitly OK. */
691 return PACKET_OK;
692 if (buf[0] == 'E'
693 && isxdigit (buf[1]) && isxdigit (buf[2])
694 && buf[3] == '\0')
695 /* "Enn" - definitly an error. */
696 return PACKET_ERROR;
697 /* The packet may or may not be OK. Just assume it is. */
698 return PACKET_OK;
699 }
700 else
701 {
702 /* The stub does not support the packet. */
703 switch (config->support)
704 {
705 case PACKET_ENABLE:
706 if (config->detect == AUTO_BOOLEAN_AUTO)
707 /* If the stub previously indicated that the packet was
708 supported then there is a protocol error.. */
709 error (_("Protocol error: %s (%s) conflicting enabled responses."),
710 config->name, config->title);
711 else
712 /* The user set it wrong. */
713 error (_("Enabled packet %s (%s) not recognized by stub"),
714 config->name, config->title);
715 break;
716 case PACKET_SUPPORT_UNKNOWN:
717 if (remote_debug)
718 fprintf_unfiltered (gdb_stdlog,
719 "Packet %s (%s) is NOT supported\n",
720 config->name, config->title);
721 config->support = PACKET_DISABLE;
722 break;
723 case PACKET_DISABLE:
724 break;
725 }
726 return PACKET_UNKNOWN;
727 }
728 }
729
730 /* Should we try the 'vCont' (descriptive resume) request? */
731 static struct packet_config remote_protocol_vcont;
732
733 static void
734 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
735 struct cmd_list_element *c)
736 {
737 update_packet_config (&remote_protocol_vcont);
738 }
739
740 static void
741 show_remote_protocol_vcont_packet_cmd (struct ui_file *file, int from_tty,
742 struct cmd_list_element *c,
743 const char *value)
744 {
745 show_packet_config_cmd (&remote_protocol_vcont);
746 }
747
748 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
749 static struct packet_config remote_protocol_qSymbol;
750
751 static void
752 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
753 struct cmd_list_element *c)
754 {
755 update_packet_config (&remote_protocol_qSymbol);
756 }
757
758 static void
759 show_remote_protocol_qSymbol_packet_cmd (struct ui_file *file, int from_tty,
760 struct cmd_list_element *c,
761 const char *value)
762 {
763 show_packet_config_cmd (&remote_protocol_qSymbol);
764 }
765
766 /* Should we try the 'P' (set register) request? */
767
768 static struct packet_config remote_protocol_P;
769
770 static void
771 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
772 struct cmd_list_element *c)
773 {
774 update_packet_config (&remote_protocol_P);
775 }
776
777 static void
778 show_remote_protocol_P_packet_cmd (struct ui_file *file, int from_tty,
779 struct cmd_list_element *c,
780 const char *value)
781 {
782 show_packet_config_cmd (&remote_protocol_P);
783 }
784
785 /* Should we try one of the 'Z' requests? */
786
787 enum Z_packet_type
788 {
789 Z_PACKET_SOFTWARE_BP,
790 Z_PACKET_HARDWARE_BP,
791 Z_PACKET_WRITE_WP,
792 Z_PACKET_READ_WP,
793 Z_PACKET_ACCESS_WP,
794 NR_Z_PACKET_TYPES
795 };
796
797 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
798
799 /* FIXME: Instead of having all these boiler plate functions, the
800 command callback should include a context argument. */
801
802 static void
803 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
804 struct cmd_list_element *c)
805 {
806 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
807 }
808
809 static void
810 show_remote_protocol_Z_software_bp_packet_cmd (struct ui_file *file, int from_tty,
811 struct cmd_list_element *c,
812 const char *value)
813 {
814 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
815 }
816
817 static void
818 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
819 struct cmd_list_element *c)
820 {
821 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
822 }
823
824 static void
825 show_remote_protocol_Z_hardware_bp_packet_cmd (struct ui_file *file, int from_tty,
826 struct cmd_list_element *c,
827 const char *value)
828 {
829 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
830 }
831
832 static void
833 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
834 struct cmd_list_element *c)
835 {
836 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
837 }
838
839 static void
840 show_remote_protocol_Z_write_wp_packet_cmd (struct ui_file *file, int from_tty,
841 struct cmd_list_element *c,
842 const char *value)
843 {
844 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
845 }
846
847 static void
848 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
849 struct cmd_list_element *c)
850 {
851 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
852 }
853
854 static void
855 show_remote_protocol_Z_read_wp_packet_cmd (struct ui_file *file, int from_tty,
856 struct cmd_list_element *c,
857 const char *value)
858 {
859 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
860 }
861
862 static void
863 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
864 struct cmd_list_element *c)
865 {
866 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
867 }
868
869 static void
870 show_remote_protocol_Z_access_wp_packet_cmd (struct ui_file *file, int from_tty,
871 struct cmd_list_element *c,
872 const char *value)
873 {
874 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
875 }
876
877 /* For compatibility with older distributions. Provide a ``set remote
878 Z-packet ...'' command that updates all the Z packet types. */
879
880 static enum auto_boolean remote_Z_packet_detect;
881
882 static void
883 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
884 struct cmd_list_element *c)
885 {
886 int i;
887 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
888 {
889 remote_protocol_Z[i].detect = remote_Z_packet_detect;
890 update_packet_config (&remote_protocol_Z[i]);
891 }
892 }
893
894 static void
895 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
896 struct cmd_list_element *c,
897 const char *value)
898 {
899 int i;
900 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
901 {
902 show_packet_config_cmd (&remote_protocol_Z[i]);
903 }
904 }
905
906 /* Should we try the 'X' (remote binary download) packet?
907
908 This variable (available to the user via "set remote X-packet")
909 dictates whether downloads are sent in binary (via the 'X' packet).
910 We assume that the stub can, and attempt to do it. This will be
911 cleared if the stub does not understand it. This switch is still
912 needed, though in cases when the packet is supported in the stub,
913 but the connection does not allow it (i.e., 7-bit serial connection
914 only). */
915
916 static struct packet_config remote_protocol_binary_download;
917
918 /* Should we try the 'ThreadInfo' query packet?
919
920 This variable (NOT available to the user: auto-detect only!)
921 determines whether GDB will use the new, simpler "ThreadInfo"
922 query or the older, more complex syntax for thread queries.
923 This is an auto-detect variable (set to true at each connect,
924 and set to false when the target fails to recognize it). */
925
926 static int use_threadinfo_query;
927 static int use_threadextra_query;
928
929 static void
930 set_remote_protocol_binary_download_cmd (char *args,
931 int from_tty,
932 struct cmd_list_element *c)
933 {
934 update_packet_config (&remote_protocol_binary_download);
935 }
936
937 static void
938 show_remote_protocol_binary_download_cmd (struct ui_file *file, int from_tty,
939 struct cmd_list_element *c,
940 const char *value)
941 {
942 show_packet_config_cmd (&remote_protocol_binary_download);
943 }
944
945 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */
946 static struct packet_config remote_protocol_qPart_auxv;
947
948 static void
949 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
950 struct cmd_list_element *c)
951 {
952 update_packet_config (&remote_protocol_qPart_auxv);
953 }
954
955 static void
956 show_remote_protocol_qPart_auxv_packet_cmd (struct ui_file *file, int from_tty,
957 struct cmd_list_element *c,
958 const char *value)
959 {
960 show_packet_config_cmd (&remote_protocol_qPart_auxv);
961 }
962
963 /* Should we try the 'qGetTLSAddr' (Get Thread Local Storage Address) request? */
964 static struct packet_config remote_protocol_qGetTLSAddr;
965
966 static void
967 set_remote_protocol_qGetTLSAddr_packet_cmd (char *args, int from_tty,
968 struct cmd_list_element *c)
969 {
970 update_packet_config (&remote_protocol_qGetTLSAddr);
971 }
972
973 static void
974 show_remote_protocol_qGetTLSAddr_packet_cmd (struct ui_file *file, int from_tty,
975 struct cmd_list_element *c,
976 const char *value)
977 {
978 show_packet_config_cmd (&remote_protocol_qGetTLSAddr);
979 }
980
981 static struct packet_config remote_protocol_p;
982
983 static void
984 set_remote_protocol_p_packet_cmd (char *args, int from_tty,
985 struct cmd_list_element *c)
986 {
987 update_packet_config (&remote_protocol_p);
988 }
989
990 static void
991 show_remote_protocol_p_packet_cmd (struct ui_file *file, int from_tty,
992 struct cmd_list_element *c,
993 const char *value)
994 {
995 show_packet_config_cmd (&remote_protocol_p);
996 }
997
998
999
1000 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1001 static void *sigint_remote_twice_token;
1002 static void *sigint_remote_token;
1003
1004 /* These are pointers to hook functions that may be set in order to
1005 modify resume/wait behavior for a particular architecture. */
1006
1007 void (*deprecated_target_resume_hook) (void);
1008 void (*deprecated_target_wait_loop_hook) (void);
1009 \f
1010
1011
1012 /* These are the threads which we last sent to the remote system.
1013 -1 for all or -2 for not sent yet. */
1014 static int general_thread;
1015 static int continue_thread;
1016
1017 /* Call this function as a result of
1018 1) A halt indication (T packet) containing a thread id
1019 2) A direct query of currthread
1020 3) Successful execution of set thread
1021 */
1022
1023 static void
1024 record_currthread (int currthread)
1025 {
1026 general_thread = currthread;
1027
1028 /* If this is a new thread, add it to GDB's thread list.
1029 If we leave it up to WFI to do this, bad things will happen. */
1030 if (!in_thread_list (pid_to_ptid (currthread)))
1031 {
1032 add_thread (pid_to_ptid (currthread));
1033 ui_out_text (uiout, "[New ");
1034 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1035 ui_out_text (uiout, "]\n");
1036 }
1037 }
1038
1039 #define MAGIC_NULL_PID 42000
1040
1041 static void
1042 set_thread (int th, int gen)
1043 {
1044 struct remote_state *rs = get_remote_state ();
1045 char *buf = alloca (rs->remote_packet_size);
1046 int state = gen ? general_thread : continue_thread;
1047
1048 if (state == th)
1049 return;
1050
1051 buf[0] = 'H';
1052 buf[1] = gen ? 'g' : 'c';
1053 if (th == MAGIC_NULL_PID)
1054 {
1055 buf[2] = '0';
1056 buf[3] = '\0';
1057 }
1058 else if (th < 0)
1059 xsnprintf (&buf[2], rs->remote_packet_size - 2, "-%x", -th);
1060 else
1061 xsnprintf (&buf[2], rs->remote_packet_size - 2, "%x", th);
1062 putpkt (buf);
1063 getpkt (buf, rs->remote_packet_size, 0);
1064 if (gen)
1065 general_thread = th;
1066 else
1067 continue_thread = th;
1068 }
1069 \f
1070 /* Return nonzero if the thread TH is still alive on the remote system. */
1071
1072 static int
1073 remote_thread_alive (ptid_t ptid)
1074 {
1075 int tid = PIDGET (ptid);
1076 char buf[16];
1077
1078 if (tid < 0)
1079 xsnprintf (buf, sizeof (buf), "T-%08x", -tid);
1080 else
1081 xsnprintf (buf, sizeof (buf), "T%08x", tid);
1082 putpkt (buf);
1083 getpkt (buf, sizeof (buf), 0);
1084 return (buf[0] == 'O' && buf[1] == 'K');
1085 }
1086
1087 /* About these extended threadlist and threadinfo packets. They are
1088 variable length packets but, the fields within them are often fixed
1089 length. They are redundent enough to send over UDP as is the
1090 remote protocol in general. There is a matching unit test module
1091 in libstub. */
1092
1093 #define OPAQUETHREADBYTES 8
1094
1095 /* a 64 bit opaque identifier */
1096 typedef unsigned char threadref[OPAQUETHREADBYTES];
1097
1098 /* WARNING: This threadref data structure comes from the remote O.S.,
1099 libstub protocol encoding, and remote.c. it is not particularly
1100 changable. */
1101
1102 /* Right now, the internal structure is int. We want it to be bigger.
1103 Plan to fix this.
1104 */
1105
1106 typedef int gdb_threadref; /* Internal GDB thread reference. */
1107
1108 /* gdb_ext_thread_info is an internal GDB data structure which is
1109 equivalint to the reply of the remote threadinfo packet. */
1110
1111 struct gdb_ext_thread_info
1112 {
1113 threadref threadid; /* External form of thread reference. */
1114 int active; /* Has state interesting to GDB?
1115 regs, stack. */
1116 char display[256]; /* Brief state display, name,
1117 blocked/suspended. */
1118 char shortname[32]; /* To be used to name threads. */
1119 char more_display[256]; /* Long info, statistics, queue depth,
1120 whatever. */
1121 };
1122
1123 /* The volume of remote transfers can be limited by submitting
1124 a mask containing bits specifying the desired information.
1125 Use a union of these values as the 'selection' parameter to
1126 get_thread_info. FIXME: Make these TAG names more thread specific.
1127 */
1128
1129 #define TAG_THREADID 1
1130 #define TAG_EXISTS 2
1131 #define TAG_DISPLAY 4
1132 #define TAG_THREADNAME 8
1133 #define TAG_MOREDISPLAY 16
1134
1135 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1136
1137 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1138
1139 static char *unpack_nibble (char *buf, int *val);
1140
1141 static char *pack_nibble (char *buf, int nibble);
1142
1143 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1144
1145 static char *unpack_byte (char *buf, int *value);
1146
1147 static char *pack_int (char *buf, int value);
1148
1149 static char *unpack_int (char *buf, int *value);
1150
1151 static char *unpack_string (char *src, char *dest, int length);
1152
1153 static char *pack_threadid (char *pkt, threadref *id);
1154
1155 static char *unpack_threadid (char *inbuf, threadref *id);
1156
1157 void int_to_threadref (threadref *id, int value);
1158
1159 static int threadref_to_int (threadref *ref);
1160
1161 static void copy_threadref (threadref *dest, threadref *src);
1162
1163 static int threadmatch (threadref *dest, threadref *src);
1164
1165 static char *pack_threadinfo_request (char *pkt, int mode,
1166 threadref *id);
1167
1168 static int remote_unpack_thread_info_response (char *pkt,
1169 threadref *expectedref,
1170 struct gdb_ext_thread_info
1171 *info);
1172
1173
1174 static int remote_get_threadinfo (threadref *threadid,
1175 int fieldset, /*TAG mask */
1176 struct gdb_ext_thread_info *info);
1177
1178 static char *pack_threadlist_request (char *pkt, int startflag,
1179 int threadcount,
1180 threadref *nextthread);
1181
1182 static int parse_threadlist_response (char *pkt,
1183 int result_limit,
1184 threadref *original_echo,
1185 threadref *resultlist,
1186 int *doneflag);
1187
1188 static int remote_get_threadlist (int startflag,
1189 threadref *nextthread,
1190 int result_limit,
1191 int *done,
1192 int *result_count,
1193 threadref *threadlist);
1194
1195 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1196
1197 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1198 void *context, int looplimit);
1199
1200 static int remote_newthread_step (threadref *ref, void *context);
1201
1202 /* Encode 64 bits in 16 chars of hex. */
1203
1204 static const char hexchars[] = "0123456789abcdef";
1205
1206 static int
1207 ishex (int ch, int *val)
1208 {
1209 if ((ch >= 'a') && (ch <= 'f'))
1210 {
1211 *val = ch - 'a' + 10;
1212 return 1;
1213 }
1214 if ((ch >= 'A') && (ch <= 'F'))
1215 {
1216 *val = ch - 'A' + 10;
1217 return 1;
1218 }
1219 if ((ch >= '0') && (ch <= '9'))
1220 {
1221 *val = ch - '0';
1222 return 1;
1223 }
1224 return 0;
1225 }
1226
1227 static int
1228 stubhex (int ch)
1229 {
1230 if (ch >= 'a' && ch <= 'f')
1231 return ch - 'a' + 10;
1232 if (ch >= '0' && ch <= '9')
1233 return ch - '0';
1234 if (ch >= 'A' && ch <= 'F')
1235 return ch - 'A' + 10;
1236 return -1;
1237 }
1238
1239 static int
1240 stub_unpack_int (char *buff, int fieldlength)
1241 {
1242 int nibble;
1243 int retval = 0;
1244
1245 while (fieldlength)
1246 {
1247 nibble = stubhex (*buff++);
1248 retval |= nibble;
1249 fieldlength--;
1250 if (fieldlength)
1251 retval = retval << 4;
1252 }
1253 return retval;
1254 }
1255
1256 char *
1257 unpack_varlen_hex (char *buff, /* packet to parse */
1258 ULONGEST *result)
1259 {
1260 int nibble;
1261 int retval = 0;
1262
1263 while (ishex (*buff, &nibble))
1264 {
1265 buff++;
1266 retval = retval << 4;
1267 retval |= nibble & 0x0f;
1268 }
1269 *result = retval;
1270 return buff;
1271 }
1272
1273 static char *
1274 unpack_nibble (char *buf, int *val)
1275 {
1276 ishex (*buf++, val);
1277 return buf;
1278 }
1279
1280 static char *
1281 pack_nibble (char *buf, int nibble)
1282 {
1283 *buf++ = hexchars[(nibble & 0x0f)];
1284 return buf;
1285 }
1286
1287 static char *
1288 pack_hex_byte (char *pkt, int byte)
1289 {
1290 *pkt++ = hexchars[(byte >> 4) & 0xf];
1291 *pkt++ = hexchars[(byte & 0xf)];
1292 return pkt;
1293 }
1294
1295 static char *
1296 unpack_byte (char *buf, int *value)
1297 {
1298 *value = stub_unpack_int (buf, 2);
1299 return buf + 2;
1300 }
1301
1302 static char *
1303 pack_int (char *buf, int value)
1304 {
1305 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1306 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1307 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1308 buf = pack_hex_byte (buf, (value & 0xff));
1309 return buf;
1310 }
1311
1312 static char *
1313 unpack_int (char *buf, int *value)
1314 {
1315 *value = stub_unpack_int (buf, 8);
1316 return buf + 8;
1317 }
1318
1319 #if 0 /* Currently unused, uncomment when needed. */
1320 static char *pack_string (char *pkt, char *string);
1321
1322 static char *
1323 pack_string (char *pkt, char *string)
1324 {
1325 char ch;
1326 int len;
1327
1328 len = strlen (string);
1329 if (len > 200)
1330 len = 200; /* Bigger than most GDB packets, junk??? */
1331 pkt = pack_hex_byte (pkt, len);
1332 while (len-- > 0)
1333 {
1334 ch = *string++;
1335 if ((ch == '\0') || (ch == '#'))
1336 ch = '*'; /* Protect encapsulation. */
1337 *pkt++ = ch;
1338 }
1339 return pkt;
1340 }
1341 #endif /* 0 (unused) */
1342
1343 static char *
1344 unpack_string (char *src, char *dest, int length)
1345 {
1346 while (length--)
1347 *dest++ = *src++;
1348 *dest = '\0';
1349 return src;
1350 }
1351
1352 static char *
1353 pack_threadid (char *pkt, threadref *id)
1354 {
1355 char *limit;
1356 unsigned char *altid;
1357
1358 altid = (unsigned char *) id;
1359 limit = pkt + BUF_THREAD_ID_SIZE;
1360 while (pkt < limit)
1361 pkt = pack_hex_byte (pkt, *altid++);
1362 return pkt;
1363 }
1364
1365
1366 static char *
1367 unpack_threadid (char *inbuf, threadref *id)
1368 {
1369 char *altref;
1370 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1371 int x, y;
1372
1373 altref = (char *) id;
1374
1375 while (inbuf < limit)
1376 {
1377 x = stubhex (*inbuf++);
1378 y = stubhex (*inbuf++);
1379 *altref++ = (x << 4) | y;
1380 }
1381 return inbuf;
1382 }
1383
1384 /* Externally, threadrefs are 64 bits but internally, they are still
1385 ints. This is due to a mismatch of specifications. We would like
1386 to use 64bit thread references internally. This is an adapter
1387 function. */
1388
1389 void
1390 int_to_threadref (threadref *id, int value)
1391 {
1392 unsigned char *scan;
1393
1394 scan = (unsigned char *) id;
1395 {
1396 int i = 4;
1397 while (i--)
1398 *scan++ = 0;
1399 }
1400 *scan++ = (value >> 24) & 0xff;
1401 *scan++ = (value >> 16) & 0xff;
