Fix build with GNU Make 3.81
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281
282 /* True if the user has pressed Ctrl-C, but the target hasn't
283 responded to that. */
284 bool ctrlc_pending_p = false;
285
286 /* True if we saw a Ctrl-C while reading or writing from/to the
287 remote descriptor. At that point it is not safe to send a remote
288 interrupt packet, so we instead remember we saw the Ctrl-C and
289 process it once we're done with sending/receiving the current
290 packet, which should be shortly. If however that takes too long,
291 and the user presses Ctrl-C again, we offer to disconnect. */
292 bool got_ctrlc_during_io = false;
293
294 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
295 remote_open knows that we don't have a file open when the program
296 starts. */
297 struct serial *remote_desc = nullptr;
298
299 /* These are the threads which we last sent to the remote system. The
300 TID member will be -1 for all or -2 for not sent yet. */
301 ptid_t general_thread = null_ptid;
302 ptid_t continue_thread = null_ptid;
303
304 /* This is the traceframe which we last selected on the remote system.
305 It will be -1 if no traceframe is selected. */
306 int remote_traceframe_number = -1;
307
308 char *last_pass_packet = nullptr;
309
310 /* The last QProgramSignals packet sent to the target. We bypass
311 sending a new program signals list down to the target if the new
312 packet is exactly the same as the last we sent. IOW, we only let
313 the target know about program signals list changes. */
314 char *last_program_signals_packet = nullptr;
315
316 gdb_signal last_sent_signal = GDB_SIGNAL_0;
317
318 bool last_sent_step = false;
319
320 /* The execution direction of the last resume we got. */
321 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
322
323 char *finished_object = nullptr;
324 char *finished_annex = nullptr;
325 ULONGEST finished_offset = 0;
326
327 /* Should we try the 'ThreadInfo' query packet?
328
329 This variable (NOT available to the user: auto-detect only!)
330 determines whether GDB will use the new, simpler "ThreadInfo"
331 query or the older, more complex syntax for thread queries.
332 This is an auto-detect variable (set to true at each connect,
333 and set to false when the target fails to recognize it). */
334 bool use_threadinfo_query = false;
335 bool use_threadextra_query = false;
336
337 threadref echo_nextthread {};
338 threadref nextthread {};
339 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
340
341 /* The state of remote notification. */
342 struct remote_notif_state *notif_state = nullptr;
343
344 /* The branch trace configuration. */
345 struct btrace_config btrace_config {};
346
347 /* The argument to the last "vFile:setfs:" packet we sent, used
348 to avoid sending repeated unnecessary "vFile:setfs:" packets.
349 Initialized to -1 to indicate that no "vFile:setfs:" packet
350 has yet been sent. */
351 int fs_pid = -1;
352
353 /* A readahead cache for vFile:pread. Often, reading a binary
354 involves a sequence of small reads. E.g., when parsing an ELF
355 file. A readahead cache helps mostly the case of remote
356 debugging on a connection with higher latency, due to the
357 request/reply nature of the RSP. We only cache data for a single
358 file descriptor at a time. */
359 struct readahead_cache readahead_cache;
360
361 /* The list of already fetched and acknowledged stop events. This
362 queue is used for notification Stop, and other notifications
363 don't need queue for their events, because the notification
364 events of Stop can't be consumed immediately, so that events
365 should be queued first, and be consumed by remote_wait_{ns,as}
366 one per time. Other notifications can consume their events
367 immediately, so queue is not needed for them. */
368 std::vector<stop_reply_up> stop_reply_queue;
369
370 /* Asynchronous signal handle registered as event loop source for
371 when we have pending events ready to be passed to the core. */
372 struct async_event_handler *remote_async_inferior_event_token = nullptr;
373
374 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
375 ``forever'' still use the normal timeout mechanism. This is
376 currently used by the ASYNC code to guarentee that target reads
377 during the initial connect always time-out. Once getpkt has been
378 modified to return a timeout indication and, in turn
379 remote_wait()/wait_for_inferior() have gained a timeout parameter
380 this can go away. */
381 int wait_forever_enabled_p = 1;
382
383 private:
384 /* Mapping of remote protocol data for each gdbarch. Usually there
385 is only one entry here, though we may see more with stubs that
386 support multi-process. */
387 std::unordered_map<struct gdbarch *, remote_arch_state>
388 m_arch_states;
389 };
390
391 static const target_info remote_target_info = {
392 "remote",
393 N_("Remote serial target in gdb-specific protocol"),
394 remote_doc
395 };
396
397 class remote_target : public process_stratum_target
398 {
399 public:
400 remote_target () = default;
401 ~remote_target () override;
402
403 const target_info &info () const override
404 { return remote_target_info; }
405
406 thread_control_capabilities get_thread_control_capabilities () override
407 { return tc_schedlock; }
408
409 /* Open a remote connection. */
410 static void open (const char *, int);
411
412 void close () override;
413
414 void detach (inferior *, int) override;
415 void disconnect (const char *, int) override;
416
417 void commit_resume () override;
418 void resume (ptid_t, int, enum gdb_signal) override;
419 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
420
421 void fetch_registers (struct regcache *, int) override;
422 void store_registers (struct regcache *, int) override;
423 void prepare_to_store (struct regcache *) override;
424
425 void files_info () override;
426
427 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
428
429 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
430 enum remove_bp_reason) override;
431
432
433 bool stopped_by_sw_breakpoint () override;
434 bool supports_stopped_by_sw_breakpoint () override;
435
436 bool stopped_by_hw_breakpoint () override;
437
438 bool supports_stopped_by_hw_breakpoint () override;
439
440 bool stopped_by_watchpoint () override;
441
442 bool stopped_data_address (CORE_ADDR *) override;
443
444 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
445
446 int can_use_hw_breakpoint (enum bptype, int, int) override;
447
448 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
449
450 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
451
452 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
453
454 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
455 struct expression *) override;
456
457 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
458 struct expression *) override;
459
460 void kill () override;
461
462 void load (const char *, int) override;
463
464 void mourn_inferior () override;
465
466 void pass_signals (gdb::array_view<const unsigned char>) override;
467
468 int set_syscall_catchpoint (int, bool, int,
469 gdb::array_view<const int>) override;
470
471 void program_signals (gdb::array_view<const unsigned char>) override;
472
473 bool thread_alive (ptid_t ptid) override;
474
475 const char *thread_name (struct thread_info *) override;
476
477 void update_thread_list () override;
478
479 std::string pid_to_str (ptid_t) override;
480
481 const char *extra_thread_info (struct thread_info *) override;
482
483 ptid_t get_ada_task_ptid (long lwp, long thread) override;
484
485 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
486 int handle_len,
487 inferior *inf) override;
488
489 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
490 override;
491
492 void stop (ptid_t) override;
493
494 void interrupt () override;
495
496 void pass_ctrlc () override;
497
498 enum target_xfer_status xfer_partial (enum target_object object,
499 const char *annex,
500 gdb_byte *readbuf,
501 const gdb_byte *writebuf,
502 ULONGEST offset, ULONGEST len,
503 ULONGEST *xfered_len) override;
504
505 ULONGEST get_memory_xfer_limit () override;
506
507 void rcmd (const char *command, struct ui_file *output) override;
508
509 char *pid_to_exec_file (int pid) override;
510
511 void log_command (const char *cmd) override
512 {
513 serial_log_command (this, cmd);
514 }
515
516 CORE_ADDR get_thread_local_address (ptid_t ptid,
517 CORE_ADDR load_module_addr,
518 CORE_ADDR offset) override;
519
520 bool can_execute_reverse () override;
521
522 std::vector<mem_region> memory_map () override;
523
524 void flash_erase (ULONGEST address, LONGEST length) override;
525
526 void flash_done () override;
527
528 const struct target_desc *read_description () override;
529
530 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
531 const gdb_byte *pattern, ULONGEST pattern_len,
532 CORE_ADDR *found_addrp) override;
533
534 bool can_async_p () override;
535
536 bool is_async_p () override;
537
538 void async (int) override;
539
540 void thread_events (int) override;
541
542 int can_do_single_step () override;
543
544 void terminal_inferior () override;
545
546 void terminal_ours () override;
547
548 bool supports_non_stop () override;
549
550 bool supports_multi_process () override;
551
552 bool supports_disable_randomization () override;
553
554 bool filesystem_is_local () override;
555
556
557 int fileio_open (struct inferior *inf, const char *filename,
558 int flags, int mode, int warn_if_slow,
559 int *target_errno) override;
560
561 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
562 ULONGEST offset, int *target_errno) override;
563
564 int fileio_pread (int fd, gdb_byte *read_buf, int len,
565 ULONGEST offset, int *target_errno) override;
566
567 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
568
569 int fileio_close (int fd, int *target_errno) override;
570
571 int fileio_unlink (struct inferior *inf,
572 const char *filename,
573 int *target_errno) override;
574
575 gdb::optional<std::string>
576 fileio_readlink (struct inferior *inf,
577 const char *filename,
578 int *target_errno) override;
579
580 bool supports_enable_disable_tracepoint () override;
581
582 bool supports_string_tracing () override;
583
584 bool supports_evaluation_of_breakpoint_conditions () override;
585
586 bool can_run_breakpoint_commands () override;
587
588 void trace_init () override;
589
590 void download_tracepoint (struct bp_location *location) override;
591
592 bool can_download_tracepoint () override;
593
594 void download_trace_state_variable (const trace_state_variable &tsv) override;
595
596 void enable_tracepoint (struct bp_location *location) override;
597
598 void disable_tracepoint (struct bp_location *location) override;
599
600 void trace_set_readonly_regions () override;
601
602 void trace_start () override;
603
604 int get_trace_status (struct trace_status *ts) override;
605
606 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
607 override;
608
609 void trace_stop () override;
610
611 int trace_find (enum trace_find_type type, int num,
612 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
613
614 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
615
616 int save_trace_data (const char *filename) override;
617
618 int upload_tracepoints (struct uploaded_tp **utpp) override;
619
620 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
621
622 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
623
624 int get_min_fast_tracepoint_insn_len () override;
625
626 void set_disconnected_tracing (int val) override;
627
628 void set_circular_trace_buffer (int val) override;
629
630 void set_trace_buffer_size (LONGEST val) override;
631
632 bool set_trace_notes (const char *user, const char *notes,
633 const char *stopnotes) override;
634
635 int core_of_thread (ptid_t ptid) override;
636
637 int verify_memory (const gdb_byte *data,
638 CORE_ADDR memaddr, ULONGEST size) override;
639
640
641 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
642
643 void set_permissions () override;
644
645 bool static_tracepoint_marker_at (CORE_ADDR,
646 struct static_tracepoint_marker *marker)
647 override;
648
649 std::vector<static_tracepoint_marker>
650 static_tracepoint_markers_by_strid (const char *id) override;
651
652 traceframe_info_up traceframe_info () override;
653
654 bool use_agent (bool use) override;
655 bool can_use_agent () override;
656
657 struct btrace_target_info *enable_btrace (ptid_t ptid,
658 const struct btrace_config *conf) override;
659
660 void disable_btrace (struct btrace_target_info *tinfo) override;
661
662 void teardown_btrace (struct btrace_target_info *tinfo) override;
663
664 enum btrace_error read_btrace (struct btrace_data *data,
665 struct btrace_target_info *btinfo,
666 enum btrace_read_type type) override;
667
668 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
669 bool augmented_libraries_svr4_read () override;
670 int follow_fork (int, int) override;
671 void follow_exec (struct inferior *, const char *) override;
672 int insert_fork_catchpoint (int) override;
673 int remove_fork_catchpoint (int) override;
674 int insert_vfork_catchpoint (int) override;
675 int remove_vfork_catchpoint (int) override;
676 int insert_exec_catchpoint (int) override;
677 int remove_exec_catchpoint (int) override;
678 enum exec_direction_kind execution_direction () override;
679
680 public: /* Remote specific methods. */
681
682 void remote_download_command_source (int num, ULONGEST addr,
683 struct command_line *cmds);
684
685 void remote_file_put (const char *local_file, const char *remote_file,
686 int from_tty);
687 void remote_file_get (const char *remote_file, const char *local_file,
688 int from_tty);
689 void remote_file_delete (const char *remote_file, int from_tty);
690
691 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
692 ULONGEST offset, int *remote_errno);
693 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
694 ULONGEST offset, int *remote_errno);
695 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
696 ULONGEST offset, int *remote_errno);
697
698 int remote_hostio_send_command (int command_bytes, int which_packet,
699 int *remote_errno, char **attachment,
700 int *attachment_len);
701 int remote_hostio_set_filesystem (struct inferior *inf,
702 int *remote_errno);
703 /* We should get rid of this and use fileio_open directly. */
704 int remote_hostio_open (struct inferior *inf, const char *filename,
705 int flags, int mode, int warn_if_slow,
706 int *remote_errno);
707 int remote_hostio_close (int fd, int *remote_errno);
708
709 int remote_hostio_unlink (inferior *inf, const char *filename,
710 int *remote_errno);
711
712 struct remote_state *get_remote_state ();
713
714 long get_remote_packet_size (void);
715 long get_memory_packet_size (struct memory_packet_config *config);
716
717 long get_memory_write_packet_size ();
718 long get_memory_read_packet_size ();
719
720 char *append_pending_thread_resumptions (char *p, char *endp,
721 ptid_t ptid);
722 static void open_1 (const char *name, int from_tty, int extended_p);
723 void start_remote (int from_tty, int extended_p);
724 void remote_detach_1 (struct inferior *inf, int from_tty);
725
726 char *append_resumption (char *p, char *endp,
727 ptid_t ptid, int step, gdb_signal siggnal);
728 int remote_resume_with_vcont (ptid_t ptid, int step,
729 gdb_signal siggnal);
730
731 void add_current_inferior_and_thread (char *wait_status);
732
733 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
734 int options);
735 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
736 int options);
737
738 ptid_t process_stop_reply (struct stop_reply *stop_reply,
739 target_waitstatus *status);
740
741 void remote_notice_new_inferior (ptid_t currthread, int executing);
742
743 void process_initial_stop_replies (int from_tty);
744
745 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
746
747 void btrace_sync_conf (const btrace_config *conf);
748
749 void remote_btrace_maybe_reopen ();
750
751 void remove_new_fork_children (threads_listing_context *context);
752 void kill_new_fork_children (int pid);
753 void discard_pending_stop_replies (struct inferior *inf);
754 int stop_reply_queue_length ();
755
756 void check_pending_events_prevent_wildcard_vcont
757 (int *may_global_wildcard_vcont);
758
759 void discard_pending_stop_replies_in_queue ();
760 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
761 struct stop_reply *queued_stop_reply (ptid_t ptid);
762 int peek_stop_reply (ptid_t ptid);
763 void remote_parse_stop_reply (const char *buf, stop_reply *event);
764
765 void remote_stop_ns (ptid_t ptid);
766 void remote_interrupt_as ();
767 void remote_interrupt_ns ();
768
769 char *remote_get_noisy_reply ();
770 int remote_query_attached (int pid);
771 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
772 int try_open_exec);
773
774 ptid_t remote_current_thread (ptid_t oldpid);
775 ptid_t get_current_thread (char *wait_status);
776
777 void set_thread (ptid_t ptid, int gen);
778 void set_general_thread (ptid_t ptid);
779 void set_continue_thread (ptid_t ptid);
780 void set_general_process ();
781
782 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
783
784 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
785 gdb_ext_thread_info *info);
786 int remote_get_threadinfo (threadref *threadid, int fieldset,
787 gdb_ext_thread_info *info);
788
789 int parse_threadlist_response (char *pkt, int result_limit,
790 threadref *original_echo,
791 threadref *resultlist,
792 int *doneflag);
793 int remote_get_threadlist (int startflag, threadref *nextthread,
794 int result_limit, int *done, int *result_count,
795 threadref *threadlist);
796
797 int remote_threadlist_iterator (rmt_thread_action stepfunction,
798 void *context, int looplimit);
799
800 int remote_get_threads_with_ql (threads_listing_context *context);
801 int remote_get_threads_with_qxfer (threads_listing_context *context);
802 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
803
804 void extended_remote_restart ();
805
806 void get_offsets ();
807
808 void remote_check_symbols ();
809
810 void remote_supported_packet (const struct protocol_feature *feature,
811 enum packet_support support,
812 const char *argument);
813
814 void remote_query_supported ();
815
816 void remote_packet_size (const protocol_feature *feature,
817 packet_support support, const char *value);
818
819 void remote_serial_quit_handler ();
820
821 void remote_detach_pid (int pid);
822
823 void remote_vcont_probe ();
824
825 void remote_resume_with_hc (ptid_t ptid, int step,
826 gdb_signal siggnal);
827
828 void send_interrupt_sequence ();
829 void interrupt_query ();
830
831 void remote_notif_get_pending_events (notif_client *nc);
832
833 int fetch_register_using_p (struct regcache *regcache,
834 packet_reg *reg);
835 int send_g_packet ();
836 void process_g_packet (struct regcache *regcache);
837 void fetch_registers_using_g (struct regcache *regcache);
838 int store_register_using_P (const struct regcache *regcache,
839 packet_reg *reg);
840 void store_registers_using_G (const struct regcache *regcache);
841
842 void set_remote_traceframe ();
843
844 void check_binary_download (CORE_ADDR addr);
845
846 target_xfer_status remote_write_bytes_aux (const char *header,
847 CORE_ADDR memaddr,
848 const gdb_byte *myaddr,
849 ULONGEST len_units,
850 int unit_size,
851 ULONGEST *xfered_len_units,
852 char packet_format,
853 int use_length);
854
855 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
856 const gdb_byte *myaddr, ULONGEST len,
857 int unit_size, ULONGEST *xfered_len);
858
859 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
860 ULONGEST len_units,
861 int unit_size, ULONGEST *xfered_len_units);
862
863 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
864 ULONGEST memaddr,
865 ULONGEST len,
866 int unit_size,
867 ULONGEST *xfered_len);
868
869 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
870 gdb_byte *myaddr, ULONGEST len,
871 int unit_size,
872 ULONGEST *xfered_len);
873
874 packet_result remote_send_printf (const char *format, ...)
875 ATTRIBUTE_PRINTF (2, 3);
876
877 target_xfer_status remote_flash_write (ULONGEST address,
878 ULONGEST length, ULONGEST *xfered_len,
879 const gdb_byte *data);
880
881 int readchar (int timeout);
882
883 void remote_serial_write (const char *str, int len);
884
885 int putpkt (const char *buf);
886 int putpkt_binary (const char *buf, int cnt);
887
888 int putpkt (const gdb::char_vector &buf)
889 {
890 return putpkt (buf.data ());
891 }
892
893 void skip_frame ();
894 long read_frame (gdb::char_vector *buf_p);
895 void getpkt (gdb::char_vector *buf, int forever);
896 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
897 int expecting_notif, int *is_notif);
898 int getpkt_sane (gdb::char_vector *buf, int forever);
899 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
900 int *is_notif);
901 int remote_vkill (int pid);
902 void remote_kill_k ();
903
904 void extended_remote_disable_randomization (int val);
905 int extended_remote_run (const std::string &args);
906
907 void send_environment_packet (const char *action,
908 const char *packet,
909 const char *value);
910
911 void extended_remote_environment_support ();
912 void extended_remote_set_inferior_cwd ();
913
914 target_xfer_status remote_write_qxfer (const char *object_name,
915 const char *annex,
916 const gdb_byte *writebuf,
917 ULONGEST offset, LONGEST len,
918 ULONGEST *xfered_len,
919 struct packet_config *packet);
920
921 target_xfer_status remote_read_qxfer (const char *object_name,
922 const char *annex,
923 gdb_byte *readbuf, ULONGEST offset,
924 LONGEST len,
925 ULONGEST *xfered_len,
926 struct packet_config *packet);
927
928 void push_stop_reply (struct stop_reply *new_event);
929
930 bool vcont_r_supported ();
931
932 void packet_command (const char *args, int from_tty);
933
934 private: /* data fields */
935
936 /* The remote state. Don't reference this directly. Use the
937 get_remote_state method instead. */
938 remote_state m_remote_state;
939 };
940
941 static const target_info extended_remote_target_info = {
942 "extended-remote",
943 N_("Extended remote serial target in gdb-specific protocol"),
944 remote_doc
945 };
946
947 /* Set up the extended remote target by extending the standard remote
948 target and adding to it. */
949
950 class extended_remote_target final : public remote_target
951 {
952 public:
953 const target_info &info () const override
954 { return extended_remote_target_info; }
955
956 /* Open an extended-remote connection. */
957 static void open (const char *, int);
958
959 bool can_create_inferior () override { return true; }
960 void create_inferior (const char *, const std::string &,
961 char **, int) override;
962
963 void detach (inferior *, int) override;
964
965 bool can_attach () override { return true; }
966 void attach (const char *, int) override;
967
968 void post_attach (int) override;
969 bool supports_disable_randomization () override;
970 };
971
972 /* Per-program-space data key. */
973 static const struct program_space_key<char, gdb::xfree_deleter<char>>
974 remote_pspace_data;
975
976 /* The variable registered as the control variable used by the
977 remote exec-file commands. While the remote exec-file setting is
978 per-program-space, the set/show machinery uses this as the
979 location of the remote exec-file value. */
980 static char *remote_exec_file_var;
981
982 /* The size to align memory write packets, when practical. The protocol
983 does not guarantee any alignment, and gdb will generate short
984 writes and unaligned writes, but even as a best-effort attempt this
985 can improve bulk transfers. For instance, if a write is misaligned
986 relative to the target's data bus, the stub may need to make an extra
987 round trip fetching data from the target. This doesn't make a
988 huge difference, but it's easy to do, so we try to be helpful.
989
990 The alignment chosen is arbitrary; usually data bus width is
991 important here, not the possibly larger cache line size. */
992 enum { REMOTE_ALIGN_WRITES = 16 };
993
994 /* Prototypes for local functions. */
995
996 static int hexnumlen (ULONGEST num);
997
998 static int stubhex (int ch);
999
1000 static int hexnumstr (char *, ULONGEST);
1001
1002 static int hexnumnstr (char *, ULONGEST, int);
1003
1004 static CORE_ADDR remote_address_masked (CORE_ADDR);
1005
1006 static void print_packet (const char *);
1007
1008 static int stub_unpack_int (char *buff, int fieldlength);
1009
1010 struct packet_config;
1011
1012 static void show_packet_config_cmd (struct packet_config *config);
1013
1014 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1015 int from_tty,
1016 struct cmd_list_element *c,
1017 const char *value);
1018
1019 static ptid_t read_ptid (const char *buf, const char **obuf);
1020
1021 static void remote_async_inferior_event_handler (gdb_client_data);
1022
1023 static bool remote_read_description_p (struct target_ops *target);
1024
1025 static void remote_console_output (const char *msg);
1026
1027 static void remote_btrace_reset (remote_state *rs);
1028
1029 static void remote_unpush_and_throw (void);
1030
1031 /* For "remote". */
1032
1033 static struct cmd_list_element *remote_cmdlist;
1034
1035 /* For "set remote" and "show remote". */
1036
1037 static struct cmd_list_element *remote_set_cmdlist;
1038 static struct cmd_list_element *remote_show_cmdlist;
1039
1040 /* Controls whether GDB is willing to use range stepping. */
1041
1042 static bool use_range_stepping = true;
1043
1044 /* Private data that we'll store in (struct thread_info)->priv. */
1045 struct remote_thread_info : public private_thread_info
1046 {
1047 std::string extra;
1048 std::string name;
1049 int core = -1;
1050
1051 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1052 sequence of bytes. */
1053 gdb::byte_vector thread_handle;
1054
1055 /* Whether the target stopped for a breakpoint/watchpoint. */
1056 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1057
1058 /* This is set to the data address of the access causing the target
1059 to stop for a watchpoint. */
1060 CORE_ADDR watch_data_address = 0;
1061
1062 /* Fields used by the vCont action coalescing implemented in
1063 remote_resume / remote_commit_resume. remote_resume stores each
1064 thread's last resume request in these fields, so that a later
1065 remote_commit_resume knows which is the proper action for this
1066 thread to include in the vCont packet. */
1067
1068 /* True if the last target_resume call for this thread was a step
1069 request, false if a continue request. */
1070 int last_resume_step = 0;
1071
1072 /* The signal specified in the last target_resume call for this
1073 thread. */
1074 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1075
1076 /* Whether this thread was already vCont-resumed on the remote
1077 side. */
1078 int vcont_resumed = 0;
1079 };
1080
1081 remote_state::remote_state ()
1082 : buf (400)
1083 {
1084 }
1085
1086 remote_state::~remote_state ()
1087 {
1088 xfree (this->last_pass_packet);
1089 xfree (this->last_program_signals_packet);
1090 xfree (this->finished_object);
1091 xfree (this->finished_annex);
1092 }
1093
1094 /* Utility: generate error from an incoming stub packet. */
1095 static void
1096 trace_error (char *buf)
1097 {
1098 if (*buf++ != 'E')
1099 return; /* not an error msg */
1100 switch (*buf)
1101 {
1102 case '1': /* malformed packet error */
1103 if (*++buf == '0') /* general case: */
1104 error (_("remote.c: error in outgoing packet."));
1105 else
1106 error (_("remote.c: error in outgoing packet at field #%ld."),
1107 strtol (buf, NULL, 16));
1108 default:
1109 error (_("Target returns error code '%s'."), buf);
1110 }
1111 }
1112
1113 /* Utility: wait for reply from stub, while accepting "O" packets. */
1114
1115 char *
1116 remote_target::remote_get_noisy_reply ()
1117 {
1118 struct remote_state *rs = get_remote_state ();
1119
1120 do /* Loop on reply from remote stub. */
1121 {
1122 char *buf;
1123
1124 QUIT; /* Allow user to bail out with ^C. */
1125 getpkt (&rs->buf, 0);
1126 buf = rs->buf.data ();
1127 if (buf[0] == 'E')
1128 trace_error (buf);
1129 else if (startswith (buf, "qRelocInsn:"))
1130 {
1131 ULONGEST ul;
1132 CORE_ADDR from, to, org_to;
1133 const char *p, *pp;
1134 int adjusted_size = 0;
1135 int relocated = 0;
1136
1137 p = buf + strlen ("qRelocInsn:");
1138 pp = unpack_varlen_hex (p, &ul);
1139 if (*pp != ';')
1140 error (_("invalid qRelocInsn packet: %s"), buf);
1141 from = ul;
1142
1143 p = pp + 1;
1144 unpack_varlen_hex (p, &ul);
1145 to = ul;
1146
1147 org_to = to;
1148
1149 try
1150 {
1151 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1152 relocated = 1;
1153 }
1154 catch (const gdb_exception &ex)
1155 {
1156 if (ex.error == MEMORY_ERROR)
1157 {
1158 /* Propagate memory errors silently back to the
1159 target. The stub may have limited the range of
1160 addresses we can write to, for example. */
1161 }
1162 else
1163 {
1164 /* Something unexpectedly bad happened. Be verbose
1165 so we can tell what, and propagate the error back
1166 to the stub, so it doesn't get stuck waiting for
1167 a response. */
1168 exception_fprintf (gdb_stderr, ex,
1169 _("warning: relocating instruction: "));
1170 }
1171 putpkt ("E01");
1172 }
1173
1174 if (relocated)
1175 {
1176 adjusted_size = to - org_to;
1177
1178 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1179 putpkt (buf);
1180 }
1181 }
1182 else if (buf[0] == 'O' && buf[1] != 'K')
1183 remote_console_output (buf + 1); /* 'O' message from stub */
1184 else
1185 return buf; /* Here's the actual reply. */
1186 }
1187 while (1);
1188 }
1189
1190 struct remote_arch_state *
1191 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1192 {
1193 remote_arch_state *rsa;
1194
1195 auto it = this->m_arch_states.find (gdbarch);
1196 if (it == this->m_arch_states.end ())
1197 {
1198 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1199 std::forward_as_tuple (gdbarch),
1200 std::forward_as_tuple (gdbarch));
1201 rsa = &p.first->second;
1202
1203 /* Make sure that the packet buffer is plenty big enough for
1204 this architecture. */
1205 if (this->buf.size () < rsa->remote_packet_size)
1206 this->buf.resize (2 * rsa->remote_packet_size);
1207 }
1208 else
1209 rsa = &it->second;
1210
1211 return rsa;
1212 }
1213
1214 /* Fetch the global remote target state. */
1215
1216 remote_state *
1217 remote_target::get_remote_state ()
1218 {
1219 /* Make sure that the remote architecture state has been
1220 initialized, because doing so might reallocate rs->buf. Any
1221 function which calls getpkt also needs to be mindful of changes
1222 to rs->buf, but this call limits the number of places which run
1223 into trouble. */
1224 m_remote_state.get_remote_arch_state (target_gdbarch ());
1225
1226 return &m_remote_state;
1227 }
1228
1229 /* Fetch the remote exec-file from the current program space. */
1230
1231 static const char *
1232 get_remote_exec_file (void)
1233 {
1234 char *remote_exec_file;
1235
1236 remote_exec_file = remote_pspace_data.get (current_program_space);
1237 if (remote_exec_file == NULL)
1238 return "";
1239
1240 return remote_exec_file;
1241 }
1242
1243 /* Set the remote exec file for PSPACE. */
1244
1245 static void
1246 set_pspace_remote_exec_file (struct program_space *pspace,
1247 const char *remote_exec_file)
1248 {
1249 char *old_file = remote_pspace_data.get (pspace);
1250
1251 xfree (old_file);
1252 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1253 }
1254
1255 /* The "set/show remote exec-file" set command hook. */
1256
1257 static void
1258 set_remote_exec_file (const char *ignored, int from_tty,
1259 struct cmd_list_element *c)
1260 {
1261 gdb_assert (remote_exec_file_var != NULL);
1262 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1263 }
1264
1265 /* The "set/show remote exec-file" show command hook. */
1266
1267 static void
1268 show_remote_exec_file (struct ui_file *file, int from_tty,
1269 struct cmd_list_element *cmd, const char *value)
1270 {
1271 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1272 }
1273
1274 static int
1275 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1276 {
1277 int regnum, num_remote_regs, offset;
1278 struct packet_reg **remote_regs;
1279
1280 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1281 {
1282 struct packet_reg *r = &regs[regnum];
1283
1284 if (register_size (gdbarch, regnum) == 0)
1285 /* Do not try to fetch zero-sized (placeholder) registers. */
1286 r->pnum = -1;
1287 else
1288 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1289
1290 r->regnum = regnum;
1291 }
1292
1293 /* Define the g/G packet format as the contents of each register
1294 with a remote protocol number, in order of ascending protocol
1295 number. */
1296
1297 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1298 for (num_remote_regs = 0, regnum = 0;
1299 regnum < gdbarch_num_regs (gdbarch);
1300 regnum++)
1301 if (regs[regnum].pnum != -1)
1302 remote_regs[num_remote_regs++] = &regs[regnum];
1303
1304 std::sort (remote_regs, remote_regs + num_remote_regs,
1305 [] (const packet_reg *a, const packet_reg *b)
1306 { return a->pnum < b->pnum; });
1307
1308 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1309 {
1310 remote_regs[regnum]->in_g_packet = 1;
1311 remote_regs[regnum]->offset = offset;
1312 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1313 }
1314
1315 return offset;
1316 }
1317
1318 /* Given the architecture described by GDBARCH, return the remote
1319 protocol register's number and the register's offset in the g/G
1320 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1321 If the target does not have a mapping for REGNUM, return false,
1322 otherwise, return true. */
1323
1324 int
1325 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1326 int *pnum, int *poffset)
1327 {
1328 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1329
1330 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1331
1332 map_regcache_remote_table (gdbarch, regs.data ());
1333
1334 *pnum = regs[regnum].pnum;
1335 *poffset = regs[regnum].offset;
1336
1337 return *pnum != -1;
1338 }
1339
1340 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1341 {
1342 /* Use the architecture to build a regnum<->pnum table, which will be
1343 1:1 unless a feature set specifies otherwise. */
1344 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1345
1346 /* Record the maximum possible size of the g packet - it may turn out
1347 to be smaller. */
1348 this->sizeof_g_packet
1349 = map_regcache_remote_table (gdbarch, this->regs.get ());
1350
1351 /* Default maximum number of characters in a packet body. Many
1352 remote stubs have a hardwired buffer size of 400 bytes
1353 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1354 as the maximum packet-size to ensure that the packet and an extra
1355 NUL character can always fit in the buffer. This stops GDB
1356 trashing stubs that try to squeeze an extra NUL into what is
1357 already a full buffer (As of 1999-12-04 that was most stubs). */
1358 this->remote_packet_size = 400 - 1;
1359
1360 /* This one is filled in when a ``g'' packet is received. */
1361 this->actual_register_packet_size = 0;
1362
1363 /* Should rsa->sizeof_g_packet needs more space than the
1364 default, adjust the size accordingly. Remember that each byte is
1365 encoded as two characters. 32 is the overhead for the packet
1366 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1367 (``$NN:G...#NN'') is a better guess, the below has been padded a
1368 little. */
1369 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1370 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1371 }
1372
1373 /* Get a pointer to the current remote target. If not connected to a
1374 remote target, return NULL. */
1375
1376 static remote_target *
1377 get_current_remote_target ()
1378 {
1379 target_ops *proc_target = find_target_at (process_stratum);
1380 return dynamic_cast<remote_target *> (proc_target);
1381 }
1382
1383 /* Return the current allowed size of a remote packet. This is
1384 inferred from the current architecture, and should be used to
1385 limit the length of outgoing packets. */
1386 long
1387 remote_target::get_remote_packet_size ()
1388 {
1389 struct remote_state *rs = get_remote_state ();
1390 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1391
1392 if (rs->explicit_packet_size)
1393 return rs->explicit_packet_size;
1394
1395 return rsa->remote_packet_size;
1396 }
1397
1398 static struct packet_reg *
1399 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1400 long regnum)
1401 {
1402 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1403 return NULL;
1404 else
1405 {
1406 struct packet_reg *r = &rsa->regs[regnum];
1407
1408 gdb_assert (r->regnum == regnum);
1409 return r;
1410 }
1411 }
1412
1413 static struct packet_reg *
1414 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1415 LONGEST pnum)
1416 {
1417 int i;
1418
1419 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1420 {
1421 struct packet_reg *r = &rsa->regs[i];
1422
1423 if (r->pnum == pnum)
1424 return r;
1425 }
1426 return NULL;
1427 }
1428
1429 /* Allow the user to specify what sequence to send to the remote
1430 when he requests a program interruption: Although ^C is usually
1431 what remote systems expect (this is the default, here), it is
1432 sometimes preferable to send a break. On other systems such
1433 as the Linux kernel, a break followed by g, which is Magic SysRq g
1434 is required in order to interrupt the execution. */
1435 const char interrupt_sequence_control_c[] = "Ctrl-C";
1436 const char interrupt_sequence_break[] = "BREAK";
1437 const char interrupt_sequence_break_g[] = "BREAK-g";
1438 static const char *const interrupt_sequence_modes[] =
1439 {
1440 interrupt_sequence_control_c,
1441 interrupt_sequence_break,
1442 interrupt_sequence_break_g,
1443 NULL
1444 };
1445 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1446
1447 static void
1448 show_interrupt_sequence (struct ui_file *file, int from_tty,
1449 struct cmd_list_element *c,
1450 const char *value)
1451 {
1452 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1453 fprintf_filtered (file,
1454 _("Send the ASCII ETX character (Ctrl-c) "
1455 "to the remote target to interrupt the "
1456 "execution of the program.\n"));
1457 else if (interrupt_sequence_mode == interrupt_sequence_break)
1458 fprintf_filtered (file,
1459 _("send a break signal to the remote target "
1460 "to interrupt the execution of the program.\n"));
1461 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1462 fprintf_filtered (file,
1463 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1464 "the remote target to interrupt the execution "
1465 "of Linux kernel.\n"));
1466 else
1467 internal_error (__FILE__, __LINE__,
1468 _("Invalid value for interrupt_sequence_mode: %s."),
1469 interrupt_sequence_mode);
1470 }
1471
1472 /* This boolean variable specifies whether interrupt_sequence is sent
1473 to the remote target when gdb connects to it.
1474 This is mostly needed when you debug the Linux kernel: The Linux kernel
1475 expects BREAK g which is Magic SysRq g for connecting gdb. */
1476 static bool interrupt_on_connect = false;
1477
1478 /* This variable is used to implement the "set/show remotebreak" commands.
1479 Since these commands are now deprecated in favor of "set/show remote
1480 interrupt-sequence", it no longer has any effect on the code. */
1481 static bool remote_break;
1482
1483 static void
1484 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1485 {
1486 if (remote_break)
1487 interrupt_sequence_mode = interrupt_sequence_break;
1488 else
1489 interrupt_sequence_mode = interrupt_sequence_control_c;
1490 }
1491
1492 static void
1493 show_remotebreak (struct ui_file *file, int from_tty,
1494 struct cmd_list_element *c,
1495 const char *value)
1496 {
1497 }
1498
1499 /* This variable sets the number of bits in an address that are to be
1500 sent in a memory ("M" or "m") packet. Normally, after stripping
1501 leading zeros, the entire address would be sent. This variable
1502 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1503 initial implementation of remote.c restricted the address sent in
1504 memory packets to ``host::sizeof long'' bytes - (typically 32
1505 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1506 address was never sent. Since fixing this bug may cause a break in
1507 some remote targets this variable is principally provided to
1508 facilitate backward compatibility. */
1509
1510 static unsigned int remote_address_size;
1511
1512 \f
1513 /* User configurable variables for the number of characters in a
1514 memory read/write packet. MIN (rsa->remote_packet_size,
1515 rsa->sizeof_g_packet) is the default. Some targets need smaller
1516 values (fifo overruns, et.al.) and some users need larger values
1517 (speed up transfers). The variables ``preferred_*'' (the user
1518 request), ``current_*'' (what was actually set) and ``forced_*''
1519 (Positive - a soft limit, negative - a hard limit). */
1520
1521 struct memory_packet_config
1522 {
1523 const char *name;
1524 long size;
1525 int fixed_p;
1526 };
1527
1528 /* The default max memory-write-packet-size, when the setting is
1529 "fixed". The 16k is historical. (It came from older GDB's using
1530 alloca for buffers and the knowledge (folklore?) that some hosts
1531 don't cope very well with large alloca calls.) */
1532 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1533
1534 /* The minimum remote packet size for memory transfers. Ensures we
1535 can write at least one byte. */
1536 #define MIN_MEMORY_PACKET_SIZE 20
1537
1538 /* Get the memory packet size, assuming it is fixed. */
1539
1540 static long
1541 get_fixed_memory_packet_size (struct memory_packet_config *config)
1542 {
1543 gdb_assert (config->fixed_p);
1544
1545 if (config->size <= 0)
1546 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1547 else
1548 return config->size;
1549 }
1550
1551 /* Compute the current size of a read/write packet. Since this makes
1552 use of ``actual_register_packet_size'' the computation is dynamic. */
1553
1554 long
1555 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1556 {
1557 struct remote_state *rs = get_remote_state ();
1558 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1559
1560 long what_they_get;
1561 if (config->fixed_p)
1562 what_they_get = get_fixed_memory_packet_size (config);
1563 else
1564 {
1565 what_they_get = get_remote_packet_size ();
1566 /* Limit the packet to the size specified by the user. */
1567 if (config->size > 0
1568 && what_they_get > config->size)
1569 what_they_get = config->size;
1570
1571 /* Limit it to the size of the targets ``g'' response unless we have
1572 permission from the stub to use a larger packet size. */
1573 if (rs->explicit_packet_size == 0
1574 && rsa->actual_register_packet_size > 0
1575 && what_they_get > rsa->actual_register_packet_size)
1576 what_they_get = rsa->actual_register_packet_size;
1577 }
1578 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1579 what_they_get = MIN_MEMORY_PACKET_SIZE;
1580
1581 /* Make sure there is room in the global buffer for this packet
1582 (including its trailing NUL byte). */
1583 if (rs->buf.size () < what_they_get + 1)
1584 rs->buf.resize (2 * what_they_get);
1585
1586 return what_they_get;
1587 }
1588
1589 /* Update the size of a read/write packet. If they user wants
1590 something really big then do a sanity check. */
1591
1592 static void
1593 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1594 {
1595 int fixed_p = config->fixed_p;
1596 long size = config->size;
1597
1598 if (args == NULL)
1599 error (_("Argument required (integer, `fixed' or `limited')."));
1600 else if (strcmp (args, "hard") == 0
1601 || strcmp (args, "fixed") == 0)
1602 fixed_p = 1;
1603 else if (strcmp (args, "soft") == 0
1604 || strcmp (args, "limit") == 0)
1605 fixed_p = 0;
1606 else
1607 {
1608 char *end;
1609
1610 size = strtoul (args, &end, 0);
1611 if (args == end)
1612 error (_("Invalid %s (bad syntax)."), config->name);
1613
1614 /* Instead of explicitly capping the size of a packet to or
1615 disallowing it, the user is allowed to set the size to
1616 something arbitrarily large. */
1617 }
1618
1619 /* Extra checks? */
1620 if (fixed_p && !config->fixed_p)
1621 {
1622 /* So that the query shows the correct value. */
1623 long query_size = (size <= 0
1624 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1625 : size);
1626
1627 if (! query (_("The target may not be able to correctly handle a %s\n"
1628 "of %ld bytes. Change the packet size? "),
1629 config->name, query_size))
1630 error (_("Packet size not changed."));
1631 }
1632 /* Update the config. */
1633 config->fixed_p = fixed_p;
1634 config->size = size;
1635 }
1636
1637 static void
1638 show_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 if (config->size == 0)
1641 printf_filtered (_("The %s is 0 (default). "), config->name);
1642 else
1643 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1644 if (config->fixed_p)
1645 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1646 get_fixed_memory_packet_size (config));
1647 else
1648 {
1649 remote_target *remote = get_current_remote_target ();
1650
1651 if (remote != NULL)
1652 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1653 remote->get_memory_packet_size (config));
1654 else
1655 puts_filtered ("The actual limit will be further reduced "
1656 "dependent on the target.\n");
1657 }
1658 }
1659
1660 static struct memory_packet_config memory_write_packet_config =
1661 {
1662 "memory-write-packet-size",
1663 };
1664
1665 static void
1666 set_memory_write_packet_size (const char *args, int from_tty)
1667 {
1668 set_memory_packet_size (args, &memory_write_packet_config);
1669 }
1670
1671 static void
1672 show_memory_write_packet_size (const char *args, int from_tty)
1673 {
1674 show_memory_packet_size (&memory_write_packet_config);
1675 }
1676
1677 /* Show the number of hardware watchpoints that can be used. */
1678
1679 static void
1680 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1681 struct cmd_list_element *c,
1682 const char *value)
1683 {
1684 fprintf_filtered (file, _("The maximum number of target hardware "
1685 "watchpoints is %s.\n"), value);
1686 }
1687
1688 /* Show the length limit (in bytes) for hardware watchpoints. */
1689
1690 static void
1691 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1692 struct cmd_list_element *c,
1693 const char *value)
1694 {
1695 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1696 "hardware watchpoint is %s.\n"), value);
1697 }
1698
1699 /* Show the number of hardware breakpoints that can be used. */
1700
1701 static void
1702 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1703 struct cmd_list_element *c,
1704 const char *value)
1705 {
1706 fprintf_filtered (file, _("The maximum number of target hardware "
1707 "breakpoints is %s.\n"), value);
1708 }
1709
1710 /* Controls the maximum number of characters to display in the debug output
1711 for each remote packet. The remaining characters are omitted. */
1712
1713 static int remote_packet_max_chars = 512;
1714
1715 /* Show the maximum number of characters to display for each remote packet
1716 when remote debugging is enabled. */
1717
1718 static void
1719 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1720 struct cmd_list_element *c,
1721 const char *value)
1722 {
1723 fprintf_filtered (file, _("Number of remote packet characters to "
1724 "display is %s.\n"), value);
1725 }
1726
1727 long
1728 remote_target::get_memory_write_packet_size ()
1729 {
1730 return get_memory_packet_size (&memory_write_packet_config);
1731 }
1732
1733 static struct memory_packet_config memory_read_packet_config =
1734 {
1735 "memory-read-packet-size",
1736 };
1737
1738 static void
1739 set_memory_read_packet_size (const char *args, int from_tty)
1740 {
1741 set_memory_packet_size (args, &memory_read_packet_config);
1742 }
1743
1744 static void
1745 show_memory_read_packet_size (const char *args, int from_tty)
1746 {
1747 show_memory_packet_size (&memory_read_packet_config);
1748 }
1749
1750 long
1751 remote_target::get_memory_read_packet_size ()
1752 {
1753 long size = get_memory_packet_size (&memory_read_packet_config);
1754
1755 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1756 extra buffer size argument before the memory read size can be
1757 increased beyond this. */
1758 if (size > get_remote_packet_size ())
1759 size = get_remote_packet_size ();
1760 return size;
1761 }
1762
1763 \f
1764
1765 struct packet_config
1766 {
1767 const char *name;
1768 const char *title;
1769
1770 /* If auto, GDB auto-detects support for this packet or feature,
1771 either through qSupported, or by trying the packet and looking
1772 at the response. If true, GDB assumes the target supports this
1773 packet. If false, the packet is disabled. Configs that don't
1774 have an associated command always have this set to auto. */
1775 enum auto_boolean detect;
1776
1777 /* Does the target support this packet? */
1778 enum packet_support support;
1779 };
1780
1781 static enum packet_support packet_config_support (struct packet_config *config);
1782 static enum packet_support packet_support (int packet);
1783
1784 static void
1785 show_packet_config_cmd (struct packet_config *config)
1786 {
1787 const char *support = "internal-error";
1788
1789 switch (packet_config_support (config))
1790 {
1791 case PACKET_ENABLE:
1792 support = "enabled";
1793 break;
1794 case PACKET_DISABLE:
1795 support = "disabled";
1796 break;
1797 case PACKET_SUPPORT_UNKNOWN:
1798 support = "unknown";
1799 break;
1800 }
1801 switch (config->detect)
1802 {
1803 case AUTO_BOOLEAN_AUTO:
1804 printf_filtered (_("Support for the `%s' packet "
1805 "is auto-detected, currently %s.\n"),
1806 config->name, support);
1807 break;
1808 case AUTO_BOOLEAN_TRUE:
1809 case AUTO_BOOLEAN_FALSE:
1810 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1811 config->name, support);
1812 break;
1813 }
1814 }
1815
1816 static void
1817 add_packet_config_cmd (struct packet_config *config, const char *name,
1818 const char *title, int legacy)
1819 {
1820 char *set_doc;
1821 char *show_doc;
1822 char *cmd_name;
1823
1824 config->name = name;
1825 config->title = title;
1826 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1827 name, title);
1828 show_doc = xstrprintf ("Show current use of remote "
1829 "protocol `%s' (%s) packet.",
1830 name, title);
1831 /* set/show TITLE-packet {auto,on,off} */
1832 cmd_name = xstrprintf ("%s-packet", title);
1833 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1834 &config->detect, set_doc,
1835 show_doc, NULL, /* help_doc */
1836 NULL,
1837 show_remote_protocol_packet_cmd,
1838 &remote_set_cmdlist, &remote_show_cmdlist);
1839 /* The command code copies the documentation strings. */
1840 xfree (set_doc);
1841 xfree (show_doc);
1842 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1843 if (legacy)
1844 {
1845 char *legacy_name;
1846
1847 legacy_name = xstrprintf ("%s-packet", name);
1848 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1849 &remote_set_cmdlist);
1850 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1851 &remote_show_cmdlist);
1852 }
1853 }
1854
1855 static enum packet_result
1856 packet_check_result (const char *buf)
1857 {
1858 if (buf[0] != '\0')
1859 {
1860 /* The stub recognized the packet request. Check that the
1861 operation succeeded. */
1862 if (buf[0] == 'E'
1863 && isxdigit (buf[1]) && isxdigit (buf[2])
1864 && buf[3] == '\0')
1865 /* "Enn" - definitely an error. */
1866 return PACKET_ERROR;
1867
1868 /* Always treat "E." as an error. This will be used for
1869 more verbose error messages, such as E.memtypes. */
1870 if (buf[0] == 'E' && buf[1] == '.')
