* hppabsd-nat.c: Update copyright year. Include "target.h" and
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45
46 #include <ctype.h>
47 #include <sys/time.h>
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59
60 /* Prototypes for local functions. */
61 static void cleanup_sigint_signal_handler (void *dummy);
62 static void initialize_sigint_signal_handler (void);
63 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
64
65 static void handle_remote_sigint (int);
66 static void handle_remote_sigint_twice (int);
67 static void async_remote_interrupt (gdb_client_data);
68 void async_remote_interrupt_twice (gdb_client_data);
69
70 static void build_remote_gdbarch_data (void);
71
72 static void remote_files_info (struct target_ops *ignore);
73
74 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
75 int len, int should_write,
76 struct mem_attrib *attrib,
77 struct target_ops *target);
78
79 static void remote_prepare_to_store (void);
80
81 static void remote_fetch_registers (int regno);
82
83 static void remote_resume (ptid_t ptid, int step,
84 enum target_signal siggnal);
85 static void remote_async_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_open (char *name, int from_tty);
88 static void remote_async_open (char *name, int from_tty);
89
90 static void extended_remote_open (char *name, int from_tty);
91 static void extended_remote_async_open (char *name, int from_tty);
92
93 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
94 int async_p);
95
96 static void remote_close (int quitting);
97
98 static void remote_store_registers (int regno);
99
100 static void remote_mourn (void);
101 static void remote_async_mourn (void);
102
103 static void extended_remote_restart (void);
104
105 static void extended_remote_mourn (void);
106
107 static void remote_mourn_1 (struct target_ops *);
108
109 static void remote_send (char *buf, long sizeof_buf);
110
111 static int readchar (int timeout);
112
113 static ptid_t remote_wait (ptid_t ptid,
114 struct target_waitstatus *status);
115 static ptid_t remote_async_wait (ptid_t ptid,
116 struct target_waitstatus *status);
117
118 static void remote_kill (void);
119 static void remote_async_kill (void);
120
121 static int tohex (int nib);
122
123 static void remote_detach (char *args, int from_tty);
124
125 static void remote_interrupt (int signo);
126
127 static void remote_interrupt_twice (int signo);
128
129 static void interrupt_query (void);
130
131 static void set_thread (int, int);
132
133 static int remote_thread_alive (ptid_t);
134
135 static void get_offsets (void);
136
137 static long read_frame (char *buf, long sizeof_buf);
138
139 static int remote_insert_breakpoint (CORE_ADDR, char *);
140
141 static int remote_remove_breakpoint (CORE_ADDR, char *);
142
143 static int hexnumlen (ULONGEST num);
144
145 static void init_remote_ops (void);
146
147 static void init_extended_remote_ops (void);
148
149 static void remote_stop (void);
150
151 static int ishex (int ch, int *val);
152
153 static int stubhex (int ch);
154
155 static int hexnumstr (char *, ULONGEST);
156
157 static int hexnumnstr (char *, ULONGEST, int);
158
159 static CORE_ADDR remote_address_masked (CORE_ADDR);
160
161 static void print_packet (char *);
162
163 static unsigned long crc32 (unsigned char *, int, unsigned int);
164
165 static void compare_sections_command (char *, int);
166
167 static void packet_command (char *, int);
168
169 static int stub_unpack_int (char *buff, int fieldlength);
170
171 static ptid_t remote_current_thread (ptid_t oldptid);
172
173 static void remote_find_new_threads (void);
174
175 static void record_currthread (int currthread);
176
177 static int fromhex (int a);
178
179 static int hex2bin (const char *hex, char *bin, int count);
180
181 static int bin2hex (const char *bin, char *hex, int count);
182
183 static int putpkt_binary (char *buf, int cnt);
184
185 static void check_binary_download (CORE_ADDR addr);
186
187 struct packet_config;
188
189 static void show_packet_config_cmd (struct packet_config *config);
190
191 static void update_packet_config (struct packet_config *config);
192
193 void _initialize_remote (void);
194
195 /* Description of the remote protocol. Strictly speaking, when the
196 target is open()ed, remote.c should create a per-target description
197 of the remote protocol using that target's architecture.
198 Unfortunately, the target stack doesn't include local state. For
199 the moment keep the information in the target's architecture
200 object. Sigh.. */
201
202 struct packet_reg
203 {
204 long offset; /* Offset into G packet. */
205 long regnum; /* GDB's internal register number. */
206 LONGEST pnum; /* Remote protocol register number. */
207 int in_g_packet; /* Always part of G packet. */
208 /* long size in bytes; == register_size (current_gdbarch, regnum);
209 at present. */
210 /* char *name; == REGISTER_NAME (regnum); at present. */
211 };
212
213 struct remote_state
214 {
215 /* Description of the remote protocol registers. */
216 long sizeof_g_packet;
217
218 /* Description of the remote protocol registers indexed by REGNUM
219 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
220 struct packet_reg *regs;
221
222 /* This is the size (in chars) of the first response to the ``g''
223 packet. It is used as a heuristic when determining the maximum
224 size of memory-read and memory-write packets. A target will
225 typically only reserve a buffer large enough to hold the ``g''
226 packet. The size does not include packet overhead (headers and
227 trailers). */
228 long actual_register_packet_size;
229
230 /* This is the maximum size (in chars) of a non read/write packet.
231 It is also used as a cap on the size of read/write packets. */
232 long remote_packet_size;
233 };
234
235
236 /* Handle for retreving the remote protocol data from gdbarch. */
237 static struct gdbarch_data *remote_gdbarch_data_handle;
238
239 static struct remote_state *
240 get_remote_state (void)
241 {
242 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
243 }
244
245 static void *
246 init_remote_state (struct gdbarch *gdbarch)
247 {
248 int regnum;
249 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
250
251 if (deprecated_register_bytes () != 0)
252 rs->sizeof_g_packet = deprecated_register_bytes ();
253 else
254 rs->sizeof_g_packet = 0;
255
256 /* Assume a 1:1 regnum<->pnum table. */
257 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
258 struct packet_reg);
259 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
260 {
261 struct packet_reg *r = &rs->regs[regnum];
262 r->pnum = regnum;
263 r->regnum = regnum;
264 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
265 r->in_g_packet = (regnum < NUM_REGS);
266 /* ...name = REGISTER_NAME (regnum); */
267
268 /* Compute packet size by accumulating the size of all registers. */
269 if (deprecated_register_bytes () == 0)
270 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
271 }
272
273 /* Default maximum number of characters in a packet body. Many
274 remote stubs have a hardwired buffer size of 400 bytes
275 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
276 as the maximum packet-size to ensure that the packet and an extra
277 NUL character can always fit in the buffer. This stops GDB
278 trashing stubs that try to squeeze an extra NUL into what is
279 already a full buffer (As of 1999-12-04 that was most stubs. */
280 rs->remote_packet_size = 400 - 1;
281
282 /* Should rs->sizeof_g_packet needs more space than the
283 default, adjust the size accordingly. Remember that each byte is
284 encoded as two characters. 32 is the overhead for the packet
285 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
286 (``$NN:G...#NN'') is a better guess, the below has been padded a
287 little. */
288 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
289 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
290
291 /* This one is filled in when a ``g'' packet is received. */
292 rs->actual_register_packet_size = 0;
293
294 return rs;
295 }
296
297 static struct packet_reg *
298 packet_reg_from_regnum (struct remote_state *rs, long regnum)
299 {
300 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
301 return NULL;
302 else
303 {
304 struct packet_reg *r = &rs->regs[regnum];
305 gdb_assert (r->regnum == regnum);
306 return r;
307 }
308 }
309
310 static struct packet_reg *
311 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
312 {
313 int i;
314 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
315 {
316 struct packet_reg *r = &rs->regs[i];
317 if (r->pnum == pnum)
318 return r;
319 }
320 return NULL;
321 }
322
323 /* FIXME: graces/2002-08-08: These variables should eventually be
324 bound to an instance of the target object (as in gdbarch-tdep()),
325 when such a thing exists. */
326
327 /* This is set to the data address of the access causing the target
328 to stop for a watchpoint. */
329 static CORE_ADDR remote_watch_data_address;
330
331 /* This is non-zero if taregt stopped for a watchpoint. */
332 static int remote_stopped_by_watchpoint_p;
333
334
335 static struct target_ops remote_ops;
336
337 static struct target_ops extended_remote_ops;
338
339 /* Temporary target ops. Just like the remote_ops and
340 extended_remote_ops, but with asynchronous support. */
341 static struct target_ops remote_async_ops;
342
343 static struct target_ops extended_async_remote_ops;
344
345 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
346 ``forever'' still use the normal timeout mechanism. This is
347 currently used by the ASYNC code to guarentee that target reads
348 during the initial connect always time-out. Once getpkt has been
349 modified to return a timeout indication and, in turn
350 remote_wait()/wait_for_inferior() have gained a timeout parameter
351 this can go away. */
352 static int wait_forever_enabled_p = 1;
353
354
355 /* This variable chooses whether to send a ^C or a break when the user
356 requests program interruption. Although ^C is usually what remote
357 systems expect, and that is the default here, sometimes a break is
358 preferable instead. */
359
360 static int remote_break;
361
362 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
363 remote_open knows that we don't have a file open when the program
364 starts. */
365 static struct serial *remote_desc = NULL;
366
367 /* This variable sets the number of bits in an address that are to be
368 sent in a memory ("M" or "m") packet. Normally, after stripping
369 leading zeros, the entire address would be sent. This variable
370 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
371 initial implementation of remote.c restricted the address sent in
372 memory packets to ``host::sizeof long'' bytes - (typically 32
373 bits). Consequently, for 64 bit targets, the upper 32 bits of an
374 address was never sent. Since fixing this bug may cause a break in
375 some remote targets this variable is principly provided to
376 facilitate backward compatibility. */
377
378 static int remote_address_size;
379
380 /* Tempoary to track who currently owns the terminal. See
381 target_async_terminal_* for more details. */
382
383 static int remote_async_terminal_ours_p;
384
385 \f
386 /* User configurable variables for the number of characters in a
387 memory read/write packet. MIN ((rs->remote_packet_size),
388 rs->sizeof_g_packet) is the default. Some targets need smaller
389 values (fifo overruns, et.al.) and some users need larger values
390 (speed up transfers). The variables ``preferred_*'' (the user
391 request), ``current_*'' (what was actually set) and ``forced_*''
392 (Positive - a soft limit, negative - a hard limit). */
393
394 struct memory_packet_config
395 {
396 char *name;
397 long size;
398 int fixed_p;
399 };
400
401 /* Compute the current size of a read/write packet. Since this makes
402 use of ``actual_register_packet_size'' the computation is dynamic. */
403
404 static long
405 get_memory_packet_size (struct memory_packet_config *config)
406 {
407 struct remote_state *rs = get_remote_state ();
408 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
409 law?) that some hosts don't cope very well with large alloca()
410 calls. Eventually the alloca() code will be replaced by calls to
411 xmalloc() and make_cleanups() allowing this restriction to either
412 be lifted or removed. */
413 #ifndef MAX_REMOTE_PACKET_SIZE
414 #define MAX_REMOTE_PACKET_SIZE 16384
415 #endif
416 /* NOTE: 20 ensures we can write at least one byte. */
417 #ifndef MIN_REMOTE_PACKET_SIZE
418 #define MIN_REMOTE_PACKET_SIZE 20
419 #endif
420 long what_they_get;
421 if (config->fixed_p)
422 {
423 if (config->size <= 0)
424 what_they_get = MAX_REMOTE_PACKET_SIZE;
425 else
426 what_they_get = config->size;
427 }
428 else
429 {
430 what_they_get = (rs->remote_packet_size);
431 /* Limit the packet to the size specified by the user. */
432 if (config->size > 0
433 && what_they_get > config->size)
434 what_they_get = config->size;
435 /* Limit it to the size of the targets ``g'' response. */
436 if ((rs->actual_register_packet_size) > 0
437 && what_they_get > (rs->actual_register_packet_size))
438 what_they_get = (rs->actual_register_packet_size);
439 }
440 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
441 what_they_get = MAX_REMOTE_PACKET_SIZE;
442 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
443 what_they_get = MIN_REMOTE_PACKET_SIZE;
444 return what_they_get;
445 }
446
447 /* Update the size of a read/write packet. If they user wants
448 something really big then do a sanity check. */
449
450 static void
451 set_memory_packet_size (char *args, struct memory_packet_config *config)
452 {
453 int fixed_p = config->fixed_p;
454 long size = config->size;
455 if (args == NULL)
456 error (_("Argument required (integer, `fixed' or `limited')."));
457 else if (strcmp (args, "hard") == 0
458 || strcmp (args, "fixed") == 0)
459 fixed_p = 1;
460 else if (strcmp (args, "soft") == 0
461 || strcmp (args, "limit") == 0)
462 fixed_p = 0;
463 else
464 {
465 char *end;
466 size = strtoul (args, &end, 0);
467 if (args == end)
468 error (_("Invalid %s (bad syntax)."), config->name);
469 #if 0
470 /* Instead of explicitly capping the size of a packet to
471 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
472 instead allowed to set the size to something arbitrarily
473 large. */
474 if (size > MAX_REMOTE_PACKET_SIZE)
475 error (_("Invalid %s (too large)."), config->name);
476 #endif
477 }
478 /* Extra checks? */
479 if (fixed_p && !config->fixed_p)
480 {
481 if (! query (_("The target may not be able to correctly handle a %s\n"
482 "of %ld bytes. Change the packet size? "),
483 config->name, size))
484 error (_("Packet size not changed."));
485 }
486 /* Update the config. */
487 config->fixed_p = fixed_p;
488 config->size = size;
489 }
490
491 static void
492 show_memory_packet_size (struct memory_packet_config *config)
493 {
494 printf_filtered (_("The %s is %ld. "), config->name, config->size);
495 if (config->fixed_p)
496 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
497 get_memory_packet_size (config));
498 else
499 printf_filtered (_("Packets are limited to %ld bytes.\n"),
500 get_memory_packet_size (config));
501 }
502
503 static struct memory_packet_config memory_write_packet_config =
504 {
505 "memory-write-packet-size",
506 };
507
508 static void
509 set_memory_write_packet_size (char *args, int from_tty)
510 {
511 set_memory_packet_size (args, &memory_write_packet_config);
512 }
513
514 static void
515 show_memory_write_packet_size (char *args, int from_tty)
516 {
517 show_memory_packet_size (&memory_write_packet_config);
518 }
519
520 static long
521 get_memory_write_packet_size (void)
522 {
523 return get_memory_packet_size (&memory_write_packet_config);
524 }
525
526 static struct memory_packet_config memory_read_packet_config =
527 {
528 "memory-read-packet-size",
529 };
530
531 static void
532 set_memory_read_packet_size (char *args, int from_tty)
533 {
534 set_memory_packet_size (args, &memory_read_packet_config);
535 }
536
537 static void
538 show_memory_read_packet_size (char *args, int from_tty)
539 {
540 show_memory_packet_size (&memory_read_packet_config);
541 }
542
543 static long
544 get_memory_read_packet_size (void)
545 {
546 struct remote_state *rs = get_remote_state ();
547 long size = get_memory_packet_size (&memory_read_packet_config);
548 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
549 extra buffer size argument before the memory read size can be
550 increased beyond (rs->remote_packet_size). */
551 if (size > (rs->remote_packet_size))
552 size = (rs->remote_packet_size);
553 return size;
554 }
555
556 \f
557 /* Generic configuration support for packets the stub optionally
558 supports. Allows the user to specify the use of the packet as well
559 as allowing GDB to auto-detect support in the remote stub. */
560
561 enum packet_support
562 {
563 PACKET_SUPPORT_UNKNOWN = 0,
564 PACKET_ENABLE,
565 PACKET_DISABLE
566 };
567
568 struct packet_config
569 {
570 char *name;
571 char *title;
572 enum auto_boolean detect;
573 enum packet_support support;
574 };
575
576 /* Analyze a packet's return value and update the packet config
577 accordingly. */
578
579 enum packet_result
580 {
581 PACKET_ERROR,
582 PACKET_OK,
583 PACKET_UNKNOWN
584 };
585
586 static void
587 update_packet_config (struct packet_config *config)
588 {
589 switch (config->detect)
590 {
591 case AUTO_BOOLEAN_TRUE:
592 config->support = PACKET_ENABLE;
593 break;
594 case AUTO_BOOLEAN_FALSE:
595 config->support = PACKET_DISABLE;
596 break;
597 case AUTO_BOOLEAN_AUTO:
598 config->support = PACKET_SUPPORT_UNKNOWN;
599 break;
600 }
601 }
602
603 static void
604 show_packet_config_cmd (struct packet_config *config)
605 {
606 char *support = "internal-error";
607 switch (config->support)
608 {
609 case PACKET_ENABLE:
610 support = "enabled";
611 break;
612 case PACKET_DISABLE:
613 support = "disabled";
614 break;
615 case PACKET_SUPPORT_UNKNOWN:
616 support = "unknown";
617 break;
618 }
619 switch (config->detect)
620 {
621 case AUTO_BOOLEAN_AUTO:
622 printf_filtered (_("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n"),
623 config->name, config->title, support);
624 break;
625 case AUTO_BOOLEAN_TRUE:
626 case AUTO_BOOLEAN_FALSE:
627 printf_filtered (_("Support for remote protocol `%s' (%s) packet is currently %s.\n"),
628 config->name, config->title, support);
629 break;
630 }
631 }
632
633 static void
634 add_packet_config_cmd (struct packet_config *config,
635 char *name,
636 char *title,
637 cmd_sfunc_ftype *set_func,
638 show_value_ftype *show_func,
639 struct cmd_list_element **set_remote_list,
640 struct cmd_list_element **show_remote_list,
641 int legacy)
642 {
643 char *set_doc;
644 char *show_doc;
645 char *cmd_name;
646
647 config->name = name;
648 config->title = title;
649 config->detect = AUTO_BOOLEAN_AUTO;
650 config->support = PACKET_SUPPORT_UNKNOWN;
651 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
652 name, title);
653 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
654 name, title);
655 /* set/show TITLE-packet {auto,on,off} */
656 cmd_name = xstrprintf ("%s-packet", title);
657 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
658 &config->detect, set_doc, show_doc, NULL, /* help_doc */
659 set_func, show_func,
660 set_remote_list, show_remote_list);
661 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
662 if (legacy)
663 {
664 char *legacy_name;
665 legacy_name = xstrprintf ("%s-packet", name);
666 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
667 set_remote_list);
668 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
669 show_remote_list);
670 }
671 }
672
673 static enum packet_result
674 packet_ok (const char *buf, struct packet_config *config)
675 {
676 if (buf[0] != '\0')
677 {
678 /* The stub recognized the packet request. Check that the
679 operation succeeded. */
680 switch (config->support)
681 {
682 case PACKET_SUPPORT_UNKNOWN:
683 if (remote_debug)
684 fprintf_unfiltered (gdb_stdlog,
685 "Packet %s (%s) is supported\n",
686 config->name, config->title);
687 config->support = PACKET_ENABLE;
688 break;
689 case PACKET_DISABLE:
690 internal_error (__FILE__, __LINE__,
691 _("packet_ok: attempt to use a disabled packet"));
692 break;
693 case PACKET_ENABLE:
694 break;
695 }
696 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
697 /* "OK" - definitly OK. */
698 return PACKET_OK;
699 if (buf[0] == 'E'
700 && isxdigit (buf[1]) && isxdigit (buf[2])
701 && buf[3] == '\0')
702 /* "Enn" - definitly an error. */
703 return PACKET_ERROR;
704 /* The packet may or may not be OK. Just assume it is. */
705 return PACKET_OK;
706 }
707 else
708 {
709 /* The stub does not support the packet. */
710 switch (config->support)
711 {
712 case PACKET_ENABLE:
713 if (config->detect == AUTO_BOOLEAN_AUTO)
714 /* If the stub previously indicated that the packet was
715 supported then there is a protocol error.. */
716 error (_("Protocol error: %s (%s) conflicting enabled responses."),
717 config->name, config->title);
718 else
719 /* The user set it wrong. */
720 error (_("Enabled packet %s (%s) not recognized by stub"),
721 config->name, config->title);
722 break;
723 case PACKET_SUPPORT_UNKNOWN:
724 if (remote_debug)
725 fprintf_unfiltered (gdb_stdlog,
726 "Packet %s (%s) is NOT supported\n",
727 config->name, config->title);
728 config->support = PACKET_DISABLE;
729 break;
730 case PACKET_DISABLE:
731 break;
732 }
733 return PACKET_UNKNOWN;
734 }
735 }
736
737 /* Should we try the 'vCont' (descriptive resume) request? */
738 static struct packet_config remote_protocol_vcont;
739
740 static void
741 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
742 struct cmd_list_element *c)
743 {
744 update_packet_config (&remote_protocol_vcont);
745 }
746
747 static void
748 show_remote_protocol_vcont_packet_cmd (struct ui_file *file, int from_tty,
749 struct cmd_list_element *c,
750 const char *value)
751 {
752 show_packet_config_cmd (&remote_protocol_vcont);
753 }
754
755 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
756 static struct packet_config remote_protocol_qSymbol;
757
758 static void
759 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
760 struct cmd_list_element *c)
761 {
762 update_packet_config (&remote_protocol_qSymbol);
763 }
764
765 static void
766 show_remote_protocol_qSymbol_packet_cmd (struct ui_file *file, int from_tty,
767 struct cmd_list_element *c,
768 const char *value)
769 {
770 show_packet_config_cmd (&remote_protocol_qSymbol);
771 }
772
773 /* Should we try the 'P' (set register) request? */
774
775 static struct packet_config remote_protocol_P;
776
777 static void
778 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
779 struct cmd_list_element *c)
780 {
781 update_packet_config (&remote_protocol_P);
782 }
783
784 static void
785 show_remote_protocol_P_packet_cmd (struct ui_file *file, int from_tty,
786 struct cmd_list_element *c,
787 const char *value)
788 {
789 show_packet_config_cmd (&remote_protocol_P);
790 }
791
792 /* Should we try one of the 'Z' requests? */
793
794 enum Z_packet_type
795 {
796 Z_PACKET_SOFTWARE_BP,
797 Z_PACKET_HARDWARE_BP,
798 Z_PACKET_WRITE_WP,
799 Z_PACKET_READ_WP,
800 Z_PACKET_ACCESS_WP,
801 NR_Z_PACKET_TYPES
802 };
803
804 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
805
806 /* FIXME: Instead of having all these boiler plate functions, the
807 command callback should include a context argument. */
808
809 static void
810 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
811 struct cmd_list_element *c)
812 {
813 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
814 }
815
816 static void
817 show_remote_protocol_Z_software_bp_packet_cmd (struct ui_file *file, int from_tty,
818 struct cmd_list_element *c,
819 const char *value)
820 {
821 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
822 }
823
824 static void
825 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
826 struct cmd_list_element *c)
827 {
828 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
829 }
830
831 static void
832 show_remote_protocol_Z_hardware_bp_packet_cmd (struct ui_file *file, int from_tty,
833 struct cmd_list_element *c,
834 const char *value)
835 {
836 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
837 }
838
839 static void
840 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
841 struct cmd_list_element *c)
842 {
843 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
844 }
845
846 static void
847 show_remote_protocol_Z_write_wp_packet_cmd (struct ui_file *file, int from_tty,
848 struct cmd_list_element *c,
849 const char *value)
850 {
851 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
852 }
853
854 static void
855 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
856 struct cmd_list_element *c)
857 {
858 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
859 }
860
861 static void
862 show_remote_protocol_Z_read_wp_packet_cmd (struct ui_file *file, int from_tty,
863 struct cmd_list_element *c,
864 const char *value)
865 {
866 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
867 }
868
869 static void
870 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
871 struct cmd_list_element *c)
872 {
873 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
874 }
875
876 static void
877 show_remote_protocol_Z_access_wp_packet_cmd (struct ui_file *file, int from_tty,
878 struct cmd_list_element *c,
879 const char *value)
880 {
881 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
882 }
883
884 /* For compatibility with older distributions. Provide a ``set remote
885 Z-packet ...'' command that updates all the Z packet types. */
886
887 static enum auto_boolean remote_Z_packet_detect;
888
889 static void
890 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
891 struct cmd_list_element *c)
892 {
893 int i;
894 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
895 {
896 remote_protocol_Z[i].detect = remote_Z_packet_detect;
897 update_packet_config (&remote_protocol_Z[i]);
898 }
899 }
900
901 static void
902 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
903 struct cmd_list_element *c,
904 const char *value)
905 {
906 int i;
907 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
908 {
909 show_packet_config_cmd (&remote_protocol_Z[i]);
910 }
911 }
912
913 /* Should we try the 'X' (remote binary download) packet?