1402 *scan++ = (value >> 8) & 0xff;
1403 *scan++ = (value & 0xff);
1404 }
1405
1406 static int
1407 threadref_to_int (threadref *ref)
1408 {
1409 int i, value = 0;
1410 unsigned char *scan;
1411
1412 scan = *ref;
1413 scan += 4;
1414 i = 4;
1415 while (i-- > 0)
1416 value = (value << 8) | ((*scan++) & 0xff);
1417 return value;
1418 }
1419
1420 static void
1421 copy_threadref (threadref *dest, threadref *src)
1422 {
1423 int i;
1424 unsigned char *csrc, *cdest;
1425
1426 csrc = (unsigned char *) src;
1427 cdest = (unsigned char *) dest;
1428 i = 8;
1429 while (i--)
1430 *cdest++ = *csrc++;
1431 }
1432
1433 static int
1434 threadmatch (threadref *dest, threadref *src)
1435 {
1436 /* Things are broken right now, so just assume we got a match. */
1437 #if 0
1438 unsigned char *srcp, *destp;
1439 int i, result;
1440 srcp = (char *) src;
1441 destp = (char *) dest;
1442
1443 result = 1;
1444 while (i-- > 0)
1445 result &= (*srcp++ == *destp++) ? 1 : 0;
1446 return result;
1447 #endif
1448 return 1;
1449 }
1450
1451 /*
1452 threadid:1, # always request threadid
1453 context_exists:2,
1454 display:4,
1455 unique_name:8,
1456 more_display:16
1457 */
1458
1459 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1460
1461 static char *
1462 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1463 {
1464 *pkt++ = 'q'; /* Info Query */
1465 *pkt++ = 'P'; /* process or thread info */
1466 pkt = pack_int (pkt, mode); /* mode */
1467 pkt = pack_threadid (pkt, id); /* threadid */
1468 *pkt = '\0'; /* terminate */
1469 return pkt;
1470 }
1471
1472 /* These values tag the fields in a thread info response packet. */
1473 /* Tagging the fields allows us to request specific fields and to
1474 add more fields as time goes by. */
1475
1476 #define TAG_THREADID 1 /* Echo the thread identifier. */
1477 #define TAG_EXISTS 2 /* Is this process defined enough to
1478 fetch registers and its stack? */
1479 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1480 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1481 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1482 the process. */
1483
1484 static int
1485 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1486 struct gdb_ext_thread_info *info)
1487 {
1488 struct remote_state *rs = get_remote_state ();
1489 int mask, length;
1490 int tag;
1491 threadref ref;
1492 char *limit = pkt + rs->remote_packet_size; /* Plausible parsing limit. */
1493 int retval = 1;
1494
1495 /* info->threadid = 0; FIXME: implement zero_threadref. */
1496 info->active = 0;
1497 info->display[0] = '\0';
1498 info->shortname[0] = '\0';
1499 info->more_display[0] = '\0';
1500
1501 /* Assume the characters indicating the packet type have been
1502 stripped. */
1503 pkt = unpack_int (pkt, &mask); /* arg mask */
1504 pkt = unpack_threadid (pkt, &ref);
1505
1506 if (mask == 0)
1507 warning (_("Incomplete response to threadinfo request."));
1508 if (!threadmatch (&ref, expectedref))
1509 { /* This is an answer to a different request. */
1510 warning (_("ERROR RMT Thread info mismatch."));
1511 return 0;
1512 }
1513 copy_threadref (&info->threadid, &ref);
1514
1515 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1516
1517 /* Packets are terminated with nulls. */
1518 while ((pkt < limit) && mask && *pkt)
1519 {
1520 pkt = unpack_int (pkt, &tag); /* tag */
1521 pkt = unpack_byte (pkt, &length); /* length */
1522 if (!(tag & mask)) /* Tags out of synch with mask. */
1523 {
1524 warning (_("ERROR RMT: threadinfo tag mismatch."));
1525 retval = 0;
1526 break;
1527 }
1528 if (tag == TAG_THREADID)
1529 {
1530 if (length != 16)
1531 {
1532 warning (_("ERROR RMT: length of threadid is not 16."));
1533 retval = 0;
1534 break;
1535 }
1536 pkt = unpack_threadid (pkt, &ref);
1537 mask = mask & ~TAG_THREADID;
1538 continue;
1539 }
1540 if (tag == TAG_EXISTS)
1541 {
1542 info->active = stub_unpack_int (pkt, length);
1543 pkt += length;
1544 mask = mask & ~(TAG_EXISTS);
1545 if (length > 8)
1546 {
1547 warning (_("ERROR RMT: 'exists' length too long."));
1548 retval = 0;
1549 break;
1550 }
1551 continue;
1552 }
1553 if (tag == TAG_THREADNAME)
1554 {
1555 pkt = unpack_string (pkt, &info->shortname[0], length);
1556 mask = mask & ~TAG_THREADNAME;
1557 continue;
1558 }
1559 if (tag == TAG_DISPLAY)
1560 {
1561 pkt = unpack_string (pkt, &info->display[0], length);
1562 mask = mask & ~TAG_DISPLAY;
1563 continue;
1564 }
1565 if (tag == TAG_MOREDISPLAY)
1566 {
1567 pkt = unpack_string (pkt, &info->more_display[0], length);
1568 mask = mask & ~TAG_MOREDISPLAY;
1569 continue;
1570 }
1571 warning (_("ERROR RMT: unknown thread info tag."));
1572 break; /* Not a tag we know about. */
1573 }
1574 return retval;
1575 }
1576
1577 static int
1578 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1579 struct gdb_ext_thread_info *info)
1580 {
1581 struct remote_state *rs = get_remote_state ();
1582 int result;
1583 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1584
1585 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1586 putpkt (threadinfo_pkt);
1587 getpkt (threadinfo_pkt, rs->remote_packet_size, 0);
1588 result = remote_unpack_thread_info_response (threadinfo_pkt + 2,
1589 threadid, info);
1590 return result;
1591 }
1592
1593 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1594
1595 static char *
1596 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1597 threadref *nextthread)
1598 {
1599 *pkt++ = 'q'; /* info query packet */
1600 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1601 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1602 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1603 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1604 *pkt = '\0';
1605 return pkt;
1606 }
1607
1608 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1609
1610 static int
1611 parse_threadlist_response (char *pkt, int result_limit,
1612 threadref *original_echo, threadref *resultlist,
1613 int *doneflag)
1614 {
1615 struct remote_state *rs = get_remote_state ();
1616 char *limit;
1617 int count, resultcount, done;
1618
1619 resultcount = 0;
1620 /* Assume the 'q' and 'M chars have been stripped. */
1621 limit = pkt + (rs->remote_packet_size - BUF_THREAD_ID_SIZE);
1622 /* done parse past here */
1623 pkt = unpack_byte (pkt, &count); /* count field */
1624 pkt = unpack_nibble (pkt, &done);
1625 /* The first threadid is the argument threadid. */
1626 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1627 while ((count-- > 0) && (pkt < limit))
1628 {
1629 pkt = unpack_threadid (pkt, resultlist++);
1630 if (resultcount++ >= result_limit)
1631 break;
1632 }
1633 if (doneflag)
1634 *doneflag = done;
1635 return resultcount;
1636 }
1637
1638 static int
1639 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1640 int *done, int *result_count, threadref *threadlist)
1641 {
1642 struct remote_state *rs = get_remote_state ();
1643 static threadref echo_nextthread;
1644 char *threadlist_packet = alloca (rs->remote_packet_size);
1645 char *t_response = alloca (rs->remote_packet_size);
1646 int result = 1;
1647
1648 /* Trancate result limit to be smaller than the packet size. */
1649 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= rs->remote_packet_size)
1650 result_limit = (rs->remote_packet_size / BUF_THREAD_ID_SIZE) - 2;
1651
1652 pack_threadlist_request (threadlist_packet,
1653 startflag, result_limit, nextthread);
1654 putpkt (threadlist_packet);
1655 getpkt (t_response, rs->remote_packet_size, 0);
1656
1657 *result_count =
1658 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1659 threadlist, done);
1660
1661 if (!threadmatch (&echo_nextthread, nextthread))
1662 {
1663 /* FIXME: This is a good reason to drop the packet. */
1664 /* Possably, there is a duplicate response. */
1665 /* Possabilities :
1666 retransmit immediatly - race conditions
1667 retransmit after timeout - yes
1668 exit
1669 wait for packet, then exit
1670 */
1671 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1672 return 0; /* I choose simply exiting. */
1673 }
1674 if (*result_count <= 0)
1675 {
1676 if (*done != 1)
1677 {
1678 warning (_("RMT ERROR : failed to get remote thread list."));
1679 result = 0;
1680 }
1681 return result; /* break; */
1682 }
1683 if (*result_count > result_limit)
1684 {
1685 *result_count = 0;
1686 warning (_("RMT ERROR: threadlist response longer than requested."));
1687 return 0;
1688 }
1689 return result;
1690 }
1691
1692 /* This is the interface between remote and threads, remotes upper
1693 interface. */
1694
1695 /* remote_find_new_threads retrieves the thread list and for each
1696 thread in the list, looks up the thread in GDB's internal list,
1697 ading the thread if it does not already exist. This involves
1698 getting partial thread lists from the remote target so, polling the
1699 quit_flag is required. */
1700
1701
1702 /* About this many threadisds fit in a packet. */
1703
1704 #define MAXTHREADLISTRESULTS 32
1705
1706 static int
1707 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1708 int looplimit)
1709 {
1710 int done, i, result_count;
1711 int startflag = 1;
1712 int result = 1;
1713 int loopcount = 0;
1714 static threadref nextthread;
1715 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1716
1717 done = 0;
1718 while (!done)
1719 {
1720 if (loopcount++ > looplimit)
1721 {
1722 result = 0;
1723 warning (_("Remote fetch threadlist -infinite loop-."));
1724 break;
1725 }
1726 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1727 &done, &result_count, resultthreadlist))
1728 {
1729 result = 0;
1730 break;
1731 }
1732 /* Clear for later iterations. */
1733 startflag = 0;
1734 /* Setup to resume next batch of thread references, set nextthread. */
1735 if (result_count >= 1)
1736 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1737 i = 0;
1738 while (result_count--)
1739 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1740 break;
1741 }
1742 return result;
1743 }
1744
1745 static int
1746 remote_newthread_step (threadref *ref, void *context)
1747 {
1748 ptid_t ptid;
1749
1750 ptid = pid_to_ptid (threadref_to_int (ref));
1751
1752 if (!in_thread_list (ptid))
1753 add_thread (ptid);
1754 return 1; /* continue iterator */
1755 }
1756
1757 #define CRAZY_MAX_THREADS 1000
1758
1759 static ptid_t
1760 remote_current_thread (ptid_t oldpid)
1761 {
1762 struct remote_state *rs = get_remote_state ();
1763 char *buf = alloca (rs->remote_packet_size);
1764
1765 putpkt ("qC");
1766 getpkt (buf, rs->remote_packet_size, 0);
1767 if (buf[0] == 'Q' && buf[1] == 'C')
1768 /* Use strtoul here, so we'll correctly parse values whose highest
1769 bit is set. The protocol carries them as a simple series of
1770 hex digits; in the absence of a sign, strtol will see such
1771 values as positive numbers out of range for signed 'long', and
1772 return LONG_MAX to indicate an overflow. */
1773 return pid_to_ptid (strtoul (&buf[2], NULL, 16));
1774 else
1775 return oldpid;
1776 }
1777
1778 /* Find new threads for info threads command.
1779 * Original version, using John Metzler's thread protocol.
1780 */
1781
1782 static void
1783 remote_find_new_threads (void)
1784 {
1785 remote_threadlist_iterator (remote_newthread_step, 0,
1786 CRAZY_MAX_THREADS);
1787 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1788 inferior_ptid = remote_current_thread (inferior_ptid);
1789 }
1790
1791 /*
1792 * Find all threads for info threads command.
1793 * Uses new thread protocol contributed by Cisco.
1794 * Falls back and attempts to use the older method (above)
1795 * if the target doesn't respond to the new method.
1796 */
1797
1798 static void
1799 remote_threads_info (void)
1800 {
1801 struct remote_state *rs = get_remote_state ();
1802 char *buf = alloca (rs->remote_packet_size);
1803 char *bufp;
1804 int tid;
1805
1806 if (remote_desc == 0) /* paranoia */
1807 error (_("Command can only be used when connected to the remote target."));
1808
1809 if (use_threadinfo_query)
1810 {
1811 putpkt ("qfThreadInfo");
1812 bufp = buf;
1813 getpkt (bufp, rs->remote_packet_size, 0);
1814 if (bufp[0] != '\0') /* q packet recognized */
1815 {
1816 while (*bufp++ == 'm') /* reply contains one or more TID */
1817 {
1818 do
1819 {
1820 /* Use strtoul here, so we'll correctly parse values
1821 whose highest bit is set. The protocol carries
1822 them as a simple series of hex digits; in the
1823 absence of a sign, strtol will see such values as
1824 positive numbers out of range for signed 'long',
1825 and return LONG_MAX to indicate an overflow. */
1826 tid = strtoul (bufp, &bufp, 16);
1827 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1828 add_thread (pid_to_ptid (tid));
1829 }
1830 while (*bufp++ == ','); /* comma-separated list */
1831 putpkt ("qsThreadInfo");
1832 bufp = buf;
1833 getpkt (bufp, rs->remote_packet_size, 0);
1834 }
1835 return; /* done */
1836 }
1837 }
1838
1839 /* Else fall back to old method based on jmetzler protocol. */
1840 use_threadinfo_query = 0;
1841 remote_find_new_threads ();
1842 return;
1843 }
1844
1845 /*
1846 * Collect a descriptive string about the given thread.
1847 * The target may say anything it wants to about the thread
1848 * (typically info about its blocked / runnable state, name, etc.).
1849 * This string will appear in the info threads display.
1850 *
1851 * Optional: targets are not required to implement this function.
1852 */
1853
1854 static char *
1855 remote_threads_extra_info (struct thread_info *tp)
1856 {
1857 struct remote_state *rs = get_remote_state ();
1858 int result;
1859 int set;
1860 threadref id;
1861 struct gdb_ext_thread_info threadinfo;
1862 static char display_buf[100]; /* arbitrary... */
1863 char *bufp = alloca (rs->remote_packet_size);
1864 int n = 0; /* position in display_buf */
1865
1866 if (remote_desc == 0) /* paranoia */
1867 internal_error (__FILE__, __LINE__,
1868 _("remote_threads_extra_info"));
1869
1870 if (use_threadextra_query)
1871 {
1872 xsnprintf (bufp, rs->remote_packet_size, "qThreadExtraInfo,%x",
1873 PIDGET (tp->ptid));
1874 putpkt (bufp);
1875 getpkt (bufp, rs->remote_packet_size, 0);
1876 if (bufp[0] != 0)
1877 {
1878 n = min (strlen (bufp) / 2, sizeof (display_buf));
1879 result = hex2bin (bufp, (gdb_byte *) display_buf, n);
1880 display_buf [result] = '\0';
1881 return display_buf;
1882 }
1883 }
1884
1885 /* If the above query fails, fall back to the old method. */
1886 use_threadextra_query = 0;
1887 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1888 | TAG_MOREDISPLAY | TAG_DISPLAY;
1889 int_to_threadref (&id, PIDGET (tp->ptid));
1890 if (remote_get_threadinfo (&id, set, &threadinfo))
1891 if (threadinfo.active)
1892 {
1893 if (*threadinfo.shortname)
1894 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1895 " Name: %s,", threadinfo.shortname);
1896 if (*threadinfo.display)
1897 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1898 " State: %s,", threadinfo.display);
1899 if (*threadinfo.more_display)
1900 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1901 " Priority: %s", threadinfo.more_display);
1902
1903 if (n > 0)
1904 {
1905 /* For purely cosmetic reasons, clear up trailing commas. */
1906 if (',' == display_buf[n-1])
1907 display_buf[n-1] = ' ';
1908 return display_buf;
1909 }
1910 }
1911 return NULL;
1912 }
1913 \f
1914
1915 /* Restart the remote side; this is an extended protocol operation. */
1916
1917 static void
1918 extended_remote_restart (void)
1919 {
1920 struct remote_state *rs = get_remote_state ();
1921 char *buf = alloca (rs->remote_packet_size);
1922
1923 /* Send the restart command; for reasons I don't understand the
1924 remote side really expects a number after the "R". */
1925 xsnprintf (buf, rs->remote_packet_size, "R%x", 0);
1926 putpkt (buf);
1927
1928 /* Now query for status so this looks just like we restarted
1929 gdbserver from scratch. */
1930 putpkt ("?");
1931 getpkt (buf, rs->remote_packet_size, 0);
1932 }
1933 \f
1934 /* Clean up connection to a remote debugger. */
1935
1936 static void
1937 remote_close (int quitting)
1938 {
1939 if (remote_desc)
1940 serial_close (remote_desc);
1941 remote_desc = NULL;
1942 }
1943
1944 /* Query the remote side for the text, data and bss offsets. */
1945
1946 static void
1947 get_offsets (void)
1948 {
1949 struct remote_state *rs = get_remote_state ();
1950 char *buf = alloca (rs->remote_packet_size);
1951 char *ptr;
1952 int lose;
1953 CORE_ADDR text_addr, data_addr, bss_addr;
1954 struct section_offsets *offs;
1955
1956 putpkt ("qOffsets");
1957 getpkt (buf, rs->remote_packet_size, 0);
1958
1959 if (buf[0] == '\000')
1960 return; /* Return silently. Stub doesn't support
1961 this command. */
1962 if (buf[0] == 'E')
1963 {
1964 warning (_("Remote failure reply: %s"), buf);
1965 return;
1966 }
1967
1968 /* Pick up each field in turn. This used to be done with scanf, but
1969 scanf will make trouble if CORE_ADDR size doesn't match
1970 conversion directives correctly. The following code will work
1971 with any size of CORE_ADDR. */
1972 text_addr = data_addr = bss_addr = 0;
1973 ptr = buf;
1974 lose = 0;
1975
1976 if (strncmp (ptr, "Text=", 5) == 0)
1977 {
1978 ptr += 5;
1979 /* Don't use strtol, could lose on big values. */
1980 while (*ptr && *ptr != ';')
1981 text_addr = (text_addr << 4) + fromhex (*ptr++);
1982 }
1983 else
1984 lose = 1;
1985
1986 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1987 {
1988 ptr += 6;
1989 while (*ptr && *ptr != ';')
1990 data_addr = (data_addr << 4) + fromhex (*ptr++);
1991 }
1992 else
1993 lose = 1;
1994
1995 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1996 {
1997 ptr += 5;
1998 while (*ptr && *ptr != ';')
1999 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2000 }
2001 else
2002 lose = 1;
2003
2004 if (lose)
2005 error (_("Malformed response to offset query, %s"), buf);
2006
2007 if (symfile_objfile == NULL)
2008 return;
2009
2010 offs = ((struct section_offsets *)
2011 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2012 memcpy (offs, symfile_objfile->section_offsets,
2013 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2014
2015 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2016
2017 /* This is a temporary kludge to force data and bss to use the same offsets
2018 because that's what nlmconv does now. The real solution requires changes
2019 to the stub and remote.c that I don't have time to do right now. */
2020
2021 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2022 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2023
2024 objfile_relocate (symfile_objfile, offs);
2025 }
2026
2027 /* Stub for catch_errors. */
2028
2029 static int
2030 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2031 {
2032 start_remote (); /* Initialize gdb process mechanisms. */
2033 /* NOTE: Return something >=0. A -ve value is reserved for
2034 catch_exceptions. */
2035 return 1;
2036 }
2037
2038 static void
2039 remote_start_remote (struct ui_out *uiout, void *dummy)
2040 {
2041 immediate_quit++; /* Allow user to interrupt it. */
2042
2043 /* Ack any packet which the remote side has already sent. */
2044 serial_write (remote_desc, "+", 1);
2045
2046 /* Let the stub know that we want it to return the thread. */
2047 set_thread (-1, 0);
2048
2049 inferior_ptid = remote_current_thread (inferior_ptid);
2050
2051 get_offsets (); /* Get text, data & bss offsets. */
2052
2053 putpkt ("?"); /* Initiate a query from remote machine. */
2054 immediate_quit--;
2055
2056 remote_start_remote_dummy (uiout, dummy);
2057 }
2058
2059 /* Open a connection to a remote debugger.