1871 return PACKET_ERROR;
1872
1873 /* The packet may or may not be OK. Just assume it is. */
1874 return PACKET_OK;
1875 }
1876 else
1877 /* The stub does not support the packet. */
1878 return PACKET_UNKNOWN;
1879 }
1880
1881 static enum packet_result
1882 packet_check_result (const gdb::char_vector &buf)
1883 {
1884 return packet_check_result (buf.data ());
1885 }
1886
1887 static enum packet_result
1888 packet_ok (const char *buf, struct packet_config *config)
1889 {
1890 enum packet_result result;
1891
1892 if (config->detect != AUTO_BOOLEAN_TRUE
1893 && config->support == PACKET_DISABLE)
1894 internal_error (__FILE__, __LINE__,
1895 _("packet_ok: attempt to use a disabled packet"));
1896
1897 result = packet_check_result (buf);
1898 switch (result)
1899 {
1900 case PACKET_OK:
1901 case PACKET_ERROR:
1902 /* The stub recognized the packet request. */
1903 if (config->support == PACKET_SUPPORT_UNKNOWN)
1904 {
1905 if (remote_debug)
1906 fprintf_unfiltered (gdb_stdlog,
1907 "Packet %s (%s) is supported\n",
1908 config->name, config->title);
1909 config->support = PACKET_ENABLE;
1910 }
1911 break;
1912 case PACKET_UNKNOWN:
1913 /* The stub does not support the packet. */
1914 if (config->detect == AUTO_BOOLEAN_AUTO
1915 && config->support == PACKET_ENABLE)
1916 {
1917 /* If the stub previously indicated that the packet was
1918 supported then there is a protocol error. */
1919 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1920 config->name, config->title);
1921 }
1922 else if (config->detect == AUTO_BOOLEAN_TRUE)
1923 {
1924 /* The user set it wrong. */
1925 error (_("Enabled packet %s (%s) not recognized by stub"),
1926 config->name, config->title);
1927 }
1928
1929 if (remote_debug)
1930 fprintf_unfiltered (gdb_stdlog,
1931 "Packet %s (%s) is NOT supported\n",
1932 config->name, config->title);
1933 config->support = PACKET_DISABLE;
1934 break;
1935 }
1936
1937 return result;
1938 }
1939
1940 static enum packet_result
1941 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1942 {
1943 return packet_ok (buf.data (), config);
1944 }
1945
1946 enum {
1947 PACKET_vCont = 0,
1948 PACKET_X,
1949 PACKET_qSymbol,
1950 PACKET_P,
1951 PACKET_p,
1952 PACKET_Z0,
1953 PACKET_Z1,
1954 PACKET_Z2,
1955 PACKET_Z3,
1956 PACKET_Z4,
1957 PACKET_vFile_setfs,
1958 PACKET_vFile_open,
1959 PACKET_vFile_pread,
1960 PACKET_vFile_pwrite,
1961 PACKET_vFile_close,
1962 PACKET_vFile_unlink,
1963 PACKET_vFile_readlink,
1964 PACKET_vFile_fstat,
1965 PACKET_qXfer_auxv,
1966 PACKET_qXfer_features,
1967 PACKET_qXfer_exec_file,
1968 PACKET_qXfer_libraries,
1969 PACKET_qXfer_libraries_svr4,
1970 PACKET_qXfer_memory_map,
1971 PACKET_qXfer_osdata,
1972 PACKET_qXfer_threads,
1973 PACKET_qXfer_statictrace_read,
1974 PACKET_qXfer_traceframe_info,
1975 PACKET_qXfer_uib,
1976 PACKET_qGetTIBAddr,
1977 PACKET_qGetTLSAddr,
1978 PACKET_qSupported,
1979 PACKET_qTStatus,
1980 PACKET_QPassSignals,
1981 PACKET_QCatchSyscalls,
1982 PACKET_QProgramSignals,
1983 PACKET_QSetWorkingDir,
1984 PACKET_QStartupWithShell,
1985 PACKET_QEnvironmentHexEncoded,
1986 PACKET_QEnvironmentReset,
1987 PACKET_QEnvironmentUnset,
1988 PACKET_qCRC,
1989 PACKET_qSearch_memory,
1990 PACKET_vAttach,
1991 PACKET_vRun,
1992 PACKET_QStartNoAckMode,
1993 PACKET_vKill,
1994 PACKET_qXfer_siginfo_read,
1995 PACKET_qXfer_siginfo_write,
1996 PACKET_qAttached,
1997
1998 /* Support for conditional tracepoints. */
1999 PACKET_ConditionalTracepoints,
2000
2001 /* Support for target-side breakpoint conditions. */
2002 PACKET_ConditionalBreakpoints,
2003
2004 /* Support for target-side breakpoint commands. */
2005 PACKET_BreakpointCommands,
2006
2007 /* Support for fast tracepoints. */
2008 PACKET_FastTracepoints,
2009
2010 /* Support for static tracepoints. */
2011 PACKET_StaticTracepoints,
2012
2013 /* Support for installing tracepoints while a trace experiment is
2014 running. */
2015 PACKET_InstallInTrace,
2016
2017 PACKET_bc,
2018 PACKET_bs,
2019 PACKET_TracepointSource,
2020 PACKET_QAllow,
2021 PACKET_qXfer_fdpic,
2022 PACKET_QDisableRandomization,
2023 PACKET_QAgent,
2024 PACKET_QTBuffer_size,
2025 PACKET_Qbtrace_off,
2026 PACKET_Qbtrace_bts,
2027 PACKET_Qbtrace_pt,
2028 PACKET_qXfer_btrace,
2029
2030 /* Support for the QNonStop packet. */
2031 PACKET_QNonStop,
2032
2033 /* Support for the QThreadEvents packet. */
2034 PACKET_QThreadEvents,
2035
2036 /* Support for multi-process extensions. */
2037 PACKET_multiprocess_feature,
2038
2039 /* Support for enabling and disabling tracepoints while a trace
2040 experiment is running. */
2041 PACKET_EnableDisableTracepoints_feature,
2042
2043 /* Support for collecting strings using the tracenz bytecode. */
2044 PACKET_tracenz_feature,
2045
2046 /* Support for continuing to run a trace experiment while GDB is
2047 disconnected. */
2048 PACKET_DisconnectedTracing_feature,
2049
2050 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2051 PACKET_augmented_libraries_svr4_read_feature,
2052
2053 /* Support for the qXfer:btrace-conf:read packet. */
2054 PACKET_qXfer_btrace_conf,
2055
2056 /* Support for the Qbtrace-conf:bts:size packet. */
2057 PACKET_Qbtrace_conf_bts_size,
2058
2059 /* Support for swbreak+ feature. */
2060 PACKET_swbreak_feature,
2061
2062 /* Support for hwbreak+ feature. */
2063 PACKET_hwbreak_feature,
2064
2065 /* Support for fork events. */
2066 PACKET_fork_event_feature,
2067
2068 /* Support for vfork events. */
2069 PACKET_vfork_event_feature,
2070
2071 /* Support for the Qbtrace-conf:pt:size packet. */
2072 PACKET_Qbtrace_conf_pt_size,
2073
2074 /* Support for exec events. */
2075 PACKET_exec_event_feature,
2076
2077 /* Support for query supported vCont actions. */
2078 PACKET_vContSupported,
2079
2080 /* Support remote CTRL-C. */
2081 PACKET_vCtrlC,
2082
2083 /* Support TARGET_WAITKIND_NO_RESUMED. */
2084 PACKET_no_resumed,
2085
2086 PACKET_MAX
2087 };
2088
2089 static struct packet_config remote_protocol_packets[PACKET_MAX];
2090
2091 /* Returns the packet's corresponding "set remote foo-packet" command
2092 state. See struct packet_config for more details. */
2093
2094 static enum auto_boolean
2095 packet_set_cmd_state (int packet)
2096 {
2097 return remote_protocol_packets[packet].detect;
2098 }
2099
2100 /* Returns whether a given packet or feature is supported. This takes
2101 into account the state of the corresponding "set remote foo-packet"
2102 command, which may be used to bypass auto-detection. */
2103
2104 static enum packet_support
2105 packet_config_support (struct packet_config *config)
2106 {
2107 switch (config->detect)
2108 {
2109 case AUTO_BOOLEAN_TRUE:
2110 return PACKET_ENABLE;
2111 case AUTO_BOOLEAN_FALSE:
2112 return PACKET_DISABLE;
2113 case AUTO_BOOLEAN_AUTO:
2114 return config->support;
2115 default:
2116 gdb_assert_not_reached (_("bad switch"));
2117 }
2118 }
2119
2120 /* Same as packet_config_support, but takes the packet's enum value as
2121 argument. */
2122
2123 static enum packet_support
2124 packet_support (int packet)
2125 {
2126 struct packet_config *config = &remote_protocol_packets[packet];
2127
2128 return packet_config_support (config);
2129 }
2130
2131 static void
2132 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2133 struct cmd_list_element *c,
2134 const char *value)
2135 {
2136 struct packet_config *packet;
2137
2138 for (packet = remote_protocol_packets;
2139 packet < &remote_protocol_packets[PACKET_MAX];
2140 packet++)
2141 {
2142 if (&packet->detect == c->var)
2143 {
2144 show_packet_config_cmd (packet);
2145 return;
2146 }
2147 }
2148 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2149 c->name);
2150 }
2151
2152 /* Should we try one of the 'Z' requests? */
2153
2154 enum Z_packet_type
2155 {
2156 Z_PACKET_SOFTWARE_BP,
2157 Z_PACKET_HARDWARE_BP,
2158 Z_PACKET_WRITE_WP,
2159 Z_PACKET_READ_WP,
2160 Z_PACKET_ACCESS_WP,
2161 NR_Z_PACKET_TYPES
2162 };
2163
2164 /* For compatibility with older distributions. Provide a ``set remote
2165 Z-packet ...'' command that updates all the Z packet types. */
2166
2167 static enum auto_boolean remote_Z_packet_detect;
2168
2169 static void
2170 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2171 struct cmd_list_element *c)
2172 {
2173 int i;
2174
2175 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2176 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2177 }
2178
2179 static void
2180 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2181 struct cmd_list_element *c,
2182 const char *value)
2183 {
2184 int i;
2185
2186 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2187 {
2188 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2189 }
2190 }
2191
2192 /* Returns true if the multi-process extensions are in effect. */
2193
2194 static int
2195 remote_multi_process_p (struct remote_state *rs)
2196 {
2197 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2198 }
2199
2200 /* Returns true if fork events are supported. */
2201
2202 static int
2203 remote_fork_event_p (struct remote_state *rs)
2204 {
2205 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2206 }
2207
2208 /* Returns true if vfork events are supported. */
2209
2210 static int
2211 remote_vfork_event_p (struct remote_state *rs)
2212 {
2213 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2214 }
2215
2216 /* Returns true if exec events are supported. */
2217
2218 static int
2219 remote_exec_event_p (struct remote_state *rs)
2220 {
2221 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2222 }
2223
2224 /* Insert fork catchpoint target routine. If fork events are enabled
2225 then return success, nothing more to do. */
2226
2227 int
2228 remote_target::insert_fork_catchpoint (int pid)
2229 {
2230 struct remote_state *rs = get_remote_state ();
2231
2232 return !remote_fork_event_p (rs);
2233 }
2234
2235 /* Remove fork catchpoint target routine. Nothing to do, just
2236 return success. */
2237
2238 int
2239 remote_target::remove_fork_catchpoint (int pid)
2240 {
2241 return 0;
2242 }
2243
2244 /* Insert vfork catchpoint target routine. If vfork events are enabled
2245 then return success, nothing more to do. */
2246
2247 int
2248 remote_target::insert_vfork_catchpoint (int pid)
2249 {
2250 struct remote_state *rs = get_remote_state ();
2251
2252 return !remote_vfork_event_p (rs);
2253 }
2254
2255 /* Remove vfork catchpoint target routine. Nothing to do, just
2256 return success. */
2257
2258 int
2259 remote_target::remove_vfork_catchpoint (int pid)
2260 {
2261 return 0;
2262 }
2263
2264 /* Insert exec catchpoint target routine. If exec events are
2265 enabled, just return success. */
2266
2267 int
2268 remote_target::insert_exec_catchpoint (int pid)
2269 {
2270 struct remote_state *rs = get_remote_state ();
2271
2272 return !remote_exec_event_p (rs);
2273 }
2274
2275 /* Remove exec catchpoint target routine. Nothing to do, just
2276 return success. */
2277
2278 int
2279 remote_target::remove_exec_catchpoint (int pid)
2280 {
2281 return 0;
2282 }
2283
2284 \f
2285
2286 /* Take advantage of the fact that the TID field is not used, to tag
2287 special ptids with it set to != 0. */
2288 static const ptid_t magic_null_ptid (42000, -1, 1);
2289 static const ptid_t not_sent_ptid (42000, -2, 1);
2290 static const ptid_t any_thread_ptid (42000, 0, 1);
2291
2292 /* Find out if the stub attached to PID (and hence GDB should offer to
2293 detach instead of killing it when bailing out). */
2294
2295 int
2296 remote_target::remote_query_attached (int pid)
2297 {
2298 struct remote_state *rs = get_remote_state ();
2299 size_t size = get_remote_packet_size ();
2300
2301 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2302 return 0;
2303
2304 if (remote_multi_process_p (rs))
2305 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2306 else
2307 xsnprintf (rs->buf.data (), size, "qAttached");
2308
2309 putpkt (rs->buf);
2310 getpkt (&rs->buf, 0);
2311
2312 switch (packet_ok (rs->buf,
2313 &remote_protocol_packets[PACKET_qAttached]))
2314 {
2315 case PACKET_OK:
2316 if (strcmp (rs->buf.data (), "1") == 0)
2317 return 1;
2318 break;
2319 case PACKET_ERROR:
2320 warning (_("Remote failure reply: %s"), rs->buf.data ());
2321 break;
2322 case PACKET_UNKNOWN:
2323 break;
2324 }
2325
2326 return 0;
2327 }
2328
2329 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2330 has been invented by GDB, instead of reported by the target. Since
2331 we can be connected to a remote system before before knowing about
2332 any inferior, mark the target with execution when we find the first
2333 inferior. If ATTACHED is 1, then we had just attached to this
2334 inferior. If it is 0, then we just created this inferior. If it
2335 is -1, then try querying the remote stub to find out if it had
2336 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2337 attempt to open this inferior's executable as the main executable
2338 if no main executable is open already. */
2339
2340 inferior *
2341 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2342 int try_open_exec)
2343 {
2344 struct inferior *inf;
2345
2346 /* Check whether this process we're learning about is to be
2347 considered attached, or if is to be considered to have been
2348 spawned by the stub. */
2349 if (attached == -1)
2350 attached = remote_query_attached (pid);
2351
2352 if (gdbarch_has_global_solist (target_gdbarch ()))
2353 {
2354 /* If the target shares code across all inferiors, then every
2355 attach adds a new inferior. */
2356 inf = add_inferior (pid);
2357
2358 /* ... and every inferior is bound to the same program space.
2359 However, each inferior may still have its own address
2360 space. */
2361 inf->aspace = maybe_new_address_space ();
2362 inf->pspace = current_program_space;
2363 }
2364 else
2365 {
2366 /* In the traditional debugging scenario, there's a 1-1 match
2367 between program/address spaces. We simply bind the inferior
2368 to the program space's address space. */
2369 inf = current_inferior ();
2370 inferior_appeared (inf, pid);
2371 }
2372
2373 inf->attach_flag = attached;
2374 inf->fake_pid_p = fake_pid_p;
2375
2376 /* If no main executable is currently open then attempt to
2377 open the file that was executed to create this inferior. */
2378 if (try_open_exec && get_exec_file (0) == NULL)
2379 exec_file_locate_attach (pid, 0, 1);
2380
2381 return inf;
2382 }
2383
2384 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2385 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2386
2387 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2388 according to RUNNING. */
2389
2390 thread_info *
2391 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2392 {
2393 struct remote_state *rs = get_remote_state ();
2394 struct thread_info *thread;
2395
2396 /* GDB historically didn't pull threads in the initial connection
2397 setup. If the remote target doesn't even have a concept of
2398 threads (e.g., a bare-metal target), even if internally we
2399 consider that a single-threaded target, mentioning a new thread
2400 might be confusing to the user. Be silent then, preserving the
2401 age old behavior. */
2402 if (rs->starting_up)
2403 thread = add_thread_silent (ptid);
2404 else
2405 thread = add_thread (ptid);
2406
2407 get_remote_thread_info (thread)->vcont_resumed = executing;
2408 set_executing (ptid, executing);
2409 set_running (ptid, running);
2410
2411 return thread;
2412 }
2413
2414 /* Come here when we learn about a thread id from the remote target.
2415 It may be the first time we hear about such thread, so take the
2416 opportunity to add it to GDB's thread list. In case this is the
2417 first time we're noticing its corresponding inferior, add it to
2418 GDB's inferior list as well. EXECUTING indicates whether the
2419 thread is (internally) executing or stopped. */
2420
2421 void
2422 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2423 {
2424 /* In non-stop mode, we assume new found threads are (externally)
2425 running until proven otherwise with a stop reply. In all-stop,
2426 we can only get here if all threads are stopped. */
2427 int running = target_is_non_stop_p () ? 1 : 0;
2428
2429 /* If this is a new thread, add it to GDB's thread list.
2430 If we leave it up to WFI to do this, bad things will happen. */
2431
2432 thread_info *tp = find_thread_ptid (currthread);
2433 if (tp != NULL && tp->state == THREAD_EXITED)
2434 {
2435 /* We're seeing an event on a thread id we knew had exited.
2436 This has to be a new thread reusing the old id. Add it. */
2437 remote_add_thread (currthread, running, executing);
2438 return;
2439 }
2440
2441 if (!in_thread_list (currthread))
2442 {
2443 struct inferior *inf = NULL;
2444 int pid = currthread.pid ();
2445
2446 if (inferior_ptid.is_pid ()
2447 && pid == inferior_ptid.pid ())
2448 {
2449 /* inferior_ptid has no thread member yet. This can happen
2450 with the vAttach -> remote_wait,"TAAthread:" path if the
2451 stub doesn't support qC. This is the first stop reported
2452 after an attach, so this is the main thread. Update the
2453 ptid in the thread list. */
2454 if (in_thread_list (ptid_t (pid)))
2455 thread_change_ptid (inferior_ptid, currthread);
2456 else
2457 {
2458 remote_add_thread (currthread, running, executing);
2459 inferior_ptid = currthread;
2460 }
2461 return;
2462 }
2463
2464 if (magic_null_ptid == inferior_ptid)
2465 {
2466 /* inferior_ptid is not set yet. This can happen with the
2467 vRun -> remote_wait,"TAAthread:" path if the stub
2468 doesn't support qC. This is the first stop reported
2469 after an attach, so this is the main thread. Update the
2470 ptid in the thread list. */
2471 thread_change_ptid (inferior_ptid, currthread);
2472 return;
2473 }
2474
2475 /* When connecting to a target remote, or to a target
2476 extended-remote which already was debugging an inferior, we
2477 may not know about it yet. Add it before adding its child
2478 thread, so notifications are emitted in a sensible order. */
2479 if (find_inferior_pid (currthread.pid ()) == NULL)
2480 {
2481 struct remote_state *rs = get_remote_state ();
2482 bool fake_pid_p = !remote_multi_process_p (rs);
2483
2484 inf = remote_add_inferior (fake_pid_p,
2485 currthread.pid (), -1, 1);
2486 }
2487
2488 /* This is really a new thread. Add it. */
2489 thread_info *new_thr
2490 = remote_add_thread (currthread, running, executing);
2491
2492 /* If we found a new inferior, let the common code do whatever
2493 it needs to with it (e.g., read shared libraries, insert
2494 breakpoints), unless we're just setting up an all-stop
2495 connection. */
2496 if (inf != NULL)
2497 {
2498 struct remote_state *rs = get_remote_state ();
2499
2500 if (!rs->starting_up)
2501 notice_new_inferior (new_thr, executing, 0);
2502 }
2503 }
2504 }
2505
2506 /* Return THREAD's private thread data, creating it if necessary. */
2507
2508 static remote_thread_info *
2509 get_remote_thread_info (thread_info *thread)
2510 {
2511 gdb_assert (thread != NULL);
2512
2513 if (thread->priv == NULL)
2514 thread->priv.reset (new remote_thread_info);
2515
2516 return static_cast<remote_thread_info *> (thread->priv.get ());
2517 }
2518
2519 static remote_thread_info *
2520 get_remote_thread_info (ptid_t ptid)
2521 {
2522 thread_info *thr = find_thread_ptid (ptid);
2523 return get_remote_thread_info (thr);
2524 }
2525
2526 /* Call this function as a result of
2527 1) A halt indication (T packet) containing a thread id
2528 2) A direct query of currthread
2529 3) Successful execution of set thread */
2530
2531 static void
2532 record_currthread (struct remote_state *rs, ptid_t currthread)
2533 {
2534 rs->general_thread = currthread;
2535 }
2536
2537 /* If 'QPassSignals' is supported, tell the remote stub what signals
2538 it can simply pass through to the inferior without reporting. */
2539
2540 void
2541 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2542 {
2543 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2544 {
2545 char *pass_packet, *p;
2546 int count = 0;
2547 struct remote_state *rs = get_remote_state ();
2548
2549 gdb_assert (pass_signals.size () < 256);
2550 for (size_t i = 0; i < pass_signals.size (); i++)
2551 {
2552 if (pass_signals[i])
2553 count++;
2554 }
2555 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2556 strcpy (pass_packet, "QPassSignals:");
2557 p = pass_packet + strlen (pass_packet);
2558 for (size_t i = 0; i < pass_signals.size (); i++)
2559 {
2560 if (pass_signals[i])
2561 {
2562 if (i >= 16)
2563 *p++ = tohex (i >> 4);
2564 *p++ = tohex (i & 15);
2565 if (count)
2566 *p++ = ';';
2567 else
2568 break;
2569 count--;
2570 }
2571 }
2572 *p = 0;
2573 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2574 {
2575 putpkt (pass_packet);
2576 getpkt (&rs->buf, 0);
2577 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2578 if (rs->last_pass_packet)
2579 xfree (rs->last_pass_packet);
2580 rs->last_pass_packet = pass_packet;
2581 }
2582 else
2583 xfree (pass_packet);
2584 }
2585 }
2586
2587 /* If 'QCatchSyscalls' is supported, tell the remote stub
2588 to report syscalls to GDB. */
2589
2590 int
2591 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2592 gdb::array_view<const int> syscall_counts)
2593 {
2594 const char *catch_packet;
2595 enum packet_result result;
2596 int n_sysno = 0;
2597
2598 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2599 {
2600 /* Not supported. */
2601 return 1;
2602 }
2603
2604 if (needed && any_count == 0)
2605 {
2606 /* Count how many syscalls are to be caught. */
2607 for (size_t i = 0; i < syscall_counts.size (); i++)
2608 {
2609 if (syscall_counts[i] != 0)
2610 n_sysno++;
2611 }
2612 }
2613
2614 if (remote_debug)
2615 {
2616 fprintf_unfiltered (gdb_stdlog,
2617 "remote_set_syscall_catchpoint "
2618 "pid %d needed %d any_count %d n_sysno %d\n",
2619 pid, needed, any_count, n_sysno);
2620 }
2621
2622 std::string built_packet;
2623 if (needed)
2624 {
2625 /* Prepare a packet with the sysno list, assuming max 8+1
2626 characters for a sysno. If the resulting packet size is too
2627 big, fallback on the non-selective packet. */
2628 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2629 built_packet.reserve (maxpktsz);
2630 built_packet = "QCatchSyscalls:1";
2631 if (any_count == 0)
2632 {
2633 /* Add in each syscall to be caught. */
2634 for (size_t i = 0; i < syscall_counts.size (); i++)
2635 {
2636 if (syscall_counts[i] != 0)
2637 string_appendf (built_packet, ";%zx", i);
2638 }
2639 }
2640 if (built_packet.size () > get_remote_packet_size ())
2641 {
2642 /* catch_packet too big. Fallback to less efficient
2643 non selective mode, with GDB doing the filtering. */
2644 catch_packet = "QCatchSyscalls:1";
2645 }
2646 else
2647 catch_packet = built_packet.c_str ();
2648 }
2649 else
2650 catch_packet = "QCatchSyscalls:0";
2651
2652 struct remote_state *rs = get_remote_state ();
2653
2654 putpkt (catch_packet);
2655 getpkt (&rs->buf, 0);
2656 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2657 if (result == PACKET_OK)
2658 return 0;
2659 else
2660 return -1;
2661 }
2662
2663 /* If 'QProgramSignals' is supported, tell the remote stub what
2664 signals it should pass through to the inferior when detaching. */
2665
2666 void
2667 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2668 {
2669 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2670 {
2671 char *packet, *p;
2672 int count = 0;
2673 struct remote_state *rs = get_remote_state ();
2674
2675 gdb_assert (signals.size () < 256);
2676 for (size_t i = 0; i < signals.size (); i++)
2677 {
2678 if (signals[i])
2679 count++;
2680 }
2681 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2682 strcpy (packet, "QProgramSignals:");
2683 p = packet + strlen (packet);
2684 for (size_t i = 0; i < signals.size (); i++)
2685 {
2686 if (signal_pass_state (i))
2687 {
2688 if (i >= 16)
2689 *p++ = tohex (i >> 4);
2690 *p++ = tohex (i & 15);
2691 if (count)
2692 *p++ = ';';
2693 else
2694 break;
2695 count--;
2696 }
2697 }
2698 *p = 0;
2699 if (!rs->last_program_signals_packet
2700 || strcmp (rs->last_program_signals_packet, packet) != 0)
2701 {
2702 putpkt (packet);
2703 getpkt (&rs->buf, 0);
2704 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2705 xfree (rs->last_program_signals_packet);
2706 rs->last_program_signals_packet = packet;
2707 }
2708 else
2709 xfree (packet);
2710 }
2711 }
2712
2713 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2714 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2715 thread. If GEN is set, set the general thread, if not, then set
2716 the step/continue thread. */
2717 void
2718 remote_target::set_thread (ptid_t ptid, int gen)
2719 {
2720 struct remote_state *rs = get_remote_state ();
2721 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2722 char *buf = rs->buf.data ();
2723 char *endbuf = buf + get_remote_packet_size ();
2724
2725 if (state == ptid)
2726 return;
2727
2728 *buf++ = 'H';
2729 *buf++ = gen ? 'g' : 'c';
2730 if (ptid == magic_null_ptid)
2731 xsnprintf (buf, endbuf - buf, "0");
2732 else if (ptid == any_thread_ptid)
2733 xsnprintf (buf, endbuf - buf, "0");
2734 else if (ptid == minus_one_ptid)
2735 xsnprintf (buf, endbuf - buf, "-1");
2736 else
2737 write_ptid (buf, endbuf, ptid);
2738 putpkt (rs->buf);
2739 getpkt (&rs->buf, 0);
2740 if (gen)
2741 rs->general_thread = ptid;
2742 else
2743 rs->continue_thread = ptid;
2744 }
2745
2746 void
2747 remote_target::set_general_thread (ptid_t ptid)
2748 {
2749 set_thread (ptid, 1);
2750 }
2751
2752 void
2753 remote_target::set_continue_thread (ptid_t ptid)
2754 {
2755 set_thread (ptid, 0);
2756 }
2757
2758 /* Change the remote current process. Which thread within the process
2759 ends up selected isn't important, as long as it is the same process
2760 as what INFERIOR_PTID points to.
2761
2762 This comes from that fact that there is no explicit notion of
2763 "selected process" in the protocol. The selected process for
2764 general operations is the process the selected general thread
2765 belongs to. */
2766
2767 void
2768 remote_target::set_general_process ()
2769 {
2770 struct remote_state *rs = get_remote_state ();
2771
2772 /* If the remote can't handle multiple processes, don't bother. */
2773 if (!remote_multi_process_p (rs))
2774 return;
2775
2776 /* We only need to change the remote current thread if it's pointing
2777 at some other process. */
2778 if (rs->general_thread.pid () != inferior_ptid.pid ())
2779 set_general_thread (inferior_ptid);
2780 }
2781
2782 \f
2783 /* Return nonzero if this is the main thread that we made up ourselves
2784 to model non-threaded targets as single-threaded. */
2785
2786 static int
2787 remote_thread_always_alive (ptid_t ptid)
2788 {
2789 if (ptid == magic_null_ptid)
2790 /* The main thread is always alive. */
2791 return 1;
2792
2793 if (ptid.pid () != 0 && ptid.lwp () == 0)
2794 /* The main thread is always alive. This can happen after a
2795 vAttach, if the remote side doesn't support
2796 multi-threading. */
2797 return 1;
2798
2799 return 0;
2800 }
2801
2802 /* Return nonzero if the thread PTID is still alive on the remote
2803 system. */
2804
2805 bool
2806 remote_target::thread_alive (ptid_t ptid)
2807 {
2808 struct remote_state *rs = get_remote_state ();
2809 char *p, *endp;
2810
2811 /* Check if this is a thread that we made up ourselves to model
2812 non-threaded targets as single-threaded. */
2813 if (remote_thread_always_alive (ptid))
2814 return 1;
2815
2816 p = rs->buf.data ();
2817 endp = p + get_remote_packet_size ();
2818
2819 *p++ = 'T';
2820 write_ptid (p, endp, ptid);
2821
2822 putpkt (rs->buf);
2823 getpkt (&rs->buf, 0);
2824 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2825 }
2826
2827 /* Return a pointer to a thread name if we know it and NULL otherwise.
2828 The thread_info object owns the memory for the name. */
2829
2830 const char *
2831 remote_target::thread_name (struct thread_info *info)
2832 {
2833 if (info->priv != NULL)
2834 {
2835 const std::string &name = get_remote_thread_info (info)->name;
2836 return !name.empty () ? name.c_str () : NULL;
2837 }
2838
2839 return NULL;
2840 }
2841
2842 /* About these extended threadlist and threadinfo packets. They are
2843 variable length packets but, the fields within them are often fixed
2844 length. They are redundant enough to send over UDP as is the
2845 remote protocol in general. There is a matching unit test module
2846 in libstub. */
2847
2848 /* WARNING: This threadref data structure comes from the remote O.S.,
2849 libstub protocol encoding, and remote.c. It is not particularly
2850 changable. */
2851
2852 /* Right now, the internal structure is int. We want it to be bigger.
2853 Plan to fix this. */
2854
2855 typedef int gdb_threadref; /* Internal GDB thread reference. */
2856
2857 /* gdb_ext_thread_info is an internal GDB data structure which is
2858 equivalent to the reply of the remote threadinfo packet. */
2859
2860 struct gdb_ext_thread_info
2861 {
2862 threadref threadid; /* External form of thread reference. */
2863 int active; /* Has state interesting to GDB?
2864 regs, stack. */
2865 char display[256]; /* Brief state display, name,
2866 blocked/suspended. */
2867 char shortname[32]; /* To be used to name threads. */
2868 char more_display[256]; /* Long info, statistics, queue depth,
2869 whatever. */
2870 };
2871
2872 /* The volume of remote transfers can be limited by submitting
2873 a mask containing bits specifying the desired information.
2874 Use a union of these values as the 'selection' parameter to
2875 get_thread_info. FIXME: Make these TAG names more thread specific. */
2876
2877 #define TAG_THREADID 1
2878 #define TAG_EXISTS 2
2879 #define TAG_DISPLAY 4
2880 #define TAG_THREADNAME 8
2881 #define TAG_MOREDISPLAY 16
2882
2883 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2884
2885 static char *unpack_nibble (char *buf, int *val);
2886
2887 static char *unpack_byte (char *buf, int *value);
2888
2889 static char *pack_int (char *buf, int value);
2890
2891 static char *unpack_int (char *buf, int *value);
2892
2893 static char *unpack_string (char *src, char *dest, int length);
2894
2895 static char *pack_threadid (char *pkt, threadref *id);
2896
2897 static char *unpack_threadid (char *inbuf, threadref *id);
2898
2899 void int_to_threadref (threadref *id, int value);
2900
2901 static int threadref_to_int (threadref *ref);
2902
2903 static void copy_threadref (threadref *dest, threadref *src);
2904
2905 static int threadmatch (threadref *dest, threadref *src);
2906
2907 static char *pack_threadinfo_request (char *pkt, int mode,
2908 threadref *id);
2909
2910 static char *pack_threadlist_request (char *pkt, int startflag,
2911 int threadcount,
2912 threadref *nextthread);
2913
2914 static int remote_newthread_step (threadref *ref, void *context);
2915
2916
2917 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2918 buffer we're allowed to write to. Returns
2919 BUF+CHARACTERS_WRITTEN. */
2920
2921 char *
2922 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2923 {
2924 int pid, tid;
2925 struct remote_state *rs = get_remote_state ();
2926
2927 if (remote_multi_process_p (rs))
2928 {
2929 pid = ptid.pid ();
2930 if (pid < 0)
2931 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2932 else
2933 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2934 }
2935 tid = ptid.lwp ();
2936 if (tid < 0)
2937 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2938 else
2939 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2940
2941 return buf;
2942 }
2943
2944 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2945 last parsed char. Returns null_ptid if no thread id is found, and
2946 throws an error if the thread id has an invalid format. */
2947
2948 static ptid_t
2949 read_ptid (const char *buf, const char **obuf)
2950 {
2951 const char *p = buf;
2952 const char *pp;
2953 ULONGEST pid = 0, tid = 0;
2954
2955 if (*p == 'p')
2956 {
2957 /* Multi-process ptid. */
2958 pp = unpack_varlen_hex (p + 1, &pid);
2959 if (*pp != '.')
2960 error (_("invalid remote ptid: %s"), p);
2961
2962 p = pp;
2963 pp = unpack_varlen_hex (p + 1, &tid);
2964 if (obuf)
2965 *obuf = pp;
2966 return ptid_t (pid, tid, 0);
2967 }
2968
2969 /* No multi-process. Just a tid. */
2970 pp = unpack_varlen_hex (p, &tid);
2971
2972 /* Return null_ptid when no thread id is found. */
2973 if (p == pp)
2974 {
2975 if (obuf)
2976 *obuf = pp;
2977 return null_ptid;
2978 }
2979
2980 /* Since the stub is not sending a process id, then default to
2981 what's in inferior_ptid, unless it's null at this point. If so,
2982 then since there's no way to know the pid of the reported
2983 threads, use the magic number. */
2984 if (inferior_ptid == null_ptid)
2985 pid = magic_null_ptid.pid ();
2986 else
2987 pid = inferior_ptid.pid ();
2988
2989 if (obuf)
2990 *obuf = pp;
2991 return ptid_t (pid, tid, 0);
2992 }
2993
2994 static int
2995 stubhex (int ch)
2996 {
2997 if (ch >= 'a' && ch <= 'f')
2998 return ch - 'a' + 10;
2999 if (ch >= '0' && ch <= '9')
3000 return ch - '0';
3001 if (ch >= 'A' && ch <= 'F')
3002 return ch - 'A' + 10;
3003 return -1;
3004 }
3005
3006 static int
3007 stub_unpack_int (char *buff, int fieldlength)
3008 {
3009 int nibble;
3010 int retval = 0;
3011
3012 while (fieldlength)
3013 {
3014 nibble = stubhex (*buff++);
3015 retval |= nibble;
3016 fieldlength--;
3017 if (fieldlength)
3018 retval = retval << 4;
3019 }
3020 return retval;
3021 }
3022
3023 static char *
3024 unpack_nibble (char *buf, int *val)
3025 {
3026 *val = fromhex (*buf++);
3027 return buf;
3028 }
3029
3030 static char *
3031 unpack_byte (char *buf, int *value)
3032 {
3033 *value = stub_unpack_int (buf, 2);
3034 return buf + 2;
3035 }
3036
3037 static char *
3038 pack_int (char *buf, int value)
3039 {
3040 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3041 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3042 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3043 buf = pack_hex_byte (buf, (value & 0xff));
3044 return buf;
3045 }
3046
3047 static char *
3048 unpack_int (char *buf, int *value)
3049 {
3050 *value = stub_unpack_int (buf, 8);
3051 return buf + 8;
3052 }
3053
3054 #if 0 /* Currently unused, uncomment when needed. */
3055 static char *pack_string (char *pkt, char *string);
3056
3057 static char *
3058 pack_string (char *pkt, char *string)
3059 {
3060 char ch;
3061 int len;
3062
3063 len = strlen (string);
3064 if (len > 200)
3065 len = 200; /* Bigger than most GDB packets, junk??? */
3066 pkt = pack_hex_byte (pkt, len);
3067 while (len-- > 0)
3068 {
3069 ch = *string++;
3070 if ((ch == '\0') || (ch == '#'))
3071 ch = '*'; /* Protect encapsulation. */
3072 *pkt++ = ch;
3073 }
3074 return pkt;
3075 }
3076 #endif /* 0 (unused) */
3077
3078 static char *
3079 unpack_string (char *src, char *dest, int length)
3080 {
3081 while (length--)
3082 *dest++ = *src++;
3083 *dest = '\0';
3084 return src;
3085 }
3086
3087 static char *
3088 pack_threadid (char *pkt, threadref *id)
3089 {
3090 char *limit;
3091 unsigned char *altid;
3092
3093 altid = (unsigned char *) id;
3094 limit = pkt + BUF_THREAD_ID_SIZE;
3095 while (pkt < limit)
3096 pkt = pack_hex_byte (pkt, *altid++);
3097 return pkt;
3098 }
3099
3100
3101 static char *
3102 unpack_threadid (char *inbuf, threadref *id)
3103 {
3104 char *altref;
3105 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3106 int x, y;
3107
3108 altref = (char *) id;
3109
3110 while (inbuf < limit)
3111 {
3112 x = stubhex (*inbuf++);
3113 y = stubhex (*inbuf++);
3114 *altref++ = (x << 4) | y;
3115 }
3116 return inbuf;
3117 }
3118
3119 /* Externally, threadrefs are 64 bits but internally, they are still
3120 ints. This is due to a mismatch of specifications. We would like
3121 to use 64bit thread references internally. This is an adapter
3122 function. */
3123
3124 void
3125 int_to_threadref (threadref *id, int value)
3126 {
3127 unsigned char *scan;
3128
3129 scan = (unsigned char *) id;
3130 {
3131 int i = 4;
3132 while (i--)
3133 *scan++ = 0;
3134 }
3135 *scan++ = (value >> 24) & 0xff;
3136 *scan++ = (value >> 16) & 0xff;
3137 *scan++ = (value >> 8) & 0xff;
3138 *scan++ = (value & 0xff);
3139 }
3140
3141 static int
3142 threadref_to_int (threadref *ref)
3143 {
3144 int i, value = 0;
3145 unsigned char *scan;
3146
3147 scan = *ref;
3148 scan += 4;
3149 i = 4;
3150 while (i-- > 0)
3151 value = (value << 8) | ((*scan++) & 0xff);
3152 return value;
3153 }
3154
3155 static void
3156 copy_threadref (threadref *dest, threadref *src)
3157 {
3158 int i;
3159 unsigned char *csrc, *cdest;
3160
3161 csrc = (unsigned char *) src;
3162 cdest = (unsigned char *) dest;
3163 i = 8;
3164 while (i--)
3165 *cdest++ = *csrc++;
3166 }
3167
3168 static int
3169 threadmatch (threadref *dest, threadref *src)
3170 {
3171 /* Things are broken right now, so just assume we got a match. */
3172 #if 0
3173 unsigned char *srcp, *destp;
3174 int i, result;
3175 srcp = (char *) src;
3176 destp = (char *) dest;
3177
3178 result = 1;
3179 while (i-- > 0)
3180 result &= (*srcp++ == *destp++) ? 1 : 0;
3181 return result;
3182 #endif
3183 return 1;
3184 }
3185
3186 /*
3187 threadid:1, # always request threadid
3188 context_exists:2,
3189 display:4,
3190 unique_name:8,
3191 more_display:16
3192 */
3193
3194 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3195
3196 static char *
3197 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3198 {
3199 *pkt++ = 'q'; /* Info Query */
3200 *pkt++ = 'P'; /* process or thread info */
3201 pkt = pack_int (pkt, mode); /* mode */
3202 pkt = pack_threadid (pkt, id); /* threadid */
3203 *pkt = '\0'; /* terminate */
3204 return pkt;
3205 }
3206
3207 /* These values tag the fields in a thread info response packet. */
3208 /* Tagging the fields allows us to request specific fields and to
3209 add more fields as time goes by. */
3210
3211 #define TAG_THREADID 1 /* Echo the thread identifier. */
3212 #define TAG_EXISTS 2 /* Is this process defined enough to
3213 fetch registers and its stack? */
3214 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3215 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3216 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3217 the process. */
3218
3219 int
3220 remote_target::remote_unpack_thread_info_response (char *pkt,
3221 threadref *expectedref,
3222 gdb_ext_thread_info *info)
3223 {
3224 struct remote_state *rs = get_remote_state ();
3225 int mask, length;
3226 int tag;
3227 threadref ref;
3228 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3229 int retval = 1;
3230
3231 /* info->threadid = 0; FIXME: implement zero_threadref. */
3232 info->active = 0;
3233 info->display[0] = '\0';
3234 info->shortname[0] = '\0';
3235 info->more_display[0] = '\0';
3236
3237 /* Assume the characters indicating the packet type have been
3238 stripped. */
3239 pkt = unpack_int (pkt, &mask); /* arg mask */
3240 pkt = unpack_threadid (pkt, &ref);
3241
3242 if (mask == 0)
3243 warning (_("Incomplete response to threadinfo request."));
3244 if (!threadmatch (&ref, expectedref))
3245 { /* This is an answer to a different request. */
3246 warning (_("ERROR RMT Thread info mismatch."));
3247 return 0;
3248 }
3249 copy_threadref (&info->threadid, &ref);
3250
3251 /* Loop on tagged fields , try to bail if something goes wrong. */
3252
3253 /* Packets are terminated with nulls. */
3254 while ((pkt < limit) && mask && *pkt)
3255 {
3256 pkt = unpack_int (pkt, &tag); /* tag */
3257 pkt = unpack_byte (pkt, &length); /* length */
3258 if (!(tag & mask)) /* Tags out of synch with mask. */
3259 {
3260 warning (_("ERROR RMT: threadinfo tag mismatch."));
3261 retval = 0;
3262 break;
3263 }
3264 if (tag == TAG_THREADID)
3265 {
3266 if (length != 16)
3267 {
3268 warning (_("ERROR RMT: length of threadid is not 16."));
3269 retval = 0;
3270 break;
3271 }
3272 pkt = unpack_threadid (pkt, &ref);
3273 mask = mask & ~TAG_THREADID;
3274 continue;
3275 }
3276 if (tag == TAG_EXISTS)
3277 {
3278 info->active = stub_unpack_int (pkt, length);
3279 pkt += length;
3280 mask = mask & ~(TAG_EXISTS);
3281 if (length > 8)
3282 {
3283 warning (_("ERROR RMT: 'exists' length too long."));
3284 retval = 0;
3285 break;
3286 }
3287 continue;
3288 }
3289 if (tag == TAG_THREADNAME)
3290 {
3291 pkt = unpack_string (pkt, &info->shortname[0], length);
3292 mask = mask & ~TAG_THREADNAME;
3293 continue;
3294 }
3295 if (tag == TAG_DISPLAY)
3296 {
3297 pkt = unpack_string (pkt, &info->display[0], length);
3298 mask = mask & ~TAG_DISPLAY;
3299 continue;
3300 }
3301 if (tag == TAG_MOREDISPLAY)
3302 {
3303 pkt = unpack_string (pkt, &info->more_display[0], length);
3304 mask = mask & ~TAG_MOREDISPLAY;
3305 continue;
3306 }
3307 warning (_("ERROR RMT: unknown thread info tag."));
3308 break; /* Not a tag we know about. */
3309 }
3310 return retval;
3311 }
3312
3313 int
3314 remote_target::remote_get_threadinfo (threadref *threadid,
3315 int fieldset,
3316 gdb_ext_thread_info *info)
3317 {
3318 struct remote_state *rs = get_remote_state ();
3319 int result;
3320
3321 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3322 putpkt (rs->buf);
3323 getpkt (&rs->buf, 0);
3324
3325 if (rs->buf[0] == '\0')
3326 return 0;
3327
3328 result = remote_unpack_thread_info_response (&rs->buf[2],
3329 threadid, info);
3330 return result;
3331 }
3332
3333 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3334
3335 static char *
3336 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3337 threadref *nextthread)
3338 {
3339 *pkt++ = 'q'; /* info query packet */
3340 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3341 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3342 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3343 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3344 *pkt = '\0';
3345 return pkt;
3346 }
3347
3348 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3349
3350 int
3351 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3352 threadref *original_echo,
3353 threadref *resultlist,
3354 int *doneflag)
3355 {
3356 struct remote_state *rs = get_remote_state ();
3357 char *limit;
3358 int count, resultcount, done;
3359
3360 resultcount = 0;
3361 /* Assume the 'q' and 'M chars have been stripped. */
3362 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3363 /* done parse past here */
3364 pkt = unpack_byte (pkt, &count); /* count field */
3365 pkt = unpack_nibble (pkt, &done);
3366 /* The first threadid is the argument threadid. */
3367 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3368 while ((count-- > 0) && (pkt < limit))
3369 {
3370 pkt = unpack_threadid (pkt, resultlist++);
3371 if (resultcount++ >= result_limit)
3372 break;
3373 }
3374 if (doneflag)
3375 *doneflag = done;
3376 return resultcount;
3377 }
3378
3379 /* Fetch the next batch of threads from the remote. Returns -1 if the
3380 qL packet is not supported, 0 on error and 1 on success. */
3381
3382 int
3383 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3384 int result_limit, int *done, int *result_count,
3385 threadref *threadlist)
3386 {
3387 struct remote_state *rs = get_remote_state ();
3388 int result = 1;
3389
3390 /* Truncate result limit to be smaller than the packet size. */
3391 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3392 >= get_remote_packet_size ())
3393 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3394
3395 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3396 nextthread);
3397 putpkt (rs->buf);
3398 getpkt (&rs->buf, 0);
3399 if (rs->buf[0] == '\0')
3400 {
3401 /* Packet not supported. */
3402 return -1;
3403 }
3404
3405 *result_count =
3406 parse_threadlist_response (&rs->buf[2], result_limit,
3407 &rs->echo_nextthread, threadlist, done);
3408
3409 if (!threadmatch (&rs->echo_nextthread, nextthread))
3410 {
3411 /* FIXME: This is a good reason to drop the packet. */
3412 /* Possibly, there is a duplicate response. */
3413 /* Possibilities :
3414 retransmit immediatly - race conditions
3415 retransmit after timeout - yes
3416 exit
3417 wait for packet, then exit
3418 */
3419 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3420 return 0; /* I choose simply exiting. */
3421 }
3422 if (*result_count <= 0)
3423 {
3424 if (*done != 1)
3425 {
3426 warning (_("RMT ERROR : failed to get remote thread list."));
3427 result = 0;
3428 }
3429 return result; /* break; */
3430 }
3431 if (*result_count > result_limit)
3432 {
3433 *result_count = 0;
3434 warning (_("RMT ERROR: threadlist response longer than requested."));
3435 return 0;
3436 }
3437 return result;
3438 }
3439
3440 /* Fetch the list of remote threads, with the qL packet, and call
3441 STEPFUNCTION for each thread found. Stops iterating and returns 1
3442 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3443 STEPFUNCTION returns false. If the packet is not supported,
3444 returns -1. */
3445
3446 int
3447 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3448 void *context, int looplimit)
3449 {
3450 struct remote_state *rs = get_remote_state ();
3451 int done, i, result_count;
3452 int startflag = 1;
3453 int result = 1;
3454 int loopcount = 0;
3455
3456 done = 0;
3457 while (!done)
3458 {
3459 if (loopcount++ > looplimit)
3460 {
3461 result = 0;
3462 warning (_("Remote fetch threadlist -infinite loop-."));
3463 break;
3464 }
3465 result = remote_get_threadlist (startflag, &rs->nextthread,
3466 MAXTHREADLISTRESULTS,
3467 &done, &result_count,
3468 rs->resultthreadlist);
3469 if (result <= 0)
3470 break;
3471 /* Clear for later iterations. */
3472 startflag = 0;
3473 /* Setup to resume next batch of thread references, set nextthread. */
3474 if (result_count >= 1)
3475 copy_threadref (&rs->nextthread,
3476 &rs->resultthreadlist[result_count - 1]);
3477 i = 0;
3478 while (result_count--)
3479 {
3480 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3481 {
3482 result = 0;
3483 break;
3484 }
3485 }
3486 }
3487 return result;
3488 }
3489
3490 /* A thread found on the remote target. */
3491
3492 struct thread_item
3493 {
3494 explicit thread_item (ptid_t ptid_)
3495 : ptid (ptid_)
3496 {}
3497
3498 thread_item (thread_item &&other) = default;
3499 thread_item &operator= (thread_item &&other) = default;
3500
3501 DISABLE_COPY_AND_ASSIGN (thread_item);
3502
3503 /* The thread's PTID. */
3504 ptid_t ptid;
3505
3506 /* The thread's extra info. */
3507 std::string extra;
3508
3509 /* The thread's name. */
3510 std::string name;
3511
3512 /* The core the thread was running on. -1 if not known. */
3513 int core = -1;
3514
3515 /* The thread handle associated with the thread. */
3516 gdb::byte_vector thread_handle;
3517 };
3518
3519 /* Context passed around to the various methods listing remote
3520 threads. As new threads are found, they're added to the ITEMS
3521 vector. */
3522
3523 struct threads_listing_context
3524 {
3525 /* Return true if this object contains an entry for a thread with ptid
3526 PTID. */
3527
3528 bool contains_thread (ptid_t ptid) const
3529 {
3530 auto match_ptid = [&] (const thread_item &item)
3531 {
3532 return item.ptid == ptid;
3533 };
3534
3535 auto it = std::find_if (this->items.begin (),
3536 this->items.end (),
3537 match_ptid);
3538
3539 return it != this->items.end ();
3540 }
3541
3542 /* Remove the thread with ptid PTID. */
3543
3544 void remove_thread (ptid_t ptid)
3545 {
3546 auto match_ptid = [&] (const thread_item &item)
3547 {
3548 return item.ptid == ptid;
3549 };
3550
3551 auto it = std::remove_if (this->items.begin (),
3552 this->items.end (),
3553 match_ptid);
3554
3555 if (it != this->items.end ())
3556 this->items.erase (it);
3557 }
3558
3559 /* The threads found on the remote target. */
3560 std::vector<thread_item> items;
3561 };
3562
3563 static int
3564 remote_newthread_step (threadref *ref, void *data)
3565 {
3566 struct threads_listing_context *context
3567 = (struct threads_listing_context *) data;
3568 int pid = inferior_ptid.pid ();
3569 int lwp = threadref_to_int (ref);
3570 ptid_t ptid (pid, lwp);
3571
3572 context->items.emplace_back (ptid);
3573
3574 return 1; /* continue iterator */
3575 }
3576
3577 #define CRAZY_MAX_THREADS 1000
3578
3579 ptid_t
3580 remote_target::remote_current_thread (ptid_t oldpid)
3581 {
3582 struct remote_state *rs = get_remote_state ();
3583
3584 putpkt ("qC");
3585 getpkt (&rs->buf, 0);
3586 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3587 {
3588 const char *obuf;
3589 ptid_t result;
3590
3591 result = read_ptid (&rs->buf[2], &obuf);
3592 if (*obuf != '\0' && remote_debug)
3593 fprintf_unfiltered (gdb_stdlog,
3594 "warning: garbage in qC reply\n");
3595
3596 return result;
3597 }
3598 else
3599 return oldpid;
3600 }
3601
3602 /* List remote threads using the deprecated qL packet. */
3603
3604 int
3605 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3606 {
3607 if (remote_threadlist_iterator (remote_newthread_step, context,
3608 CRAZY_MAX_THREADS) >= 0)
3609 return 1;
3610
3611 return 0;
3612 }
3613
3614 #if defined(HAVE_LIBEXPAT)
3615
3616 static void
3617 start_thread (struct gdb_xml_parser *parser,
3618 const struct gdb_xml_element *element,
3619 void *user_data,
3620 std::vector<gdb_xml_value> &attributes)
3621 {
3622 struct threads_listing_context *data
3623 = (struct threads_listing_context *) user_data;
3624 struct gdb_xml_value *attr;
3625
3626 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3627 ptid_t ptid = read_ptid (id, NULL);
3628
3629 data->items.emplace_back (ptid);
3630 thread_item &item = data->items.back ();
3631
3632 attr = xml_find_attribute (attributes, "core");
3633 if (attr != NULL)
3634 item.core = *(ULONGEST *) attr->value.get ();
3635
3636 attr = xml_find_attribute (attributes, "name");
3637 if (attr != NULL)
3638 item.name = (const char *) attr->value.get ();
3639
3640 attr = xml_find_attribute (attributes, "handle");
3641 if (attr != NULL)
3642 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3643 }
3644
3645 static void
3646 end_thread (struct gdb_xml_parser *parser,
3647 const struct gdb_xml_element *element,
3648 void *user_data, const char *body_text)
3649 {
3650 struct threads_listing_context *data
3651 = (struct threads_listing_context *) user_data;
3652
3653 if (body_text != NULL && *body_text != '\0')
3654 data->items.back ().extra = body_text;
3655 }
3656
3657 const struct gdb_xml_attribute thread_attributes[] = {
3658 { "id", GDB_XML_AF_NONE, NULL, NULL },
3659 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3660 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3661 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3662 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3663 };
3664
3665 const struct gdb_xml_element thread_children[] = {
3666 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3667 };
3668
3669 const struct gdb_xml_element threads_children[] = {
3670 { "thread", thread_attributes, thread_children,
3671 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3672 start_thread, end_thread },
3673 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3674 };
3675
3676 const struct gdb_xml_element threads_elements[] = {
3677 { "threads", NULL, threads_children,
3678 GDB_XML_EF_NONE, NULL, NULL },
3679 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3680 };
3681
3682 #endif
3683
3684 /* List remote threads using qXfer:threads:read. */
3685
3686 int
3687 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3688 {
3689 #if defined(HAVE_LIBEXPAT)
3690 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3691 {
3692 gdb::optional<gdb::char_vector> xml
3693 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3694
3695 if (xml && (*xml)[0] != '\0')
3696 {
3697 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3698 threads_elements, xml->data (), context);
3699 }
3700
3701 return 1;
3702 }
3703 #endif
3704
3705 return 0;
3706 }
3707
3708 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3709
3710 int
3711 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3712 {
3713 struct remote_state *rs = get_remote_state ();
3714
3715 if (rs->use_threadinfo_query)
3716 {
3717 const char *bufp;
3718
3719 putpkt ("qfThreadInfo");
3720 getpkt (&rs->buf, 0);
3721 bufp = rs->buf.data ();
3722 if (bufp[0] != '\0') /* q packet recognized */
3723 {
3724 while (*bufp++ == 'm') /* reply contains one or more TID */
3725 {
3726 do
3727 {
3728 ptid_t ptid = read_ptid (bufp, &bufp);
3729 context->items.emplace_back (ptid);
3730 }
3731 while (*bufp++ == ','); /* comma-separated list */
3732 putpkt ("qsThreadInfo");
3733 getpkt (&rs->buf, 0);
3734 bufp = rs->buf.data ();
3735 }
3736 return 1;
3737 }
3738 else
3739 {
3740 /* Packet not recognized. */
3741 rs->use_threadinfo_query = 0;
3742 }
3743 }
3744
3745 return 0;
3746 }
3747
3748 /* Implement the to_update_thread_list function for the remote
3749 targets. */
3750
3751 void
3752 remote_target::update_thread_list ()
3753 {
3754 struct threads_listing_context context;
3755 int got_list = 0;
3756
3757 /* We have a few different mechanisms to fetch the thread list. Try
3758 them all, starting with the most preferred one first, falling
3759 back to older methods. */
3760 if (remote_get_threads_with_qxfer (&context)
3761 || remote_get_threads_with_qthreadinfo (&context)
3762 || remote_get_threads_with_ql (&context))
3763 {
3764 got_list = 1;
3765
3766 if (context.items.empty ()
3767 && remote_thread_always_alive (inferior_ptid))
3768 {
3769 /* Some targets don't really support threads, but still
3770 reply an (empty) thread list in response to the thread
3771 listing packets, instead of replying "packet not
3772 supported". Exit early so we don't delete the main
3773 thread. */
3774 return;
3775 }
3776
3777 /* CONTEXT now holds the current thread list on the remote
3778 target end. Delete GDB-side threads no longer found on the
3779 target. */
3780 for (thread_info *tp : all_threads_safe ())
3781 {
3782 if (!context.contains_thread (tp->ptid))
3783 {
3784 /* Not found. */
3785 delete_thread (tp);
3786 }
3787 }
3788
3789 /* Remove any unreported fork child threads from CONTEXT so
3790 that we don't interfere with follow fork, which is where
3791 creation of such threads is handled. */
3792 remove_new_fork_children (&context);
3793
3794 /* And now add threads we don't know about yet to our list. */
3795 for (thread_item &item : context.items)
3796 {
3797 if (item.ptid != null_ptid)
3798 {
3799 /* In non-stop mode, we assume new found threads are
3800 executing until proven otherwise with a stop reply.