914
915 This variable (available to the user via "set remote X-packet")
916 dictates whether downloads are sent in binary (via the 'X' packet).
917 We assume that the stub can, and attempt to do it. This will be
918 cleared if the stub does not understand it. This switch is still
919 needed, though in cases when the packet is supported in the stub,
920 but the connection does not allow it (i.e., 7-bit serial connection
921 only). */
922
923 static struct packet_config remote_protocol_binary_download;
924
925 /* Should we try the 'ThreadInfo' query packet?
926
927 This variable (NOT available to the user: auto-detect only!)
928 determines whether GDB will use the new, simpler "ThreadInfo"
929 query or the older, more complex syntax for thread queries.
930 This is an auto-detect variable (set to true at each connect,
931 and set to false when the target fails to recognize it). */
932
933 static int use_threadinfo_query;
934 static int use_threadextra_query;
935
936 static void
937 set_remote_protocol_binary_download_cmd (char *args,
938 int from_tty,
939 struct cmd_list_element *c)
940 {
941 update_packet_config (&remote_protocol_binary_download);
942 }
943
944 static void
945 show_remote_protocol_binary_download_cmd (struct ui_file *file, int from_tty,
946 struct cmd_list_element *c,
947 const char *value)
948 {
949 show_packet_config_cmd (&remote_protocol_binary_download);
950 }
951
952 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */
953 static struct packet_config remote_protocol_qPart_auxv;
954
955 static void
956 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
957 struct cmd_list_element *c)
958 {
959 update_packet_config (&remote_protocol_qPart_auxv);
960 }
961
962 static void
963 show_remote_protocol_qPart_auxv_packet_cmd (struct ui_file *file, int from_tty,
964 struct cmd_list_element *c,
965 const char *value)
966 {
967 show_packet_config_cmd (&remote_protocol_qPart_auxv);
968 }
969
970 /* Should we try the 'qGetTLSAddr' (Get Thread Local Storage Address) request? */
971 static struct packet_config remote_protocol_qGetTLSAddr;
972
973 static void
974 set_remote_protocol_qGetTLSAddr_packet_cmd (char *args, int from_tty,
975 struct cmd_list_element *c)
976 {
977 update_packet_config (&remote_protocol_qGetTLSAddr);
978 }
979
980 static void
981 show_remote_protocol_qGetTLSAddr_packet_cmd (struct ui_file *file, int from_tty,
982 struct cmd_list_element *c,
983 const char *value)
984 {
985 show_packet_config_cmd (&remote_protocol_qGetTLSAddr);
986 }
987
988 static struct packet_config remote_protocol_p;
989
990 static void
991 set_remote_protocol_p_packet_cmd (char *args, int from_tty,
992 struct cmd_list_element *c)
993 {
994 update_packet_config (&remote_protocol_p);
995 }
996
997 static void
998 show_remote_protocol_p_packet_cmd (struct ui_file *file, int from_tty,
999 struct cmd_list_element *c,
1000 const char *value)
1001 {
1002 show_packet_config_cmd (&remote_protocol_p);
1003 }
1004
1005
1006
1007 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1008 static void *sigint_remote_twice_token;
1009 static void *sigint_remote_token;
1010
1011 /* These are pointers to hook functions that may be set in order to
1012 modify resume/wait behavior for a particular architecture. */
1013
1014 void (*deprecated_target_resume_hook) (void);
1015 void (*deprecated_target_wait_loop_hook) (void);
1016 \f
1017
1018
1019 /* These are the threads which we last sent to the remote system.
1020 -1 for all or -2 for not sent yet. */
1021 static int general_thread;
1022 static int continue_thread;
1023
1024 /* Call this function as a result of
1025 1) A halt indication (T packet) containing a thread id
1026 2) A direct query of currthread
1027 3) Successful execution of set thread
1028 */
1029
1030 static void
1031 record_currthread (int currthread)
1032 {
1033 general_thread = currthread;
1034
1035 /* If this is a new thread, add it to GDB's thread list.
1036 If we leave it up to WFI to do this, bad things will happen. */
1037 if (!in_thread_list (pid_to_ptid (currthread)))
1038 {
1039 add_thread (pid_to_ptid (currthread));
1040 ui_out_text (uiout, "[New ");
1041 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1042 ui_out_text (uiout, "]\n");
1043 }
1044 }
1045
1046 #define MAGIC_NULL_PID 42000
1047
1048 static void
1049 set_thread (int th, int gen)
1050 {
1051 struct remote_state *rs = get_remote_state ();
1052 char *buf = alloca (rs->remote_packet_size);
1053 int state = gen ? general_thread : continue_thread;
1054
1055 if (state == th)
1056 return;
1057
1058 buf[0] = 'H';
1059 buf[1] = gen ? 'g' : 'c';
1060 if (th == MAGIC_NULL_PID)
1061 {
1062 buf[2] = '0';
1063 buf[3] = '\0';
1064 }
1065 else if (th < 0)
1066 sprintf (&buf[2], "-%x", -th);
1067 else
1068 sprintf (&buf[2], "%x", th);
1069 putpkt (buf);
1070 getpkt (buf, (rs->remote_packet_size), 0);
1071 if (gen)
1072 general_thread = th;
1073 else
1074 continue_thread = th;
1075 }
1076 \f
1077 /* Return nonzero if the thread TH is still alive on the remote system. */
1078
1079 static int
1080 remote_thread_alive (ptid_t ptid)
1081 {
1082 int tid = PIDGET (ptid);
1083 char buf[16];
1084
1085 if (tid < 0)
1086 sprintf (buf, "T-%08x", -tid);
1087 else
1088 sprintf (buf, "T%08x", tid);
1089 putpkt (buf);
1090 getpkt (buf, sizeof (buf), 0);
1091 return (buf[0] == 'O' && buf[1] == 'K');
1092 }
1093
1094 /* About these extended threadlist and threadinfo packets. They are
1095 variable length packets but, the fields within them are often fixed
1096 length. They are redundent enough to send over UDP as is the
1097 remote protocol in general. There is a matching unit test module
1098 in libstub. */
1099
1100 #define OPAQUETHREADBYTES 8
1101
1102 /* a 64 bit opaque identifier */
1103 typedef unsigned char threadref[OPAQUETHREADBYTES];
1104
1105 /* WARNING: This threadref data structure comes from the remote O.S.,
1106 libstub protocol encoding, and remote.c. it is not particularly
1107 changable. */
1108
1109 /* Right now, the internal structure is int. We want it to be bigger.
1110 Plan to fix this.
1111 */
1112
1113 typedef int gdb_threadref; /* Internal GDB thread reference. */
1114
1115 /* gdb_ext_thread_info is an internal GDB data structure which is
1116 equivalint to the reply of the remote threadinfo packet. */
1117
1118 struct gdb_ext_thread_info
1119 {
1120 threadref threadid; /* External form of thread reference. */
1121 int active; /* Has state interesting to GDB?
1122 regs, stack. */
1123 char display[256]; /* Brief state display, name,
1124 blocked/syspended. */
1125 char shortname[32]; /* To be used to name threads. */
1126 char more_display[256]; /* Long info, statistics, queue depth,
1127 whatever. */
1128 };
1129
1130 /* The volume of remote transfers can be limited by submitting
1131 a mask containing bits specifying the desired information.
1132 Use a union of these values as the 'selection' parameter to
1133 get_thread_info. FIXME: Make these TAG names more thread specific.
1134 */
1135
1136 #define TAG_THREADID 1
1137 #define TAG_EXISTS 2
1138 #define TAG_DISPLAY 4
1139 #define TAG_THREADNAME 8
1140 #define TAG_MOREDISPLAY 16
1141
1142 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1143
1144 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1145
1146 static char *unpack_nibble (char *buf, int *val);
1147
1148 static char *pack_nibble (char *buf, int nibble);
1149
1150 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1151
1152 static char *unpack_byte (char *buf, int *value);
1153
1154 static char *pack_int (char *buf, int value);
1155
1156 static char *unpack_int (char *buf, int *value);
1157
1158 static char *unpack_string (char *src, char *dest, int length);
1159
1160 static char *pack_threadid (char *pkt, threadref *id);
1161
1162 static char *unpack_threadid (char *inbuf, threadref *id);
1163
1164 void int_to_threadref (threadref *id, int value);
1165
1166 static int threadref_to_int (threadref *ref);
1167
1168 static void copy_threadref (threadref *dest, threadref *src);
1169
1170 static int threadmatch (threadref *dest, threadref *src);
1171
1172 static char *pack_threadinfo_request (char *pkt, int mode,
1173 threadref *id);
1174
1175 static int remote_unpack_thread_info_response (char *pkt,
1176 threadref *expectedref,
1177 struct gdb_ext_thread_info
1178 *info);
1179
1180
1181 static int remote_get_threadinfo (threadref *threadid,
1182 int fieldset, /*TAG mask */
1183 struct gdb_ext_thread_info *info);
1184
1185 static char *pack_threadlist_request (char *pkt, int startflag,
1186 int threadcount,
1187 threadref *nextthread);
1188
1189 static int parse_threadlist_response (char *pkt,
1190 int result_limit,
1191 threadref *original_echo,
1192 threadref *resultlist,
1193 int *doneflag);
1194
1195 static int remote_get_threadlist (int startflag,
1196 threadref *nextthread,
1197 int result_limit,
1198 int *done,
1199 int *result_count,
1200 threadref *threadlist);
1201
1202 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1203
1204 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1205 void *context, int looplimit);
1206
1207 static int remote_newthread_step (threadref *ref, void *context);
1208
1209 /* Encode 64 bits in 16 chars of hex. */
1210
1211 static const char hexchars[] = "0123456789abcdef";
1212
1213 static int
1214 ishex (int ch, int *val)
1215 {
1216 if ((ch >= 'a') && (ch <= 'f'))
1217 {
1218 *val = ch - 'a' + 10;
1219 return 1;
1220 }
1221 if ((ch >= 'A') && (ch <= 'F'))
1222 {
1223 *val = ch - 'A' + 10;
1224 return 1;
1225 }
1226 if ((ch >= '0') && (ch <= '9'))
1227 {
1228 *val = ch - '0';
1229 return 1;
1230 }
1231 return 0;
1232 }
1233
1234 static int
1235 stubhex (int ch)
1236 {
1237 if (ch >= 'a' && ch <= 'f')
1238 return ch - 'a' + 10;
1239 if (ch >= '0' && ch <= '9')
1240 return ch - '0';
1241 if (ch >= 'A' && ch <= 'F')
1242 return ch - 'A' + 10;
1243 return -1;
1244 }
1245
1246 static int
1247 stub_unpack_int (char *buff, int fieldlength)
1248 {
1249 int nibble;
1250 int retval = 0;
1251
1252 while (fieldlength)
1253 {
1254 nibble = stubhex (*buff++);
1255 retval |= nibble;
1256 fieldlength--;
1257 if (fieldlength)
1258 retval = retval << 4;
1259 }
1260 return retval;
1261 }
1262
1263 char *
1264 unpack_varlen_hex (char *buff, /* packet to parse */
1265 ULONGEST *result)
1266 {
1267 int nibble;
1268 int retval = 0;
1269
1270 while (ishex (*buff, &nibble))
1271 {
1272 buff++;
1273 retval = retval << 4;
1274 retval |= nibble & 0x0f;
1275 }
1276 *result = retval;
1277 return buff;
1278 }
1279
1280 static char *
1281 unpack_nibble (char *buf, int *val)
1282 {
1283 ishex (*buf++, val);
1284 return buf;
1285 }
1286
1287 static char *
1288 pack_nibble (char *buf, int nibble)
1289 {
1290 *buf++ = hexchars[(nibble & 0x0f)];
1291 return buf;
1292 }
1293
1294 static char *
1295 pack_hex_byte (char *pkt, int byte)
1296 {
1297 *pkt++ = hexchars[(byte >> 4) & 0xf];
1298 *pkt++ = hexchars[(byte & 0xf)];
1299 return pkt;
1300 }
1301
1302 static char *
1303 unpack_byte (char *buf, int *value)
1304 {
1305 *value = stub_unpack_int (buf, 2);
1306 return buf + 2;
1307 }
1308
1309 static char *
1310 pack_int (char *buf, int value)
1311 {
1312 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1313 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1314 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1315 buf = pack_hex_byte (buf, (value & 0xff));
1316 return buf;
1317 }
1318
1319 static char *
1320 unpack_int (char *buf, int *value)
1321 {
1322 *value = stub_unpack_int (buf, 8);
1323 return buf + 8;
1324 }
1325
1326 #if 0 /* Currently unused, uncomment when needed. */
1327 static char *pack_string (char *pkt, char *string);
1328
1329 static char *
1330 pack_string (char *pkt, char *string)
1331 {
1332 char ch;
1333 int len;
1334
1335 len = strlen (string);
1336 if (len > 200)
1337 len = 200; /* Bigger than most GDB packets, junk??? */
1338 pkt = pack_hex_byte (pkt, len);
1339 while (len-- > 0)
1340 {
1341 ch = *string++;
1342 if ((ch == '\0') || (ch == '#'))
1343 ch = '*'; /* Protect encapsulation. */
1344 *pkt++ = ch;
1345 }
1346 return pkt;
1347 }
1348 #endif /* 0 (unused) */
1349
1350 static char *
1351 unpack_string (char *src, char *dest, int length)
1352 {
1353 while (length--)
1354 *dest++ = *src++;
1355 *dest = '\0';
1356 return src;
1357 }
1358
1359 static char *
1360 pack_threadid (char *pkt, threadref *id)
1361 {
1362 char *limit;
1363 unsigned char *altid;
1364
1365 altid = (unsigned char *) id;
1366 limit = pkt + BUF_THREAD_ID_SIZE;
1367 while (pkt < limit)
1368 pkt = pack_hex_byte (pkt, *altid++);
1369 return pkt;
1370 }
1371
1372
1373 static char *
1374 unpack_threadid (char *inbuf, threadref *id)
1375 {
1376 char *altref;
1377 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1378 int x, y;
1379
1380 altref = (char *) id;
1381
1382 while (inbuf < limit)
1383 {
1384 x = stubhex (*inbuf++);
1385 y = stubhex (*inbuf++);
1386 *altref++ = (x << 4) | y;
1387 }
1388 return inbuf;
1389 }
1390
1391 /* Externally, threadrefs are 64 bits but internally, they are still
1392 ints. This is due to a mismatch of specifications. We would like
1393 to use 64bit thread references internally. This is an adapter
1394 function. */
1395
1396 void
1397 int_to_threadref (threadref *id, int value)
1398 {
1399 unsigned char *scan;
1400
1401 scan = (unsigned char *) id;
1402 {
1403 int i = 4;
1404 while (i--)
1405 *scan++ = 0;
1406 }
1407 *scan++ = (value >> 24) & 0xff;
1408 *scan++ = (value >> 16) & 0xff;
1409 *scan++ = (value >> 8) & 0xff;
1410 *scan++ = (value & 0xff);
1411 }
1412
1413 static int
1414 threadref_to_int (threadref *ref)
1415 {
1416 int i, value = 0;
1417 unsigned char *scan;
1418
1419 scan = (char *) ref;
1420 scan += 4;
1421 i = 4;
1422 while (i-- > 0)
1423 value = (value << 8) | ((*scan++) & 0xff);
1424 return value;
1425 }
1426
1427 static void
1428 copy_threadref (threadref *dest, threadref *src)
1429 {
1430 int i;
1431 unsigned char *csrc, *cdest;
1432
1433 csrc = (unsigned char *) src;
1434 cdest = (unsigned char *) dest;
1435 i = 8;
1436 while (i--)
1437 *cdest++ = *csrc++;
1438 }
1439
1440 static int
1441 threadmatch (threadref *dest, threadref *src)
1442 {
1443 /* Things are broken right now, so just assume we got a match. */
1444 #if 0
1445 unsigned char *srcp, *destp;
1446 int i, result;
1447 srcp = (char *) src;
1448 destp = (char *) dest;
1449
1450 result = 1;
1451 while (i-- > 0)
1452 result &= (*srcp++ == *destp++) ? 1 : 0;
1453 return result;
1454 #endif
1455 return 1;
1456 }
1457
1458 /*
1459 threadid:1, # always request threadid
1460 context_exists:2,
1461 display:4,
1462 unique_name:8,
1463 more_display:16
1464 */
1465
1466 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1467
1468 static char *
1469 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1470 {
1471 *pkt++ = 'q'; /* Info Query */
1472 *pkt++ = 'P'; /* process or thread info */
1473 pkt = pack_int (pkt, mode); /* mode */
1474 pkt = pack_threadid (pkt, id); /* threadid */
1475 *pkt = '\0'; /* terminate */
1476 return pkt;
1477 }
1478
1479 /* These values tag the fields in a thread info response packet. */
1480 /* Tagging the fields allows us to request specific fields and to
1481 add more fields as time goes by. */
1482
1483 #define TAG_THREADID 1 /* Echo the thread identifier. */
1484 #define TAG_EXISTS 2 /* Is this process defined enough to
1485 fetch registers and its stack? */
1486 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1487 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1488 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1489 the process. */
1490
1491 static int
1492 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1493 struct gdb_ext_thread_info *info)
1494 {
1495 struct remote_state *rs = get_remote_state ();
1496 int mask, length;
1497 unsigned int tag;
1498 threadref ref;
1499 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1500 int retval = 1;
1501
1502 /* info->threadid = 0; FIXME: implement zero_threadref. */
1503 info->active = 0;
1504 info->display[0] = '\0';
1505 info->shortname[0] = '\0';
1506 info->more_display[0] = '\0';
1507
1508 /* Assume the characters indicating the packet type have been
1509 stripped. */
1510 pkt = unpack_int (pkt, &mask); /* arg mask */
1511 pkt = unpack_threadid (pkt, &ref);
1512
1513 if (mask == 0)
1514 warning (_("Incomplete response to threadinfo request."));
1515 if (!threadmatch (&ref, expectedref))
1516 { /* This is an answer to a different request. */
1517 warning (_("ERROR RMT Thread info mismatch."));
1518 return 0;
1519 }
1520 copy_threadref (&info->threadid, &ref);
1521
1522 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1523
1524 /* Packets are terminated with nulls. */
1525 while ((pkt < limit) && mask && *pkt)
1526 {
1527 pkt = unpack_int (pkt, &tag); /* tag */
1528 pkt = unpack_byte (pkt, &length); /* length */
1529 if (!(tag & mask)) /* Tags out of synch with mask. */
1530 {
1531 warning (_("ERROR RMT: threadinfo tag mismatch."));
1532 retval = 0;
1533 break;
1534 }
1535 if (tag == TAG_THREADID)
1536 {
1537 if (length != 16)
1538 {
1539 warning (_("ERROR RMT: length of threadid is not 16."));
1540 retval = 0;
1541 break;
1542 }
1543 pkt = unpack_threadid (pkt, &ref);
1544 mask = mask & ~TAG_THREADID;
1545 continue;
1546 }
1547 if (tag == TAG_EXISTS)
1548 {
1549 info->active = stub_unpack_int (pkt, length);
1550 pkt += length;
1551 mask = mask & ~(TAG_EXISTS);
1552 if (length > 8)
1553 {
1554 warning (_("ERROR RMT: 'exists' length too long."));
1555 retval = 0;
1556 break;
1557 }
1558 continue;
1559 }
1560 if (tag == TAG_THREADNAME)
1561 {
1562 pkt = unpack_string (pkt, &info->shortname[0], length);
1563 mask = mask & ~TAG_THREADNAME;
1564 continue;
1565 }
1566 if (tag == TAG_DISPLAY)
1567 {
1568 pkt = unpack_string (pkt, &info->display[0], length);
1569 mask = mask & ~TAG_DISPLAY;
1570 continue;
1571 }
1572 if (tag == TAG_MOREDISPLAY)
1573 {
1574 pkt = unpack_string (pkt, &info->more_display[0], length);
1575 mask = mask & ~TAG_MOREDISPLAY;
1576 continue;
1577 }
1578 warning (_("ERROR RMT: unknown thread info tag."));
1579 break; /* Not a tag we know about. */
1580 }
1581 return retval;
1582 }
1583
1584 static int
1585 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1586 struct gdb_ext_thread_info *info)
1587 {
1588 struct remote_state *rs = get_remote_state ();
1589 int result;
1590 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1591
1592 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1593 putpkt (threadinfo_pkt);
1594 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1595 result = remote_unpack_thread_info_response (threadinfo_pkt + 2,
1596 threadid, info);
1597 return result;
1598 }
1599
1600 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1601
1602 static char *
1603 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1604 threadref *nextthread)
1605 {
1606 *pkt++ = 'q'; /* info query packet */
1607 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1608 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1609 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1610 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1611 *pkt = '\0';
1612 return pkt;
1613 }
1614
1615 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1616
1617 static int
1618 parse_threadlist_response (char *pkt, int result_limit,
1619 threadref *original_echo, threadref *resultlist,
1620 int *doneflag)
1621 {
1622 struct remote_state *rs = get_remote_state ();
1623 char *limit;
1624 int count, resultcount, done;
1625
1626 resultcount = 0;
1627 /* Assume the 'q' and 'M chars have been stripped. */
1628 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE);
1629 /* done parse past here */
1630 pkt = unpack_byte (pkt, &count); /* count field */
1631 pkt = unpack_nibble (pkt, &done);
1632 /* The first threadid is the argument threadid. */
1633 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1634 while ((count-- > 0) && (pkt < limit))
1635 {
1636 pkt = unpack_threadid (pkt, resultlist++);
1637 if (resultcount++ >= result_limit)
1638 break;
1639 }
1640 if (doneflag)
1641 *doneflag = done;
1642 return resultcount;
1643 }
1644
1645 static int
1646 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1647 int *done, int *result_count, threadref *threadlist)
1648 {
1649 struct remote_state *rs = get_remote_state ();
1650 static threadref echo_nextthread;
1651 char *threadlist_packet = alloca (rs->remote_packet_size);
1652 char *t_response = alloca (rs->remote_packet_size);
1653 int result = 1;
1654
1655 /* Trancate result limit to be smaller than the packet size. */
1656 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1657 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1658
1659 pack_threadlist_request (threadlist_packet,
1660 startflag, result_limit, nextthread);
1661 putpkt (threadlist_packet);
1662 getpkt (t_response, (rs->remote_packet_size), 0);
1663
1664 *result_count =
1665 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1666 threadlist, done);
1667
1668 if (!threadmatch (&echo_nextthread, nextthread))
1669 {
1670 /* FIXME: This is a good reason to drop the packet. */
1671 /* Possably, there is a duplicate response. */
1672 /* Possabilities :
1673 retransmit immediatly - race conditions
1674 retransmit after timeout - yes
1675 exit
1676 wait for packet, then exit
1677 */
1678 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1679 return 0; /* I choose simply exiting. */
1680 }
1681 if (*result_count <= 0)
1682 {
1683 if (*done != 1)
1684 {
1685 warning (_("RMT ERROR : failed to get remote thread list."));
1686 result = 0;
1687 }
1688 return result; /* break; */
1689 }
1690 if (*result_count > result_limit)
1691 {
1692 *result_count = 0;
1693 warning (_("RMT ERROR: threadlist response longer than requested."));
1694 return 0;
1695 }
1696 return result;
1697 }
1698
1699 /* This is the interface between remote and threads, remotes upper
1700 interface. */
1701
1702 /* remote_find_new_threads retrieves the thread list and for each
1703 thread in the list, looks up the thread in GDB's internal list,
1704 ading the thread if it does not already exist. This involves
1705 getting partial thread lists from the remote target so, polling the
1706 quit_flag is required. */
1707
1708
1709 /* About this many threadisds fit in a packet. */
1710
1711 #define MAXTHREADLISTRESULTS 32
1712
1713 static int
1714 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1715 int looplimit)
1716 {
1717 int done, i, result_count;
1718 int startflag = 1;
1719 int result = 1;
1720 int loopcount = 0;
1721 static threadref nextthread;
1722 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1723
1724 done = 0;
1725 while (!done)
1726 {
1727 if (loopcount++ > looplimit)
1728 {
1729 result = 0;
1730 warning (_("Remote fetch threadlist -infinite loop-."));
1731 break;
1732 }
1733 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1734 &done, &result_count, resultthreadlist))
1735 {
1736 result = 0;
1737 break;
1738 }
1739 /* Clear for later iterations. */
1740 startflag = 0;
1741 /* Setup to resume next batch of thread references, set nextthread. */
1742 if (result_count >= 1)
1743 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1744 i = 0;
1745 while (result_count--)
1746 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1747 break;
1748 }
1749 return result;
1750 }
1751
1752 static int
1753 remote_newthread_step (threadref *ref, void *context)
1754 {
1755 ptid_t ptid;
1756
1757 ptid = pid_to_ptid (threadref_to_int (ref));
1758
1759 if (!in_thread_list (ptid))
1760 add_thread (ptid);
1761 return 1; /* continue iterator */
1762 }
1763
1764 #define CRAZY_MAX_THREADS 1000
1765
1766 static ptid_t
1767 remote_current_thread (ptid_t oldpid)
1768 {
1769 struct remote_state *rs = get_remote_state ();
1770 char *buf = alloca (rs->remote_packet_size);
1771
1772 putpkt ("qC");
1773 getpkt (buf, (rs->remote_packet_size), 0);
1774 if (buf[0] == 'Q' && buf[1] == 'C')
1775 /* Use strtoul here, so we'll correctly parse values whose highest
1776 bit is set. The protocol carries them as a simple series of
1777 hex digits; in the absence of a sign, strtol will see such
1778 values as positive numbers out of range for signed 'long', and
1779 return LONG_MAX to indicate an overflow. */
1780 return pid_to_ptid (strtoul (&buf[2], NULL, 16));
1781 else
1782 return oldpid;
1783 }
1784
1785 /* Find new threads for info threads command.