2060 NAME is the filename used for communication. */
2061
2062 static void
2063 remote_open (char *name, int from_tty)
2064 {
2065 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2066 }
2067
2068 /* Just like remote_open, but with asynchronous support. */
2069 static void
2070 remote_async_open (char *name, int from_tty)
2071 {
2072 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2073 }
2074
2075 /* Open a connection to a remote debugger using the extended
2076 remote gdb protocol. NAME is the filename used for communication. */
2077
2078 static void
2079 extended_remote_open (char *name, int from_tty)
2080 {
2081 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2082 0 /* async_p */);
2083 }
2084
2085 /* Just like extended_remote_open, but with asynchronous support. */
2086 static void
2087 extended_remote_async_open (char *name, int from_tty)
2088 {
2089 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2090 1 /*extended_p */, 1 /* async_p */);
2091 }
2092
2093 /* Generic code for opening a connection to a remote target. */
2094
2095 static void
2096 init_all_packet_configs (void)
2097 {
2098 int i;
2099 update_packet_config (&remote_protocol_P);
2100 update_packet_config (&remote_protocol_p);
2101 update_packet_config (&remote_protocol_qSymbol);
2102 update_packet_config (&remote_protocol_vcont);
2103 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2104 update_packet_config (&remote_protocol_Z[i]);
2105 /* Force remote_write_bytes to check whether target supports binary
2106 downloading. */
2107 update_packet_config (&remote_protocol_binary_download);
2108 update_packet_config (&remote_protocol_qPart_auxv);
2109 update_packet_config (&remote_protocol_qGetTLSAddr);
2110 }
2111
2112 /* Symbol look-up. */
2113
2114 static void
2115 remote_check_symbols (struct objfile *objfile)
2116 {
2117 struct remote_state *rs = get_remote_state ();
2118 char *msg, *reply, *tmp;
2119 struct minimal_symbol *sym;
2120 int end;
2121
2122 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2123 return;
2124
2125 msg = alloca (rs->remote_packet_size);
2126 reply = alloca (rs->remote_packet_size);
2127
2128 /* Invite target to request symbol lookups. */
2129
2130 putpkt ("qSymbol::");
2131 getpkt (reply, rs->remote_packet_size, 0);
2132 packet_ok (reply, &remote_protocol_qSymbol);
2133
2134 while (strncmp (reply, "qSymbol:", 8) == 0)
2135 {
2136 tmp = &reply[8];
2137 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2138 msg[end] = '\0';
2139 sym = lookup_minimal_symbol (msg, NULL, NULL);
2140 if (sym == NULL)
2141 xsnprintf (msg, rs->remote_packet_size, "qSymbol::%s", &reply[8]);
2142 else
2143 xsnprintf (msg, rs->remote_packet_size, "qSymbol:%s:%s",
2144 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2145 &reply[8]);
2146 putpkt (msg);
2147 getpkt (reply, rs->remote_packet_size, 0);
2148 }
2149 }
2150
2151 static struct serial *
2152 remote_serial_open (char *name)
2153 {
2154 static int udp_warning = 0;
2155
2156 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2157 of in ser-tcp.c, because it is the remote protocol assuming that the
2158 serial connection is reliable and not the serial connection promising
2159 to be. */
2160 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2161 {
2162 warning (_("\
2163 The remote protocol may be unreliable over UDP.\n\
2164 Some events may be lost, rendering further debugging impossible."));
2165 udp_warning = 1;
2166 }
2167
2168 return serial_open (name);
2169 }
2170
2171 static void
2172 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2173 int extended_p, int async_p)
2174 {
2175 struct remote_state *rs = get_remote_state ();
2176 if (name == 0)
2177 error (_("To open a remote debug connection, you need to specify what\n"
2178 "serial device is attached to the remote system\n"
2179 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2180
2181 /* See FIXME above. */
2182 if (!async_p)
2183 wait_forever_enabled_p = 1;
2184
2185 reopen_exec_file ();
2186 reread_symbols ();
2187
2188 target_preopen (from_tty);
2189
2190 unpush_target (target);
2191
2192 remote_desc = remote_serial_open (name);
2193 if (!remote_desc)
2194 perror_with_name (name);
2195
2196 if (baud_rate != -1)
2197 {
2198 if (serial_setbaudrate (remote_desc, baud_rate))
2199 {
2200 /* The requested speed could not be set. Error out to
2201 top level after closing remote_desc. Take care to
2202 set remote_desc to NULL to avoid closing remote_desc
2203 more than once. */
2204 serial_close (remote_desc);
2205 remote_desc = NULL;
2206 perror_with_name (name);
2207 }
2208 }
2209
2210 serial_raw (remote_desc);
2211
2212 /* If there is something sitting in the buffer we might take it as a
2213 response to a command, which would be bad. */
2214 serial_flush_input (remote_desc);
2215
2216 if (from_tty)
2217 {
2218 puts_filtered ("Remote debugging using ");
2219 puts_filtered (name);
2220 puts_filtered ("\n");
2221 }
2222 push_target (target); /* Switch to using remote target now. */
2223
2224 init_all_packet_configs ();
2225
2226 general_thread = -2;
2227 continue_thread = -2;
2228
2229 /* Probe for ability to use "ThreadInfo" query, as required. */
2230 use_threadinfo_query = 1;
2231 use_threadextra_query = 1;
2232
2233 /* Without this, some commands which require an active target (such
2234 as kill) won't work. This variable serves (at least) double duty
2235 as both the pid of the target process (if it has such), and as a
2236 flag indicating that a target is active. These functions should
2237 be split out into seperate variables, especially since GDB will
2238 someday have a notion of debugging several processes. */
2239
2240 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2241
2242 if (async_p)
2243 {
2244 /* With this target we start out by owning the terminal. */
2245 remote_async_terminal_ours_p = 1;
2246
2247 /* FIXME: cagney/1999-09-23: During the initial connection it is
2248 assumed that the target is already ready and able to respond to
2249 requests. Unfortunately remote_start_remote() eventually calls
2250 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2251 around this. Eventually a mechanism that allows
2252 wait_for_inferior() to expect/get timeouts will be
2253 implemented. */
2254 wait_forever_enabled_p = 0;
2255 }
2256
2257 /* First delete any symbols previously loaded from shared libraries. */
2258 no_shared_libraries (NULL, 0);
2259
2260 /* Start the remote connection. If error() or QUIT, discard this
2261 target (we'd otherwise be in an inconsistent state) and then
2262 propogate the error on up the exception chain. This ensures that
2263 the caller doesn't stumble along blindly assuming that the
2264 function succeeded. The CLI doesn't have this problem but other
2265 UI's, such as MI do.
2266
2267 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2268 this function should return an error indication letting the
2269 caller restore the previous state. Unfortunately the command
2270 ``target remote'' is directly wired to this function making that
2271 impossible. On a positive note, the CLI side of this problem has
2272 been fixed - the function set_cmd_context() makes it possible for
2273 all the ``target ....'' commands to share a common callback
2274 function. See cli-dump.c. */
2275 {
2276 struct gdb_exception ex
2277 = catch_exception (uiout, remote_start_remote, NULL, RETURN_MASK_ALL);
2278 if (ex.reason < 0)
2279 {
2280 pop_target ();
2281 if (async_p)
2282 wait_forever_enabled_p = 1;
2283 throw_exception (ex);
2284 }
2285 }
2286
2287 if (async_p)
2288 wait_forever_enabled_p = 1;
2289
2290 if (extended_p)
2291 {
2292 /* Tell the remote that we are using the extended protocol. */
2293 char *buf = alloca (rs->remote_packet_size);
2294 putpkt ("!");
2295 getpkt (buf, rs->remote_packet_size, 0);
2296 }
2297
2298 post_create_inferior (&current_target, from_tty);
2299
2300 if (exec_bfd) /* No use without an exec file. */
2301 remote_check_symbols (symfile_objfile);
2302 }
2303
2304 /* This takes a program previously attached to and detaches it. After
2305 this is done, GDB can be used to debug some other program. We
2306 better not have left any breakpoints in the target program or it'll
2307 die when it hits one. */
2308
2309 static void
2310 remote_detach (char *args, int from_tty)
2311 {
2312 struct remote_state *rs = get_remote_state ();
2313 char *buf = alloca (rs->remote_packet_size);
2314
2315 if (args)
2316 error (_("Argument given to \"detach\" when remotely debugging."));
2317
2318 /* Tell the remote target to detach. */
2319 strcpy (buf, "D");
2320 remote_send (buf, rs->remote_packet_size);
2321
2322 /* Unregister the file descriptor from the event loop. */
2323 if (target_is_async_p ())
2324 serial_async (remote_desc, NULL, 0);
2325
2326 target_mourn_inferior ();
2327 if (from_tty)
2328 puts_filtered ("Ending remote debugging.\n");
2329 }
2330
2331 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2332
2333 static void
2334 remote_disconnect (char *args, int from_tty)
2335 {
2336 if (args)
2337 error (_("Argument given to \"detach\" when remotely debugging."));
2338
2339 /* Unregister the file descriptor from the event loop. */
2340 if (target_is_async_p ())
2341 serial_async (remote_desc, NULL, 0);
2342
2343 target_mourn_inferior ();
2344 if (from_tty)
2345 puts_filtered ("Ending remote debugging.\n");
2346 }
2347
2348 /* Convert hex digit A to a number. */
2349
2350 static int
2351 fromhex (int a)
2352 {
2353 if (a >= '0' && a <= '9')
2354 return a - '0';
2355 else if (a >= 'a' && a <= 'f')
2356 return a - 'a' + 10;
2357 else if (a >= 'A' && a <= 'F')
2358 return a - 'A' + 10;
2359 else
2360 error (_("Reply contains invalid hex digit %d"), a);
2361 }
2362
2363 static int
2364 hex2bin (const char *hex, gdb_byte *bin, int count)
2365 {
2366 int i;
2367
2368 for (i = 0; i < count; i++)
2369 {
2370 if (hex[0] == 0 || hex[1] == 0)
2371 {
2372 /* Hex string is short, or of uneven length.
2373 Return the count that has been converted so far. */
2374 return i;
2375 }
2376 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2377 hex += 2;
2378 }
2379 return i;
2380 }
2381
2382 /* Convert number NIB to a hex digit. */
2383
2384 static int
2385 tohex (int nib)
2386 {
2387 if (nib < 10)
2388 return '0' + nib;
2389 else
2390 return 'a' + nib - 10;
2391 }
2392
2393 static int
2394 bin2hex (const gdb_byte *bin, char *hex, int count)
2395 {
2396 int i;
2397 /* May use a length, or a nul-terminated string as input. */
2398 if (count == 0)
2399 count = strlen ((char *) bin);
2400
2401 for (i = 0; i < count; i++)
2402 {
2403 *hex++ = tohex ((*bin >> 4) & 0xf);
2404 *hex++ = tohex (*bin++ & 0xf);
2405 }
2406 *hex = 0;
2407 return i;
2408 }
2409 \f
2410 /* Check for the availability of vCont. This function should also check
2411 the response. */
2412
2413 static void
2414 remote_vcont_probe (struct remote_state *rs, char *buf)
2415 {
2416 strcpy (buf, "vCont?");
2417 putpkt (buf);
2418 getpkt (buf, rs->remote_packet_size, 0);
2419
2420 /* Make sure that the features we assume are supported. */
2421 if (strncmp (buf, "vCont", 5) == 0)
2422 {
2423 char *p = &buf[5];
2424 int support_s, support_S, support_c, support_C;
2425
2426 support_s = 0;
2427 support_S = 0;
2428 support_c = 0;
2429 support_C = 0;
2430 while (p && *p == ';')
2431 {
2432 p++;
2433 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2434 support_s = 1;
2435 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2436 support_S = 1;
2437 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2438 support_c = 1;
2439 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2440 support_C = 1;
2441
2442 p = strchr (p, ';');
2443 }
2444
2445 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2446 BUF will make packet_ok disable the packet. */
2447 if (!support_s || !support_S || !support_c || !support_C)
2448 buf[0] = 0;
2449 }
2450
2451 packet_ok (buf, &remote_protocol_vcont);
2452 }
2453
2454 /* Resume the remote inferior by using a "vCont" packet. The thread
2455 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2456 resumed thread should be single-stepped and/or signalled. If PTID's
2457 PID is -1, then all threads are resumed; the thread to be stepped and/or
2458 signalled is given in the global INFERIOR_PTID. This function returns
2459 non-zero iff it resumes the inferior.
2460
2461 This function issues a strict subset of all possible vCont commands at the
2462 moment. */
2463
2464 static int
2465 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2466 {
2467 struct remote_state *rs = get_remote_state ();
2468 int pid = PIDGET (ptid);
2469 char *buf = NULL, *outbuf;
2470 struct cleanup *old_cleanup;
2471
2472 buf = xmalloc (rs->remote_packet_size);
2473 old_cleanup = make_cleanup (xfree, buf);
2474
2475 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2476 remote_vcont_probe (rs, buf);
2477
2478 if (remote_protocol_vcont.support == PACKET_DISABLE)
2479 {
2480 do_cleanups (old_cleanup);
2481 return 0;
2482 }
2483
2484 /* If we could generate a wider range of packets, we'd have to worry
2485 about overflowing BUF. Should there be a generic
2486 "multi-part-packet" packet? */
2487
2488 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2489 {
2490 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2491 don't have any PID numbers the inferior will understand. Make sure
2492 to only send forms that do not specify a PID. */
2493 if (step && siggnal != TARGET_SIGNAL_0)
2494 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2495 else if (step)
2496 outbuf = xstrprintf ("vCont;s");
2497 else if (siggnal != TARGET_SIGNAL_0)
2498 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2499 else
2500 outbuf = xstrprintf ("vCont;c");
2501 }
2502 else if (pid == -1)
2503 {
2504 /* Resume all threads, with preference for INFERIOR_PTID. */
2505 if (step && siggnal != TARGET_SIGNAL_0)
2506 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2507 PIDGET (inferior_ptid));
2508 else if (step)
2509 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2510 else if (siggnal != TARGET_SIGNAL_0)
2511 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2512 PIDGET (inferior_ptid));
2513 else
2514 outbuf = xstrprintf ("vCont;c");
2515 }
2516 else
2517 {
2518 /* Scheduler locking; resume only PTID. */
2519 if (step && siggnal != TARGET_SIGNAL_0)
2520 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2521 else if (step)
2522 outbuf = xstrprintf ("vCont;s:%x", pid);
2523 else if (siggnal != TARGET_SIGNAL_0)
2524 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2525 else
2526 outbuf = xstrprintf ("vCont;c:%x", pid);
2527 }
2528
2529 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2530 make_cleanup (xfree, outbuf);
2531
2532 putpkt (outbuf);
2533
2534 do_cleanups (old_cleanup);
2535
2536 return 1;
2537 }
2538
2539 /* Tell the remote machine to resume. */
2540
2541 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2542
2543 static int last_sent_step;
2544
2545 static void
2546 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2547 {
2548 struct remote_state *rs = get_remote_state ();
2549 char *buf = alloca (rs->remote_packet_size);
2550 int pid = PIDGET (ptid);
2551
2552 last_sent_signal = siggnal;
2553 last_sent_step = step;
2554
2555 /* A hook for when we need to do something at the last moment before
2556 resumption. */
2557 if (deprecated_target_resume_hook)
2558 (*deprecated_target_resume_hook) ();
2559
2560 /* The vCont packet doesn't need to specify threads via Hc. */
2561 if (remote_vcont_resume (ptid, step, siggnal))
2562 return;
2563
2564 /* All other supported resume packets do use Hc, so call set_thread. */
2565 if (pid == -1)
2566 set_thread (0, 0); /* Run any thread. */
2567 else
2568 set_thread (pid, 0); /* Run this thread. */
2569
2570 if (siggnal != TARGET_SIGNAL_0)
2571 {
2572 buf[0] = step ? 'S' : 'C';
2573 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2574 buf[2] = tohex (((int) siggnal) & 0xf);
2575 buf[3] = '\0';
2576 }
2577 else
2578 strcpy (buf, step ? "s" : "c");
2579
2580 putpkt (buf);
2581 }
2582
2583 /* Same as remote_resume, but with async support. */
2584 static void
2585 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2586 {
2587 remote_resume (ptid, step, siggnal);
2588
2589 /* We are about to start executing the inferior, let's register it
2590 with the event loop. NOTE: this is the one place where all the
2591 execution commands end up. We could alternatively do this in each
2592 of the execution commands in infcmd.c. */
2593 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2594 into infcmd.c in order to allow inferior function calls to work
2595 NOT asynchronously. */
2596 if (target_can_async_p ())
2597 target_async (inferior_event_handler, 0);
2598 /* Tell the world that the target is now executing. */
2599 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2600 this? Instead, should the client of target just assume (for
2601 async targets) that the target is going to start executing? Is
2602 this information already found in the continuation block? */
2603 if (target_is_async_p ())
2604 target_executing = 1;
2605 }
2606 \f
2607
2608 /* Set up the signal handler for SIGINT, while the target is
2609 executing, ovewriting the 'regular' SIGINT signal handler. */
2610 static void
2611 initialize_sigint_signal_handler (void)
2612 {
2613 sigint_remote_token =
2614 create_async_signal_handler (async_remote_interrupt, NULL);
2615 signal (SIGINT, handle_remote_sigint);
2616 }
2617
2618 /* Signal handler for SIGINT, while the target is executing. */
2619 static void
2620 handle_remote_sigint (int sig)
2621 {
2622 signal (sig, handle_remote_sigint_twice);
2623 sigint_remote_twice_token =
2624 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2625 mark_async_signal_handler_wrapper (sigint_remote_token);
2626 }
2627
2628 /* Signal handler for SIGINT, installed after SIGINT has already been
2629 sent once. It will take effect the second time that the user sends
2630 a ^C. */
2631 static void
2632 handle_remote_sigint_twice (int sig)
2633 {
2634 signal (sig, handle_sigint);
2635 sigint_remote_twice_token =
2636 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2637 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2638 }
2639
2640 /* Perform the real interruption of the target execution, in response
2641 to a ^C. */
2642 static void
2643 async_remote_interrupt (gdb_client_data arg)
2644 {
2645 if (remote_debug)
2646 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2647
2648 target_stop ();
2649 }
2650
2651 /* Perform interrupt, if the first attempt did not succeed. Just give
2652 up on the target alltogether. */
2653 void
2654 async_remote_interrupt_twice (gdb_client_data arg)
2655 {
2656 if (remote_debug)
2657 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2658 /* Do something only if the target was not killed by the previous
2659 cntl-C. */
2660 if (target_executing)
2661 {
2662 interrupt_query ();
2663 signal (SIGINT, handle_remote_sigint);
2664 }
2665 }
2666
2667 /* Reinstall the usual SIGINT handlers, after the target has
2668 stopped. */
2669 static void
2670 cleanup_sigint_signal_handler (void *dummy)
2671 {
2672 signal (SIGINT, handle_sigint);
2673 if (sigint_remote_twice_token)
2674 delete_async_signal_handler ((struct async_signal_handler **)
2675 &sigint_remote_twice_token);
2676 if (sigint_remote_token)
2677 delete_async_signal_handler ((struct async_signal_handler **)
2678 &sigint_remote_token);
2679 }
2680
2681 /* Send ^C to target to halt it. Target will respond, and send us a
2682 packet. */
2683 static void (*ofunc) (int);
2684
2685 /* The command line interface's stop routine. This function is installed
2686 as a signal handler for SIGINT. The first time a user requests a
2687 stop, we call remote_stop to send a break or ^C. If there is no
2688 response from the target (it didn't stop when the user requested it),
2689 we ask the user if he'd like to detach from the target. */
2690 static void
2691 remote_interrupt (int signo)
2692 {
2693 /* If this doesn't work, try more severe steps. */
2694 signal (signo, remote_interrupt_twice);
2695
2696 if (remote_debug)
2697 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2698
2699 target_stop ();
2700 }
2701
2702 /* The user typed ^C twice. */
2703
2704 static void
2705 remote_interrupt_twice (int signo)
2706 {
2707 signal (signo, ofunc);
2708 interrupt_query ();
2709 signal (signo, remote_interrupt);
2710 }
2711
2712 /* This is the generic stop called via the target vector. When a target
2713 interrupt is requested, either by the command line or the GUI, we
2714 will eventually end up here. */
2715 static void
2716 remote_stop (void)
2717 {
2718 /* Send a break or a ^C, depending on user preference. */
2719 if (remote_debug)
2720 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2721
2722 if (remote_break)
2723 serial_send_break (remote_desc);
2724 else
2725 serial_write (remote_desc, "\003", 1);
2726 }
2727
2728 /* Ask the user what to do when an interrupt is received. */
2729
2730 static void
2731 interrupt_query (void)
2732 {
2733 target_terminal_ours ();
2734
2735 if (query ("Interrupted while waiting for the program.\n\
2736 Give up (and stop debugging it)? "))
2737 {
2738 target_mourn_inferior ();
2739 deprecated_throw_reason (RETURN_QUIT);
2740 }
2741
2742 target_terminal_inferior ();
2743 }
2744
2745 /* Enable/disable target terminal ownership. Most targets can use
2746 terminal groups to control terminal ownership. Remote targets are
2747 different in that explicit transfer of ownership to/from GDB/target
2748 is required. */
2749
2750 static void
2751 remote_async_terminal_inferior (void)
2752 {
2753 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2754 sync_execution here. This function should only be called when
2755 GDB is resuming the inferior in the forground. A background
2756 resume (``run&'') should leave GDB in control of the terminal and
2757 consequently should not call this code. */
2758 if (!sync_execution)
2759 return;
2760 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2761 calls target_terminal_*() idenpotent. The event-loop GDB talking
2762 to an asynchronous target with a synchronous command calls this
2763 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2764 stops trying to transfer the terminal to the target when it
2765 shouldn't this guard can go away. */
2766 if (!remote_async_terminal_ours_p)
2767 return;
2768 delete_file_handler (input_fd);
2769 remote_async_terminal_ours_p = 0;
2770 initialize_sigint_signal_handler ();
2771 /* NOTE: At this point we could also register our selves as the
2772 recipient of all input. Any characters typed could then be
2773 passed on down to the target. */
2774 }
2775
2776 static void
2777 remote_async_terminal_ours (void)
2778 {
2779 /* See FIXME in remote_async_terminal_inferior. */
2780 if (!sync_execution)
2781 return;
2782 /* See FIXME in remote_async_terminal_inferior. */
2783 if (remote_async_terminal_ours_p)
2784 return;
2785 cleanup_sigint_signal_handler (NULL);
2786 add_file_handler (input_fd, stdin_event_handler, 0);
2787 remote_async_terminal_ours_p = 1;
2788 }
2789
2790 /* If nonzero, ignore the next kill. */
2791
2792 int kill_kludge;
2793
2794 void
2795 remote_console_output (char *msg)
2796 {
2797 char *p;
2798
2799 for (p = msg; p[0] && p[1]; p += 2)
2800 {
2801 char tb[2];
2802 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2803 tb[0] = c;
2804 tb[1] = 0;
2805 fputs_unfiltered (tb, gdb_stdtarg);
2806 }
2807 gdb_flush (gdb_stdtarg);
2808 }
2809
2810 /* Wait until the remote machine stops, then return,
2811 storing status in STATUS just as `wait' would.