3801 In all-stop, we can only get here if all threads are
3802 stopped. */
3803 int executing = target_is_non_stop_p () ? 1 : 0;
3804
3805 remote_notice_new_inferior (item.ptid, executing);
3806
3807 thread_info *tp = find_thread_ptid (item.ptid);
3808 remote_thread_info *info = get_remote_thread_info (tp);
3809 info->core = item.core;
3810 info->extra = std::move (item.extra);
3811 info->name = std::move (item.name);
3812 info->thread_handle = std::move (item.thread_handle);
3813 }
3814 }
3815 }
3816
3817 if (!got_list)
3818 {
3819 /* If no thread listing method is supported, then query whether
3820 each known thread is alive, one by one, with the T packet.
3821 If the target doesn't support threads at all, then this is a
3822 no-op. See remote_thread_alive. */
3823 prune_threads ();
3824 }
3825 }
3826
3827 /*
3828 * Collect a descriptive string about the given thread.
3829 * The target may say anything it wants to about the thread
3830 * (typically info about its blocked / runnable state, name, etc.).
3831 * This string will appear in the info threads display.
3832 *
3833 * Optional: targets are not required to implement this function.
3834 */
3835
3836 const char *
3837 remote_target::extra_thread_info (thread_info *tp)
3838 {
3839 struct remote_state *rs = get_remote_state ();
3840 int set;
3841 threadref id;
3842 struct gdb_ext_thread_info threadinfo;
3843
3844 if (rs->remote_desc == 0) /* paranoia */
3845 internal_error (__FILE__, __LINE__,
3846 _("remote_threads_extra_info"));
3847
3848 if (tp->ptid == magic_null_ptid
3849 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3850 /* This is the main thread which was added by GDB. The remote
3851 server doesn't know about it. */
3852 return NULL;
3853
3854 std::string &extra = get_remote_thread_info (tp)->extra;
3855
3856 /* If already have cached info, use it. */
3857 if (!extra.empty ())
3858 return extra.c_str ();
3859
3860 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3861 {
3862 /* If we're using qXfer:threads:read, then the extra info is
3863 included in the XML. So if we didn't have anything cached,
3864 it's because there's really no extra info. */
3865 return NULL;
3866 }
3867
3868 if (rs->use_threadextra_query)
3869 {
3870 char *b = rs->buf.data ();
3871 char *endb = b + get_remote_packet_size ();
3872
3873 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3874 b += strlen (b);
3875 write_ptid (b, endb, tp->ptid);
3876
3877 putpkt (rs->buf);
3878 getpkt (&rs->buf, 0);
3879 if (rs->buf[0] != 0)
3880 {
3881 extra.resize (strlen (rs->buf.data ()) / 2);
3882 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3883 return extra.c_str ();
3884 }
3885 }
3886
3887 /* If the above query fails, fall back to the old method. */
3888 rs->use_threadextra_query = 0;
3889 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3890 | TAG_MOREDISPLAY | TAG_DISPLAY;
3891 int_to_threadref (&id, tp->ptid.lwp ());
3892 if (remote_get_threadinfo (&id, set, &threadinfo))
3893 if (threadinfo.active)
3894 {
3895 if (*threadinfo.shortname)
3896 string_appendf (extra, " Name: %s", threadinfo.shortname);
3897 if (*threadinfo.display)
3898 {
3899 if (!extra.empty ())
3900 extra += ',';
3901 string_appendf (extra, " State: %s", threadinfo.display);
3902 }
3903 if (*threadinfo.more_display)
3904 {
3905 if (!extra.empty ())
3906 extra += ',';
3907 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3908 }
3909 return extra.c_str ();
3910 }
3911 return NULL;
3912 }
3913 \f
3914
3915 bool
3916 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3917 struct static_tracepoint_marker *marker)
3918 {
3919 struct remote_state *rs = get_remote_state ();
3920 char *p = rs->buf.data ();
3921
3922 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3923 p += strlen (p);
3924 p += hexnumstr (p, addr);
3925 putpkt (rs->buf);
3926 getpkt (&rs->buf, 0);
3927 p = rs->buf.data ();
3928
3929 if (*p == 'E')
3930 error (_("Remote failure reply: %s"), p);
3931
3932 if (*p++ == 'm')
3933 {
3934 parse_static_tracepoint_marker_definition (p, NULL, marker);
3935 return true;
3936 }
3937
3938 return false;
3939 }
3940
3941 std::vector<static_tracepoint_marker>
3942 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3943 {
3944 struct remote_state *rs = get_remote_state ();
3945 std::vector<static_tracepoint_marker> markers;
3946 const char *p;
3947 static_tracepoint_marker marker;
3948
3949 /* Ask for a first packet of static tracepoint marker
3950 definition. */
3951 putpkt ("qTfSTM");
3952 getpkt (&rs->buf, 0);
3953 p = rs->buf.data ();
3954 if (*p == 'E')
3955 error (_("Remote failure reply: %s"), p);
3956
3957 while (*p++ == 'm')
3958 {
3959 do
3960 {
3961 parse_static_tracepoint_marker_definition (p, &p, &marker);
3962
3963 if (strid == NULL || marker.str_id == strid)
3964 markers.push_back (std::move (marker));
3965 }
3966 while (*p++ == ','); /* comma-separated list */
3967 /* Ask for another packet of static tracepoint definition. */
3968 putpkt ("qTsSTM");
3969 getpkt (&rs->buf, 0);
3970 p = rs->buf.data ();
3971 }
3972
3973 return markers;
3974 }
3975
3976 \f
3977 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3978
3979 ptid_t
3980 remote_target::get_ada_task_ptid (long lwp, long thread)
3981 {
3982 return ptid_t (inferior_ptid.pid (), lwp, 0);
3983 }
3984 \f
3985
3986 /* Restart the remote side; this is an extended protocol operation. */
3987
3988 void
3989 remote_target::extended_remote_restart ()
3990 {
3991 struct remote_state *rs = get_remote_state ();
3992
3993 /* Send the restart command; for reasons I don't understand the
3994 remote side really expects a number after the "R". */
3995 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
3996 putpkt (rs->buf);
3997
3998 remote_fileio_reset ();
3999 }
4000 \f
4001 /* Clean up connection to a remote debugger. */
4002
4003 void
4004 remote_target::close ()
4005 {
4006 /* Make sure we leave stdin registered in the event loop. */
4007 terminal_ours ();
4008
4009 /* We don't have a connection to the remote stub anymore. Get rid
4010 of all the inferiors and their threads we were controlling.
4011 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4012 will be unable to find the thread corresponding to (pid, 0, 0). */
4013 inferior_ptid = null_ptid;
4014 discard_all_inferiors ();
4015
4016 trace_reset_local_state ();
4017
4018 delete this;
4019 }
4020
4021 remote_target::~remote_target ()
4022 {
4023 struct remote_state *rs = get_remote_state ();
4024
4025 /* Check for NULL because we may get here with a partially
4026 constructed target/connection. */
4027 if (rs->remote_desc == nullptr)
4028 return;
4029
4030 serial_close (rs->remote_desc);
4031
4032 /* We are destroying the remote target, so we should discard
4033 everything of this target. */
4034 discard_pending_stop_replies_in_queue ();
4035
4036 if (rs->remote_async_inferior_event_token)
4037 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4038
4039 delete rs->notif_state;
4040 }
4041
4042 /* Query the remote side for the text, data and bss offsets. */
4043
4044 void
4045 remote_target::get_offsets ()
4046 {
4047 struct remote_state *rs = get_remote_state ();
4048 char *buf;
4049 char *ptr;
4050 int lose, num_segments = 0, do_sections, do_segments;
4051 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4052 struct section_offsets *offs;
4053 struct symfile_segment_data *data;
4054
4055 if (symfile_objfile == NULL)
4056 return;
4057
4058 putpkt ("qOffsets");
4059 getpkt (&rs->buf, 0);
4060 buf = rs->buf.data ();
4061
4062 if (buf[0] == '\000')
4063 return; /* Return silently. Stub doesn't support
4064 this command. */
4065 if (buf[0] == 'E')
4066 {
4067 warning (_("Remote failure reply: %s"), buf);
4068 return;
4069 }
4070
4071 /* Pick up each field in turn. This used to be done with scanf, but
4072 scanf will make trouble if CORE_ADDR size doesn't match
4073 conversion directives correctly. The following code will work
4074 with any size of CORE_ADDR. */
4075 text_addr = data_addr = bss_addr = 0;
4076 ptr = buf;
4077 lose = 0;
4078
4079 if (startswith (ptr, "Text="))
4080 {
4081 ptr += 5;
4082 /* Don't use strtol, could lose on big values. */
4083 while (*ptr && *ptr != ';')
4084 text_addr = (text_addr << 4) + fromhex (*ptr++);
4085
4086 if (startswith (ptr, ";Data="))
4087 {
4088 ptr += 6;
4089 while (*ptr && *ptr != ';')
4090 data_addr = (data_addr << 4) + fromhex (*ptr++);
4091 }
4092 else
4093 lose = 1;
4094
4095 if (!lose && startswith (ptr, ";Bss="))
4096 {
4097 ptr += 5;
4098 while (*ptr && *ptr != ';')
4099 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4100
4101 if (bss_addr != data_addr)
4102 warning (_("Target reported unsupported offsets: %s"), buf);
4103 }
4104 else
4105 lose = 1;
4106 }
4107 else if (startswith (ptr, "TextSeg="))
4108 {
4109 ptr += 8;
4110 /* Don't use strtol, could lose on big values. */
4111 while (*ptr && *ptr != ';')
4112 text_addr = (text_addr << 4) + fromhex (*ptr++);
4113 num_segments = 1;
4114
4115 if (startswith (ptr, ";DataSeg="))
4116 {
4117 ptr += 9;
4118 while (*ptr && *ptr != ';')
4119 data_addr = (data_addr << 4) + fromhex (*ptr++);
4120 num_segments++;
4121 }
4122 }
4123 else
4124 lose = 1;
4125
4126 if (lose)
4127 error (_("Malformed response to offset query, %s"), buf);
4128 else if (*ptr != '\0')
4129 warning (_("Target reported unsupported offsets: %s"), buf);
4130
4131 offs = ((struct section_offsets *)
4132 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4133 memcpy (offs, symfile_objfile->section_offsets,
4134 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4135
4136 data = get_symfile_segment_data (symfile_objfile->obfd);
4137 do_segments = (data != NULL);
4138 do_sections = num_segments == 0;
4139
4140 if (num_segments > 0)
4141 {
4142 segments[0] = text_addr;
4143 segments[1] = data_addr;
4144 }
4145 /* If we have two segments, we can still try to relocate everything
4146 by assuming that the .text and .data offsets apply to the whole
4147 text and data segments. Convert the offsets given in the packet
4148 to base addresses for symfile_map_offsets_to_segments. */
4149 else if (data && data->num_segments == 2)
4150 {
4151 segments[0] = data->segment_bases[0] + text_addr;
4152 segments[1] = data->segment_bases[1] + data_addr;
4153 num_segments = 2;
4154 }
4155 /* If the object file has only one segment, assume that it is text
4156 rather than data; main programs with no writable data are rare,
4157 but programs with no code are useless. Of course the code might
4158 have ended up in the data segment... to detect that we would need
4159 the permissions here. */
4160 else if (data && data->num_segments == 1)
4161 {
4162 segments[0] = data->segment_bases[0] + text_addr;
4163 num_segments = 1;
4164 }
4165 /* There's no way to relocate by segment. */
4166 else
4167 do_segments = 0;
4168
4169 if (do_segments)
4170 {
4171 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4172 offs, num_segments, segments);
4173
4174 if (ret == 0 && !do_sections)
4175 error (_("Can not handle qOffsets TextSeg "
4176 "response with this symbol file"));
4177
4178 if (ret > 0)
4179 do_sections = 0;
4180 }
4181
4182 if (data)
4183 free_symfile_segment_data (data);
4184
4185 if (do_sections)
4186 {
4187 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4188
4189 /* This is a temporary kludge to force data and bss to use the
4190 same offsets because that's what nlmconv does now. The real
4191 solution requires changes to the stub and remote.c that I
4192 don't have time to do right now. */
4193
4194 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4195 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4196 }
4197
4198 objfile_relocate (symfile_objfile, offs);
4199 }
4200
4201 /* Send interrupt_sequence to remote target. */
4202
4203 void
4204 remote_target::send_interrupt_sequence ()
4205 {
4206 struct remote_state *rs = get_remote_state ();
4207
4208 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4209 remote_serial_write ("\x03", 1);
4210 else if (interrupt_sequence_mode == interrupt_sequence_break)
4211 serial_send_break (rs->remote_desc);
4212 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4213 {
4214 serial_send_break (rs->remote_desc);
4215 remote_serial_write ("g", 1);
4216 }
4217 else
4218 internal_error (__FILE__, __LINE__,
4219 _("Invalid value for interrupt_sequence_mode: %s."),
4220 interrupt_sequence_mode);
4221 }
4222
4223
4224 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4225 and extract the PTID. Returns NULL_PTID if not found. */
4226
4227 static ptid_t
4228 stop_reply_extract_thread (char *stop_reply)
4229 {
4230 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4231 {
4232 const char *p;
4233
4234 /* Txx r:val ; r:val (...) */
4235 p = &stop_reply[3];
4236
4237 /* Look for "register" named "thread". */
4238 while (*p != '\0')
4239 {
4240 const char *p1;
4241
4242 p1 = strchr (p, ':');
4243 if (p1 == NULL)
4244 return null_ptid;
4245
4246 if (strncmp (p, "thread", p1 - p) == 0)
4247 return read_ptid (++p1, &p);
4248
4249 p1 = strchr (p, ';');
4250 if (p1 == NULL)
4251 return null_ptid;
4252 p1++;
4253
4254 p = p1;
4255 }
4256 }
4257
4258 return null_ptid;
4259 }
4260
4261 /* Determine the remote side's current thread. If we have a stop
4262 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4263 "thread" register we can extract the current thread from. If not,
4264 ask the remote which is the current thread with qC. The former
4265 method avoids a roundtrip. */
4266
4267 ptid_t
4268 remote_target::get_current_thread (char *wait_status)
4269 {
4270 ptid_t ptid = null_ptid;
4271
4272 /* Note we don't use remote_parse_stop_reply as that makes use of
4273 the target architecture, which we haven't yet fully determined at
4274 this point. */
4275 if (wait_status != NULL)
4276 ptid = stop_reply_extract_thread (wait_status);
4277 if (ptid == null_ptid)
4278 ptid = remote_current_thread (inferior_ptid);
4279
4280 return ptid;
4281 }
4282
4283 /* Query the remote target for which is the current thread/process,
4284 add it to our tables, and update INFERIOR_PTID. The caller is
4285 responsible for setting the state such that the remote end is ready
4286 to return the current thread.
4287
4288 This function is called after handling the '?' or 'vRun' packets,
4289 whose response is a stop reply from which we can also try
4290 extracting the thread. If the target doesn't support the explicit
4291 qC query, we infer the current thread from that stop reply, passed
4292 in in WAIT_STATUS, which may be NULL. */
4293
4294 void
4295 remote_target::add_current_inferior_and_thread (char *wait_status)
4296 {
4297 struct remote_state *rs = get_remote_state ();
4298 bool fake_pid_p = false;
4299
4300 inferior_ptid = null_ptid;
4301
4302 /* Now, if we have thread information, update inferior_ptid. */
4303 ptid_t curr_ptid = get_current_thread (wait_status);
4304
4305 if (curr_ptid != null_ptid)
4306 {
4307 if (!remote_multi_process_p (rs))
4308 fake_pid_p = true;
4309 }
4310 else
4311 {
4312 /* Without this, some commands which require an active target
4313 (such as kill) won't work. This variable serves (at least)
4314 double duty as both the pid of the target process (if it has
4315 such), and as a flag indicating that a target is active. */
4316 curr_ptid = magic_null_ptid;
4317 fake_pid_p = true;
4318 }
4319
4320 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4321
4322 /* Add the main thread and switch to it. Don't try reading
4323 registers yet, since we haven't fetched the target description
4324 yet. */
4325 thread_info *tp = add_thread_silent (curr_ptid);
4326 switch_to_thread_no_regs (tp);
4327 }
4328
4329 /* Print info about a thread that was found already stopped on
4330 connection. */
4331
4332 static void
4333 print_one_stopped_thread (struct thread_info *thread)
4334 {
4335 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4336
4337 switch_to_thread (thread);
4338 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4339 set_current_sal_from_frame (get_current_frame ());
4340
4341 thread->suspend.waitstatus_pending_p = 0;
4342
4343 if (ws->kind == TARGET_WAITKIND_STOPPED)
4344 {
4345 enum gdb_signal sig = ws->value.sig;
4346
4347 if (signal_print_state (sig))
4348 gdb::observers::signal_received.notify (sig);
4349 }
4350 gdb::observers::normal_stop.notify (NULL, 1);
4351 }
4352
4353 /* Process all initial stop replies the remote side sent in response
4354 to the ? packet. These indicate threads that were already stopped
4355 on initial connection. We mark these threads as stopped and print
4356 their current frame before giving the user the prompt. */
4357
4358 void
4359 remote_target::process_initial_stop_replies (int from_tty)
4360 {
4361 int pending_stop_replies = stop_reply_queue_length ();
4362 struct thread_info *selected = NULL;
4363 struct thread_info *lowest_stopped = NULL;
4364 struct thread_info *first = NULL;
4365
4366 /* Consume the initial pending events. */
4367 while (pending_stop_replies-- > 0)
4368 {
4369 ptid_t waiton_ptid = minus_one_ptid;
4370 ptid_t event_ptid;
4371 struct target_waitstatus ws;
4372 int ignore_event = 0;
4373
4374 memset (&ws, 0, sizeof (ws));
4375 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4376 if (remote_debug)
4377 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4378
4379 switch (ws.kind)
4380 {
4381 case TARGET_WAITKIND_IGNORE:
4382 case TARGET_WAITKIND_NO_RESUMED:
4383 case TARGET_WAITKIND_SIGNALLED:
4384 case TARGET_WAITKIND_EXITED:
4385 /* We shouldn't see these, but if we do, just ignore. */
4386 if (remote_debug)
4387 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4388 ignore_event = 1;
4389 break;
4390
4391 case TARGET_WAITKIND_EXECD:
4392 xfree (ws.value.execd_pathname);
4393 break;
4394 default:
4395 break;
4396 }
4397
4398 if (ignore_event)
4399 continue;
4400
4401 struct thread_info *evthread = find_thread_ptid (event_ptid);
4402
4403 if (ws.kind == TARGET_WAITKIND_STOPPED)
4404 {
4405 enum gdb_signal sig = ws.value.sig;
4406
4407 /* Stubs traditionally report SIGTRAP as initial signal,
4408 instead of signal 0. Suppress it. */
4409 if (sig == GDB_SIGNAL_TRAP)
4410 sig = GDB_SIGNAL_0;
4411 evthread->suspend.stop_signal = sig;
4412 ws.value.sig = sig;
4413 }
4414
4415 evthread->suspend.waitstatus = ws;
4416
4417 if (ws.kind != TARGET_WAITKIND_STOPPED
4418 || ws.value.sig != GDB_SIGNAL_0)
4419 evthread->suspend.waitstatus_pending_p = 1;
4420
4421 set_executing (event_ptid, 0);
4422 set_running (event_ptid, 0);
4423 get_remote_thread_info (evthread)->vcont_resumed = 0;
4424 }
4425
4426 /* "Notice" the new inferiors before anything related to
4427 registers/memory. */
4428 for (inferior *inf : all_non_exited_inferiors ())
4429 {
4430 inf->needs_setup = 1;
4431
4432 if (non_stop)
4433 {
4434 thread_info *thread = any_live_thread_of_inferior (inf);
4435 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4436 from_tty);
4437 }
4438 }
4439
4440 /* If all-stop on top of non-stop, pause all threads. Note this
4441 records the threads' stop pc, so must be done after "noticing"
4442 the inferiors. */
4443 if (!non_stop)
4444 {
4445 stop_all_threads ();
4446
4447 /* If all threads of an inferior were already stopped, we
4448 haven't setup the inferior yet. */
4449 for (inferior *inf : all_non_exited_inferiors ())
4450 {
4451 if (inf->needs_setup)
4452 {
4453 thread_info *thread = any_live_thread_of_inferior (inf);
4454 switch_to_thread_no_regs (thread);
4455 setup_inferior (0);
4456 }
4457 }
4458 }
4459
4460 /* Now go over all threads that are stopped, and print their current
4461 frame. If all-stop, then if there's a signalled thread, pick
4462 that as current. */
4463 for (thread_info *thread : all_non_exited_threads ())
4464 {
4465 if (first == NULL)
4466 first = thread;
4467
4468 if (!non_stop)
4469 thread->set_running (false);
4470 else if (thread->state != THREAD_STOPPED)
4471 continue;
4472
4473 if (selected == NULL
4474 && thread->suspend.waitstatus_pending_p)
4475 selected = thread;
4476
4477 if (lowest_stopped == NULL
4478 || thread->inf->num < lowest_stopped->inf->num
4479 || thread->per_inf_num < lowest_stopped->per_inf_num)
4480 lowest_stopped = thread;
4481
4482 if (non_stop)
4483 print_one_stopped_thread (thread);
4484 }
4485
4486 /* In all-stop, we only print the status of one thread, and leave
4487 others with their status pending. */
4488 if (!non_stop)
4489 {
4490 thread_info *thread = selected;
4491 if (thread == NULL)
4492 thread = lowest_stopped;
4493 if (thread == NULL)
4494 thread = first;
4495
4496 print_one_stopped_thread (thread);
4497 }
4498
4499 /* For "info program". */
4500 thread_info *thread = inferior_thread ();
4501 if (thread->state == THREAD_STOPPED)
4502 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4503 }
4504
4505 /* Start the remote connection and sync state. */
4506
4507 void
4508 remote_target::start_remote (int from_tty, int extended_p)
4509 {
4510 struct remote_state *rs = get_remote_state ();
4511 struct packet_config *noack_config;
4512 char *wait_status = NULL;
4513
4514 /* Signal other parts that we're going through the initial setup,
4515 and so things may not be stable yet. E.g., we don't try to
4516 install tracepoints until we've relocated symbols. Also, a
4517 Ctrl-C before we're connected and synced up can't interrupt the
4518 target. Instead, it offers to drop the (potentially wedged)
4519 connection. */
4520 rs->starting_up = 1;
4521
4522 QUIT;
4523
4524 if (interrupt_on_connect)
4525 send_interrupt_sequence ();
4526
4527 /* Ack any packet which the remote side has already sent. */
4528 remote_serial_write ("+", 1);
4529
4530 /* The first packet we send to the target is the optional "supported
4531 packets" request. If the target can answer this, it will tell us
4532 which later probes to skip. */
4533 remote_query_supported ();
4534
4535 /* If the stub wants to get a QAllow, compose one and send it. */
4536 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4537 set_permissions ();
4538
4539 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4540 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4541 as a reply to known packet. For packet "vFile:setfs:" it is an
4542 invalid reply and GDB would return error in
4543 remote_hostio_set_filesystem, making remote files access impossible.
4544 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4545 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4546 {
4547 const char v_mustreplyempty[] = "vMustReplyEmpty";
4548
4549 putpkt (v_mustreplyempty);
4550 getpkt (&rs->buf, 0);
4551 if (strcmp (rs->buf.data (), "OK") == 0)
4552 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4553 else if (strcmp (rs->buf.data (), "") != 0)
4554 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4555 rs->buf.data ());
4556 }
4557
4558 /* Next, we possibly activate noack mode.
4559
4560 If the QStartNoAckMode packet configuration is set to AUTO,
4561 enable noack mode if the stub reported a wish for it with
4562 qSupported.
4563
4564 If set to TRUE, then enable noack mode even if the stub didn't
4565 report it in qSupported. If the stub doesn't reply OK, the
4566 session ends with an error.
4567
4568 If FALSE, then don't activate noack mode, regardless of what the
4569 stub claimed should be the default with qSupported. */
4570
4571 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4572 if (packet_config_support (noack_config) != PACKET_DISABLE)
4573 {
4574 putpkt ("QStartNoAckMode");
4575 getpkt (&rs->buf, 0);
4576 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4577 rs->noack_mode = 1;
4578 }
4579
4580 if (extended_p)
4581 {
4582 /* Tell the remote that we are using the extended protocol. */
4583 putpkt ("!");
4584 getpkt (&rs->buf, 0);
4585 }
4586
4587 /* Let the target know which signals it is allowed to pass down to
4588 the program. */
4589 update_signals_program_target ();
4590
4591 /* Next, if the target can specify a description, read it. We do
4592 this before anything involving memory or registers. */
4593 target_find_description ();
4594
4595 /* Next, now that we know something about the target, update the
4596 address spaces in the program spaces. */
4597 update_address_spaces ();
4598
4599 /* On OSs where the list of libraries is global to all
4600 processes, we fetch them early. */
4601 if (gdbarch_has_global_solist (target_gdbarch ()))
4602 solib_add (NULL, from_tty, auto_solib_add);
4603
4604 if (target_is_non_stop_p ())
4605 {
4606 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4607 error (_("Non-stop mode requested, but remote "
4608 "does not support non-stop"));
4609
4610 putpkt ("QNonStop:1");
4611 getpkt (&rs->buf, 0);
4612
4613 if (strcmp (rs->buf.data (), "OK") != 0)
4614 error (_("Remote refused setting non-stop mode with: %s"),
4615 rs->buf.data ());
4616
4617 /* Find about threads and processes the stub is already
4618 controlling. We default to adding them in the running state.
4619 The '?' query below will then tell us about which threads are
4620 stopped. */
4621 this->update_thread_list ();
4622 }
4623 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4624 {
4625 /* Don't assume that the stub can operate in all-stop mode.
4626 Request it explicitly. */
4627 putpkt ("QNonStop:0");
4628 getpkt (&rs->buf, 0);
4629
4630 if (strcmp (rs->buf.data (), "OK") != 0)
4631 error (_("Remote refused setting all-stop mode with: %s"),
4632 rs->buf.data ());
4633 }
4634
4635 /* Upload TSVs regardless of whether the target is running or not. The
4636 remote stub, such as GDBserver, may have some predefined or builtin
4637 TSVs, even if the target is not running. */
4638 if (get_trace_status (current_trace_status ()) != -1)
4639 {
4640 struct uploaded_tsv *uploaded_tsvs = NULL;
4641
4642 upload_trace_state_variables (&uploaded_tsvs);
4643 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4644 }
4645
4646 /* Check whether the target is running now. */
4647 putpkt ("?");
4648 getpkt (&rs->buf, 0);
4649
4650 if (!target_is_non_stop_p ())
4651 {
4652 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4653 {
4654 if (!extended_p)
4655 error (_("The target is not running (try extended-remote?)"));
4656
4657 /* We're connected, but not running. Drop out before we
4658 call start_remote. */
4659 rs->starting_up = 0;
4660 return;
4661 }
4662 else
4663 {
4664 /* Save the reply for later. */
4665 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4666 strcpy (wait_status, rs->buf.data ());
4667 }
4668
4669 /* Fetch thread list. */
4670 target_update_thread_list ();
4671
4672 /* Let the stub know that we want it to return the thread. */
4673 set_continue_thread (minus_one_ptid);
4674
4675 if (thread_count () == 0)
4676 {
4677 /* Target has no concept of threads at all. GDB treats
4678 non-threaded target as single-threaded; add a main
4679 thread. */
4680 add_current_inferior_and_thread (wait_status);
4681 }
4682 else
4683 {
4684 /* We have thread information; select the thread the target
4685 says should be current. If we're reconnecting to a
4686 multi-threaded program, this will ideally be the thread
4687 that last reported an event before GDB disconnected. */
4688 inferior_ptid = get_current_thread (wait_status);
4689 if (inferior_ptid == null_ptid)
4690 {
4691 /* Odd... The target was able to list threads, but not
4692 tell us which thread was current (no "thread"
4693 register in T stop reply?). Just pick the first
4694 thread in the thread list then. */
4695
4696 if (remote_debug)
4697 fprintf_unfiltered (gdb_stdlog,
4698 "warning: couldn't determine remote "
4699 "current thread; picking first in list.\n");
4700
4701 inferior_ptid = inferior_list->thread_list->ptid;
4702 }
4703 }
4704
4705 /* init_wait_for_inferior should be called before get_offsets in order
4706 to manage `inserted' flag in bp loc in a correct state.
4707 breakpoint_init_inferior, called from init_wait_for_inferior, set
4708 `inserted' flag to 0, while before breakpoint_re_set, called from
4709 start_remote, set `inserted' flag to 1. In the initialization of
4710 inferior, breakpoint_init_inferior should be called first, and then
4711 breakpoint_re_set can be called. If this order is broken, state of
4712 `inserted' flag is wrong, and cause some problems on breakpoint
4713 manipulation. */
4714 init_wait_for_inferior ();
4715
4716 get_offsets (); /* Get text, data & bss offsets. */
4717
4718 /* If we could not find a description using qXfer, and we know
4719 how to do it some other way, try again. This is not
4720 supported for non-stop; it could be, but it is tricky if
4721 there are no stopped threads when we connect. */
4722 if (remote_read_description_p (this)
4723 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4724 {
4725 target_clear_description ();
4726 target_find_description ();
4727 }
4728
4729 /* Use the previously fetched status. */
4730 gdb_assert (wait_status != NULL);
4731 strcpy (rs->buf.data (), wait_status);
4732 rs->cached_wait_status = 1;
4733
4734 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4735 }
4736 else
4737 {
4738 /* Clear WFI global state. Do this before finding about new
4739 threads and inferiors, and setting the current inferior.
4740 Otherwise we would clear the proceed status of the current
4741 inferior when we want its stop_soon state to be preserved
4742 (see notice_new_inferior). */
4743 init_wait_for_inferior ();
4744
4745 /* In non-stop, we will either get an "OK", meaning that there
4746 are no stopped threads at this time; or, a regular stop
4747 reply. In the latter case, there may be more than one thread
4748 stopped --- we pull them all out using the vStopped
4749 mechanism. */
4750 if (strcmp (rs->buf.data (), "OK") != 0)
4751 {
4752 struct notif_client *notif = &notif_client_stop;
4753
4754 /* remote_notif_get_pending_replies acks this one, and gets
4755 the rest out. */
4756 rs->notif_state->pending_event[notif_client_stop.id]
4757 = remote_notif_parse (this, notif, rs->buf.data ());
4758 remote_notif_get_pending_events (notif);
4759 }
4760
4761 if (thread_count () == 0)
4762 {
4763 if (!extended_p)
4764 error (_("The target is not running (try extended-remote?)"));
4765
4766 /* We're connected, but not running. Drop out before we
4767 call start_remote. */
4768 rs->starting_up = 0;
4769 return;
4770 }
4771
4772 /* In non-stop mode, any cached wait status will be stored in
4773 the stop reply queue. */
4774 gdb_assert (wait_status == NULL);
4775
4776 /* Report all signals during attach/startup. */
4777 pass_signals ({});
4778
4779 /* If there are already stopped threads, mark them stopped and
4780 report their stops before giving the prompt to the user. */
4781 process_initial_stop_replies (from_tty);
4782
4783 if (target_can_async_p ())
4784 target_async (1);
4785 }
4786
4787 /* If we connected to a live target, do some additional setup. */
4788 if (target_has_execution)
4789 {
4790 if (symfile_objfile) /* No use without a symbol-file. */
4791 remote_check_symbols ();
4792 }
4793
4794 /* Possibly the target has been engaged in a trace run started
4795 previously; find out where things are at. */
4796 if (get_trace_status (current_trace_status ()) != -1)
4797 {
4798 struct uploaded_tp *uploaded_tps = NULL;
4799
4800 if (current_trace_status ()->running)
4801 printf_filtered (_("Trace is already running on the target.\n"));
4802
4803 upload_tracepoints (&uploaded_tps);
4804
4805 merge_uploaded_tracepoints (&uploaded_tps);
4806 }
4807
4808 /* Possibly the target has been engaged in a btrace record started
4809 previously; find out where things are at. */
4810 remote_btrace_maybe_reopen ();
4811
4812 /* The thread and inferior lists are now synchronized with the
4813 target, our symbols have been relocated, and we're merged the
4814 target's tracepoints with ours. We're done with basic start
4815 up. */
4816 rs->starting_up = 0;
4817
4818 /* Maybe breakpoints are global and need to be inserted now. */
4819 if (breakpoints_should_be_inserted_now ())
4820 insert_breakpoints ();
4821 }
4822
4823 /* Open a connection to a remote debugger.
4824 NAME is the filename used for communication. */
4825
4826 void
4827 remote_target::open (const char *name, int from_tty)
4828 {
4829 open_1 (name, from_tty, 0);
4830 }
4831
4832 /* Open a connection to a remote debugger using the extended
4833 remote gdb protocol. NAME is the filename used for communication. */
4834
4835 void
4836 extended_remote_target::open (const char *name, int from_tty)
4837 {
4838 open_1 (name, from_tty, 1 /*extended_p */);
4839 }
4840
4841 /* Reset all packets back to "unknown support". Called when opening a
4842 new connection to a remote target. */
4843
4844 static void
4845 reset_all_packet_configs_support (void)
4846 {
4847 int i;
4848
4849 for (i = 0; i < PACKET_MAX; i++)
4850 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4851 }
4852
4853 /* Initialize all packet configs. */
4854
4855 static void
4856 init_all_packet_configs (void)
4857 {
4858 int i;
4859
4860 for (i = 0; i < PACKET_MAX; i++)
4861 {
4862 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4863 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4864 }
4865 }
4866
4867 /* Symbol look-up. */
4868
4869 void
4870 remote_target::remote_check_symbols ()
4871 {
4872 char *tmp;
4873 int end;
4874
4875 /* The remote side has no concept of inferiors that aren't running
4876 yet, it only knows about running processes. If we're connected
4877 but our current inferior is not running, we should not invite the
4878 remote target to request symbol lookups related to its
4879 (unrelated) current process. */
4880 if (!target_has_execution)
4881 return;
4882
4883 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4884 return;
4885
4886 /* Make sure the remote is pointing at the right process. Note
4887 there's no way to select "no process". */
4888 set_general_process ();
4889
4890 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4891 because we need both at the same time. */
4892 gdb::char_vector msg (get_remote_packet_size ());
4893 gdb::char_vector reply (get_remote_packet_size ());
4894
4895 /* Invite target to request symbol lookups. */
4896
4897 putpkt ("qSymbol::");
4898 getpkt (&reply, 0);
4899 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4900
4901 while (startswith (reply.data (), "qSymbol:"))
4902 {
4903 struct bound_minimal_symbol sym;
4904
4905 tmp = &reply[8];
4906 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4907 strlen (tmp) / 2);
4908 msg[end] = '\0';
4909 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4910 if (sym.minsym == NULL)
4911 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4912 &reply[8]);
4913 else
4914 {
4915 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4916 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4917
4918 /* If this is a function address, return the start of code
4919 instead of any data function descriptor. */
4920 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4921 sym_addr,
4922 current_top_target ());
4923
4924 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4925 phex_nz (sym_addr, addr_size), &reply[8]);
4926 }
4927
4928 putpkt (msg.data ());
4929 getpkt (&reply, 0);
4930 }
4931 }
4932
4933 static struct serial *
4934 remote_serial_open (const char *name)
4935 {
4936 static int udp_warning = 0;
4937
4938 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4939 of in ser-tcp.c, because it is the remote protocol assuming that the
4940 serial connection is reliable and not the serial connection promising
4941 to be. */
4942 if (!udp_warning && startswith (name, "udp:"))
4943 {
4944 warning (_("The remote protocol may be unreliable over UDP.\n"
4945 "Some events may be lost, rendering further debugging "
4946 "impossible."));
4947 udp_warning = 1;
4948 }
4949
4950 return serial_open (name);
4951 }
4952
4953 /* Inform the target of our permission settings. The permission flags
4954 work without this, but if the target knows the settings, it can do
4955 a couple things. First, it can add its own check, to catch cases
4956 that somehow manage to get by the permissions checks in target
4957 methods. Second, if the target is wired to disallow particular
4958 settings (for instance, a system in the field that is not set up to
4959 be able to stop at a breakpoint), it can object to any unavailable
4960 permissions. */
4961
4962 void
4963 remote_target::set_permissions ()
4964 {
4965 struct remote_state *rs = get_remote_state ();
4966
4967 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4968 "WriteReg:%x;WriteMem:%x;"
4969 "InsertBreak:%x;InsertTrace:%x;"
4970 "InsertFastTrace:%x;Stop:%x",
4971 may_write_registers, may_write_memory,
4972 may_insert_breakpoints, may_insert_tracepoints,
4973 may_insert_fast_tracepoints, may_stop);
4974 putpkt (rs->buf);
4975 getpkt (&rs->buf, 0);
4976
4977 /* If the target didn't like the packet, warn the user. Do not try
4978 to undo the user's settings, that would just be maddening. */
4979 if (strcmp (rs->buf.data (), "OK") != 0)
4980 warning (_("Remote refused setting permissions with: %s"),
4981 rs->buf.data ());
4982 }
4983
4984 /* This type describes each known response to the qSupported
4985 packet. */
4986 struct protocol_feature
4987 {
4988 /* The name of this protocol feature. */
4989 const char *name;
4990
4991 /* The default for this protocol feature. */
4992 enum packet_support default_support;
4993
4994 /* The function to call when this feature is reported, or after
4995 qSupported processing if the feature is not supported.
4996 The first argument points to this structure. The second
4997 argument indicates whether the packet requested support be
4998 enabled, disabled, or probed (or the default, if this function
4999 is being called at the end of processing and this feature was
5000 not reported). The third argument may be NULL; if not NULL, it
5001 is a NUL-terminated string taken from the packet following
5002 this feature's name and an equals sign. */
5003 void (*func) (remote_target *remote, const struct protocol_feature *,
5004 enum packet_support, const char *);
5005
5006 /* The corresponding packet for this feature. Only used if
5007 FUNC is remote_supported_packet. */
5008 int packet;
5009 };
5010
5011 static void
5012 remote_supported_packet (remote_target *remote,
5013 const struct protocol_feature *feature,
5014 enum packet_support support,
5015 const char *argument)
5016 {
5017 if (argument)
5018 {
5019 warning (_("Remote qSupported response supplied an unexpected value for"
5020 " \"%s\"."), feature->name);
5021 return;
5022 }
5023
5024 remote_protocol_packets[feature->packet].support = support;
5025 }
5026
5027 void
5028 remote_target::remote_packet_size (const protocol_feature *feature,
5029 enum packet_support support, const char *value)
5030 {
5031 struct remote_state *rs = get_remote_state ();
5032
5033 int packet_size;
5034 char *value_end;
5035
5036 if (support != PACKET_ENABLE)
5037 return;
5038
5039 if (value == NULL || *value == '\0')
5040 {
5041 warning (_("Remote target reported \"%s\" without a size."),
5042 feature->name);
5043 return;
5044 }
5045
5046 errno = 0;
5047 packet_size = strtol (value, &value_end, 16);
5048 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5049 {
5050 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5051 feature->name, value);
5052 return;
5053 }
5054
5055 /* Record the new maximum packet size. */
5056 rs->explicit_packet_size = packet_size;
5057 }
5058
5059 static void
5060 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5061 enum packet_support support, const char *value)
5062 {
5063 remote->remote_packet_size (feature, support, value);
5064 }
5065
5066 static const struct protocol_feature remote_protocol_features[] = {
5067 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5068 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5069 PACKET_qXfer_auxv },
5070 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5071 PACKET_qXfer_exec_file },
5072 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5073 PACKET_qXfer_features },
5074 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5075 PACKET_qXfer_libraries },
5076 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5077 PACKET_qXfer_libraries_svr4 },
5078 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5079 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5080 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5081 PACKET_qXfer_memory_map },
5082 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5083 PACKET_qXfer_osdata },
5084 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_qXfer_threads },
5086 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_qXfer_traceframe_info },
5088 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_QPassSignals },
5090 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_QCatchSyscalls },
5092 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_QProgramSignals },
5094 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_QSetWorkingDir },
5096 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_QStartupWithShell },
5098 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_QEnvironmentHexEncoded },
5100 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_QEnvironmentReset },
5102 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_QEnvironmentUnset },
5104 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_QStartNoAckMode },
5106 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_multiprocess_feature },
5108 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5109 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5110 PACKET_qXfer_siginfo_read },
5111 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5112 PACKET_qXfer_siginfo_write },
5113 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5114 PACKET_ConditionalTracepoints },
5115 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5116 PACKET_ConditionalBreakpoints },
5117 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_BreakpointCommands },
5119 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_FastTracepoints },
5121 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_StaticTracepoints },
5123 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_InstallInTrace},
5125 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_DisconnectedTracing_feature },
5127 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_bc },
5129 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_bs },
5131 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_TracepointSource },
5133 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_QAllow },
5135 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_EnableDisableTracepoints_feature },
5137 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_qXfer_fdpic },
5139 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_qXfer_uib },
5141 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_QDisableRandomization },
5143 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5144 { "QTBuffer:size", PACKET_DISABLE,
5145 remote_supported_packet, PACKET_QTBuffer_size},
5146 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5147 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5148 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5149 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5150 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_qXfer_btrace },
5152 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_qXfer_btrace_conf },
5154 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_Qbtrace_conf_bts_size },
5156 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5157 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5158 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_fork_event_feature },
5160 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_vfork_event_feature },
5162 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_exec_event_feature },
5164 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_Qbtrace_conf_pt_size },
5166 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5167 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5168 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5169 };
5170
5171 static char *remote_support_xml;
5172
5173 /* Register string appended to "xmlRegisters=" in qSupported query. */
5174
5175 void
5176 register_remote_support_xml (const char *xml)
5177 {
5178 #if defined(HAVE_LIBEXPAT)
5179 if (remote_support_xml == NULL)
5180 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5181 else
5182 {
5183 char *copy = xstrdup (remote_support_xml + 13);
5184 char *saveptr;
5185 char *p = strtok_r (copy, ",", &saveptr);
5186
5187 do
5188 {
5189 if (strcmp (p, xml) == 0)
5190 {
5191 /* already there */
5192 xfree (copy);
5193 return;
5194 }
5195 }
5196 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5197 xfree (copy);
5198
5199 remote_support_xml = reconcat (remote_support_xml,
5200 remote_support_xml, ",", xml,
5201 (char *) NULL);
5202 }
5203 #endif
5204 }
5205
5206 static void
5207 remote_query_supported_append (std::string *msg, const char *append)
5208 {
5209 if (!msg->empty ())
5210 msg->append (";");
5211 msg->append (append);
5212 }
5213
5214 void
5215 remote_target::remote_query_supported ()
5216 {
5217 struct remote_state *rs = get_remote_state ();
5218 char *next;
5219 int i;
5220 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5221
5222 /* The packet support flags are handled differently for this packet
5223 than for most others. We treat an error, a disabled packet, and
5224 an empty response identically: any features which must be reported
5225 to be used will be automatically disabled. An empty buffer
5226 accomplishes this, since that is also the representation for a list
5227 containing no features. */
5228
5229 rs->buf[0] = 0;
5230 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5231 {
5232 std::string q;
5233
5234 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5235 remote_query_supported_append (&q, "multiprocess+");
5236
5237 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5238 remote_query_supported_append (&q, "swbreak+");
5239 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5240 remote_query_supported_append (&q, "hwbreak+");
5241
5242 remote_query_supported_append (&q, "qRelocInsn+");
5243
5244 if (packet_set_cmd_state (PACKET_fork_event_feature)
5245 != AUTO_BOOLEAN_FALSE)
5246 remote_query_supported_append (&q, "fork-events+");
5247 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5248 != AUTO_BOOLEAN_FALSE)
5249 remote_query_supported_append (&q, "vfork-events+");
5250 if (packet_set_cmd_state (PACKET_exec_event_feature)
5251 != AUTO_BOOLEAN_FALSE)
5252 remote_query_supported_append (&q, "exec-events+");
5253
5254 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5255 remote_query_supported_append (&q, "vContSupported+");
5256
5257 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5258 remote_query_supported_append (&q, "QThreadEvents+");
5259
5260 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5261 remote_query_supported_append (&q, "no-resumed+");
5262
5263 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5264 the qSupported:xmlRegisters=i386 handling. */
5265 if (remote_support_xml != NULL
5266 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5267 remote_query_supported_append (&q, remote_support_xml);
5268
5269 q = "qSupported:" + q;
5270 putpkt (q.c_str ());
5271
5272 getpkt (&rs->buf, 0);
5273
5274 /* If an error occured, warn, but do not return - just reset the
5275 buffer to empty and go on to disable features. */
5276 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5277 == PACKET_ERROR)
5278 {
5279 warning (_("Remote failure reply: %s"), rs->buf.data ());
5280 rs->buf[0] = 0;
5281 }
5282 }
5283
5284 memset (seen, 0, sizeof (seen));
5285
5286 next = rs->buf.data ();
5287 while (*next)
5288 {
5289 enum packet_support is_supported;
5290 char *p, *end, *name_end, *value;
5291
5292 /* First separate out this item from the rest of the packet. If
5293 there's another item after this, we overwrite the separator
5294 (terminated strings are much easier to work with). */
5295 p = next;
5296 end = strchr (p, ';');
5297 if (end == NULL)
5298 {
5299 end = p + strlen (p);
5300 next = end;
5301 }
5302 else
5303 {
5304 *end = '\0';
5305 next = end + 1;
5306
5307 if (end == p)
5308 {
5309 warning (_("empty item in \"qSupported\" response"));
5310 continue;
5311 }
5312 }
5313
5314 name_end = strchr (p, '=');
5315 if (name_end)
5316 {
5317 /* This is a name=value entry. */
5318 is_supported = PACKET_ENABLE;
5319 value = name_end + 1;
5320 *name_end = '\0';
5321 }
5322 else
5323 {
5324 value = NULL;
5325 switch (end[-1])
5326 {
5327 case '+':
5328 is_supported = PACKET_ENABLE;
5329 break;
5330
5331 case '-':
5332 is_supported = PACKET_DISABLE;
5333 break;
5334
5335 case '?':
5336 is_supported = PACKET_SUPPORT_UNKNOWN;
5337 break;
5338
5339 default:
5340 warning (_("unrecognized item \"%s\" "
5341 "in \"qSupported\" response"), p);
5342 continue;
5343 }
5344 end[-1] = '\0';
5345 }
5346
5347 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5348 if (strcmp (remote_protocol_features[i].name, p) == 0)
5349 {
5350 const struct protocol_feature *feature;
5351
5352 seen[i] = 1;
5353 feature = &remote_protocol_features[i];
5354 feature->func (this, feature, is_supported, value);
5355 break;
5356 }
5357 }
5358
5359 /* If we increased the packet size, make sure to increase the global
5360 buffer size also. We delay this until after parsing the entire
5361 qSupported packet, because this is the same buffer we were
5362 parsing. */
5363 if (rs->buf.size () < rs->explicit_packet_size)
5364 rs->buf.resize (rs->explicit_packet_size);
5365
5366 /* Handle the defaults for unmentioned features. */
5367 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5368 if (!seen[i])
5369 {
5370 const struct protocol_feature *feature;
5371
5372 feature = &remote_protocol_features[i];
5373 feature->func (this, feature, feature->default_support, NULL);
5374 }
5375 }
5376
5377 /* Serial QUIT handler for the remote serial descriptor.
5378
5379 Defers handling a Ctrl-C until we're done with the current
5380 command/response packet sequence, unless:
5381
5382 - We're setting up the connection. Don't send a remote interrupt
5383 request, as we're not fully synced yet. Quit immediately
5384 instead.
5385
5386 - The target has been resumed in the foreground
5387 (target_terminal::is_ours is false) with a synchronous resume
5388 packet, and we're blocked waiting for the stop reply, thus a
5389 Ctrl-C should be immediately sent to the target.
5390
5391 - We get a second Ctrl-C while still within the same serial read or
5392 write. In that case the serial is seemingly wedged --- offer to
5393 quit/disconnect.
5394
5395 - We see a second Ctrl-C without target response, after having
5396 previously interrupted the target. In that case the target/stub
5397 is probably wedged --- offer to quit/disconnect.
5398 */
5399
5400 void
5401 remote_target::remote_serial_quit_handler ()
5402 {
5403 struct remote_state *rs = get_remote_state ();
5404
5405 if (check_quit_flag ())
5406 {
5407 /* If we're starting up, we're not fully synced yet. Quit
5408 immediately. */
5409 if (rs->starting_up)
5410 quit ();
5411 else if (rs->got_ctrlc_during_io)
5412 {
5413 if (query (_("The target is not responding to GDB commands.\n"
5414 "Stop debugging it? ")))
5415 remote_unpush_and_throw ();
5416 }
5417 /* If ^C has already been sent once, offer to disconnect. */
5418 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5419 interrupt_query ();
5420 /* All-stop protocol, and blocked waiting for stop reply. Send
5421 an interrupt request. */
5422 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5423 target_interrupt ();
5424 else
5425 rs->got_ctrlc_during_io = 1;
5426 }
5427 }
5428
5429 /* The remote_target that is current while the quit handler is
5430 overridden with remote_serial_quit_handler. */
5431 static remote_target *curr_quit_handler_target;
5432
5433 static void
5434 remote_serial_quit_handler ()
5435 {
5436 curr_quit_handler_target->remote_serial_quit_handler ();
5437 }
5438
5439 /* Remove any of the remote.c targets from target stack. Upper targets depend
5440 on it so remove them first. */
5441
5442 static void
5443 remote_unpush_target (void)
5444 {
5445 pop_all_targets_at_and_above (process_stratum);
5446 }
5447
5448 static void
5449 remote_unpush_and_throw (void)
5450 {
5451 remote_unpush_target ();
5452 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5453 }
5454
5455 void
5456 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5457 {
5458 remote_target *curr_remote = get_current_remote_target ();
5459
5460 if (name == 0)
5461 error (_("To open a remote debug connection, you need to specify what\n"
5462 "serial device is attached to the remote system\n"
5463 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5464
5465 /* If we're connected to a running target, target_preopen will kill it.