1786 * Original version, using John Metzler's thread protocol.
1787 */
1788
1789 static void
1790 remote_find_new_threads (void)
1791 {
1792 remote_threadlist_iterator (remote_newthread_step, 0,
1793 CRAZY_MAX_THREADS);
1794 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1795 inferior_ptid = remote_current_thread (inferior_ptid);
1796 }
1797
1798 /*
1799 * Find all threads for info threads command.
1800 * Uses new thread protocol contributed by Cisco.
1801 * Falls back and attempts to use the older method (above)
1802 * if the target doesn't respond to the new method.
1803 */
1804
1805 static void
1806 remote_threads_info (void)
1807 {
1808 struct remote_state *rs = get_remote_state ();
1809 char *buf = alloca (rs->remote_packet_size);
1810 char *bufp;
1811 int tid;
1812
1813 if (remote_desc == 0) /* paranoia */
1814 error (_("Command can only be used when connected to the remote target."));
1815
1816 if (use_threadinfo_query)
1817 {
1818 putpkt ("qfThreadInfo");
1819 bufp = buf;
1820 getpkt (bufp, (rs->remote_packet_size), 0);
1821 if (bufp[0] != '\0') /* q packet recognized */
1822 {
1823 while (*bufp++ == 'm') /* reply contains one or more TID */
1824 {
1825 do
1826 {
1827 /* Use strtoul here, so we'll correctly parse values
1828 whose highest bit is set. The protocol carries
1829 them as a simple series of hex digits; in the
1830 absence of a sign, strtol will see such values as
1831 positive numbers out of range for signed 'long',
1832 and return LONG_MAX to indicate an overflow. */
1833 tid = strtoul (bufp, &bufp, 16);
1834 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1835 add_thread (pid_to_ptid (tid));
1836 }
1837 while (*bufp++ == ','); /* comma-separated list */
1838 putpkt ("qsThreadInfo");
1839 bufp = buf;
1840 getpkt (bufp, (rs->remote_packet_size), 0);
1841 }
1842 return; /* done */
1843 }
1844 }
1845
1846 /* Else fall back to old method based on jmetzler protocol. */
1847 use_threadinfo_query = 0;
1848 remote_find_new_threads ();
1849 return;
1850 }
1851
1852 /*
1853 * Collect a descriptive string about the given thread.
1854 * The target may say anything it wants to about the thread
1855 * (typically info about its blocked / runnable state, name, etc.).
1856 * This string will appear in the info threads display.
1857 *
1858 * Optional: targets are not required to implement this function.
1859 */
1860
1861 static char *
1862 remote_threads_extra_info (struct thread_info *tp)
1863 {
1864 struct remote_state *rs = get_remote_state ();
1865 int result;
1866 int set;
1867 threadref id;
1868 struct gdb_ext_thread_info threadinfo;
1869 static char display_buf[100]; /* arbitrary... */
1870 char *bufp = alloca (rs->remote_packet_size);
1871 int n = 0; /* position in display_buf */
1872
1873 if (remote_desc == 0) /* paranoia */
1874 internal_error (__FILE__, __LINE__,
1875 _("remote_threads_extra_info"));
1876
1877 if (use_threadextra_query)
1878 {
1879 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1880 putpkt (bufp);
1881 getpkt (bufp, (rs->remote_packet_size), 0);
1882 if (bufp[0] != 0)
1883 {
1884 n = min (strlen (bufp) / 2, sizeof (display_buf));
1885 result = hex2bin (bufp, display_buf, n);
1886 display_buf [result] = '\0';
1887 return display_buf;
1888 }
1889 }
1890
1891 /* If the above query fails, fall back to the old method. */
1892 use_threadextra_query = 0;
1893 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1894 | TAG_MOREDISPLAY | TAG_DISPLAY;
1895 int_to_threadref (&id, PIDGET (tp->ptid));
1896 if (remote_get_threadinfo (&id, set, &threadinfo))
1897 if (threadinfo.active)
1898 {
1899 if (*threadinfo.shortname)
1900 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1901 if (*threadinfo.display)
1902 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1903 if (*threadinfo.more_display)
1904 n += sprintf(&display_buf[n], " Priority: %s",
1905 threadinfo.more_display);
1906
1907 if (n > 0)
1908 {
1909 /* For purely cosmetic reasons, clear up trailing commas. */
1910 if (',' == display_buf[n-1])
1911 display_buf[n-1] = ' ';
1912 return display_buf;
1913 }
1914 }
1915 return NULL;
1916 }
1917
1918 \f
1919
1920 /* Restart the remote side; this is an extended protocol operation. */
1921
1922 static void
1923 extended_remote_restart (void)
1924 {
1925 struct remote_state *rs = get_remote_state ();
1926 char *buf = alloca (rs->remote_packet_size);
1927
1928 /* Send the restart command; for reasons I don't understand the
1929 remote side really expects a number after the "R". */
1930 buf[0] = 'R';
1931 sprintf (&buf[1], "%x", 0);
1932 putpkt (buf);
1933
1934 /* Now query for status so this looks just like we restarted
1935 gdbserver from scratch. */
1936 putpkt ("?");
1937 getpkt (buf, (rs->remote_packet_size), 0);
1938 }
1939 \f
1940 /* Clean up connection to a remote debugger. */
1941
1942 static void
1943 remote_close (int quitting)
1944 {
1945 if (remote_desc)
1946 serial_close (remote_desc);
1947 remote_desc = NULL;
1948 }
1949
1950 /* Query the remote side for the text, data and bss offsets. */
1951
1952 static void
1953 get_offsets (void)
1954 {
1955 struct remote_state *rs = get_remote_state ();
1956 char *buf = alloca (rs->remote_packet_size);
1957 char *ptr;
1958 int lose;
1959 CORE_ADDR text_addr, data_addr, bss_addr;
1960 struct section_offsets *offs;
1961
1962 putpkt ("qOffsets");
1963
1964 getpkt (buf, (rs->remote_packet_size), 0);
1965
1966 if (buf[0] == '\000')
1967 return; /* Return silently. Stub doesn't support
1968 this command. */
1969 if (buf[0] == 'E')
1970 {
1971 warning (_("Remote failure reply: %s"), buf);
1972 return;
1973 }
1974
1975 /* Pick up each field in turn. This used to be done with scanf, but
1976 scanf will make trouble if CORE_ADDR size doesn't match
1977 conversion directives correctly. The following code will work
1978 with any size of CORE_ADDR. */
1979 text_addr = data_addr = bss_addr = 0;
1980 ptr = buf;
1981 lose = 0;
1982
1983 if (strncmp (ptr, "Text=", 5) == 0)
1984 {
1985 ptr += 5;
1986 /* Don't use strtol, could lose on big values. */
1987 while (*ptr && *ptr != ';')
1988 text_addr = (text_addr << 4) + fromhex (*ptr++);
1989 }
1990 else
1991 lose = 1;
1992
1993 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1994 {
1995 ptr += 6;
1996 while (*ptr && *ptr != ';')
1997 data_addr = (data_addr << 4) + fromhex (*ptr++);
1998 }
1999 else
2000 lose = 1;
2001
2002 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2003 {
2004 ptr += 5;
2005 while (*ptr && *ptr != ';')
2006 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2007 }
2008 else
2009 lose = 1;
2010
2011 if (lose)
2012 error (_("Malformed response to offset query, %s"), buf);
2013
2014 if (symfile_objfile == NULL)
2015 return;
2016
2017 offs = ((struct section_offsets *)
2018 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2019 memcpy (offs, symfile_objfile->section_offsets,
2020 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2021
2022 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2023
2024 /* This is a temporary kludge to force data and bss to use the same offsets
2025 because that's what nlmconv does now. The real solution requires changes
2026 to the stub and remote.c that I don't have time to do right now. */
2027
2028 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2029 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2030
2031 objfile_relocate (symfile_objfile, offs);
2032 }
2033
2034 /* Stub for catch_errors. */
2035
2036 static int
2037 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2038 {
2039 start_remote (); /* Initialize gdb process mechanisms. */
2040 /* NOTE: Return something >=0. A -ve value is reserved for
2041 catch_exceptions. */
2042 return 1;
2043 }
2044
2045 static void
2046 remote_start_remote (struct ui_out *uiout, void *dummy)
2047 {
2048 immediate_quit++; /* Allow user to interrupt it. */
2049
2050 /* Ack any packet which the remote side has already sent. */
2051 serial_write (remote_desc, "+", 1);
2052
2053 /* Let the stub know that we want it to return the thread. */
2054 set_thread (-1, 0);
2055
2056 inferior_ptid = remote_current_thread (inferior_ptid);
2057
2058 get_offsets (); /* Get text, data & bss offsets. */
2059
2060 putpkt ("?"); /* Initiate a query from remote machine. */
2061 immediate_quit--;
2062
2063 remote_start_remote_dummy (uiout, dummy);
2064 }
2065
2066 /* Open a connection to a remote debugger.
2067 NAME is the filename used for communication. */
2068
2069 static void
2070 remote_open (char *name, int from_tty)
2071 {
2072 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2073 }
2074
2075 /* Just like remote_open, but with asynchronous support. */
2076 static void
2077 remote_async_open (char *name, int from_tty)
2078 {
2079 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2080 }
2081
2082 /* Open a connection to a remote debugger using the extended
2083 remote gdb protocol. NAME is the filename used for communication. */
2084
2085 static void
2086 extended_remote_open (char *name, int from_tty)
2087 {
2088 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2089 0 /* async_p */);
2090 }
2091
2092 /* Just like extended_remote_open, but with asynchronous support. */
2093 static void
2094 extended_remote_async_open (char *name, int from_tty)
2095 {
2096 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2097 1 /*extended_p */, 1 /* async_p */);
2098 }
2099
2100 /* Generic code for opening a connection to a remote target. */
2101
2102 static void
2103 init_all_packet_configs (void)
2104 {
2105 int i;
2106 update_packet_config (&remote_protocol_P);
2107 update_packet_config (&remote_protocol_p);
2108 update_packet_config (&remote_protocol_qSymbol);
2109 update_packet_config (&remote_protocol_vcont);
2110 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2111 update_packet_config (&remote_protocol_Z[i]);
2112 /* Force remote_write_bytes to check whether target supports binary
2113 downloading. */
2114 update_packet_config (&remote_protocol_binary_download);
2115 update_packet_config (&remote_protocol_qPart_auxv);
2116 update_packet_config (&remote_protocol_qGetTLSAddr);
2117 }
2118
2119 /* Symbol look-up. */
2120
2121 static void
2122 remote_check_symbols (struct objfile *objfile)
2123 {
2124 struct remote_state *rs = get_remote_state ();
2125 char *msg, *reply, *tmp;
2126 struct minimal_symbol *sym;
2127 int end;
2128
2129 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2130 return;
2131
2132 msg = alloca (rs->remote_packet_size);
2133 reply = alloca (rs->remote_packet_size);
2134
2135 /* Invite target to request symbol lookups. */
2136
2137 putpkt ("qSymbol::");
2138 getpkt (reply, (rs->remote_packet_size), 0);
2139 packet_ok (reply, &remote_protocol_qSymbol);
2140
2141 while (strncmp (reply, "qSymbol:", 8) == 0)
2142 {
2143 tmp = &reply[8];
2144 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2145 msg[end] = '\0';
2146 sym = lookup_minimal_symbol (msg, NULL, NULL);
2147 if (sym == NULL)
2148 sprintf (msg, "qSymbol::%s", &reply[8]);
2149 else
2150 sprintf (msg, "qSymbol:%s:%s",
2151 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2152 &reply[8]);
2153 putpkt (msg);
2154 getpkt (reply, (rs->remote_packet_size), 0);
2155 }
2156 }
2157
2158 static struct serial *
2159 remote_serial_open (char *name)
2160 {
2161 static int udp_warning = 0;
2162
2163 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2164 of in ser-tcp.c, because it is the remote protocol assuming that the
2165 serial connection is reliable and not the serial connection promising
2166 to be. */
2167 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2168 {
2169 warning (_("\
2170 The remote protocol may be unreliable over UDP.\n\
2171 Some events may be lost, rendering further debugging impossible."));
2172 udp_warning = 1;
2173 }
2174
2175 return serial_open (name);
2176 }
2177
2178 static void
2179 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2180 int extended_p, int async_p)
2181 {
2182 struct exception ex;
2183 struct remote_state *rs = get_remote_state ();
2184 if (name == 0)
2185 error (_("To open a remote debug connection, you need to specify what\n"
2186 "serial device is attached to the remote system\n"
2187 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2188
2189 /* See FIXME above. */
2190 if (!async_p)
2191 wait_forever_enabled_p = 1;
2192
2193 reopen_exec_file ();
2194 reread_symbols ();
2195
2196 target_preopen (from_tty);
2197
2198 unpush_target (target);
2199
2200 remote_desc = remote_serial_open (name);
2201 if (!remote_desc)
2202 perror_with_name (name);
2203
2204 if (baud_rate != -1)
2205 {
2206 if (serial_setbaudrate (remote_desc, baud_rate))
2207 {
2208 /* The requested speed could not be set. Error out to
2209 top level after closing remote_desc. Take care to
2210 set remote_desc to NULL to avoid closing remote_desc
2211 more than once. */
2212 serial_close (remote_desc);
2213 remote_desc = NULL;
2214 perror_with_name (name);
2215 }
2216 }
2217
2218 serial_raw (remote_desc);
2219
2220 /* If there is something sitting in the buffer we might take it as a
2221 response to a command, which would be bad. */
2222 serial_flush_input (remote_desc);
2223
2224 if (from_tty)
2225 {
2226 puts_filtered ("Remote debugging using ");
2227 puts_filtered (name);
2228 puts_filtered ("\n");
2229 }
2230 push_target (target); /* Switch to using remote target now. */
2231
2232 init_all_packet_configs ();
2233
2234 general_thread = -2;
2235 continue_thread = -2;
2236
2237 /* Probe for ability to use "ThreadInfo" query, as required. */
2238 use_threadinfo_query = 1;
2239 use_threadextra_query = 1;
2240
2241 /* Without this, some commands which require an active target (such
2242 as kill) won't work. This variable serves (at least) double duty
2243 as both the pid of the target process (if it has such), and as a
2244 flag indicating that a target is active. These functions should
2245 be split out into seperate variables, especially since GDB will
2246 someday have a notion of debugging several processes. */
2247
2248 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2249
2250 if (async_p)
2251 {
2252 /* With this target we start out by owning the terminal. */
2253 remote_async_terminal_ours_p = 1;
2254
2255 /* FIXME: cagney/1999-09-23: During the initial connection it is
2256 assumed that the target is already ready and able to respond to
2257 requests. Unfortunately remote_start_remote() eventually calls
2258 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2259 around this. Eventually a mechanism that allows
2260 wait_for_inferior() to expect/get timeouts will be
2261 implemented. */
2262 wait_forever_enabled_p = 0;
2263 }
2264
2265 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2266 /* First delete any symbols previously loaded from shared libraries. */
2267 no_shared_libraries (NULL, 0);
2268 #endif
2269
2270 /* Start the remote connection. If error() or QUIT, discard this
2271 target (we'd otherwise be in an inconsistent state) and then
2272 propogate the error on up the exception chain. This ensures that
2273 the caller doesn't stumble along blindly assuming that the
2274 function succeeded. The CLI doesn't have this problem but other
2275 UI's, such as MI do.
2276
2277 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2278 this function should return an error indication letting the
2279 caller restore the previous state. Unfortunately the command
2280 ``target remote'' is directly wired to this function making that
2281 impossible. On a positive note, the CLI side of this problem has
2282 been fixed - the function set_cmd_context() makes it possible for
2283 all the ``target ....'' commands to share a common callback
2284 function. See cli-dump.c. */
2285 ex = catch_exception (uiout, remote_start_remote, NULL, RETURN_MASK_ALL);
2286 if (ex.reason < 0)
2287 {
2288 pop_target ();
2289 if (async_p)
2290 wait_forever_enabled_p = 1;
2291 throw_exception (ex);
2292 }
2293
2294 if (async_p)
2295 wait_forever_enabled_p = 1;
2296
2297 if (extended_p)
2298 {
2299 /* Tell the remote that we are using the extended protocol. */
2300 char *buf = alloca (rs->remote_packet_size);
2301 putpkt ("!");
2302 getpkt (buf, (rs->remote_packet_size), 0);
2303 }
2304 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2305 /* FIXME: need a master target_open vector from which all
2306 remote_opens can be called, so that stuff like this can
2307 go there. Failing that, the following code must be copied
2308 to the open function for any remote target that wants to
2309 support svr4 shared libraries. */
2310
2311 /* Set up to detect and load shared libraries. */
2312 if (exec_bfd) /* No use without an exec file. */
2313 {
2314 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2315 remote_check_symbols (symfile_objfile);
2316 }
2317 #endif
2318
2319 observer_notify_inferior_created (&current_target, from_tty);
2320 }
2321
2322 /* This takes a program previously attached to and detaches it. After
2323 this is done, GDB can be used to debug some other program. We
2324 better not have left any breakpoints in the target program or it'll
2325 die when it hits one. */
2326
2327 static void
2328 remote_detach (char *args, int from_tty)
2329 {
2330 struct remote_state *rs = get_remote_state ();
2331 char *buf = alloca (rs->remote_packet_size);
2332
2333 if (args)
2334 error (_("Argument given to \"detach\" when remotely debugging."));
2335
2336 /* Tell the remote target to detach. */
2337 strcpy (buf, "D");
2338 remote_send (buf, (rs->remote_packet_size));
2339
2340 /* Unregister the file descriptor from the event loop. */
2341 if (target_is_async_p ())
2342 serial_async (remote_desc, NULL, 0);
2343
2344 target_mourn_inferior ();
2345 if (from_tty)
2346 puts_filtered ("Ending remote debugging.\n");
2347 }
2348
2349 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2350
2351 static void
2352 remote_disconnect (char *args, int from_tty)
2353 {
2354 if (args)
2355 error (_("Argument given to \"detach\" when remotely debugging."));
2356
2357 /* Unregister the file descriptor from the event loop. */
2358 if (target_is_async_p ())
2359 serial_async (remote_desc, NULL, 0);
2360
2361 target_mourn_inferior ();
2362 if (from_tty)
2363 puts_filtered ("Ending remote debugging.\n");
2364 }
2365
2366 /* Convert hex digit A to a number. */
2367
2368 static int
2369 fromhex (int a)
2370 {
2371 if (a >= '0' && a <= '9')
2372 return a - '0';
2373 else if (a >= 'a' && a <= 'f')
2374 return a - 'a' + 10;
2375 else if (a >= 'A' && a <= 'F')
2376 return a - 'A' + 10;
2377 else
2378 error (_("Reply contains invalid hex digit %d"), a);
2379 }
2380
2381 static int
2382 hex2bin (const char *hex, char *bin, int count)
2383 {
2384 int i;
2385
2386 for (i = 0; i < count; i++)
2387 {
2388 if (hex[0] == 0 || hex[1] == 0)
2389 {
2390 /* Hex string is short, or of uneven length.