2812 Returns "pid", which in the case of a multi-threaded
2813 remote OS, is the thread-id. */
2814
2815 static ptid_t
2816 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *buf = alloca (rs->remote_packet_size);
2820 ULONGEST thread_num = -1;
2821 ULONGEST addr;
2822
2823 status->kind = TARGET_WAITKIND_EXITED;
2824 status->value.integer = 0;
2825
2826 while (1)
2827 {
2828 char *p;
2829
2830 ofunc = signal (SIGINT, remote_interrupt);
2831 getpkt (buf, rs->remote_packet_size, 1);
2832 signal (SIGINT, ofunc);
2833
2834 /* This is a hook for when we need to do something (perhaps the
2835 collection of trace data) every time the target stops. */
2836 if (deprecated_target_wait_loop_hook)
2837 (*deprecated_target_wait_loop_hook) ();
2838
2839 remote_stopped_by_watchpoint_p = 0;
2840
2841 switch (buf[0])
2842 {
2843 case 'E': /* Error of some sort. */
2844 warning (_("Remote failure reply: %s"), buf);
2845 continue;
2846 case 'F': /* File-I/O request. */
2847 remote_fileio_request (buf);
2848 continue;
2849 case 'T': /* Status with PC, SP, FP, ... */
2850 {
2851 gdb_byte regs[MAX_REGISTER_SIZE];
2852
2853 /* Expedited reply, containing Signal, {regno, reg} repeat. */
2854 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2855 ss = signal number
2856 n... = register number
2857 r... = register contents
2858 */
2859 p = &buf[3]; /* after Txx */
2860
2861 while (*p)
2862 {
2863 char *p1;
2864 char *p_temp;
2865 int fieldsize;
2866 LONGEST pnum = 0;
2867
2868 /* If the packet contains a register number save it in
2869 pnum and set p1 to point to the character following
2870 it. Otherwise p1 points to p. */
2871
2872 /* If this packet is an awatch packet, don't parse the
2873 'a' as a register number. */
2874
2875 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2876 {
2877 /* Read the ``P'' register number. */
2878 pnum = strtol (p, &p_temp, 16);
2879 p1 = p_temp;
2880 }
2881 else
2882 p1 = p;
2883
2884 if (p1 == p) /* No register number present here. */
2885 {
2886 p1 = strchr (p, ':');
2887 if (p1 == NULL)
2888 warning (_("Malformed packet(a) (missing colon): %s\n\
2889 Packet: '%s'\n"),
2890 p, buf);
2891 if (strncmp (p, "thread", p1 - p) == 0)
2892 {
2893 p_temp = unpack_varlen_hex (++p1, &thread_num);
2894 record_currthread (thread_num);
2895 p = p_temp;
2896 }
2897 else if ((strncmp (p, "watch", p1 - p) == 0)
2898 || (strncmp (p, "rwatch", p1 - p) == 0)
2899 || (strncmp (p, "awatch", p1 - p) == 0))
2900 {
2901 remote_stopped_by_watchpoint_p = 1;
2902 p = unpack_varlen_hex (++p1, &addr);
2903 remote_watch_data_address = (CORE_ADDR)addr;
2904 }
2905 else
2906 {
2907 /* Silently skip unknown optional info. */
2908 p_temp = strchr (p1 + 1, ';');
2909 if (p_temp)
2910 p = p_temp;
2911 }
2912 }
2913 else
2914 {
2915 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2916 p = p1;
2917
2918 if (*p++ != ':')
2919 error (_("Malformed packet(b) (missing colon): %s\n\
2920 Packet: '%s'\n"),
2921 p, buf);
2922
2923 if (reg == NULL)
2924 error (_("Remote sent bad register number %s: %s\n\
2925 Packet: '%s'\n"),
2926 phex_nz (pnum, 0), p, buf);
2927
2928 fieldsize = hex2bin (p, regs,
2929 register_size (current_gdbarch,
2930 reg->regnum));
2931 p += 2 * fieldsize;
2932 if (fieldsize < register_size (current_gdbarch,
2933 reg->regnum))
2934 warning (_("Remote reply is too short: %s"), buf);
2935 regcache_raw_supply (current_regcache,
2936 reg->regnum, regs);
2937 }
2938
2939 if (*p++ != ';')
2940 error (_("Remote register badly formatted: %s\nhere: %s"),
2941 buf, p);
2942 }
2943 }
2944 /* fall through */
2945 case 'S': /* Old style status, just signal only. */
2946 status->kind = TARGET_WAITKIND_STOPPED;
2947 status->value.sig = (enum target_signal)
2948 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2949
2950 if (buf[3] == 'p')
2951 {
2952 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2953 record_currthread (thread_num);
2954 }
2955 goto got_status;
2956 case 'W': /* Target exited. */
2957 {
2958 /* The remote process exited. */
2959 status->kind = TARGET_WAITKIND_EXITED;
2960 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2961 goto got_status;
2962 }
2963 case 'X':
2964 status->kind = TARGET_WAITKIND_SIGNALLED;
2965 status->value.sig = (enum target_signal)
2966 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2967 kill_kludge = 1;
2968
2969 goto got_status;
2970 case 'O': /* Console output. */
2971 remote_console_output (buf + 1);
2972 continue;
2973 case '\0':
2974 if (last_sent_signal != TARGET_SIGNAL_0)
2975 {
2976 /* Zero length reply means that we tried 'S' or 'C' and
2977 the remote system doesn't support it. */
2978 target_terminal_ours_for_output ();
2979 printf_filtered
2980 ("Can't send signals to this remote system. %s not sent.\n",
2981 target_signal_to_name (last_sent_signal));
2982 last_sent_signal = TARGET_SIGNAL_0;
2983 target_terminal_inferior ();
2984
2985 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2986 putpkt ((char *) buf);
2987 continue;
2988 }
2989 /* else fallthrough */
2990 default:
2991 warning (_("Invalid remote reply: %s"), buf);
2992 continue;
2993 }
2994 }
2995 got_status:
2996 if (thread_num != -1)
2997 {
2998 return pid_to_ptid (thread_num);
2999 }
3000 return inferior_ptid;
3001 }
3002
3003 /* Async version of remote_wait. */
3004 static ptid_t
3005 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3006 {
3007 struct remote_state *rs = get_remote_state ();
3008 char *buf = alloca (rs->remote_packet_size);
3009 ULONGEST thread_num = -1;
3010 ULONGEST addr;
3011
3012 status->kind = TARGET_WAITKIND_EXITED;
3013 status->value.integer = 0;
3014
3015 remote_stopped_by_watchpoint_p = 0;
3016
3017 while (1)
3018 {
3019 char *p;
3020
3021 if (!target_is_async_p ())
3022 ofunc = signal (SIGINT, remote_interrupt);
3023 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3024 _never_ wait for ever -> test on target_is_async_p().
3025 However, before we do that we need to ensure that the caller
3026 knows how to take the target into/out of async mode. */
3027 getpkt (buf, rs->remote_packet_size, wait_forever_enabled_p);
3028 if (!target_is_async_p ())
3029 signal (SIGINT, ofunc);
3030
3031 /* This is a hook for when we need to do something (perhaps the
3032 collection of trace data) every time the target stops. */
3033 if (deprecated_target_wait_loop_hook)
3034 (*deprecated_target_wait_loop_hook) ();
3035
3036 switch (buf[0])
3037 {
3038 case 'E': /* Error of some sort. */
3039 warning (_("Remote failure reply: %s"), buf);
3040 continue;
3041 case 'F': /* File-I/O request. */
3042 remote_fileio_request (buf);
3043 continue;
3044 case 'T': /* Status with PC, SP, FP, ... */
3045 {
3046 gdb_byte regs[MAX_REGISTER_SIZE];
3047
3048 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3049 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3050 ss = signal number
3051 n... = register number
3052 r... = register contents
3053 */
3054 p = &buf[3]; /* after Txx */
3055
3056 while (*p)
3057 {
3058 char *p1;
3059 char *p_temp;
3060 int fieldsize;
3061 long pnum = 0;
3062
3063 /* If the packet contains a register number, save it
3064 in pnum and set p1 to point to the character
3065 following it. Otherwise p1 points to p. */
3066
3067 /* If this packet is an awatch packet, don't parse the 'a'
3068 as a register number. */
3069
3070 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3071 {
3072 /* Read the register number. */
3073 pnum = strtol (p, &p_temp, 16);
3074 p1 = p_temp;
3075 }
3076 else
3077 p1 = p;
3078
3079 if (p1 == p) /* No register number present here. */
3080 {
3081 p1 = strchr (p, ':');
3082 if (p1 == NULL)
3083 error (_("Malformed packet(a) (missing colon): %s\n\
3084 Packet: '%s'\n"),
3085 p, buf);
3086 if (strncmp (p, "thread", p1 - p) == 0)
3087 {
3088 p_temp = unpack_varlen_hex (++p1, &thread_num);
3089 record_currthread (thread_num);
3090 p = p_temp;
3091 }
3092 else if ((strncmp (p, "watch", p1 - p) == 0)
3093 || (strncmp (p, "rwatch", p1 - p) == 0)
3094 || (strncmp (p, "awatch", p1 - p) == 0))
3095 {
3096 remote_stopped_by_watchpoint_p = 1;
3097 p = unpack_varlen_hex (++p1, &addr);
3098 remote_watch_data_address = (CORE_ADDR)addr;
3099 }
3100 else
3101 {
3102 /* Silently skip unknown optional info. */
3103 p_temp = strchr (p1 + 1, ';');
3104 if (p_temp)
3105 p = p_temp;
3106 }
3107 }
3108
3109 else
3110 {
3111 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3112 p = p1;
3113 if (*p++ != ':')
3114 error (_("Malformed packet(b) (missing colon): %s\n\
3115 Packet: '%s'\n"),
3116 p, buf);
3117
3118 if (reg == NULL)
3119 error (_("Remote sent bad register number %ld: %s\n\
3120 Packet: '%s'\n"),
3121 pnum, p, buf);
3122
3123 fieldsize = hex2bin (p, regs,
3124 register_size (current_gdbarch,
3125 reg->regnum));
3126 p += 2 * fieldsize;
3127 if (fieldsize < register_size (current_gdbarch,
3128 reg->regnum))
3129 warning (_("Remote reply is too short: %s"), buf);
3130 regcache_raw_supply (current_regcache, reg->regnum, regs);
3131 }
3132
3133 if (*p++ != ';')
3134 error (_("Remote register badly formatted: %s\nhere: %s"),
3135 buf, p);
3136 }
3137 }
3138 /* fall through */
3139 case 'S': /* Old style status, just signal only. */
3140 status->kind = TARGET_WAITKIND_STOPPED;
3141 status->value.sig = (enum target_signal)
3142 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3143
3144 if (buf[3] == 'p')
3145 {
3146 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3147 record_currthread (thread_num);
3148 }
3149 goto got_status;
3150 case 'W': /* Target exited. */
3151 {
3152 /* The remote process exited. */
3153 status->kind = TARGET_WAITKIND_EXITED;
3154 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3155 goto got_status;
3156 }
3157 case 'X':
3158 status->kind = TARGET_WAITKIND_SIGNALLED;
3159 status->value.sig = (enum target_signal)
3160 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3161 kill_kludge = 1;
3162
3163 goto got_status;
3164 case 'O': /* Console output. */
3165 remote_console_output (buf + 1);
3166 /* Return immediately to the event loop. The event loop will
3167 still be waiting on the inferior afterwards. */
3168 status->kind = TARGET_WAITKIND_IGNORE;
3169 goto got_status;
3170 case '\0':
3171 if (last_sent_signal != TARGET_SIGNAL_0)
3172 {
3173 /* Zero length reply means that we tried 'S' or 'C' and
3174 the remote system doesn't support it. */
3175 target_terminal_ours_for_output ();
3176 printf_filtered
3177 ("Can't send signals to this remote system. %s not sent.\n",
3178 target_signal_to_name (last_sent_signal));
3179 last_sent_signal = TARGET_SIGNAL_0;
3180 target_terminal_inferior ();
3181
3182 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3183 putpkt ((char *) buf);
3184 continue;
3185 }
3186 /* else fallthrough */
3187 default:
3188 warning (_("Invalid remote reply: %s"), buf);
3189 continue;
3190 }
3191 }
3192 got_status:
3193 if (thread_num != -1)
3194 {
3195 return pid_to_ptid (thread_num);
3196 }
3197 return inferior_ptid;
3198 }
3199
3200 /* Number of bytes of registers this stub implements. */
3201
3202 static int register_bytes_found;
3203
3204 /* Read the remote registers into the block REGS. */
3205 /* Currently we just read all the registers, so we don't use regnum. */
3206
3207 static int
3208 fetch_register_using_p (int regnum)
3209 {
3210 struct remote_state *rs = get_remote_state ();
3211 char *buf = alloca (rs->remote_packet_size), *p;
3212 char regp[MAX_REGISTER_SIZE];
3213 int i;
3214
3215 p = buf;
3216 *p++ = 'p';
3217 p += hexnumstr (p, regnum);
3218 *p++ = '\0';
3219 remote_send (buf, rs->remote_packet_size);
3220
3221 /* If the stub didn't recognize the packet, or if we got an error,
3222 tell our caller. */
3223 if (buf[0] == '\0' || buf[0] == 'E')
3224 return 0;
3225
3226 /* If this register is unfetchable, tell the regcache. */
3227 if (buf[0] == 'x')
3228 {
3229 regcache_raw_supply (current_regcache, regnum, NULL);
3230 set_register_cached (regnum, -1);
3231 return 1;
3232 }
3233
3234 /* Otherwise, parse and supply the value. */
3235 p = buf;
3236 i = 0;
3237 while (p[0] != 0)
3238 {
3239 if (p[1] == 0)
3240 {
3241 error (_("fetch_register_using_p: early buf termination"));
3242 return 0;
3243 }
3244
3245 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3246 p += 2;
3247 }
3248 regcache_raw_supply (current_regcache, regnum, regp);
3249 return 1;
3250 }
3251
3252 static void
3253 remote_fetch_registers (int regnum)
3254 {
3255 struct remote_state *rs = get_remote_state ();
3256 char *buf = alloca (rs->remote_packet_size);
3257 int i;
3258 char *p;
3259 char *regs = alloca (rs->sizeof_g_packet);
3260
3261 set_thread (PIDGET (inferior_ptid), 1);
3262
3263 if (regnum >= 0)
3264 {
3265 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3266 gdb_assert (reg != NULL);
3267 if (!reg->in_g_packet)
3268 internal_error (__FILE__, __LINE__,
3269 _("Attempt to fetch a non G-packet register when this "
3270 "remote.c does not support the p-packet."));
3271 }
3272 switch (remote_protocol_p.support)
3273 {
3274 case PACKET_DISABLE:
3275 break;
3276 case PACKET_ENABLE:
3277 if (fetch_register_using_p (regnum))
3278 return;
3279 else
3280 error (_("Protocol error: p packet not recognized by stub"));
3281 case PACKET_SUPPORT_UNKNOWN:
3282 if (fetch_register_using_p (regnum))
3283 {
3284 /* The stub recognized the 'p' packet. Remember this. */
3285 remote_protocol_p.support = PACKET_ENABLE;
3286 return;
3287 }
3288 else
3289 {
3290 /* The stub does not support the 'P' packet. Use 'G'
3291 instead, and don't try using 'P' in the future (it
3292 will just waste our time). */
3293 remote_protocol_p.support = PACKET_DISABLE;
3294 break;
3295 }
3296 }
3297
3298 sprintf (buf, "g");
3299 remote_send (buf, rs->remote_packet_size);
3300
3301 /* Save the size of the packet sent to us by the target. Its used
3302 as a heuristic when determining the max size of packets that the
3303 target can safely receive. */
3304 if ((rs->actual_register_packet_size) == 0)
3305 (rs->actual_register_packet_size) = strlen (buf);
3306
3307 /* Unimplemented registers read as all bits zero. */
3308 memset (regs, 0, rs->sizeof_g_packet);
3309
3310 /* We can get out of synch in various cases. If the first character
3311 in the buffer is not a hex character, assume that has happened
3312 and try to fetch another packet to read. */
3313 while ((buf[0] < '0' || buf[0] > '9')
3314 && (buf[0] < 'A' || buf[0] > 'F')
3315 && (buf[0] < 'a' || buf[0] > 'f')
3316 && buf[0] != 'x') /* New: unavailable register value. */
3317 {
3318 if (remote_debug)
3319 fprintf_unfiltered (gdb_stdlog,
3320 "Bad register packet; fetching a new packet\n");
3321 getpkt (buf, rs->remote_packet_size, 0);
3322 }
3323
3324 /* Reply describes registers byte by byte, each byte encoded as two
3325 hex characters. Suck them all up, then supply them to the
3326 register cacheing/storage mechanism. */
3327
3328 p = buf;
3329 for (i = 0; i < rs->sizeof_g_packet; i++)
3330 {
3331 if (p[0] == 0)
3332 break;
3333 if (p[1] == 0)
3334 {
3335 warning (_("Remote reply is of odd length: %s"), buf);
3336 /* Don't change register_bytes_found in this case, and don't
3337 print a second warning. */
3338 goto supply_them;
3339 }
3340 if (p[0] == 'x' && p[1] == 'x')
3341 regs[i] = 0; /* 'x' */
3342 else
3343 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3344 p += 2;
3345 }
3346
3347 if (i != register_bytes_found)
3348 {
3349 register_bytes_found = i;
3350 if (REGISTER_BYTES_OK_P ()
3351 && !REGISTER_BYTES_OK (i))
3352 warning (_("Remote reply is too short: %s"), buf);