5466 Ask this question first, before target_preopen has a chance to kill
5467 anything. */
5468 if (curr_remote != NULL && !have_inferiors ())
5469 {
5470 if (from_tty
5471 && !query (_("Already connected to a remote target. Disconnect? ")))
5472 error (_("Still connected."));
5473 }
5474
5475 /* Here the possibly existing remote target gets unpushed. */
5476 target_preopen (from_tty);
5477
5478 remote_fileio_reset ();
5479 reopen_exec_file ();
5480 reread_symbols ();
5481
5482 remote_target *remote
5483 = (extended_p ? new extended_remote_target () : new remote_target ());
5484 target_ops_up target_holder (remote);
5485
5486 remote_state *rs = remote->get_remote_state ();
5487
5488 /* See FIXME above. */
5489 if (!target_async_permitted)
5490 rs->wait_forever_enabled_p = 1;
5491
5492 rs->remote_desc = remote_serial_open (name);
5493 if (!rs->remote_desc)
5494 perror_with_name (name);
5495
5496 if (baud_rate != -1)
5497 {
5498 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5499 {
5500 /* The requested speed could not be set. Error out to
5501 top level after closing remote_desc. Take care to
5502 set remote_desc to NULL to avoid closing remote_desc
5503 more than once. */
5504 serial_close (rs->remote_desc);
5505 rs->remote_desc = NULL;
5506 perror_with_name (name);
5507 }
5508 }
5509
5510 serial_setparity (rs->remote_desc, serial_parity);
5511 serial_raw (rs->remote_desc);
5512
5513 /* If there is something sitting in the buffer we might take it as a
5514 response to a command, which would be bad. */
5515 serial_flush_input (rs->remote_desc);
5516
5517 if (from_tty)
5518 {
5519 puts_filtered ("Remote debugging using ");
5520 puts_filtered (name);
5521 puts_filtered ("\n");
5522 }
5523
5524 /* Switch to using the remote target now. */
5525 push_target (std::move (target_holder));
5526
5527 /* Register extra event sources in the event loop. */
5528 rs->remote_async_inferior_event_token
5529 = create_async_event_handler (remote_async_inferior_event_handler,
5530 remote);
5531 rs->notif_state = remote_notif_state_allocate (remote);
5532
5533 /* Reset the target state; these things will be queried either by
5534 remote_query_supported or as they are needed. */
5535 reset_all_packet_configs_support ();
5536 rs->cached_wait_status = 0;
5537 rs->explicit_packet_size = 0;
5538 rs->noack_mode = 0;
5539 rs->extended = extended_p;
5540 rs->waiting_for_stop_reply = 0;
5541 rs->ctrlc_pending_p = 0;
5542 rs->got_ctrlc_during_io = 0;
5543
5544 rs->general_thread = not_sent_ptid;
5545 rs->continue_thread = not_sent_ptid;
5546 rs->remote_traceframe_number = -1;
5547
5548 rs->last_resume_exec_dir = EXEC_FORWARD;
5549
5550 /* Probe for ability to use "ThreadInfo" query, as required. */
5551 rs->use_threadinfo_query = 1;
5552 rs->use_threadextra_query = 1;
5553
5554 rs->readahead_cache.invalidate ();
5555
5556 if (target_async_permitted)
5557 {
5558 /* FIXME: cagney/1999-09-23: During the initial connection it is
5559 assumed that the target is already ready and able to respond to
5560 requests. Unfortunately remote_start_remote() eventually calls
5561 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5562 around this. Eventually a mechanism that allows
5563 wait_for_inferior() to expect/get timeouts will be
5564 implemented. */
5565 rs->wait_forever_enabled_p = 0;
5566 }
5567
5568 /* First delete any symbols previously loaded from shared libraries. */
5569 no_shared_libraries (NULL, 0);
5570
5571 /* Start the remote connection. If error() or QUIT, discard this
5572 target (we'd otherwise be in an inconsistent state) and then
5573 propogate the error on up the exception chain. This ensures that
5574 the caller doesn't stumble along blindly assuming that the
5575 function succeeded. The CLI doesn't have this problem but other
5576 UI's, such as MI do.
5577
5578 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5579 this function should return an error indication letting the
5580 caller restore the previous state. Unfortunately the command
5581 ``target remote'' is directly wired to this function making that
5582 impossible. On a positive note, the CLI side of this problem has
5583 been fixed - the function set_cmd_context() makes it possible for
5584 all the ``target ....'' commands to share a common callback
5585 function. See cli-dump.c. */
5586 {
5587
5588 try
5589 {
5590 remote->start_remote (from_tty, extended_p);
5591 }
5592 catch (const gdb_exception &ex)
5593 {
5594 /* Pop the partially set up target - unless something else did
5595 already before throwing the exception. */
5596 if (ex.error != TARGET_CLOSE_ERROR)
5597 remote_unpush_target ();
5598 throw;
5599 }
5600 }
5601
5602 remote_btrace_reset (rs);
5603
5604 if (target_async_permitted)
5605 rs->wait_forever_enabled_p = 1;
5606 }
5607
5608 /* Detach the specified process. */
5609
5610 void
5611 remote_target::remote_detach_pid (int pid)
5612 {
5613 struct remote_state *rs = get_remote_state ();
5614
5615 /* This should not be necessary, but the handling for D;PID in
5616 GDBserver versions prior to 8.2 incorrectly assumes that the
5617 selected process points to the same process we're detaching,
5618 leading to misbehavior (and possibly GDBserver crashing) when it
5619 does not. Since it's easy and cheap, work around it by forcing
5620 GDBserver to select GDB's current process. */
5621 set_general_process ();
5622
5623 if (remote_multi_process_p (rs))
5624 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5625 else
5626 strcpy (rs->buf.data (), "D");
5627
5628 putpkt (rs->buf);
5629 getpkt (&rs->buf, 0);
5630
5631 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5632 ;
5633 else if (rs->buf[0] == '\0')
5634 error (_("Remote doesn't know how to detach"));
5635 else
5636 error (_("Can't detach process."));
5637 }
5638
5639 /* This detaches a program to which we previously attached, using
5640 inferior_ptid to identify the process. After this is done, GDB
5641 can be used to debug some other program. We better not have left
5642 any breakpoints in the target program or it'll die when it hits
5643 one. */
5644
5645 void
5646 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5647 {
5648 int pid = inferior_ptid.pid ();
5649 struct remote_state *rs = get_remote_state ();
5650 int is_fork_parent;
5651
5652 if (!target_has_execution)
5653 error (_("No process to detach from."));
5654
5655 target_announce_detach (from_tty);
5656
5657 /* Tell the remote target to detach. */
5658 remote_detach_pid (pid);
5659
5660 /* Exit only if this is the only active inferior. */
5661 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5662 puts_filtered (_("Ending remote debugging.\n"));
5663
5664 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5665
5666 /* Check to see if we are detaching a fork parent. Note that if we
5667 are detaching a fork child, tp == NULL. */
5668 is_fork_parent = (tp != NULL
5669 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5670
5671 /* If doing detach-on-fork, we don't mourn, because that will delete
5672 breakpoints that should be available for the followed inferior. */
5673 if (!is_fork_parent)
5674 {
5675 /* Save the pid as a string before mourning, since that will
5676 unpush the remote target, and we need the string after. */
5677 std::string infpid = target_pid_to_str (ptid_t (pid));
5678
5679 target_mourn_inferior (inferior_ptid);
5680 if (print_inferior_events)
5681 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5682 inf->num, infpid.c_str ());
5683 }
5684 else
5685 {
5686 inferior_ptid = null_ptid;
5687 detach_inferior (current_inferior ());
5688 }
5689 }
5690
5691 void
5692 remote_target::detach (inferior *inf, int from_tty)
5693 {
5694 remote_detach_1 (inf, from_tty);
5695 }
5696
5697 void
5698 extended_remote_target::detach (inferior *inf, int from_tty)
5699 {
5700 remote_detach_1 (inf, from_tty);
5701 }
5702
5703 /* Target follow-fork function for remote targets. On entry, and
5704 at return, the current inferior is the fork parent.
5705
5706 Note that although this is currently only used for extended-remote,
5707 it is named remote_follow_fork in anticipation of using it for the
5708 remote target as well. */
5709
5710 int
5711 remote_target::follow_fork (int follow_child, int detach_fork)
5712 {
5713 struct remote_state *rs = get_remote_state ();
5714 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5715
5716 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5717 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5718 {
5719 /* When following the parent and detaching the child, we detach
5720 the child here. For the case of following the child and
5721 detaching the parent, the detach is done in the target-
5722 independent follow fork code in infrun.c. We can't use
5723 target_detach when detaching an unfollowed child because
5724 the client side doesn't know anything about the child. */
5725 if (detach_fork && !follow_child)
5726 {
5727 /* Detach the fork child. */
5728 ptid_t child_ptid;
5729 pid_t child_pid;
5730
5731 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5732 child_pid = child_ptid.pid ();
5733
5734 remote_detach_pid (child_pid);
5735 }
5736 }
5737 return 0;
5738 }
5739
5740 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5741 in the program space of the new inferior. On entry and at return the
5742 current inferior is the exec'ing inferior. INF is the new exec'd
5743 inferior, which may be the same as the exec'ing inferior unless
5744 follow-exec-mode is "new". */
5745
5746 void
5747 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5748 {
5749 /* We know that this is a target file name, so if it has the "target:"
5750 prefix we strip it off before saving it in the program space. */
5751 if (is_target_filename (execd_pathname))
5752 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5753
5754 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5755 }
5756
5757 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5758
5759 void
5760 remote_target::disconnect (const char *args, int from_tty)
5761 {
5762 if (args)
5763 error (_("Argument given to \"disconnect\" when remotely debugging."));
5764
5765 /* Make sure we unpush even the extended remote targets. Calling
5766 target_mourn_inferior won't unpush, and remote_mourn won't
5767 unpush if there is more than one inferior left. */
5768 unpush_target (this);
5769 generic_mourn_inferior ();
5770
5771 if (from_tty)
5772 puts_filtered ("Ending remote debugging.\n");
5773 }
5774
5775 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5776 be chatty about it. */
5777
5778 void
5779 extended_remote_target::attach (const char *args, int from_tty)
5780 {
5781 struct remote_state *rs = get_remote_state ();
5782 int pid;
5783 char *wait_status = NULL;
5784
5785 pid = parse_pid_to_attach (args);
5786
5787 /* Remote PID can be freely equal to getpid, do not check it here the same
5788 way as in other targets. */
5789
5790 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5791 error (_("This target does not support attaching to a process"));
5792
5793 if (from_tty)
5794 {
5795 const char *exec_file = get_exec_file (0);
5796
5797 if (exec_file)
5798 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5799 target_pid_to_str (ptid_t (pid)).c_str ());
5800 else
5801 printf_unfiltered (_("Attaching to %s\n"),
5802 target_pid_to_str (ptid_t (pid)).c_str ());
5803 }
5804
5805 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5806 putpkt (rs->buf);
5807 getpkt (&rs->buf, 0);
5808
5809 switch (packet_ok (rs->buf,
5810 &remote_protocol_packets[PACKET_vAttach]))
5811 {
5812 case PACKET_OK:
5813 if (!target_is_non_stop_p ())
5814 {
5815 /* Save the reply for later. */
5816 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5817 strcpy (wait_status, rs->buf.data ());
5818 }
5819 else if (strcmp (rs->buf.data (), "OK") != 0)
5820 error (_("Attaching to %s failed with: %s"),
5821 target_pid_to_str (ptid_t (pid)).c_str (),
5822 rs->buf.data ());
5823 break;
5824 case PACKET_UNKNOWN:
5825 error (_("This target does not support attaching to a process"));
5826 default:
5827 error (_("Attaching to %s failed"),
5828 target_pid_to_str (ptid_t (pid)).c_str ());
5829 }
5830
5831 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5832
5833 inferior_ptid = ptid_t (pid);
5834
5835 if (target_is_non_stop_p ())
5836 {
5837 struct thread_info *thread;
5838
5839 /* Get list of threads. */
5840 update_thread_list ();
5841
5842 thread = first_thread_of_inferior (current_inferior ());
5843 if (thread)
5844 inferior_ptid = thread->ptid;
5845 else
5846 inferior_ptid = ptid_t (pid);
5847
5848 /* Invalidate our notion of the remote current thread. */
5849 record_currthread (rs, minus_one_ptid);
5850 }
5851 else
5852 {
5853 /* Now, if we have thread information, update inferior_ptid. */
5854 inferior_ptid = remote_current_thread (inferior_ptid);
5855
5856 /* Add the main thread to the thread list. */
5857 thread_info *thr = add_thread_silent (inferior_ptid);
5858 /* Don't consider the thread stopped until we've processed the
5859 saved stop reply. */
5860 set_executing (thr->ptid, true);
5861 }
5862
5863 /* Next, if the target can specify a description, read it. We do
5864 this before anything involving memory or registers. */
5865 target_find_description ();
5866
5867 if (!target_is_non_stop_p ())
5868 {
5869 /* Use the previously fetched status. */
5870 gdb_assert (wait_status != NULL);
5871
5872 if (target_can_async_p ())
5873 {
5874 struct notif_event *reply
5875 = remote_notif_parse (this, &notif_client_stop, wait_status);
5876
5877 push_stop_reply ((struct stop_reply *) reply);
5878
5879 target_async (1);
5880 }
5881 else
5882 {
5883 gdb_assert (wait_status != NULL);
5884 strcpy (rs->buf.data (), wait_status);
5885 rs->cached_wait_status = 1;
5886 }
5887 }
5888 else
5889 gdb_assert (wait_status == NULL);
5890 }
5891
5892 /* Implementation of the to_post_attach method. */
5893
5894 void
5895 extended_remote_target::post_attach (int pid)
5896 {
5897 /* Get text, data & bss offsets. */
5898 get_offsets ();
5899
5900 /* In certain cases GDB might not have had the chance to start
5901 symbol lookup up until now. This could happen if the debugged
5902 binary is not using shared libraries, the vsyscall page is not
5903 present (on Linux) and the binary itself hadn't changed since the
5904 debugging process was started. */
5905 if (symfile_objfile != NULL)
5906 remote_check_symbols();
5907 }
5908
5909 \f
5910 /* Check for the availability of vCont. This function should also check
5911 the response. */
5912
5913 void
5914 remote_target::remote_vcont_probe ()
5915 {
5916 remote_state *rs = get_remote_state ();
5917 char *buf;
5918
5919 strcpy (rs->buf.data (), "vCont?");
5920 putpkt (rs->buf);
5921 getpkt (&rs->buf, 0);
5922 buf = rs->buf.data ();
5923
5924 /* Make sure that the features we assume are supported. */
5925 if (startswith (buf, "vCont"))
5926 {
5927 char *p = &buf[5];
5928 int support_c, support_C;
5929
5930 rs->supports_vCont.s = 0;
5931 rs->supports_vCont.S = 0;
5932 support_c = 0;
5933 support_C = 0;
5934 rs->supports_vCont.t = 0;
5935 rs->supports_vCont.r = 0;
5936 while (p && *p == ';')
5937 {
5938 p++;
5939 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5940 rs->supports_vCont.s = 1;
5941 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5942 rs->supports_vCont.S = 1;
5943 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5944 support_c = 1;
5945 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5946 support_C = 1;
5947 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5948 rs->supports_vCont.t = 1;
5949 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5950 rs->supports_vCont.r = 1;
5951
5952 p = strchr (p, ';');
5953 }
5954
5955 /* If c, and C are not all supported, we can't use vCont. Clearing
5956 BUF will make packet_ok disable the packet. */
5957 if (!support_c || !support_C)
5958 buf[0] = 0;
5959 }
5960
5961 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5962 }
5963
5964 /* Helper function for building "vCont" resumptions. Write a
5965 resumption to P. ENDP points to one-passed-the-end of the buffer
5966 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5967 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5968 resumed thread should be single-stepped and/or signalled. If PTID
5969 equals minus_one_ptid, then all threads are resumed; if PTID
5970 represents a process, then all threads of the process are resumed;
5971 the thread to be stepped and/or signalled is given in the global
5972 INFERIOR_PTID. */
5973
5974 char *
5975 remote_target::append_resumption (char *p, char *endp,
5976 ptid_t ptid, int step, gdb_signal siggnal)
5977 {
5978 struct remote_state *rs = get_remote_state ();
5979
5980 if (step && siggnal != GDB_SIGNAL_0)
5981 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5982 else if (step
5983 /* GDB is willing to range step. */
5984 && use_range_stepping
5985 /* Target supports range stepping. */
5986 && rs->supports_vCont.r
5987 /* We don't currently support range stepping multiple
5988 threads with a wildcard (though the protocol allows it,
5989 so stubs shouldn't make an active effort to forbid
5990 it). */
5991 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
5992 {
5993 struct thread_info *tp;
5994
5995 if (ptid == minus_one_ptid)
5996 {
5997 /* If we don't know about the target thread's tid, then
5998 we're resuming magic_null_ptid (see caller). */
5999 tp = find_thread_ptid (magic_null_ptid);
6000 }
6001 else
6002 tp = find_thread_ptid (ptid);
6003 gdb_assert (tp != NULL);
6004
6005 if (tp->control.may_range_step)
6006 {
6007 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6008
6009 p += xsnprintf (p, endp - p, ";r%s,%s",
6010 phex_nz (tp->control.step_range_start,
6011 addr_size),
6012 phex_nz (tp->control.step_range_end,
6013 addr_size));
6014 }
6015 else
6016 p += xsnprintf (p, endp - p, ";s");
6017 }
6018 else if (step)
6019 p += xsnprintf (p, endp - p, ";s");
6020 else if (siggnal != GDB_SIGNAL_0)
6021 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6022 else
6023 p += xsnprintf (p, endp - p, ";c");
6024
6025 if (remote_multi_process_p (rs) && ptid.is_pid ())
6026 {
6027 ptid_t nptid;
6028
6029 /* All (-1) threads of process. */
6030 nptid = ptid_t (ptid.pid (), -1, 0);
6031
6032 p += xsnprintf (p, endp - p, ":");
6033 p = write_ptid (p, endp, nptid);
6034 }
6035 else if (ptid != minus_one_ptid)
6036 {
6037 p += xsnprintf (p, endp - p, ":");
6038 p = write_ptid (p, endp, ptid);
6039 }
6040
6041 return p;
6042 }
6043
6044 /* Clear the thread's private info on resume. */
6045
6046 static void
6047 resume_clear_thread_private_info (struct thread_info *thread)
6048 {
6049 if (thread->priv != NULL)
6050 {
6051 remote_thread_info *priv = get_remote_thread_info (thread);
6052
6053 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6054 priv->watch_data_address = 0;
6055 }
6056 }
6057
6058 /* Append a vCont continue-with-signal action for threads that have a
6059 non-zero stop signal. */
6060
6061 char *
6062 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6063 ptid_t ptid)
6064 {
6065 for (thread_info *thread : all_non_exited_threads (ptid))
6066 if (inferior_ptid != thread->ptid
6067 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6068 {
6069 p = append_resumption (p, endp, thread->ptid,
6070 0, thread->suspend.stop_signal);
6071 thread->suspend.stop_signal = GDB_SIGNAL_0;
6072 resume_clear_thread_private_info (thread);
6073 }
6074
6075 return p;
6076 }
6077
6078 /* Set the target running, using the packets that use Hc
6079 (c/s/C/S). */
6080
6081 void
6082 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6083 gdb_signal siggnal)
6084 {
6085 struct remote_state *rs = get_remote_state ();
6086 char *buf;
6087
6088 rs->last_sent_signal = siggnal;
6089 rs->last_sent_step = step;
6090
6091 /* The c/s/C/S resume packets use Hc, so set the continue
6092 thread. */
6093 if (ptid == minus_one_ptid)
6094 set_continue_thread (any_thread_ptid);
6095 else
6096 set_continue_thread (ptid);
6097
6098 for (thread_info *thread : all_non_exited_threads ())
6099 resume_clear_thread_private_info (thread);
6100
6101 buf = rs->buf.data ();
6102 if (::execution_direction == EXEC_REVERSE)
6103 {
6104 /* We don't pass signals to the target in reverse exec mode. */
6105 if (info_verbose && siggnal != GDB_SIGNAL_0)
6106 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6107 siggnal);
6108
6109 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6110 error (_("Remote reverse-step not supported."));
6111 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6112 error (_("Remote reverse-continue not supported."));
6113
6114 strcpy (buf, step ? "bs" : "bc");
6115 }
6116 else if (siggnal != GDB_SIGNAL_0)
6117 {
6118 buf[0] = step ? 'S' : 'C';
6119 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6120 buf[2] = tohex (((int) siggnal) & 0xf);
6121 buf[3] = '\0';
6122 }
6123 else
6124 strcpy (buf, step ? "s" : "c");
6125
6126 putpkt (buf);
6127 }
6128
6129 /* Resume the remote inferior by using a "vCont" packet. The thread
6130 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6131 resumed thread should be single-stepped and/or signalled. If PTID
6132 equals minus_one_ptid, then all threads are resumed; the thread to
6133 be stepped and/or signalled is given in the global INFERIOR_PTID.
6134 This function returns non-zero iff it resumes the inferior.
6135
6136 This function issues a strict subset of all possible vCont commands
6137 at the moment. */
6138
6139 int
6140 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6141 enum gdb_signal siggnal)
6142 {
6143 struct remote_state *rs = get_remote_state ();
6144 char *p;
6145 char *endp;
6146
6147 /* No reverse execution actions defined for vCont. */
6148 if (::execution_direction == EXEC_REVERSE)
6149 return 0;
6150
6151 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6152 remote_vcont_probe ();
6153
6154 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6155 return 0;
6156
6157 p = rs->buf.data ();
6158 endp = p + get_remote_packet_size ();
6159
6160 /* If we could generate a wider range of packets, we'd have to worry
6161 about overflowing BUF. Should there be a generic
6162 "multi-part-packet" packet? */
6163
6164 p += xsnprintf (p, endp - p, "vCont");
6165
6166 if (ptid == magic_null_ptid)
6167 {
6168 /* MAGIC_NULL_PTID means that we don't have any active threads,
6169 so we don't have any TID numbers the inferior will
6170 understand. Make sure to only send forms that do not specify
6171 a TID. */
6172 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6173 }
6174 else if (ptid == minus_one_ptid || ptid.is_pid ())
6175 {
6176 /* Resume all threads (of all processes, or of a single
6177 process), with preference for INFERIOR_PTID. This assumes
6178 inferior_ptid belongs to the set of all threads we are about
6179 to resume. */
6180 if (step || siggnal != GDB_SIGNAL_0)
6181 {
6182 /* Step inferior_ptid, with or without signal. */
6183 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6184 }
6185
6186 /* Also pass down any pending signaled resumption for other
6187 threads not the current. */
6188 p = append_pending_thread_resumptions (p, endp, ptid);
6189
6190 /* And continue others without a signal. */
6191 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6192 }
6193 else
6194 {
6195 /* Scheduler locking; resume only PTID. */
6196 append_resumption (p, endp, ptid, step, siggnal);
6197 }
6198
6199 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6200 putpkt (rs->buf);
6201
6202 if (target_is_non_stop_p ())
6203 {
6204 /* In non-stop, the stub replies to vCont with "OK". The stop
6205 reply will be reported asynchronously by means of a `%Stop'
6206 notification. */
6207 getpkt (&rs->buf, 0);
6208 if (strcmp (rs->buf.data (), "OK") != 0)
6209 error (_("Unexpected vCont reply in non-stop mode: %s"),
6210 rs->buf.data ());
6211 }
6212
6213 return 1;
6214 }
6215
6216 /* Tell the remote machine to resume. */
6217
6218 void
6219 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6220 {
6221 struct remote_state *rs = get_remote_state ();
6222
6223 /* When connected in non-stop mode, the core resumes threads
6224 individually. Resuming remote threads directly in target_resume
6225 would thus result in sending one packet per thread. Instead, to
6226 minimize roundtrip latency, here we just store the resume
6227 request; the actual remote resumption will be done in
6228 target_commit_resume / remote_commit_resume, where we'll be able
6229 to do vCont action coalescing. */
6230 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6231 {
6232 remote_thread_info *remote_thr;
6233
6234 if (minus_one_ptid == ptid || ptid.is_pid ())
6235 remote_thr = get_remote_thread_info (inferior_ptid);
6236 else
6237 remote_thr = get_remote_thread_info (ptid);
6238
6239 remote_thr->last_resume_step = step;
6240 remote_thr->last_resume_sig = siggnal;
6241 return;
6242 }
6243
6244 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6245 (explained in remote-notif.c:handle_notification) so
6246 remote_notif_process is not called. We need find a place where
6247 it is safe to start a 'vNotif' sequence. It is good to do it
6248 before resuming inferior, because inferior was stopped and no RSP
6249 traffic at that moment. */
6250 if (!target_is_non_stop_p ())
6251 remote_notif_process (rs->notif_state, &notif_client_stop);
6252
6253 rs->last_resume_exec_dir = ::execution_direction;
6254
6255 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6256 if (!remote_resume_with_vcont (ptid, step, siggnal))
6257 remote_resume_with_hc (ptid, step, siggnal);
6258
6259 /* We are about to start executing the inferior, let's register it
6260 with the event loop. NOTE: this is the one place where all the
6261 execution commands end up. We could alternatively do this in each
6262 of the execution commands in infcmd.c. */
6263 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6264 into infcmd.c in order to allow inferior function calls to work
6265 NOT asynchronously. */
6266 if (target_can_async_p ())
6267 target_async (1);
6268
6269 /* We've just told the target to resume. The remote server will
6270 wait for the inferior to stop, and then send a stop reply. In
6271 the mean time, we can't start another command/query ourselves
6272 because the stub wouldn't be ready to process it. This applies
6273 only to the base all-stop protocol, however. In non-stop (which
6274 only supports vCont), the stub replies with an "OK", and is
6275 immediate able to process further serial input. */
6276 if (!target_is_non_stop_p ())
6277 rs->waiting_for_stop_reply = 1;
6278 }
6279
6280 static int is_pending_fork_parent_thread (struct thread_info *thread);
6281
6282 /* Private per-inferior info for target remote processes. */
6283
6284 struct remote_inferior : public private_inferior
6285 {
6286 /* Whether we can send a wildcard vCont for this process. */
6287 bool may_wildcard_vcont = true;
6288 };
6289
6290 /* Get the remote private inferior data associated to INF. */
6291
6292 static remote_inferior *
6293 get_remote_inferior (inferior *inf)
6294 {
6295 if (inf->priv == NULL)
6296 inf->priv.reset (new remote_inferior);
6297
6298 return static_cast<remote_inferior *> (inf->priv.get ());
6299 }
6300
6301 /* Class used to track the construction of a vCont packet in the
6302 outgoing packet buffer. This is used to send multiple vCont
6303 packets if we have more actions than would fit a single packet. */
6304
6305 class vcont_builder
6306 {
6307 public:
6308 explicit vcont_builder (remote_target *remote)
6309 : m_remote (remote)
6310 {
6311 restart ();
6312 }
6313
6314 void flush ();
6315 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6316
6317 private:
6318 void restart ();
6319
6320 /* The remote target. */
6321 remote_target *m_remote;
6322
6323 /* Pointer to the first action. P points here if no action has been
6324 appended yet. */
6325 char *m_first_action;
6326
6327 /* Where the next action will be appended. */
6328 char *m_p;
6329
6330 /* The end of the buffer. Must never write past this. */
6331 char *m_endp;
6332 };
6333
6334 /* Prepare the outgoing buffer for a new vCont packet. */
6335
6336 void
6337 vcont_builder::restart ()
6338 {
6339 struct remote_state *rs = m_remote->get_remote_state ();
6340
6341 m_p = rs->buf.data ();
6342 m_endp = m_p + m_remote->get_remote_packet_size ();
6343 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6344 m_first_action = m_p;
6345 }
6346
6347 /* If the vCont packet being built has any action, send it to the
6348 remote end. */
6349
6350 void
6351 vcont_builder::flush ()
6352 {
6353 struct remote_state *rs;
6354
6355 if (m_p == m_first_action)
6356 return;
6357
6358 rs = m_remote->get_remote_state ();
6359 m_remote->putpkt (rs->buf);
6360 m_remote->getpkt (&rs->buf, 0);
6361 if (strcmp (rs->buf.data (), "OK") != 0)
6362 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6363 }
6364
6365 /* The largest action is range-stepping, with its two addresses. This
6366 is more than sufficient. If a new, bigger action is created, it'll
6367 quickly trigger a failed assertion in append_resumption (and we'll
6368 just bump this). */
6369 #define MAX_ACTION_SIZE 200
6370
6371 /* Append a new vCont action in the outgoing packet being built. If
6372 the action doesn't fit the packet along with previous actions, push
6373 what we've got so far to the remote end and start over a new vCont
6374 packet (with the new action). */
6375
6376 void
6377 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6378 {
6379 char buf[MAX_ACTION_SIZE + 1];
6380
6381 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6382 ptid, step, siggnal);
6383
6384 /* Check whether this new action would fit in the vCont packet along
6385 with previous actions. If not, send what we've got so far and
6386 start a new vCont packet. */
6387 size_t rsize = endp - buf;
6388 if (rsize > m_endp - m_p)
6389 {
6390 flush ();
6391 restart ();
6392
6393 /* Should now fit. */
6394 gdb_assert (rsize <= m_endp - m_p);
6395 }
6396
6397 memcpy (m_p, buf, rsize);
6398 m_p += rsize;
6399 *m_p = '\0';
6400 }
6401
6402 /* to_commit_resume implementation. */
6403
6404 void
6405 remote_target::commit_resume ()
6406 {
6407 int any_process_wildcard;
6408 int may_global_wildcard_vcont;
6409
6410 /* If connected in all-stop mode, we'd send the remote resume
6411 request directly from remote_resume. Likewise if
6412 reverse-debugging, as there are no defined vCont actions for
6413 reverse execution. */
6414 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6415 return;
6416
6417 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6418 instead of resuming all threads of each process individually.
6419 However, if any thread of a process must remain halted, we can't
6420 send wildcard resumes and must send one action per thread.
6421
6422 Care must be taken to not resume threads/processes the server
6423 side already told us are stopped, but the core doesn't know about
6424 yet, because the events are still in the vStopped notification
6425 queue. For example:
6426
6427 #1 => vCont s:p1.1;c
6428 #2 <= OK
6429 #3 <= %Stopped T05 p1.1
6430 #4 => vStopped
6431 #5 <= T05 p1.2
6432 #6 => vStopped
6433 #7 <= OK
6434 #8 (infrun handles the stop for p1.1 and continues stepping)
6435 #9 => vCont s:p1.1;c
6436
6437 The last vCont above would resume thread p1.2 by mistake, because
6438 the server has no idea that the event for p1.2 had not been
6439 handled yet.
6440
6441 The server side must similarly ignore resume actions for the
6442 thread that has a pending %Stopped notification (and any other
6443 threads with events pending), until GDB acks the notification
6444 with vStopped. Otherwise, e.g., the following case is
6445 mishandled:
6446
6447 #1 => g (or any other packet)
6448 #2 <= [registers]
6449 #3 <= %Stopped T05 p1.2
6450 #4 => vCont s:p1.1;c
6451 #5 <= OK
6452
6453 Above, the server must not resume thread p1.2. GDB can't know
6454 that p1.2 stopped until it acks the %Stopped notification, and
6455 since from GDB's perspective all threads should be running, it
6456 sends a "c" action.
6457
6458 Finally, special care must also be given to handling fork/vfork
6459 events. A (v)fork event actually tells us that two processes
6460 stopped -- the parent and the child. Until we follow the fork,
6461 we must not resume the child. Therefore, if we have a pending
6462 fork follow, we must not send a global wildcard resume action
6463 (vCont;c). We can still send process-wide wildcards though. */
6464
6465 /* Start by assuming a global wildcard (vCont;c) is possible. */
6466 may_global_wildcard_vcont = 1;
6467
6468 /* And assume every process is individually wildcard-able too. */
6469 for (inferior *inf : all_non_exited_inferiors ())
6470 {
6471 remote_inferior *priv = get_remote_inferior (inf);
6472
6473 priv->may_wildcard_vcont = true;
6474 }
6475
6476 /* Check for any pending events (not reported or processed yet) and
6477 disable process and global wildcard resumes appropriately. */
6478 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6479
6480 for (thread_info *tp : all_non_exited_threads ())
6481 {
6482 /* If a thread of a process is not meant to be resumed, then we
6483 can't wildcard that process. */
6484 if (!tp->executing)
6485 {
6486 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6487
6488 /* And if we can't wildcard a process, we can't wildcard
6489 everything either. */
6490 may_global_wildcard_vcont = 0;
6491 continue;
6492 }
6493
6494 /* If a thread is the parent of an unfollowed fork, then we
6495 can't do a global wildcard, as that would resume the fork
6496 child. */
6497 if (is_pending_fork_parent_thread (tp))
6498 may_global_wildcard_vcont = 0;
6499 }
6500
6501 /* Now let's build the vCont packet(s). Actions must be appended
6502 from narrower to wider scopes (thread -> process -> global). If
6503 we end up with too many actions for a single packet vcont_builder
6504 flushes the current vCont packet to the remote side and starts a
6505 new one. */
6506 struct vcont_builder vcont_builder (this);
6507
6508 /* Threads first. */
6509 for (thread_info *tp : all_non_exited_threads ())
6510 {
6511 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6512
6513 if (!tp->executing || remote_thr->vcont_resumed)
6514 continue;
6515
6516 gdb_assert (!thread_is_in_step_over_chain (tp));
6517
6518 if (!remote_thr->last_resume_step
6519 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6520 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6521 {
6522 /* We'll send a wildcard resume instead. */
6523 remote_thr->vcont_resumed = 1;
6524 continue;
6525 }
6526
6527 vcont_builder.push_action (tp->ptid,
6528 remote_thr->last_resume_step,
6529 remote_thr->last_resume_sig);
6530 remote_thr->vcont_resumed = 1;
6531 }
6532
6533 /* Now check whether we can send any process-wide wildcard. This is
6534 to avoid sending a global wildcard in the case nothing is
6535 supposed to be resumed. */
6536 any_process_wildcard = 0;
6537
6538 for (inferior *inf : all_non_exited_inferiors ())
6539 {
6540 if (get_remote_inferior (inf)->may_wildcard_vcont)
6541 {
6542 any_process_wildcard = 1;
6543 break;
6544 }
6545 }
6546
6547 if (any_process_wildcard)
6548 {
6549 /* If all processes are wildcard-able, then send a single "c"
6550 action, otherwise, send an "all (-1) threads of process"
6551 continue action for each running process, if any. */
6552 if (may_global_wildcard_vcont)
6553 {
6554 vcont_builder.push_action (minus_one_ptid,
6555 false, GDB_SIGNAL_0);
6556 }
6557 else
6558 {
6559 for (inferior *inf : all_non_exited_inferiors ())
6560 {
6561 if (get_remote_inferior (inf)->may_wildcard_vcont)
6562 {
6563 vcont_builder.push_action (ptid_t (inf->pid),
6564 false, GDB_SIGNAL_0);
6565 }
6566 }
6567 }
6568 }
6569
6570 vcont_builder.flush ();
6571 }
6572
6573 \f
6574
6575 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6576 thread, all threads of a remote process, or all threads of all
6577 processes. */
6578
6579 void
6580 remote_target::remote_stop_ns (ptid_t ptid)
6581 {
6582 struct remote_state *rs = get_remote_state ();
6583 char *p = rs->buf.data ();
6584 char *endp = p + get_remote_packet_size ();
6585
6586 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6587 remote_vcont_probe ();
6588
6589 if (!rs->supports_vCont.t)
6590 error (_("Remote server does not support stopping threads"));
6591
6592 if (ptid == minus_one_ptid
6593 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6594 p += xsnprintf (p, endp - p, "vCont;t");
6595 else
6596 {
6597 ptid_t nptid;
6598
6599 p += xsnprintf (p, endp - p, "vCont;t:");
6600
6601 if (ptid.is_pid ())
6602 /* All (-1) threads of process. */
6603 nptid = ptid_t (ptid.pid (), -1, 0);
6604 else
6605 {
6606 /* Small optimization: if we already have a stop reply for
6607 this thread, no use in telling the stub we want this
6608 stopped. */
6609 if (peek_stop_reply (ptid))
6610 return;
6611
6612 nptid = ptid;
6613 }
6614
6615 write_ptid (p, endp, nptid);
6616 }
6617
6618 /* In non-stop, we get an immediate OK reply. The stop reply will
6619 come in asynchronously by notification. */
6620 putpkt (rs->buf);
6621 getpkt (&rs->buf, 0);
6622 if (strcmp (rs->buf.data (), "OK") != 0)
6623 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6624 rs->buf.data ());
6625 }
6626
6627 /* All-stop version of target_interrupt. Sends a break or a ^C to
6628 interrupt the remote target. It is undefined which thread of which
6629 process reports the interrupt. */
6630
6631 void
6632 remote_target::remote_interrupt_as ()
6633 {
6634 struct remote_state *rs = get_remote_state ();
6635
6636 rs->ctrlc_pending_p = 1;
6637
6638 /* If the inferior is stopped already, but the core didn't know
6639 about it yet, just ignore the request. The cached wait status
6640 will be collected in remote_wait. */
6641 if (rs->cached_wait_status)
6642 return;
6643
6644 /* Send interrupt_sequence to remote target. */
6645 send_interrupt_sequence ();
6646 }
6647
6648 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6649 the remote target. It is undefined which thread of which process
6650 reports the interrupt. Throws an error if the packet is not
6651 supported by the server. */
6652
6653 void
6654 remote_target::remote_interrupt_ns ()
6655 {
6656 struct remote_state *rs = get_remote_state ();
6657 char *p = rs->buf.data ();
6658 char *endp = p + get_remote_packet_size ();
6659
6660 xsnprintf (p, endp - p, "vCtrlC");
6661
6662 /* In non-stop, we get an immediate OK reply. The stop reply will
6663 come in asynchronously by notification. */
6664 putpkt (rs->buf);
6665 getpkt (&rs->buf, 0);
6666
6667 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6668 {
6669 case PACKET_OK:
6670 break;
6671 case PACKET_UNKNOWN:
6672 error (_("No support for interrupting the remote target."));
6673 case PACKET_ERROR:
6674 error (_("Interrupting target failed: %s"), rs->buf.data ());
6675 }
6676 }
6677
6678 /* Implement the to_stop function for the remote targets. */
6679
6680 void
6681 remote_target::stop (ptid_t ptid)
6682 {
6683 if (remote_debug)
6684 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6685
6686 if (target_is_non_stop_p ())
6687 remote_stop_ns (ptid);
6688 else
6689 {
6690 /* We don't currently have a way to transparently pause the
6691 remote target in all-stop mode. Interrupt it instead. */
6692 remote_interrupt_as ();
6693 }
6694 }
6695
6696 /* Implement the to_interrupt function for the remote targets. */
6697
6698 void
6699 remote_target::interrupt ()
6700 {
6701 if (remote_debug)
6702 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6703
6704 if (target_is_non_stop_p ())
6705 remote_interrupt_ns ();
6706 else
6707 remote_interrupt_as ();
6708 }
6709
6710 /* Implement the to_pass_ctrlc function for the remote targets. */
6711
6712 void
6713 remote_target::pass_ctrlc ()
6714 {
6715 struct remote_state *rs = get_remote_state ();
6716
6717 if (remote_debug)
6718 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6719
6720 /* If we're starting up, we're not fully synced yet. Quit
6721 immediately. */
6722 if (rs->starting_up)
6723 quit ();
6724 /* If ^C has already been sent once, offer to disconnect. */
6725 else if (rs->ctrlc_pending_p)
6726 interrupt_query ();
6727 else
6728 target_interrupt ();
6729 }
6730
6731 /* Ask the user what to do when an interrupt is received. */
6732
6733 void
6734 remote_target::interrupt_query ()
6735 {
6736 struct remote_state *rs = get_remote_state ();
6737
6738 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6739 {
6740 if (query (_("The target is not responding to interrupt requests.\n"
6741 "Stop debugging it? ")))
6742 {
6743 remote_unpush_target ();
6744 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6745 }
6746 }
6747 else
6748 {
6749 if (query (_("Interrupted while waiting for the program.\n"
6750 "Give up waiting? ")))
6751 quit ();
6752 }
6753 }
6754
6755 /* Enable/disable target terminal ownership. Most targets can use
6756 terminal groups to control terminal ownership. Remote targets are
6757 different in that explicit transfer of ownership to/from GDB/target
6758 is required. */
6759
6760 void
6761 remote_target::terminal_inferior ()
6762 {
6763 /* NOTE: At this point we could also register our selves as the
6764 recipient of all input. Any characters typed could then be
6765 passed on down to the target. */
6766 }
6767
6768 void
6769 remote_target::terminal_ours ()
6770 {
6771 }
6772
6773 static void
6774 remote_console_output (const char *msg)
6775 {
6776 const char *p;
6777
6778 for (p = msg; p[0] && p[1]; p += 2)
6779 {
6780 char tb[2];
6781 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6782
6783 tb[0] = c;
6784 tb[1] = 0;
6785 fputs_unfiltered (tb, gdb_stdtarg);
6786 }
6787 gdb_flush (gdb_stdtarg);
6788 }
6789
6790 struct stop_reply : public notif_event
6791 {
6792 ~stop_reply ();
6793
6794 /* The identifier of the thread about this event */
6795 ptid_t ptid;
6796
6797 /* The remote state this event is associated with. When the remote
6798 connection, represented by a remote_state object, is closed,
6799 all the associated stop_reply events should be released. */
6800 struct remote_state *rs;
6801
6802 struct target_waitstatus ws;
6803
6804 /* The architecture associated with the expedited registers. */
6805 gdbarch *arch;
6806
6807 /* Expedited registers. This makes remote debugging a bit more
6808 efficient for those targets that provide critical registers as
6809 part of their normal status mechanism (as another roundtrip to
6810 fetch them is avoided). */
6811 std::vector<cached_reg_t> regcache;
6812
6813 enum target_stop_reason stop_reason;
6814
6815 CORE_ADDR watch_data_address;
6816
6817 int core;
6818 };
6819
6820 /* Return the length of the stop reply queue. */
6821
6822 int
6823 remote_target::stop_reply_queue_length ()
6824 {
6825 remote_state *rs = get_remote_state ();
6826 return rs->stop_reply_queue.size ();
6827 }
6828
6829 static void
6830 remote_notif_stop_parse (remote_target *remote,
6831 struct notif_client *self, const char *buf,
6832 struct notif_event *event)
6833 {
6834 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6835 }
6836
6837 static void
6838 remote_notif_stop_ack (remote_target *remote,
6839 struct notif_client *self, const char *buf,
6840 struct notif_event *event)
6841 {
6842 struct stop_reply *stop_reply = (struct stop_reply *) event;
6843
6844 /* acknowledge */
6845 putpkt (remote, self->ack_command);
6846
6847 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6848 {
6849 /* We got an unknown stop reply. */
6850 error (_("Unknown stop reply"));
6851 }
6852
6853 remote->push_stop_reply (stop_reply);
6854 }
6855
6856 static int
6857 remote_notif_stop_can_get_pending_events (remote_target *remote,
6858 struct notif_client *self)
6859 {
6860 /* We can't get pending events in remote_notif_process for
6861 notification stop, and we have to do this in remote_wait_ns
6862 instead. If we fetch all queued events from stub, remote stub
6863 may exit and we have no chance to process them back in
6864 remote_wait_ns. */
6865 remote_state *rs = remote->get_remote_state ();
6866 mark_async_event_handler (rs->remote_async_inferior_event_token);
6867 return 0;
6868 }
6869
6870 stop_reply::~stop_reply ()
6871 {
6872 for (cached_reg_t &reg : regcache)
6873 xfree (reg.data);
6874 }
6875
6876 static notif_event_up
6877 remote_notif_stop_alloc_reply ()
6878 {
6879 return notif_event_up (new struct stop_reply ());
6880 }
6881
6882 /* A client of notification Stop. */
6883
6884 struct notif_client notif_client_stop =
6885 {
6886 "Stop",
6887 "vStopped",
6888 remote_notif_stop_parse,
6889 remote_notif_stop_ack,
6890 remote_notif_stop_can_get_pending_events,
6891 remote_notif_stop_alloc_reply,
6892 REMOTE_NOTIF_STOP,
6893 };
6894
6895 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6896 the pid of the process that owns the threads we want to check, or
6897 -1 if we want to check all threads. */
6898
6899 static int
6900 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6901 ptid_t thread_ptid)
6902 {
6903 if (ws->kind == TARGET_WAITKIND_FORKED
6904 || ws->kind == TARGET_WAITKIND_VFORKED)
6905 {
6906 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6907 return 1;
6908 }
6909
6910 return 0;
6911 }
6912
6913 /* Return the thread's pending status used to determine whether the
6914 thread is a fork parent stopped at a fork event. */
6915
6916 static struct target_waitstatus *
6917 thread_pending_fork_status (struct thread_info *thread)
6918 {
6919 if (thread->suspend.waitstatus_pending_p)
6920 return &thread->suspend.waitstatus;
6921 else
6922 return &thread->pending_follow;
6923 }
6924
6925 /* Determine if THREAD is a pending fork parent thread. */
6926
6927 static int
6928 is_pending_fork_parent_thread (struct thread_info *thread)
6929 {
6930 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6931 int pid = -1;
6932
6933 return is_pending_fork_parent (ws, pid, thread->ptid);
6934 }
6935
6936 /* If CONTEXT contains any fork child threads that have not been
6937 reported yet, remove them from the CONTEXT list. If such a
6938 thread exists it is because we are stopped at a fork catchpoint
6939 and have not yet called follow_fork, which will set up the
6940 host-side data structures for the new process. */
6941
6942 void
6943 remote_target::remove_new_fork_children (threads_listing_context *context)
6944 {
6945 int pid = -1;
6946 struct notif_client *notif = &notif_client_stop;
6947
6948 /* For any threads stopped at a fork event, remove the corresponding
6949 fork child threads from the CONTEXT list. */
6950 for (thread_info *thread : all_non_exited_threads ())
6951 {
6952 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6953
6954 if (is_pending_fork_parent (ws, pid, thread->ptid))
6955 context->remove_thread (ws->value.related_pid);
6956 }
6957
6958 /* Check for any pending fork events (not reported or processed yet)
6959 in process PID and remove those fork child threads from the
6960 CONTEXT list as well. */
6961 remote_notif_get_pending_events (notif);
6962 for (auto &event : get_remote_state ()->stop_reply_queue)
6963 if (event->ws.kind == TARGET_WAITKIND_FORKED
6964 || event->ws.kind == TARGET_WAITKIND_VFORKED
6965 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6966 context->remove_thread (event->ws.value.related_pid);
6967 }
6968
6969 /* Check whether any event pending in the vStopped queue would prevent
6970 a global or process wildcard vCont action. Clear
6971 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6972 and clear the event inferior's may_wildcard_vcont flag if we can't
6973 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6974
6975 void
6976 remote_target::check_pending_events_prevent_wildcard_vcont
6977 (int *may_global_wildcard)
6978 {
6979 struct notif_client *notif = &notif_client_stop;
6980
6981 remote_notif_get_pending_events (notif);
6982 for (auto &event : get_remote_state ()->stop_reply_queue)
6983 {
6984 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6985 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6986 continue;
6987
6988 if (event->ws.kind == TARGET_WAITKIND_FORKED
6989 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6990 *may_global_wildcard = 0;
6991
6992 struct inferior *inf = find_inferior_ptid (event->ptid);
6993
6994 /* This may be the first time we heard about this process.
6995 Regardless, we must not do a global wildcard resume, otherwise
6996 we'd resume this process too. */
6997 *may_global_wildcard = 0;
6998 if (inf != NULL)
6999 get_remote_inferior (inf)->may_wildcard_vcont = false;
7000 }
7001 }
7002
7003 /* Discard all pending stop replies of inferior INF. */
7004
7005 void
7006 remote_target::discard_pending_stop_replies (struct inferior *inf)
7007 {
7008 struct stop_reply *reply;
7009 struct remote_state *rs = get_remote_state ();
7010 struct remote_notif_state *rns = rs->notif_state;
7011
7012 /* This function can be notified when an inferior exists. When the
7013 target is not remote, the notification state is NULL. */
7014 if (rs->remote_desc == NULL)
7015 return;
7016
7017 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7018
7019 /* Discard the in-flight notification. */
7020 if (reply != NULL && reply->ptid.pid () == inf->pid)
7021 {
7022 delete reply;
7023 rns->pending_event[notif_client_stop.id] = NULL;
7024 }
7025
7026 /* Discard the stop replies we have already pulled with
7027 vStopped. */
7028 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7029 rs->stop_reply_queue.end (),
7030 [=] (const stop_reply_up &event)
7031 {
7032 return event->ptid.pid () == inf->pid;
7033 });
7034 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7035 }
7036
7037 /* Discard the stop replies for RS in stop_reply_queue. */
7038
7039 void
7040 remote_target::discard_pending_stop_replies_in_queue ()
7041 {
7042 remote_state *rs = get_remote_state ();
7043
7044 /* Discard the stop replies we have already pulled with
7045 vStopped. */
7046 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7047 rs->stop_reply_queue.end (),
7048 [=] (const stop_reply_up &event)
7049 {
7050 return event->rs == rs;
7051 });
7052 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7053 }
7054
7055 /* Remove the first reply in 'stop_reply_queue' which matches
7056 PTID. */
7057
7058 struct stop_reply *
7059 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7060 {
7061 remote_state *rs = get_remote_state ();
7062
7063 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7064 rs->stop_reply_queue.end (),
7065 [=] (const stop_reply_up &event)
7066 {
7067 return event->ptid.matches (ptid);
7068 });
7069 struct stop_reply *result;
7070 if (iter == rs->stop_reply_queue.end ())
7071 result = nullptr;
7072 else
7073 {
7074 result = iter->release ();
7075 rs->stop_reply_queue.erase (iter);
7076 }
7077
7078 if (notif_debug)
7079 fprintf_unfiltered (gdb_stdlog,
7080 "notif: discard queued event: 'Stop' in %s\n",
7081 target_pid_to_str (ptid).c_str ());
7082
7083 return result;
7084 }
7085
7086 /* Look for a queued stop reply belonging to PTID. If one is found,
7087 remove it from the queue, and return it. Returns NULL if none is
7088 found. If there are still queued events left to process, tell the
7089 event loop to get back to target_wait soon. */
7090
7091 struct stop_reply *
7092 remote_target::queued_stop_reply (ptid_t ptid)
7093 {
7094 remote_state *rs = get_remote_state ();
7095 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7096
7097 if (!rs->stop_reply_queue.empty ())
7098 {
7099 /* There's still at least an event left. */
7100 mark_async_event_handler (rs->remote_async_inferior_event_token);
7101 }
7102
7103 return r;
7104 }
7105
7106 /* Push a fully parsed stop reply in the stop reply queue. Since we
7107 know that we now have at least one queued event left to pass to the
7108 core side, tell the event loop to get back to target_wait soon. */
7109
7110 void
7111 remote_target::push_stop_reply (struct stop_reply *new_event)
7112 {
7113 remote_state *rs = get_remote_state ();
7114 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7115
7116 if (notif_debug)
7117 fprintf_unfiltered (gdb_stdlog,
7118 "notif: push 'Stop' %s to queue %d\n",
7119 target_pid_to_str (new_event->ptid).c_str (),
7120 int (rs->stop_reply_queue.size ()));
7121
7122 mark_async_event_handler (rs->remote_async_inferior_event_token);
7123 }
7124
7125 /* Returns true if we have a stop reply for PTID. */
7126
7127 int
7128 remote_target::peek_stop_reply (ptid_t ptid)
7129 {
7130 remote_state *rs = get_remote_state ();
7131 for (auto &event : rs->stop_reply_queue)
7132 if (ptid == event->ptid
7133 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7134 return 1;
7135 return 0;
7136 }
7137
7138 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7139 starting with P and ending with PEND matches PREFIX. */
7140
7141 static int
7142 strprefix (const char *p, const char *pend, const char *prefix)
7143 {
7144 for ( ; p < pend; p++, prefix++)
7145 if (*p != *prefix)
7146 return 0;
7147 return *prefix == '\0';
7148 }
7149
7150 /* Parse the stop reply in BUF. Either the function succeeds, and the
7151 result is stored in EVENT, or throws an error. */
7152
7153 void
7154 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7155 {
7156 remote_arch_state *rsa = NULL;
7157 ULONGEST addr;
7158 const char *p;
7159 int skipregs = 0;
7160
7161 event->ptid = null_ptid;
7162 event->rs = get_remote_state ();
7163 event->ws.kind = TARGET_WAITKIND_IGNORE;
7164 event->ws.value.integer = 0;
7165 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7166 event->regcache.clear ();
7167 event->core = -1;
7168
7169 switch (buf[0])
7170 {
7171 case 'T': /* Status with PC, SP, FP, ... */
7172 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7173 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7174 ss = signal number
7175 n... = register number
7176 r... = register contents
7177 */
7178
7179 p = &buf[3]; /* after Txx */
7180 while (*p)
7181 {
7182 const char *p1;
7183 int fieldsize;
7184
7185 p1 = strchr (p, ':');
7186 if (p1 == NULL)
7187 error (_("Malformed packet(a) (missing colon): %s\n\
7188 Packet: '%s'\n"),
7189 p, buf);
7190 if (p == p1)
7191 error (_("Malformed packet(a) (missing register number): %s\n\
7192 Packet: '%s'\n"),
7193 p, buf);
7194
7195 /* Some "registers" are actually extended stop information.