2391 Return the count that has been converted so far. */
2392 return i;
2393 }
2394 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2395 hex += 2;
2396 }
2397 return i;
2398 }
2399
2400 /* Convert number NIB to a hex digit. */
2401
2402 static int
2403 tohex (int nib)
2404 {
2405 if (nib < 10)
2406 return '0' + nib;
2407 else
2408 return 'a' + nib - 10;
2409 }
2410
2411 static int
2412 bin2hex (const char *bin, char *hex, int count)
2413 {
2414 int i;
2415 /* May use a length, or a nul-terminated string as input. */
2416 if (count == 0)
2417 count = strlen (bin);
2418
2419 for (i = 0; i < count; i++)
2420 {
2421 *hex++ = tohex ((*bin >> 4) & 0xf);
2422 *hex++ = tohex (*bin++ & 0xf);
2423 }
2424 *hex = 0;
2425 return i;
2426 }
2427 \f
2428 /* Check for the availability of vCont. This function should also check
2429 the response. */
2430
2431 static void
2432 remote_vcont_probe (struct remote_state *rs, char *buf)
2433 {
2434 strcpy (buf, "vCont?");
2435 putpkt (buf);
2436 getpkt (buf, rs->remote_packet_size, 0);
2437
2438 /* Make sure that the features we assume are supported. */
2439 if (strncmp (buf, "vCont", 5) == 0)
2440 {
2441 char *p = &buf[5];
2442 int support_s, support_S, support_c, support_C;
2443
2444 support_s = 0;
2445 support_S = 0;
2446 support_c = 0;
2447 support_C = 0;
2448 while (p && *p == ';')
2449 {
2450 p++;
2451 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2452 support_s = 1;
2453 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2454 support_S = 1;
2455 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2456 support_c = 1;
2457 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2458 support_C = 1;
2459
2460 p = strchr (p, ';');
2461 }
2462
2463 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2464 BUF will make packet_ok disable the packet. */
2465 if (!support_s || !support_S || !support_c || !support_C)
2466 buf[0] = 0;
2467 }
2468
2469 packet_ok (buf, &remote_protocol_vcont);
2470 }
2471
2472 /* Resume the remote inferior by using a "vCont" packet. The thread
2473 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2474 resumed thread should be single-stepped and/or signalled. If PTID's
2475 PID is -1, then all threads are resumed; the thread to be stepped and/or
2476 signalled is given in the global INFERIOR_PTID. This function returns
2477 non-zero iff it resumes the inferior.
2478
2479 This function issues a strict subset of all possible vCont commands at the
2480 moment. */
2481
2482 static int
2483 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2484 {
2485 struct remote_state *rs = get_remote_state ();
2486 int pid = PIDGET (ptid);
2487 char *buf = NULL, *outbuf;
2488 struct cleanup *old_cleanup;
2489
2490 buf = xmalloc (rs->remote_packet_size);
2491 old_cleanup = make_cleanup (xfree, buf);
2492
2493 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2494 remote_vcont_probe (rs, buf);
2495
2496 if (remote_protocol_vcont.support == PACKET_DISABLE)
2497 {
2498 do_cleanups (old_cleanup);
2499 return 0;
2500 }
2501
2502 /* If we could generate a wider range of packets, we'd have to worry
2503 about overflowing BUF. Should there be a generic
2504 "multi-part-packet" packet? */
2505
2506 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2507 {
2508 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2509 don't have any PID numbers the inferior will understand. Make sure
2510 to only send forms that do not specify a PID. */
2511 if (step && siggnal != TARGET_SIGNAL_0)
2512 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2513 else if (step)
2514 outbuf = xstrprintf ("vCont;s");
2515 else if (siggnal != TARGET_SIGNAL_0)
2516 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2517 else
2518 outbuf = xstrprintf ("vCont;c");
2519 }
2520 else if (pid == -1)
2521 {
2522 /* Resume all threads, with preference for INFERIOR_PTID. */
2523 if (step && siggnal != TARGET_SIGNAL_0)
2524 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2525 PIDGET (inferior_ptid));
2526 else if (step)
2527 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2528 else if (siggnal != TARGET_SIGNAL_0)
2529 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2530 PIDGET (inferior_ptid));
2531 else
2532 outbuf = xstrprintf ("vCont;c");
2533 }
2534 else
2535 {
2536 /* Scheduler locking; resume only PTID. */
2537 if (step && siggnal != TARGET_SIGNAL_0)
2538 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2539 else if (step)
2540 outbuf = xstrprintf ("vCont;s:%x", pid);
2541 else if (siggnal != TARGET_SIGNAL_0)
2542 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2543 else
2544 outbuf = xstrprintf ("vCont;c:%x", pid);
2545 }
2546
2547 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2548 make_cleanup (xfree, outbuf);
2549
2550 putpkt (outbuf);
2551
2552 do_cleanups (old_cleanup);
2553
2554 return 1;
2555 }
2556
2557 /* Tell the remote machine to resume. */
2558
2559 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2560
2561 static int last_sent_step;
2562
2563 static void
2564 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2565 {
2566 struct remote_state *rs = get_remote_state ();
2567 char *buf = alloca (rs->remote_packet_size);
2568 int pid = PIDGET (ptid);
2569
2570 last_sent_signal = siggnal;
2571 last_sent_step = step;
2572
2573 /* A hook for when we need to do something at the last moment before
2574 resumption. */
2575 if (deprecated_target_resume_hook)
2576 (*deprecated_target_resume_hook) ();
2577
2578 /* The vCont packet doesn't need to specify threads via Hc. */
2579 if (remote_vcont_resume (ptid, step, siggnal))
2580 return;
2581
2582 /* All other supported resume packets do use Hc, so call set_thread. */
2583 if (pid == -1)
2584 set_thread (0, 0); /* Run any thread. */
2585 else
2586 set_thread (pid, 0); /* Run this thread. */
2587
2588 if (siggnal != TARGET_SIGNAL_0)
2589 {
2590 buf[0] = step ? 'S' : 'C';
2591 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2592 buf[2] = tohex (((int) siggnal) & 0xf);
2593 buf[3] = '\0';
2594 }
2595 else
2596 strcpy (buf, step ? "s" : "c");
2597
2598 putpkt (buf);
2599 }
2600
2601 /* Same as remote_resume, but with async support. */
2602 static void
2603 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2604 {
2605 remote_resume (ptid, step, siggnal);
2606
2607 /* We are about to start executing the inferior, let's register it
2608 with the event loop. NOTE: this is the one place where all the
2609 execution commands end up. We could alternatively do this in each
2610 of the execution commands in infcmd.c. */
2611 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2612 into infcmd.c in order to allow inferior function calls to work
2613 NOT asynchronously. */
2614 if (target_can_async_p ())
2615 target_async (inferior_event_handler, 0);
2616 /* Tell the world that the target is now executing. */
2617 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2618 this? Instead, should the client of target just assume (for
2619 async targets) that the target is going to start executing? Is
2620 this information already found in the continuation block? */
2621 if (target_is_async_p ())
2622 target_executing = 1;
2623 }
2624 \f
2625
2626 /* Set up the signal handler for SIGINT, while the target is
2627 executing, ovewriting the 'regular' SIGINT signal handler. */
2628 static void
2629 initialize_sigint_signal_handler (void)
2630 {
2631 sigint_remote_token =
2632 create_async_signal_handler (async_remote_interrupt, NULL);
2633 signal (SIGINT, handle_remote_sigint);
2634 }
2635
2636 /* Signal handler for SIGINT, while the target is executing. */
2637 static void
2638 handle_remote_sigint (int sig)
2639 {
2640 signal (sig, handle_remote_sigint_twice);
2641 sigint_remote_twice_token =
2642 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2643 mark_async_signal_handler_wrapper (sigint_remote_token);
2644 }
2645
2646 /* Signal handler for SIGINT, installed after SIGINT has already been
2647 sent once. It will take effect the second time that the user sends
2648 a ^C. */
2649 static void
2650 handle_remote_sigint_twice (int sig)
2651 {
2652 signal (sig, handle_sigint);
2653 sigint_remote_twice_token =
2654 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2655 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2656 }
2657
2658 /* Perform the real interruption of the target execution, in response
2659 to a ^C. */
2660 static void
2661 async_remote_interrupt (gdb_client_data arg)
2662 {
2663 if (remote_debug)
2664 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2665
2666 target_stop ();
2667 }
2668
2669 /* Perform interrupt, if the first attempt did not succeed. Just give
2670 up on the target alltogether. */
2671 void
2672 async_remote_interrupt_twice (gdb_client_data arg)
2673 {
2674 if (remote_debug)
2675 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2676 /* Do something only if the target was not killed by the previous
2677 cntl-C. */
2678 if (target_executing)
2679 {
2680 interrupt_query ();
2681 signal (SIGINT, handle_remote_sigint);
2682 }
2683 }
2684
2685 /* Reinstall the usual SIGINT handlers, after the target has
2686 stopped. */
2687 static void
2688 cleanup_sigint_signal_handler (void *dummy)
2689 {
2690 signal (SIGINT, handle_sigint);
2691 if (sigint_remote_twice_token)
2692 delete_async_signal_handler ((struct async_signal_handler **)
2693 &sigint_remote_twice_token);
2694 if (sigint_remote_token)
2695 delete_async_signal_handler ((struct async_signal_handler **)
2696 &sigint_remote_token);
2697 }
2698
2699 /* Send ^C to target to halt it. Target will respond, and send us a
2700 packet. */
2701 static void (*ofunc) (int);
2702
2703 /* The command line interface's stop routine. This function is installed
2704 as a signal handler for SIGINT. The first time a user requests a
2705 stop, we call remote_stop to send a break or ^C. If there is no
2706 response from the target (it didn't stop when the user requested it),
2707 we ask the user if he'd like to detach from the target. */
2708 static void
2709 remote_interrupt (int signo)
2710 {
2711 /* If this doesn't work, try more severe steps. */
2712 signal (signo, remote_interrupt_twice);
2713
2714 if (remote_debug)
2715 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2716
2717 target_stop ();
2718 }
2719
2720 /* The user typed ^C twice. */
2721
2722 static void
2723 remote_interrupt_twice (int signo)
2724 {
2725 signal (signo, ofunc);
2726 interrupt_query ();
2727 signal (signo, remote_interrupt);
2728 }
2729
2730 /* This is the generic stop called via the target vector. When a target
2731 interrupt is requested, either by the command line or the GUI, we
2732 will eventually end up here. */
2733 static void
2734 remote_stop (void)
2735 {
2736 /* Send a break or a ^C, depending on user preference. */
2737 if (remote_debug)
2738 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2739
2740 if (remote_break)
2741 serial_send_break (remote_desc);
2742 else
2743 serial_write (remote_desc, "\003", 1);
2744 }
2745
2746 /* Ask the user what to do when an interrupt is received. */
2747
2748 static void
2749 interrupt_query (void)
2750 {
2751 target_terminal_ours ();
2752
2753 if (query ("Interrupted while waiting for the program.\n\
2754 Give up (and stop debugging it)? "))
2755 {
2756 target_mourn_inferior ();
2757 deprecated_throw_reason (RETURN_QUIT);
2758 }
2759
2760 target_terminal_inferior ();
2761 }
2762
2763 /* Enable/disable target terminal ownership. Most targets can use
2764 terminal groups to control terminal ownership. Remote targets are
2765 different in that explicit transfer of ownership to/from GDB/target
2766 is required. */
2767
2768 static void
2769 remote_async_terminal_inferior (void)
2770 {
2771 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2772 sync_execution here. This function should only be called when
2773 GDB is resuming the inferior in the forground. A background
2774 resume (``run&'') should leave GDB in control of the terminal and
2775 consequently should not call this code. */
2776 if (!sync_execution)
2777 return;
2778 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2779 calls target_terminal_*() idenpotent. The event-loop GDB talking
2780 to an asynchronous target with a synchronous command calls this
2781 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2782 stops trying to transfer the terminal to the target when it
2783 shouldn't this guard can go away. */
2784 if (!remote_async_terminal_ours_p)
2785 return;
2786 delete_file_handler (input_fd);
2787 remote_async_terminal_ours_p = 0;
2788 initialize_sigint_signal_handler ();
2789 /* NOTE: At this point we could also register our selves as the
2790 recipient of all input. Any characters typed could then be
2791 passed on down to the target. */
2792 }
2793
2794 static void
2795 remote_async_terminal_ours (void)
2796 {
2797 /* See FIXME in remote_async_terminal_inferior. */
2798 if (!sync_execution)
2799 return;
2800 /* See FIXME in remote_async_terminal_inferior. */
2801 if (remote_async_terminal_ours_p)
2802 return;
2803 cleanup_sigint_signal_handler (NULL);
2804 add_file_handler (input_fd, stdin_event_handler, 0);
2805 remote_async_terminal_ours_p = 1;
2806 }
2807
2808 /* If nonzero, ignore the next kill. */
2809
2810 int kill_kludge;
2811
2812 void
2813 remote_console_output (char *msg)
2814 {
2815 char *p;
2816
2817 for (p = msg; p[0] && p[1]; p += 2)
2818 {
2819 char tb[2];
2820 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2821 tb[0] = c;
2822 tb[1] = 0;
2823 fputs_unfiltered (tb, gdb_stdtarg);
2824 }
2825 gdb_flush (gdb_stdtarg);
2826 }
2827
2828 /* Wait until the remote machine stops, then return,
2829 storing status in STATUS just as `wait' would.
2830 Returns "pid", which in the case of a multi-threaded
2831 remote OS, is the thread-id. */
2832
2833 static ptid_t
2834 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2835 {
2836 struct remote_state *rs = get_remote_state ();
2837 unsigned char *buf = alloca (rs->remote_packet_size);
2838 ULONGEST thread_num = -1;
2839 ULONGEST addr;
2840
2841 status->kind = TARGET_WAITKIND_EXITED;
2842 status->value.integer = 0;
2843
2844 while (1)
2845 {
2846 unsigned char *p;
2847
2848 ofunc = signal (SIGINT, remote_interrupt);
2849 getpkt (buf, (rs->remote_packet_size), 1);
2850 signal (SIGINT, ofunc);
2851
2852 /* This is a hook for when we need to do something (perhaps the
2853 collection of trace data) every time the target stops. */
2854 if (deprecated_target_wait_loop_hook)
2855 (*deprecated_target_wait_loop_hook) ();
2856
2857 remote_stopped_by_watchpoint_p = 0;
2858
2859 switch (buf[0])
2860 {
2861 case 'E': /* Error of some sort. */
2862 warning (_("Remote failure reply: %s"), buf);
2863 continue;
2864 case 'F': /* File-I/O request. */
2865 remote_fileio_request (buf);
2866 continue;
2867 case 'T': /* Status with PC, SP, FP, ... */
2868 {
2869 char regs[MAX_REGISTER_SIZE];
2870
2871 /* Expedited reply, containing Signal, {regno, reg} repeat. */
2872 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2873 ss = signal number
2874 n... = register number
2875 r... = register contents
2876 */
2877 p = &buf[3]; /* after Txx */
2878
2879 while (*p)
2880 {
2881 unsigned char *p1;
2882 char *p_temp;
2883 int fieldsize;
2884 LONGEST pnum = 0;
2885
2886 /* If the packet contains a register number save it in
2887 pnum and set p1 to point to the character following
2888 it. Otherwise p1 points to p. */
2889
2890 /* If this packet is an awatch packet, don't parse the
2891 'a' as a register number. */
2892
2893 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2894 {
2895 /* Read the ``P'' register number. */
2896 pnum = strtol (p, &p_temp, 16);
2897 p1 = (unsigned char *) p_temp;
2898 }
2899 else
2900 p1 = p;
2901
2902 if (p1 == p) /* No register number present here. */
2903 {
2904 p1 = (unsigned char *) strchr (p, ':');
2905 if (p1 == NULL)
2906 warning (_("Malformed packet(a) (missing colon): %s\n\
2907 Packet: '%s'\n"),
2908 p, buf);
2909 if (strncmp (p, "thread", p1 - p) == 0)
2910 {
2911 p_temp = unpack_varlen_hex (++p1, &thread_num);
2912 record_currthread (thread_num);
2913 p = (unsigned char *) p_temp;
2914 }
2915 else if ((strncmp (p, "watch", p1 - p) == 0)
2916 || (strncmp (p, "rwatch", p1 - p) == 0)
2917 || (strncmp (p, "awatch", p1 - p) == 0))
2918 {
2919 remote_stopped_by_watchpoint_p = 1;
2920 p = unpack_varlen_hex (++p1, &addr);
2921 remote_watch_data_address = (CORE_ADDR)addr;
2922 }
2923 else
2924 {
2925 /* Silently skip unknown optional info. */
2926 p_temp = strchr (p1 + 1, ';');
2927 if (p_temp)
2928 p = (unsigned char *) p_temp;
2929 }
2930 }
2931 else
2932 {
2933 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2934 p = p1;
2935
2936 if (*p++ != ':')
2937 error (_("Malformed packet(b) (missing colon): %s\n\
2938 Packet: '%s'\n"),
2939 p, buf);
2940
2941 if (reg == NULL)
2942 error (_("Remote sent bad register number %s: %s\n\
2943 Packet: '%s'\n"),
2944 phex_nz (pnum, 0), p, buf);
2945
2946 fieldsize = hex2bin (p, regs,
2947 register_size (current_gdbarch,
2948 reg->regnum));
2949 p += 2 * fieldsize;
2950 if (fieldsize < register_size (current_gdbarch,
2951 reg->regnum))
2952 warning (_("Remote reply is too short: %s"), buf);
2953 regcache_raw_supply (current_regcache,
2954 reg->regnum, regs);
2955 }
2956
2957 if (*p++ != ';')
2958 error (_("Remote register badly formatted: %s\nhere: %s"),
2959 buf, p);
2960 }
2961 }
2962 /* fall through */
2963 case 'S': /* Old style status, just signal only. */
2964 status->kind = TARGET_WAITKIND_STOPPED;
2965 status->value.sig = (enum target_signal)
2966 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2967
2968 if (buf[3] == 'p')
2969 {
2970 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2971 record_currthread (thread_num);
2972 }
2973 goto got_status;
2974 case 'W': /* Target exited. */
2975 {
2976 /* The remote process exited. */
2977 status->kind = TARGET_WAITKIND_EXITED;
2978 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2979 goto got_status;
2980 }
2981 case 'X':
2982 status->kind = TARGET_WAITKIND_SIGNALLED;
2983 status->value.sig = (enum target_signal)
2984 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2985 kill_kludge = 1;
2986
2987 goto got_status;
2988 case 'O': /* Console output. */
2989 remote_console_output (buf + 1);
2990 continue;
2991 case '\0':
2992 if (last_sent_signal != TARGET_SIGNAL_0)
2993 {
2994 /* Zero length reply means that we tried 'S' or 'C' and
2995 the remote system doesn't support it. */
2996 target_terminal_ours_for_output ();
2997 printf_filtered
2998 ("Can't send signals to this remote system. %s not sent.\n",
2999 target_signal_to_name (last_sent_signal));
3000 last_sent_signal = TARGET_SIGNAL_0;
3001 target_terminal_inferior ();
3002
3003 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3004 putpkt ((char *) buf);
3005 continue;
3006 }
3007 /* else fallthrough */
3008 default:
3009 warning (_("Invalid remote reply: %s"), buf);
3010 continue;
3011 }
3012 }
3013 got_status:
3014 if (thread_num != -1)
3015 {
3016 return pid_to_ptid (thread_num);
3017 }
3018 return inferior_ptid;
3019 }
3020
3021 /* Async version of remote_wait. */
3022 static ptid_t
3023 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3024 {
3025 struct remote_state *rs = get_remote_state ();
3026 unsigned char *buf = alloca (rs->remote_packet_size);
3027 ULONGEST thread_num = -1;
3028 ULONGEST addr;
3029
3030 status->kind = TARGET_WAITKIND_EXITED;
3031 status->value.integer = 0;
3032
3033 remote_stopped_by_watchpoint_p = 0;
3034
3035 while (1)
3036 {
3037 unsigned char *p;
3038
3039 if (!target_is_async_p ())
3040 ofunc = signal (SIGINT, remote_interrupt);
3041 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3042 _never_ wait for ever -> test on target_is_async_p().