3353 }
3354
3355 supply_them:
3356 {
3357 int i;
3358 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3359 {
3360 struct packet_reg *r = &rs->regs[i];
3361 if (r->in_g_packet)
3362 {
3363 if (r->offset * 2 >= strlen (buf))
3364 /* A short packet that didn't include the register's
3365 value, this implies that the register is zero (and
3366 not that the register is unavailable). Supply that
3367 zero value. */
3368 regcache_raw_supply (current_regcache, r->regnum, NULL);
3369 else if (buf[r->offset * 2] == 'x')
3370 {
3371 gdb_assert (r->offset * 2 < strlen (buf));
3372 /* The register isn't available, mark it as such (at
3373 the same time setting the value to zero). */
3374 regcache_raw_supply (current_regcache, r->regnum, NULL);
3375 set_register_cached (i, -1);
3376 }
3377 else
3378 regcache_raw_supply (current_regcache, r->regnum,
3379 regs + r->offset);
3380 }
3381 }
3382 }
3383 }
3384
3385 /* Prepare to store registers. Since we may send them all (using a
3386 'G' request), we have to read out the ones we don't want to change
3387 first. */
3388
3389 static void
3390 remote_prepare_to_store (void)
3391 {
3392 struct remote_state *rs = get_remote_state ();
3393 int i;
3394 gdb_byte buf[MAX_REGISTER_SIZE];
3395
3396 /* Make sure the entire registers array is valid. */
3397 switch (remote_protocol_P.support)
3398 {
3399 case PACKET_DISABLE:
3400 case PACKET_SUPPORT_UNKNOWN:
3401 /* Make sure all the necessary registers are cached. */
3402 for (i = 0; i < NUM_REGS; i++)
3403 if (rs->regs[i].in_g_packet)
3404 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3405 break;
3406 case PACKET_ENABLE:
3407 break;
3408 }
3409 }
3410
3411 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3412 packet was not recognized. */
3413
3414 static int
3415 store_register_using_P (int regnum)
3416 {
3417 struct remote_state *rs = get_remote_state ();
3418 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3419 /* Try storing a single register. */
3420 char *buf = alloca (rs->remote_packet_size);
3421 gdb_byte regp[MAX_REGISTER_SIZE];
3422 char *p;
3423
3424 xsnprintf (buf, rs->remote_packet_size, "P%s=", phex_nz (reg->pnum, 0));
3425 p = buf + strlen (buf);
3426 regcache_raw_collect (current_regcache, reg->regnum, regp);
3427 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3428 remote_send (buf, rs->remote_packet_size);
3429
3430 return buf[0] != '\0';
3431 }
3432
3433
3434 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3435 contents of the register cache buffer. FIXME: ignores errors. */
3436
3437 static void
3438 remote_store_registers (int regnum)
3439 {
3440 struct remote_state *rs = get_remote_state ();
3441 char *buf;
3442 gdb_byte *regs;
3443 char *p;
3444
3445 set_thread (PIDGET (inferior_ptid), 1);
3446
3447 if (regnum >= 0)
3448 {
3449 switch (remote_protocol_P.support)
3450 {
3451 case PACKET_DISABLE:
3452 break;
3453 case PACKET_ENABLE:
3454 if (store_register_using_P (regnum))
3455 return;
3456 else
3457 error (_("Protocol error: P packet not recognized by stub"));
3458 case PACKET_SUPPORT_UNKNOWN:
3459 if (store_register_using_P (regnum))
3460 {
3461 /* The stub recognized the 'P' packet. Remember this. */
3462 remote_protocol_P.support = PACKET_ENABLE;
3463 return;
3464 }
3465 else
3466 {
3467 /* The stub does not support the 'P' packet. Use 'G'
3468 instead, and don't try using 'P' in the future (it
3469 will just waste our time). */
3470 remote_protocol_P.support = PACKET_DISABLE;
3471 break;
3472 }
3473 }
3474 }
3475
3476 /* Extract all the registers in the regcache copying them into a
3477 local buffer. */
3478 {
3479 int i;
3480 regs = alloca (rs->sizeof_g_packet);
3481 memset (regs, 0, rs->sizeof_g_packet);
3482 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3483 {
3484 struct packet_reg *r = &rs->regs[i];
3485 if (r->in_g_packet)
3486 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3487 }
3488 }
3489
3490 /* Command describes registers byte by byte,
3491 each byte encoded as two hex characters. */
3492 buf = alloca (rs->remote_packet_size);
3493 p = buf;
3494 *p++ = 'G';
3495 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3496 bin2hex (regs, p, register_bytes_found);
3497 remote_send (buf, rs->remote_packet_size);
3498 }
3499 \f
3500
3501 /* Return the number of hex digits in num. */
3502
3503 static int
3504 hexnumlen (ULONGEST num)
3505 {
3506 int i;
3507
3508 for (i = 0; num != 0; i++)
3509 num >>= 4;
3510
3511 return max (i, 1);
3512 }
3513
3514 /* Set BUF to the minimum number of hex digits representing NUM. */
3515
3516 static int
3517 hexnumstr (char *buf, ULONGEST num)
3518 {
3519 int len = hexnumlen (num);
3520 return hexnumnstr (buf, num, len);
3521 }
3522
3523
3524 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3525
3526 static int
3527 hexnumnstr (char *buf, ULONGEST num, int width)
3528 {
3529 int i;
3530
3531 buf[width] = '\0';
3532
3533 for (i = width - 1; i >= 0; i--)
3534 {
3535 buf[i] = "0123456789abcdef"[(num & 0xf)];
3536 num >>= 4;
3537 }
3538
3539 return width;
3540 }
3541
3542 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3543
3544 static CORE_ADDR
3545 remote_address_masked (CORE_ADDR addr)
3546 {
3547 if (remote_address_size > 0
3548 && remote_address_size < (sizeof (ULONGEST) * 8))
3549 {
3550 /* Only create a mask when that mask can safely be constructed
3551 in a ULONGEST variable. */
3552 ULONGEST mask = 1;
3553 mask = (mask << remote_address_size) - 1;
3554 addr &= mask;
3555 }
3556 return addr;
3557 }
3558
3559 /* Determine whether the remote target supports binary downloading.
3560 This is accomplished by sending a no-op memory write of zero length
3561 to the target at the specified address. It does not suffice to send
3562 the whole packet, since many stubs strip the eighth bit and
3563 subsequently compute a wrong checksum, which causes real havoc with
3564 remote_write_bytes.
3565
3566 NOTE: This can still lose if the serial line is not eight-bit
3567 clean. In cases like this, the user should clear "remote
3568 X-packet". */
3569
3570 static void
3571 check_binary_download (CORE_ADDR addr)
3572 {
3573 struct remote_state *rs = get_remote_state ();
3574
3575 switch (remote_protocol_binary_download.support)
3576 {
3577 case PACKET_DISABLE:
3578 break;
3579 case PACKET_ENABLE:
3580 break;
3581 case PACKET_SUPPORT_UNKNOWN:
3582 {
3583 char *buf = alloca (rs->remote_packet_size);
3584 char *p;
3585
3586 p = buf;
3587 *p++ = 'X';
3588 p += hexnumstr (p, (ULONGEST) addr);
3589 *p++ = ',';
3590 p += hexnumstr (p, (ULONGEST) 0);
3591 *p++ = ':';
3592 *p = '\0';
3593
3594 putpkt_binary (buf, (int) (p - buf));
3595 getpkt (buf, rs->remote_packet_size, 0);
3596
3597 if (buf[0] == '\0')
3598 {
3599 if (remote_debug)
3600 fprintf_unfiltered (gdb_stdlog,
3601 "binary downloading NOT suppported by target\n");
3602 remote_protocol_binary_download.support = PACKET_DISABLE;
3603 }
3604 else
3605 {
3606 if (remote_debug)
3607 fprintf_unfiltered (gdb_stdlog,
3608 "binary downloading suppported by target\n");
3609 remote_protocol_binary_download.support = PACKET_ENABLE;
3610 }
3611 break;
3612 }
3613 }
3614 }
3615
3616 /* Write memory data directly to the remote machine.
3617 This does not inform the data cache; the data cache uses this.
3618 MEMADDR is the address in the remote memory space.
3619 MYADDR is the address of the buffer in our space.
3620 LEN is the number of bytes.
3621
3622 Returns number of bytes transferred, or 0 (setting errno) for
3623 error. Only transfer a single packet. */
3624
3625 int
3626 remote_write_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
3627 {
3628 char *buf;
3629 char *p;
3630 char *plen;
3631 long sizeof_buf;
3632 int plenlen;
3633 int todo;
3634 int nr_bytes;
3635 int payload_size;
3636 char *payload_start;
3637
3638 /* Verify that the target can support a binary download. */
3639 check_binary_download (memaddr);
3640
3641 payload_size = get_memory_write_packet_size ();
3642
3643 /* Compute the size, and then allocate space for the largest
3644 possible packet. Include space for an extra trailing NUL. */
3645 sizeof_buf = payload_size + 1;
3646 buf = alloca (sizeof_buf);
3647
3648 /* Compute the size of the actual payload by subtracting out the
3649 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
3650 */
3651 payload_size -= strlen ("$M,:#NN");
3652 payload_size -= hexnumlen (memaddr);
3653
3654 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3655
3656 /* Append "[XM]". Compute a best guess of the number of bytes
3657 actually transfered. */
3658 p = buf;
3659 switch (remote_protocol_binary_download.support)
3660 {
3661 case PACKET_ENABLE:
3662 *p++ = 'X';
3663 /* Best guess at number of bytes that will fit. */
3664 todo = min (len, payload_size);
3665 payload_size -= hexnumlen (todo);
3666 todo = min (todo, payload_size);
3667 break;
3668 case PACKET_DISABLE:
3669 *p++ = 'M';
3670 /* Num bytes that will fit. */
3671 todo = min (len, payload_size / 2);
3672 payload_size -= hexnumlen (todo);
3673 todo = min (todo, payload_size / 2);
3674 break;
3675 case PACKET_SUPPORT_UNKNOWN:
3676 internal_error (__FILE__, __LINE__,
3677 _("remote_write_bytes: bad internal state"));
3678 default:
3679 internal_error (__FILE__, __LINE__, _("bad switch"));
3680 }
3681 if (todo <= 0)
3682 internal_error (__FILE__, __LINE__,
3683 _("minumum packet size too small to write data"));
3684
3685 /* Append "<memaddr>". */
3686 memaddr = remote_address_masked (memaddr);
3687 p += hexnumstr (p, (ULONGEST) memaddr);
3688
3689 /* Append ",". */
3690 *p++ = ',';
3691
3692 /* Append <len>. Retain the location/size of <len>. It may need to
3693 be adjusted once the packet body has been created. */
3694 plen = p;
3695 plenlen = hexnumstr (p, (ULONGEST) todo);
3696 p += plenlen;
3697
3698 /* Append ":". */
3699 *p++ = ':';
3700 *p = '\0';
3701
3702 /* Append the packet body. */
3703 payload_start = p;
3704 switch (remote_protocol_binary_download.support)
3705 {
3706 case PACKET_ENABLE:
3707 /* Binary mode. Send target system values byte by byte, in
3708 increasing byte addresses. Only escape certain critical
3709 characters. */
3710 for (nr_bytes = 0;
3711 (nr_bytes < todo) && (p - payload_start) < payload_size;
3712 nr_bytes++)
3713 {
3714 switch (myaddr[nr_bytes] & 0xff)
3715 {
3716 case '$':
3717 case '#':
3718 case 0x7d:
3719 /* These must be escaped. */
3720 *p++ = 0x7d;
3721 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3722 break;
3723 default:
3724 *p++ = myaddr[nr_bytes] & 0xff;
3725 break;
3726 }
3727 }
3728 if (nr_bytes < todo)
3729 {
3730 /* Escape chars have filled up the buffer prematurely,
3731 and we have actually sent fewer bytes than planned.
3732 Fix-up the length field of the packet. Use the same
3733 number of characters as before. */
3734 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3735 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3736 }
3737 break;
3738 case PACKET_DISABLE:
3739 /* Normal mode: Send target system values byte by byte, in
3740 increasing byte addresses. Each byte is encoded as a two hex
3741 value. */
3742 nr_bytes = bin2hex (myaddr, p, todo);
3743 p += 2 * nr_bytes;
3744 break;
3745 case PACKET_SUPPORT_UNKNOWN:
3746 internal_error (__FILE__, __LINE__,
3747 _("remote_write_bytes: bad internal state"));
3748 default:
3749 internal_error (__FILE__, __LINE__, _("bad switch"));
3750 }
3751
3752 putpkt_binary (buf, (int) (p - buf));
3753 getpkt (buf, sizeof_buf, 0);
3754
3755 if (buf[0] == 'E')
3756 {
3757 /* There is no correspondance between what the remote protocol
3758 uses for errors and errno codes. We would like a cleaner way
3759 of representing errors (big enough to include errno codes,
3760 bfd_error codes, and others). But for now just return EIO. */
3761 errno = EIO;
3762 return 0;
3763 }
3764
3765 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
3766 fewer bytes than we'd planned. */
3767 return nr_bytes;
3768 }
3769
3770 /* Read memory data directly from the remote machine.
3771 This does not use the data cache; the data cache uses this.
3772 MEMADDR is the address in the remote memory space.
3773 MYADDR is the address of the buffer in our space.
3774 LEN is the number of bytes.
3775
3776 Returns number of bytes transferred, or 0 for error. */
3777
3778 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3779 remote targets) shouldn't attempt to read the entire buffer.
3780 Instead it should read a single packet worth of data and then
3781 return the byte size of that packet to the caller. The caller (its
3782 caller and its callers caller ;-) already contains code for
3783 handling partial reads. */
3784
3785 int
3786 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
3787 {
3788 char *buf;
3789 int max_buf_size; /* Max size of packet output buffer. */
3790 long sizeof_buf;
3791 int origlen;
3792
3793 /* Create a buffer big enough for this packet. */
3794 max_buf_size = get_memory_read_packet_size ();
3795 sizeof_buf = max_buf_size + 1; /* Space for trailing NULL. */
3796 buf = alloca (sizeof_buf);
3797
3798 origlen = len;
3799 while (len > 0)
3800 {
3801 char *p;
3802 int todo;
3803 int i;
3804
3805 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3806
3807 /* construct "m"<memaddr>","<len>" */
3808 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3809 memaddr = remote_address_masked (memaddr);
3810 p = buf;
3811 *p++ = 'm';
3812 p += hexnumstr (p, (ULONGEST) memaddr);
3813 *p++ = ',';
3814 p += hexnumstr (p, (ULONGEST) todo);
3815 *p = '\0';
3816
3817 putpkt (buf);
3818 getpkt (buf, sizeof_buf, 0);
3819
3820 if (buf[0] == 'E'
3821 && isxdigit (buf[1]) && isxdigit (buf[2])
3822 && buf[3] == '\0')
3823 {
3824 /* There is no correspondance between what the remote
3825 protocol uses for errors and errno codes. We would like
3826 a cleaner way of representing errors (big enough to
3827 include errno codes, bfd_error codes, and others). But
3828 for now just return EIO. */
3829 errno = EIO;
3830 return 0;
3831 }
3832
3833 /* Reply describes memory byte by byte,
3834 each byte encoded as two hex characters. */
3835
3836 p = buf;
3837 if ((i = hex2bin (p, myaddr, todo)) < todo)
3838 {
3839 /* Reply is short. This means that we were able to read
3840 only part of what we wanted to. */
3841 return i + (origlen - len);
3842 }
3843 myaddr += todo;
3844 memaddr += todo;
3845 len -= todo;
3846 }
3847 return origlen;
3848 }
3849 \f
3850 /* Read or write LEN bytes from inferior memory at MEMADDR,
3851 transferring to or from debugger address BUFFER. Write to inferior
3852 if SHOULD_WRITE is nonzero. Returns length of data written or
3853 read; 0 for error. TARGET is unused. */
3854
3855 static int
3856 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
3857 int should_write, struct mem_attrib *attrib,
3858 struct target_ops *target)
3859 {
3860 CORE_ADDR targ_addr;
3861 int targ_len;
3862 int res;
3863
3864 /* Should this be the selected frame? */
3865 gdbarch_remote_translate_xfer_address (current_gdbarch,
3866 current_regcache,
3867 mem_addr, mem_len,
3868 &targ_addr, &targ_len);
3869 if (targ_len <= 0)
3870 return 0;
3871
3872 if (should_write)
3873 res = remote_write_bytes (targ_addr, buffer, targ_len);
3874 else
3875 res = remote_read_bytes (targ_addr, buffer, targ_len);
3876
3877 return res;
3878 }
3879
3880 static void
3881 remote_files_info (struct target_ops *ignore)
3882 {
3883 puts_filtered ("Debugging a target over a serial line.\n");
3884 }
3885 \f
3886 /* Stuff for dealing with the packets which are part of this protocol.