7196 Note if you're adding a new entry here: GDB 7.9 and
7197 earlier assume that all register "numbers" that start
7198 with an hex digit are real register numbers. Make sure
7199 the server only sends such a packet if it knows the
7200 client understands it. */
7201
7202 if (strprefix (p, p1, "thread"))
7203 event->ptid = read_ptid (++p1, &p);
7204 else if (strprefix (p, p1, "syscall_entry"))
7205 {
7206 ULONGEST sysno;
7207
7208 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7209 p = unpack_varlen_hex (++p1, &sysno);
7210 event->ws.value.syscall_number = (int) sysno;
7211 }
7212 else if (strprefix (p, p1, "syscall_return"))
7213 {
7214 ULONGEST sysno;
7215
7216 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7217 p = unpack_varlen_hex (++p1, &sysno);
7218 event->ws.value.syscall_number = (int) sysno;
7219 }
7220 else if (strprefix (p, p1, "watch")
7221 || strprefix (p, p1, "rwatch")
7222 || strprefix (p, p1, "awatch"))
7223 {
7224 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7225 p = unpack_varlen_hex (++p1, &addr);
7226 event->watch_data_address = (CORE_ADDR) addr;
7227 }
7228 else if (strprefix (p, p1, "swbreak"))
7229 {
7230 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7231
7232 /* Make sure the stub doesn't forget to indicate support
7233 with qSupported. */
7234 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7235 error (_("Unexpected swbreak stop reason"));
7236
7237 /* The value part is documented as "must be empty",
7238 though we ignore it, in case we ever decide to make
7239 use of it in a backward compatible way. */
7240 p = strchrnul (p1 + 1, ';');
7241 }
7242 else if (strprefix (p, p1, "hwbreak"))
7243 {
7244 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7245
7246 /* Make sure the stub doesn't forget to indicate support
7247 with qSupported. */
7248 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7249 error (_("Unexpected hwbreak stop reason"));
7250
7251 /* See above. */
7252 p = strchrnul (p1 + 1, ';');
7253 }
7254 else if (strprefix (p, p1, "library"))
7255 {
7256 event->ws.kind = TARGET_WAITKIND_LOADED;
7257 p = strchrnul (p1 + 1, ';');
7258 }
7259 else if (strprefix (p, p1, "replaylog"))
7260 {
7261 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7262 /* p1 will indicate "begin" or "end", but it makes
7263 no difference for now, so ignore it. */
7264 p = strchrnul (p1 + 1, ';');
7265 }
7266 else if (strprefix (p, p1, "core"))
7267 {
7268 ULONGEST c;
7269
7270 p = unpack_varlen_hex (++p1, &c);
7271 event->core = c;
7272 }
7273 else if (strprefix (p, p1, "fork"))
7274 {
7275 event->ws.value.related_pid = read_ptid (++p1, &p);
7276 event->ws.kind = TARGET_WAITKIND_FORKED;
7277 }
7278 else if (strprefix (p, p1, "vfork"))
7279 {
7280 event->ws.value.related_pid = read_ptid (++p1, &p);
7281 event->ws.kind = TARGET_WAITKIND_VFORKED;
7282 }
7283 else if (strprefix (p, p1, "vforkdone"))
7284 {
7285 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7286 p = strchrnul (p1 + 1, ';');
7287 }
7288 else if (strprefix (p, p1, "exec"))
7289 {
7290 ULONGEST ignored;
7291 int pathlen;
7292
7293 /* Determine the length of the execd pathname. */
7294 p = unpack_varlen_hex (++p1, &ignored);
7295 pathlen = (p - p1) / 2;
7296
7297 /* Save the pathname for event reporting and for
7298 the next run command. */
7299 gdb::unique_xmalloc_ptr<char[]> pathname
7300 ((char *) xmalloc (pathlen + 1));
7301 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7302 pathname[pathlen] = '\0';
7303
7304 /* This is freed during event handling. */
7305 event->ws.value.execd_pathname = pathname.release ();
7306 event->ws.kind = TARGET_WAITKIND_EXECD;
7307
7308 /* Skip the registers included in this packet, since
7309 they may be for an architecture different from the
7310 one used by the original program. */
7311 skipregs = 1;
7312 }
7313 else if (strprefix (p, p1, "create"))
7314 {
7315 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7316 p = strchrnul (p1 + 1, ';');
7317 }
7318 else
7319 {
7320 ULONGEST pnum;
7321 const char *p_temp;
7322
7323 if (skipregs)
7324 {
7325 p = strchrnul (p1 + 1, ';');
7326 p++;
7327 continue;
7328 }
7329
7330 /* Maybe a real ``P'' register number. */
7331 p_temp = unpack_varlen_hex (p, &pnum);
7332 /* If the first invalid character is the colon, we got a
7333 register number. Otherwise, it's an unknown stop
7334 reason. */
7335 if (p_temp == p1)
7336 {
7337 /* If we haven't parsed the event's thread yet, find
7338 it now, in order to find the architecture of the
7339 reported expedited registers. */
7340 if (event->ptid == null_ptid)
7341 {
7342 const char *thr = strstr (p1 + 1, ";thread:");
7343 if (thr != NULL)
7344 event->ptid = read_ptid (thr + strlen (";thread:"),
7345 NULL);
7346 else
7347 {
7348 /* Either the current thread hasn't changed,
7349 or the inferior is not multi-threaded.
7350 The event must be for the thread we last
7351 set as (or learned as being) current. */
7352 event->ptid = event->rs->general_thread;
7353 }
7354 }
7355
7356 if (rsa == NULL)
7357 {
7358 inferior *inf = (event->ptid == null_ptid
7359 ? NULL
7360 : find_inferior_ptid (event->ptid));
7361 /* If this is the first time we learn anything
7362 about this process, skip the registers
7363 included in this packet, since we don't yet
7364 know which architecture to use to parse them.
7365 We'll determine the architecture later when
7366 we process the stop reply and retrieve the
7367 target description, via
7368 remote_notice_new_inferior ->
7369 post_create_inferior. */
7370 if (inf == NULL)
7371 {
7372 p = strchrnul (p1 + 1, ';');
7373 p++;
7374 continue;
7375 }
7376
7377 event->arch = inf->gdbarch;
7378 rsa = event->rs->get_remote_arch_state (event->arch);
7379 }
7380
7381 packet_reg *reg
7382 = packet_reg_from_pnum (event->arch, rsa, pnum);
7383 cached_reg_t cached_reg;
7384
7385 if (reg == NULL)
7386 error (_("Remote sent bad register number %s: %s\n\
7387 Packet: '%s'\n"),
7388 hex_string (pnum), p, buf);
7389
7390 cached_reg.num = reg->regnum;
7391 cached_reg.data = (gdb_byte *)
7392 xmalloc (register_size (event->arch, reg->regnum));
7393
7394 p = p1 + 1;
7395 fieldsize = hex2bin (p, cached_reg.data,
7396 register_size (event->arch, reg->regnum));
7397 p += 2 * fieldsize;
7398 if (fieldsize < register_size (event->arch, reg->regnum))
7399 warning (_("Remote reply is too short: %s"), buf);
7400
7401 event->regcache.push_back (cached_reg);
7402 }
7403 else
7404 {
7405 /* Not a number. Silently skip unknown optional
7406 info. */
7407 p = strchrnul (p1 + 1, ';');
7408 }
7409 }
7410
7411 if (*p != ';')
7412 error (_("Remote register badly formatted: %s\nhere: %s"),
7413 buf, p);
7414 ++p;
7415 }
7416
7417 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7418 break;
7419
7420 /* fall through */
7421 case 'S': /* Old style status, just signal only. */
7422 {
7423 int sig;
7424
7425 event->ws.kind = TARGET_WAITKIND_STOPPED;
7426 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7427 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7428 event->ws.value.sig = (enum gdb_signal) sig;
7429 else
7430 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7431 }
7432 break;
7433 case 'w': /* Thread exited. */
7434 {
7435 ULONGEST value;
7436
7437 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7438 p = unpack_varlen_hex (&buf[1], &value);
7439 event->ws.value.integer = value;
7440 if (*p != ';')
7441 error (_("stop reply packet badly formatted: %s"), buf);
7442 event->ptid = read_ptid (++p, NULL);
7443 break;
7444 }
7445 case 'W': /* Target exited. */
7446 case 'X':
7447 {
7448 int pid;
7449 ULONGEST value;
7450
7451 /* GDB used to accept only 2 hex chars here. Stubs should
7452 only send more if they detect GDB supports multi-process
7453 support. */
7454 p = unpack_varlen_hex (&buf[1], &value);
7455
7456 if (buf[0] == 'W')
7457 {
7458 /* The remote process exited. */
7459 event->ws.kind = TARGET_WAITKIND_EXITED;
7460 event->ws.value.integer = value;
7461 }
7462 else
7463 {
7464 /* The remote process exited with a signal. */
7465 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7466 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7467 event->ws.value.sig = (enum gdb_signal) value;
7468 else
7469 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7470 }
7471
7472 /* If no process is specified, assume inferior_ptid. */
7473 pid = inferior_ptid.pid ();
7474 if (*p == '\0')
7475 ;
7476 else if (*p == ';')
7477 {
7478 p++;
7479
7480 if (*p == '\0')
7481 ;
7482 else if (startswith (p, "process:"))
7483 {
7484 ULONGEST upid;
7485
7486 p += sizeof ("process:") - 1;
7487 unpack_varlen_hex (p, &upid);
7488 pid = upid;
7489 }
7490 else
7491 error (_("unknown stop reply packet: %s"), buf);
7492 }
7493 else
7494 error (_("unknown stop reply packet: %s"), buf);
7495 event->ptid = ptid_t (pid);
7496 }
7497 break;
7498 case 'N':
7499 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7500 event->ptid = minus_one_ptid;
7501 break;
7502 }
7503
7504 if (target_is_non_stop_p () && event->ptid == null_ptid)
7505 error (_("No process or thread specified in stop reply: %s"), buf);
7506 }
7507
7508 /* When the stub wants to tell GDB about a new notification reply, it
7509 sends a notification (%Stop, for example). Those can come it at
7510 any time, hence, we have to make sure that any pending
7511 putpkt/getpkt sequence we're making is finished, before querying
7512 the stub for more events with the corresponding ack command
7513 (vStopped, for example). E.g., if we started a vStopped sequence
7514 immediately upon receiving the notification, something like this
7515 could happen:
7516
7517 1.1) --> Hg 1
7518 1.2) <-- OK
7519 1.3) --> g
7520 1.4) <-- %Stop
7521 1.5) --> vStopped
7522 1.6) <-- (registers reply to step #1.3)
7523
7524 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7525 query.
7526
7527 To solve this, whenever we parse a %Stop notification successfully,
7528 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7529 doing whatever we were doing:
7530
7531 2.1) --> Hg 1
7532 2.2) <-- OK
7533 2.3) --> g
7534 2.4) <-- %Stop
7535 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7536 2.5) <-- (registers reply to step #2.3)
7537
7538 Eventually after step #2.5, we return to the event loop, which
7539 notices there's an event on the
7540 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7541 associated callback --- the function below. At this point, we're
7542 always safe to start a vStopped sequence. :
7543
7544 2.6) --> vStopped
7545 2.7) <-- T05 thread:2
7546 2.8) --> vStopped
7547 2.9) --> OK
7548 */
7549
7550 void
7551 remote_target::remote_notif_get_pending_events (notif_client *nc)
7552 {
7553 struct remote_state *rs = get_remote_state ();
7554
7555 if (rs->notif_state->pending_event[nc->id] != NULL)
7556 {
7557 if (notif_debug)
7558 fprintf_unfiltered (gdb_stdlog,
7559 "notif: process: '%s' ack pending event\n",
7560 nc->name);
7561
7562 /* acknowledge */
7563 nc->ack (this, nc, rs->buf.data (),
7564 rs->notif_state->pending_event[nc->id]);
7565 rs->notif_state->pending_event[nc->id] = NULL;
7566
7567 while (1)
7568 {
7569 getpkt (&rs->buf, 0);
7570 if (strcmp (rs->buf.data (), "OK") == 0)
7571 break;
7572 else
7573 remote_notif_ack (this, nc, rs->buf.data ());
7574 }
7575 }
7576 else
7577 {
7578 if (notif_debug)
7579 fprintf_unfiltered (gdb_stdlog,
7580 "notif: process: '%s' no pending reply\n",
7581 nc->name);
7582 }
7583 }
7584
7585 /* Wrapper around remote_target::remote_notif_get_pending_events to
7586 avoid having to export the whole remote_target class. */
7587
7588 void
7589 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7590 {
7591 remote->remote_notif_get_pending_events (nc);
7592 }
7593
7594 /* Called when it is decided that STOP_REPLY holds the info of the
7595 event that is to be returned to the core. This function always
7596 destroys STOP_REPLY. */
7597
7598 ptid_t
7599 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7600 struct target_waitstatus *status)
7601 {
7602 ptid_t ptid;
7603
7604 *status = stop_reply->ws;
7605 ptid = stop_reply->ptid;
7606
7607 /* If no thread/process was reported by the stub, assume the current
7608 inferior. */
7609 if (ptid == null_ptid)
7610 ptid = inferior_ptid;
7611
7612 if (status->kind != TARGET_WAITKIND_EXITED
7613 && status->kind != TARGET_WAITKIND_SIGNALLED
7614 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7615 {
7616 /* Expedited registers. */
7617 if (!stop_reply->regcache.empty ())
7618 {
7619 struct regcache *regcache
7620 = get_thread_arch_regcache (ptid, stop_reply->arch);
7621
7622 for (cached_reg_t &reg : stop_reply->regcache)
7623 {
7624 regcache->raw_supply (reg.num, reg.data);
7625 xfree (reg.data);
7626 }
7627
7628 stop_reply->regcache.clear ();
7629 }
7630
7631 remote_notice_new_inferior (ptid, 0);
7632 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7633 remote_thr->core = stop_reply->core;
7634 remote_thr->stop_reason = stop_reply->stop_reason;
7635 remote_thr->watch_data_address = stop_reply->watch_data_address;
7636 remote_thr->vcont_resumed = 0;
7637 }
7638
7639 delete stop_reply;
7640 return ptid;
7641 }
7642
7643 /* The non-stop mode version of target_wait. */
7644
7645 ptid_t
7646 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7647 {
7648 struct remote_state *rs = get_remote_state ();
7649 struct stop_reply *stop_reply;
7650 int ret;
7651 int is_notif = 0;
7652
7653 /* If in non-stop mode, get out of getpkt even if a
7654 notification is received. */
7655
7656 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7657 while (1)
7658 {
7659 if (ret != -1 && !is_notif)
7660 switch (rs->buf[0])
7661 {
7662 case 'E': /* Error of some sort. */
7663 /* We're out of sync with the target now. Did it continue
7664 or not? We can't tell which thread it was in non-stop,
7665 so just ignore this. */
7666 warning (_("Remote failure reply: %s"), rs->buf.data ());
7667 break;
7668 case 'O': /* Console output. */
7669 remote_console_output (&rs->buf[1]);
7670 break;
7671 default:
7672 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7673 break;
7674 }
7675
7676 /* Acknowledge a pending stop reply that may have arrived in the
7677 mean time. */
7678 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7679 remote_notif_get_pending_events (&notif_client_stop);
7680
7681 /* If indeed we noticed a stop reply, we're done. */
7682 stop_reply = queued_stop_reply (ptid);
7683 if (stop_reply != NULL)
7684 return process_stop_reply (stop_reply, status);
7685
7686 /* Still no event. If we're just polling for an event, then
7687 return to the event loop. */
7688 if (options & TARGET_WNOHANG)
7689 {
7690 status->kind = TARGET_WAITKIND_IGNORE;
7691 return minus_one_ptid;
7692 }
7693
7694 /* Otherwise do a blocking wait. */
7695 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7696 }
7697 }
7698
7699 /* Wait until the remote machine stops, then return, storing status in
7700 STATUS just as `wait' would. */
7701
7702 ptid_t
7703 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7704 {
7705 struct remote_state *rs = get_remote_state ();
7706 ptid_t event_ptid = null_ptid;
7707 char *buf;
7708 struct stop_reply *stop_reply;
7709
7710 again:
7711
7712 status->kind = TARGET_WAITKIND_IGNORE;
7713 status->value.integer = 0;
7714
7715 stop_reply = queued_stop_reply (ptid);
7716 if (stop_reply != NULL)
7717 return process_stop_reply (stop_reply, status);
7718
7719 if (rs->cached_wait_status)
7720 /* Use the cached wait status, but only once. */
7721 rs->cached_wait_status = 0;
7722 else
7723 {
7724 int ret;
7725 int is_notif;
7726 int forever = ((options & TARGET_WNOHANG) == 0
7727 && rs->wait_forever_enabled_p);
7728
7729 if (!rs->waiting_for_stop_reply)
7730 {
7731 status->kind = TARGET_WAITKIND_NO_RESUMED;
7732 return minus_one_ptid;
7733 }
7734
7735 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7736 _never_ wait for ever -> test on target_is_async_p().
7737 However, before we do that we need to ensure that the caller
7738 knows how to take the target into/out of async mode. */
7739 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7740
7741 /* GDB gets a notification. Return to core as this event is
7742 not interesting. */
7743 if (ret != -1 && is_notif)
7744 return minus_one_ptid;
7745
7746 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7747 return minus_one_ptid;
7748 }
7749
7750 buf = rs->buf.data ();
7751
7752 /* Assume that the target has acknowledged Ctrl-C unless we receive
7753 an 'F' or 'O' packet. */
7754 if (buf[0] != 'F' && buf[0] != 'O')
7755 rs->ctrlc_pending_p = 0;
7756
7757 switch (buf[0])
7758 {
7759 case 'E': /* Error of some sort. */
7760 /* We're out of sync with the target now. Did it continue or
7761 not? Not is more likely, so report a stop. */
7762 rs->waiting_for_stop_reply = 0;
7763
7764 warning (_("Remote failure reply: %s"), buf);
7765 status->kind = TARGET_WAITKIND_STOPPED;
7766 status->value.sig = GDB_SIGNAL_0;
7767 break;
7768 case 'F': /* File-I/O request. */
7769 /* GDB may access the inferior memory while handling the File-I/O
7770 request, but we don't want GDB accessing memory while waiting
7771 for a stop reply. See the comments in putpkt_binary. Set
7772 waiting_for_stop_reply to 0 temporarily. */
7773 rs->waiting_for_stop_reply = 0;
7774 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7775 rs->ctrlc_pending_p = 0;
7776 /* GDB handled the File-I/O request, and the target is running
7777 again. Keep waiting for events. */
7778 rs->waiting_for_stop_reply = 1;
7779 break;
7780 case 'N': case 'T': case 'S': case 'X': case 'W':
7781 {
7782 /* There is a stop reply to handle. */
7783 rs->waiting_for_stop_reply = 0;
7784
7785 stop_reply
7786 = (struct stop_reply *) remote_notif_parse (this,
7787 &notif_client_stop,
7788 rs->buf.data ());
7789
7790 event_ptid = process_stop_reply (stop_reply, status);
7791 break;
7792 }
7793 case 'O': /* Console output. */
7794 remote_console_output (buf + 1);
7795 break;
7796 case '\0':
7797 if (rs->last_sent_signal != GDB_SIGNAL_0)
7798 {
7799 /* Zero length reply means that we tried 'S' or 'C' and the
7800 remote system doesn't support it. */
7801 target_terminal::ours_for_output ();
7802 printf_filtered
7803 ("Can't send signals to this remote system. %s not sent.\n",
7804 gdb_signal_to_name (rs->last_sent_signal));
7805 rs->last_sent_signal = GDB_SIGNAL_0;
7806 target_terminal::inferior ();
7807
7808 strcpy (buf, rs->last_sent_step ? "s" : "c");
7809 putpkt (buf);
7810 break;
7811 }
7812 /* fallthrough */
7813 default:
7814 warning (_("Invalid remote reply: %s"), buf);
7815 break;
7816 }
7817
7818 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7819 return minus_one_ptid;
7820 else if (status->kind == TARGET_WAITKIND_IGNORE)
7821 {
7822 /* Nothing interesting happened. If we're doing a non-blocking
7823 poll, we're done. Otherwise, go back to waiting. */
7824 if (options & TARGET_WNOHANG)
7825 return minus_one_ptid;
7826 else
7827 goto again;
7828 }
7829 else if (status->kind != TARGET_WAITKIND_EXITED
7830 && status->kind != TARGET_WAITKIND_SIGNALLED)
7831 {
7832 if (event_ptid != null_ptid)
7833 record_currthread (rs, event_ptid);
7834 else
7835 event_ptid = inferior_ptid;
7836 }
7837 else
7838 /* A process exit. Invalidate our notion of current thread. */
7839 record_currthread (rs, minus_one_ptid);
7840
7841 return event_ptid;
7842 }
7843
7844 /* Wait until the remote machine stops, then return, storing status in
7845 STATUS just as `wait' would. */
7846
7847 ptid_t
7848 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7849 {
7850 ptid_t event_ptid;
7851
7852 if (target_is_non_stop_p ())
7853 event_ptid = wait_ns (ptid, status, options);
7854 else
7855 event_ptid = wait_as (ptid, status, options);
7856
7857 if (target_is_async_p ())
7858 {
7859 remote_state *rs = get_remote_state ();
7860
7861 /* If there are are events left in the queue tell the event loop
7862 to return here. */
7863 if (!rs->stop_reply_queue.empty ())
7864 mark_async_event_handler (rs->remote_async_inferior_event_token);
7865 }
7866
7867 return event_ptid;
7868 }
7869
7870 /* Fetch a single register using a 'p' packet. */
7871
7872 int
7873 remote_target::fetch_register_using_p (struct regcache *regcache,
7874 packet_reg *reg)
7875 {
7876 struct gdbarch *gdbarch = regcache->arch ();
7877 struct remote_state *rs = get_remote_state ();
7878 char *buf, *p;
7879 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7880 int i;
7881
7882 if (packet_support (PACKET_p) == PACKET_DISABLE)
7883 return 0;
7884
7885 if (reg->pnum == -1)
7886 return 0;
7887
7888 p = rs->buf.data ();
7889 *p++ = 'p';
7890 p += hexnumstr (p, reg->pnum);
7891 *p++ = '\0';
7892 putpkt (rs->buf);
7893 getpkt (&rs->buf, 0);
7894
7895 buf = rs->buf.data ();
7896
7897 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7898 {
7899 case PACKET_OK:
7900 break;
7901 case PACKET_UNKNOWN:
7902 return 0;
7903 case PACKET_ERROR:
7904 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7905 gdbarch_register_name (regcache->arch (),
7906 reg->regnum),
7907 buf);
7908 }
7909
7910 /* If this register is unfetchable, tell the regcache. */
7911 if (buf[0] == 'x')
7912 {
7913 regcache->raw_supply (reg->regnum, NULL);
7914 return 1;
7915 }
7916
7917 /* Otherwise, parse and supply the value. */
7918 p = buf;
7919 i = 0;
7920 while (p[0] != 0)
7921 {
7922 if (p[1] == 0)
7923 error (_("fetch_register_using_p: early buf termination"));
7924
7925 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7926 p += 2;
7927 }
7928 regcache->raw_supply (reg->regnum, regp);
7929 return 1;
7930 }
7931
7932 /* Fetch the registers included in the target's 'g' packet. */
7933
7934 int
7935 remote_target::send_g_packet ()
7936 {
7937 struct remote_state *rs = get_remote_state ();
7938 int buf_len;
7939
7940 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7941 putpkt (rs->buf);
7942 getpkt (&rs->buf, 0);
7943 if (packet_check_result (rs->buf) == PACKET_ERROR)
7944 error (_("Could not read registers; remote failure reply '%s'"),
7945 rs->buf.data ());
7946
7947 /* We can get out of synch in various cases. If the first character
7948 in the buffer is not a hex character, assume that has happened
7949 and try to fetch another packet to read. */
7950 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7951 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7952 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7953 && rs->buf[0] != 'x') /* New: unavailable register value. */
7954 {
7955 if (remote_debug)
7956 fprintf_unfiltered (gdb_stdlog,
7957 "Bad register packet; fetching a new packet\n");
7958 getpkt (&rs->buf, 0);
7959 }
7960
7961 buf_len = strlen (rs->buf.data ());
7962
7963 /* Sanity check the received packet. */
7964 if (buf_len % 2 != 0)
7965 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7966
7967 return buf_len / 2;
7968 }
7969
7970 void
7971 remote_target::process_g_packet (struct regcache *regcache)
7972 {
7973 struct gdbarch *gdbarch = regcache->arch ();
7974 struct remote_state *rs = get_remote_state ();
7975 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7976 int i, buf_len;
7977 char *p;
7978 char *regs;
7979
7980 buf_len = strlen (rs->buf.data ());
7981
7982 /* Further sanity checks, with knowledge of the architecture. */
7983 if (buf_len > 2 * rsa->sizeof_g_packet)
7984 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7985 "bytes): %s"),
7986 rsa->sizeof_g_packet, buf_len / 2,
7987 rs->buf.data ());
7988
7989 /* Save the size of the packet sent to us by the target. It is used
7990 as a heuristic when determining the max size of packets that the
7991 target can safely receive. */
7992 if (rsa->actual_register_packet_size == 0)
7993 rsa->actual_register_packet_size = buf_len;
7994
7995 /* If this is smaller than we guessed the 'g' packet would be,
7996 update our records. A 'g' reply that doesn't include a register's
7997 value implies either that the register is not available, or that
7998 the 'p' packet must be used. */
7999 if (buf_len < 2 * rsa->sizeof_g_packet)
8000 {
8001 long sizeof_g_packet = buf_len / 2;
8002
8003 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8004 {
8005 long offset = rsa->regs[i].offset;
8006 long reg_size = register_size (gdbarch, i);
8007
8008 if (rsa->regs[i].pnum == -1)
8009 continue;
8010
8011 if (offset >= sizeof_g_packet)
8012 rsa->regs[i].in_g_packet = 0;
8013 else if (offset + reg_size > sizeof_g_packet)
8014 error (_("Truncated register %d in remote 'g' packet"), i);
8015 else
8016 rsa->regs[i].in_g_packet = 1;
8017 }
8018
8019 /* Looks valid enough, we can assume this is the correct length
8020 for a 'g' packet. It's important not to adjust
8021 rsa->sizeof_g_packet if we have truncated registers otherwise
8022 this "if" won't be run the next time the method is called
8023 with a packet of the same size and one of the internal errors
8024 below will trigger instead. */
8025 rsa->sizeof_g_packet = sizeof_g_packet;
8026 }
8027
8028 regs = (char *) alloca (rsa->sizeof_g_packet);
8029
8030 /* Unimplemented registers read as all bits zero. */
8031 memset (regs, 0, rsa->sizeof_g_packet);
8032
8033 /* Reply describes registers byte by byte, each byte encoded as two
8034 hex characters. Suck them all up, then supply them to the
8035 register cacheing/storage mechanism. */
8036
8037 p = rs->buf.data ();
8038 for (i = 0; i < rsa->sizeof_g_packet; i++)
8039 {
8040 if (p[0] == 0 || p[1] == 0)
8041 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8042 internal_error (__FILE__, __LINE__,
8043 _("unexpected end of 'g' packet reply"));
8044
8045 if (p[0] == 'x' && p[1] == 'x')
8046 regs[i] = 0; /* 'x' */
8047 else
8048 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8049 p += 2;
8050 }
8051
8052 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8053 {
8054 struct packet_reg *r = &rsa->regs[i];
8055 long reg_size = register_size (gdbarch, i);
8056
8057 if (r->in_g_packet)
8058 {
8059 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8060 /* This shouldn't happen - we adjusted in_g_packet above. */
8061 internal_error (__FILE__, __LINE__,
8062 _("unexpected end of 'g' packet reply"));
8063 else if (rs->buf[r->offset * 2] == 'x')
8064 {
8065 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8066 /* The register isn't available, mark it as such (at
8067 the same time setting the value to zero). */
8068 regcache->raw_supply (r->regnum, NULL);
8069 }
8070 else
8071 regcache->raw_supply (r->regnum, regs + r->offset);
8072 }
8073 }
8074 }
8075
8076 void
8077 remote_target::fetch_registers_using_g (struct regcache *regcache)
8078 {
8079 send_g_packet ();
8080 process_g_packet (regcache);
8081 }
8082
8083 /* Make the remote selected traceframe match GDB's selected
8084 traceframe. */
8085
8086 void
8087 remote_target::set_remote_traceframe ()
8088 {
8089 int newnum;
8090 struct remote_state *rs = get_remote_state ();
8091
8092 if (rs->remote_traceframe_number == get_traceframe_number ())
8093 return;
8094
8095 /* Avoid recursion, remote_trace_find calls us again. */
8096 rs->remote_traceframe_number = get_traceframe_number ();
8097
8098 newnum = target_trace_find (tfind_number,
8099 get_traceframe_number (), 0, 0, NULL);
8100
8101 /* Should not happen. If it does, all bets are off. */
8102 if (newnum != get_traceframe_number ())
8103 warning (_("could not set remote traceframe"));
8104 }
8105
8106 void
8107 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8108 {
8109 struct gdbarch *gdbarch = regcache->arch ();
8110 struct remote_state *rs = get_remote_state ();
8111 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8112 int i;
8113
8114 set_remote_traceframe ();
8115 set_general_thread (regcache->ptid ());
8116
8117 if (regnum >= 0)
8118 {
8119 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8120
8121 gdb_assert (reg != NULL);
8122
8123 /* If this register might be in the 'g' packet, try that first -
8124 we are likely to read more than one register. If this is the
8125 first 'g' packet, we might be overly optimistic about its
8126 contents, so fall back to 'p'. */
8127 if (reg->in_g_packet)
8128 {
8129 fetch_registers_using_g (regcache);
8130 if (reg->in_g_packet)
8131 return;
8132 }
8133
8134 if (fetch_register_using_p (regcache, reg))
8135 return;
8136
8137 /* This register is not available. */
8138 regcache->raw_supply (reg->regnum, NULL);
8139
8140 return;
8141 }
8142
8143 fetch_registers_using_g (regcache);
8144
8145 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8146 if (!rsa->regs[i].in_g_packet)
8147 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8148 {
8149 /* This register is not available. */
8150 regcache->raw_supply (i, NULL);
8151 }
8152 }
8153
8154 /* Prepare to store registers. Since we may send them all (using a
8155 'G' request), we have to read out the ones we don't want to change
8156 first. */
8157
8158 void
8159 remote_target::prepare_to_store (struct regcache *regcache)
8160 {
8161 struct remote_state *rs = get_remote_state ();
8162 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8163 int i;
8164
8165 /* Make sure the entire registers array is valid. */
8166 switch (packet_support (PACKET_P))
8167 {
8168 case PACKET_DISABLE:
8169 case PACKET_SUPPORT_UNKNOWN:
8170 /* Make sure all the necessary registers are cached. */
8171 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8172 if (rsa->regs[i].in_g_packet)
8173 regcache->raw_update (rsa->regs[i].regnum);
8174 break;
8175 case PACKET_ENABLE:
8176 break;
8177 }
8178 }
8179
8180 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8181 packet was not recognized. */
8182
8183 int
8184 remote_target::store_register_using_P (const struct regcache *regcache,
8185 packet_reg *reg)
8186 {
8187 struct gdbarch *gdbarch = regcache->arch ();
8188 struct remote_state *rs = get_remote_state ();
8189 /* Try storing a single register. */
8190 char *buf = rs->buf.data ();
8191 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8192 char *p;
8193
8194 if (packet_support (PACKET_P) == PACKET_DISABLE)
8195 return 0;
8196
8197 if (reg->pnum == -1)
8198 return 0;
8199
8200 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8201 p = buf + strlen (buf);
8202 regcache->raw_collect (reg->regnum, regp);
8203 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8204 putpkt (rs->buf);
8205 getpkt (&rs->buf, 0);
8206
8207 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8208 {
8209 case PACKET_OK:
8210 return 1;
8211 case PACKET_ERROR:
8212 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8213 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8214 case PACKET_UNKNOWN:
8215 return 0;
8216 default:
8217 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8218 }
8219 }
8220
8221 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8222 contents of the register cache buffer. FIXME: ignores errors. */
8223
8224 void
8225 remote_target::store_registers_using_G (const struct regcache *regcache)
8226 {
8227 struct remote_state *rs = get_remote_state ();
8228 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8229 gdb_byte *regs;
8230 char *p;
8231
8232 /* Extract all the registers in the regcache copying them into a
8233 local buffer. */
8234 {
8235 int i;
8236
8237 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8238 memset (regs, 0, rsa->sizeof_g_packet);
8239 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8240 {
8241 struct packet_reg *r = &rsa->regs[i];
8242
8243 if (r->in_g_packet)
8244 regcache->raw_collect (r->regnum, regs + r->offset);
8245 }
8246 }
8247
8248 /* Command describes registers byte by byte,
8249 each byte encoded as two hex characters. */
8250 p = rs->buf.data ();
8251 *p++ = 'G';
8252 bin2hex (regs, p, rsa->sizeof_g_packet);
8253 putpkt (rs->buf);
8254 getpkt (&rs->buf, 0);
8255 if (packet_check_result (rs->buf) == PACKET_ERROR)
8256 error (_("Could not write registers; remote failure reply '%s'"),
8257 rs->buf.data ());
8258 }
8259
8260 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8261 of the register cache buffer. FIXME: ignores errors. */
8262
8263 void
8264 remote_target::store_registers (struct regcache *regcache, int regnum)
8265 {
8266 struct gdbarch *gdbarch = regcache->arch ();
8267 struct remote_state *rs = get_remote_state ();
8268 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8269 int i;
8270
8271 set_remote_traceframe ();
8272 set_general_thread (regcache->ptid ());
8273
8274 if (regnum >= 0)
8275 {
8276 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8277
8278 gdb_assert (reg != NULL);
8279
8280 /* Always prefer to store registers using the 'P' packet if
8281 possible; we often change only a small number of registers.
8282 Sometimes we change a larger number; we'd need help from a
8283 higher layer to know to use 'G'. */
8284 if (store_register_using_P (regcache, reg))
8285 return;
8286
8287 /* For now, don't complain if we have no way to write the
8288 register. GDB loses track of unavailable registers too
8289 easily. Some day, this may be an error. We don't have
8290 any way to read the register, either... */
8291 if (!reg->in_g_packet)
8292 return;
8293
8294 store_registers_using_G (regcache);
8295 return;
8296 }
8297
8298 store_registers_using_G (regcache);
8299
8300 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8301 if (!rsa->regs[i].in_g_packet)
8302 if (!store_register_using_P (regcache, &rsa->regs[i]))
8303 /* See above for why we do not issue an error here. */
8304 continue;
8305 }
8306 \f
8307
8308 /* Return the number of hex digits in num. */
8309
8310 static int
8311 hexnumlen (ULONGEST num)
8312 {
8313 int i;
8314
8315 for (i = 0; num != 0; i++)
8316 num >>= 4;
8317
8318 return std::max (i, 1);
8319 }
8320
8321 /* Set BUF to the minimum number of hex digits representing NUM. */
8322
8323 static int
8324 hexnumstr (char *buf, ULONGEST num)
8325 {
8326 int len = hexnumlen (num);
8327
8328 return hexnumnstr (buf, num, len);
8329 }
8330
8331
8332 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8333
8334 static int
8335 hexnumnstr (char *buf, ULONGEST num, int width)
8336 {
8337 int i;
8338
8339 buf[width] = '\0';
8340
8341 for (i = width - 1; i >= 0; i--)
8342 {
8343 buf[i] = "0123456789abcdef"[(num & 0xf)];
8344 num >>= 4;
8345 }
8346
8347 return width;
8348 }
8349
8350 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8351
8352 static CORE_ADDR
8353 remote_address_masked (CORE_ADDR addr)
8354 {
8355 unsigned int address_size = remote_address_size;
8356
8357 /* If "remoteaddresssize" was not set, default to target address size. */
8358 if (!address_size)
8359 address_size = gdbarch_addr_bit (target_gdbarch ());
8360
8361 if (address_size > 0
8362 && address_size < (sizeof (ULONGEST) * 8))
8363 {
8364 /* Only create a mask when that mask can safely be constructed
8365 in a ULONGEST variable. */
8366 ULONGEST mask = 1;
8367
8368 mask = (mask << address_size) - 1;
8369 addr &= mask;
8370 }
8371 return addr;
8372 }
8373
8374 /* Determine whether the remote target supports binary downloading.
8375 This is accomplished by sending a no-op memory write of zero length
8376 to the target at the specified address. It does not suffice to send
8377 the whole packet, since many stubs strip the eighth bit and
8378 subsequently compute a wrong checksum, which causes real havoc with
8379 remote_write_bytes.
8380
8381 NOTE: This can still lose if the serial line is not eight-bit
8382 clean. In cases like this, the user should clear "remote
8383 X-packet". */
8384
8385 void
8386 remote_target::check_binary_download (CORE_ADDR addr)
8387 {
8388 struct remote_state *rs = get_remote_state ();
8389
8390 switch (packet_support (PACKET_X))
8391 {
8392 case PACKET_DISABLE:
8393 break;
8394 case PACKET_ENABLE:
8395 break;
8396 case PACKET_SUPPORT_UNKNOWN:
8397 {
8398 char *p;
8399
8400 p = rs->buf.data ();
8401 *p++ = 'X';
8402 p += hexnumstr (p, (ULONGEST) addr);
8403 *p++ = ',';
8404 p += hexnumstr (p, (ULONGEST) 0);
8405 *p++ = ':';
8406 *p = '\0';
8407
8408 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8409 getpkt (&rs->buf, 0);
8410
8411 if (rs->buf[0] == '\0')
8412 {
8413 if (remote_debug)
8414 fprintf_unfiltered (gdb_stdlog,
8415 "binary downloading NOT "
8416 "supported by target\n");
8417 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8418 }
8419 else
8420 {
8421 if (remote_debug)
8422 fprintf_unfiltered (gdb_stdlog,
8423 "binary downloading supported by target\n");
8424 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8425 }
8426 break;
8427 }
8428 }
8429 }
8430
8431 /* Helper function to resize the payload in order to try to get a good
8432 alignment. We try to write an amount of data such that the next write will
8433 start on an address aligned on REMOTE_ALIGN_WRITES. */
8434
8435 static int
8436 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8437 {
8438 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8439 }
8440
8441 /* Write memory data directly to the remote machine.
8442 This does not inform the data cache; the data cache uses this.
8443 HEADER is the starting part of the packet.
8444 MEMADDR is the address in the remote memory space.
8445 MYADDR is the address of the buffer in our space.
8446 LEN_UNITS is the number of addressable units to write.
8447 UNIT_SIZE is the length in bytes of an addressable unit.
8448 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8449 should send data as binary ('X'), or hex-encoded ('M').
8450
8451 The function creates packet of the form
8452 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8453
8454 where encoding of <DATA> is terminated by PACKET_FORMAT.
8455
8456 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8457 are omitted.
8458
8459 Return the transferred status, error or OK (an
8460 'enum target_xfer_status' value). Save the number of addressable units
8461 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8462
8463 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8464 exchange between gdb and the stub could look like (?? in place of the
8465 checksum):
8466
8467 -> $m1000,4#??
8468 <- aaaabbbbccccdddd
8469
8470 -> $M1000,3:eeeeffffeeee#??
8471 <- OK
8472
8473 -> $m1000,4#??
8474 <- eeeeffffeeeedddd */
8475
8476 target_xfer_status
8477 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8478 const gdb_byte *myaddr,
8479 ULONGEST len_units,
8480 int unit_size,
8481 ULONGEST *xfered_len_units,
8482 char packet_format, int use_length)
8483 {
8484 struct remote_state *rs = get_remote_state ();
8485 char *p;
8486 char *plen = NULL;
8487 int plenlen = 0;
8488 int todo_units;
8489 int units_written;
8490 int payload_capacity_bytes;
8491 int payload_length_bytes;
8492
8493 if (packet_format != 'X' && packet_format != 'M')
8494 internal_error (__FILE__, __LINE__,
8495 _("remote_write_bytes_aux: bad packet format"));
8496
8497 if (len_units == 0)
8498 return TARGET_XFER_EOF;
8499
8500 payload_capacity_bytes = get_memory_write_packet_size ();
8501
8502 /* The packet buffer will be large enough for the payload;
8503 get_memory_packet_size ensures this. */
8504 rs->buf[0] = '\0';
8505
8506 /* Compute the size of the actual payload by subtracting out the
8507 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8508
8509 payload_capacity_bytes -= strlen ("$,:#NN");
8510 if (!use_length)
8511 /* The comma won't be used. */
8512 payload_capacity_bytes += 1;
8513 payload_capacity_bytes -= strlen (header);
8514 payload_capacity_bytes -= hexnumlen (memaddr);
8515
8516 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8517
8518 strcat (rs->buf.data (), header);
8519 p = rs->buf.data () + strlen (header);
8520
8521 /* Compute a best guess of the number of bytes actually transfered. */
8522 if (packet_format == 'X')
8523 {
8524 /* Best guess at number of bytes that will fit. */
8525 todo_units = std::min (len_units,
8526 (ULONGEST) payload_capacity_bytes / unit_size);
8527 if (use_length)
8528 payload_capacity_bytes -= hexnumlen (todo_units);
8529 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8530 }
8531 else
8532 {
8533 /* Number of bytes that will fit. */
8534 todo_units
8535 = std::min (len_units,
8536 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8537 if (use_length)
8538 payload_capacity_bytes -= hexnumlen (todo_units);
8539 todo_units = std::min (todo_units,
8540 (payload_capacity_bytes / unit_size) / 2);
8541 }
8542
8543 if (todo_units <= 0)
8544 internal_error (__FILE__, __LINE__,
8545 _("minimum packet size too small to write data"));
8546
8547 /* If we already need another packet, then try to align the end
8548 of this packet to a useful boundary. */
8549 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8550 todo_units = align_for_efficient_write (todo_units, memaddr);
8551
8552 /* Append "<memaddr>". */
8553 memaddr = remote_address_masked (memaddr);
8554 p += hexnumstr (p, (ULONGEST) memaddr);
8555
8556 if (use_length)
8557 {
8558 /* Append ",". */
8559 *p++ = ',';
8560
8561 /* Append the length and retain its location and size. It may need to be
8562 adjusted once the packet body has been created. */
8563 plen = p;
8564 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8565 p += plenlen;
8566 }
8567
8568 /* Append ":". */
8569 *p++ = ':';
8570 *p = '\0';
8571
8572 /* Append the packet body. */
8573 if (packet_format == 'X')
8574 {
8575 /* Binary mode. Send target system values byte by byte, in
8576 increasing byte addresses. Only escape certain critical
8577 characters. */
8578 payload_length_bytes =
8579 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8580 &units_written, payload_capacity_bytes);
8581
8582 /* If not all TODO units fit, then we'll need another packet. Make
8583 a second try to keep the end of the packet aligned. Don't do
8584 this if the packet is tiny. */
8585 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8586 {
8587 int new_todo_units;
8588
8589 new_todo_units = align_for_efficient_write (units_written, memaddr);
8590
8591 if (new_todo_units != units_written)
8592 payload_length_bytes =
8593 remote_escape_output (myaddr, new_todo_units, unit_size,
8594 (gdb_byte *) p, &units_written,
8595 payload_capacity_bytes);
8596 }
8597
8598 p += payload_length_bytes;
8599 if (use_length && units_written < todo_units)
8600 {
8601 /* Escape chars have filled up the buffer prematurely,
8602 and we have actually sent fewer units than planned.
8603 Fix-up the length field of the packet. Use the same
8604 number of characters as before. */
8605 plen += hexnumnstr (plen, (ULONGEST) units_written,
8606 plenlen);
8607 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8608 }
8609 }
8610 else
8611 {
8612 /* Normal mode: Send target system values byte by byte, in
8613 increasing byte addresses. Each byte is encoded as a two hex
8614 value. */
8615 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8616 units_written = todo_units;
8617 }
8618
8619 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8620 getpkt (&rs->buf, 0);
8621
8622 if (rs->buf[0] == 'E')
8623 return TARGET_XFER_E_IO;
8624
8625 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8626 send fewer units than we'd planned. */
8627 *xfered_len_units = (ULONGEST) units_written;
8628 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8629 }
8630
8631 /* Write memory data directly to the remote machine.
8632 This does not inform the data cache; the data cache uses this.
8633 MEMADDR is the address in the remote memory space.
8634 MYADDR is the address of the buffer in our space.
8635 LEN is the number of bytes.
8636
8637 Return the transferred status, error or OK (an
8638 'enum target_xfer_status' value). Save the number of bytes
8639 transferred in *XFERED_LEN. Only transfer a single packet. */
8640
8641 target_xfer_status
8642 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8643 ULONGEST len, int unit_size,
8644 ULONGEST *xfered_len)
8645 {
8646 const char *packet_format = NULL;
8647
8648 /* Check whether the target supports binary download. */
8649 check_binary_download (memaddr);
8650
8651 switch (packet_support (PACKET_X))
8652 {
8653 case PACKET_ENABLE:
8654 packet_format = "X";
8655 break;
8656 case PACKET_DISABLE:
8657 packet_format = "M";
8658 break;
8659 case PACKET_SUPPORT_UNKNOWN:
8660 internal_error (__FILE__, __LINE__,
8661 _("remote_write_bytes: bad internal state"));
8662 default:
8663 internal_error (__FILE__, __LINE__, _("bad switch"));
8664 }
8665
8666 return remote_write_bytes_aux (packet_format,
8667 memaddr, myaddr, len, unit_size, xfered_len,
8668 packet_format[0], 1);
8669 }
8670
8671 /* Read memory data directly from the remote machine.
8672 This does not use the data cache; the data cache uses this.
8673 MEMADDR is the address in the remote memory space.
8674 MYADDR is the address of the buffer in our space.
8675 LEN_UNITS is the number of addressable memory units to read..
8676 UNIT_SIZE is the length in bytes of an addressable unit.
8677
8678 Return the transferred status, error or OK (an
8679 'enum target_xfer_status' value). Save the number of bytes
8680 transferred in *XFERED_LEN_UNITS.
8681
8682 See the comment of remote_write_bytes_aux for an example of
8683 memory read/write exchange between gdb and the stub. */
8684
8685 target_xfer_status
8686 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8687 ULONGEST len_units,
8688 int unit_size, ULONGEST *xfered_len_units)
8689 {
8690 struct remote_state *rs = get_remote_state ();
8691 int buf_size_bytes; /* Max size of packet output buffer. */
8692 char *p;
8693 int todo_units;
8694 int decoded_bytes;
8695
8696 buf_size_bytes = get_memory_read_packet_size ();
8697 /* The packet buffer will be large enough for the payload;
8698 get_memory_packet_size ensures this. */
8699
8700 /* Number of units that will fit. */
8701 todo_units = std::min (len_units,
8702 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8703
8704 /* Construct "m"<memaddr>","<len>". */
8705 memaddr = remote_address_masked (memaddr);
8706 p = rs->buf.data ();
8707 *p++ = 'm';
8708 p += hexnumstr (p, (ULONGEST) memaddr);
8709 *p++ = ',';
8710 p += hexnumstr (p, (ULONGEST) todo_units);
8711 *p = '\0';
8712 putpkt (rs->buf);
8713 getpkt (&rs->buf, 0);
8714 if (rs->buf[0] == 'E'
8715 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8716 && rs->buf[3] == '\0')
8717 return TARGET_XFER_E_IO;
8718 /* Reply describes memory byte by byte, each byte encoded as two hex
8719 characters. */
8720 p = rs->buf.data ();
8721 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8722 /* Return what we have. Let higher layers handle partial reads. */
8723 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8724 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8725 }
8726
8727 /* Using the set of read-only target sections of remote, read live
8728 read-only memory.
8729
8730 For interface/parameters/return description see target.h,
8731 to_xfer_partial. */
8732
8733 target_xfer_status
8734 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8735 ULONGEST memaddr,
8736 ULONGEST len,
8737 int unit_size,
8738 ULONGEST *xfered_len)
8739 {
8740 struct target_section *secp;
8741 struct target_section_table *table;
8742
8743 secp = target_section_by_addr (this, memaddr);
8744 if (secp != NULL
8745 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8746 {
8747 struct target_section *p;
8748 ULONGEST memend = memaddr + len;
8749
8750 table = target_get_section_table (this);
8751
8752 for (p = table->sections; p < table->sections_end; p++)
8753 {
8754 if (memaddr >= p->addr)
8755 {
8756 if (memend <= p->endaddr)
8757 {
8758 /* Entire transfer is within this section. */
8759 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8760 xfered_len);
8761 }
8762 else if (memaddr >= p->endaddr)
8763 {
8764 /* This section ends before the transfer starts. */
8765 continue;
8766 }
8767 else
8768 {
8769 /* This section overlaps the transfer. Just do half. */
8770 len = p->endaddr - memaddr;
8771 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8772 xfered_len);
8773 }
8774 }
8775 }
8776 }
8777
8778 return TARGET_XFER_EOF;
8779 }
8780
8781 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8782 first if the requested memory is unavailable in traceframe.
8783 Otherwise, fall back to remote_read_bytes_1. */
8784
8785 target_xfer_status
8786 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8787 gdb_byte *myaddr, ULONGEST len, int unit_size,
8788 ULONGEST *xfered_len)
8789 {
8790 if (len == 0)
8791 return TARGET_XFER_EOF;
8792
8793 if (get_traceframe_number () != -1)
8794 {
8795 std::vector<mem_range> available;
8796
8797 /* If we fail to get the set of available memory, then the
8798 target does not support querying traceframe info, and so we
8799 attempt reading from the traceframe anyway (assuming the
8800 target implements the old QTro packet then). */
8801 if (traceframe_available_memory (&available, memaddr, len))
8802 {
8803 if (available.empty () || available[0].start != memaddr)
8804 {
8805 enum target_xfer_status res;
8806
8807 /* Don't read into the traceframe's available
8808 memory. */
8809 if (!available.empty ())
8810 {
8811 LONGEST oldlen = len;
8812
8813 len = available[0].start - memaddr;
8814 gdb_assert (len <= oldlen);
8815 }
8816
8817 /* This goes through the topmost target again. */
8818 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8819 len, unit_size, xfered_len);
8820 if (res == TARGET_XFER_OK)
8821 return TARGET_XFER_OK;
8822 else
8823 {
8824 /* No use trying further, we know some memory starting
8825 at MEMADDR isn't available. */
8826 *xfered_len = len;
8827 return (*xfered_len != 0) ?
8828 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8829 }
8830 }
8831
8832 /* Don't try to read more than how much is available, in
8833 case the target implements the deprecated QTro packet to
8834 cater for older GDBs (the target's knowledge of read-only
8835 sections may be outdated by now). */
8836 len = available[0].length;
8837 }
8838 }
8839
8840 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8841 }
8842
8843 \f
8844
8845 /* Sends a packet with content determined by the printf format string
8846 FORMAT and the remaining arguments, then gets the reply. Returns
8847 whether the packet was a success, a failure, or unknown. */
8848
8849 packet_result
8850 remote_target::remote_send_printf (const char *format, ...)
8851 {
8852 struct remote_state *rs = get_remote_state ();
8853 int max_size = get_remote_packet_size ();
8854 va_list ap;
8855
8856 va_start (ap, format);
8857
8858 rs->buf[0] = '\0';
8859 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8860
8861 va_end (ap);
8862
8863 if (size >= max_size)
8864 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8865
8866 if (putpkt (rs->buf) < 0)
8867 error (_("Communication problem with target."));
8868
8869 rs->buf[0] = '\0';
8870 getpkt (&rs->buf, 0);
8871
8872 return packet_check_result (rs->buf);
8873 }
8874
8875 /* Flash writing can take quite some time. We'll set
8876 effectively infinite timeout for flash operations.
8877 In future, we'll need to decide on a better approach. */
8878 static const int remote_flash_timeout = 1000;
8879
8880 void
8881 remote_target::flash_erase (ULONGEST address, LONGEST length)
8882 {
8883 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8884 enum packet_result ret;
8885 scoped_restore restore_timeout
8886 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8887
8888 ret = remote_send_printf ("vFlashErase:%s,%s",
8889 phex (address, addr_size),
8890 phex (length, 4));
8891 switch (ret)
8892 {
8893 case PACKET_UNKNOWN:
8894 error (_("Remote target does not support flash erase"));
8895 case PACKET_ERROR:
8896 error (_("Error erasing flash with vFlashErase packet"));
8897 default:
8898 break;
8899 }
8900 }
8901
8902 target_xfer_status
8903 remote_target::remote_flash_write (ULONGEST address,
8904 ULONGEST length, ULONGEST *xfered_len,
8905 const gdb_byte *data)
8906 {
8907 scoped_restore restore_timeout
8908 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8909 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8910 xfered_len,'X', 0);
8911 }
8912
8913 void
8914 remote_target::flash_done ()
8915 {
8916 int ret;
8917
8918 scoped_restore restore_timeout
8919 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8920
8921 ret = remote_send_printf ("vFlashDone");
8922
8923 switch (ret)
8924 {
8925 case PACKET_UNKNOWN:
8926 error (_("Remote target does not support vFlashDone"));
8927 case PACKET_ERROR:
8928 error (_("Error finishing flash operation"));
8929 default:
8930 break;
8931 }
8932 }
8933
8934 void
8935 remote_target::files_info ()
8936 {
8937 puts_filtered ("Debugging a target over a serial line.\n");
8938 }
8939 \f
8940 /* Stuff for dealing with the packets which are part of this protocol.
8941 See comment at top of file for details. */
8942
8943 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8944 error to higher layers. Called when a serial error is detected.
8945 The exception message is STRING, followed by a colon and a blank,
8946 the system error message for errno at function entry and final dot
8947 for output compatibility with throw_perror_with_name. */
8948
8949 static void
8950 unpush_and_perror (const char *string)
8951 {
8952 int saved_errno = errno;
8953
8954 remote_unpush_target ();
8955 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8956 safe_strerror (saved_errno));
8957 }
8958
8959 /* Read a single character from the remote end. The current quit
8960 handler is overridden to avoid quitting in the middle of packet
8961 sequence, as that would break communication with the remote server.