3043 However, before we do that we need to ensure that the caller
3044 knows how to take the target into/out of async mode. */
3045 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3046 if (!target_is_async_p ())
3047 signal (SIGINT, ofunc);
3048
3049 /* This is a hook for when we need to do something (perhaps the
3050 collection of trace data) every time the target stops. */
3051 if (deprecated_target_wait_loop_hook)
3052 (*deprecated_target_wait_loop_hook) ();
3053
3054 switch (buf[0])
3055 {
3056 case 'E': /* Error of some sort. */
3057 warning (_("Remote failure reply: %s"), buf);
3058 continue;
3059 case 'F': /* File-I/O request. */
3060 remote_fileio_request (buf);
3061 continue;
3062 case 'T': /* Status with PC, SP, FP, ... */
3063 {
3064 char regs[MAX_REGISTER_SIZE];
3065
3066 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3067 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3068 ss = signal number
3069 n... = register number
3070 r... = register contents
3071 */
3072 p = &buf[3]; /* after Txx */
3073
3074 while (*p)
3075 {
3076 unsigned char *p1;
3077 char *p_temp;
3078 int fieldsize;
3079 long pnum = 0;
3080
3081 /* If the packet contains a register number, save it
3082 in pnum and set p1 to point to the character
3083 following it. Otherwise p1 points to p. */
3084
3085 /* If this packet is an awatch packet, don't parse the 'a'
3086 as a register number. */
3087
3088 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3089 {
3090 /* Read the register number. */
3091 pnum = strtol (p, &p_temp, 16);
3092 p1 = (unsigned char *) p_temp;
3093 }
3094 else
3095 p1 = p;
3096
3097 if (p1 == p) /* No register number present here. */
3098 {
3099 p1 = (unsigned char *) strchr (p, ':');
3100 if (p1 == NULL)
3101 error (_("Malformed packet(a) (missing colon): %s\n\
3102 Packet: '%s'\n"),
3103 p, buf);
3104 if (strncmp (p, "thread", p1 - p) == 0)
3105 {
3106 p_temp = unpack_varlen_hex (++p1, &thread_num);
3107 record_currthread (thread_num);
3108 p = (unsigned char *) p_temp;
3109 }
3110 else if ((strncmp (p, "watch", p1 - p) == 0)
3111 || (strncmp (p, "rwatch", p1 - p) == 0)
3112 || (strncmp (p, "awatch", p1 - p) == 0))
3113 {
3114 remote_stopped_by_watchpoint_p = 1;
3115 p = unpack_varlen_hex (++p1, &addr);
3116 remote_watch_data_address = (CORE_ADDR)addr;
3117 }
3118 else
3119 {
3120 /* Silently skip unknown optional info. */
3121 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3122 if (p_temp)
3123 p = p_temp;
3124 }
3125 }
3126
3127 else
3128 {
3129 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3130 p = p1;
3131 if (*p++ != ':')
3132 error (_("Malformed packet(b) (missing colon): %s\n\
3133 Packet: '%s'\n"),
3134 p, buf);
3135
3136 if (reg == NULL)
3137 error (_("Remote sent bad register number %ld: %s\n\
3138 Packet: '%s'\n"),
3139 pnum, p, buf);
3140
3141 fieldsize = hex2bin (p, regs,
3142 register_size (current_gdbarch,
3143 reg->regnum));
3144 p += 2 * fieldsize;
3145 if (fieldsize < register_size (current_gdbarch,
3146 reg->regnum))
3147 warning (_("Remote reply is too short: %s"), buf);
3148 regcache_raw_supply (current_regcache, reg->regnum, regs);
3149 }
3150
3151 if (*p++ != ';')
3152 error (_("Remote register badly formatted: %s\nhere: %s"),
3153 buf, p);
3154 }
3155 }
3156 /* fall through */
3157 case 'S': /* Old style status, just signal only. */
3158 status->kind = TARGET_WAITKIND_STOPPED;
3159 status->value.sig = (enum target_signal)
3160 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3161
3162 if (buf[3] == 'p')
3163 {
3164 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3165 record_currthread (thread_num);
3166 }
3167 goto got_status;
3168 case 'W': /* Target exited. */
3169 {
3170 /* The remote process exited. */
3171 status->kind = TARGET_WAITKIND_EXITED;
3172 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3173 goto got_status;
3174 }
3175 case 'X':
3176 status->kind = TARGET_WAITKIND_SIGNALLED;
3177 status->value.sig = (enum target_signal)
3178 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3179 kill_kludge = 1;
3180
3181 goto got_status;
3182 case 'O': /* Console output. */
3183 remote_console_output (buf + 1);
3184 /* Return immediately to the event loop. The event loop will
3185 still be waiting on the inferior afterwards. */
3186 status->kind = TARGET_WAITKIND_IGNORE;
3187 goto got_status;
3188 case '\0':
3189 if (last_sent_signal != TARGET_SIGNAL_0)
3190 {
3191 /* Zero length reply means that we tried 'S' or 'C' and
3192 the remote system doesn't support it. */
3193 target_terminal_ours_for_output ();
3194 printf_filtered
3195 ("Can't send signals to this remote system. %s not sent.\n",
3196 target_signal_to_name (last_sent_signal));
3197 last_sent_signal = TARGET_SIGNAL_0;
3198 target_terminal_inferior ();
3199
3200 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3201 putpkt ((char *) buf);
3202 continue;
3203 }
3204 /* else fallthrough */
3205 default:
3206 warning (_("Invalid remote reply: %s"), buf);
3207 continue;
3208 }
3209 }
3210 got_status:
3211 if (thread_num != -1)
3212 {
3213 return pid_to_ptid (thread_num);
3214 }
3215 return inferior_ptid;
3216 }
3217
3218 /* Number of bytes of registers this stub implements. */
3219
3220 static int register_bytes_found;
3221
3222 /* Read the remote registers into the block REGS. */
3223 /* Currently we just read all the registers, so we don't use regnum. */
3224
3225 static int
3226 fetch_register_using_p (int regnum)
3227 {
3228 struct remote_state *rs = get_remote_state ();
3229 char *buf = alloca (rs->remote_packet_size), *p;
3230 char regp[MAX_REGISTER_SIZE];
3231 int i;
3232
3233 p = buf;
3234 *p++ = 'p';
3235 p += hexnumstr (p, regnum);
3236 *p++ = '\0';
3237 remote_send (buf, rs->remote_packet_size);
3238
3239 /* If the stub didn't recognize the packet, or if we got an error,
3240 tell our caller. */
3241 if (buf[0] == '\0' || buf[0] == 'E')
3242 return 0;
3243
3244 /* If this register is unfetchable, tell the regcache. */
3245 if (buf[0] == 'x')
3246 {
3247 regcache_raw_supply (current_regcache, regnum, NULL);
3248 set_register_cached (regnum, -1);
3249 return 1;
3250 }
3251
3252 /* Otherwise, parse and supply the value. */
3253 p = buf;
3254 i = 0;
3255 while (p[0] != 0)
3256 {
3257 if (p[1] == 0)
3258 {
3259 error (_("fetch_register_using_p: early buf termination"));
3260 return 0;
3261 }
3262
3263 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3264 p += 2;
3265 }
3266 regcache_raw_supply (current_regcache, regnum, regp);
3267 return 1;
3268 }
3269
3270 static void
3271 remote_fetch_registers (int regnum)
3272 {
3273 struct remote_state *rs = get_remote_state ();
3274 char *buf = alloca (rs->remote_packet_size);
3275 int i;
3276 char *p;
3277 char *regs = alloca (rs->sizeof_g_packet);
3278
3279 set_thread (PIDGET (inferior_ptid), 1);
3280
3281 if (regnum >= 0)
3282 {
3283 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3284 gdb_assert (reg != NULL);
3285 if (!reg->in_g_packet)
3286 internal_error (__FILE__, __LINE__,
3287 _("Attempt to fetch a non G-packet register when this "
3288 "remote.c does not support the p-packet."));
3289 }
3290 switch (remote_protocol_p.support)
3291 {
3292 case PACKET_DISABLE:
3293 break;
3294 case PACKET_ENABLE:
3295 if (fetch_register_using_p (regnum))
3296 return;
3297 else
3298 error (_("Protocol error: p packet not recognized by stub"));
3299 case PACKET_SUPPORT_UNKNOWN:
3300 if (fetch_register_using_p (regnum))
3301 {
3302 /* The stub recognized the 'p' packet. Remember this. */
3303 remote_protocol_p.support = PACKET_ENABLE;
3304 return;
3305 }
3306 else
3307 {
3308 /* The stub does not support the 'P' packet. Use 'G'
3309 instead, and don't try using 'P' in the future (it
3310 will just waste our time). */
3311 remote_protocol_p.support = PACKET_DISABLE;
3312 break;
3313 }
3314 }
3315
3316 sprintf (buf, "g");
3317 remote_send (buf, (rs->remote_packet_size));
3318
3319 /* Save the size of the packet sent to us by the target. Its used
3320 as a heuristic when determining the max size of packets that the
3321 target can safely receive. */
3322 if ((rs->actual_register_packet_size) == 0)
3323 (rs->actual_register_packet_size) = strlen (buf);
3324
3325 /* Unimplemented registers read as all bits zero. */
3326 memset (regs, 0, rs->sizeof_g_packet);
3327
3328 /* We can get out of synch in various cases. If the first character
3329 in the buffer is not a hex character, assume that has happened
3330 and try to fetch another packet to read. */
3331 while ((buf[0] < '0' || buf[0] > '9')
3332 && (buf[0] < 'A' || buf[0] > 'F')
3333 && (buf[0] < 'a' || buf[0] > 'f')
3334 && buf[0] != 'x') /* New: unavailable register value. */
3335 {
3336 if (remote_debug)
3337 fprintf_unfiltered (gdb_stdlog,
3338 "Bad register packet; fetching a new packet\n");
3339 getpkt (buf, (rs->remote_packet_size), 0);
3340 }
3341
3342 /* Reply describes registers byte by byte, each byte encoded as two
3343 hex characters. Suck them all up, then supply them to the
3344 register cacheing/storage mechanism. */
3345
3346 p = buf;
3347 for (i = 0; i < rs->sizeof_g_packet; i++)
3348 {
3349 if (p[0] == 0)
3350 break;
3351 if (p[1] == 0)
3352 {
3353 warning (_("Remote reply is of odd length: %s"), buf);
3354 /* Don't change register_bytes_found in this case, and don't
3355 print a second warning. */
3356 goto supply_them;
3357 }
3358 if (p[0] == 'x' && p[1] == 'x')
3359 regs[i] = 0; /* 'x' */
3360 else
3361 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3362 p += 2;
3363 }
3364
3365 if (i != register_bytes_found)
3366 {
3367 register_bytes_found = i;
3368 if (REGISTER_BYTES_OK_P ()
3369 && !REGISTER_BYTES_OK (i))
3370 warning (_("Remote reply is too short: %s"), buf);
3371 }
3372
3373 supply_them:
3374 {
3375 int i;
3376 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3377 {
3378 struct packet_reg *r = &rs->regs[i];
3379 if (r->in_g_packet)
3380 {
3381 if (r->offset * 2 >= strlen (buf))
3382 /* A short packet that didn't include the register's
3383 value, this implies that the register is zero (and
3384 not that the register is unavailable). Supply that
3385 zero value. */
3386 regcache_raw_supply (current_regcache, r->regnum, NULL);
3387 else if (buf[r->offset * 2] == 'x')
3388 {
3389 gdb_assert (r->offset * 2 < strlen (buf));
3390 /* The register isn't available, mark it as such (at
3391 the same time setting the value to zero). */
3392 regcache_raw_supply (current_regcache, r->regnum, NULL);
3393 set_register_cached (i, -1);
3394 }
3395 else
3396 regcache_raw_supply (current_regcache, r->regnum,
3397 regs + r->offset);
3398 }
3399 }
3400 }
3401 }
3402
3403 /* Prepare to store registers. Since we may send them all (using a
3404 'G' request), we have to read out the ones we don't want to change
3405 first. */
3406
3407 static void
3408 remote_prepare_to_store (void)
3409 {
3410 struct remote_state *rs = get_remote_state ();
3411 int i;
3412 char buf[MAX_REGISTER_SIZE];
3413
3414 /* Make sure the entire registers array is valid. */
3415 switch (remote_protocol_P.support)
3416 {
3417 case PACKET_DISABLE:
3418 case PACKET_SUPPORT_UNKNOWN:
3419 /* Make sure all the necessary registers are cached. */
3420 for (i = 0; i < NUM_REGS; i++)
3421 if (rs->regs[i].in_g_packet)
3422 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3423 break;
3424 case PACKET_ENABLE:
3425 break;
3426 }
3427 }
3428
3429 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3430 packet was not recognized. */
3431
3432 static int
3433 store_register_using_P (int regnum)
3434 {
3435 struct remote_state *rs = get_remote_state ();
3436 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3437 /* Try storing a single register. */
3438 char *buf = alloca (rs->remote_packet_size);
3439 char regp[MAX_REGISTER_SIZE];
3440 char *p;
3441
3442 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3443 p = buf + strlen (buf);
3444 regcache_raw_collect (current_regcache, reg->regnum, regp);
3445 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3446 remote_send (buf, rs->remote_packet_size);
3447
3448 return buf[0] != '\0';
3449 }
3450
3451
3452 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3453 contents of the register cache buffer. FIXME: ignores errors. */
3454
3455 static void
3456 remote_store_registers (int regnum)
3457 {
3458 struct remote_state *rs = get_remote_state ();
3459 char *buf;
3460 char *regs;
3461 char *p;
3462
3463 set_thread (PIDGET (inferior_ptid), 1);
3464
3465 if (regnum >= 0)
3466 {
3467 switch (remote_protocol_P.support)
3468 {
3469 case PACKET_DISABLE:
3470 break;
3471 case PACKET_ENABLE:
3472 if (store_register_using_P (regnum))
3473 return;
3474 else
3475 error (_("Protocol error: P packet not recognized by stub"));
3476 case PACKET_SUPPORT_UNKNOWN:
3477 if (store_register_using_P (regnum))
3478 {
3479 /* The stub recognized the 'P' packet. Remember this. */
3480 remote_protocol_P.support = PACKET_ENABLE;
3481 return;
3482 }
3483 else
3484 {
3485 /* The stub does not support the 'P' packet. Use 'G'
3486 instead, and don't try using 'P' in the future (it
3487 will just waste our time). */
3488 remote_protocol_P.support = PACKET_DISABLE;
3489 break;
3490 }
3491 }
3492 }
3493
3494 /* Extract all the registers in the regcache copying them into a
3495 local buffer. */
3496 {
3497 int i;
3498 regs = alloca (rs->sizeof_g_packet);
3499 memset (regs, 0, rs->sizeof_g_packet);
3500 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3501 {
3502 struct packet_reg *r = &rs->regs[i];
3503 if (r->in_g_packet)
3504 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3505 }
3506 }
3507
3508 /* Command describes registers byte by byte,
3509 each byte encoded as two hex characters. */
3510 buf = alloca (rs->remote_packet_size);
3511 p = buf;
3512 *p++ = 'G';
3513 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3514 bin2hex (regs, p, register_bytes_found);
3515 remote_send (buf, (rs->remote_packet_size));
3516 }
3517 \f
3518
3519 /* Return the number of hex digits in num. */
3520
3521 static int
3522 hexnumlen (ULONGEST num)
3523 {
3524 int i;
3525
3526 for (i = 0; num != 0; i++)
3527 num >>= 4;
3528
3529 return max (i, 1);
3530 }
3531
3532 /* Set BUF to the minimum number of hex digits representing NUM. */
3533
3534 static int
3535 hexnumstr (char *buf, ULONGEST num)
3536 {
3537 int len = hexnumlen (num);
3538 return hexnumnstr (buf, num, len);
3539 }
3540
3541
3542 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3543
3544 static int
3545 hexnumnstr (char *buf, ULONGEST num, int width)
3546 {
3547 int i;
3548
3549 buf[width] = '\0';
3550
3551 for (i = width - 1; i >= 0; i--)
3552 {
3553 buf[i] = "0123456789abcdef"[(num & 0xf)];
3554 num >>= 4;
3555 }
3556
3557 return width;
3558 }
3559
3560 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3561
3562 static CORE_ADDR
3563 remote_address_masked (CORE_ADDR addr)
3564 {
3565 if (remote_address_size > 0
3566 && remote_address_size < (sizeof (ULONGEST) * 8))
3567 {
3568 /* Only create a mask when that mask can safely be constructed
3569 in a ULONGEST variable. */
3570 ULONGEST mask = 1;
3571 mask = (mask << remote_address_size) - 1;
3572 addr &= mask;
3573 }
3574 return addr;
3575 }
3576
3577 /* Determine whether the remote target supports binary downloading.
3578 This is accomplished by sending a no-op memory write of zero length
3579 to the target at the specified address. It does not suffice to send
3580 the whole packet, since many stubs strip the eighth bit and
3581 subsequently compute a wrong checksum, which causes real havoc with
3582 remote_write_bytes.
3583
3584 NOTE: This can still lose if the serial line is not eight-bit
3585 clean. In cases like this, the user should clear "remote
3586 X-packet". */
3587
3588 static void
3589 check_binary_download (CORE_ADDR addr)
3590 {
3591 struct remote_state *rs = get_remote_state ();
3592 switch (remote_protocol_binary_download.support)
3593 {
3594 case PACKET_DISABLE:
3595 break;
3596 case PACKET_ENABLE:
3597 break;
3598 case PACKET_SUPPORT_UNKNOWN:
3599 {
3600 char *buf = alloca (rs->remote_packet_size);
3601 char *p;
3602
3603 p = buf;
3604 *p++ = 'X';
3605 p += hexnumstr (p, (ULONGEST) addr);
3606 *p++ = ',';
3607 p += hexnumstr (p, (ULONGEST) 0);
3608 *p++ = ':';
3609 *p = '\0';
3610
3611 putpkt_binary (buf, (int) (p - buf));
3612 getpkt (buf, (rs->remote_packet_size), 0);
3613
3614 if (buf[0] == '\0')
3615 {
3616 if (remote_debug)
3617 fprintf_unfiltered (gdb_stdlog,
3618 "binary downloading NOT suppported by target\n");
3619 remote_protocol_binary_download.support = PACKET_DISABLE;
3620 }
3621 else
3622 {
3623 if (remote_debug)
3624 fprintf_unfiltered (gdb_stdlog,
3625 "binary downloading suppported by target\n");
3626 remote_protocol_binary_download.support = PACKET_ENABLE;
3627 }
3628 break;
3629 }
3630 }
3631 }
3632
3633 /* Write memory data directly to the remote machine.
3634 This does not inform the data cache; the data cache uses this.
3635 MEMADDR is the address in the remote memory space.
3636 MYADDR is the address of the buffer in our space.
3637 LEN is the number of bytes.
3638
3639 Returns number of bytes transferred, or 0 (setting errno) for
3640 error. Only transfer a single packet. */
3641
3642 int
3643 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3644 {
3645 unsigned char *buf;
3646 unsigned char *p;
3647 unsigned char *plen;
3648 long sizeof_buf;
3649 int plenlen;
3650 int todo;
3651 int nr_bytes;
3652 int payload_size;
3653 unsigned char *payload_start;
3654
3655 /* Verify that the target can support a binary download. */
3656 check_binary_download (memaddr);
3657
3658 payload_size = get_memory_write_packet_size ();
3659
3660 /* Compute the size, and then allocate space for the largest
3661 possible packet. Include space for an extra trailing NUL. */
3662 sizeof_buf = payload_size + 1;
3663 buf = alloca (sizeof_buf);
3664
3665 /* Compute the size of the actual payload by subtracting out the
3666 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
3667 */
3668 payload_size -= strlen ("$M,:#NN");
3669 payload_size -= hexnumlen (memaddr);
3670
3671 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3672
3673 /* Append "[XM]". Compute a best guess of the number of bytes
3674 actually transfered. */
3675 p = buf;
3676 switch (remote_protocol_binary_download.support)
3677 {
3678 case PACKET_ENABLE:
3679 *p++ = 'X';
3680 /* Best guess at number of bytes that will fit. */
3681 todo = min (len, payload_size);
3682 payload_size -= hexnumlen (todo);
3683 todo = min (todo, payload_size);
3684 break;
3685 case PACKET_DISABLE:
3686 *p++ = 'M';
3687 /* Num bytes that will fit. */
3688 todo = min (len, payload_size / 2);
3689 payload_size -= hexnumlen (todo);
3690 todo = min (todo, payload_size / 2);
3691 break;
3692 case PACKET_SUPPORT_UNKNOWN:
3693 internal_error (__FILE__, __LINE__,
3694 _("remote_write_bytes: bad internal state"));
3695 default:
3696 internal_error (__FILE__, __LINE__, _("bad switch"));
3697 }
3698 if (todo <= 0)
3699 internal_error (__FILE__, __LINE__,
3700 _("minumum packet size too small to write data"));
3701
3702 /* Append "<memaddr>". */
3703 memaddr = remote_address_masked (memaddr);
3704 p += hexnumstr (p, (ULONGEST) memaddr);
3705
3706 /* Append ",". */
3707 *p++ = ',';
3708
3709 /* Append <len>. Retain the location/size of <len>. It may need to
3710 be adjusted once the packet body has been created. */
3711 plen = p;
3712 plenlen = hexnumstr (p, (ULONGEST) todo);
3713 p += plenlen;
3714
3715 /* Append ":". */
3716 *p++ = ':';
3717 *p = '\0';
3718
3719 /* Append the packet body. */
3720 payload_start = p;
3721 switch (remote_protocol_binary_download.support)
3722 {
3723 case PACKET_ENABLE:
3724 /* Binary mode. Send target system values byte by byte, in
3725 increasing byte addresses. Only escape certain critical
3726 characters. */
3727 for (nr_bytes = 0;
3728 (nr_bytes < todo) && (p - payload_start) < payload_size;
3729 nr_bytes++)
3730 {
3731 switch (myaddr[nr_bytes] & 0xff)
3732 {
3733 case '$':
3734 case '#':
3735 case 0x7d:
3736 /* These must be escaped. */
3737 *p++ = 0x7d;
3738 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3739 break;
3740 default:
3741 *p++ = myaddr[nr_bytes] & 0xff;
3742 break;
3743 }
3744 }
3745 if (nr_bytes < todo)
3746 {
3747 /* Escape chars have filled up the buffer prematurely,
3748 and we have actually sent fewer bytes than planned.