3887 See comment at top of file for details. */
3888
3889 /* Read a single character from the remote end, masking it down to 7
3890 bits. */
3891
3892 static int
3893 readchar (int timeout)
3894 {
3895 int ch;
3896
3897 ch = serial_readchar (remote_desc, timeout);
3898
3899 if (ch >= 0)
3900 return (ch & 0x7f);
3901
3902 switch ((enum serial_rc) ch)
3903 {
3904 case SERIAL_EOF:
3905 target_mourn_inferior ();
3906 error (_("Remote connection closed"));
3907 /* no return */
3908 case SERIAL_ERROR:
3909 perror_with_name (_("Remote communication error"));
3910 /* no return */
3911 case SERIAL_TIMEOUT:
3912 break;
3913 }
3914 return ch;
3915 }
3916
3917 /* Send the command in BUF to the remote machine, and read the reply
3918 into BUF. Report an error if we get an error reply. */
3919
3920 static void
3921 remote_send (char *buf,
3922 long sizeof_buf)
3923 {
3924 putpkt (buf);
3925 getpkt (buf, sizeof_buf, 0);
3926
3927 if (buf[0] == 'E')
3928 error (_("Remote failure reply: %s"), buf);
3929 }
3930
3931 /* Display a null-terminated packet on stdout, for debugging, using C
3932 string notation. */
3933
3934 static void
3935 print_packet (char *buf)
3936 {
3937 puts_filtered ("\"");
3938 fputstr_filtered (buf, '"', gdb_stdout);
3939 puts_filtered ("\"");
3940 }
3941
3942 int
3943 putpkt (char *buf)
3944 {
3945 return putpkt_binary (buf, strlen (buf));
3946 }
3947
3948 /* Send a packet to the remote machine, with error checking. The data
3949 of the packet is in BUF. The string in BUF can be at most
3950 RS->remote_packet_size - 5 to account for the $, # and checksum,
3951 and for a possible /0 if we are debugging (remote_debug) and want
3952 to print the sent packet as a string. */
3953
3954 static int
3955 putpkt_binary (char *buf, int cnt)
3956 {
3957 struct remote_state *rs = get_remote_state ();
3958 int i;
3959 unsigned char csum = 0;
3960 char *buf2 = alloca (cnt + 6);
3961 long sizeof_junkbuf = rs->remote_packet_size;
3962 char *junkbuf = alloca (sizeof_junkbuf);
3963
3964 int ch;
3965 int tcount = 0;
3966 char *p;
3967
3968 /* Copy the packet into buffer BUF2, encapsulating it
3969 and giving it a checksum. */
3970
3971 p = buf2;
3972 *p++ = '$';
3973
3974 for (i = 0; i < cnt; i++)
3975 {
3976 csum += buf[i];
3977 *p++ = buf[i];
3978 }
3979 *p++ = '#';
3980 *p++ = tohex ((csum >> 4) & 0xf);
3981 *p++ = tohex (csum & 0xf);
3982
3983 /* Send it over and over until we get a positive ack. */
3984
3985 while (1)
3986 {
3987 int started_error_output = 0;
3988
3989 if (remote_debug)
3990 {
3991 *p = '\0';
3992 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3993 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3994 fprintf_unfiltered (gdb_stdlog, "...");
3995 gdb_flush (gdb_stdlog);
3996 }
3997 if (serial_write (remote_desc, buf2, p - buf2))
3998 perror_with_name (_("putpkt: write failed"));
3999
4000 /* Read until either a timeout occurs (-2) or '+' is read. */
4001 while (1)
4002 {
4003 ch = readchar (remote_timeout);
4004
4005 if (remote_debug)
4006 {
4007 switch (ch)
4008 {
4009 case '+':
4010 case '-':
4011 case SERIAL_TIMEOUT:
4012 case '$':
4013 if (started_error_output)
4014 {
4015 putchar_unfiltered ('\n');
4016 started_error_output = 0;
4017 }
4018 }
4019 }
4020
4021 switch (ch)
4022 {
4023 case '+':
4024 if (remote_debug)
4025 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4026 return 1;
4027 case '-':
4028 if (remote_debug)
4029 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4030 case SERIAL_TIMEOUT:
4031 tcount++;
4032 if (tcount > 3)
4033 return 0;
4034 break; /* Retransmit buffer. */
4035 case '$':
4036 {
4037 if (remote_debug)
4038 fprintf_unfiltered (gdb_stdlog,
4039 "Packet instead of Ack, ignoring it\n");
4040 /* It's probably an old response sent because an ACK
4041 was lost. Gobble up the packet and ack it so it
4042 doesn't get retransmitted when we resend this
4043 packet. */
4044 read_frame (junkbuf, sizeof_junkbuf);
4045 serial_write (remote_desc, "+", 1);
4046 continue; /* Now, go look for +. */
4047 }
4048 default:
4049 if (remote_debug)
4050 {
4051 if (!started_error_output)
4052 {
4053 started_error_output = 1;
4054 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4055 }
4056 fputc_unfiltered (ch & 0177, gdb_stdlog);
4057 }
4058 continue;
4059 }
4060 break; /* Here to retransmit. */
4061 }
4062
4063 #if 0
4064 /* This is wrong. If doing a long backtrace, the user should be
4065 able to get out next time we call QUIT, without anything as
4066 violent as interrupt_query. If we want to provide a way out of
4067 here without getting to the next QUIT, it should be based on
4068 hitting ^C twice as in remote_wait. */
4069 if (quit_flag)
4070 {
4071 quit_flag = 0;
4072 interrupt_query ();
4073 }
4074 #endif
4075 }
4076 }
4077
4078 /* Come here after finding the start of the frame. Collect the rest
4079 into BUF, verifying the checksum, length, and handling run-length
4080 compression. No more than sizeof_buf-1 characters are read so that
4081 the buffer can be NUL terminated.
4082
4083 Returns -1 on error, number of characters in buffer (ignoring the
4084 trailing NULL) on success. (could be extended to return one of the
4085 SERIAL status indications). */
4086
4087 static long
4088 read_frame (char *buf,
4089 long sizeof_buf)
4090 {
4091 unsigned char csum;
4092 long bc;
4093 int c;
4094
4095 csum = 0;
4096 bc = 0;
4097
4098 while (1)
4099 {
4100 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NULL. */
4101 c = readchar (remote_timeout);
4102 switch (c)
4103 {
4104 case SERIAL_TIMEOUT:
4105 if (remote_debug)
4106 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4107 return -1;
4108 case '$':
4109 if (remote_debug)
4110 fputs_filtered ("Saw new packet start in middle of old one\n",
4111 gdb_stdlog);
4112 return -1; /* Start a new packet, count retries. */
4113 case '#':
4114 {
4115 unsigned char pktcsum;
4116 int check_0 = 0;
4117 int check_1 = 0;
4118
4119 buf[bc] = '\0';
4120
4121 check_0 = readchar (remote_timeout);
4122 if (check_0 >= 0)
4123 check_1 = readchar (remote_timeout);
4124
4125 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4126 {
4127 if (remote_debug)
4128 fputs_filtered ("Timeout in checksum, retrying\n",
4129 gdb_stdlog);
4130 return -1;
4131 }
4132 else if (check_0 < 0 || check_1 < 0)
4133 {
4134 if (remote_debug)
4135 fputs_filtered ("Communication error in checksum\n",
4136 gdb_stdlog);
4137 return -1;
4138 }
4139
4140 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4141 if (csum == pktcsum)
4142 return bc;
4143
4144 if (remote_debug)
4145 {
4146 fprintf_filtered (gdb_stdlog,
4147 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4148 pktcsum, csum);
4149 fputs_filtered (buf, gdb_stdlog);
4150 fputs_filtered ("\n", gdb_stdlog);
4151 }
4152 /* Number of characters in buffer ignoring trailing
4153 NULL. */
4154 return -1;
4155 }
4156 case '*': /* Run length encoding. */
4157 {
4158 int repeat;
4159 csum += c;
4160
4161 c = readchar (remote_timeout);
4162 csum += c;
4163 repeat = c - ' ' + 3; /* Compute repeat count. */
4164
4165 /* The character before ``*'' is repeated. */
4166
4167 if (repeat > 0 && repeat <= 255
4168 && bc > 0
4169 && bc + repeat - 1 < sizeof_buf - 1)
4170 {
4171 memset (&buf[bc], buf[bc - 1], repeat);
4172 bc += repeat;
4173 continue;
4174 }
4175
4176 buf[bc] = '\0';
4177 printf_filtered (_("Repeat count %d too large for buffer: "),
4178 repeat);
4179 puts_filtered (buf);
4180 puts_filtered ("\n");
4181 return -1;
4182 }
4183 default:
4184 if (bc < sizeof_buf - 1)
4185 {
4186 buf[bc++] = c;
4187 csum += c;
4188 continue;
4189 }
4190
4191 buf[bc] = '\0';
4192 puts_filtered ("Remote packet too long: ");
4193 puts_filtered (buf);
4194 puts_filtered ("\n");
4195
4196 return -1;
4197 }
4198 }
4199 }
4200
4201 /* Read a packet from the remote machine, with error checking, and
4202 store it in BUF. If FOREVER, wait forever rather than timing out;
4203 this is used (in synchronous mode) to wait for a target that is is
4204 executing user code to stop. */
4205 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4206 don't have to change all the calls to getpkt to deal with the
4207 return value, because at the moment I don't know what the right
4208 thing to do it for those. */
4209 void
4210 getpkt (char *buf,
4211 long sizeof_buf,
4212 int forever)
4213 {
4214 int timed_out;
4215
4216 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4217 }
4218
4219
4220 /* Read a packet from the remote machine, with error checking, and
4221 store it in BUF. If FOREVER, wait forever rather than timing out;
4222 this is used (in synchronous mode) to wait for a target that is is
4223 executing user code to stop. If FOREVER == 0, this function is
4224 allowed to time out gracefully and return an indication of this to
4225 the caller. */
4226 static int
4227 getpkt_sane (char *buf,
4228 long sizeof_buf,
4229 int forever)
4230 {
4231 int c;
4232 int tries;
4233 int timeout;
4234 int val;
4235
4236 strcpy (buf, "timeout");
4237
4238 if (forever)
4239 {
4240 timeout = watchdog > 0 ? watchdog : -1;
4241 }
4242
4243 else
4244 timeout = remote_timeout;
4245
4246 #define MAX_TRIES 3
4247
4248 for (tries = 1; tries <= MAX_TRIES; tries++)
4249 {
4250 /* This can loop forever if the remote side sends us characters
4251 continuously, but if it pauses, we'll get a zero from
4252 readchar because of timeout. Then we'll count that as a
4253 retry. */
4254
4255 /* Note that we will only wait forever prior to the start of a
4256 packet. After that, we expect characters to arrive at a
4257 brisk pace. They should show up within remote_timeout
4258 intervals. */
4259
4260 do
4261 {
4262 c = readchar (timeout);
4263
4264 if (c == SERIAL_TIMEOUT)
4265 {
4266 if (forever) /* Watchdog went off? Kill the target. */
4267 {
4268 QUIT;
4269 target_mourn_inferior ();
4270 error (_("Watchdog has expired. Target detached."));
4271 }
4272 if (remote_debug)
4273 fputs_filtered ("Timed out.\n", gdb_stdlog);
4274 goto retry;
4275 }
4276 }
4277 while (c != '$');
4278
4279 /* We've found the start of a packet, now collect the data. */
4280
4281 val = read_frame (buf, sizeof_buf);
4282
4283 if (val >= 0)
4284 {
4285 if (remote_debug)
4286 {
4287 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4288 fputstr_unfiltered (buf, 0, gdb_stdlog);
4289 fprintf_unfiltered (gdb_stdlog, "\n");
4290 }
4291 serial_write (remote_desc, "+", 1);
4292 return 0;
4293 }
4294
4295 /* Try the whole thing again. */
4296 retry:
4297 serial_write (remote_desc, "-", 1);
4298 }
4299
4300 /* We have tried hard enough, and just can't receive the packet.
4301 Give up. */
4302
4303 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4304 serial_write (remote_desc, "+", 1);
4305 return 1;
4306 }
4307 \f
4308 static void
4309 remote_kill (void)
4310 {
4311 /* For some mysterious reason, wait_for_inferior calls kill instead of
4312 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4313 if (kill_kludge)
4314 {
4315 kill_kludge = 0;
4316 target_mourn_inferior ();
4317 return;
4318 }
4319
4320 /* Use catch_errors so the user can quit from gdb even when we aren't on
4321 speaking terms with the remote system. */
4322 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4323
4324 /* Don't wait for it to die. I'm not really sure it matters whether
4325 we do or not. For the existing stubs, kill is a noop. */
4326 target_mourn_inferior ();
4327 }
4328
4329 /* Async version of remote_kill. */
4330 static void
4331 remote_async_kill (void)
4332 {
4333 /* Unregister the file descriptor from the event loop. */
4334 if (target_is_async_p ())
4335 serial_async (remote_desc, NULL, 0);
4336
4337 /* For some mysterious reason, wait_for_inferior calls kill instead of
4338 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4339 if (kill_kludge)
4340 {
4341 kill_kludge = 0;
4342 target_mourn_inferior ();
4343 return;
4344 }
4345
4346 /* Use catch_errors so the user can quit from gdb even when we
4347 aren't on speaking terms with the remote system. */
4348 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4349
4350 /* Don't wait for it to die. I'm not really sure it matters whether
4351 we do or not. For the existing stubs, kill is a noop. */
4352 target_mourn_inferior ();
4353 }
4354
4355 static void
4356 remote_mourn (void)
4357 {
4358 remote_mourn_1 (&remote_ops);
4359 }
4360
4361 static void
4362 remote_async_mourn (void)
4363 {
4364 remote_mourn_1 (&remote_async_ops);
4365 }
4366
4367 static void
4368 extended_remote_mourn (void)
4369 {
4370 /* We do _not_ want to mourn the target like this; this will
4371 remove the extended remote target from the target stack,
4372 and the next time the user says "run" it'll fail.
4373
4374 FIXME: What is the right thing to do here? */
4375 #if 0
4376 remote_mourn_1 (&extended_remote_ops);
4377 #endif
4378 }
4379
4380 /* Worker function for remote_mourn. */
4381 static void
4382 remote_mourn_1 (struct target_ops *target)
4383 {
4384 unpush_target (target);
4385 generic_mourn_inferior ();
4386 }
4387
4388 /* In the extended protocol we want to be able to do things like
4389 "run" and have them basically work as expected. So we need
4390 a special create_inferior function.
4391
4392 FIXME: One day add support for changing the exec file
4393 we're debugging, arguments and an environment. */
4394
4395 static void
4396 extended_remote_create_inferior (char *exec_file, char *args,
4397 char **env, int from_tty)
4398 {
4399 /* Rip out the breakpoints; we'll reinsert them after restarting
4400 the remote server. */
4401 remove_breakpoints ();
4402
4403 /* Now restart the remote server. */
4404 extended_remote_restart ();
4405
4406 /* Now put the breakpoints back in. This way we're safe if the
4407 restart function works via a unix fork on the remote side. */
4408 insert_breakpoints ();
4409
4410 /* Clean up from the last time we were running. */
4411 clear_proceed_status ();
4412 }
4413
4414 /* Async version of extended_remote_create_inferior. */
4415 static void
4416 extended_remote_async_create_inferior (char *exec_file, char *args,
4417 char **env, int from_tty)
4418 {
4419 /* Rip out the breakpoints; we'll reinsert them after restarting
4420 the remote server. */
4421 remove_breakpoints ();
4422
4423 /* If running asynchronously, register the target file descriptor
4424 with the event loop. */
4425 if (target_can_async_p ())
4426 target_async (inferior_event_handler, 0);
4427
4428 /* Now restart the remote server. */
4429 extended_remote_restart ();
4430
4431 /* Now put the breakpoints back in. This way we're safe if the
4432 restart function works via a unix fork on the remote side. */
4433 insert_breakpoints ();
4434
4435 /* Clean up from the last time we were running. */
4436 clear_proceed_status ();
4437 }
4438 \f
4439
4440 /* On some machines, e.g. 68k, we may use a different breakpoint
4441 instruction than other targets; in those use
4442 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4443 Also, bi-endian targets may define
4444 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4445 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4446 just call the standard routines that are in mem-break.c. */
4447
4448 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4449 target should use an identical BREAKPOINT_FROM_PC. As for native,
4450 the ARCH-OS-tdep.c code can override the default. */
4451
4452 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4453 #define DEPRECATED_REMOTE_BREAKPOINT
4454 #endif
4455
4456 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4457
4458 /* If the target isn't bi-endian, just pretend it is. */
4459 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4460 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4461 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4462 #endif
4463
4464 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4465 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4466
4467 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4468
4469 /* Insert a breakpoint on targets that don't have any better
4470 breakpoint support. We read the contents of the target location
4471 and stash it, then overwrite it with a breakpoint instruction.
4472 ADDR is the target location in the target machine. CONTENTS_CACHE
4473 is a pointer to memory allocated for saving the target contents.