8962 See remote_serial_quit_handler for more detail. */
8963
8964 int
8965 remote_target::readchar (int timeout)
8966 {
8967 int ch;
8968 struct remote_state *rs = get_remote_state ();
8969
8970 {
8971 scoped_restore restore_quit_target
8972 = make_scoped_restore (&curr_quit_handler_target, this);
8973 scoped_restore restore_quit
8974 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8975
8976 rs->got_ctrlc_during_io = 0;
8977
8978 ch = serial_readchar (rs->remote_desc, timeout);
8979
8980 if (rs->got_ctrlc_during_io)
8981 set_quit_flag ();
8982 }
8983
8984 if (ch >= 0)
8985 return ch;
8986
8987 switch ((enum serial_rc) ch)
8988 {
8989 case SERIAL_EOF:
8990 remote_unpush_target ();
8991 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8992 /* no return */
8993 case SERIAL_ERROR:
8994 unpush_and_perror (_("Remote communication error. "
8995 "Target disconnected."));
8996 /* no return */
8997 case SERIAL_TIMEOUT:
8998 break;
8999 }
9000 return ch;
9001 }
9002
9003 /* Wrapper for serial_write that closes the target and throws if
9004 writing fails. The current quit handler is overridden to avoid
9005 quitting in the middle of packet sequence, as that would break
9006 communication with the remote server. See
9007 remote_serial_quit_handler for more detail. */
9008
9009 void
9010 remote_target::remote_serial_write (const char *str, int len)
9011 {
9012 struct remote_state *rs = get_remote_state ();
9013
9014 scoped_restore restore_quit_target
9015 = make_scoped_restore (&curr_quit_handler_target, this);
9016 scoped_restore restore_quit
9017 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9018
9019 rs->got_ctrlc_during_io = 0;
9020
9021 if (serial_write (rs->remote_desc, str, len))
9022 {
9023 unpush_and_perror (_("Remote communication error. "
9024 "Target disconnected."));
9025 }
9026
9027 if (rs->got_ctrlc_during_io)
9028 set_quit_flag ();
9029 }
9030
9031 /* Return a string representing an escaped version of BUF, of len N.
9032 E.g. \n is converted to \\n, \t to \\t, etc. */
9033
9034 static std::string
9035 escape_buffer (const char *buf, int n)
9036 {
9037 string_file stb;
9038
9039 stb.putstrn (buf, n, '\\');
9040 return std::move (stb.string ());
9041 }
9042
9043 /* Display a null-terminated packet on stdout, for debugging, using C
9044 string notation. */
9045
9046 static void
9047 print_packet (const char *buf)
9048 {
9049 puts_filtered ("\"");
9050 fputstr_filtered (buf, '"', gdb_stdout);
9051 puts_filtered ("\"");
9052 }
9053
9054 int
9055 remote_target::putpkt (const char *buf)
9056 {
9057 return putpkt_binary (buf, strlen (buf));
9058 }
9059
9060 /* Wrapper around remote_target::putpkt to avoid exporting
9061 remote_target. */
9062
9063 int
9064 putpkt (remote_target *remote, const char *buf)
9065 {
9066 return remote->putpkt (buf);
9067 }
9068
9069 /* Send a packet to the remote machine, with error checking. The data
9070 of the packet is in BUF. The string in BUF can be at most
9071 get_remote_packet_size () - 5 to account for the $, # and checksum,
9072 and for a possible /0 if we are debugging (remote_debug) and want
9073 to print the sent packet as a string. */
9074
9075 int
9076 remote_target::putpkt_binary (const char *buf, int cnt)
9077 {
9078 struct remote_state *rs = get_remote_state ();
9079 int i;
9080 unsigned char csum = 0;
9081 gdb::def_vector<char> data (cnt + 6);
9082 char *buf2 = data.data ();
9083
9084 int ch;
9085 int tcount = 0;
9086 char *p;
9087
9088 /* Catch cases like trying to read memory or listing threads while
9089 we're waiting for a stop reply. The remote server wouldn't be
9090 ready to handle this request, so we'd hang and timeout. We don't
9091 have to worry about this in synchronous mode, because in that
9092 case it's not possible to issue a command while the target is
9093 running. This is not a problem in non-stop mode, because in that
9094 case, the stub is always ready to process serial input. */
9095 if (!target_is_non_stop_p ()
9096 && target_is_async_p ()
9097 && rs->waiting_for_stop_reply)
9098 {
9099 error (_("Cannot execute this command while the target is running.\n"
9100 "Use the \"interrupt\" command to stop the target\n"
9101 "and then try again."));
9102 }
9103
9104 /* We're sending out a new packet. Make sure we don't look at a
9105 stale cached response. */
9106 rs->cached_wait_status = 0;
9107
9108 /* Copy the packet into buffer BUF2, encapsulating it
9109 and giving it a checksum. */
9110
9111 p = buf2;
9112 *p++ = '$';
9113
9114 for (i = 0; i < cnt; i++)
9115 {
9116 csum += buf[i];
9117 *p++ = buf[i];
9118 }
9119 *p++ = '#';
9120 *p++ = tohex ((csum >> 4) & 0xf);
9121 *p++ = tohex (csum & 0xf);
9122
9123 /* Send it over and over until we get a positive ack. */
9124
9125 while (1)
9126 {
9127 int started_error_output = 0;
9128
9129 if (remote_debug)
9130 {
9131 *p = '\0';
9132
9133 int len = (int) (p - buf2);
9134 int max_chars;
9135
9136 if (remote_packet_max_chars < 0)
9137 max_chars = len;
9138 else
9139 max_chars = remote_packet_max_chars;
9140
9141 std::string str
9142 = escape_buffer (buf2, std::min (len, max_chars));
9143
9144 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9145
9146 if (len > max_chars)
9147 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9148 len - max_chars);
9149
9150 fprintf_unfiltered (gdb_stdlog, "...");
9151
9152 gdb_flush (gdb_stdlog);
9153 }
9154 remote_serial_write (buf2, p - buf2);
9155
9156 /* If this is a no acks version of the remote protocol, send the
9157 packet and move on. */
9158 if (rs->noack_mode)
9159 break;
9160
9161 /* Read until either a timeout occurs (-2) or '+' is read.
9162 Handle any notification that arrives in the mean time. */
9163 while (1)
9164 {
9165 ch = readchar (remote_timeout);
9166
9167 if (remote_debug)
9168 {
9169 switch (ch)
9170 {
9171 case '+':
9172 case '-':
9173 case SERIAL_TIMEOUT:
9174 case '$':
9175 case '%':
9176 if (started_error_output)
9177 {
9178 putchar_unfiltered ('\n');
9179 started_error_output = 0;
9180 }
9181 }
9182 }
9183
9184 switch (ch)
9185 {
9186 case '+':
9187 if (remote_debug)
9188 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9189 return 1;
9190 case '-':
9191 if (remote_debug)
9192 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9193 /* FALLTHROUGH */
9194 case SERIAL_TIMEOUT:
9195 tcount++;
9196 if (tcount > 3)
9197 return 0;
9198 break; /* Retransmit buffer. */
9199 case '$':
9200 {
9201 if (remote_debug)
9202 fprintf_unfiltered (gdb_stdlog,
9203 "Packet instead of Ack, ignoring it\n");
9204 /* It's probably an old response sent because an ACK
9205 was lost. Gobble up the packet and ack it so it
9206 doesn't get retransmitted when we resend this
9207 packet. */
9208 skip_frame ();
9209 remote_serial_write ("+", 1);
9210 continue; /* Now, go look for +. */
9211 }
9212
9213 case '%':
9214 {
9215 int val;
9216
9217 /* If we got a notification, handle it, and go back to looking
9218 for an ack. */
9219 /* We've found the start of a notification. Now
9220 collect the data. */
9221 val = read_frame (&rs->buf);
9222 if (val >= 0)
9223 {
9224 if (remote_debug)
9225 {
9226 std::string str = escape_buffer (rs->buf.data (), val);
9227
9228 fprintf_unfiltered (gdb_stdlog,
9229 " Notification received: %s\n",
9230 str.c_str ());
9231 }
9232 handle_notification (rs->notif_state, rs->buf.data ());
9233 /* We're in sync now, rewait for the ack. */
9234 tcount = 0;
9235 }
9236 else
9237 {
9238 if (remote_debug)
9239 {
9240 if (!started_error_output)
9241 {
9242 started_error_output = 1;
9243 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9244 }
9245 fputc_unfiltered (ch & 0177, gdb_stdlog);
9246 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9247 }
9248 }
9249 continue;
9250 }
9251 /* fall-through */
9252 default:
9253 if (remote_debug)
9254 {
9255 if (!started_error_output)
9256 {
9257 started_error_output = 1;
9258 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9259 }
9260 fputc_unfiltered (ch & 0177, gdb_stdlog);
9261 }
9262 continue;
9263 }
9264 break; /* Here to retransmit. */
9265 }
9266
9267 #if 0
9268 /* This is wrong. If doing a long backtrace, the user should be
9269 able to get out next time we call QUIT, without anything as
9270 violent as interrupt_query. If we want to provide a way out of
9271 here without getting to the next QUIT, it should be based on
9272 hitting ^C twice as in remote_wait. */
9273 if (quit_flag)
9274 {
9275 quit_flag = 0;
9276 interrupt_query ();
9277 }
9278 #endif
9279 }
9280
9281 return 0;
9282 }
9283
9284 /* Come here after finding the start of a frame when we expected an
9285 ack. Do our best to discard the rest of this packet. */
9286
9287 void
9288 remote_target::skip_frame ()
9289 {
9290 int c;
9291
9292 while (1)
9293 {
9294 c = readchar (remote_timeout);
9295 switch (c)
9296 {
9297 case SERIAL_TIMEOUT:
9298 /* Nothing we can do. */
9299 return;
9300 case '#':
9301 /* Discard the two bytes of checksum and stop. */
9302 c = readchar (remote_timeout);
9303 if (c >= 0)
9304 c = readchar (remote_timeout);
9305
9306 return;
9307 case '*': /* Run length encoding. */
9308 /* Discard the repeat count. */
9309 c = readchar (remote_timeout);
9310 if (c < 0)
9311 return;
9312 break;
9313 default:
9314 /* A regular character. */
9315 break;
9316 }
9317 }
9318 }
9319
9320 /* Come here after finding the start of the frame. Collect the rest
9321 into *BUF, verifying the checksum, length, and handling run-length
9322 compression. NUL terminate the buffer. If there is not enough room,
9323 expand *BUF.
9324
9325 Returns -1 on error, number of characters in buffer (ignoring the
9326 trailing NULL) on success. (could be extended to return one of the
9327 SERIAL status indications). */
9328
9329 long
9330 remote_target::read_frame (gdb::char_vector *buf_p)
9331 {
9332 unsigned char csum;
9333 long bc;
9334 int c;
9335 char *buf = buf_p->data ();
9336 struct remote_state *rs = get_remote_state ();
9337
9338 csum = 0;
9339 bc = 0;
9340
9341 while (1)
9342 {
9343 c = readchar (remote_timeout);
9344 switch (c)
9345 {
9346 case SERIAL_TIMEOUT:
9347 if (remote_debug)
9348 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9349 return -1;
9350 case '$':
9351 if (remote_debug)
9352 fputs_filtered ("Saw new packet start in middle of old one\n",
9353 gdb_stdlog);
9354 return -1; /* Start a new packet, count retries. */
9355 case '#':
9356 {
9357 unsigned char pktcsum;
9358 int check_0 = 0;
9359 int check_1 = 0;
9360
9361 buf[bc] = '\0';
9362
9363 check_0 = readchar (remote_timeout);
9364 if (check_0 >= 0)
9365 check_1 = readchar (remote_timeout);
9366
9367 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9368 {
9369 if (remote_debug)
9370 fputs_filtered ("Timeout in checksum, retrying\n",
9371 gdb_stdlog);
9372 return -1;
9373 }
9374 else if (check_0 < 0 || check_1 < 0)
9375 {
9376 if (remote_debug)
9377 fputs_filtered ("Communication error in checksum\n",
9378 gdb_stdlog);
9379 return -1;
9380 }
9381
9382 /* Don't recompute the checksum; with no ack packets we
9383 don't have any way to indicate a packet retransmission
9384 is necessary. */
9385 if (rs->noack_mode)
9386 return bc;
9387
9388 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9389 if (csum == pktcsum)
9390 return bc;
9391
9392 if (remote_debug)
9393 {
9394 std::string str = escape_buffer (buf, bc);
9395
9396 fprintf_unfiltered (gdb_stdlog,
9397 "Bad checksum, sentsum=0x%x, "
9398 "csum=0x%x, buf=%s\n",
9399 pktcsum, csum, str.c_str ());
9400 }
9401 /* Number of characters in buffer ignoring trailing
9402 NULL. */
9403 return -1;
9404 }
9405 case '*': /* Run length encoding. */
9406 {
9407 int repeat;
9408
9409 csum += c;
9410 c = readchar (remote_timeout);
9411 csum += c;
9412 repeat = c - ' ' + 3; /* Compute repeat count. */
9413
9414 /* The character before ``*'' is repeated. */
9415
9416 if (repeat > 0 && repeat <= 255 && bc > 0)
9417 {
9418 if (bc + repeat - 1 >= buf_p->size () - 1)
9419 {
9420 /* Make some more room in the buffer. */
9421 buf_p->resize (buf_p->size () + repeat);
9422 buf = buf_p->data ();
9423 }
9424
9425 memset (&buf[bc], buf[bc - 1], repeat);
9426 bc += repeat;
9427 continue;
9428 }
9429
9430 buf[bc] = '\0';
9431 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9432 return -1;
9433 }
9434 default:
9435 if (bc >= buf_p->size () - 1)
9436 {
9437 /* Make some more room in the buffer. */
9438 buf_p->resize (buf_p->size () * 2);
9439 buf = buf_p->data ();
9440 }
9441
9442 buf[bc++] = c;
9443 csum += c;
9444 continue;
9445 }
9446 }
9447 }
9448
9449 /* Set this to the maximum number of seconds to wait instead of waiting forever
9450 in target_wait(). If this timer times out, then it generates an error and
9451 the command is aborted. This replaces most of the need for timeouts in the
9452 GDB test suite, and makes it possible to distinguish between a hung target
9453 and one with slow communications. */
9454
9455 static int watchdog = 0;
9456 static void
9457 show_watchdog (struct ui_file *file, int from_tty,
9458 struct cmd_list_element *c, const char *value)
9459 {
9460 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9461 }
9462
9463 /* Read a packet from the remote machine, with error checking, and
9464 store it in *BUF. Resize *BUF if necessary to hold the result. If
9465 FOREVER, wait forever rather than timing out; this is used (in
9466 synchronous mode) to wait for a target that is is executing user
9467 code to stop. */
9468 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9469 don't have to change all the calls to getpkt to deal with the
9470 return value, because at the moment I don't know what the right
9471 thing to do it for those. */
9472
9473 void
9474 remote_target::getpkt (gdb::char_vector *buf, int forever)
9475 {
9476 getpkt_sane (buf, forever);
9477 }
9478
9479
9480 /* Read a packet from the remote machine, with error checking, and
9481 store it in *BUF. Resize *BUF if necessary to hold the result. If
9482 FOREVER, wait forever rather than timing out; this is used (in
9483 synchronous mode) to wait for a target that is is executing user
9484 code to stop. If FOREVER == 0, this function is allowed to time
9485 out gracefully and return an indication of this to the caller.
9486 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9487 consider receiving a notification enough reason to return to the
9488 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9489 holds a notification or not (a regular packet). */
9490
9491 int
9492 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9493 int forever, int expecting_notif,
9494 int *is_notif)
9495 {
9496 struct remote_state *rs = get_remote_state ();
9497 int c;
9498 int tries;
9499 int timeout;
9500 int val = -1;
9501
9502 /* We're reading a new response. Make sure we don't look at a
9503 previously cached response. */
9504 rs->cached_wait_status = 0;
9505
9506 strcpy (buf->data (), "timeout");
9507
9508 if (forever)
9509 timeout = watchdog > 0 ? watchdog : -1;
9510 else if (expecting_notif)
9511 timeout = 0; /* There should already be a char in the buffer. If
9512 not, bail out. */
9513 else
9514 timeout = remote_timeout;
9515
9516 #define MAX_TRIES 3
9517
9518 /* Process any number of notifications, and then return when
9519 we get a packet. */
9520 for (;;)
9521 {
9522 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9523 times. */
9524 for (tries = 1; tries <= MAX_TRIES; tries++)
9525 {
9526 /* This can loop forever if the remote side sends us
9527 characters continuously, but if it pauses, we'll get
9528 SERIAL_TIMEOUT from readchar because of timeout. Then
9529 we'll count that as a retry.
9530
9531 Note that even when forever is set, we will only wait
9532 forever prior to the start of a packet. After that, we
9533 expect characters to arrive at a brisk pace. They should
9534 show up within remote_timeout intervals. */
9535 do
9536 c = readchar (timeout);
9537 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9538
9539 if (c == SERIAL_TIMEOUT)
9540 {
9541 if (expecting_notif)
9542 return -1; /* Don't complain, it's normal to not get
9543 anything in this case. */
9544
9545 if (forever) /* Watchdog went off? Kill the target. */
9546 {
9547 remote_unpush_target ();
9548 throw_error (TARGET_CLOSE_ERROR,
9549 _("Watchdog timeout has expired. "
9550 "Target detached."));
9551 }
9552 if (remote_debug)
9553 fputs_filtered ("Timed out.\n", gdb_stdlog);
9554 }
9555 else
9556 {
9557 /* We've found the start of a packet or notification.
9558 Now collect the data. */
9559 val = read_frame (buf);
9560 if (val >= 0)
9561 break;
9562 }
9563
9564 remote_serial_write ("-", 1);
9565 }
9566
9567 if (tries > MAX_TRIES)
9568 {
9569 /* We have tried hard enough, and just can't receive the
9570 packet/notification. Give up. */
9571 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9572
9573 /* Skip the ack char if we're in no-ack mode. */
9574 if (!rs->noack_mode)
9575 remote_serial_write ("+", 1);
9576 return -1;
9577 }
9578
9579 /* If we got an ordinary packet, return that to our caller. */
9580 if (c == '$')
9581 {
9582 if (remote_debug)
9583 {
9584 int max_chars;
9585
9586 if (remote_packet_max_chars < 0)
9587 max_chars = val;
9588 else
9589 max_chars = remote_packet_max_chars;
9590
9591 std::string str
9592 = escape_buffer (buf->data (),
9593 std::min (val, max_chars));
9594
9595 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9596 str.c_str ());
9597
9598 if (val > max_chars)
9599 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9600 val - max_chars);
9601
9602 fprintf_unfiltered (gdb_stdlog, "\n");
9603 }
9604
9605 /* Skip the ack char if we're in no-ack mode. */
9606 if (!rs->noack_mode)
9607 remote_serial_write ("+", 1);
9608 if (is_notif != NULL)
9609 *is_notif = 0;
9610 return val;
9611 }
9612
9613 /* If we got a notification, handle it, and go back to looking
9614 for a packet. */
9615 else
9616 {
9617 gdb_assert (c == '%');
9618
9619 if (remote_debug)
9620 {
9621 std::string str = escape_buffer (buf->data (), val);
9622
9623 fprintf_unfiltered (gdb_stdlog,
9624 " Notification received: %s\n",
9625 str.c_str ());
9626 }
9627 if (is_notif != NULL)
9628 *is_notif = 1;
9629
9630 handle_notification (rs->notif_state, buf->data ());
9631
9632 /* Notifications require no acknowledgement. */
9633
9634 if (expecting_notif)
9635 return val;
9636 }
9637 }
9638 }
9639
9640 int
9641 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9642 {
9643 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9644 }
9645
9646 int
9647 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9648 int *is_notif)
9649 {
9650 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9651 }
9652
9653 /* Kill any new fork children of process PID that haven't been
9654 processed by follow_fork. */
9655
9656 void
9657 remote_target::kill_new_fork_children (int pid)
9658 {
9659 remote_state *rs = get_remote_state ();
9660 struct notif_client *notif = &notif_client_stop;
9661
9662 /* Kill the fork child threads of any threads in process PID
9663 that are stopped at a fork event. */
9664 for (thread_info *thread : all_non_exited_threads ())
9665 {
9666 struct target_waitstatus *ws = &thread->pending_follow;
9667
9668 if (is_pending_fork_parent (ws, pid, thread->ptid))
9669 {
9670 int child_pid = ws->value.related_pid.pid ();
9671 int res;
9672
9673 res = remote_vkill (child_pid);
9674 if (res != 0)
9675 error (_("Can't kill fork child process %d"), child_pid);
9676 }
9677 }
9678
9679 /* Check for any pending fork events (not reported or processed yet)
9680 in process PID and kill those fork child threads as well. */
9681 remote_notif_get_pending_events (notif);
9682 for (auto &event : rs->stop_reply_queue)
9683 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9684 {
9685 int child_pid = event->ws.value.related_pid.pid ();
9686 int res;
9687
9688 res = remote_vkill (child_pid);
9689 if (res != 0)
9690 error (_("Can't kill fork child process %d"), child_pid);
9691 }
9692 }
9693
9694 \f
9695 /* Target hook to kill the current inferior. */
9696
9697 void
9698 remote_target::kill ()
9699 {
9700 int res = -1;
9701 int pid = inferior_ptid.pid ();
9702 struct remote_state *rs = get_remote_state ();
9703
9704 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9705 {
9706 /* If we're stopped while forking and we haven't followed yet,
9707 kill the child task. We need to do this before killing the
9708 parent task because if this is a vfork then the parent will
9709 be sleeping. */
9710 kill_new_fork_children (pid);
9711
9712 res = remote_vkill (pid);
9713 if (res == 0)
9714 {
9715 target_mourn_inferior (inferior_ptid);
9716 return;
9717 }
9718 }
9719
9720 /* If we are in 'target remote' mode and we are killing the only
9721 inferior, then we will tell gdbserver to exit and unpush the
9722 target. */
9723 if (res == -1 && !remote_multi_process_p (rs)
9724 && number_of_live_inferiors () == 1)
9725 {
9726 remote_kill_k ();
9727
9728 /* We've killed the remote end, we get to mourn it. If we are
9729 not in extended mode, mourning the inferior also unpushes
9730 remote_ops from the target stack, which closes the remote
9731 connection. */
9732 target_mourn_inferior (inferior_ptid);
9733
9734 return;
9735 }
9736
9737 error (_("Can't kill process"));
9738 }
9739
9740 /* Send a kill request to the target using the 'vKill' packet. */
9741
9742 int
9743 remote_target::remote_vkill (int pid)
9744 {
9745 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9746 return -1;
9747
9748 remote_state *rs = get_remote_state ();
9749
9750 /* Tell the remote target to detach. */
9751 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9752 putpkt (rs->buf);
9753 getpkt (&rs->buf, 0);
9754
9755 switch (packet_ok (rs->buf,
9756 &remote_protocol_packets[PACKET_vKill]))
9757 {
9758 case PACKET_OK:
9759 return 0;
9760 case PACKET_ERROR:
9761 return 1;
9762 case PACKET_UNKNOWN:
9763 return -1;
9764 default:
9765 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9766 }
9767 }
9768
9769 /* Send a kill request to the target using the 'k' packet. */
9770
9771 void
9772 remote_target::remote_kill_k ()
9773 {
9774 /* Catch errors so the user can quit from gdb even when we
9775 aren't on speaking terms with the remote system. */
9776 try
9777 {
9778 putpkt ("k");
9779 }
9780 catch (const gdb_exception_error &ex)
9781 {
9782 if (ex.error == TARGET_CLOSE_ERROR)
9783 {
9784 /* If we got an (EOF) error that caused the target
9785 to go away, then we're done, that's what we wanted.
9786 "k" is susceptible to cause a premature EOF, given
9787 that the remote server isn't actually required to
9788 reply to "k", and it can happen that it doesn't
9789 even get to reply ACK to the "k". */
9790 return;
9791 }
9792
9793 /* Otherwise, something went wrong. We didn't actually kill
9794 the target. Just propagate the exception, and let the
9795 user or higher layers decide what to do. */
9796 throw;
9797 }
9798 }
9799
9800 void
9801 remote_target::mourn_inferior ()
9802 {
9803 struct remote_state *rs = get_remote_state ();
9804
9805 /* We're no longer interested in notification events of an inferior
9806 that exited or was killed/detached. */
9807 discard_pending_stop_replies (current_inferior ());
9808
9809 /* In 'target remote' mode with one inferior, we close the connection. */
9810 if (!rs->extended && number_of_live_inferiors () <= 1)
9811 {
9812 unpush_target (this);
9813
9814 /* remote_close takes care of doing most of the clean up. */
9815 generic_mourn_inferior ();
9816 return;
9817 }
9818
9819 /* In case we got here due to an error, but we're going to stay
9820 connected. */
9821 rs->waiting_for_stop_reply = 0;
9822
9823 /* If the current general thread belonged to the process we just
9824 detached from or has exited, the remote side current general
9825 thread becomes undefined. Considering a case like this:
9826
9827 - We just got here due to a detach.
9828 - The process that we're detaching from happens to immediately
9829 report a global breakpoint being hit in non-stop mode, in the
9830 same thread we had selected before.
9831 - GDB attaches to this process again.
9832 - This event happens to be the next event we handle.
9833
9834 GDB would consider that the current general thread didn't need to
9835 be set on the stub side (with Hg), since for all it knew,
9836 GENERAL_THREAD hadn't changed.
9837
9838 Notice that although in all-stop mode, the remote server always
9839 sets the current thread to the thread reporting the stop event,
9840 that doesn't happen in non-stop mode; in non-stop, the stub *must
9841 not* change the current thread when reporting a breakpoint hit,
9842 due to the decoupling of event reporting and event handling.
9843
9844 To keep things simple, we always invalidate our notion of the
9845 current thread. */
9846 record_currthread (rs, minus_one_ptid);
9847
9848 /* Call common code to mark the inferior as not running. */
9849 generic_mourn_inferior ();
9850
9851 if (!have_inferiors ())
9852 {
9853 if (!remote_multi_process_p (rs))
9854 {
9855 /* Check whether the target is running now - some remote stubs
9856 automatically restart after kill. */
9857 putpkt ("?");
9858 getpkt (&rs->buf, 0);
9859
9860 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9861 {
9862 /* Assume that the target has been restarted. Set
9863 inferior_ptid so that bits of core GDB realizes
9864 there's something here, e.g., so that the user can
9865 say "kill" again. */
9866 inferior_ptid = magic_null_ptid;
9867 }
9868 }
9869 }
9870 }
9871
9872 bool
9873 extended_remote_target::supports_disable_randomization ()
9874 {
9875 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9876 }
9877
9878 void
9879 remote_target::extended_remote_disable_randomization (int val)
9880 {
9881 struct remote_state *rs = get_remote_state ();
9882 char *reply;
9883
9884 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9885 "QDisableRandomization:%x", val);
9886 putpkt (rs->buf);
9887 reply = remote_get_noisy_reply ();
9888 if (*reply == '\0')
9889 error (_("Target does not support QDisableRandomization."));
9890 if (strcmp (reply, "OK") != 0)
9891 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9892 }
9893
9894 int
9895 remote_target::extended_remote_run (const std::string &args)
9896 {
9897 struct remote_state *rs = get_remote_state ();
9898 int len;
9899 const char *remote_exec_file = get_remote_exec_file ();
9900
9901 /* If the user has disabled vRun support, or we have detected that
9902 support is not available, do not try it. */
9903 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9904 return -1;
9905
9906 strcpy (rs->buf.data (), "vRun;");
9907 len = strlen (rs->buf.data ());
9908
9909 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9910 error (_("Remote file name too long for run packet"));
9911 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9912 strlen (remote_exec_file));
9913
9914 if (!args.empty ())
9915 {
9916 int i;
9917
9918 gdb_argv argv (args.c_str ());
9919 for (i = 0; argv[i] != NULL; i++)
9920 {
9921 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9922 error (_("Argument list too long for run packet"));
9923 rs->buf[len++] = ';';
9924 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9925 strlen (argv[i]));
9926 }
9927 }
9928
9929 rs->buf[len++] = '\0';
9930
9931 putpkt (rs->buf);
9932 getpkt (&rs->buf, 0);
9933
9934 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9935 {
9936 case PACKET_OK:
9937 /* We have a wait response. All is well. */
9938 return 0;
9939 case PACKET_UNKNOWN:
9940 return -1;
9941 case PACKET_ERROR:
9942 if (remote_exec_file[0] == '\0')
9943 error (_("Running the default executable on the remote target failed; "
9944 "try \"set remote exec-file\"?"));
9945 else
9946 error (_("Running \"%s\" on the remote target failed"),
9947 remote_exec_file);
9948 default:
9949 gdb_assert_not_reached (_("bad switch"));
9950 }
9951 }
9952
9953 /* Helper function to send set/unset environment packets. ACTION is
9954 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9955 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9956 sent. */
9957
9958 void
9959 remote_target::send_environment_packet (const char *action,
9960 const char *packet,
9961 const char *value)
9962 {
9963 remote_state *rs = get_remote_state ();
9964
9965 /* Convert the environment variable to an hex string, which
9966 is the best format to be transmitted over the wire. */
9967 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9968 strlen (value));
9969
9970 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9971 "%s:%s", packet, encoded_value.c_str ());
9972
9973 putpkt (rs->buf);
9974 getpkt (&rs->buf, 0);
9975 if (strcmp (rs->buf.data (), "OK") != 0)
9976 warning (_("Unable to %s environment variable '%s' on remote."),
9977 action, value);
9978 }
9979
9980 /* Helper function to handle the QEnvironment* packets. */
9981
9982 void
9983 remote_target::extended_remote_environment_support ()
9984 {
9985 remote_state *rs = get_remote_state ();
9986
9987 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9988 {
9989 putpkt ("QEnvironmentReset");
9990 getpkt (&rs->buf, 0);
9991 if (strcmp (rs->buf.data (), "OK") != 0)
9992 warning (_("Unable to reset environment on remote."));
9993 }
9994
9995 gdb_environ *e = &current_inferior ()->environment;
9996
9997 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9998 for (const std::string &el : e->user_set_env ())
9999 send_environment_packet ("set", "QEnvironmentHexEncoded",
10000 el.c_str ());
10001
10002 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10003 for (const std::string &el : e->user_unset_env ())
10004 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10005 }
10006
10007 /* Helper function to set the current working directory for the
10008 inferior in the remote target. */
10009
10010 void
10011 remote_target::extended_remote_set_inferior_cwd ()
10012 {
10013 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10014 {
10015 const char *inferior_cwd = get_inferior_cwd ();
10016 remote_state *rs = get_remote_state ();
10017
10018 if (inferior_cwd != NULL)
10019 {
10020 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10021 strlen (inferior_cwd));
10022
10023 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10024 "QSetWorkingDir:%s", hexpath.c_str ());
10025 }
10026 else
10027 {
10028 /* An empty inferior_cwd means that the user wants us to
10029 reset the remote server's inferior's cwd. */
10030 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10031 "QSetWorkingDir:");
10032 }
10033
10034 putpkt (rs->buf);
10035 getpkt (&rs->buf, 0);
10036 if (packet_ok (rs->buf,
10037 &remote_protocol_packets[PACKET_QSetWorkingDir])
10038 != PACKET_OK)
10039 error (_("\
10040 Remote replied unexpectedly while setting the inferior's working\n\
10041 directory: %s"),
10042 rs->buf.data ());
10043
10044 }
10045 }
10046
10047 /* In the extended protocol we want to be able to do things like
10048 "run" and have them basically work as expected. So we need
10049 a special create_inferior function. We support changing the
10050 executable file and the command line arguments, but not the
10051 environment. */
10052
10053 void
10054 extended_remote_target::create_inferior (const char *exec_file,
10055 const std::string &args,
10056 char **env, int from_tty)
10057 {
10058 int run_worked;
10059 char *stop_reply;
10060 struct remote_state *rs = get_remote_state ();
10061 const char *remote_exec_file = get_remote_exec_file ();
10062
10063 /* If running asynchronously, register the target file descriptor
10064 with the event loop. */
10065 if (target_can_async_p ())
10066 target_async (1);
10067
10068 /* Disable address space randomization if requested (and supported). */
10069 if (supports_disable_randomization ())
10070 extended_remote_disable_randomization (disable_randomization);
10071
10072 /* If startup-with-shell is on, we inform gdbserver to start the
10073 remote inferior using a shell. */
10074 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10075 {
10076 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10077 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10078 putpkt (rs->buf);
10079 getpkt (&rs->buf, 0);
10080 if (strcmp (rs->buf.data (), "OK") != 0)
10081 error (_("\
10082 Remote replied unexpectedly while setting startup-with-shell: %s"),
10083 rs->buf.data ());
10084 }
10085
10086 extended_remote_environment_support ();
10087
10088 extended_remote_set_inferior_cwd ();
10089
10090 /* Now restart the remote server. */
10091 run_worked = extended_remote_run (args) != -1;
10092 if (!run_worked)
10093 {
10094 /* vRun was not supported. Fail if we need it to do what the
10095 user requested. */
10096 if (remote_exec_file[0])
10097 error (_("Remote target does not support \"set remote exec-file\""));
10098 if (!args.empty ())
10099 error (_("Remote target does not support \"set args\" or run ARGS"));
10100
10101 /* Fall back to "R". */
10102 extended_remote_restart ();
10103 }
10104
10105 /* vRun's success return is a stop reply. */
10106 stop_reply = run_worked ? rs->buf.data () : NULL;
10107 add_current_inferior_and_thread (stop_reply);
10108
10109 /* Get updated offsets, if the stub uses qOffsets. */
10110 get_offsets ();
10111 }
10112 \f
10113
10114 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10115 the list of conditions (in agent expression bytecode format), if any, the
10116 target needs to evaluate. The output is placed into the packet buffer
10117 started from BUF and ended at BUF_END. */
10118
10119 static int
10120 remote_add_target_side_condition (struct gdbarch *gdbarch,
10121 struct bp_target_info *bp_tgt, char *buf,
10122 char *buf_end)
10123 {
10124 if (bp_tgt->conditions.empty ())
10125 return 0;
10126
10127 buf += strlen (buf);
10128 xsnprintf (buf, buf_end - buf, "%s", ";");
10129 buf++;
10130
10131 /* Send conditions to the target. */
10132 for (agent_expr *aexpr : bp_tgt->conditions)
10133 {
10134 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10135 buf += strlen (buf);
10136 for (int i = 0; i < aexpr->len; ++i)
10137 buf = pack_hex_byte (buf, aexpr->buf[i]);
10138 *buf = '\0';
10139 }
10140 return 0;
10141 }
10142
10143 static void
10144 remote_add_target_side_commands (struct gdbarch *gdbarch,
10145 struct bp_target_info *bp_tgt, char *buf)
10146 {
10147 if (bp_tgt->tcommands.empty ())
10148 return;
10149
10150 buf += strlen (buf);
10151
10152 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10153 buf += strlen (buf);
10154
10155 /* Concatenate all the agent expressions that are commands into the
10156 cmds parameter. */
10157 for (agent_expr *aexpr : bp_tgt->tcommands)
10158 {
10159 sprintf (buf, "X%x,", aexpr->len);
10160 buf += strlen (buf);
10161 for (int i = 0; i < aexpr->len; ++i)
10162 buf = pack_hex_byte (buf, aexpr->buf[i]);
10163 *buf = '\0';
10164 }
10165 }
10166
10167 /* Insert a breakpoint. On targets that have software breakpoint
10168 support, we ask the remote target to do the work; on targets
10169 which don't, we insert a traditional memory breakpoint. */
10170
10171 int
10172 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10173 struct bp_target_info *bp_tgt)
10174 {
10175 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10176 If it succeeds, then set the support to PACKET_ENABLE. If it
10177 fails, and the user has explicitly requested the Z support then
10178 report an error, otherwise, mark it disabled and go on. */
10179
10180 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10181 {
10182 CORE_ADDR addr = bp_tgt->reqstd_address;
10183 struct remote_state *rs;
10184 char *p, *endbuf;
10185
10186 /* Make sure the remote is pointing at the right process, if
10187 necessary. */
10188 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10189 set_general_process ();
10190
10191 rs = get_remote_state ();
10192 p = rs->buf.data ();
10193 endbuf = p + get_remote_packet_size ();
10194
10195 *(p++) = 'Z';
10196 *(p++) = '0';
10197 *(p++) = ',';
10198 addr = (ULONGEST) remote_address_masked (addr);
10199 p += hexnumstr (p, addr);
10200 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10201
10202 if (supports_evaluation_of_breakpoint_conditions ())
10203 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10204
10205 if (can_run_breakpoint_commands ())
10206 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10207
10208 putpkt (rs->buf);
10209 getpkt (&rs->buf, 0);
10210
10211 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10212 {
10213 case PACKET_ERROR:
10214 return -1;
10215 case PACKET_OK:
10216 return 0;
10217 case PACKET_UNKNOWN:
10218 break;
10219 }
10220 }
10221
10222 /* If this breakpoint has target-side commands but this stub doesn't
10223 support Z0 packets, throw error. */
10224 if (!bp_tgt->tcommands.empty ())
10225 throw_error (NOT_SUPPORTED_ERROR, _("\
10226 Target doesn't support breakpoints that have target side commands."));
10227
10228 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10229 }
10230
10231 int
10232 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10233 struct bp_target_info *bp_tgt,
10234 enum remove_bp_reason reason)
10235 {
10236 CORE_ADDR addr = bp_tgt->placed_address;
10237 struct remote_state *rs = get_remote_state ();
10238
10239 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10240 {
10241 char *p = rs->buf.data ();
10242 char *endbuf = p + get_remote_packet_size ();
10243
10244 /* Make sure the remote is pointing at the right process, if
10245 necessary. */
10246 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10247 set_general_process ();
10248
10249 *(p++) = 'z';
10250 *(p++) = '0';
10251 *(p++) = ',';
10252
10253 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10254 p += hexnumstr (p, addr);
10255 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10256
10257 putpkt (rs->buf);
10258 getpkt (&rs->buf, 0);
10259
10260 return (rs->buf[0] == 'E');
10261 }
10262
10263 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10264 }
10265
10266 static enum Z_packet_type
10267 watchpoint_to_Z_packet (int type)
10268 {
10269 switch (type)
10270 {
10271 case hw_write:
10272 return Z_PACKET_WRITE_WP;
10273 break;
10274 case hw_read:
10275 return Z_PACKET_READ_WP;
10276 break;
10277 case hw_access:
10278 return Z_PACKET_ACCESS_WP;
10279 break;
10280 default:
10281 internal_error (__FILE__, __LINE__,
10282 _("hw_bp_to_z: bad watchpoint type %d"), type);
10283 }
10284 }
10285
10286 int
10287 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10288 enum target_hw_bp_type type, struct expression *cond)
10289 {
10290 struct remote_state *rs = get_remote_state ();
10291 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10292 char *p;
10293 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10294
10295 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10296 return 1;
10297
10298 /* Make sure the remote is pointing at the right process, if
10299 necessary. */
10300 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10301 set_general_process ();
10302
10303 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10304 p = strchr (rs->buf.data (), '\0');
10305 addr = remote_address_masked (addr);
10306 p += hexnumstr (p, (ULONGEST) addr);
10307 xsnprintf (p, endbuf - p, ",%x", len);
10308
10309 putpkt (rs->buf);
10310 getpkt (&rs->buf, 0);
10311
10312 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10313 {
10314 case PACKET_ERROR:
10315 return -1;
10316 case PACKET_UNKNOWN:
10317 return 1;
10318 case PACKET_OK:
10319 return 0;
10320 }
10321 internal_error (__FILE__, __LINE__,
10322 _("remote_insert_watchpoint: reached end of function"));
10323 }
10324
10325 bool
10326 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10327 CORE_ADDR start, int length)
10328 {
10329 CORE_ADDR diff = remote_address_masked (addr - start);
10330
10331 return diff < length;
10332 }
10333
10334
10335 int
10336 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10337 enum target_hw_bp_type type, struct expression *cond)
10338 {
10339 struct remote_state *rs = get_remote_state ();
10340 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10341 char *p;
10342 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10343
10344 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10345 return -1;
10346
10347 /* Make sure the remote is pointing at the right process, if
10348 necessary. */
10349 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10350 set_general_process ();
10351
10352 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10353 p = strchr (rs->buf.data (), '\0');
10354 addr = remote_address_masked (addr);
10355 p += hexnumstr (p, (ULONGEST) addr);
10356 xsnprintf (p, endbuf - p, ",%x", len);
10357 putpkt (rs->buf);
10358 getpkt (&rs->buf, 0);
10359
10360 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10361 {
10362 case PACKET_ERROR:
10363 case PACKET_UNKNOWN:
10364 return -1;
10365 case PACKET_OK:
10366 return 0;
10367 }
10368 internal_error (__FILE__, __LINE__,
10369 _("remote_remove_watchpoint: reached end of function"));
10370 }
10371
10372
10373 static int remote_hw_watchpoint_limit = -1;
10374 static int remote_hw_watchpoint_length_limit = -1;
10375 static int remote_hw_breakpoint_limit = -1;
10376
10377 int
10378 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10379 {
10380 if (remote_hw_watchpoint_length_limit == 0)
10381 return 0;
10382 else if (remote_hw_watchpoint_length_limit < 0)
10383 return 1;
10384 else if (len <= remote_hw_watchpoint_length_limit)
10385 return 1;
10386 else
10387 return 0;
10388 }
10389
10390 int
10391 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10392 {
10393 if (type == bp_hardware_breakpoint)
10394 {
10395 if (remote_hw_breakpoint_limit == 0)
10396 return 0;
10397 else if (remote_hw_breakpoint_limit < 0)
10398 return 1;
10399 else if (cnt <= remote_hw_breakpoint_limit)
10400 return 1;
10401 }
10402 else
10403 {
10404 if (remote_hw_watchpoint_limit == 0)
10405 return 0;
10406 else if (remote_hw_watchpoint_limit < 0)
10407 return 1;
10408 else if (ot)
10409 return -1;
10410 else if (cnt <= remote_hw_watchpoint_limit)
10411 return 1;
10412 }
10413 return -1;
10414 }
10415
10416 /* The to_stopped_by_sw_breakpoint method of target remote. */
10417
10418 bool
10419 remote_target::stopped_by_sw_breakpoint ()
10420 {
10421 struct thread_info *thread = inferior_thread ();
10422
10423 return (thread->priv != NULL
10424 && (get_remote_thread_info (thread)->stop_reason
10425 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10426 }
10427
10428 /* The to_supports_stopped_by_sw_breakpoint method of target
10429 remote. */
10430
10431 bool
10432 remote_target::supports_stopped_by_sw_breakpoint ()
10433 {
10434 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10435 }
10436
10437 /* The to_stopped_by_hw_breakpoint method of target remote. */
10438
10439 bool
10440 remote_target::stopped_by_hw_breakpoint ()
10441 {
10442 struct thread_info *thread = inferior_thread ();
10443
10444 return (thread->priv != NULL
10445 && (get_remote_thread_info (thread)->stop_reason
10446 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10447 }
10448
10449 /* The to_supports_stopped_by_hw_breakpoint method of target
10450 remote. */
10451
10452 bool
10453 remote_target::supports_stopped_by_hw_breakpoint ()
10454 {
10455 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10456 }
10457
10458 bool
10459 remote_target::stopped_by_watchpoint ()
10460 {
10461 struct thread_info *thread = inferior_thread ();
10462
10463 return (thread->priv != NULL
10464 && (get_remote_thread_info (thread)->stop_reason
10465 == TARGET_STOPPED_BY_WATCHPOINT));
10466 }
10467
10468 bool
10469 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10470 {
10471 struct thread_info *thread = inferior_thread ();
10472
10473 if (thread->priv != NULL
10474 && (get_remote_thread_info (thread)->stop_reason
10475 == TARGET_STOPPED_BY_WATCHPOINT))
10476 {
10477 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10478 return true;
10479 }
10480
10481 return false;
10482 }
10483
10484
10485 int
10486 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10487 struct bp_target_info *bp_tgt)
10488 {
10489 CORE_ADDR addr = bp_tgt->reqstd_address;
10490 struct remote_state *rs;
10491 char *p, *endbuf;
10492 char *message;
10493
10494 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10495 return -1;
10496
10497 /* Make sure the remote is pointing at the right process, if
10498 necessary. */
10499 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10500 set_general_process ();
10501
10502 rs = get_remote_state ();
10503 p = rs->buf.data ();
10504 endbuf = p + get_remote_packet_size ();
10505
10506 *(p++) = 'Z';
10507 *(p++) = '1';
10508 *(p++) = ',';
10509
10510 addr = remote_address_masked (addr);
10511 p += hexnumstr (p, (ULONGEST) addr);
10512 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10513
10514 if (supports_evaluation_of_breakpoint_conditions ())
10515 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10516
10517 if (can_run_breakpoint_commands ())
10518 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10519
10520 putpkt (rs->buf);
10521 getpkt (&rs->buf, 0);
10522
10523 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10524 {
10525 case PACKET_ERROR:
10526 if (rs->buf[1] == '.')
10527 {
10528 message = strchr (&rs->buf[2], '.');
10529 if (message)
10530 error (_("Remote failure reply: %s"), message + 1);
10531 }
10532 return -1;
10533 case PACKET_UNKNOWN:
10534 return -1;
10535 case PACKET_OK:
10536 return 0;
10537 }
10538 internal_error (__FILE__, __LINE__,
10539 _("remote_insert_hw_breakpoint: reached end of function"));
10540 }
10541
10542
10543 int
10544 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10545 struct bp_target_info *bp_tgt)
10546 {
10547 CORE_ADDR addr;
10548 struct remote_state *rs = get_remote_state ();
10549 char *p = rs->buf.data ();
10550 char *endbuf = p + get_remote_packet_size ();
10551
10552 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10553 return -1;
10554
10555 /* Make sure the remote is pointing at the right process, if
10556 necessary. */
10557 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10558 set_general_process ();
10559
10560 *(p++) = 'z';
10561 *(p++) = '1';
10562 *(p++) = ',';
10563
10564 addr = remote_address_masked (bp_tgt->placed_address);
10565 p += hexnumstr (p, (ULONGEST) addr);
10566 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10567
10568 putpkt (rs->buf);
10569 getpkt (&rs->buf, 0);
10570
10571 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10572 {
10573 case PACKET_ERROR:
10574 case PACKET_UNKNOWN:
10575 return -1;
10576 case PACKET_OK:
10577 return 0;
10578 }
10579 internal_error (__FILE__, __LINE__,
10580 _("remote_remove_hw_breakpoint: reached end of function"));
10581 }
10582
10583 /* Verify memory using the "qCRC:" request. */
10584
10585 int
10586 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10587 {
10588 struct remote_state *rs = get_remote_state ();
10589 unsigned long host_crc, target_crc;
10590 char *tmp;
10591
10592 /* It doesn't make sense to use qCRC if the remote target is
10593 connected but not running. */
10594 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10595 {
10596 enum packet_result result;
10597
10598 /* Make sure the remote is pointing at the right process. */
10599 set_general_process ();
10600
10601 /* FIXME: assumes lma can fit into long. */
10602 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10603 (long) lma, (long) size);
10604 putpkt (rs->buf);
10605
10606 /* Be clever; compute the host_crc before waiting for target
10607 reply. */
10608 host_crc = xcrc32 (data, size, 0xffffffff);
10609
10610 getpkt (&rs->buf, 0);
10611
10612 result = packet_ok (rs->buf,
10613 &remote_protocol_packets[PACKET_qCRC]);
10614 if (result == PACKET_ERROR)
10615 return -1;
10616 else if (result == PACKET_OK)
10617 {
10618 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10619 target_crc = target_crc * 16 + fromhex (*tmp);
10620
10621 return (host_crc == target_crc);
10622 }
10623 }
10624
10625 return simple_verify_memory (this, data, lma, size);
10626 }
10627
10628 /* compare-sections command
10629
10630 With no arguments, compares each loadable section in the exec bfd
10631 with the same memory range on the target, and reports mismatches.
10632 Useful for verifying the image on the target against the exec file. */
10633
10634 static void
10635 compare_sections_command (const char *args, int from_tty)
10636 {
10637 asection *s;
10638 const char *sectname;
10639 bfd_size_type size;
10640 bfd_vma lma;
10641 int matched = 0;
10642 int mismatched = 0;
10643 int res;
10644 int read_only = 0;
10645
10646 if (!exec_bfd)
10647 error (_("command cannot be used without an exec file"));
10648
10649 if (args != NULL && strcmp (args, "-r") == 0)
10650 {
10651 read_only = 1;
10652 args = NULL;
10653 }
10654
10655 for (s = exec_bfd->sections; s; s = s->next)
10656 {
10657 if (!(s->flags & SEC_LOAD))
10658 continue; /* Skip non-loadable section. */
10659
10660 if (read_only && (s->flags & SEC_READONLY) == 0)
10661 continue; /* Skip writeable sections */
10662
10663 size = bfd_section_size (s);
10664 if (size == 0)
10665 continue; /* Skip zero-length section. */
10666
10667 sectname = bfd_section_name (s);
10668 if (args && strcmp (args, sectname) != 0)
10669 continue; /* Not the section selected by user. */
10670
10671 matched = 1; /* Do this section. */
10672 lma = s->lma;
10673
10674 gdb::byte_vector sectdata (size);
10675 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10676
10677 res = target_verify_memory (sectdata.data (), lma, size);
10678
10679 if (res == -1)
10680 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10681 paddress (target_gdbarch (), lma),
10682 paddress (target_gdbarch (), lma + size));
10683
10684 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10685 paddress (target_gdbarch (), lma),
10686 paddress (target_gdbarch (), lma + size));
10687 if (res)
10688 printf_filtered ("matched.\n");
10689 else
10690 {
10691 printf_filtered ("MIS-MATCHED!\n");
10692 mismatched++;
10693 }
10694 }
10695 if (mismatched > 0)
10696 warning (_("One or more sections of the target image does not match\n\
10697 the loaded file\n"));
10698 if (args && !matched)
10699 printf_filtered (_("No loaded section named '%s'.\n"), args);
10700 }
10701
10702 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10703 into remote target. The number of bytes written to the remote
10704 target is returned, or -1 for error. */
10705
10706 target_xfer_status
10707 remote_target::remote_write_qxfer (const char *object_name,
10708 const char *annex, const gdb_byte *writebuf,
10709 ULONGEST offset, LONGEST len,
10710 ULONGEST *xfered_len,
10711 struct packet_config *packet)
10712 {
10713 int i, buf_len;
10714 ULONGEST n;
10715 struct remote_state *rs = get_remote_state ();
10716 int max_size = get_memory_write_packet_size ();
10717
10718 if (packet_config_support (packet) == PACKET_DISABLE)
10719 return TARGET_XFER_E_IO;
10720
10721 /* Insert header. */
10722 i = snprintf (rs->buf.data (), max_size,
10723 "qXfer:%s:write:%s:%s:",
10724 object_name, annex ? annex : "",
10725 phex_nz (offset, sizeof offset));
10726 max_size -= (i + 1);
10727
10728 /* Escape as much data as fits into rs->buf. */
10729 buf_len = remote_escape_output
10730 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10731
10732 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10733 || getpkt_sane (&rs->buf, 0) < 0
10734 || packet_ok (rs->buf, packet) != PACKET_OK)
10735 return TARGET_XFER_E_IO;
10736
10737 unpack_varlen_hex (rs->buf.data (), &n);
10738
10739 *xfered_len = n;
10740 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10741 }
10742
10743 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10744 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10745 number of bytes read is returned, or 0 for EOF, or -1 for error.