3749 Fix-up the length field of the packet. Use the same
3750 number of characters as before. */
3751 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3752 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3753 }
3754 break;
3755 case PACKET_DISABLE:
3756 /* Normal mode: Send target system values byte by byte, in
3757 increasing byte addresses. Each byte is encoded as a two hex
3758 value. */
3759 nr_bytes = bin2hex (myaddr, p, todo);
3760 p += 2 * nr_bytes;
3761 break;
3762 case PACKET_SUPPORT_UNKNOWN:
3763 internal_error (__FILE__, __LINE__,
3764 _("remote_write_bytes: bad internal state"));
3765 default:
3766 internal_error (__FILE__, __LINE__, _("bad switch"));
3767 }
3768
3769 putpkt_binary (buf, (int) (p - buf));
3770 getpkt (buf, sizeof_buf, 0);
3771
3772 if (buf[0] == 'E')
3773 {
3774 /* There is no correspondance between what the remote protocol
3775 uses for errors and errno codes. We would like a cleaner way
3776 of representing errors (big enough to include errno codes,
3777 bfd_error codes, and others). But for now just return EIO. */
3778 errno = EIO;
3779 return 0;
3780 }
3781
3782 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
3783 fewer bytes than we'd planned. */
3784 return nr_bytes;
3785 }
3786
3787 /* Read memory data directly from the remote machine.
3788 This does not use the data cache; the data cache uses this.
3789 MEMADDR is the address in the remote memory space.
3790 MYADDR is the address of the buffer in our space.
3791 LEN is the number of bytes.
3792
3793 Returns number of bytes transferred, or 0 for error. */
3794
3795 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3796 remote targets) shouldn't attempt to read the entire buffer.
3797 Instead it should read a single packet worth of data and then
3798 return the byte size of that packet to the caller. The caller (its
3799 caller and its callers caller ;-) already contains code for
3800 handling partial reads. */
3801
3802 int
3803 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3804 {
3805 char *buf;
3806 int max_buf_size; /* Max size of packet output buffer. */
3807 long sizeof_buf;
3808 int origlen;
3809
3810 /* Create a buffer big enough for this packet. */
3811 max_buf_size = get_memory_read_packet_size ();
3812 sizeof_buf = max_buf_size + 1; /* Space for trailing NULL. */
3813 buf = alloca (sizeof_buf);
3814
3815 origlen = len;
3816 while (len > 0)
3817 {
3818 char *p;
3819 int todo;
3820 int i;
3821
3822 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3823
3824 /* construct "m"<memaddr>","<len>" */
3825 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3826 memaddr = remote_address_masked (memaddr);
3827 p = buf;
3828 *p++ = 'm';
3829 p += hexnumstr (p, (ULONGEST) memaddr);
3830 *p++ = ',';
3831 p += hexnumstr (p, (ULONGEST) todo);
3832 *p = '\0';
3833
3834 putpkt (buf);
3835 getpkt (buf, sizeof_buf, 0);
3836
3837 if (buf[0] == 'E'
3838 && isxdigit (buf[1]) && isxdigit (buf[2])
3839 && buf[3] == '\0')
3840 {
3841 /* There is no correspondance between what the remote
3842 protocol uses for errors and errno codes. We would like
3843 a cleaner way of representing errors (big enough to
3844 include errno codes, bfd_error codes, and others). But
3845 for now just return EIO. */
3846 errno = EIO;
3847 return 0;
3848 }
3849
3850 /* Reply describes memory byte by byte,
3851 each byte encoded as two hex characters. */
3852
3853 p = buf;
3854 if ((i = hex2bin (p, myaddr, todo)) < todo)
3855 {
3856 /* Reply is short. This means that we were able to read
3857 only part of what we wanted to. */
3858 return i + (origlen - len);
3859 }
3860 myaddr += todo;
3861 memaddr += todo;
3862 len -= todo;
3863 }
3864 return origlen;
3865 }
3866 \f
3867 /* Read or write LEN bytes from inferior memory at MEMADDR,
3868 transferring to or from debugger address BUFFER. Write to inferior
3869 if SHOULD_WRITE is nonzero. Returns length of data written or
3870 read; 0 for error. TARGET is unused. */
3871
3872 static int
3873 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3874 int should_write, struct mem_attrib *attrib,
3875 struct target_ops *target)
3876 {
3877 CORE_ADDR targ_addr;
3878 int targ_len;
3879 int res;
3880
3881 /* Should this be the selected frame? */
3882 gdbarch_remote_translate_xfer_address (current_gdbarch,
3883 current_regcache,
3884 mem_addr, mem_len,
3885 &targ_addr, &targ_len);
3886 if (targ_len <= 0)
3887 return 0;
3888
3889 if (should_write)
3890 res = remote_write_bytes (targ_addr, buffer, targ_len);
3891 else
3892 res = remote_read_bytes (targ_addr, buffer, targ_len);
3893
3894 return res;
3895 }
3896
3897 static void
3898 remote_files_info (struct target_ops *ignore)
3899 {
3900 puts_filtered ("Debugging a target over a serial line.\n");
3901 }
3902 \f
3903 /* Stuff for dealing with the packets which are part of this protocol.
3904 See comment at top of file for details. */
3905
3906 /* Read a single character from the remote end, masking it down to 7
3907 bits. */
3908
3909 static int
3910 readchar (int timeout)
3911 {
3912 int ch;
3913
3914 ch = serial_readchar (remote_desc, timeout);
3915
3916 if (ch >= 0)
3917 return (ch & 0x7f);
3918
3919 switch ((enum serial_rc) ch)
3920 {
3921 case SERIAL_EOF:
3922 target_mourn_inferior ();
3923 error (_("Remote connection closed"));
3924 /* no return */
3925 case SERIAL_ERROR:
3926 perror_with_name (_("Remote communication error"));
3927 /* no return */
3928 case SERIAL_TIMEOUT:
3929 break;
3930 }
3931 return ch;
3932 }
3933
3934 /* Send the command in BUF to the remote machine, and read the reply
3935 into BUF. Report an error if we get an error reply. */
3936
3937 static void
3938 remote_send (char *buf,
3939 long sizeof_buf)
3940 {
3941 putpkt (buf);
3942 getpkt (buf, sizeof_buf, 0);
3943
3944 if (buf[0] == 'E')
3945 error (_("Remote failure reply: %s"), buf);
3946 }
3947
3948 /* Display a null-terminated packet on stdout, for debugging, using C
3949 string notation. */
3950
3951 static void
3952 print_packet (char *buf)
3953 {
3954 puts_filtered ("\"");
3955 fputstr_filtered (buf, '"', gdb_stdout);
3956 puts_filtered ("\"");
3957 }
3958
3959 int
3960 putpkt (char *buf)
3961 {
3962 return putpkt_binary (buf, strlen (buf));
3963 }
3964
3965 /* Send a packet to the remote machine, with error checking. The data
3966 of the packet is in BUF. The string in BUF can be at most
3967 (rs->remote_packet_size) - 5 to account for the $, # and checksum,
3968 and for a possible /0 if we are debugging (remote_debug) and want
3969 to print the sent packet as a string. */
3970
3971 static int
3972 putpkt_binary (char *buf, int cnt)
3973 {
3974 struct remote_state *rs = get_remote_state ();
3975 int i;
3976 unsigned char csum = 0;
3977 char *buf2 = alloca (cnt + 6);
3978 long sizeof_junkbuf = (rs->remote_packet_size);
3979 char *junkbuf = alloca (sizeof_junkbuf);
3980
3981 int ch;
3982 int tcount = 0;
3983 char *p;
3984
3985 /* Copy the packet into buffer BUF2, encapsulating it
3986 and giving it a checksum. */
3987
3988 p = buf2;
3989 *p++ = '$';
3990
3991 for (i = 0; i < cnt; i++)
3992 {
3993 csum += buf[i];
3994 *p++ = buf[i];
3995 }
3996 *p++ = '#';
3997 *p++ = tohex ((csum >> 4) & 0xf);
3998 *p++ = tohex (csum & 0xf);
3999
4000 /* Send it over and over until we get a positive ack. */
4001
4002 while (1)
4003 {
4004 int started_error_output = 0;
4005
4006 if (remote_debug)
4007 {
4008 *p = '\0';
4009 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4010 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4011 fprintf_unfiltered (gdb_stdlog, "...");
4012 gdb_flush (gdb_stdlog);
4013 }
4014 if (serial_write (remote_desc, buf2, p - buf2))
4015 perror_with_name (_("putpkt: write failed"));
4016
4017 /* Read until either a timeout occurs (-2) or '+' is read. */
4018 while (1)
4019 {
4020 ch = readchar (remote_timeout);
4021
4022 if (remote_debug)
4023 {
4024 switch (ch)
4025 {
4026 case '+':
4027 case '-':
4028 case SERIAL_TIMEOUT:
4029 case '$':
4030 if (started_error_output)
4031 {
4032 putchar_unfiltered ('\n');
4033 started_error_output = 0;
4034 }
4035 }
4036 }
4037
4038 switch (ch)
4039 {
4040 case '+':
4041 if (remote_debug)
4042 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4043 return 1;
4044 case '-':
4045 if (remote_debug)
4046 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4047 case SERIAL_TIMEOUT:
4048 tcount++;
4049 if (tcount > 3)
4050 return 0;
4051 break; /* Retransmit buffer. */
4052 case '$':
4053 {
4054 if (remote_debug)
4055 fprintf_unfiltered (gdb_stdlog,
4056 "Packet instead of Ack, ignoring it\n");
4057 /* It's probably an old response sent because an ACK
4058 was lost. Gobble up the packet and ack it so it
4059 doesn't get retransmitted when we resend this
4060 packet. */
4061 read_frame (junkbuf, sizeof_junkbuf);
4062 serial_write (remote_desc, "+", 1);
4063 continue; /* Now, go look for +. */
4064 }
4065 default:
4066 if (remote_debug)
4067 {
4068 if (!started_error_output)
4069 {
4070 started_error_output = 1;
4071 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4072 }
4073 fputc_unfiltered (ch & 0177, gdb_stdlog);
4074 }
4075 continue;
4076 }
4077 break; /* Here to retransmit. */
4078 }
4079
4080 #if 0
4081 /* This is wrong. If doing a long backtrace, the user should be
4082 able to get out next time we call QUIT, without anything as
4083 violent as interrupt_query. If we want to provide a way out of
4084 here without getting to the next QUIT, it should be based on
4085 hitting ^C twice as in remote_wait. */
4086 if (quit_flag)
4087 {
4088 quit_flag = 0;
4089 interrupt_query ();
4090 }
4091 #endif
4092 }
4093 }
4094
4095 /* Come here after finding the start of the frame. Collect the rest
4096 into BUF, verifying the checksum, length, and handling run-length
4097 compression. No more than sizeof_buf-1 characters are read so that
4098 the buffer can be NUL terminated.
4099
4100 Returns -1 on error, number of characters in buffer (ignoring the
4101 trailing NULL) on success. (could be extended to return one of the
4102 SERIAL status indications). */
4103
4104 static long
4105 read_frame (char *buf,
4106 long sizeof_buf)
4107 {
4108 unsigned char csum;
4109 long bc;
4110 int c;
4111
4112 csum = 0;
4113 bc = 0;
4114
4115 while (1)
4116 {
4117 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NULL. */
4118 c = readchar (remote_timeout);
4119 switch (c)
4120 {
4121 case SERIAL_TIMEOUT:
4122 if (remote_debug)
4123 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4124 return -1;
4125 case '$':
4126 if (remote_debug)
4127 fputs_filtered ("Saw new packet start in middle of old one\n",
4128 gdb_stdlog);
4129 return -1; /* Start a new packet, count retries. */
4130 case '#':
4131 {
4132 unsigned char pktcsum;
4133 int check_0 = 0;
4134 int check_1 = 0;
4135
4136 buf[bc] = '\0';
4137
4138 check_0 = readchar (remote_timeout);
4139 if (check_0 >= 0)
4140 check_1 = readchar (remote_timeout);
4141
4142 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4143 {
4144 if (remote_debug)
4145 fputs_filtered ("Timeout in checksum, retrying\n",
4146 gdb_stdlog);
4147 return -1;
4148 }
4149 else if (check_0 < 0 || check_1 < 0)
4150 {
4151 if (remote_debug)
4152 fputs_filtered ("Communication error in checksum\n",
4153 gdb_stdlog);
4154 return -1;
4155 }
4156
4157 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4158 if (csum == pktcsum)
4159 return bc;
4160
4161 if (remote_debug)
4162 {
4163 fprintf_filtered (gdb_stdlog,
4164 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4165 pktcsum, csum);
4166 fputs_filtered (buf, gdb_stdlog);
4167 fputs_filtered ("\n", gdb_stdlog);
4168 }
4169 /* Number of characters in buffer ignoring trailing
4170 NULL. */
4171 return -1;
4172 }
4173 case '*': /* Run length encoding. */
4174 {
4175 int repeat;
4176 csum += c;
4177
4178 c = readchar (remote_timeout);
4179 csum += c;
4180 repeat = c - ' ' + 3; /* Compute repeat count. */
4181
4182 /* The character before ``*'' is repeated. */
4183
4184 if (repeat > 0 && repeat <= 255
4185 && bc > 0
4186 && bc + repeat - 1 < sizeof_buf - 1)
4187 {
4188 memset (&buf[bc], buf[bc - 1], repeat);
4189 bc += repeat;
4190 continue;
4191 }
4192
4193 buf[bc] = '\0';
4194 printf_filtered (_("Repeat count %d too large for buffer: "),
4195 repeat);
4196 puts_filtered (buf);
4197 puts_filtered ("\n");
4198 return -1;
4199 }
4200 default:
4201 if (bc < sizeof_buf - 1)
4202 {
4203 buf[bc++] = c;
4204 csum += c;
4205 continue;
4206 }
4207
4208 buf[bc] = '\0';
4209 puts_filtered ("Remote packet too long: ");
4210 puts_filtered (buf);
4211 puts_filtered ("\n");
4212
4213 return -1;
4214 }
4215 }
4216 }
4217
4218 /* Read a packet from the remote machine, with error checking, and
4219 store it in BUF. If FOREVER, wait forever rather than timing out;
4220 this is used (in synchronous mode) to wait for a target that is is
4221 executing user code to stop. */
4222 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4223 don't have to change all the calls to getpkt to deal with the
4224 return value, because at the moment I don't know what the right
4225 thing to do it for those. */
4226 void
4227 getpkt (char *buf,
4228 long sizeof_buf,
4229 int forever)
4230 {
4231 int timed_out;
4232
4233 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4234 }
4235
4236
4237 /* Read a packet from the remote machine, with error checking, and
4238 store it in BUF. If FOREVER, wait forever rather than timing out;
4239 this is used (in synchronous mode) to wait for a target that is is
4240 executing user code to stop. If FOREVER == 0, this function is
4241 allowed to time out gracefully and return an indication of this to
4242 the caller. */
4243 static int
4244 getpkt_sane (char *buf,
4245 long sizeof_buf,
4246 int forever)
4247 {
4248 int c;
4249 int tries;
4250 int timeout;
4251 int val;
4252
4253 strcpy (buf, "timeout");
4254
4255 if (forever)
4256 {
4257 timeout = watchdog > 0 ? watchdog : -1;
4258 }
4259
4260 else
4261 timeout = remote_timeout;
4262
4263 #define MAX_TRIES 3
4264
4265 for (tries = 1; tries <= MAX_TRIES; tries++)
4266 {
4267 /* This can loop forever if the remote side sends us characters
4268 continuously, but if it pauses, we'll get a zero from
4269 readchar because of timeout. Then we'll count that as a
4270 retry. */
4271
4272 /* Note that we will only wait forever prior to the start of a
4273 packet. After that, we expect characters to arrive at a
4274 brisk pace. They should show up within remote_timeout
4275 intervals. */
4276
4277 do
4278 {
4279 c = readchar (timeout);
4280
4281 if (c == SERIAL_TIMEOUT)
4282 {
4283 if (forever) /* Watchdog went off? Kill the target. */
4284 {
4285 QUIT;
4286 target_mourn_inferior ();
4287 error (_("Watchdog has expired. Target detached."));
4288 }
4289 if (remote_debug)
4290 fputs_filtered ("Timed out.\n", gdb_stdlog);
4291 goto retry;
4292 }
4293 }
4294 while (c != '$');
4295
4296 /* We've found the start of a packet, now collect the data. */
4297
4298 val = read_frame (buf, sizeof_buf);
4299
4300 if (val >= 0)
4301 {
4302 if (remote_debug)
4303 {
4304 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4305 fputstr_unfiltered (buf, 0, gdb_stdlog);
4306 fprintf_unfiltered (gdb_stdlog, "\n");
4307 }
4308 serial_write (remote_desc, "+", 1);
4309 return 0;
4310 }
4311
4312 /* Try the whole thing again. */
4313 retry:
4314 serial_write (remote_desc, "-", 1);
4315 }
4316
4317 /* We have tried hard enough, and just can't receive the packet.
4318 Give up. */
4319
4320 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4321 serial_write (remote_desc, "+", 1);
4322 return 1;
4323 }
4324 \f
4325 static void
4326 remote_kill (void)
4327 {
4328 /* For some mysterious reason, wait_for_inferior calls kill instead of
4329 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4330 if (kill_kludge)
4331 {
4332 kill_kludge = 0;
4333 target_mourn_inferior ();
4334 return;
4335 }
4336
4337 /* Use catch_errors so the user can quit from gdb even when we aren't on
4338 speaking terms with the remote system. */
4339 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4340
4341 /* Don't wait for it to die. I'm not really sure it matters whether
4342 we do or not. For the existing stubs, kill is a noop. */
4343 target_mourn_inferior ();
4344 }
4345
4346 /* Async version of remote_kill. */
4347 static void
4348 remote_async_kill (void)
4349 {
4350 /* Unregister the file descriptor from the event loop. */
4351 if (target_is_async_p ())
4352 serial_async (remote_desc, NULL, 0);
4353
4354 /* For some mysterious reason, wait_for_inferior calls kill instead of
4355 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4356 if (kill_kludge)
4357 {
4358 kill_kludge = 0;
4359 target_mourn_inferior ();
4360 return;
4361 }
4362
4363 /* Use catch_errors so the user can quit from gdb even when we
4364 aren't on speaking terms with the remote system. */
4365 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4366
4367 /* Don't wait for it to die. I'm not really sure it matters whether
4368 we do or not. For the existing stubs, kill is a noop. */
4369 target_mourn_inferior ();
4370 }
4371
4372 static void
4373 remote_mourn (void)
4374 {
4375 remote_mourn_1 (&remote_ops);
4376 }
4377
4378 static void
4379 remote_async_mourn (void)
4380 {
4381 remote_mourn_1 (&remote_async_ops);
4382 }
4383
4384 static void
4385 extended_remote_mourn (void)
4386 {
4387 /* We do _not_ want to mourn the target like this; this will
4388 remove the extended remote target from the target stack,
4389 and the next time the user says "run" it'll fail.
4390
4391 FIXME: What is the right thing to do here? */
4392 #if 0
4393 remote_mourn_1 (&extended_remote_ops);
4394 #endif
4395 }
4396
4397 /* Worker function for remote_mourn. */
4398 static void
4399 remote_mourn_1 (struct target_ops *target)
4400 {
4401 unpush_target (target);
4402 generic_mourn_inferior ();
4403 }
4404
4405 /* In the extended protocol we want to be able to do things like
4406 "run" and have them basically work as expected. So we need
4407 a special create_inferior function.
4408
4409 FIXME: One day add support for changing the exec file
4410 we're debugging, arguments and an environment. */
4411
4412 static void
4413 extended_remote_create_inferior (char *exec_file, char *args,
4414 char **env, int from_tty)
4415 {
4416 /* Rip out the breakpoints; we'll reinsert them after restarting
4417 the remote server. */
4418 remove_breakpoints ();
4419
4420 /* Now restart the remote server. */
4421 extended_remote_restart ();
4422
4423 /* Now put the breakpoints back in. This way we're safe if the
4424 restart function works via a unix fork on the remote side. */
4425 insert_breakpoints ();
4426
4427 /* Clean up from the last time we were running. */
4428 clear_proceed_status ();
4429
4430 /* Let the remote process run. */
4431 proceed (-1, TARGET_SIGNAL_0, 0);
4432 }
4433
4434 /* Async version of extended_remote_create_inferior. */
4435 static void
4436 extended_remote_async_create_inferior (char *exec_file, char *args,
4437 char **env, int from_tty)
4438 {
4439 /* Rip out the breakpoints; we'll reinsert them after restarting
4440 the remote server. */
4441 remove_breakpoints ();
4442
4443 /* If running asynchronously, register the target file descriptor
4444 with the event loop. */
4445 if (target_can_async_p ())
4446 target_async (inferior_event_handler, 0);
4447
4448 /* Now restart the remote server. */
4449 extended_remote_restart ();
4450
4451 /* Now put the breakpoints back in. This way we're safe if the
4452 restart function works via a unix fork on the remote side. */
4453 insert_breakpoints ();
4454
4455 /* Clean up from the last time we were running. */
4456 clear_proceed_status ();
4457
4458 /* Let the remote process run. */
4459 proceed (-1, TARGET_SIGNAL_0, 0);
4460 }
4461 \f
4462
4463 /* On some machines, e.g. 68k, we may use a different breakpoint
4464 instruction than other targets; in those use
4465 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4466 Also, bi-endian targets may define
4467 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4468 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4469 just call the standard routines that are in mem-break.c. */
4470
4471 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4472 target should use an identical BREAKPOINT_FROM_PC. As for native,
4473 the ARCH-OS-tdep.c code can override the default. */
4474
4475 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4476 #define DEPRECATED_REMOTE_BREAKPOINT
4477 #endif
4478
4479 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4480
4481 /* If the target isn't bi-endian, just pretend it is. */
4482 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4483 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4484 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4485 #endif
4486
4487 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4488 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4489
4490 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4491
4492 /* Insert a breakpoint on targets that don't have any better
4493 breakpoint support. We read the contents of the target location
4494 and stash it, then overwrite it with a breakpoint instruction.