4474 It is guaranteed by the caller to be long enough to save the number
4475 of bytes returned by BREAKPOINT_FROM_PC. */
4476
4477 static int
4478 remote_insert_breakpoint (CORE_ADDR addr, bfd_byte *contents_cache)
4479 {
4480 struct remote_state *rs = get_remote_state ();
4481 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4482 int val;
4483 #endif
4484 int bp_size;
4485
4486 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4487 If it succeeds, then set the support to PACKET_ENABLE. If it
4488 fails, and the user has explicitly requested the Z support then
4489 report an error, otherwise, mark it disabled and go on. */
4490
4491 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4492 {
4493 char *buf = alloca (rs->remote_packet_size);
4494 char *p = buf;
4495
4496 addr = remote_address_masked (addr);
4497 *(p++) = 'Z';
4498 *(p++) = '0';
4499 *(p++) = ',';
4500 p += hexnumstr (p, (ULONGEST) addr);
4501 BREAKPOINT_FROM_PC (&addr, &bp_size);
4502 sprintf (p, ",%d", bp_size);
4503
4504 putpkt (buf);
4505 getpkt (buf, rs->remote_packet_size, 0);
4506
4507 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4508 {
4509 case PACKET_ERROR:
4510 return -1;
4511 case PACKET_OK:
4512 return 0;
4513 case PACKET_UNKNOWN:
4514 break;
4515 }
4516 }
4517
4518 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4519 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4520
4521 if (val == 0)
4522 {
4523 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4524 val = target_write_memory (addr, (char *) big_break_insn,
4525 sizeof big_break_insn);
4526 else
4527 val = target_write_memory (addr, (char *) little_break_insn,
4528 sizeof little_break_insn);
4529 }
4530
4531 return val;
4532 #else
4533 return memory_insert_breakpoint (addr, contents_cache);
4534 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4535 }
4536
4537 static int
4538 remote_remove_breakpoint (CORE_ADDR addr, bfd_byte *contents_cache)
4539 {
4540 struct remote_state *rs = get_remote_state ();
4541 int bp_size;
4542
4543 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4544 {
4545 char *buf = alloca (rs->remote_packet_size);
4546 char *p = buf;
4547
4548 *(p++) = 'z';
4549 *(p++) = '0';
4550 *(p++) = ',';
4551
4552 addr = remote_address_masked (addr);
4553 p += hexnumstr (p, (ULONGEST) addr);
4554 BREAKPOINT_FROM_PC (&addr, &bp_size);
4555 sprintf (p, ",%d", bp_size);
4556
4557 putpkt (buf);
4558 getpkt (buf, rs->remote_packet_size, 0);
4559
4560 return (buf[0] == 'E');
4561 }
4562
4563 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4564 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4565 #else
4566 return memory_remove_breakpoint (addr, contents_cache);
4567 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4568 }
4569
4570 static int
4571 watchpoint_to_Z_packet (int type)
4572 {
4573 switch (type)
4574 {
4575 case hw_write:
4576 return 2;
4577 break;
4578 case hw_read:
4579 return 3;
4580 break;
4581 case hw_access:
4582 return 4;
4583 break;
4584 default:
4585 internal_error (__FILE__, __LINE__,
4586 _("hw_bp_to_z: bad watchpoint type %d"), type);
4587 }
4588 }
4589
4590 static int
4591 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4592 {
4593 struct remote_state *rs = get_remote_state ();
4594 char *buf = alloca (rs->remote_packet_size);
4595 char *p;
4596 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4597
4598 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4599 error (_("Can't set hardware watchpoints without the '%s' (%s) packet."),
4600 remote_protocol_Z[packet].name,
4601 remote_protocol_Z[packet].title);
4602
4603 sprintf (buf, "Z%x,", packet);
4604 p = strchr (buf, '\0');
4605 addr = remote_address_masked (addr);
4606 p += hexnumstr (p, (ULONGEST) addr);
4607 sprintf (p, ",%x", len);
4608
4609 putpkt (buf);
4610 getpkt (buf, rs->remote_packet_size, 0);
4611
4612 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4613 {
4614 case PACKET_ERROR:
4615 case PACKET_UNKNOWN:
4616 return -1;
4617 case PACKET_OK:
4618 return 0;
4619 }
4620 internal_error (__FILE__, __LINE__,
4621 _("remote_insert_watchpoint: reached end of function"));
4622 }
4623
4624
4625 static int
4626 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4627 {
4628 struct remote_state *rs = get_remote_state ();
4629 char *buf = alloca (rs->remote_packet_size);
4630 char *p;
4631 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4632
4633 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4634 error (_("Can't clear hardware watchpoints without the '%s' (%s) packet."),
4635 remote_protocol_Z[packet].name,
4636 remote_protocol_Z[packet].title);
4637
4638 sprintf (buf, "z%x,", packet);
4639 p = strchr (buf, '\0');
4640 addr = remote_address_masked (addr);
4641 p += hexnumstr (p, (ULONGEST) addr);
4642 sprintf (p, ",%x", len);
4643 putpkt (buf);
4644 getpkt (buf, rs->remote_packet_size, 0);
4645
4646 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4647 {
4648 case PACKET_ERROR:
4649 case PACKET_UNKNOWN:
4650 return -1;
4651 case PACKET_OK:
4652 return 0;
4653 }
4654 internal_error (__FILE__, __LINE__,
4655 _("remote_remove_watchpoint: reached end of function"));
4656 }
4657
4658
4659 int remote_hw_watchpoint_limit = -1;
4660 int remote_hw_breakpoint_limit = -1;
4661
4662 static int
4663 remote_check_watch_resources (int type, int cnt, int ot)
4664 {
4665 if (type == bp_hardware_breakpoint)
4666 {
4667 if (remote_hw_breakpoint_limit == 0)
4668 return 0;
4669 else if (remote_hw_breakpoint_limit < 0)
4670 return 1;
4671 else if (cnt <= remote_hw_breakpoint_limit)
4672 return 1;
4673 }
4674 else
4675 {
4676 if (remote_hw_watchpoint_limit == 0)
4677 return 0;
4678 else if (remote_hw_watchpoint_limit < 0)
4679 return 1;
4680 else if (ot)
4681 return -1;
4682 else if (cnt <= remote_hw_watchpoint_limit)
4683 return 1;
4684 }
4685 return -1;
4686 }
4687
4688 static int
4689 remote_stopped_by_watchpoint (void)
4690 {
4691 return remote_stopped_by_watchpoint_p;
4692 }
4693
4694 extern int stepped_after_stopped_by_watchpoint;
4695
4696 static int
4697 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
4698 {
4699 int rc = 0;
4700 if (remote_stopped_by_watchpoint ()
4701 || stepped_after_stopped_by_watchpoint)
4702 {
4703 *addr_p = remote_watch_data_address;
4704 rc = 1;
4705 }
4706
4707 return rc;
4708 }
4709
4710
4711 static int
4712 remote_insert_hw_breakpoint (CORE_ADDR addr, gdb_byte *shadow)
4713 {
4714 int len = 0;
4715 struct remote_state *rs = get_remote_state ();
4716 char *buf = alloca (rs->remote_packet_size);
4717 char *p = buf;
4718
4719 /* The length field should be set to the size of a breakpoint
4720 instruction. */
4721
4722 BREAKPOINT_FROM_PC (&addr, &len);
4723
4724 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4725 error (_("Can't set hardware breakpoint without the '%s' (%s) packet."),
4726 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4727 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4728
4729 *(p++) = 'Z';
4730 *(p++) = '1';
4731 *(p++) = ',';
4732
4733 addr = remote_address_masked (addr);
4734 p += hexnumstr (p, (ULONGEST) addr);
4735 sprintf (p, ",%x", len);
4736
4737 putpkt (buf);
4738 getpkt (buf, rs->remote_packet_size, 0);
4739
4740 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4741 {
4742 case PACKET_ERROR:
4743 case PACKET_UNKNOWN:
4744 return -1;
4745 case PACKET_OK:
4746 return 0;
4747 }
4748 internal_error (__FILE__, __LINE__,
4749 _("remote_insert_hw_breakpoint: reached end of function"));
4750 }
4751
4752
4753 static int
4754 remote_remove_hw_breakpoint (CORE_ADDR addr, gdb_byte *shadow)
4755 {
4756 int len;
4757 struct remote_state *rs = get_remote_state ();
4758 char *buf = alloca (rs->remote_packet_size);
4759 char *p = buf;
4760
4761 /* The length field should be set to the size of a breakpoint
4762 instruction. */
4763
4764 BREAKPOINT_FROM_PC (&addr, &len);
4765
4766 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4767 error (_("Can't clear hardware breakpoint without the '%s' (%s) packet."),
4768 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4769 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4770
4771 *(p++) = 'z';
4772 *(p++) = '1';
4773 *(p++) = ',';
4774
4775 addr = remote_address_masked (addr);
4776 p += hexnumstr (p, (ULONGEST) addr);
4777 sprintf (p, ",%x", len);
4778
4779 putpkt(buf);
4780 getpkt (buf, rs->remote_packet_size, 0);
4781
4782 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4783 {
4784 case PACKET_ERROR:
4785 case PACKET_UNKNOWN:
4786 return -1;
4787 case PACKET_OK:
4788 return 0;
4789 }
4790 internal_error (__FILE__, __LINE__,
4791 _("remote_remove_hw_breakpoint: reached end of function"));
4792 }
4793
4794 /* Some targets are only capable of doing downloads, and afterwards
4795 they switch to the remote serial protocol. This function provides
4796 a clean way to get from the download target to the remote target.
4797 It's basically just a wrapper so that we don't have to expose any
4798 of the internal workings of remote.c.
4799
4800 Prior to calling this routine, you should shutdown the current
4801 target code, else you will get the "A program is being debugged
4802 already..." message. Usually a call to pop_target() suffices. */
4803
4804 void
4805 push_remote_target (char *name, int from_tty)
4806 {
4807 printf_filtered (_("Switching to remote protocol\n"));
4808 remote_open (name, from_tty);
4809 }
4810
4811 /* Table used by the crc32 function to calcuate the checksum. */
4812
4813 static unsigned long crc32_table[256] =
4814 {0, 0};
4815
4816 static unsigned long
4817 crc32 (unsigned char *buf, int len, unsigned int crc)
4818 {
4819 if (!crc32_table[1])
4820 {
4821 /* Initialize the CRC table and the decoding table. */
4822 int i, j;
4823 unsigned int c;
4824
4825 for (i = 0; i < 256; i++)
4826 {
4827 for (c = i << 24, j = 8; j > 0; --j)
4828 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4829 crc32_table[i] = c;
4830 }
4831 }
4832
4833 while (len--)
4834 {
4835 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4836 buf++;
4837 }
4838 return crc;
4839 }
4840
4841 /* compare-sections command
4842
4843 With no arguments, compares each loadable section in the exec bfd
4844 with the same memory range on the target, and reports mismatches.
4845 Useful for verifying the image on the target against the exec file.
4846 Depends on the target understanding the new "qCRC:" request. */
4847
4848 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4849 target method (target verify memory) and generic version of the
4850 actual command. This will allow other high-level code (especially
4851 generic_load()) to make use of this target functionality. */
4852
4853 static void
4854 compare_sections_command (char *args, int from_tty)
4855 {
4856 struct remote_state *rs = get_remote_state ();
4857 asection *s;
4858 unsigned long host_crc, target_crc;
4859 extern bfd *exec_bfd;
4860 struct cleanup *old_chain;
4861 char *tmp;
4862 char *sectdata;
4863 const char *sectname;
4864 char *buf = alloca (rs->remote_packet_size);
4865 bfd_size_type size;
4866 bfd_vma lma;
4867 int matched = 0;
4868 int mismatched = 0;
4869
4870 if (!exec_bfd)
4871 error (_("command cannot be used without an exec file"));
4872 if (!current_target.to_shortname ||
4873 strcmp (current_target.to_shortname, "remote") != 0)
4874 error (_("command can only be used with remote target"));
4875
4876 for (s = exec_bfd->sections; s; s = s->next)
4877 {
4878 if (!(s->flags & SEC_LOAD))
4879 continue; /* skip non-loadable section */
4880
4881 size = bfd_get_section_size (s);
4882 if (size == 0)
4883 continue; /* skip zero-length section */
4884
4885 sectname = bfd_get_section_name (exec_bfd, s);
4886 if (args && strcmp (args, sectname) != 0)
4887 continue; /* not the section selected by user */
4888
4889 matched = 1; /* do this section */
4890 lma = s->lma;
4891 /* FIXME: assumes lma can fit into long. */
4892 xsnprintf (buf, rs->remote_packet_size, "qCRC:%lx,%lx",
4893 (long) lma, (long) size);
4894 putpkt (buf);
4895
4896 /* Be clever; compute the host_crc before waiting for target
4897 reply. */
4898 sectdata = xmalloc (size);
4899 old_chain = make_cleanup (xfree, sectdata);
4900 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4901 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4902
4903 getpkt (buf, rs->remote_packet_size, 0);
4904 if (buf[0] == 'E')
4905 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
4906 sectname, paddr (lma), paddr (lma + size));
4907 if (buf[0] != 'C')
4908 error (_("remote target does not support this operation"));
4909
4910 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4911 target_crc = target_crc * 16 + fromhex (*tmp);
4912
4913 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4914 sectname, paddr (lma), paddr (lma + size));
4915 if (host_crc == target_crc)
4916 printf_filtered ("matched.\n");
4917 else
4918 {
4919 printf_filtered ("MIS-MATCHED!\n");
4920 mismatched++;
4921 }
4922
4923 do_cleanups (old_chain);
4924 }
4925 if (mismatched > 0)
4926 warning (_("One or more sections of the remote executable does not match\n\
4927 the loaded file\n"));
4928 if (args && !matched)
4929 printf_filtered (_("No loaded section named '%s'.\n"), args);
4930 }
4931
4932 static LONGEST
4933 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4934 const char *annex, gdb_byte *readbuf,
4935 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4936 {
4937 struct remote_state *rs = get_remote_state ();
4938 int i;
4939 char *buf2 = alloca (rs->remote_packet_size);
4940 char *p2 = &buf2[0];
4941 char query_type;
4942
4943 /* Handle memory using remote_xfer_memory. */
4944 if (object == TARGET_OBJECT_MEMORY)
4945 {
4946 int xfered;
4947 errno = 0;
4948
4949 if (writebuf != NULL)
4950 {
4951 void *buffer = xmalloc (len);
4952 struct cleanup *cleanup = make_cleanup (xfree, buffer);
4953 memcpy (buffer, writebuf, len);
4954 xfered = remote_xfer_memory (offset, buffer, len, 1, NULL, ops);
4955 do_cleanups (cleanup);
4956 }
4957 else
4958 xfered = remote_xfer_memory (offset, readbuf, len, 0, NULL, ops);
4959
4960 if (xfered > 0)
4961 return xfered;
4962 else if (xfered == 0 && errno == 0)
4963 return 0;
4964 else
4965 return -1;
4966 }
4967
4968 /* Only handle reads. */
4969 if (writebuf != NULL || readbuf == NULL)
4970 return -1;
4971
4972 /* Map pre-existing objects onto letters. DO NOT do this for new
4973 objects!!! Instead specify new query packets. */
4974 switch (object)
4975 {
4976 case TARGET_OBJECT_KOD:
4977 query_type = 'K';
4978 break;
4979 case TARGET_OBJECT_AVR:
4980 query_type = 'R';
4981 break;
4982
4983 case TARGET_OBJECT_AUXV:
4984 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE)
4985 {
4986 unsigned int total = 0;
4987 while (len > 0)
4988 {
4989 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len);
4990 snprintf (buf2, rs->remote_packet_size,
4991 "qPart:auxv:read::%s,%s",
4992 phex_nz (offset, sizeof offset),
4993 phex_nz (n, sizeof n));
4994 i = putpkt (buf2);
4995 if (i < 0)
4996 return total > 0 ? total : i;
4997 buf2[0] = '\0';
4998 getpkt (buf2, rs->remote_packet_size, 0);
4999 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK)
5000 return total > 0 ? total : -1;
5001 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0')
5002 break; /* Got EOF indicator. */
5003 /* Got some data. */
5004 i = hex2bin (buf2, readbuf, len);
5005 if (i > 0)
5006 {
5007 readbuf = (void *) ((char *) readbuf + i);
5008 offset += i;
5009 len -= i;
5010 total += i;
5011 }
5012 }
5013 return total;
5014 }
5015 return -1;
5016
5017 default:
5018 return -1;
5019 }
5020
5021 /* Note: a zero OFFSET and LEN can be used to query the minimum
5022 buffer size. */
5023 if (offset == 0 && len == 0)
5024 return (rs->remote_packet_size);
5025 /* Minimum outbuf size is RS->remote_packet_size. If LEN is not
5026 large enough let the caller deal with it. */
5027 if (len < rs->remote_packet_size)
5028 return -1;
5029 len = rs->remote_packet_size;
5030
5031 /* Except for querying the minimum buffer size, target must be open. */
5032 if (!remote_desc)
5033 error (_("remote query is only available after target open"));
5034
5035 gdb_assert (annex != NULL);
5036 gdb_assert (readbuf != NULL);
5037
5038 *p2++ = 'q';
5039 *p2++ = query_type;
5040
5041 /* We used one buffer char for the remote protocol q command and
5042 another for the query type. As the remote protocol encapsulation
5043 uses 4 chars plus one extra in case we are debugging
5044 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5045 string. */
5046 i = 0;
5047 while (annex[i] && (i < (rs->remote_packet_size - 8)))
5048 {
5049 /* Bad caller may have sent forbidden characters. */
5050 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5051 *p2++ = annex[i];
5052 i++;
5053 }
5054 *p2 = '\0';
5055 gdb_assert (annex[i] == '\0');
5056
5057 i = putpkt (buf2);
5058 if (i < 0)
5059 return i;
5060
5061 getpkt ((char *) readbuf, len, 0);
5062
5063 return strlen ((char *) readbuf);
5064 }
5065
5066 static void
5067 remote_rcmd (char *command,
5068 struct ui_file *outbuf)
5069 {
5070 struct remote_state *rs = get_remote_state ();
5071 char *buf = alloca (rs->remote_packet_size);
5072 char *p = buf;
5073
5074 if (!remote_desc)
5075 error (_("remote rcmd is only available after target open"));
5076
5077 /* Send a NULL command across as an empty command. */
5078 if (command == NULL)
5079 command = "";
5080
5081 /* The query prefix. */
5082 strcpy (buf, "qRcmd,");
5083 p = strchr (buf, '\0');
5084
5085 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > rs->remote_packet_size)
5086 error (_("\"monitor\" command ``%s'' is too long."), command);
5087
5088 /* Encode the actual command. */
5089 bin2hex ((gdb_byte *) command, p, 0);
5090
5091 if (putpkt (buf) < 0)
5092 error (_("Communication problem with target."));
5093
5094 /* get/display the response */
5095 while (1)
5096 {
5097 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5098 buf[0] = '\0';
5099 getpkt (buf, rs->remote_packet_size, 0);
5100 if (buf[0] == '\0')
5101 error (_("Target does not support this command."));
5102 if (buf[0] == 'O' && buf[1] != 'K')
5103 {
5104 remote_console_output (buf + 1); /* 'O' message from stub. */
5105 continue;
5106 }
5107 if (strcmp (buf, "OK") == 0)
5108 break;
5109 if (strlen (buf) == 3 && buf[0] == 'E'
5110 && isdigit (buf[1]) && isdigit (buf[2]))
5111 {
5112 error (_("Protocol error with Rcmd"));
5113 }
5114 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5115 {
5116 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5117 fputc_unfiltered (c, outbuf);
5118 }
5119 break;
5120 }
5121 }
5122
5123 static void
5124 packet_command (char *args, int from_tty)
5125 {
5126 struct remote_state *rs = get_remote_state ();
5127 char *buf = alloca (rs->remote_packet_size);
5128
5129 if (!remote_desc)
5130 error (_("command can only be used with remote target"));
5131
5132 if (!args)
5133 error (_("remote-packet command requires packet text as argument"));
5134
5135 puts_filtered ("sending: ");
5136 print_packet (args);
5137 puts_filtered ("\n");
5138 putpkt (args);
5139
5140 getpkt (buf, rs->remote_packet_size, 0);
5141 puts_filtered ("received: ");
5142 print_packet (buf);
5143 puts_filtered ("\n");
5144 }
5145
5146 #if 0
5147 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5148
5149 static void display_thread_info (struct gdb_ext_thread_info *info);
5150
5151 static void threadset_test_cmd (char *cmd, int tty);
5152
5153 static void threadalive_test (char *cmd, int tty);
5154
5155 static void threadlist_test_cmd (char *cmd, int tty);
5156
5157 int get_and_display_threadinfo (threadref *ref);
5158
5159 static void threadinfo_test_cmd (char *cmd, int tty);
5160
5161 static int thread_display_step (threadref *ref, void *context);
5162
5163 static void threadlist_update_test_cmd (char *cmd, int tty);
5164
5165 static void init_remote_threadtests (void);
5166
5167 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5168
5169 static void
5170 threadset_test_cmd (char *cmd, int tty)
5171 {
5172 int sample_thread = SAMPLE_THREAD;
5173
5174 printf_filtered (_("Remote threadset test\n"));
5175 set_thread (sample_thread, 1);
5176 }
5177
5178
5179 static void
5180 threadalive_test (char *cmd, int tty)
5181 {
5182 int sample_thread = SAMPLE_THREAD;
5183
5184 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5185 printf_filtered ("PASS: Thread alive test\n");
5186 else
5187 printf_filtered ("FAIL: Thread alive test\n");
5188 }
5189
5190 void output_threadid (char *title, threadref *ref);
5191
5192 void
5193 output_threadid (char *title, threadref *ref)
5194 {
5195 char hexid[20];
5196
5197 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5198 hexid[16] = 0;
5199 printf_filtered ("%s %s\n", title, (&hexid[0]));
5200 }
5201
5202 static void
5203 threadlist_test_cmd (char *cmd, int tty)
5204 {
5205 int startflag = 1;
5206 threadref nextthread;
5207 int done, result_count;
5208 threadref threadlist[3];
5209
5210 printf_filtered ("Remote Threadlist test\n");
5211 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5212 &result_count, &threadlist[0]))
5213 printf_filtered ("FAIL: threadlist test\n");
5214 else
5215 {
5216 threadref *scan = threadlist;
5217 threadref *limit = scan + result_count;
5218
5219 while (scan < limit)
5220 output_threadid (" thread ", scan++);
5221 }
5222 }
5223
5224 void
5225 display_thread_info (struct gdb_ext_thread_info *info)
5226 {
5227 output_threadid ("Threadid: ", &info->threadid);
5228 printf_filtered ("Name: %s\n ", info->shortname);
5229 printf_filtered ("State: %s\n", info->display);
5230 printf_filtered ("other: %s\n\n", info->more_display);
5231 }
5232
5233 int
5234 get_and_display_threadinfo (threadref *ref)
5235 {
5236 int result;
5237 int set;
5238 struct gdb_ext_thread_info threadinfo;
5239
5240 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5241 | TAG_MOREDISPLAY | TAG_DISPLAY;
5242 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5243 display_thread_info (&threadinfo);
5244 return result;
5245 }
5246
5247 static void
5248 threadinfo_test_cmd (char *cmd, int tty)
5249 {