10746 The number of bytes read may be less than LEN without indicating an
10747 EOF. PACKET is checked and updated to indicate whether the remote
10748 target supports this object. */
10749
10750 target_xfer_status
10751 remote_target::remote_read_qxfer (const char *object_name,
10752 const char *annex,
10753 gdb_byte *readbuf, ULONGEST offset,
10754 LONGEST len,
10755 ULONGEST *xfered_len,
10756 struct packet_config *packet)
10757 {
10758 struct remote_state *rs = get_remote_state ();
10759 LONGEST i, n, packet_len;
10760
10761 if (packet_config_support (packet) == PACKET_DISABLE)
10762 return TARGET_XFER_E_IO;
10763
10764 /* Check whether we've cached an end-of-object packet that matches
10765 this request. */
10766 if (rs->finished_object)
10767 {
10768 if (strcmp (object_name, rs->finished_object) == 0
10769 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10770 && offset == rs->finished_offset)
10771 return TARGET_XFER_EOF;
10772
10773
10774 /* Otherwise, we're now reading something different. Discard
10775 the cache. */
10776 xfree (rs->finished_object);
10777 xfree (rs->finished_annex);
10778 rs->finished_object = NULL;
10779 rs->finished_annex = NULL;
10780 }
10781
10782 /* Request only enough to fit in a single packet. The actual data
10783 may not, since we don't know how much of it will need to be escaped;
10784 the target is free to respond with slightly less data. We subtract
10785 five to account for the response type and the protocol frame. */
10786 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10787 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10788 "qXfer:%s:read:%s:%s,%s",
10789 object_name, annex ? annex : "",
10790 phex_nz (offset, sizeof offset),
10791 phex_nz (n, sizeof n));
10792 i = putpkt (rs->buf);
10793 if (i < 0)
10794 return TARGET_XFER_E_IO;
10795
10796 rs->buf[0] = '\0';
10797 packet_len = getpkt_sane (&rs->buf, 0);
10798 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10799 return TARGET_XFER_E_IO;
10800
10801 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10802 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10803
10804 /* 'm' means there is (or at least might be) more data after this
10805 batch. That does not make sense unless there's at least one byte
10806 of data in this reply. */
10807 if (rs->buf[0] == 'm' && packet_len == 1)
10808 error (_("Remote qXfer reply contained no data."));
10809
10810 /* Got some data. */
10811 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10812 packet_len - 1, readbuf, n);
10813
10814 /* 'l' is an EOF marker, possibly including a final block of data,
10815 or possibly empty. If we have the final block of a non-empty
10816 object, record this fact to bypass a subsequent partial read. */
10817 if (rs->buf[0] == 'l' && offset + i > 0)
10818 {
10819 rs->finished_object = xstrdup (object_name);
10820 rs->finished_annex = xstrdup (annex ? annex : "");
10821 rs->finished_offset = offset + i;
10822 }
10823
10824 if (i == 0)
10825 return TARGET_XFER_EOF;
10826 else
10827 {
10828 *xfered_len = i;
10829 return TARGET_XFER_OK;
10830 }
10831 }
10832
10833 enum target_xfer_status
10834 remote_target::xfer_partial (enum target_object object,
10835 const char *annex, gdb_byte *readbuf,
10836 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10837 ULONGEST *xfered_len)
10838 {
10839 struct remote_state *rs;
10840 int i;
10841 char *p2;
10842 char query_type;
10843 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10844
10845 set_remote_traceframe ();
10846 set_general_thread (inferior_ptid);
10847
10848 rs = get_remote_state ();
10849
10850 /* Handle memory using the standard memory routines. */
10851 if (object == TARGET_OBJECT_MEMORY)
10852 {
10853 /* If the remote target is connected but not running, we should
10854 pass this request down to a lower stratum (e.g. the executable
10855 file). */
10856 if (!target_has_execution)
10857 return TARGET_XFER_EOF;
10858
10859 if (writebuf != NULL)
10860 return remote_write_bytes (offset, writebuf, len, unit_size,
10861 xfered_len);
10862 else
10863 return remote_read_bytes (offset, readbuf, len, unit_size,
10864 xfered_len);
10865 }
10866
10867 /* Handle extra signal info using qxfer packets. */
10868 if (object == TARGET_OBJECT_SIGNAL_INFO)
10869 {
10870 if (readbuf)
10871 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10872 xfered_len, &remote_protocol_packets
10873 [PACKET_qXfer_siginfo_read]);
10874 else
10875 return remote_write_qxfer ("siginfo", annex,
10876 writebuf, offset, len, xfered_len,
10877 &remote_protocol_packets
10878 [PACKET_qXfer_siginfo_write]);
10879 }
10880
10881 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10882 {
10883 if (readbuf)
10884 return remote_read_qxfer ("statictrace", annex,
10885 readbuf, offset, len, xfered_len,
10886 &remote_protocol_packets
10887 [PACKET_qXfer_statictrace_read]);
10888 else
10889 return TARGET_XFER_E_IO;
10890 }
10891
10892 /* Only handle flash writes. */
10893 if (writebuf != NULL)
10894 {
10895 switch (object)
10896 {
10897 case TARGET_OBJECT_FLASH:
10898 return remote_flash_write (offset, len, xfered_len,
10899 writebuf);
10900
10901 default:
10902 return TARGET_XFER_E_IO;
10903 }
10904 }
10905
10906 /* Map pre-existing objects onto letters. DO NOT do this for new
10907 objects!!! Instead specify new query packets. */
10908 switch (object)
10909 {
10910 case TARGET_OBJECT_AVR:
10911 query_type = 'R';
10912 break;
10913
10914 case TARGET_OBJECT_AUXV:
10915 gdb_assert (annex == NULL);
10916 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10917 xfered_len,
10918 &remote_protocol_packets[PACKET_qXfer_auxv]);
10919
10920 case TARGET_OBJECT_AVAILABLE_FEATURES:
10921 return remote_read_qxfer
10922 ("features", annex, readbuf, offset, len, xfered_len,
10923 &remote_protocol_packets[PACKET_qXfer_features]);
10924
10925 case TARGET_OBJECT_LIBRARIES:
10926 return remote_read_qxfer
10927 ("libraries", annex, readbuf, offset, len, xfered_len,
10928 &remote_protocol_packets[PACKET_qXfer_libraries]);
10929
10930 case TARGET_OBJECT_LIBRARIES_SVR4:
10931 return remote_read_qxfer
10932 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10933 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10934
10935 case TARGET_OBJECT_MEMORY_MAP:
10936 gdb_assert (annex == NULL);
10937 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10938 xfered_len,
10939 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10940
10941 case TARGET_OBJECT_OSDATA:
10942 /* Should only get here if we're connected. */
10943 gdb_assert (rs->remote_desc);
10944 return remote_read_qxfer
10945 ("osdata", annex, readbuf, offset, len, xfered_len,
10946 &remote_protocol_packets[PACKET_qXfer_osdata]);
10947
10948 case TARGET_OBJECT_THREADS:
10949 gdb_assert (annex == NULL);
10950 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10951 xfered_len,
10952 &remote_protocol_packets[PACKET_qXfer_threads]);
10953
10954 case TARGET_OBJECT_TRACEFRAME_INFO:
10955 gdb_assert (annex == NULL);
10956 return remote_read_qxfer
10957 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10958 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10959
10960 case TARGET_OBJECT_FDPIC:
10961 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10962 xfered_len,
10963 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10964
10965 case TARGET_OBJECT_OPENVMS_UIB:
10966 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10967 xfered_len,
10968 &remote_protocol_packets[PACKET_qXfer_uib]);
10969
10970 case TARGET_OBJECT_BTRACE:
10971 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10972 xfered_len,
10973 &remote_protocol_packets[PACKET_qXfer_btrace]);
10974
10975 case TARGET_OBJECT_BTRACE_CONF:
10976 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10977 len, xfered_len,
10978 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10979
10980 case TARGET_OBJECT_EXEC_FILE:
10981 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10982 len, xfered_len,
10983 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10984
10985 default:
10986 return TARGET_XFER_E_IO;
10987 }
10988
10989 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10990 large enough let the caller deal with it. */
10991 if (len < get_remote_packet_size ())
10992 return TARGET_XFER_E_IO;
10993 len = get_remote_packet_size ();
10994
10995 /* Except for querying the minimum buffer size, target must be open. */
10996 if (!rs->remote_desc)
10997 error (_("remote query is only available after target open"));
10998
10999 gdb_assert (annex != NULL);
11000 gdb_assert (readbuf != NULL);
11001
11002 p2 = rs->buf.data ();
11003 *p2++ = 'q';
11004 *p2++ = query_type;
11005
11006 /* We used one buffer char for the remote protocol q command and
11007 another for the query type. As the remote protocol encapsulation
11008 uses 4 chars plus one extra in case we are debugging
11009 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11010 string. */
11011 i = 0;
11012 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11013 {
11014 /* Bad caller may have sent forbidden characters. */
11015 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11016 *p2++ = annex[i];
11017 i++;
11018 }
11019 *p2 = '\0';
11020 gdb_assert (annex[i] == '\0');
11021
11022 i = putpkt (rs->buf);
11023 if (i < 0)
11024 return TARGET_XFER_E_IO;
11025
11026 getpkt (&rs->buf, 0);
11027 strcpy ((char *) readbuf, rs->buf.data ());
11028
11029 *xfered_len = strlen ((char *) readbuf);
11030 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11031 }
11032
11033 /* Implementation of to_get_memory_xfer_limit. */
11034
11035 ULONGEST
11036 remote_target::get_memory_xfer_limit ()
11037 {
11038 return get_memory_write_packet_size ();
11039 }
11040
11041 int
11042 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11043 const gdb_byte *pattern, ULONGEST pattern_len,
11044 CORE_ADDR *found_addrp)
11045 {
11046 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11047 struct remote_state *rs = get_remote_state ();
11048 int max_size = get_memory_write_packet_size ();
11049 struct packet_config *packet =
11050 &remote_protocol_packets[PACKET_qSearch_memory];
11051 /* Number of packet bytes used to encode the pattern;
11052 this could be more than PATTERN_LEN due to escape characters. */
11053 int escaped_pattern_len;
11054 /* Amount of pattern that was encodable in the packet. */
11055 int used_pattern_len;
11056 int i;
11057 int found;
11058 ULONGEST found_addr;
11059
11060 /* Don't go to the target if we don't have to. This is done before
11061 checking packet_config_support to avoid the possibility that a
11062 success for this edge case means the facility works in
11063 general. */
11064 if (pattern_len > search_space_len)
11065 return 0;
11066 if (pattern_len == 0)
11067 {
11068 *found_addrp = start_addr;
11069 return 1;
11070 }
11071
11072 /* If we already know the packet isn't supported, fall back to the simple
11073 way of searching memory. */
11074
11075 if (packet_config_support (packet) == PACKET_DISABLE)
11076 {
11077 /* Target doesn't provided special support, fall back and use the
11078 standard support (copy memory and do the search here). */
11079 return simple_search_memory (this, start_addr, search_space_len,
11080 pattern, pattern_len, found_addrp);
11081 }
11082
11083 /* Make sure the remote is pointing at the right process. */
11084 set_general_process ();
11085
11086 /* Insert header. */
11087 i = snprintf (rs->buf.data (), max_size,
11088 "qSearch:memory:%s;%s;",
11089 phex_nz (start_addr, addr_size),
11090 phex_nz (search_space_len, sizeof (search_space_len)));
11091 max_size -= (i + 1);
11092
11093 /* Escape as much data as fits into rs->buf. */
11094 escaped_pattern_len =
11095 remote_escape_output (pattern, pattern_len, 1,
11096 (gdb_byte *) rs->buf.data () + i,
11097 &used_pattern_len, max_size);
11098
11099 /* Bail if the pattern is too large. */
11100 if (used_pattern_len != pattern_len)
11101 error (_("Pattern is too large to transmit to remote target."));
11102
11103 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11104 || getpkt_sane (&rs->buf, 0) < 0
11105 || packet_ok (rs->buf, packet) != PACKET_OK)
11106 {
11107 /* The request may not have worked because the command is not
11108 supported. If so, fall back to the simple way. */
11109 if (packet_config_support (packet) == PACKET_DISABLE)
11110 {
11111 return simple_search_memory (this, start_addr, search_space_len,
11112 pattern, pattern_len, found_addrp);
11113 }
11114 return -1;
11115 }
11116
11117 if (rs->buf[0] == '0')
11118 found = 0;
11119 else if (rs->buf[0] == '1')
11120 {
11121 found = 1;
11122 if (rs->buf[1] != ',')
11123 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11124 unpack_varlen_hex (&rs->buf[2], &found_addr);
11125 *found_addrp = found_addr;
11126 }
11127 else
11128 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11129
11130 return found;
11131 }
11132
11133 void
11134 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11135 {
11136 struct remote_state *rs = get_remote_state ();
11137 char *p = rs->buf.data ();
11138
11139 if (!rs->remote_desc)
11140 error (_("remote rcmd is only available after target open"));
11141
11142 /* Send a NULL command across as an empty command. */
11143 if (command == NULL)
11144 command = "";
11145
11146 /* The query prefix. */
11147 strcpy (rs->buf.data (), "qRcmd,");
11148 p = strchr (rs->buf.data (), '\0');
11149
11150 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11151 > get_remote_packet_size ())
11152 error (_("\"monitor\" command ``%s'' is too long."), command);
11153
11154 /* Encode the actual command. */
11155 bin2hex ((const gdb_byte *) command, p, strlen (command));
11156
11157 if (putpkt (rs->buf) < 0)
11158 error (_("Communication problem with target."));
11159
11160 /* get/display the response */
11161 while (1)
11162 {
11163 char *buf;
11164
11165 /* XXX - see also remote_get_noisy_reply(). */
11166 QUIT; /* Allow user to bail out with ^C. */
11167 rs->buf[0] = '\0';
11168 if (getpkt_sane (&rs->buf, 0) == -1)
11169 {
11170 /* Timeout. Continue to (try to) read responses.
11171 This is better than stopping with an error, assuming the stub
11172 is still executing the (long) monitor command.
11173 If needed, the user can interrupt gdb using C-c, obtaining
11174 an effect similar to stop on timeout. */
11175 continue;
11176 }
11177 buf = rs->buf.data ();
11178 if (buf[0] == '\0')
11179 error (_("Target does not support this command."));
11180 if (buf[0] == 'O' && buf[1] != 'K')
11181 {
11182 remote_console_output (buf + 1); /* 'O' message from stub. */
11183 continue;
11184 }
11185 if (strcmp (buf, "OK") == 0)
11186 break;
11187 if (strlen (buf) == 3 && buf[0] == 'E'
11188 && isdigit (buf[1]) && isdigit (buf[2]))
11189 {
11190 error (_("Protocol error with Rcmd"));
11191 }
11192 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11193 {
11194 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11195
11196 fputc_unfiltered (c, outbuf);
11197 }
11198 break;
11199 }
11200 }
11201
11202 std::vector<mem_region>
11203 remote_target::memory_map ()
11204 {
11205 std::vector<mem_region> result;
11206 gdb::optional<gdb::char_vector> text
11207 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11208
11209 if (text)
11210 result = parse_memory_map (text->data ());
11211
11212 return result;
11213 }
11214
11215 static void
11216 packet_command (const char *args, int from_tty)
11217 {
11218 remote_target *remote = get_current_remote_target ();
11219
11220 if (remote == nullptr)
11221 error (_("command can only be used with remote target"));
11222
11223 remote->packet_command (args, from_tty);
11224 }
11225
11226 void
11227 remote_target::packet_command (const char *args, int from_tty)
11228 {
11229 if (!args)
11230 error (_("remote-packet command requires packet text as argument"));
11231
11232 puts_filtered ("sending: ");
11233 print_packet (args);
11234 puts_filtered ("\n");
11235 putpkt (args);
11236
11237 remote_state *rs = get_remote_state ();
11238
11239 getpkt (&rs->buf, 0);
11240 puts_filtered ("received: ");
11241 print_packet (rs->buf.data ());
11242 puts_filtered ("\n");
11243 }
11244
11245 #if 0
11246 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11247
11248 static void display_thread_info (struct gdb_ext_thread_info *info);
11249
11250 static void threadset_test_cmd (char *cmd, int tty);
11251
11252 static void threadalive_test (char *cmd, int tty);
11253
11254 static void threadlist_test_cmd (char *cmd, int tty);
11255
11256 int get_and_display_threadinfo (threadref *ref);
11257
11258 static void threadinfo_test_cmd (char *cmd, int tty);
11259
11260 static int thread_display_step (threadref *ref, void *context);
11261
11262 static void threadlist_update_test_cmd (char *cmd, int tty);
11263
11264 static void init_remote_threadtests (void);
11265
11266 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11267
11268 static void
11269 threadset_test_cmd (const char *cmd, int tty)
11270 {
11271 int sample_thread = SAMPLE_THREAD;
11272
11273 printf_filtered (_("Remote threadset test\n"));
11274 set_general_thread (sample_thread);
11275 }
11276
11277
11278 static void
11279 threadalive_test (const char *cmd, int tty)
11280 {
11281 int sample_thread = SAMPLE_THREAD;
11282 int pid = inferior_ptid.pid ();
11283 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11284
11285 if (remote_thread_alive (ptid))
11286 printf_filtered ("PASS: Thread alive test\n");
11287 else
11288 printf_filtered ("FAIL: Thread alive test\n");
11289 }
11290
11291 void output_threadid (char *title, threadref *ref);
11292
11293 void
11294 output_threadid (char *title, threadref *ref)
11295 {
11296 char hexid[20];
11297
11298 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11299 hexid[16] = 0;
11300 printf_filtered ("%s %s\n", title, (&hexid[0]));
11301 }
11302
11303 static void
11304 threadlist_test_cmd (const char *cmd, int tty)
11305 {
11306 int startflag = 1;
11307 threadref nextthread;
11308 int done, result_count;
11309 threadref threadlist[3];
11310
11311 printf_filtered ("Remote Threadlist test\n");
11312 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11313 &result_count, &threadlist[0]))
11314 printf_filtered ("FAIL: threadlist test\n");
11315 else
11316 {
11317 threadref *scan = threadlist;
11318 threadref *limit = scan + result_count;
11319
11320 while (scan < limit)
11321 output_threadid (" thread ", scan++);
11322 }
11323 }
11324
11325 void
11326 display_thread_info (struct gdb_ext_thread_info *info)
11327 {
11328 output_threadid ("Threadid: ", &info->threadid);
11329 printf_filtered ("Name: %s\n ", info->shortname);
11330 printf_filtered ("State: %s\n", info->display);
11331 printf_filtered ("other: %s\n\n", info->more_display);
11332 }
11333
11334 int
11335 get_and_display_threadinfo (threadref *ref)
11336 {
11337 int result;
11338 int set;
11339 struct gdb_ext_thread_info threadinfo;
11340
11341 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11342 | TAG_MOREDISPLAY | TAG_DISPLAY;
11343 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11344 display_thread_info (&threadinfo);
11345 return result;
11346 }
11347
11348 static void
11349 threadinfo_test_cmd (const char *cmd, int tty)
11350 {
11351 int athread = SAMPLE_THREAD;
11352 threadref thread;
11353 int set;
11354
11355 int_to_threadref (&thread, athread);
11356 printf_filtered ("Remote Threadinfo test\n");
11357 if (!get_and_display_threadinfo (&thread))
11358 printf_filtered ("FAIL cannot get thread info\n");
11359 }
11360
11361 static int
11362 thread_display_step (threadref *ref, void *context)
11363 {
11364 /* output_threadid(" threadstep ",ref); *//* simple test */
11365 return get_and_display_threadinfo (ref);
11366 }
11367
11368 static void
11369 threadlist_update_test_cmd (const char *cmd, int tty)
11370 {
11371 printf_filtered ("Remote Threadlist update test\n");
11372 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11373 }
11374
11375 static void
11376 init_remote_threadtests (void)
11377 {
11378 add_com ("tlist", class_obscure, threadlist_test_cmd,
11379 _("Fetch and print the remote list of "
11380 "thread identifiers, one pkt only."));
11381 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11382 _("Fetch and display info about one thread."));
11383 add_com ("tset", class_obscure, threadset_test_cmd,
11384 _("Test setting to a different thread."));
11385 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11386 _("Iterate through updating all remote thread info."));
11387 add_com ("talive", class_obscure, threadalive_test,
11388 _("Remote thread alive test."));
11389 }
11390
11391 #endif /* 0 */
11392
11393 /* Convert a thread ID to a string. */
11394
11395 std::string
11396 remote_target::pid_to_str (ptid_t ptid)
11397 {
11398 struct remote_state *rs = get_remote_state ();
11399
11400 if (ptid == null_ptid)
11401 return normal_pid_to_str (ptid);
11402 else if (ptid.is_pid ())
11403 {
11404 /* Printing an inferior target id. */
11405
11406 /* When multi-process extensions are off, there's no way in the
11407 remote protocol to know the remote process id, if there's any
11408 at all. There's one exception --- when we're connected with
11409 target extended-remote, and we manually attached to a process
11410 with "attach PID". We don't record anywhere a flag that
11411 allows us to distinguish that case from the case of
11412 connecting with extended-remote and the stub already being
11413 attached to a process, and reporting yes to qAttached, hence
11414 no smart special casing here. */
11415 if (!remote_multi_process_p (rs))
11416 return "Remote target";
11417
11418 return normal_pid_to_str (ptid);
11419 }
11420 else
11421 {
11422 if (magic_null_ptid == ptid)
11423 return "Thread <main>";
11424 else if (remote_multi_process_p (rs))
11425 if (ptid.lwp () == 0)
11426 return normal_pid_to_str (ptid);
11427 else
11428 return string_printf ("Thread %d.%ld",
11429 ptid.pid (), ptid.lwp ());
11430 else
11431 return string_printf ("Thread %ld", ptid.lwp ());
11432 }
11433 }
11434
11435 /* Get the address of the thread local variable in OBJFILE which is
11436 stored at OFFSET within the thread local storage for thread PTID. */
11437
11438 CORE_ADDR
11439 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11440 CORE_ADDR offset)
11441 {
11442 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11443 {
11444 struct remote_state *rs = get_remote_state ();
11445 char *p = rs->buf.data ();
11446 char *endp = p + get_remote_packet_size ();
11447 enum packet_result result;
11448
11449 strcpy (p, "qGetTLSAddr:");
11450 p += strlen (p);
11451 p = write_ptid (p, endp, ptid);
11452 *p++ = ',';
11453 p += hexnumstr (p, offset);
11454 *p++ = ',';
11455 p += hexnumstr (p, lm);
11456 *p++ = '\0';
11457
11458 putpkt (rs->buf);
11459 getpkt (&rs->buf, 0);
11460 result = packet_ok (rs->buf,
11461 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11462 if (result == PACKET_OK)
11463 {
11464 ULONGEST addr;
11465
11466 unpack_varlen_hex (rs->buf.data (), &addr);
11467 return addr;
11468 }
11469 else if (result == PACKET_UNKNOWN)
11470 throw_error (TLS_GENERIC_ERROR,
11471 _("Remote target doesn't support qGetTLSAddr packet"));
11472 else
11473 throw_error (TLS_GENERIC_ERROR,
11474 _("Remote target failed to process qGetTLSAddr request"));
11475 }
11476 else
11477 throw_error (TLS_GENERIC_ERROR,
11478 _("TLS not supported or disabled on this target"));
11479 /* Not reached. */
11480 return 0;
11481 }
11482
11483 /* Provide thread local base, i.e. Thread Information Block address.
11484 Returns 1 if ptid is found and thread_local_base is non zero. */
11485
11486 bool
11487 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11488 {
11489 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11490 {
11491 struct remote_state *rs = get_remote_state ();
11492 char *p = rs->buf.data ();
11493 char *endp = p + get_remote_packet_size ();
11494 enum packet_result result;
11495
11496 strcpy (p, "qGetTIBAddr:");
11497 p += strlen (p);
11498 p = write_ptid (p, endp, ptid);
11499 *p++ = '\0';
11500
11501 putpkt (rs->buf);
11502 getpkt (&rs->buf, 0);
11503 result = packet_ok (rs->buf,
11504 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11505 if (result == PACKET_OK)
11506 {
11507 ULONGEST val;
11508 unpack_varlen_hex (rs->buf.data (), &val);
11509 if (addr)
11510 *addr = (CORE_ADDR) val;
11511 return true;
11512 }
11513 else if (result == PACKET_UNKNOWN)
11514 error (_("Remote target doesn't support qGetTIBAddr packet"));
11515 else
11516 error (_("Remote target failed to process qGetTIBAddr request"));
11517 }
11518 else
11519 error (_("qGetTIBAddr not supported or disabled on this target"));
11520 /* Not reached. */
11521 return false;
11522 }
11523
11524 /* Support for inferring a target description based on the current
11525 architecture and the size of a 'g' packet. While the 'g' packet
11526 can have any size (since optional registers can be left off the
11527 end), some sizes are easily recognizable given knowledge of the
11528 approximate architecture. */
11529
11530 struct remote_g_packet_guess
11531 {
11532 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11533 : bytes (bytes_),
11534 tdesc (tdesc_)
11535 {
11536 }
11537
11538 int bytes;
11539 const struct target_desc *tdesc;
11540 };
11541
11542 struct remote_g_packet_data : public allocate_on_obstack
11543 {
11544 std::vector<remote_g_packet_guess> guesses;
11545 };
11546
11547 static struct gdbarch_data *remote_g_packet_data_handle;
11548
11549 static void *
11550 remote_g_packet_data_init (struct obstack *obstack)
11551 {
11552 return new (obstack) remote_g_packet_data;
11553 }
11554
11555 void
11556 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11557 const struct target_desc *tdesc)
11558 {
11559 struct remote_g_packet_data *data
11560 = ((struct remote_g_packet_data *)
11561 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11562
11563 gdb_assert (tdesc != NULL);
11564
11565 for (const remote_g_packet_guess &guess : data->guesses)
11566 if (guess.bytes == bytes)
11567 internal_error (__FILE__, __LINE__,
11568 _("Duplicate g packet description added for size %d"),
11569 bytes);
11570
11571 data->guesses.emplace_back (bytes, tdesc);
11572 }
11573
11574 /* Return true if remote_read_description would do anything on this target
11575 and architecture, false otherwise. */
11576
11577 static bool
11578 remote_read_description_p (struct target_ops *target)
11579 {
11580 struct remote_g_packet_data *data
11581 = ((struct remote_g_packet_data *)
11582 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11583
11584 return !data->guesses.empty ();
11585 }
11586
11587 const struct target_desc *
11588 remote_target::read_description ()
11589 {
11590 struct remote_g_packet_data *data
11591 = ((struct remote_g_packet_data *)
11592 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11593
11594 /* Do not try this during initial connection, when we do not know
11595 whether there is a running but stopped thread. */
11596 if (!target_has_execution || inferior_ptid == null_ptid)
11597 return beneath ()->read_description ();
11598
11599 if (!data->guesses.empty ())
11600 {
11601 int bytes = send_g_packet ();
11602
11603 for (const remote_g_packet_guess &guess : data->guesses)
11604 if (guess.bytes == bytes)
11605 return guess.tdesc;
11606
11607 /* We discard the g packet. A minor optimization would be to
11608 hold on to it, and fill the register cache once we have selected
11609 an architecture, but it's too tricky to do safely. */
11610 }
11611
11612 return beneath ()->read_description ();
11613 }
11614
11615 /* Remote file transfer support. This is host-initiated I/O, not
11616 target-initiated; for target-initiated, see remote-fileio.c. */
11617
11618 /* If *LEFT is at least the length of STRING, copy STRING to
11619 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11620 decrease *LEFT. Otherwise raise an error. */
11621
11622 static void
11623 remote_buffer_add_string (char **buffer, int *left, const char *string)
11624 {
11625 int len = strlen (string);
11626
11627 if (len > *left)
11628 error (_("Packet too long for target."));
11629
11630 memcpy (*buffer, string, len);
11631 *buffer += len;
11632 *left -= len;
11633
11634 /* NUL-terminate the buffer as a convenience, if there is
11635 room. */
11636 if (*left)
11637 **buffer = '\0';
11638 }
11639
11640 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11641 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11642 decrease *LEFT. Otherwise raise an error. */
11643
11644 static void
11645 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11646 int len)
11647 {
11648 if (2 * len > *left)
11649 error (_("Packet too long for target."));
11650
11651 bin2hex (bytes, *buffer, len);
11652 *buffer += 2 * len;
11653 *left -= 2 * len;
11654
11655 /* NUL-terminate the buffer as a convenience, if there is
11656 room. */
11657 if (*left)
11658 **buffer = '\0';
11659 }
11660
11661 /* If *LEFT is large enough, convert VALUE to hex and add it to
11662 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11663 decrease *LEFT. Otherwise raise an error. */
11664
11665 static void
11666 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11667 {
11668 int len = hexnumlen (value);
11669
11670 if (len > *left)
11671 error (_("Packet too long for target."));
11672
11673 hexnumstr (*buffer, value);
11674 *buffer += len;
11675 *left -= len;
11676
11677 /* NUL-terminate the buffer as a convenience, if there is
11678 room. */
11679 if (*left)
11680 **buffer = '\0';
11681 }
11682
11683 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11684 value, *REMOTE_ERRNO to the remote error number or zero if none
11685 was included, and *ATTACHMENT to point to the start of the annex
11686 if any. The length of the packet isn't needed here; there may
11687 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11688
11689 Return 0 if the packet could be parsed, -1 if it could not. If
11690 -1 is returned, the other variables may not be initialized. */
11691
11692 static int
11693 remote_hostio_parse_result (char *buffer, int *retcode,
11694 int *remote_errno, char **attachment)
11695 {
11696 char *p, *p2;
11697
11698 *remote_errno = 0;
11699 *attachment = NULL;
11700
11701 if (buffer[0] != 'F')
11702 return -1;
11703
11704 errno = 0;
11705 *retcode = strtol (&buffer[1], &p, 16);
11706 if (errno != 0 || p == &buffer[1])
11707 return -1;
11708
11709 /* Check for ",errno". */
11710 if (*p == ',')
11711 {
11712 errno = 0;
11713 *remote_errno = strtol (p + 1, &p2, 16);
11714 if (errno != 0 || p + 1 == p2)
11715 return -1;
11716 p = p2;
11717 }
11718
11719 /* Check for ";attachment". If there is no attachment, the
11720 packet should end here. */
11721 if (*p == ';')
11722 {
11723 *attachment = p + 1;
11724 return 0;
11725 }
11726 else if (*p == '\0')
11727 return 0;
11728 else
11729 return -1;
11730 }
11731
11732 /* Send a prepared I/O packet to the target and read its response.
11733 The prepared packet is in the global RS->BUF before this function
11734 is called, and the answer is there when we return.
11735
11736 COMMAND_BYTES is the length of the request to send, which may include
11737 binary data. WHICH_PACKET is the packet configuration to check
11738 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11739 is set to the error number and -1 is returned. Otherwise the value
11740 returned by the function is returned.
11741
11742 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11743 attachment is expected; an error will be reported if there's a
11744 mismatch. If one is found, *ATTACHMENT will be set to point into
11745 the packet buffer and *ATTACHMENT_LEN will be set to the
11746 attachment's length. */
11747
11748 int
11749 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11750 int *remote_errno, char **attachment,
11751 int *attachment_len)
11752 {
11753 struct remote_state *rs = get_remote_state ();
11754 int ret, bytes_read;
11755 char *attachment_tmp;
11756
11757 if (packet_support (which_packet) == PACKET_DISABLE)
11758 {
11759 *remote_errno = FILEIO_ENOSYS;
11760 return -1;
11761 }
11762
11763 putpkt_binary (rs->buf.data (), command_bytes);
11764 bytes_read = getpkt_sane (&rs->buf, 0);
11765
11766 /* If it timed out, something is wrong. Don't try to parse the
11767 buffer. */
11768 if (bytes_read < 0)
11769 {
11770 *remote_errno = FILEIO_EINVAL;
11771 return -1;
11772 }
11773
11774 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11775 {
11776 case PACKET_ERROR:
11777 *remote_errno = FILEIO_EINVAL;
11778 return -1;
11779 case PACKET_UNKNOWN:
11780 *remote_errno = FILEIO_ENOSYS;
11781 return -1;
11782 case PACKET_OK:
11783 break;
11784 }
11785
11786 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11787 &attachment_tmp))
11788 {
11789 *remote_errno = FILEIO_EINVAL;
11790 return -1;
11791 }
11792
11793 /* Make sure we saw an attachment if and only if we expected one. */
11794 if ((attachment_tmp == NULL && attachment != NULL)
11795 || (attachment_tmp != NULL && attachment == NULL))
11796 {
11797 *remote_errno = FILEIO_EINVAL;
11798 return -1;
11799 }
11800
11801 /* If an attachment was found, it must point into the packet buffer;
11802 work out how many bytes there were. */
11803 if (attachment_tmp != NULL)
11804 {
11805 *attachment = attachment_tmp;
11806 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11807 }
11808
11809 return ret;
11810 }
11811
11812 /* See declaration.h. */
11813
11814 void
11815 readahead_cache::invalidate ()
11816 {
11817 this->fd = -1;
11818 }
11819
11820 /* See declaration.h. */
11821
11822 void
11823 readahead_cache::invalidate_fd (int fd)
11824 {
11825 if (this->fd == fd)
11826 this->fd = -1;
11827 }
11828
11829 /* Set the filesystem remote_hostio functions that take FILENAME
11830 arguments will use. Return 0 on success, or -1 if an error
11831 occurs (and set *REMOTE_ERRNO). */
11832
11833 int
11834 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11835 int *remote_errno)
11836 {
11837 struct remote_state *rs = get_remote_state ();
11838 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11839 char *p = rs->buf.data ();
11840 int left = get_remote_packet_size () - 1;
11841 char arg[9];
11842 int ret;
11843
11844 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11845 return 0;
11846
11847 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11848 return 0;
11849
11850 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11851
11852 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11853 remote_buffer_add_string (&p, &left, arg);
11854
11855 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11856 remote_errno, NULL, NULL);
11857
11858 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11859 return 0;
11860
11861 if (ret == 0)
11862 rs->fs_pid = required_pid;
11863
11864 return ret;
11865 }
11866
11867 /* Implementation of to_fileio_open. */
11868
11869 int
11870 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11871 int flags, int mode, int warn_if_slow,
11872 int *remote_errno)
11873 {
11874 struct remote_state *rs = get_remote_state ();
11875 char *p = rs->buf.data ();
11876 int left = get_remote_packet_size () - 1;
11877
11878 if (warn_if_slow)
11879 {
11880 static int warning_issued = 0;
11881
11882 printf_unfiltered (_("Reading %s from remote target...\n"),
11883 filename);
11884
11885 if (!warning_issued)
11886 {
11887 warning (_("File transfers from remote targets can be slow."
11888 " Use \"set sysroot\" to access files locally"
11889 " instead."));
11890 warning_issued = 1;
11891 }
11892 }
11893
11894 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11895 return -1;
11896
11897 remote_buffer_add_string (&p, &left, "vFile:open:");
11898
11899 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11900 strlen (filename));
11901 remote_buffer_add_string (&p, &left, ",");
11902
11903 remote_buffer_add_int (&p, &left, flags);
11904 remote_buffer_add_string (&p, &left, ",");
11905
11906 remote_buffer_add_int (&p, &left, mode);
11907
11908 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11909 remote_errno, NULL, NULL);
11910 }
11911
11912 int
11913 remote_target::fileio_open (struct inferior *inf, const char *filename,
11914 int flags, int mode, int warn_if_slow,
11915 int *remote_errno)
11916 {
11917 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11918 remote_errno);
11919 }
11920
11921 /* Implementation of to_fileio_pwrite. */
11922
11923 int
11924 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11925 ULONGEST offset, int *remote_errno)
11926 {
11927 struct remote_state *rs = get_remote_state ();
11928 char *p = rs->buf.data ();
11929 int left = get_remote_packet_size ();
11930 int out_len;
11931
11932 rs->readahead_cache.invalidate_fd (fd);
11933
11934 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11935
11936 remote_buffer_add_int (&p, &left, fd);
11937 remote_buffer_add_string (&p, &left, ",");
11938
11939 remote_buffer_add_int (&p, &left, offset);
11940 remote_buffer_add_string (&p, &left, ",");
11941
11942 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11943 (get_remote_packet_size ()
11944 - (p - rs->buf.data ())));
11945
11946 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11947 remote_errno, NULL, NULL);
11948 }
11949
11950 int
11951 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11952 ULONGEST offset, int *remote_errno)
11953 {
11954 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11955 }
11956
11957 /* Helper for the implementation of to_fileio_pread. Read the file
11958 from the remote side with vFile:pread. */
11959
11960 int
11961 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11962 ULONGEST offset, int *remote_errno)
11963 {
11964 struct remote_state *rs = get_remote_state ();
11965 char *p = rs->buf.data ();
11966 char *attachment;
11967 int left = get_remote_packet_size ();
11968 int ret, attachment_len;
11969 int read_len;
11970
11971 remote_buffer_add_string (&p, &left, "vFile:pread:");
11972
11973 remote_buffer_add_int (&p, &left, fd);
11974 remote_buffer_add_string (&p, &left, ",");
11975
11976 remote_buffer_add_int (&p, &left, len);
11977 remote_buffer_add_string (&p, &left, ",");
11978
11979 remote_buffer_add_int (&p, &left, offset);
11980
11981 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11982 remote_errno, &attachment,
11983 &attachment_len);
11984
11985 if (ret < 0)
11986 return ret;
11987
11988 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11989 read_buf, len);
11990 if (read_len != ret)
11991 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11992
11993 return ret;
11994 }
11995
11996 /* See declaration.h. */
11997
11998 int
11999 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12000 ULONGEST offset)
12001 {
12002 if (this->fd == fd
12003 && this->offset <= offset
12004 && offset < this->offset + this->bufsize)
12005 {
12006 ULONGEST max = this->offset + this->bufsize;
12007
12008 if (offset + len > max)
12009 len = max - offset;
12010
12011 memcpy (read_buf, this->buf + offset - this->offset, len);
12012 return len;
12013 }
12014
12015 return 0;
12016 }
12017
12018 /* Implementation of to_fileio_pread. */
12019
12020 int
12021 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12022 ULONGEST offset, int *remote_errno)
12023 {
12024 int ret;
12025 struct remote_state *rs = get_remote_state ();
12026 readahead_cache *cache = &rs->readahead_cache;
12027
12028 ret = cache->pread (fd, read_buf, len, offset);
12029 if (ret > 0)
12030 {
12031 cache->hit_count++;
12032
12033 if (remote_debug)
12034 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12035 pulongest (cache->hit_count));
12036 return ret;
12037 }
12038
12039 cache->miss_count++;
12040 if (remote_debug)
12041 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12042 pulongest (cache->miss_count));
12043
12044 cache->fd = fd;
12045 cache->offset = offset;
12046 cache->bufsize = get_remote_packet_size ();
12047 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12048
12049 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12050 cache->offset, remote_errno);
12051 if (ret <= 0)
12052 {
12053 cache->invalidate_fd (fd);
12054 return ret;
12055 }
12056
12057 cache->bufsize = ret;
12058 return cache->pread (fd, read_buf, len, offset);
12059 }
12060
12061 int
12062 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12063 ULONGEST offset, int *remote_errno)
12064 {
12065 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12066 }
12067
12068 /* Implementation of to_fileio_close. */
12069
12070 int
12071 remote_target::remote_hostio_close (int fd, int *remote_errno)
12072 {
12073 struct remote_state *rs = get_remote_state ();
12074 char *p = rs->buf.data ();
12075 int left = get_remote_packet_size () - 1;
12076
12077 rs->readahead_cache.invalidate_fd (fd);
12078
12079 remote_buffer_add_string (&p, &left, "vFile:close:");
12080
12081 remote_buffer_add_int (&p, &left, fd);
12082
12083 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12084 remote_errno, NULL, NULL);
12085 }
12086
12087 int
12088 remote_target::fileio_close (int fd, int *remote_errno)
12089 {
12090 return remote_hostio_close (fd, remote_errno);
12091 }
12092
12093 /* Implementation of to_fileio_unlink. */
12094
12095 int
12096 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12097 int *remote_errno)
12098 {
12099 struct remote_state *rs = get_remote_state ();
12100 char *p = rs->buf.data ();
12101 int left = get_remote_packet_size () - 1;
12102
12103 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12104 return -1;
12105
12106 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12107
12108 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12109 strlen (filename));
12110
12111 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12112 remote_errno, NULL, NULL);
12113 }
12114
12115 int
12116 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12117 int *remote_errno)
12118 {
12119 return remote_hostio_unlink (inf, filename, remote_errno);
12120 }
12121
12122 /* Implementation of to_fileio_readlink. */
12123
12124 gdb::optional<std::string>
12125 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12126 int *remote_errno)
12127 {
12128 struct remote_state *rs = get_remote_state ();
12129 char *p = rs->buf.data ();
12130 char *attachment;
12131 int left = get_remote_packet_size ();
12132 int len, attachment_len;
12133 int read_len;
12134
12135 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12136 return {};
12137
12138 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12139
12140 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12141 strlen (filename));
12142
12143 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12144 remote_errno, &attachment,
12145 &attachment_len);
12146
12147 if (len < 0)
12148 return {};
12149
12150 std::string ret (len, '\0');
12151
12152 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12153 (gdb_byte *) &ret[0], len);
12154 if (read_len != len)
12155 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12156
12157 return ret;
12158 }
12159
12160 /* Implementation of to_fileio_fstat. */
12161
12162 int
12163 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12164 {
12165 struct remote_state *rs = get_remote_state ();
12166 char *p = rs->buf.data ();
12167 int left = get_remote_packet_size ();
12168 int attachment_len, ret;
12169 char *attachment;
12170 struct fio_stat fst;
12171 int read_len;
12172
12173 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12174
12175 remote_buffer_add_int (&p, &left, fd);
12176
12177 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12178 remote_errno, &attachment,
12179 &attachment_len);
12180 if (ret < 0)
12181 {
12182 if (*remote_errno != FILEIO_ENOSYS)
12183 return ret;
12184
12185 /* Strictly we should return -1, ENOSYS here, but when
12186 "set sysroot remote:" was implemented in August 2008
12187 BFD's need for a stat function was sidestepped with
12188 this hack. This was not remedied until March 2015
12189 so we retain the previous behavior to avoid breaking
12190 compatibility.
12191
12192 Note that the memset is a March 2015 addition; older
12193 GDBs set st_size *and nothing else* so the structure
12194 would have garbage in all other fields. This might
12195 break something but retaining the previous behavior
12196 here would be just too wrong. */
12197
12198 memset (st, 0, sizeof (struct stat));
12199 st->st_size = INT_MAX;
12200 return 0;
12201 }
12202
12203 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12204 (gdb_byte *) &fst, sizeof (fst));
12205
12206 if (read_len != ret)
12207 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12208
12209 if (read_len != sizeof (fst))
12210 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12211 read_len, (int) sizeof (fst));
12212
12213 remote_fileio_to_host_stat (&fst, st);
12214
12215 return 0;
12216 }
12217
12218 /* Implementation of to_filesystem_is_local. */
12219
12220 bool
12221 remote_target::filesystem_is_local ()
12222 {
12223 /* Valgrind GDB presents itself as a remote target but works
12224 on the local filesystem: it does not implement remote get
12225 and users are not expected to set a sysroot. To handle
12226 this case we treat the remote filesystem as local if the
12227 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12228 does not support vFile:open. */
12229 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12230 {
12231 enum packet_support ps = packet_support (PACKET_vFile_open);
12232
12233 if (ps == PACKET_SUPPORT_UNKNOWN)
12234 {
12235 int fd, remote_errno;
12236
12237 /* Try opening a file to probe support. The supplied
12238 filename is irrelevant, we only care about whether
12239 the stub recognizes the packet or not. */
12240 fd = remote_hostio_open (NULL, "just probing",
12241 FILEIO_O_RDONLY, 0700, 0,
12242 &remote_errno);
12243
12244 if (fd >= 0)
12245 remote_hostio_close (fd, &remote_errno);
12246
12247 ps = packet_support (PACKET_vFile_open);
12248 }
12249
12250 if (ps == PACKET_DISABLE)
12251 {
12252 static int warning_issued = 0;
12253
12254 if (!warning_issued)
12255 {
12256 warning (_("remote target does not support file"
12257 " transfer, attempting to access files"
12258 " from local filesystem."));
12259 warning_issued = 1;
12260 }
12261
12262 return true;
12263 }
12264 }
12265
12266 return false;
12267 }
12268
12269 static int
12270 remote_fileio_errno_to_host (int errnum)
12271 {
12272 switch (errnum)
12273 {
12274 case FILEIO_EPERM:
12275 return EPERM;
12276 case FILEIO_ENOENT:
12277 return ENOENT;
12278 case FILEIO_EINTR:
12279 return EINTR;
12280 case FILEIO_EIO:
12281 return EIO;
12282 case FILEIO_EBADF:
12283 return EBADF;
12284 case FILEIO_EACCES:
12285 return EACCES;
12286 case FILEIO_EFAULT:
12287 return EFAULT;
12288 case FILEIO_EBUSY:
12289 return EBUSY;
12290 case FILEIO_EEXIST:
12291 return EEXIST;
12292 case FILEIO_ENODEV:
12293 return ENODEV;
12294 case FILEIO_ENOTDIR:
12295 return ENOTDIR;
12296 case FILEIO_EISDIR:
12297 return EISDIR;
12298 case FILEIO_EINVAL:
12299 return EINVAL;
12300 case FILEIO_ENFILE:
12301 return ENFILE;
12302 case FILEIO_EMFILE:
12303 return EMFILE;
12304 case FILEIO_EFBIG:
12305 return EFBIG;
12306 case FILEIO_ENOSPC:
12307 return ENOSPC;
12308 case FILEIO_ESPIPE:
12309 return ESPIPE;
12310 case FILEIO_EROFS:
12311 return EROFS;
12312 case FILEIO_ENOSYS:
12313 return ENOSYS;
12314 case FILEIO_ENAMETOOLONG:
12315 return ENAMETOOLONG;
12316 }
12317 return -1;
12318 }
12319
12320 static char *
12321 remote_hostio_error (int errnum)
12322 {
12323 int host_error = remote_fileio_errno_to_host (errnum);
12324
12325 if (host_error == -1)
12326 error (_("Unknown remote I/O error %d"), errnum);
12327 else
12328 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12329 }
12330
12331 /* A RAII wrapper around a remote file descriptor. */
12332
12333 class scoped_remote_fd
12334 {
12335 public:
12336 scoped_remote_fd (remote_target *remote, int fd)
12337 : m_remote (remote), m_fd (fd)
12338 {
12339 }
12340
12341 ~scoped_remote_fd ()
12342 {
12343 if (m_fd != -1)
12344 {
12345 try
12346 {
12347 int remote_errno;
12348 m_remote->remote_hostio_close (m_fd, &remote_errno);
12349 }
12350 catch (...)