4495 ADDR is the target location in the target machine. CONTENTS_CACHE
4496 is a pointer to memory allocated for saving the target contents.
4497 It is guaranteed by the caller to be long enough to save the number
4498 of bytes returned by BREAKPOINT_FROM_PC. */
4499
4500 static int
4501 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4502 {
4503 struct remote_state *rs = get_remote_state ();
4504 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4505 int val;
4506 #endif
4507 int bp_size;
4508
4509 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4510 If it succeeds, then set the support to PACKET_ENABLE. If it
4511 fails, and the user has explicitly requested the Z support then
4512 report an error, otherwise, mark it disabled and go on. */
4513
4514 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4515 {
4516 char *buf = alloca (rs->remote_packet_size);
4517 char *p = buf;
4518
4519 addr = remote_address_masked (addr);
4520 *(p++) = 'Z';
4521 *(p++) = '0';
4522 *(p++) = ',';
4523 p += hexnumstr (p, (ULONGEST) addr);
4524 BREAKPOINT_FROM_PC (&addr, &bp_size);
4525 sprintf (p, ",%d", bp_size);
4526
4527 putpkt (buf);
4528 getpkt (buf, (rs->remote_packet_size), 0);
4529
4530 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4531 {
4532 case PACKET_ERROR:
4533 return -1;
4534 case PACKET_OK:
4535 return 0;
4536 case PACKET_UNKNOWN:
4537 break;
4538 }
4539 }
4540
4541 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4542 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4543
4544 if (val == 0)
4545 {
4546 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4547 val = target_write_memory (addr, (char *) big_break_insn,
4548 sizeof big_break_insn);
4549 else
4550 val = target_write_memory (addr, (char *) little_break_insn,
4551 sizeof little_break_insn);
4552 }
4553
4554 return val;
4555 #else
4556 return memory_insert_breakpoint (addr, contents_cache);
4557 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4558 }
4559
4560 static int
4561 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4562 {
4563 struct remote_state *rs = get_remote_state ();
4564 int bp_size;
4565
4566 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4567 {
4568 char *buf = alloca (rs->remote_packet_size);
4569 char *p = buf;
4570
4571 *(p++) = 'z';
4572 *(p++) = '0';
4573 *(p++) = ',';
4574
4575 addr = remote_address_masked (addr);
4576 p += hexnumstr (p, (ULONGEST) addr);
4577 BREAKPOINT_FROM_PC (&addr, &bp_size);
4578 sprintf (p, ",%d", bp_size);
4579
4580 putpkt (buf);
4581 getpkt (buf, (rs->remote_packet_size), 0);
4582
4583 return (buf[0] == 'E');
4584 }
4585
4586 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4587 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4588 #else
4589 return memory_remove_breakpoint (addr, contents_cache);
4590 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4591 }
4592
4593 static int
4594 watchpoint_to_Z_packet (int type)
4595 {
4596 switch (type)
4597 {
4598 case hw_write:
4599 return 2;
4600 break;
4601 case hw_read:
4602 return 3;
4603 break;
4604 case hw_access:
4605 return 4;
4606 break;
4607 default:
4608 internal_error (__FILE__, __LINE__,
4609 _("hw_bp_to_z: bad watchpoint type %d"), type);
4610 }
4611 }
4612
4613 static int
4614 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4615 {
4616 struct remote_state *rs = get_remote_state ();
4617 char *buf = alloca (rs->remote_packet_size);
4618 char *p;
4619 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4620
4621 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4622 error (_("Can't set hardware watchpoints without the '%s' (%s) packet."),
4623 remote_protocol_Z[packet].name,
4624 remote_protocol_Z[packet].title);
4625
4626 sprintf (buf, "Z%x,", packet);
4627 p = strchr (buf, '\0');
4628 addr = remote_address_masked (addr);
4629 p += hexnumstr (p, (ULONGEST) addr);
4630 sprintf (p, ",%x", len);
4631
4632 putpkt (buf);
4633 getpkt (buf, (rs->remote_packet_size), 0);
4634
4635 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4636 {
4637 case PACKET_ERROR:
4638 case PACKET_UNKNOWN:
4639 return -1;
4640 case PACKET_OK:
4641 return 0;
4642 }
4643 internal_error (__FILE__, __LINE__,
4644 _("remote_insert_watchpoint: reached end of function"));
4645 }
4646
4647
4648 static int
4649 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4650 {
4651 struct remote_state *rs = get_remote_state ();
4652 char *buf = alloca (rs->remote_packet_size);
4653 char *p;
4654 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4655
4656 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4657 error (_("Can't clear hardware watchpoints without the '%s' (%s) packet."),
4658 remote_protocol_Z[packet].name,
4659 remote_protocol_Z[packet].title);
4660
4661 sprintf (buf, "z%x,", packet);
4662 p = strchr (buf, '\0');
4663 addr = remote_address_masked (addr);
4664 p += hexnumstr (p, (ULONGEST) addr);
4665 sprintf (p, ",%x", len);
4666 putpkt (buf);
4667 getpkt (buf, (rs->remote_packet_size), 0);
4668
4669 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4670 {
4671 case PACKET_ERROR:
4672 case PACKET_UNKNOWN:
4673 return -1;
4674 case PACKET_OK:
4675 return 0;
4676 }
4677 internal_error (__FILE__, __LINE__,
4678 _("remote_remove_watchpoint: reached end of function"));
4679 }
4680
4681
4682 int remote_hw_watchpoint_limit = -1;
4683 int remote_hw_breakpoint_limit = -1;
4684
4685 static int
4686 remote_check_watch_resources (int type, int cnt, int ot)
4687 {
4688 if (type == bp_hardware_breakpoint)
4689 {
4690 if (remote_hw_breakpoint_limit == 0)
4691 return 0;
4692 else if (remote_hw_breakpoint_limit < 0)
4693 return 1;
4694 else if (cnt <= remote_hw_breakpoint_limit)
4695 return 1;
4696 }
4697 else
4698 {
4699 if (remote_hw_watchpoint_limit == 0)
4700 return 0;
4701 else if (remote_hw_watchpoint_limit < 0)
4702 return 1;
4703 else if (ot)
4704 return -1;
4705 else if (cnt <= remote_hw_watchpoint_limit)
4706 return 1;
4707 }
4708 return -1;
4709 }
4710
4711 static int
4712 remote_stopped_by_watchpoint (void)
4713 {
4714 return remote_stopped_by_watchpoint_p;
4715 }
4716
4717 extern int stepped_after_stopped_by_watchpoint;
4718
4719 static int
4720 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
4721 {
4722 int rc = 0;
4723 if (remote_stopped_by_watchpoint ()
4724 || stepped_after_stopped_by_watchpoint)
4725 {
4726 *addr_p = remote_watch_data_address;
4727 rc = 1;
4728 }
4729
4730 return rc;
4731 }
4732
4733
4734 static int
4735 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4736 {
4737 int len = 0;
4738 struct remote_state *rs = get_remote_state ();
4739 char *buf = alloca (rs->remote_packet_size);
4740 char *p = buf;
4741
4742 /* The length field should be set to the size of a breakpoint
4743 instruction. */
4744
4745 BREAKPOINT_FROM_PC (&addr, &len);
4746
4747 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4748 error (_("Can't set hardware breakpoint without the '%s' (%s) packet."),
4749 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4750 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4751
4752 *(p++) = 'Z';
4753 *(p++) = '1';
4754 *(p++) = ',';
4755
4756 addr = remote_address_masked (addr);
4757 p += hexnumstr (p, (ULONGEST) addr);
4758 sprintf (p, ",%x", len);
4759
4760 putpkt (buf);
4761 getpkt (buf, (rs->remote_packet_size), 0);
4762
4763 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4764 {
4765 case PACKET_ERROR:
4766 case PACKET_UNKNOWN:
4767 return -1;
4768 case PACKET_OK:
4769 return 0;
4770 }
4771 internal_error (__FILE__, __LINE__,
4772 _("remote_insert_hw_breakpoint: reached end of function"));
4773 }
4774
4775
4776 static int
4777 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4778 {
4779 int len;
4780 struct remote_state *rs = get_remote_state ();
4781 char *buf = alloca (rs->remote_packet_size);
4782 char *p = buf;
4783
4784 /* The length field should be set to the size of a breakpoint
4785 instruction. */
4786
4787 BREAKPOINT_FROM_PC (&addr, &len);
4788
4789 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4790 error (_("Can't clear hardware breakpoint without the '%s' (%s) packet."),
4791 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4792 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4793
4794 *(p++) = 'z';
4795 *(p++) = '1';
4796 *(p++) = ',';
4797
4798 addr = remote_address_masked (addr);
4799 p += hexnumstr (p, (ULONGEST) addr);
4800 sprintf (p, ",%x", len);
4801
4802 putpkt(buf);
4803 getpkt (buf, (rs->remote_packet_size), 0);
4804
4805 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4806 {
4807 case PACKET_ERROR:
4808 case PACKET_UNKNOWN:
4809 return -1;
4810 case PACKET_OK:
4811 return 0;
4812 }
4813 internal_error (__FILE__, __LINE__,
4814 _("remote_remove_hw_breakpoint: reached end of function"));
4815 }
4816
4817 /* Some targets are only capable of doing downloads, and afterwards
4818 they switch to the remote serial protocol. This function provides
4819 a clean way to get from the download target to the remote target.
4820 It's basically just a wrapper so that we don't have to expose any
4821 of the internal workings of remote.c.
4822
4823 Prior to calling this routine, you should shutdown the current
4824 target code, else you will get the "A program is being debugged
4825 already..." message. Usually a call to pop_target() suffices. */
4826
4827 void
4828 push_remote_target (char *name, int from_tty)
4829 {
4830 printf_filtered (_("Switching to remote protocol\n"));
4831 remote_open (name, from_tty);
4832 }
4833
4834 /* Table used by the crc32 function to calcuate the checksum. */
4835
4836 static unsigned long crc32_table[256] =
4837 {0, 0};
4838
4839 static unsigned long
4840 crc32 (unsigned char *buf, int len, unsigned int crc)
4841 {
4842 if (!crc32_table[1])
4843 {
4844 /* Initialize the CRC table and the decoding table. */
4845 int i, j;
4846 unsigned int c;
4847
4848 for (i = 0; i < 256; i++)
4849 {
4850 for (c = i << 24, j = 8; j > 0; --j)
4851 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4852 crc32_table[i] = c;
4853 }
4854 }
4855
4856 while (len--)
4857 {
4858 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4859 buf++;
4860 }
4861 return crc;
4862 }
4863
4864 /* compare-sections command
4865
4866 With no arguments, compares each loadable section in the exec bfd
4867 with the same memory range on the target, and reports mismatches.
4868 Useful for verifying the image on the target against the exec file.
4869 Depends on the target understanding the new "qCRC:" request. */
4870
4871 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4872 target method (target verify memory) and generic version of the
4873 actual command. This will allow other high-level code (especially
4874 generic_load()) to make use of this target functionality. */
4875
4876 static void
4877 compare_sections_command (char *args, int from_tty)
4878 {
4879 struct remote_state *rs = get_remote_state ();
4880 asection *s;
4881 unsigned long host_crc, target_crc;
4882 extern bfd *exec_bfd;
4883 struct cleanup *old_chain;
4884 char *tmp;
4885 char *sectdata;
4886 const char *sectname;
4887 char *buf = alloca (rs->remote_packet_size);
4888 bfd_size_type size;
4889 bfd_vma lma;
4890 int matched = 0;
4891 int mismatched = 0;
4892
4893 if (!exec_bfd)
4894 error (_("command cannot be used without an exec file"));
4895 if (!current_target.to_shortname ||
4896 strcmp (current_target.to_shortname, "remote") != 0)
4897 error (_("command can only be used with remote target"));
4898
4899 for (s = exec_bfd->sections; s; s = s->next)
4900 {
4901 if (!(s->flags & SEC_LOAD))
4902 continue; /* skip non-loadable section */
4903
4904 size = bfd_get_section_size (s);
4905 if (size == 0)
4906 continue; /* skip zero-length section */
4907
4908 sectname = bfd_get_section_name (exec_bfd, s);
4909 if (args && strcmp (args, sectname) != 0)
4910 continue; /* not the section selected by user */
4911
4912 matched = 1; /* do this section */
4913 lma = s->lma;
4914 /* FIXME: assumes lma can fit into long. */
4915 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4916 putpkt (buf);
4917
4918 /* Be clever; compute the host_crc before waiting for target
4919 reply. */
4920 sectdata = xmalloc (size);
4921 old_chain = make_cleanup (xfree, sectdata);
4922 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4923 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4924
4925 getpkt (buf, (rs->remote_packet_size), 0);
4926 if (buf[0] == 'E')
4927 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
4928 sectname, paddr (lma), paddr (lma + size));
4929 if (buf[0] != 'C')
4930 error (_("remote target does not support this operation"));
4931
4932 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4933 target_crc = target_crc * 16 + fromhex (*tmp);
4934
4935 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4936 sectname, paddr (lma), paddr (lma + size));
4937 if (host_crc == target_crc)
4938 printf_filtered ("matched.\n");
4939 else
4940 {
4941 printf_filtered ("MIS-MATCHED!\n");
4942 mismatched++;
4943 }
4944
4945 do_cleanups (old_chain);
4946 }
4947 if (mismatched > 0)
4948 warning (_("One or more sections of the remote executable does not match\n\
4949 the loaded file\n"));
4950 if (args && !matched)
4951 printf_filtered (_("No loaded section named '%s'.\n"), args);
4952 }
4953
4954 static LONGEST
4955 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4956 const char *annex, void *readbuf, const void *writebuf,
4957 ULONGEST offset, LONGEST len)
4958 {
4959 struct remote_state *rs = get_remote_state ();
4960 int i;
4961 char *buf2 = alloca (rs->remote_packet_size);
4962 char *p2 = &buf2[0];
4963 char query_type;
4964
4965 /* Handle memory using remote_xfer_memory. */
4966 if (object == TARGET_OBJECT_MEMORY)
4967 {
4968 int xfered;
4969 errno = 0;
4970
4971 if (writebuf != NULL)
4972 {
4973 void *buffer = xmalloc (len);
4974 struct cleanup *cleanup = make_cleanup (xfree, buffer);
4975 memcpy (buffer, writebuf, len);
4976 xfered = remote_xfer_memory (offset, buffer, len, 1, NULL, ops);
4977 do_cleanups (cleanup);
4978 }
4979 else
4980 xfered = remote_xfer_memory (offset, readbuf, len, 0, NULL, ops);
4981
4982 if (xfered > 0)
4983 return xfered;
4984 else if (xfered == 0 && errno == 0)
4985 return 0;
4986 else
4987 return -1;
4988 }
4989
4990 /* Only handle reads. */
4991 if (writebuf != NULL || readbuf == NULL)
4992 return -1;
4993
4994 /* Map pre-existing objects onto letters. DO NOT do this for new
4995 objects!!! Instead specify new query packets. */
4996 switch (object)
4997 {
4998 case TARGET_OBJECT_KOD:
4999 query_type = 'K';
5000 break;
5001 case TARGET_OBJECT_AVR:
5002 query_type = 'R';
5003 break;
5004
5005 case TARGET_OBJECT_AUXV:
5006 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE)
5007 {
5008 unsigned int total = 0;
5009 while (len > 0)
5010 {
5011 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len);
5012 snprintf (buf2, rs->remote_packet_size,
5013 "qPart:auxv:read::%s,%s",
5014 phex_nz (offset, sizeof offset),
5015 phex_nz (n, sizeof n));
5016 i = putpkt (buf2);
5017 if (i < 0)
5018 return total > 0 ? total : i;
5019 buf2[0] = '\0';
5020 getpkt (buf2, rs->remote_packet_size, 0);
5021 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK)
5022 return total > 0 ? total : -1;
5023 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0')
5024 break; /* Got EOF indicator. */
5025 /* Got some data. */
5026 i = hex2bin (buf2, readbuf, len);
5027 if (i > 0)
5028 {
5029 readbuf = (void *) ((char *) readbuf + i);
5030 offset += i;
5031 len -= i;
5032 total += i;
5033 }
5034 }
5035 return total;
5036 }
5037 return -1;
5038
5039 default:
5040 return -1;
5041 }
5042
5043 /* Note: a zero OFFSET and LEN can be used to query the minimum
5044 buffer size. */
5045 if (offset == 0 && len == 0)
5046 return (rs->remote_packet_size);
5047 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
5048 not large enough let the caller. */
5049 if (len < (rs->remote_packet_size))
5050 return -1;
5051 len = rs->remote_packet_size;
5052
5053 /* Except for querying the minimum buffer size, target must be open. */
5054 if (!remote_desc)
5055 error (_("remote query is only available after target open"));
5056
5057 gdb_assert (annex != NULL);
5058 gdb_assert (readbuf != NULL);
5059
5060 *p2++ = 'q';
5061 *p2++ = query_type;
5062
5063 /* We used one buffer char for the remote protocol q command and
5064 another for the query type. As the remote protocol encapsulation
5065 uses 4 chars plus one extra in case we are debugging
5066 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5067 string. */
5068 i = 0;
5069 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
5070 {
5071 /* Bad caller may have sent forbidden characters. */
5072 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5073 *p2++ = annex[i];
5074 i++;
5075 }
5076 *p2 = '\0';
5077 gdb_assert (annex[i] == '\0');
5078
5079 i = putpkt (buf2);
5080 if (i < 0)
5081 return i;
5082
5083 getpkt (readbuf, len, 0);
5084
5085 return strlen (readbuf);
5086 }
5087
5088 static void
5089 remote_rcmd (char *command,
5090 struct ui_file *outbuf)
5091 {
5092 struct remote_state *rs = get_remote_state ();
5093 char *buf = alloca (rs->remote_packet_size);
5094 char *p = buf;
5095
5096 if (!remote_desc)
5097 error (_("remote rcmd is only available after target open"));
5098
5099 /* Send a NULL command across as an empty command. */
5100 if (command == NULL)
5101 command = "";
5102
5103 /* The query prefix. */
5104 strcpy (buf, "qRcmd,");
5105 p = strchr (buf, '\0');
5106
5107 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5108 error (_("\"monitor\" command ``%s'' is too long."), command);
5109
5110 /* Encode the actual command. */
5111 bin2hex (command, p, 0);
5112
5113 if (putpkt (buf) < 0)
5114 error (_("Communication problem with target."));
5115
5116 /* get/display the response */
5117 while (1)
5118 {
5119 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5120 buf[0] = '\0';
5121 getpkt (buf, (rs->remote_packet_size), 0);
5122 if (buf[0] == '\0')
5123 error (_("Target does not support this command."));
5124 if (buf[0] == 'O' && buf[1] != 'K')
5125 {
5126 remote_console_output (buf + 1); /* 'O' message from stub. */
5127 continue;
5128 }
5129 if (strcmp (buf, "OK") == 0)
5130 break;
5131 if (strlen (buf) == 3 && buf[0] == 'E'
5132 && isdigit (buf[1]) && isdigit (buf[2]))
5133 {
5134 error (_("Protocol error with Rcmd"));
5135 }
5136 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5137 {
5138 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5139 fputc_unfiltered (c, outbuf);
5140 }
5141 break;
5142 }
5143 }
5144
5145 static void
5146 packet_command (char *args, int from_tty)
5147 {
5148 struct remote_state *rs = get_remote_state ();
5149 char *buf = alloca (rs->remote_packet_size);
5150
5151 if (!remote_desc)
5152 error (_("command can only be used with remote target"));
5153
5154 if (!args)
5155 error (_("remote-packet command requires packet text as argument"));
5156
5157 puts_filtered ("sending: ");
5158 print_packet (args);
5159 puts_filtered ("\n");
5160 putpkt (args);
5161
5162 getpkt (buf, (rs->remote_packet_size), 0);
5163 puts_filtered ("received: ");
5164 print_packet (buf);
5165 puts_filtered ("\n");
5166 }
5167
5168 #if 0
5169 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5170
5171 static void display_thread_info (struct gdb_ext_thread_info *info);
5172
5173 static void threadset_test_cmd (char *cmd, int tty);
5174
5175 static void threadalive_test (char *cmd, int tty);
5176
5177 static void threadlist_test_cmd (char *cmd, int tty);
5178
5179 int get_and_display_threadinfo (threadref *ref);
5180
5181 static void threadinfo_test_cmd (char *cmd, int tty);
5182
5183 static int thread_display_step (threadref *ref, void *context);
5184
5185 static void threadlist_update_test_cmd (char *cmd, int tty);
5186
5187 static void init_remote_threadtests (void);
5188
5189 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5190
5191 static void
5192 threadset_test_cmd (char *cmd, int tty)
5193 {
5194 int sample_thread = SAMPLE_THREAD;
5195
5196 printf_filtered (_("Remote threadset test\n"));
5197 set_thread (sample_thread, 1);
5198 }
5199
5200
5201 static void
5202 threadalive_test (char *cmd, int tty)
5203 {
5204 int sample_thread = SAMPLE_THREAD;
5205
5206 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5207 printf_filtered ("PASS: Thread alive test\n");
5208 else
5209 printf_filtered ("FAIL: Thread alive test\n");
5210 }
5211
5212 void output_threadid (char *title, threadref *ref);
5213
5214 void
5215 output_threadid (char *title, threadref *ref)
5216 {
5217 char hexid[20];
5218
5219 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5220 hexid[16] = 0;
5221 printf_filtered ("%s %s\n", title, (&hexid[0]));
5222 }
5223
5224 static void
5225 threadlist_test_cmd (char *cmd, int tty)
5226 {
5227 int startflag = 1;
5228 threadref nextthread;
5229 int done, result_count;
5230 threadref threadlist[3];
5231
5232 printf_filtered ("Remote Threadlist test\n");
5233 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5234 &result_count, &threadlist[0]))
5235 printf_filtered ("FAIL: threadlist test\n");
5236 else
5237 {
5238 threadref *scan = threadlist;
5239 threadref *limit = scan + result_count;
5240
5241 while (scan < limit)
5242 output_threadid (" thread ", scan++);
5243 }
5244 }
5245
5246 void
5247 display_thread_info (struct gdb_ext_thread_info *info)
5248 {
5249 output_threadid ("Threadid: ", &info->threadid);
5250 printf_filtered ("Name: %s\n ", info->shortname);
5251 printf_filtered ("State: %s\n", info->display);
5252 printf_filtered ("other: %s\n\n", info->more_display);
5253 }
5254
5255 int
5256 get_and_display_threadinfo (threadref *ref)
5257 {
5258 int result;
5259 int set;
5260 struct gdb_ext_thread_info threadinfo;
5261
5262 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5263 | TAG_MOREDISPLAY | TAG_DISPLAY;
5264 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5265 display_thread_info (&threadinfo);
5266 return result;
5267 }
5268
5269 static void
5270 threadinfo_test_cmd (char *cmd, int tty)
5271 {
5272 int athread = SAMPLE_THREAD;
5273 threadref thread;
5274 int set;
5275
5276 int_to_threadref (&thread, athread);