5250 int athread = SAMPLE_THREAD;
5251 threadref thread;
5252 int set;
5253
5254 int_to_threadref (&thread, athread);
5255 printf_filtered ("Remote Threadinfo test\n");
5256 if (!get_and_display_threadinfo (&thread))
5257 printf_filtered ("FAIL cannot get thread info\n");
5258 }
5259
5260 static int
5261 thread_display_step (threadref *ref, void *context)
5262 {
5263 /* output_threadid(" threadstep ",ref); *//* simple test */
5264 return get_and_display_threadinfo (ref);
5265 }
5266
5267 static void
5268 threadlist_update_test_cmd (char *cmd, int tty)
5269 {
5270 printf_filtered ("Remote Threadlist update test\n");
5271 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5272 }
5273
5274 static void
5275 init_remote_threadtests (void)
5276 {
5277 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5278 Fetch and print the remote list of thread identifiers, one pkt only"));
5279 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5280 _("Fetch and display info about one thread"));
5281 add_com ("tset", class_obscure, threadset_test_cmd,
5282 _("Test setting to a different thread"));
5283 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5284 _("Iterate through updating all remote thread info"));
5285 add_com ("talive", class_obscure, threadalive_test,
5286 _(" Remote thread alive test "));
5287 }
5288
5289 #endif /* 0 */
5290
5291 /* Convert a thread ID to a string. Returns the string in a static
5292 buffer. */
5293
5294 static char *
5295 remote_pid_to_str (ptid_t ptid)
5296 {
5297 static char buf[32];
5298
5299 xsnprintf (buf, sizeof buf, "thread %d", ptid_get_pid (ptid));
5300 return buf;
5301 }
5302
5303 /* Get the address of the thread local variable in OBJFILE which is
5304 stored at OFFSET within the thread local storage for thread PTID. */
5305
5306 static CORE_ADDR
5307 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5308 {
5309 if (remote_protocol_qGetTLSAddr.support != PACKET_DISABLE)
5310 {
5311 struct remote_state *rs = get_remote_state ();
5312 char *buf = alloca (rs->remote_packet_size);
5313 char *p = buf;
5314 enum packet_result result;
5315
5316 strcpy (p, "qGetTLSAddr:");
5317 p += strlen (p);
5318 p += hexnumstr (p, PIDGET (ptid));
5319 *p++ = ',';
5320 p += hexnumstr (p, offset);
5321 *p++ = ',';
5322 p += hexnumstr (p, lm);
5323 *p++ = '\0';
5324
5325 putpkt (buf);
5326 getpkt (buf, rs->remote_packet_size, 0);
5327 result = packet_ok (buf, &remote_protocol_qGetTLSAddr);
5328 if (result == PACKET_OK)
5329 {
5330 ULONGEST result;
5331
5332 unpack_varlen_hex (buf, &result);
5333 return result;
5334 }
5335 else if (result == PACKET_UNKNOWN)
5336 throw_error (TLS_GENERIC_ERROR,
5337 _("Remote target doesn't support qGetTLSAddr packet"));
5338 else
5339 throw_error (TLS_GENERIC_ERROR,
5340 _("Remote target failed to process qGetTLSAddr request"));
5341 }
5342 else
5343 throw_error (TLS_GENERIC_ERROR,
5344 _("TLS not supported or disabled on this target"));
5345 /* Not reached. */
5346 return 0;
5347 }
5348
5349 static void
5350 init_remote_ops (void)
5351 {
5352 remote_ops.to_shortname = "remote";
5353 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5354 remote_ops.to_doc =
5355 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5356 Specify the serial device it is connected to\n\
5357 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5358 remote_ops.to_open = remote_open;
5359 remote_ops.to_close = remote_close;
5360 remote_ops.to_detach = remote_detach;
5361 remote_ops.to_disconnect = remote_disconnect;
5362 remote_ops.to_resume = remote_resume;
5363 remote_ops.to_wait = remote_wait;
5364 remote_ops.to_fetch_registers = remote_fetch_registers;
5365 remote_ops.to_store_registers = remote_store_registers;
5366 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5367 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
5368 remote_ops.to_files_info = remote_files_info;
5369 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5370 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5371 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5372 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5373 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5374 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5375 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5376 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5377 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5378 remote_ops.to_kill = remote_kill;
5379 remote_ops.to_load = generic_load;
5380 remote_ops.to_mourn_inferior = remote_mourn;
5381 remote_ops.to_thread_alive = remote_thread_alive;
5382 remote_ops.to_find_new_threads = remote_threads_info;
5383 remote_ops.to_pid_to_str = remote_pid_to_str;
5384 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5385 remote_ops.to_stop = remote_stop;
5386 remote_ops.to_xfer_partial = remote_xfer_partial;
5387 remote_ops.to_rcmd = remote_rcmd;
5388 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
5389 remote_ops.to_stratum = process_stratum;
5390 remote_ops.to_has_all_memory = 1;
5391 remote_ops.to_has_memory = 1;
5392 remote_ops.to_has_stack = 1;
5393 remote_ops.to_has_registers = 1;
5394 remote_ops.to_has_execution = 1;
5395 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5396 remote_ops.to_magic = OPS_MAGIC;
5397 }
5398
5399 /* Set up the extended remote vector by making a copy of the standard
5400 remote vector and adding to it. */
5401
5402 static void
5403 init_extended_remote_ops (void)
5404 {
5405 extended_remote_ops = remote_ops;
5406
5407 extended_remote_ops.to_shortname = "extended-remote";
5408 extended_remote_ops.to_longname =
5409 "Extended remote serial target in gdb-specific protocol";
5410 extended_remote_ops.to_doc =
5411 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5412 Specify the serial device it is connected to (e.g. /dev/ttya).",
5413 extended_remote_ops.to_open = extended_remote_open;
5414 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5415 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5416 }
5417
5418 static int
5419 remote_can_async_p (void)
5420 {
5421 /* We're async whenever the serial device is. */
5422 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5423 }
5424
5425 static int
5426 remote_is_async_p (void)
5427 {
5428 /* We're async whenever the serial device is. */
5429 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5430 }
5431
5432 /* Pass the SERIAL event on and up to the client. One day this code
5433 will be able to delay notifying the client of an event until the
5434 point where an entire packet has been received. */
5435
5436 static void (*async_client_callback) (enum inferior_event_type event_type,
5437 void *context);
5438 static void *async_client_context;
5439 static serial_event_ftype remote_async_serial_handler;
5440
5441 static void
5442 remote_async_serial_handler (struct serial *scb, void *context)
5443 {
5444 /* Don't propogate error information up to the client. Instead let
5445 the client find out about the error by querying the target. */
5446 async_client_callback (INF_REG_EVENT, async_client_context);
5447 }
5448
5449 static void
5450 remote_async (void (*callback) (enum inferior_event_type event_type,
5451 void *context), void *context)
5452 {
5453 if (current_target.to_async_mask_value == 0)
5454 internal_error (__FILE__, __LINE__,
5455 _("Calling remote_async when async is masked"));
5456
5457 if (callback != NULL)
5458 {
5459 serial_async (remote_desc, remote_async_serial_handler, NULL);
5460 async_client_callback = callback;
5461 async_client_context = context;
5462 }
5463 else
5464 serial_async (remote_desc, NULL, NULL);
5465 }
5466
5467 /* Target async and target extended-async.
5468
5469 This are temporary targets, until it is all tested. Eventually
5470 async support will be incorporated int the usual 'remote'
5471 target. */
5472
5473 static void
5474 init_remote_async_ops (void)
5475 {
5476 remote_async_ops.to_shortname = "async";
5477 remote_async_ops.to_longname =
5478 "Remote serial target in async version of the gdb-specific protocol";
5479 remote_async_ops.to_doc =
5480 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5481 Specify the serial device it is connected to (e.g. /dev/ttya).";
5482 remote_async_ops.to_open = remote_async_open;
5483 remote_async_ops.to_close = remote_close;
5484 remote_async_ops.to_detach = remote_detach;
5485 remote_async_ops.to_disconnect = remote_disconnect;
5486 remote_async_ops.to_resume = remote_async_resume;
5487 remote_async_ops.to_wait = remote_async_wait;
5488 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5489 remote_async_ops.to_store_registers = remote_store_registers;
5490 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5491 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
5492 remote_async_ops.to_files_info = remote_files_info;
5493 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5494 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5495 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5496 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5497 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5498 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5499 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5500 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5501 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5502 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5503 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5504 remote_async_ops.to_kill = remote_async_kill;
5505 remote_async_ops.to_load = generic_load;
5506 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5507 remote_async_ops.to_thread_alive = remote_thread_alive;
5508 remote_async_ops.to_find_new_threads = remote_threads_info;
5509 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5510 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5511 remote_async_ops.to_stop = remote_stop;
5512 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5513 remote_async_ops.to_rcmd = remote_rcmd;
5514 remote_async_ops.to_stratum = process_stratum;
5515 remote_async_ops.to_has_all_memory = 1;
5516 remote_async_ops.to_has_memory = 1;
5517 remote_async_ops.to_has_stack = 1;
5518 remote_async_ops.to_has_registers = 1;
5519 remote_async_ops.to_has_execution = 1;
5520 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5521 remote_async_ops.to_can_async_p = remote_can_async_p;
5522 remote_async_ops.to_is_async_p = remote_is_async_p;
5523 remote_async_ops.to_async = remote_async;
5524 remote_async_ops.to_async_mask_value = 1;
5525 remote_async_ops.to_magic = OPS_MAGIC;
5526 }
5527
5528 /* Set up the async extended remote vector by making a copy of the standard
5529 remote vector and adding to it. */
5530
5531 static void
5532 init_extended_async_remote_ops (void)
5533 {
5534 extended_async_remote_ops = remote_async_ops;
5535
5536 extended_async_remote_ops.to_shortname = "extended-async";
5537 extended_async_remote_ops.to_longname =
5538 "Extended remote serial target in async gdb-specific protocol";
5539 extended_async_remote_ops.to_doc =
5540 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5541 Specify the serial device it is connected to (e.g. /dev/ttya).",
5542 extended_async_remote_ops.to_open = extended_remote_async_open;
5543 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5544 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5545 }
5546
5547 static void
5548 set_remote_cmd (char *args, int from_tty)
5549 {
5550 }
5551
5552 static void
5553 show_remote_cmd (char *args, int from_tty)
5554 {
5555 /* FIXME: cagney/2002-06-15: This function should iterate over
5556 remote_show_cmdlist for a list of sub commands to show. */
5557 show_remote_protocol_Z_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5558 show_remote_protocol_P_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5559 show_remote_protocol_p_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5560 show_remote_protocol_qSymbol_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5561 show_remote_protocol_vcont_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5562 show_remote_protocol_binary_download_cmd (gdb_stdout, from_tty, NULL, NULL);
5563 show_remote_protocol_qPart_auxv_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5564 show_remote_protocol_qGetTLSAddr_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5565 }
5566
5567 static void
5568 build_remote_gdbarch_data (void)
5569 {
5570 remote_address_size = TARGET_ADDR_BIT;
5571 }
5572
5573 /* Saved pointer to previous owner of the new_objfile event. */
5574 static void (*remote_new_objfile_chain) (struct objfile *);
5575
5576 /* Function to be called whenever a new objfile (shlib) is detected. */
5577 static void
5578 remote_new_objfile (struct objfile *objfile)
5579 {
5580 if (remote_desc != 0) /* Have a remote connection. */
5581 {
5582 remote_check_symbols (objfile);
5583 }
5584 /* Call predecessor on chain, if any. */
5585 if (remote_new_objfile_chain != 0 &&
5586 remote_desc == 0)
5587 remote_new_objfile_chain (objfile);
5588 }
5589
5590 void
5591 _initialize_remote (void)
5592 {
5593 static struct cmd_list_element *remote_set_cmdlist;
5594 static struct cmd_list_element *remote_show_cmdlist;
5595
5596 /* architecture specific data */
5597 remote_gdbarch_data_handle =
5598 gdbarch_data_register_post_init (init_remote_state);
5599
5600 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5601 that the remote protocol has been initialized. */
5602 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5603 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5604
5605 init_remote_ops ();
5606 add_target (&remote_ops);
5607
5608 init_extended_remote_ops ();
5609 add_target (&extended_remote_ops);
5610
5611 init_remote_async_ops ();
5612 add_target (&remote_async_ops);
5613
5614 init_extended_async_remote_ops ();
5615 add_target (&extended_async_remote_ops);
5616
5617 /* Hook into new objfile notification. */
5618 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5619 deprecated_target_new_objfile_hook = remote_new_objfile;
5620
5621 #if 0
5622 init_remote_threadtests ();
5623 #endif
5624
5625 /* set/show remote ... */
5626
5627 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
5628 Remote protocol specific variables\n\
5629 Configure various remote-protocol specific variables such as\n\
5630 the packets being used"),
5631 &remote_set_cmdlist, "set remote ",
5632 0 /* allow-unknown */, &setlist);
5633 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
5634 Remote protocol specific variables\n\
5635 Configure various remote-protocol specific variables such as\n\
5636 the packets being used"),
5637 &remote_show_cmdlist, "show remote ",
5638 0 /* allow-unknown */, &showlist);
5639
5640 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
5641 Compare section data on target to the exec file.\n\
5642 Argument is a single section name (default: all loaded sections)."),
5643 &cmdlist);
5644
5645 add_cmd ("packet", class_maintenance, packet_command, _("\
5646 Send an arbitrary packet to a remote target.\n\
5647 maintenance packet TEXT\n\
5648 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5649 this command sends the string TEXT to the inferior, and displays the\n\
5650 response packet. GDB supplies the initial `$' character, and the\n\
5651 terminating `#' character and checksum."),
5652 &maintenancelist);
5653
5654 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
5655 Set whether to send break if interrupted."), _("\
5656 Show whether to send break if interrupted."), _("\
5657 If set, a break, instead of a cntrl-c, is sent to the remote target."),
5658 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
5659 &setlist, &showlist);
5660
5661 /* Install commands for configuring memory read/write packets. */
5662
5663 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
5664 Set the maximum number of bytes per memory write packet (deprecated)."),
5665 &setlist);
5666 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
5667 Show the maximum number of bytes per memory write packet (deprecated)."),
5668 &showlist);
5669 add_cmd ("memory-write-packet-size", no_class,
5670 set_memory_write_packet_size, _("\
5671 Set the maximum number of bytes per memory-write packet.\n\
5672 Specify the number of bytes in a packet or 0 (zero) for the\n\
5673 default packet size. The actual limit is further reduced\n\
5674 dependent on the target. Specify ``fixed'' to disable the\n\
5675 further restriction and ``limit'' to enable that restriction."),
5676 &remote_set_cmdlist);
5677 add_cmd ("memory-read-packet-size", no_class,
5678 set_memory_read_packet_size, _("\
5679 Set the maximum number of bytes per memory-read packet.\n\
5680 Specify the number of bytes in a packet or 0 (zero) for the\n\
5681 default packet size. The actual limit is further reduced\n\
5682 dependent on the target. Specify ``fixed'' to disable the\n\
5683 further restriction and ``limit'' to enable that restriction."),
5684 &remote_set_cmdlist);
5685 add_cmd ("memory-write-packet-size", no_class,
5686 show_memory_write_packet_size,
5687 _("Show the maximum number of bytes per memory-write packet."),
5688 &remote_show_cmdlist);
5689 add_cmd ("memory-read-packet-size", no_class,
5690 show_memory_read_packet_size,
5691 _("Show the maximum number of bytes per memory-read packet."),
5692 &remote_show_cmdlist);
5693
5694 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
5695 &remote_hw_watchpoint_limit, _("\
5696 Set the maximum number of target hardware watchpoints."), _("\
5697 Show the maximum number of target hardware watchpoints."), _("\
5698 Specify a negative limit for unlimited."),
5699 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
5700 &remote_set_cmdlist, &remote_show_cmdlist);
5701 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
5702 &remote_hw_breakpoint_limit, _("\
5703 Set the maximum number of target hardware breakpoints."), _("\
5704 Show the maximum number of target hardware breakpoints."), _("\
5705 Specify a negative limit for unlimited."),
5706 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
5707 &remote_set_cmdlist, &remote_show_cmdlist);
5708
5709 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
5710 &remote_address_size, _("\
5711 Set the maximum size of the address (in bits) in a memory packet."), _("\
5712 Show the maximum size of the address (in bits) in a memory packet."), NULL,
5713 NULL,
5714 NULL, /* FIXME: i18n: */
5715 &setlist, &showlist);
5716
5717 add_packet_config_cmd (&remote_protocol_binary_download,
5718 "X", "binary-download",
5719 set_remote_protocol_binary_download_cmd,
5720 show_remote_protocol_binary_download_cmd,
5721 &remote_set_cmdlist, &remote_show_cmdlist,
5722 1);
5723
5724 add_packet_config_cmd (&remote_protocol_vcont,
5725 "vCont", "verbose-resume",
5726 set_remote_protocol_vcont_packet_cmd,
5727 show_remote_protocol_vcont_packet_cmd,
5728 &remote_set_cmdlist, &remote_show_cmdlist,
5729 0);
5730
5731 add_packet_config_cmd (&remote_protocol_qSymbol,
5732 "qSymbol", "symbol-lookup",
5733 set_remote_protocol_qSymbol_packet_cmd,
5734 show_remote_protocol_qSymbol_packet_cmd,
5735 &remote_set_cmdlist, &remote_show_cmdlist,
5736 0);
5737
5738 add_packet_config_cmd (&remote_protocol_P,
5739 "P", "set-register",
5740 set_remote_protocol_P_packet_cmd,
5741 show_remote_protocol_P_packet_cmd,
5742 &remote_set_cmdlist, &remote_show_cmdlist,
5743 1);
5744
5745 add_packet_config_cmd (&remote_protocol_p,
5746 "p", "fetch-register",
5747 set_remote_protocol_p_packet_cmd,
5748 show_remote_protocol_p_packet_cmd,
5749 &remote_set_cmdlist, &remote_show_cmdlist,
5750 1);
5751
5752 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5753 "Z0", "software-breakpoint",
5754 set_remote_protocol_Z_software_bp_packet_cmd,
5755 show_remote_protocol_Z_software_bp_packet_cmd,
5756 &remote_set_cmdlist, &remote_show_cmdlist,
5757 0);
5758
5759 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5760 "Z1", "hardware-breakpoint",
5761 set_remote_protocol_Z_hardware_bp_packet_cmd,
5762 show_remote_protocol_Z_hardware_bp_packet_cmd,
5763 &remote_set_cmdlist, &remote_show_cmdlist,
5764 0);
5765
5766 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5767 "Z2", "write-watchpoint",
5768 set_remote_protocol_Z_write_wp_packet_cmd,
5769 show_remote_protocol_Z_write_wp_packet_cmd,
5770 &remote_set_cmdlist, &remote_show_cmdlist,
5771 0);
5772
5773 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5774 "Z3", "read-watchpoint",
5775 set_remote_protocol_Z_read_wp_packet_cmd,
5776 show_remote_protocol_Z_read_wp_packet_cmd,
5777 &remote_set_cmdlist, &remote_show_cmdlist,
5778 0);
5779
5780 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5781 "Z4", "access-watchpoint",
5782 set_remote_protocol_Z_access_wp_packet_cmd,
5783 show_remote_protocol_Z_access_wp_packet_cmd,
5784 &remote_set_cmdlist, &remote_show_cmdlist,
5785 0);
5786
5787 add_packet_config_cmd (&remote_protocol_qPart_auxv,
5788 "qPart_auxv", "read-aux-vector",
5789 set_remote_protocol_qPart_auxv_packet_cmd,
5790 show_remote_protocol_qPart_auxv_packet_cmd,
5791 &remote_set_cmdlist, &remote_show_cmdlist,
5792 0);
5793
5794 add_packet_config_cmd (&remote_protocol_qGetTLSAddr,
5795 "qGetTLSAddr", "get-thread-local-storage-address",
5796 set_remote_protocol_qGetTLSAddr_packet_cmd,
5797 show_remote_protocol_qGetTLSAddr_packet_cmd,
5798 &remote_set_cmdlist, &remote_show_cmdlist,
5799 0);
5800
5801 /* Keep the old ``set remote Z-packet ...'' working. */
5802 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5803 &remote_Z_packet_detect, _("\
5804 Set use of remote protocol `Z' packets"), _("\
5805 Show use of remote protocol `Z' packets "), _("\
5806 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
5807 packets."),
5808 set_remote_protocol_Z_packet_cmd,
5809 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
5810 &remote_set_cmdlist, &remote_show_cmdlist);
5811
5812 /* Eventually initialize fileio. See fileio.c */
5813 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5814 }
This page took 0.295114 seconds and 4 git commands to generate.