5277 printf_filtered ("Remote Threadinfo test\n");
5278 if (!get_and_display_threadinfo (&thread))
5279 printf_filtered ("FAIL cannot get thread info\n");
5280 }
5281
5282 static int
5283 thread_display_step (threadref *ref, void *context)
5284 {
5285 /* output_threadid(" threadstep ",ref); *//* simple test */
5286 return get_and_display_threadinfo (ref);
5287 }
5288
5289 static void
5290 threadlist_update_test_cmd (char *cmd, int tty)
5291 {
5292 printf_filtered ("Remote Threadlist update test\n");
5293 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5294 }
5295
5296 static void
5297 init_remote_threadtests (void)
5298 {
5299 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5300 Fetch and print the remote list of thread identifiers, one pkt only"));
5301 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5302 _("Fetch and display info about one thread"));
5303 add_com ("tset", class_obscure, threadset_test_cmd,
5304 _("Test setting to a different thread"));
5305 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5306 _("Iterate through updating all remote thread info"));
5307 add_com ("talive", class_obscure, threadalive_test,
5308 _(" Remote thread alive test "));
5309 }
5310
5311 #endif /* 0 */
5312
5313 /* Convert a thread ID to a string. Returns the string in a static
5314 buffer. */
5315
5316 static char *
5317 remote_pid_to_str (ptid_t ptid)
5318 {
5319 static char buf[32];
5320 int size;
5321
5322 size = snprintf (buf, sizeof buf, "thread %d", ptid_get_pid (ptid));
5323 gdb_assert (size < sizeof buf);
5324 return buf;
5325 }
5326
5327 /* Get the address of the thread local variable in OBJFILE which is
5328 stored at OFFSET within the thread local storage for thread PTID. */
5329
5330 static CORE_ADDR
5331 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5332 {
5333 if (remote_protocol_qGetTLSAddr.support != PACKET_DISABLE)
5334 {
5335 struct remote_state *rs = get_remote_state ();
5336 char *buf = alloca (rs->remote_packet_size);
5337 char *p = buf;
5338 enum packet_result result;
5339
5340 strcpy (p, "qGetTLSAddr:");
5341 p += strlen (p);
5342 p += hexnumstr (p, PIDGET (ptid));
5343 *p++ = ',';
5344 p += hexnumstr (p, offset);
5345 *p++ = ',';
5346 p += hexnumstr (p, lm);
5347 *p++ = '\0';
5348
5349 putpkt (buf);
5350 getpkt (buf, rs->remote_packet_size, 0);
5351 result = packet_ok (buf, &remote_protocol_qGetTLSAddr);
5352 if (result == PACKET_OK)
5353 {
5354 ULONGEST result;
5355
5356 unpack_varlen_hex (buf, &result);
5357 return result;
5358 }
5359 else if (result == PACKET_UNKNOWN)
5360 {
5361 struct exception e
5362 = { RETURN_ERROR, TLS_GENERIC_ERROR,
5363 "Remote target doesn't support qGetTLSAddr packet" };
5364 throw_exception (e);
5365 }
5366 else
5367 {
5368 struct exception e
5369 = { RETURN_ERROR, TLS_GENERIC_ERROR,
5370 "Remote target failed to process qGetTLSAddr request" };
5371 throw_exception (e);
5372
5373 }
5374 }
5375 else
5376 {
5377 struct exception e
5378 = { RETURN_ERROR, TLS_GENERIC_ERROR,
5379 "TLS not supported or disabled on this target" };
5380 throw_exception (e);
5381 }
5382 /* Not reached. */
5383 return 0;
5384 }
5385
5386 static void
5387 init_remote_ops (void)
5388 {
5389 remote_ops.to_shortname = "remote";
5390 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5391 remote_ops.to_doc =
5392 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5393 Specify the serial device it is connected to\n\
5394 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5395 remote_ops.to_open = remote_open;
5396 remote_ops.to_close = remote_close;
5397 remote_ops.to_detach = remote_detach;
5398 remote_ops.to_disconnect = remote_disconnect;
5399 remote_ops.to_resume = remote_resume;
5400 remote_ops.to_wait = remote_wait;
5401 remote_ops.to_fetch_registers = remote_fetch_registers;
5402 remote_ops.to_store_registers = remote_store_registers;
5403 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5404 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
5405 remote_ops.to_files_info = remote_files_info;
5406 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5407 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5408 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5409 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5410 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5411 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5412 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5413 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5414 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5415 remote_ops.to_kill = remote_kill;
5416 remote_ops.to_load = generic_load;
5417 remote_ops.to_mourn_inferior = remote_mourn;
5418 remote_ops.to_thread_alive = remote_thread_alive;
5419 remote_ops.to_find_new_threads = remote_threads_info;
5420 remote_ops.to_pid_to_str = remote_pid_to_str;
5421 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5422 remote_ops.to_stop = remote_stop;
5423 remote_ops.to_xfer_partial = remote_xfer_partial;
5424 remote_ops.to_rcmd = remote_rcmd;
5425 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
5426 remote_ops.to_stratum = process_stratum;
5427 remote_ops.to_has_all_memory = 1;
5428 remote_ops.to_has_memory = 1;
5429 remote_ops.to_has_stack = 1;
5430 remote_ops.to_has_registers = 1;
5431 remote_ops.to_has_execution = 1;
5432 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5433 remote_ops.to_magic = OPS_MAGIC;
5434 }
5435
5436 /* Set up the extended remote vector by making a copy of the standard
5437 remote vector and adding to it. */
5438
5439 static void
5440 init_extended_remote_ops (void)
5441 {
5442 extended_remote_ops = remote_ops;
5443
5444 extended_remote_ops.to_shortname = "extended-remote";
5445 extended_remote_ops.to_longname =
5446 "Extended remote serial target in gdb-specific protocol";
5447 extended_remote_ops.to_doc =
5448 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5449 Specify the serial device it is connected to (e.g. /dev/ttya).",
5450 extended_remote_ops.to_open = extended_remote_open;
5451 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5452 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5453 }
5454
5455 static int
5456 remote_can_async_p (void)
5457 {
5458 /* We're async whenever the serial device is. */
5459 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5460 }
5461
5462 static int
5463 remote_is_async_p (void)
5464 {
5465 /* We're async whenever the serial device is. */
5466 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5467 }
5468
5469 /* Pass the SERIAL event on and up to the client. One day this code
5470 will be able to delay notifying the client of an event until the
5471 point where an entire packet has been received. */
5472
5473 static void (*async_client_callback) (enum inferior_event_type event_type,
5474 void *context);
5475 static void *async_client_context;
5476 static serial_event_ftype remote_async_serial_handler;
5477
5478 static void
5479 remote_async_serial_handler (struct serial *scb, void *context)
5480 {
5481 /* Don't propogate error information up to the client. Instead let
5482 the client find out about the error by querying the target. */
5483 async_client_callback (INF_REG_EVENT, async_client_context);
5484 }
5485
5486 static void
5487 remote_async (void (*callback) (enum inferior_event_type event_type,
5488 void *context), void *context)
5489 {
5490 if (current_target.to_async_mask_value == 0)
5491 internal_error (__FILE__, __LINE__,
5492 _("Calling remote_async when async is masked"));
5493
5494 if (callback != NULL)
5495 {
5496 serial_async (remote_desc, remote_async_serial_handler, NULL);
5497 async_client_callback = callback;
5498 async_client_context = context;
5499 }
5500 else
5501 serial_async (remote_desc, NULL, NULL);
5502 }
5503
5504 /* Target async and target extended-async.
5505
5506 This are temporary targets, until it is all tested. Eventually
5507 async support will be incorporated int the usual 'remote'
5508 target. */
5509
5510 static void
5511 init_remote_async_ops (void)
5512 {
5513 remote_async_ops.to_shortname = "async";
5514 remote_async_ops.to_longname =
5515 "Remote serial target in async version of the gdb-specific protocol";
5516 remote_async_ops.to_doc =
5517 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5518 Specify the serial device it is connected to (e.g. /dev/ttya).";
5519 remote_async_ops.to_open = remote_async_open;
5520 remote_async_ops.to_close = remote_close;
5521 remote_async_ops.to_detach = remote_detach;
5522 remote_async_ops.to_disconnect = remote_disconnect;
5523 remote_async_ops.to_resume = remote_async_resume;
5524 remote_async_ops.to_wait = remote_async_wait;
5525 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5526 remote_async_ops.to_store_registers = remote_store_registers;
5527 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5528 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
5529 remote_async_ops.to_files_info = remote_files_info;
5530 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5531 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5532 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5533 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5534 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5535 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5536 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5537 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5538 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5539 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5540 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5541 remote_async_ops.to_kill = remote_async_kill;
5542 remote_async_ops.to_load = generic_load;
5543 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5544 remote_async_ops.to_thread_alive = remote_thread_alive;
5545 remote_async_ops.to_find_new_threads = remote_threads_info;
5546 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5547 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5548 remote_async_ops.to_stop = remote_stop;
5549 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5550 remote_async_ops.to_rcmd = remote_rcmd;
5551 remote_async_ops.to_stratum = process_stratum;
5552 remote_async_ops.to_has_all_memory = 1;
5553 remote_async_ops.to_has_memory = 1;
5554 remote_async_ops.to_has_stack = 1;
5555 remote_async_ops.to_has_registers = 1;
5556 remote_async_ops.to_has_execution = 1;
5557 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5558 remote_async_ops.to_can_async_p = remote_can_async_p;
5559 remote_async_ops.to_is_async_p = remote_is_async_p;
5560 remote_async_ops.to_async = remote_async;
5561 remote_async_ops.to_async_mask_value = 1;
5562 remote_async_ops.to_magic = OPS_MAGIC;
5563 }
5564
5565 /* Set up the async extended remote vector by making a copy of the standard
5566 remote vector and adding to it. */
5567
5568 static void
5569 init_extended_async_remote_ops (void)
5570 {
5571 extended_async_remote_ops = remote_async_ops;
5572
5573 extended_async_remote_ops.to_shortname = "extended-async";
5574 extended_async_remote_ops.to_longname =
5575 "Extended remote serial target in async gdb-specific protocol";
5576 extended_async_remote_ops.to_doc =
5577 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5578 Specify the serial device it is connected to (e.g. /dev/ttya).",
5579 extended_async_remote_ops.to_open = extended_remote_async_open;
5580 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5581 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5582 }
5583
5584 static void
5585 set_remote_cmd (char *args, int from_tty)
5586 {
5587 }
5588
5589 static void
5590 show_remote_cmd (char *args, int from_tty)
5591 {
5592 /* FIXME: cagney/2002-06-15: This function should iterate over
5593 remote_show_cmdlist for a list of sub commands to show. */
5594 show_remote_protocol_Z_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5595 show_remote_protocol_P_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5596 show_remote_protocol_p_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5597 show_remote_protocol_qSymbol_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5598 show_remote_protocol_vcont_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5599 show_remote_protocol_binary_download_cmd (gdb_stdout, from_tty, NULL, NULL);
5600 show_remote_protocol_qPart_auxv_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5601 show_remote_protocol_qGetTLSAddr_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5602 }
5603
5604 static void
5605 build_remote_gdbarch_data (void)
5606 {
5607 remote_address_size = TARGET_ADDR_BIT;
5608 }
5609
5610 /* Saved pointer to previous owner of the new_objfile event. */
5611 static void (*remote_new_objfile_chain) (struct objfile *);
5612
5613 /* Function to be called whenever a new objfile (shlib) is detected. */
5614 static void
5615 remote_new_objfile (struct objfile *objfile)
5616 {
5617 if (remote_desc != 0) /* Have a remote connection. */
5618 {
5619 remote_check_symbols (objfile);
5620 }
5621 /* Call predecessor on chain, if any. */
5622 if (remote_new_objfile_chain != 0 &&
5623 remote_desc == 0)
5624 remote_new_objfile_chain (objfile);
5625 }
5626
5627 void
5628 _initialize_remote (void)
5629 {
5630 static struct cmd_list_element *remote_set_cmdlist;
5631 static struct cmd_list_element *remote_show_cmdlist;
5632
5633 /* architecture specific data */
5634 remote_gdbarch_data_handle =
5635 gdbarch_data_register_post_init (init_remote_state);
5636
5637 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5638 that the remote protocol has been initialized. */
5639 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5640 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5641
5642 init_remote_ops ();
5643 add_target (&remote_ops);
5644
5645 init_extended_remote_ops ();
5646 add_target (&extended_remote_ops);
5647
5648 init_remote_async_ops ();
5649 add_target (&remote_async_ops);
5650
5651 init_extended_async_remote_ops ();
5652 add_target (&extended_async_remote_ops);
5653
5654 /* Hook into new objfile notification. */
5655 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5656 deprecated_target_new_objfile_hook = remote_new_objfile;
5657
5658 #if 0
5659 init_remote_threadtests ();
5660 #endif
5661
5662 /* set/show remote ... */
5663
5664 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
5665 Remote protocol specific variables\n\
5666 Configure various remote-protocol specific variables such as\n\
5667 the packets being used"),
5668 &remote_set_cmdlist, "set remote ",
5669 0 /* allow-unknown */, &setlist);
5670 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
5671 Remote protocol specific variables\n\
5672 Configure various remote-protocol specific variables such as\n\
5673 the packets being used"),
5674 &remote_show_cmdlist, "show remote ",
5675 0 /* allow-unknown */, &showlist);
5676
5677 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
5678 Compare section data on target to the exec file.\n\
5679 Argument is a single section name (default: all loaded sections)."),
5680 &cmdlist);
5681
5682 add_cmd ("packet", class_maintenance, packet_command, _("\
5683 Send an arbitrary packet to a remote target.\n\
5684 maintenance packet TEXT\n\
5685 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5686 this command sends the string TEXT to the inferior, and displays the\n\
5687 response packet. GDB supplies the initial `$' character, and the\n\
5688 terminating `#' character and checksum."),
5689 &maintenancelist);
5690
5691 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
5692 Set whether to send break if interrupted."), _("\
5693 Show whether to send break if interrupted."), _("\
5694 If set, a break, instead of a cntrl-c, is sent to the remote target."),
5695 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
5696 &setlist, &showlist);
5697
5698 /* Install commands for configuring memory read/write packets. */
5699
5700 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
5701 Set the maximum number of bytes per memory write packet (deprecated)."),
5702 &setlist);
5703 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
5704 Show the maximum number of bytes per memory write packet (deprecated)."),
5705 &showlist);
5706 add_cmd ("memory-write-packet-size", no_class,
5707 set_memory_write_packet_size, _("\
5708 Set the maximum number of bytes per memory-write packet.\n\
5709 Specify the number of bytes in a packet or 0 (zero) for the\n\
5710 default packet size. The actual limit is further reduced\n\
5711 dependent on the target. Specify ``fixed'' to disable the\n\
5712 further restriction and ``limit'' to enable that restriction."),
5713 &remote_set_cmdlist);
5714 add_cmd ("memory-read-packet-size", no_class,
5715 set_memory_read_packet_size, _("\
5716 Set the maximum number of bytes per memory-read packet.\n\
5717 Specify the number of bytes in a packet or 0 (zero) for the\n\
5718 default packet size. The actual limit is further reduced\n\
5719 dependent on the target. Specify ``fixed'' to disable the\n\
5720 further restriction and ``limit'' to enable that restriction."),
5721 &remote_set_cmdlist);
5722 add_cmd ("memory-write-packet-size", no_class,
5723 show_memory_write_packet_size,
5724 _("Show the maximum number of bytes per memory-write packet."),
5725 &remote_show_cmdlist);
5726 add_cmd ("memory-read-packet-size", no_class,
5727 show_memory_read_packet_size,
5728 _("Show the maximum number of bytes per memory-read packet."),
5729 &remote_show_cmdlist);
5730
5731 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
5732 &remote_hw_watchpoint_limit, _("\
5733 Set the maximum number of target hardware watchpoints."), _("\
5734 Show the maximum number of target hardware watchpoints."), _("\
5735 Specify a negative limit for unlimited."),
5736 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
5737 &remote_set_cmdlist, &remote_show_cmdlist);
5738 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
5739 &remote_hw_breakpoint_limit, _("\
5740 Set the maximum number of target hardware breakpoints."), _("\
5741 Show the maximum number of target hardware breakpoints."), _("\
5742 Specify a negative limit for unlimited."),
5743 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
5744 &remote_set_cmdlist, &remote_show_cmdlist);
5745
5746 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
5747 &remote_address_size, _("\
5748 Set the maximum size of the address (in bits) in a memory packet."), _("\
5749 Show the maximum size of the address (in bits) in a memory packet."), NULL,
5750 NULL,
5751 NULL, /* FIXME: i18n: */
5752 &setlist, &showlist);
5753
5754 add_packet_config_cmd (&remote_protocol_binary_download,
5755 "X", "binary-download",
5756 set_remote_protocol_binary_download_cmd,
5757 show_remote_protocol_binary_download_cmd,
5758 &remote_set_cmdlist, &remote_show_cmdlist,
5759 1);
5760
5761 add_packet_config_cmd (&remote_protocol_vcont,
5762 "vCont", "verbose-resume",
5763 set_remote_protocol_vcont_packet_cmd,
5764 show_remote_protocol_vcont_packet_cmd,
5765 &remote_set_cmdlist, &remote_show_cmdlist,
5766 0);
5767
5768 add_packet_config_cmd (&remote_protocol_qSymbol,
5769 "qSymbol", "symbol-lookup",
5770 set_remote_protocol_qSymbol_packet_cmd,
5771 show_remote_protocol_qSymbol_packet_cmd,
5772 &remote_set_cmdlist, &remote_show_cmdlist,
5773 0);
5774
5775 add_packet_config_cmd (&remote_protocol_P,
5776 "P", "set-register",
5777 set_remote_protocol_P_packet_cmd,
5778 show_remote_protocol_P_packet_cmd,
5779 &remote_set_cmdlist, &remote_show_cmdlist,
5780 1);
5781
5782 add_packet_config_cmd (&remote_protocol_p,
5783 "p", "fetch-register",
5784 set_remote_protocol_p_packet_cmd,
5785 show_remote_protocol_p_packet_cmd,
5786 &remote_set_cmdlist, &remote_show_cmdlist,
5787 1);
5788
5789 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5790 "Z0", "software-breakpoint",
5791 set_remote_protocol_Z_software_bp_packet_cmd,
5792 show_remote_protocol_Z_software_bp_packet_cmd,
5793 &remote_set_cmdlist, &remote_show_cmdlist,
5794 0);
5795
5796 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5797 "Z1", "hardware-breakpoint",
5798 set_remote_protocol_Z_hardware_bp_packet_cmd,
5799 show_remote_protocol_Z_hardware_bp_packet_cmd,
5800 &remote_set_cmdlist, &remote_show_cmdlist,
5801 0);
5802
5803 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5804 "Z2", "write-watchpoint",
5805 set_remote_protocol_Z_write_wp_packet_cmd,
5806 show_remote_protocol_Z_write_wp_packet_cmd,
5807 &remote_set_cmdlist, &remote_show_cmdlist,
5808 0);
5809
5810 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5811 "Z3", "read-watchpoint",
5812 set_remote_protocol_Z_read_wp_packet_cmd,
5813 show_remote_protocol_Z_read_wp_packet_cmd,
5814 &remote_set_cmdlist, &remote_show_cmdlist,
5815 0);
5816
5817 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5818 "Z4", "access-watchpoint",
5819 set_remote_protocol_Z_access_wp_packet_cmd,
5820 show_remote_protocol_Z_access_wp_packet_cmd,
5821 &remote_set_cmdlist, &remote_show_cmdlist,
5822 0);
5823
5824 add_packet_config_cmd (&remote_protocol_qPart_auxv,
5825 "qPart_auxv", "read-aux-vector",
5826 set_remote_protocol_qPart_auxv_packet_cmd,
5827 show_remote_protocol_qPart_auxv_packet_cmd,
5828 &remote_set_cmdlist, &remote_show_cmdlist,
5829 0);
5830
5831 add_packet_config_cmd (&remote_protocol_qGetTLSAddr,
5832 "qGetTLSAddr", "get-thread-local-storage-address",
5833 set_remote_protocol_qGetTLSAddr_packet_cmd,
5834 show_remote_protocol_qGetTLSAddr_packet_cmd,
5835 &remote_set_cmdlist, &remote_show_cmdlist,
5836 0);
5837
5838 /* Keep the old ``set remote Z-packet ...'' working. */
5839 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5840 &remote_Z_packet_detect, _("\
5841 Set use of remote protocol `Z' packets"), _("\
5842 Show use of remote protocol `Z' packets "), _("\
5843 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
5844 packets."),
5845 set_remote_protocol_Z_packet_cmd,
5846 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
5847 &remote_set_cmdlist, &remote_show_cmdlist);
5848
5849 /* Eventually initialize fileio. See fileio.c */
5850 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5851 }
This page took 0.162695 seconds and 4 git commands to generate.