12351 {
12352 /* Swallow exception before it escapes the dtor. If
12353 something goes wrong, likely the connection is gone,
12354 and there's nothing else that can be done. */
12355 }
12356 }
12357 }
12358
12359 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12360
12361 /* Release ownership of the file descriptor, and return it. */
12362 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12363 {
12364 int fd = m_fd;
12365 m_fd = -1;
12366 return fd;
12367 }
12368
12369 /* Return the owned file descriptor. */
12370 int get () const noexcept
12371 {
12372 return m_fd;
12373 }
12374
12375 private:
12376 /* The remote target. */
12377 remote_target *m_remote;
12378
12379 /* The owned remote I/O file descriptor. */
12380 int m_fd;
12381 };
12382
12383 void
12384 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12385 {
12386 remote_target *remote = get_current_remote_target ();
12387
12388 if (remote == nullptr)
12389 error (_("command can only be used with remote target"));
12390
12391 remote->remote_file_put (local_file, remote_file, from_tty);
12392 }
12393
12394 void
12395 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12396 int from_tty)
12397 {
12398 int retcode, remote_errno, bytes, io_size;
12399 int bytes_in_buffer;
12400 int saw_eof;
12401 ULONGEST offset;
12402
12403 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12404 if (file == NULL)
12405 perror_with_name (local_file);
12406
12407 scoped_remote_fd fd
12408 (this, remote_hostio_open (NULL,
12409 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12410 | FILEIO_O_TRUNC),
12411 0700, 0, &remote_errno));
12412 if (fd.get () == -1)
12413 remote_hostio_error (remote_errno);
12414
12415 /* Send up to this many bytes at once. They won't all fit in the
12416 remote packet limit, so we'll transfer slightly fewer. */
12417 io_size = get_remote_packet_size ();
12418 gdb::byte_vector buffer (io_size);
12419
12420 bytes_in_buffer = 0;
12421 saw_eof = 0;
12422 offset = 0;
12423 while (bytes_in_buffer || !saw_eof)
12424 {
12425 if (!saw_eof)
12426 {
12427 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12428 io_size - bytes_in_buffer,
12429 file.get ());
12430 if (bytes == 0)
12431 {
12432 if (ferror (file.get ()))
12433 error (_("Error reading %s."), local_file);
12434 else
12435 {
12436 /* EOF. Unless there is something still in the
12437 buffer from the last iteration, we are done. */
12438 saw_eof = 1;
12439 if (bytes_in_buffer == 0)
12440 break;
12441 }
12442 }
12443 }
12444 else
12445 bytes = 0;
12446
12447 bytes += bytes_in_buffer;
12448 bytes_in_buffer = 0;
12449
12450 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12451 offset, &remote_errno);
12452
12453 if (retcode < 0)
12454 remote_hostio_error (remote_errno);
12455 else if (retcode == 0)
12456 error (_("Remote write of %d bytes returned 0!"), bytes);
12457 else if (retcode < bytes)
12458 {
12459 /* Short write. Save the rest of the read data for the next
12460 write. */
12461 bytes_in_buffer = bytes - retcode;
12462 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12463 }
12464
12465 offset += retcode;
12466 }
12467
12468 if (remote_hostio_close (fd.release (), &remote_errno))
12469 remote_hostio_error (remote_errno);
12470
12471 if (from_tty)
12472 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12473 }
12474
12475 void
12476 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12477 {
12478 remote_target *remote = get_current_remote_target ();
12479
12480 if (remote == nullptr)
12481 error (_("command can only be used with remote target"));
12482
12483 remote->remote_file_get (remote_file, local_file, from_tty);
12484 }
12485
12486 void
12487 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12488 int from_tty)
12489 {
12490 int remote_errno, bytes, io_size;
12491 ULONGEST offset;
12492
12493 scoped_remote_fd fd
12494 (this, remote_hostio_open (NULL,
12495 remote_file, FILEIO_O_RDONLY, 0, 0,
12496 &remote_errno));
12497 if (fd.get () == -1)
12498 remote_hostio_error (remote_errno);
12499
12500 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12501 if (file == NULL)
12502 perror_with_name (local_file);
12503
12504 /* Send up to this many bytes at once. They won't all fit in the
12505 remote packet limit, so we'll transfer slightly fewer. */
12506 io_size = get_remote_packet_size ();
12507 gdb::byte_vector buffer (io_size);
12508
12509 offset = 0;
12510 while (1)
12511 {
12512 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12513 &remote_errno);
12514 if (bytes == 0)
12515 /* Success, but no bytes, means end-of-file. */
12516 break;
12517 if (bytes == -1)
12518 remote_hostio_error (remote_errno);
12519
12520 offset += bytes;
12521
12522 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12523 if (bytes == 0)
12524 perror_with_name (local_file);
12525 }
12526
12527 if (remote_hostio_close (fd.release (), &remote_errno))
12528 remote_hostio_error (remote_errno);
12529
12530 if (from_tty)
12531 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12532 }
12533
12534 void
12535 remote_file_delete (const char *remote_file, int from_tty)
12536 {
12537 remote_target *remote = get_current_remote_target ();
12538
12539 if (remote == nullptr)
12540 error (_("command can only be used with remote target"));
12541
12542 remote->remote_file_delete (remote_file, from_tty);
12543 }
12544
12545 void
12546 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12547 {
12548 int retcode, remote_errno;
12549
12550 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12551 if (retcode == -1)
12552 remote_hostio_error (remote_errno);
12553
12554 if (from_tty)
12555 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12556 }
12557
12558 static void
12559 remote_put_command (const char *args, int from_tty)
12560 {
12561 if (args == NULL)
12562 error_no_arg (_("file to put"));
12563
12564 gdb_argv argv (args);
12565 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12566 error (_("Invalid parameters to remote put"));
12567
12568 remote_file_put (argv[0], argv[1], from_tty);
12569 }
12570
12571 static void
12572 remote_get_command (const char *args, int from_tty)
12573 {
12574 if (args == NULL)
12575 error_no_arg (_("file to get"));
12576
12577 gdb_argv argv (args);
12578 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12579 error (_("Invalid parameters to remote get"));
12580
12581 remote_file_get (argv[0], argv[1], from_tty);
12582 }
12583
12584 static void
12585 remote_delete_command (const char *args, int from_tty)
12586 {
12587 if (args == NULL)
12588 error_no_arg (_("file to delete"));
12589
12590 gdb_argv argv (args);
12591 if (argv[0] == NULL || argv[1] != NULL)
12592 error (_("Invalid parameters to remote delete"));
12593
12594 remote_file_delete (argv[0], from_tty);
12595 }
12596
12597 static void
12598 remote_command (const char *args, int from_tty)
12599 {
12600 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12601 }
12602
12603 bool
12604 remote_target::can_execute_reverse ()
12605 {
12606 if (packet_support (PACKET_bs) == PACKET_ENABLE
12607 || packet_support (PACKET_bc) == PACKET_ENABLE)
12608 return true;
12609 else
12610 return false;
12611 }
12612
12613 bool
12614 remote_target::supports_non_stop ()
12615 {
12616 return true;
12617 }
12618
12619 bool
12620 remote_target::supports_disable_randomization ()
12621 {
12622 /* Only supported in extended mode. */
12623 return false;
12624 }
12625
12626 bool
12627 remote_target::supports_multi_process ()
12628 {
12629 struct remote_state *rs = get_remote_state ();
12630
12631 return remote_multi_process_p (rs);
12632 }
12633
12634 static int
12635 remote_supports_cond_tracepoints ()
12636 {
12637 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12638 }
12639
12640 bool
12641 remote_target::supports_evaluation_of_breakpoint_conditions ()
12642 {
12643 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12644 }
12645
12646 static int
12647 remote_supports_fast_tracepoints ()
12648 {
12649 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12650 }
12651
12652 static int
12653 remote_supports_static_tracepoints ()
12654 {
12655 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12656 }
12657
12658 static int
12659 remote_supports_install_in_trace ()
12660 {
12661 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12662 }
12663
12664 bool
12665 remote_target::supports_enable_disable_tracepoint ()
12666 {
12667 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12668 == PACKET_ENABLE);
12669 }
12670
12671 bool
12672 remote_target::supports_string_tracing ()
12673 {
12674 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12675 }
12676
12677 bool
12678 remote_target::can_run_breakpoint_commands ()
12679 {
12680 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12681 }
12682
12683 void
12684 remote_target::trace_init ()
12685 {
12686 struct remote_state *rs = get_remote_state ();
12687
12688 putpkt ("QTinit");
12689 remote_get_noisy_reply ();
12690 if (strcmp (rs->buf.data (), "OK") != 0)
12691 error (_("Target does not support this command."));
12692 }
12693
12694 /* Recursive routine to walk through command list including loops, and
12695 download packets for each command. */
12696
12697 void
12698 remote_target::remote_download_command_source (int num, ULONGEST addr,
12699 struct command_line *cmds)
12700 {
12701 struct remote_state *rs = get_remote_state ();
12702 struct command_line *cmd;
12703
12704 for (cmd = cmds; cmd; cmd = cmd->next)
12705 {
12706 QUIT; /* Allow user to bail out with ^C. */
12707 strcpy (rs->buf.data (), "QTDPsrc:");
12708 encode_source_string (num, addr, "cmd", cmd->line,
12709 rs->buf.data () + strlen (rs->buf.data ()),
12710 rs->buf.size () - strlen (rs->buf.data ()));
12711 putpkt (rs->buf);
12712 remote_get_noisy_reply ();
12713 if (strcmp (rs->buf.data (), "OK"))
12714 warning (_("Target does not support source download."));
12715
12716 if (cmd->control_type == while_control
12717 || cmd->control_type == while_stepping_control)
12718 {
12719 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12720
12721 QUIT; /* Allow user to bail out with ^C. */
12722 strcpy (rs->buf.data (), "QTDPsrc:");
12723 encode_source_string (num, addr, "cmd", "end",
12724 rs->buf.data () + strlen (rs->buf.data ()),
12725 rs->buf.size () - strlen (rs->buf.data ()));
12726 putpkt (rs->buf);
12727 remote_get_noisy_reply ();
12728 if (strcmp (rs->buf.data (), "OK"))
12729 warning (_("Target does not support source download."));
12730 }
12731 }
12732 }
12733
12734 void
12735 remote_target::download_tracepoint (struct bp_location *loc)
12736 {
12737 CORE_ADDR tpaddr;
12738 char addrbuf[40];
12739 std::vector<std::string> tdp_actions;
12740 std::vector<std::string> stepping_actions;
12741 char *pkt;
12742 struct breakpoint *b = loc->owner;
12743 struct tracepoint *t = (struct tracepoint *) b;
12744 struct remote_state *rs = get_remote_state ();
12745 int ret;
12746 const char *err_msg = _("Tracepoint packet too large for target.");
12747 size_t size_left;
12748
12749 /* We use a buffer other than rs->buf because we'll build strings
12750 across multiple statements, and other statements in between could
12751 modify rs->buf. */
12752 gdb::char_vector buf (get_remote_packet_size ());
12753
12754 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12755
12756 tpaddr = loc->address;
12757 sprintf_vma (addrbuf, tpaddr);
12758 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12759 b->number, addrbuf, /* address */
12760 (b->enable_state == bp_enabled ? 'E' : 'D'),
12761 t->step_count, t->pass_count);
12762
12763 if (ret < 0 || ret >= buf.size ())
12764 error ("%s", err_msg);
12765
12766 /* Fast tracepoints are mostly handled by the target, but we can
12767 tell the target how big of an instruction block should be moved
12768 around. */
12769 if (b->type == bp_fast_tracepoint)
12770 {
12771 /* Only test for support at download time; we may not know
12772 target capabilities at definition time. */
12773 if (remote_supports_fast_tracepoints ())
12774 {
12775 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12776 NULL))
12777 {
12778 size_left = buf.size () - strlen (buf.data ());
12779 ret = snprintf (buf.data () + strlen (buf.data ()),
12780 size_left, ":F%x",
12781 gdb_insn_length (loc->gdbarch, tpaddr));
12782
12783 if (ret < 0 || ret >= size_left)
12784 error ("%s", err_msg);
12785 }
12786 else
12787 /* If it passed validation at definition but fails now,
12788 something is very wrong. */
12789 internal_error (__FILE__, __LINE__,
12790 _("Fast tracepoint not "
12791 "valid during download"));
12792 }
12793 else
12794 /* Fast tracepoints are functionally identical to regular
12795 tracepoints, so don't take lack of support as a reason to
12796 give up on the trace run. */
12797 warning (_("Target does not support fast tracepoints, "
12798 "downloading %d as regular tracepoint"), b->number);
12799 }
12800 else if (b->type == bp_static_tracepoint)
12801 {
12802 /* Only test for support at download time; we may not know
12803 target capabilities at definition time. */
12804 if (remote_supports_static_tracepoints ())
12805 {
12806 struct static_tracepoint_marker marker;
12807
12808 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12809 {
12810 size_left = buf.size () - strlen (buf.data ());
12811 ret = snprintf (buf.data () + strlen (buf.data ()),
12812 size_left, ":S");
12813
12814 if (ret < 0 || ret >= size_left)
12815 error ("%s", err_msg);
12816 }
12817 else
12818 error (_("Static tracepoint not valid during download"));
12819 }
12820 else
12821 /* Fast tracepoints are functionally identical to regular
12822 tracepoints, so don't take lack of support as a reason
12823 to give up on the trace run. */
12824 error (_("Target does not support static tracepoints"));
12825 }
12826 /* If the tracepoint has a conditional, make it into an agent
12827 expression and append to the definition. */
12828 if (loc->cond)
12829 {
12830 /* Only test support at download time, we may not know target
12831 capabilities at definition time. */
12832 if (remote_supports_cond_tracepoints ())
12833 {
12834 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12835 loc->cond.get ());
12836
12837 size_left = buf.size () - strlen (buf.data ());
12838
12839 ret = snprintf (buf.data () + strlen (buf.data ()),
12840 size_left, ":X%x,", aexpr->len);
12841
12842 if (ret < 0 || ret >= size_left)
12843 error ("%s", err_msg);
12844
12845 size_left = buf.size () - strlen (buf.data ());
12846
12847 /* Two bytes to encode each aexpr byte, plus the terminating
12848 null byte. */
12849 if (aexpr->len * 2 + 1 > size_left)
12850 error ("%s", err_msg);
12851
12852 pkt = buf.data () + strlen (buf.data ());
12853
12854 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12855 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12856 *pkt = '\0';
12857 }
12858 else
12859 warning (_("Target does not support conditional tracepoints, "
12860 "ignoring tp %d cond"), b->number);
12861 }
12862
12863 if (b->commands || *default_collect)
12864 {
12865 size_left = buf.size () - strlen (buf.data ());
12866
12867 ret = snprintf (buf.data () + strlen (buf.data ()),
12868 size_left, "-");
12869
12870 if (ret < 0 || ret >= size_left)
12871 error ("%s", err_msg);
12872 }
12873
12874 putpkt (buf.data ());
12875 remote_get_noisy_reply ();
12876 if (strcmp (rs->buf.data (), "OK"))
12877 error (_("Target does not support tracepoints."));
12878
12879 /* do_single_steps (t); */
12880 for (auto action_it = tdp_actions.begin ();
12881 action_it != tdp_actions.end (); action_it++)
12882 {
12883 QUIT; /* Allow user to bail out with ^C. */
12884
12885 bool has_more = ((action_it + 1) != tdp_actions.end ()
12886 || !stepping_actions.empty ());
12887
12888 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12889 b->number, addrbuf, /* address */
12890 action_it->c_str (),
12891 has_more ? '-' : 0);
12892
12893 if (ret < 0 || ret >= buf.size ())
12894 error ("%s", err_msg);
12895
12896 putpkt (buf.data ());
12897 remote_get_noisy_reply ();
12898 if (strcmp (rs->buf.data (), "OK"))
12899 error (_("Error on target while setting tracepoints."));
12900 }
12901
12902 for (auto action_it = stepping_actions.begin ();
12903 action_it != stepping_actions.end (); action_it++)
12904 {
12905 QUIT; /* Allow user to bail out with ^C. */
12906
12907 bool is_first = action_it == stepping_actions.begin ();
12908 bool has_more = (action_it + 1) != stepping_actions.end ();
12909
12910 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12911 b->number, addrbuf, /* address */
12912 is_first ? "S" : "",
12913 action_it->c_str (),
12914 has_more ? "-" : "");
12915
12916 if (ret < 0 || ret >= buf.size ())
12917 error ("%s", err_msg);
12918
12919 putpkt (buf.data ());
12920 remote_get_noisy_reply ();
12921 if (strcmp (rs->buf.data (), "OK"))
12922 error (_("Error on target while setting tracepoints."));
12923 }
12924
12925 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12926 {
12927 if (b->location != NULL)
12928 {
12929 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12930
12931 if (ret < 0 || ret >= buf.size ())
12932 error ("%s", err_msg);
12933
12934 encode_source_string (b->number, loc->address, "at",
12935 event_location_to_string (b->location.get ()),
12936 buf.data () + strlen (buf.data ()),
12937 buf.size () - strlen (buf.data ()));
12938 putpkt (buf.data ());
12939 remote_get_noisy_reply ();
12940 if (strcmp (rs->buf.data (), "OK"))
12941 warning (_("Target does not support source download."));
12942 }
12943 if (b->cond_string)
12944 {
12945 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12946
12947 if (ret < 0 || ret >= buf.size ())
12948 error ("%s", err_msg);
12949
12950 encode_source_string (b->number, loc->address,
12951 "cond", b->cond_string,
12952 buf.data () + strlen (buf.data ()),
12953 buf.size () - strlen (buf.data ()));
12954 putpkt (buf.data ());
12955 remote_get_noisy_reply ();
12956 if (strcmp (rs->buf.data (), "OK"))
12957 warning (_("Target does not support source download."));
12958 }
12959 remote_download_command_source (b->number, loc->address,
12960 breakpoint_commands (b));
12961 }
12962 }
12963
12964 bool
12965 remote_target::can_download_tracepoint ()
12966 {
12967 struct remote_state *rs = get_remote_state ();
12968 struct trace_status *ts;
12969 int status;
12970
12971 /* Don't try to install tracepoints until we've relocated our
12972 symbols, and fetched and merged the target's tracepoint list with
12973 ours. */
12974 if (rs->starting_up)
12975 return false;
12976
12977 ts = current_trace_status ();
12978 status = get_trace_status (ts);
12979
12980 if (status == -1 || !ts->running_known || !ts->running)
12981 return false;
12982
12983 /* If we are in a tracing experiment, but remote stub doesn't support
12984 installing tracepoint in trace, we have to return. */
12985 if (!remote_supports_install_in_trace ())
12986 return false;
12987
12988 return true;
12989 }
12990
12991
12992 void
12993 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
12994 {
12995 struct remote_state *rs = get_remote_state ();
12996 char *p;
12997
12998 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
12999 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13000 tsv.builtin);
13001 p = rs->buf.data () + strlen (rs->buf.data ());
13002 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13003 >= get_remote_packet_size ())
13004 error (_("Trace state variable name too long for tsv definition packet"));
13005 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13006 *p++ = '\0';
13007 putpkt (rs->buf);
13008 remote_get_noisy_reply ();
13009 if (rs->buf[0] == '\0')
13010 error (_("Target does not support this command."));
13011 if (strcmp (rs->buf.data (), "OK") != 0)
13012 error (_("Error on target while downloading trace state variable."));
13013 }
13014
13015 void
13016 remote_target::enable_tracepoint (struct bp_location *location)
13017 {
13018 struct remote_state *rs = get_remote_state ();
13019 char addr_buf[40];
13020
13021 sprintf_vma (addr_buf, location->address);
13022 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13023 location->owner->number, addr_buf);
13024 putpkt (rs->buf);
13025 remote_get_noisy_reply ();
13026 if (rs->buf[0] == '\0')
13027 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13028 if (strcmp (rs->buf.data (), "OK") != 0)
13029 error (_("Error on target while enabling tracepoint."));
13030 }
13031
13032 void
13033 remote_target::disable_tracepoint (struct bp_location *location)
13034 {
13035 struct remote_state *rs = get_remote_state ();
13036 char addr_buf[40];
13037
13038 sprintf_vma (addr_buf, location->address);
13039 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13040 location->owner->number, addr_buf);
13041 putpkt (rs->buf);
13042 remote_get_noisy_reply ();
13043 if (rs->buf[0] == '\0')
13044 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13045 if (strcmp (rs->buf.data (), "OK") != 0)
13046 error (_("Error on target while disabling tracepoint."));
13047 }
13048
13049 void
13050 remote_target::trace_set_readonly_regions ()
13051 {
13052 asection *s;
13053 bfd_size_type size;
13054 bfd_vma vma;
13055 int anysecs = 0;
13056 int offset = 0;
13057
13058 if (!exec_bfd)
13059 return; /* No information to give. */
13060
13061 struct remote_state *rs = get_remote_state ();
13062
13063 strcpy (rs->buf.data (), "QTro");
13064 offset = strlen (rs->buf.data ());
13065 for (s = exec_bfd->sections; s; s = s->next)
13066 {
13067 char tmp1[40], tmp2[40];
13068 int sec_length;
13069
13070 if ((s->flags & SEC_LOAD) == 0 ||
13071 /* (s->flags & SEC_CODE) == 0 || */
13072 (s->flags & SEC_READONLY) == 0)
13073 continue;
13074
13075 anysecs = 1;
13076 vma = bfd_section_vma (s);
13077 size = bfd_section_size (s);
13078 sprintf_vma (tmp1, vma);
13079 sprintf_vma (tmp2, vma + size);
13080 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13081 if (offset + sec_length + 1 > rs->buf.size ())
13082 {
13083 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13084 warning (_("\
13085 Too many sections for read-only sections definition packet."));
13086 break;
13087 }
13088 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13089 tmp1, tmp2);
13090 offset += sec_length;
13091 }
13092 if (anysecs)
13093 {
13094 putpkt (rs->buf);
13095 getpkt (&rs->buf, 0);
13096 }
13097 }
13098
13099 void
13100 remote_target::trace_start ()
13101 {
13102 struct remote_state *rs = get_remote_state ();
13103
13104 putpkt ("QTStart");
13105 remote_get_noisy_reply ();
13106 if (rs->buf[0] == '\0')
13107 error (_("Target does not support this command."));
13108 if (strcmp (rs->buf.data (), "OK") != 0)
13109 error (_("Bogus reply from target: %s"), rs->buf.data ());
13110 }
13111
13112 int
13113 remote_target::get_trace_status (struct trace_status *ts)
13114 {
13115 /* Initialize it just to avoid a GCC false warning. */
13116 char *p = NULL;
13117 enum packet_result result;
13118 struct remote_state *rs = get_remote_state ();
13119
13120 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13121 return -1;
13122
13123 /* FIXME we need to get register block size some other way. */
13124 trace_regblock_size
13125 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13126
13127 putpkt ("qTStatus");
13128
13129 try
13130 {
13131 p = remote_get_noisy_reply ();
13132 }
13133 catch (const gdb_exception_error &ex)
13134 {
13135 if (ex.error != TARGET_CLOSE_ERROR)
13136 {
13137 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13138 return -1;
13139 }
13140 throw;
13141 }
13142
13143 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13144
13145 /* If the remote target doesn't do tracing, flag it. */
13146 if (result == PACKET_UNKNOWN)
13147 return -1;
13148
13149 /* We're working with a live target. */
13150 ts->filename = NULL;
13151
13152 if (*p++ != 'T')
13153 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13154
13155 /* Function 'parse_trace_status' sets default value of each field of
13156 'ts' at first, so we don't have to do it here. */
13157 parse_trace_status (p, ts);
13158
13159 return ts->running;
13160 }
13161
13162 void
13163 remote_target::get_tracepoint_status (struct breakpoint *bp,
13164 struct uploaded_tp *utp)
13165 {
13166 struct remote_state *rs = get_remote_state ();
13167 char *reply;
13168 struct bp_location *loc;
13169 struct tracepoint *tp = (struct tracepoint *) bp;
13170 size_t size = get_remote_packet_size ();
13171
13172 if (tp)
13173 {
13174 tp->hit_count = 0;
13175 tp->traceframe_usage = 0;
13176 for (loc = tp->loc; loc; loc = loc->next)
13177 {
13178 /* If the tracepoint was never downloaded, don't go asking for
13179 any status. */
13180 if (tp->number_on_target == 0)
13181 continue;
13182 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13183 phex_nz (loc->address, 0));
13184 putpkt (rs->buf);
13185 reply = remote_get_noisy_reply ();
13186 if (reply && *reply)
13187 {
13188 if (*reply == 'V')
13189 parse_tracepoint_status (reply + 1, bp, utp);
13190 }
13191 }
13192 }
13193 else if (utp)
13194 {
13195 utp->hit_count = 0;
13196 utp->traceframe_usage = 0;
13197 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13198 phex_nz (utp->addr, 0));
13199 putpkt (rs->buf);
13200 reply = remote_get_noisy_reply ();
13201 if (reply && *reply)
13202 {
13203 if (*reply == 'V')
13204 parse_tracepoint_status (reply + 1, bp, utp);
13205 }
13206 }
13207 }
13208
13209 void
13210 remote_target::trace_stop ()
13211 {
13212 struct remote_state *rs = get_remote_state ();
13213
13214 putpkt ("QTStop");
13215 remote_get_noisy_reply ();
13216 if (rs->buf[0] == '\0')
13217 error (_("Target does not support this command."));
13218 if (strcmp (rs->buf.data (), "OK") != 0)
13219 error (_("Bogus reply from target: %s"), rs->buf.data ());
13220 }
13221
13222 int
13223 remote_target::trace_find (enum trace_find_type type, int num,
13224 CORE_ADDR addr1, CORE_ADDR addr2,
13225 int *tpp)
13226 {
13227 struct remote_state *rs = get_remote_state ();
13228 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13229 char *p, *reply;
13230 int target_frameno = -1, target_tracept = -1;
13231
13232 /* Lookups other than by absolute frame number depend on the current
13233 trace selected, so make sure it is correct on the remote end
13234 first. */
13235 if (type != tfind_number)
13236 set_remote_traceframe ();
13237
13238 p = rs->buf.data ();
13239 strcpy (p, "QTFrame:");
13240 p = strchr (p, '\0');
13241 switch (type)
13242 {
13243 case tfind_number:
13244 xsnprintf (p, endbuf - p, "%x", num);
13245 break;
13246 case tfind_pc:
13247 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13248 break;
13249 case tfind_tp:
13250 xsnprintf (p, endbuf - p, "tdp:%x", num);
13251 break;
13252 case tfind_range:
13253 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13254 phex_nz (addr2, 0));
13255 break;
13256 case tfind_outside:
13257 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13258 phex_nz (addr2, 0));
13259 break;
13260 default:
13261 error (_("Unknown trace find type %d"), type);
13262 }
13263
13264 putpkt (rs->buf);
13265 reply = remote_get_noisy_reply ();
13266 if (*reply == '\0')
13267 error (_("Target does not support this command."));
13268
13269 while (reply && *reply)
13270 switch (*reply)
13271 {
13272 case 'F':
13273 p = ++reply;
13274 target_frameno = (int) strtol (p, &reply, 16);
13275 if (reply == p)
13276 error (_("Unable to parse trace frame number"));
13277 /* Don't update our remote traceframe number cache on failure
13278 to select a remote traceframe. */
13279 if (target_frameno == -1)
13280 return -1;
13281 break;
13282 case 'T':
13283 p = ++reply;
13284 target_tracept = (int) strtol (p, &reply, 16);
13285 if (reply == p)
13286 error (_("Unable to parse tracepoint number"));
13287 break;
13288 case 'O': /* "OK"? */
13289 if (reply[1] == 'K' && reply[2] == '\0')
13290 reply += 2;
13291 else
13292 error (_("Bogus reply from target: %s"), reply);
13293 break;
13294 default:
13295 error (_("Bogus reply from target: %s"), reply);
13296 }
13297 if (tpp)
13298 *tpp = target_tracept;
13299
13300 rs->remote_traceframe_number = target_frameno;
13301 return target_frameno;
13302 }
13303
13304 bool
13305 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13306 {
13307 struct remote_state *rs = get_remote_state ();
13308 char *reply;
13309 ULONGEST uval;
13310
13311 set_remote_traceframe ();
13312
13313 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13314 putpkt (rs->buf);
13315 reply = remote_get_noisy_reply ();
13316 if (reply && *reply)
13317 {
13318 if (*reply == 'V')
13319 {
13320 unpack_varlen_hex (reply + 1, &uval);
13321 *val = (LONGEST) uval;
13322 return true;
13323 }
13324 }
13325 return false;
13326 }
13327
13328 int
13329 remote_target::save_trace_data (const char *filename)
13330 {
13331 struct remote_state *rs = get_remote_state ();
13332 char *p, *reply;
13333
13334 p = rs->buf.data ();
13335 strcpy (p, "QTSave:");
13336 p += strlen (p);
13337 if ((p - rs->buf.data ()) + strlen (filename) * 2
13338 >= get_remote_packet_size ())
13339 error (_("Remote file name too long for trace save packet"));
13340 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13341 *p++ = '\0';
13342 putpkt (rs->buf);
13343 reply = remote_get_noisy_reply ();
13344 if (*reply == '\0')
13345 error (_("Target does not support this command."));
13346 if (strcmp (reply, "OK") != 0)
13347 error (_("Bogus reply from target: %s"), reply);
13348 return 0;
13349 }
13350
13351 /* This is basically a memory transfer, but needs to be its own packet
13352 because we don't know how the target actually organizes its trace
13353 memory, plus we want to be able to ask for as much as possible, but
13354 not be unhappy if we don't get as much as we ask for. */
13355
13356 LONGEST
13357 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13358 {
13359 struct remote_state *rs = get_remote_state ();
13360 char *reply;
13361 char *p;
13362 int rslt;
13363
13364 p = rs->buf.data ();
13365 strcpy (p, "qTBuffer:");
13366 p += strlen (p);
13367 p += hexnumstr (p, offset);
13368 *p++ = ',';
13369 p += hexnumstr (p, len);
13370 *p++ = '\0';
13371
13372 putpkt (rs->buf);
13373 reply = remote_get_noisy_reply ();
13374 if (reply && *reply)
13375 {
13376 /* 'l' by itself means we're at the end of the buffer and
13377 there is nothing more to get. */
13378 if (*reply == 'l')
13379 return 0;
13380
13381 /* Convert the reply into binary. Limit the number of bytes to
13382 convert according to our passed-in buffer size, rather than
13383 what was returned in the packet; if the target is
13384 unexpectedly generous and gives us a bigger reply than we
13385 asked for, we don't want to crash. */
13386 rslt = hex2bin (reply, buf, len);
13387 return rslt;
13388 }
13389
13390 /* Something went wrong, flag as an error. */
13391 return -1;
13392 }
13393
13394 void
13395 remote_target::set_disconnected_tracing (int val)
13396 {
13397 struct remote_state *rs = get_remote_state ();
13398
13399 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13400 {
13401 char *reply;
13402
13403 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13404 "QTDisconnected:%x", val);
13405 putpkt (rs->buf);
13406 reply = remote_get_noisy_reply ();
13407 if (*reply == '\0')
13408 error (_("Target does not support this command."));
13409 if (strcmp (reply, "OK") != 0)
13410 error (_("Bogus reply from target: %s"), reply);
13411 }
13412 else if (val)
13413 warning (_("Target does not support disconnected tracing."));
13414 }
13415
13416 int
13417 remote_target::core_of_thread (ptid_t ptid)
13418 {
13419 struct thread_info *info = find_thread_ptid (ptid);
13420
13421 if (info != NULL && info->priv != NULL)
13422 return get_remote_thread_info (info)->core;
13423
13424 return -1;
13425 }
13426
13427 void
13428 remote_target::set_circular_trace_buffer (int val)
13429 {
13430 struct remote_state *rs = get_remote_state ();
13431 char *reply;
13432
13433 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13434 "QTBuffer:circular:%x", val);
13435 putpkt (rs->buf);
13436 reply = remote_get_noisy_reply ();
13437 if (*reply == '\0')
13438 error (_("Target does not support this command."));
13439 if (strcmp (reply, "OK") != 0)
13440 error (_("Bogus reply from target: %s"), reply);
13441 }
13442
13443 traceframe_info_up
13444 remote_target::traceframe_info ()
13445 {
13446 gdb::optional<gdb::char_vector> text
13447 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13448 NULL);
13449 if (text)
13450 return parse_traceframe_info (text->data ());
13451
13452 return NULL;
13453 }
13454
13455 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13456 instruction on which a fast tracepoint may be placed. Returns -1
13457 if the packet is not supported, and 0 if the minimum instruction
13458 length is unknown. */
13459
13460 int
13461 remote_target::get_min_fast_tracepoint_insn_len ()
13462 {
13463 struct remote_state *rs = get_remote_state ();
13464 char *reply;
13465
13466 /* If we're not debugging a process yet, the IPA can't be
13467 loaded. */
13468 if (!target_has_execution)
13469 return 0;
13470
13471 /* Make sure the remote is pointing at the right process. */
13472 set_general_process ();
13473
13474 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13475 putpkt (rs->buf);
13476 reply = remote_get_noisy_reply ();
13477 if (*reply == '\0')
13478 return -1;
13479 else
13480 {
13481 ULONGEST min_insn_len;
13482
13483 unpack_varlen_hex (reply, &min_insn_len);
13484
13485 return (int) min_insn_len;
13486 }
13487 }
13488
13489 void
13490 remote_target::set_trace_buffer_size (LONGEST val)
13491 {
13492 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13493 {
13494 struct remote_state *rs = get_remote_state ();
13495 char *buf = rs->buf.data ();
13496 char *endbuf = buf + get_remote_packet_size ();
13497 enum packet_result result;
13498
13499 gdb_assert (val >= 0 || val == -1);
13500 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13501 /* Send -1 as literal "-1" to avoid host size dependency. */
13502 if (val < 0)
13503 {
13504 *buf++ = '-';
13505 buf += hexnumstr (buf, (ULONGEST) -val);
13506 }
13507 else
13508 buf += hexnumstr (buf, (ULONGEST) val);
13509
13510 putpkt (rs->buf);
13511 remote_get_noisy_reply ();
13512 result = packet_ok (rs->buf,
13513 &remote_protocol_packets[PACKET_QTBuffer_size]);
13514
13515 if (result != PACKET_OK)
13516 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13517 }
13518 }
13519
13520 bool
13521 remote_target::set_trace_notes (const char *user, const char *notes,
13522 const char *stop_notes)
13523 {
13524 struct remote_state *rs = get_remote_state ();
13525 char *reply;
13526 char *buf = rs->buf.data ();
13527 char *endbuf = buf + get_remote_packet_size ();
13528 int nbytes;
13529
13530 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13531 if (user)
13532 {
13533 buf += xsnprintf (buf, endbuf - buf, "user:");
13534 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13535 buf += 2 * nbytes;
13536 *buf++ = ';';
13537 }
13538 if (notes)
13539 {
13540 buf += xsnprintf (buf, endbuf - buf, "notes:");
13541 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13542 buf += 2 * nbytes;
13543 *buf++ = ';';
13544 }
13545 if (stop_notes)
13546 {
13547 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13548 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13549 buf += 2 * nbytes;
13550 *buf++ = ';';
13551 }
13552 /* Ensure the buffer is terminated. */
13553 *buf = '\0';
13554
13555 putpkt (rs->buf);
13556 reply = remote_get_noisy_reply ();
13557 if (*reply == '\0')
13558 return false;
13559
13560 if (strcmp (reply, "OK") != 0)
13561 error (_("Bogus reply from target: %s"), reply);
13562
13563 return true;
13564 }
13565
13566 bool
13567 remote_target::use_agent (bool use)
13568 {
13569 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13570 {
13571 struct remote_state *rs = get_remote_state ();
13572
13573 /* If the stub supports QAgent. */
13574 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13575 putpkt (rs->buf);
13576 getpkt (&rs->buf, 0);
13577
13578 if (strcmp (rs->buf.data (), "OK") == 0)
13579 {
13580 ::use_agent = use;
13581 return true;
13582 }
13583 }
13584
13585 return false;
13586 }
13587
13588 bool
13589 remote_target::can_use_agent ()
13590 {
13591 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13592 }
13593
13594 struct btrace_target_info
13595 {
13596 /* The ptid of the traced thread. */
13597 ptid_t ptid;
13598
13599 /* The obtained branch trace configuration. */
13600 struct btrace_config conf;
13601 };
13602
13603 /* Reset our idea of our target's btrace configuration. */
13604
13605 static void
13606 remote_btrace_reset (remote_state *rs)
13607 {
13608 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13609 }
13610
13611 /* Synchronize the configuration with the target. */
13612
13613 void
13614 remote_target::btrace_sync_conf (const btrace_config *conf)
13615 {
13616 struct packet_config *packet;
13617 struct remote_state *rs;
13618 char *buf, *pos, *endbuf;
13619
13620 rs = get_remote_state ();
13621 buf = rs->buf.data ();
13622 endbuf = buf + get_remote_packet_size ();
13623
13624 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13625 if (packet_config_support (packet) == PACKET_ENABLE
13626 && conf->bts.size != rs->btrace_config.bts.size)
13627 {
13628 pos = buf;
13629 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13630 conf->bts.size);
13631
13632 putpkt (buf);
13633 getpkt (&rs->buf, 0);
13634
13635 if (packet_ok (buf, packet) == PACKET_ERROR)
13636 {
13637 if (buf[0] == 'E' && buf[1] == '.')
13638 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13639 else
13640 error (_("Failed to configure the BTS buffer size."));
13641 }
13642
13643 rs->btrace_config.bts.size = conf->bts.size;
13644 }
13645
13646 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13647 if (packet_config_support (packet) == PACKET_ENABLE
13648 && conf->pt.size != rs->btrace_config.pt.size)
13649 {
13650 pos = buf;
13651 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13652 conf->pt.size);
13653
13654 putpkt (buf);
13655 getpkt (&rs->buf, 0);
13656
13657 if (packet_ok (buf, packet) == PACKET_ERROR)
13658 {
13659 if (buf[0] == 'E' && buf[1] == '.')
13660 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13661 else
13662 error (_("Failed to configure the trace buffer size."));
13663 }
13664
13665 rs->btrace_config.pt.size = conf->pt.size;
13666 }
13667 }
13668
13669 /* Read the current thread's btrace configuration from the target and
13670 store it into CONF. */
13671
13672 static void
13673 btrace_read_config (struct btrace_config *conf)
13674 {
13675 gdb::optional<gdb::char_vector> xml
13676 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13677 if (xml)
13678 parse_xml_btrace_conf (conf, xml->data ());
13679 }
13680
13681 /* Maybe reopen target btrace. */
13682
13683 void
13684 remote_target::remote_btrace_maybe_reopen ()
13685 {
13686 struct remote_state *rs = get_remote_state ();
13687 int btrace_target_pushed = 0;
13688 #if !defined (HAVE_LIBIPT)
13689 int warned = 0;
13690 #endif
13691
13692 /* Don't bother walking the entirety of the remote thread list when
13693 we know the feature isn't supported by the remote. */
13694 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13695 return;
13696
13697 scoped_restore_current_thread restore_thread;
13698
13699 for (thread_info *tp : all_non_exited_threads ())
13700 {
13701 set_general_thread (tp->ptid);
13702
13703 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13704 btrace_read_config (&rs->btrace_config);
13705
13706 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13707 continue;
13708
13709 #if !defined (HAVE_LIBIPT)
13710 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13711 {
13712 if (!warned)
13713 {
13714 warned = 1;
13715 warning (_("Target is recording using Intel Processor Trace "
13716 "but support was disabled at compile time."));
13717 }
13718
13719 continue;
13720 }
13721 #endif /* !defined (HAVE_LIBIPT) */
13722
13723 /* Push target, once, but before anything else happens. This way our
13724 changes to the threads will be cleaned up by unpushing the target
13725 in case btrace_read_config () throws. */
13726 if (!btrace_target_pushed)
13727 {
13728 btrace_target_pushed = 1;
13729 record_btrace_push_target ();
13730 printf_filtered (_("Target is recording using %s.\n"),
13731 btrace_format_string (rs->btrace_config.format));
13732 }
13733
13734 tp->btrace.target = XCNEW (struct btrace_target_info);
13735 tp->btrace.target->ptid = tp->ptid;
13736 tp->btrace.target->conf = rs->btrace_config;
13737 }
13738 }
13739
13740 /* Enable branch tracing. */
13741
13742 struct btrace_target_info *
13743 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13744 {
13745 struct btrace_target_info *tinfo = NULL;
13746 struct packet_config *packet = NULL;
13747 struct remote_state *rs = get_remote_state ();
13748 char *buf = rs->buf.data ();
13749 char *endbuf = buf + get_remote_packet_size ();
13750
13751 switch (conf->format)
13752 {
13753 case BTRACE_FORMAT_BTS:
13754 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13755 break;
13756
13757 case BTRACE_FORMAT_PT:
13758 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13759 break;
13760 }
13761
13762 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13763 error (_("Target does not support branch tracing."));
13764
13765 btrace_sync_conf (conf);
13766
13767 set_general_thread (ptid);
13768
13769 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13770 putpkt (rs->buf);
13771 getpkt (&rs->buf, 0);
13772
13773 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13774 {
13775 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13776 error (_("Could not enable branch tracing for %s: %s"),
13777 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13778 else
13779 error (_("Could not enable branch tracing for %s."),
13780 target_pid_to_str (ptid).c_str ());
13781 }
13782
13783 tinfo = XCNEW (struct btrace_target_info);
13784 tinfo->ptid = ptid;
13785
13786 /* If we fail to read the configuration, we lose some information, but the
13787 tracing itself is not impacted. */
13788 try
13789 {
13790 btrace_read_config (&tinfo->conf);
13791 }
13792 catch (const gdb_exception_error &err)
13793 {
13794 if (err.message != NULL)
13795 warning ("%s", err.what ());
13796 }
13797
13798 return tinfo;
13799 }
13800
13801 /* Disable branch tracing. */
13802
13803 void
13804 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13805 {
13806 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13807 struct remote_state *rs = get_remote_state ();
13808 char *buf = rs->buf.data ();
13809 char *endbuf = buf + get_remote_packet_size ();
13810
13811 if (packet_config_support (packet) != PACKET_ENABLE)
13812 error (_("Target does not support branch tracing."));
13813
13814 set_general_thread (tinfo->ptid);
13815
13816 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13817 putpkt (rs->buf);
13818 getpkt (&rs->buf, 0);
13819
13820 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13821 {
13822 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13823 error (_("Could not disable branch tracing for %s: %s"),
13824 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13825 else
13826 error (_("Could not disable branch tracing for %s."),
13827 target_pid_to_str (tinfo->ptid).c_str ());
13828 }
13829
13830 xfree (tinfo);
13831 }
13832
13833 /* Teardown branch tracing. */
13834
13835 void
13836 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13837 {
13838 /* We must not talk to the target during teardown. */
13839 xfree (tinfo);
13840 }
13841
13842 /* Read the branch trace. */
13843
13844 enum btrace_error
13845 remote_target::read_btrace (struct btrace_data *btrace,
13846 struct btrace_target_info *tinfo,
13847 enum btrace_read_type type)
13848 {
13849 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13850 const char *annex;
13851
13852 if (packet_config_support (packet) != PACKET_ENABLE)
13853 error (_("Target does not support branch tracing."));
13854
13855 #if !defined(HAVE_LIBEXPAT)
13856 error (_("Cannot process branch tracing result. XML parsing not supported."));
13857 #endif
13858
13859 switch (type)
13860 {
13861 case BTRACE_READ_ALL:
13862 annex = "all";
13863 break;
13864 case BTRACE_READ_NEW:
13865 annex = "new";
13866 break;
13867 case BTRACE_READ_DELTA:
13868 annex = "delta";
13869 break;
13870 default:
13871 internal_error (__FILE__, __LINE__,
13872 _("Bad branch tracing read type: %u."),
13873 (unsigned int) type);
13874 }
13875
13876 gdb::optional<gdb::char_vector> xml
13877 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13878 if (!xml)
13879 return BTRACE_ERR_UNKNOWN;
13880
13881 parse_xml_btrace (btrace, xml->data ());
13882
13883 return BTRACE_ERR_NONE;
13884 }
13885
13886 const struct btrace_config *
13887 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13888 {
13889 return &tinfo->conf;
13890 }
13891
13892 bool
13893 remote_target::augmented_libraries_svr4_read ()
13894 {
13895 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13896 == PACKET_ENABLE);
13897 }
13898
13899 /* Implementation of to_load. */
13900
13901 void
13902 remote_target::load (const char *name, int from_tty)
13903 {
13904 generic_load (name, from_tty);
13905 }
13906
13907 /* Accepts an integer PID; returns a string representing a file that
13908 can be opened on the remote side to get the symbols for the child
13909 process. Returns NULL if the operation is not supported. */
13910
13911 char *
13912 remote_target::pid_to_exec_file (int pid)
13913 {
13914 static gdb::optional<gdb::char_vector> filename;
13915 struct inferior *inf;
13916 char *annex = NULL;
13917
13918 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13919 return NULL;
13920
13921 inf = find_inferior_pid (pid);
13922 if (inf == NULL)
13923 internal_error (__FILE__, __LINE__,
13924 _("not currently attached to process %d"), pid);
13925
13926 if (!inf->fake_pid_p)
13927 {
13928 const int annex_size = 9;
13929
13930 annex = (char *) alloca (annex_size);
13931 xsnprintf (annex, annex_size, "%x", pid);
13932 }
13933
13934 filename = target_read_stralloc (current_top_target (),
13935 TARGET_OBJECT_EXEC_FILE, annex);
13936
13937 return filename ? filename->data () : nullptr;
13938 }
13939
13940 /* Implement the to_can_do_single_step target_ops method. */
13941
13942 int
13943 remote_target::can_do_single_step ()
13944 {
13945 /* We can only tell whether target supports single step or not by
13946 supported s and S vCont actions if the stub supports vContSupported
13947 feature. If the stub doesn't support vContSupported feature,
13948 we have conservatively to think target doesn't supports single
13949 step. */
13950 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13951 {
13952 struct remote_state *rs = get_remote_state ();
13953
13954 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13955 remote_vcont_probe ();
13956
13957 return rs->supports_vCont.s && rs->supports_vCont.S;
13958 }
13959 else
13960 return 0;
13961 }
13962
13963 /* Implementation of the to_execution_direction method for the remote
13964 target. */
13965
13966 enum exec_direction_kind
13967 remote_target::execution_direction ()
13968 {
13969 struct remote_state *rs = get_remote_state ();
13970
13971 return rs->last_resume_exec_dir;
13972 }
13973
13974 /* Return pointer to the thread_info struct which corresponds to
13975 THREAD_HANDLE (having length HANDLE_LEN). */
13976
13977 thread_info *
13978 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13979 int handle_len,
13980 inferior *inf)
13981 {
13982 for (thread_info *tp : all_non_exited_threads ())
13983 {
13984 remote_thread_info *priv = get_remote_thread_info (tp);
13985
13986 if (tp->inf == inf && priv != NULL)
13987 {
13988 if (handle_len != priv->thread_handle.size ())
13989 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13990 handle_len, priv->thread_handle.size ());
13991 if (memcmp (thread_handle, priv->thread_handle.data (),
13992 handle_len) == 0)
13993 return tp;
13994 }
13995 }
13996
13997 return NULL;
13998 }
13999
14000 gdb::byte_vector
14001 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14002 {
14003 remote_thread_info *priv = get_remote_thread_info (tp);
14004 return priv->thread_handle;
14005 }
14006
14007 bool
14008 remote_target::can_async_p ()
14009 {
14010 struct remote_state *rs = get_remote_state ();
14011
14012 /* We don't go async if the user has explicitly prevented it with the
14013 "maint set target-async" command. */
14014 if (!target_async_permitted)
14015 return false;
14016
14017 /* We're async whenever the serial device is. */
14018 return serial_can_async_p (rs->remote_desc);
14019 }
14020
14021 bool
14022 remote_target::is_async_p ()
14023 {
14024 struct remote_state *rs = get_remote_state ();
14025
14026 if (!target_async_permitted)
14027 /* We only enable async when the user specifically asks for it. */
14028 return false;
14029
14030 /* We're async whenever the serial device is. */
14031 return serial_is_async_p (rs->remote_desc);
14032 }
14033
14034 /* Pass the SERIAL event on and up to the client. One day this code
14035 will be able to delay notifying the client of an event until the
14036 point where an entire packet has been received. */
14037
14038 static serial_event_ftype remote_async_serial_handler;
14039
14040 static void
14041 remote_async_serial_handler (struct serial *scb, void *context)
14042 {
14043 /* Don't propogate error information up to the client. Instead let
14044 the client find out about the error by querying the target. */
14045 inferior_event_handler (INF_REG_EVENT, NULL);
14046 }
14047
14048 static void
14049 remote_async_inferior_event_handler (gdb_client_data data)
14050 {
14051 inferior_event_handler (INF_REG_EVENT, data);
14052 }
14053
14054 void
14055 remote_target::async (int enable)
14056 {
14057 struct remote_state *rs = get_remote_state ();
14058
14059 if (enable)
14060 {
14061 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14062
14063 /* If there are pending events in the stop reply queue tell the
14064 event loop to process them. */
14065 if (!rs->stop_reply_queue.empty ())
14066 mark_async_event_handler (rs->remote_async_inferior_event_token);
14067 /* For simplicity, below we clear the pending events token
14068 without remembering whether it is marked, so here we always
14069 mark it. If there's actually no pending notification to
14070 process, this ends up being a no-op (other than a spurious
14071 event-loop wakeup). */
14072 if (target_is_non_stop_p ())
14073 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14074 }
14075 else
14076 {
14077 serial_async (rs->remote_desc, NULL, NULL);
14078 /* If the core is disabling async, it doesn't want to be
14079 disturbed with target events. Clear all async event sources
14080 too. */
14081 clear_async_event_handler (rs->remote_async_inferior_event_token);
14082 if (target_is_non_stop_p ())
14083 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14084 }
14085 }
14086
14087 /* Implementation of the to_thread_events method. */
14088
14089 void
14090 remote_target::thread_events (int enable)
14091 {
14092 struct remote_state *rs = get_remote_state ();
14093 size_t size = get_remote_packet_size ();
14094
14095 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14096 return;
14097
14098 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14099 putpkt (rs->buf);
14100 getpkt (&rs->buf, 0);
14101
14102 switch (packet_ok (rs->buf,
14103 &remote_protocol_packets[PACKET_QThreadEvents]))
14104 {
14105 case PACKET_OK:
14106 if (strcmp (rs->buf.data (), "OK") != 0)
14107 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14108 break;
14109 case PACKET_ERROR:
14110 warning (_("Remote failure reply: %s"), rs->buf.data ());
14111 break;
14112 case PACKET_UNKNOWN:
14113 break;
14114 }
14115 }
14116
14117 static void
14118 set_remote_cmd (const char *args, int from_tty)
14119 {
14120 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14121 }
14122
14123 static void
14124 show_remote_cmd (const char *args, int from_tty)
14125 {
14126 /* We can't just use cmd_show_list here, because we want to skip
14127 the redundant "show remote Z-packet" and the legacy aliases. */
14128 struct cmd_list_element *list = remote_show_cmdlist;
14129 struct ui_out *uiout = current_uiout;
14130
14131 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14132 for (; list != NULL; list = list->next)
14133 if (strcmp (list->name, "Z-packet") == 0)
14134 continue;
14135 else if (list->type == not_set_cmd)
14136 /* Alias commands are exactly like the original, except they
14137 don't have the normal type. */
14138 continue;
14139 else
14140 {
14141 ui_out_emit_tuple option_emitter (uiout, "option");
14142
14143 uiout->field_string ("name", list->name);
14144 uiout->text (": ");
14145 if (list->type == show_cmd)
14146 do_show_command (NULL, from_tty, list);
14147 else
14148 cmd_func (list, NULL, from_tty);
14149 }
14150 }
14151
14152
14153 /* Function to be called whenever a new objfile (shlib) is detected. */
14154 static void
14155 remote_new_objfile (struct objfile *objfile)
14156 {
14157 remote_target *remote = get_current_remote_target ();
14158
14159 if (remote != NULL) /* Have a remote connection. */
14160 remote->remote_check_symbols ();
14161 }
14162
14163 /* Pull all the tracepoints defined on the target and create local
14164 data structures representing them. We don't want to create real
14165 tracepoints yet, we don't want to mess up the user's existing
14166 collection. */
14167
14168 int
14169 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14170 {
14171 struct remote_state *rs = get_remote_state ();
14172 char *p;
14173
14174 /* Ask for a first packet of tracepoint definition. */
14175 putpkt ("qTfP");
14176 getpkt (&rs->buf, 0);
14177 p = rs->buf.data ();
14178 while (*p && *p != 'l')
14179 {
14180 parse_tracepoint_definition (p, utpp);
14181 /* Ask for another packet of tracepoint definition. */
14182 putpkt ("qTsP");
14183 getpkt (&rs->buf, 0);
14184 p = rs->buf.data ();
14185 }
14186 return 0;
14187 }
14188
14189 int
14190 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14191 {
14192 struct remote_state *rs = get_remote_state ();
14193 char *p;
14194
14195 /* Ask for a first packet of variable definition. */
14196 putpkt ("qTfV");
14197 getpkt (&rs->buf, 0);
14198 p = rs->buf.data ();
14199 while (*p && *p != 'l')
14200 {
14201 parse_tsv_definition (p, utsvp);
14202 /* Ask for another packet of variable definition. */
14203 putpkt ("qTsV");
14204 getpkt (&rs->buf, 0);
14205 p = rs->buf.data ();
14206 }
14207 return 0;
14208 }
14209
14210 /* The "set/show range-stepping" show hook. */
14211
14212 static void
14213 show_range_stepping (struct ui_file *file, int from_tty,
14214 struct cmd_list_element *c,
14215 const char *value)
14216 {
14217 fprintf_filtered (file,
14218 _("Debugger's willingness to use range stepping "
14219 "is %s.\n"), value);
14220 }
14221
14222 /* Return true if the vCont;r action is supported by the remote
14223 stub. */
14224
14225 bool
14226 remote_target::vcont_r_supported ()
14227 {
14228 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14229 remote_vcont_probe ();
14230
14231 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14232 && get_remote_state ()->supports_vCont.r);
14233 }
14234
14235 /* The "set/show range-stepping" set hook. */
14236
14237 static void
14238 set_range_stepping (const char *ignore_args, int from_tty,
14239 struct cmd_list_element *c)
14240 {
14241 /* When enabling, check whether range stepping is actually supported
14242 by the target, and warn if not. */
14243 if (use_range_stepping)
14244 {
14245 remote_target *remote = get_current_remote_target ();
14246 if (remote == NULL
14247 || !remote->vcont_r_supported ())
14248 warning (_("Range stepping is not supported by the current target"));
14249 }
14250 }
14251
14252 void
14253 _initialize_remote (void)
14254 {
14255 struct cmd_list_element *cmd;
14256 const char *cmd_name;
14257
14258 /* architecture specific data */
14259 remote_g_packet_data_handle =
14260 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14261
14262 add_target (remote_target_info, remote_target::open);
14263 add_target (extended_remote_target_info, extended_remote_target::open);
14264
14265 /* Hook into new objfile notification. */
14266 gdb::observers::new_objfile.attach (remote_new_objfile);
14267
14268 #if 0
14269 init_remote_threadtests ();
14270 #endif
14271
14272 /* set/show remote ... */
14273
14274 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14275 Remote protocol specific variables.\n\
14276 Configure various remote-protocol specific variables such as\n\
14277 the packets being used."),
14278 &remote_set_cmdlist, "set remote ",
14279 0 /* allow-unknown */, &setlist);
14280 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14281 Remote protocol specific variables.\n\
14282 Configure various remote-protocol specific variables such as\n\
14283 the packets being used."),
14284 &remote_show_cmdlist, "show remote ",
14285 0 /* allow-unknown */, &showlist);
14286
14287 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14288 Compare section data on target to the exec file.\n\
14289 Argument is a single section name (default: all loaded sections).\n\
14290 To compare only read-only loaded sections, specify the -r option."),
14291 &cmdlist);
14292
14293 add_cmd ("packet", class_maintenance, packet_command, _("\
14294 Send an arbitrary packet to a remote target.\n\
14295 maintenance packet TEXT\n\
14296 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14297 this command sends the string TEXT to the inferior, and displays the\n\
14298 response packet. GDB supplies the initial `$' character, and the\n\
14299 terminating `#' character and checksum."),
14300 &maintenancelist);
14301
14302 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14303 Set whether to send break if interrupted."), _("\
14304 Show whether to send break if interrupted."), _("\
14305 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14306 set_remotebreak, show_remotebreak,
14307 &setlist, &showlist);
14308 cmd_name = "remotebreak";
14309 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14310 deprecate_cmd (cmd, "set remote interrupt-sequence");
14311 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14312 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14313 deprecate_cmd (cmd, "show remote interrupt-sequence");
14314
14315 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14316 interrupt_sequence_modes, &interrupt_sequence_mode,
14317 _("\
14318 Set interrupt sequence to remote target."), _("\
14319 Show interrupt sequence to remote target."), _("\
14320 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14321 NULL, show_interrupt_sequence,
14322 &remote_set_cmdlist,
14323 &remote_show_cmdlist);
14324
14325 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14326 &interrupt_on_connect, _("\
14327 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14328 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14329 If set, interrupt sequence is sent to remote target."),
14330 NULL, NULL,
14331 &remote_set_cmdlist, &remote_show_cmdlist);
14332
14333 /* Install commands for configuring memory read/write packets. */
14334
14335 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14336 Set the maximum number of bytes per memory write packet (deprecated)."),
14337 &setlist);
14338 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14339 Show the maximum number of bytes per memory write packet (deprecated)."),
14340 &showlist);
14341 add_cmd ("memory-write-packet-size", no_class,
14342 set_memory_write_packet_size, _("\
14343 Set the maximum number of bytes per memory-write packet.\n\
14344 Specify the number of bytes in a packet or 0 (zero) for the\n\
14345 default packet size. The actual limit is further reduced\n\
14346 dependent on the target. Specify ``fixed'' to disable the\n\
14347 further restriction and ``limit'' to enable that restriction."),
14348 &remote_set_cmdlist);
14349 add_cmd ("memory-read-packet-size", no_class,
14350 set_memory_read_packet_size, _("\
14351 Set the maximum number of bytes per memory-read packet.\n\
14352 Specify the number of bytes in a packet or 0 (zero) for the\n\
14353 default packet size. The actual limit is further reduced\n\
14354 dependent on the target. Specify ``fixed'' to disable the\n\
14355 further restriction and ``limit'' to enable that restriction."),
14356 &remote_set_cmdlist);
14357 add_cmd ("memory-write-packet-size", no_class,
14358 show_memory_write_packet_size,
14359 _("Show the maximum number of bytes per memory-write packet."),
14360 &remote_show_cmdlist);
14361 add_cmd ("memory-read-packet-size", no_class,
14362 show_memory_read_packet_size,
14363 _("Show the maximum number of bytes per memory-read packet."),
14364 &remote_show_cmdlist);
14365
14366 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14367 &remote_hw_watchpoint_limit, _("\
14368 Set the maximum number of target hardware watchpoints."), _("\
14369 Show the maximum number of target hardware watchpoints."), _("\
14370 Specify \"unlimited\" for unlimited hardware watchpoints."),
14371 NULL, show_hardware_watchpoint_limit,
14372 &remote_set_cmdlist,
14373 &remote_show_cmdlist);
14374 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14375 no_class,
14376 &remote_hw_watchpoint_length_limit, _("\
14377 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14378 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14379 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14380 NULL, show_hardware_watchpoint_length_limit,
14381 &remote_set_cmdlist, &remote_show_cmdlist);
14382 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14383 &remote_hw_breakpoint_limit, _("\
14384 Set the maximum number of target hardware breakpoints."), _("\
14385 Show the maximum number of target hardware breakpoints."), _("\
14386 Specify \"unlimited\" for unlimited hardware breakpoints."),
14387 NULL, show_hardware_breakpoint_limit,
14388 &remote_set_cmdlist, &remote_show_cmdlist);
14389
14390 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14391 &remote_address_size, _("\
14392 Set the maximum size of the address (in bits) in a memory packet."), _("\
14393 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14394 NULL,
14395 NULL, /* FIXME: i18n: */
14396 &setlist, &showlist);
14397
14398 init_all_packet_configs ();
14399
14400 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14401 "X", "binary-download", 1);
14402
14403 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14404 "vCont", "verbose-resume", 0);
14405
14406 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14407 "QPassSignals", "pass-signals", 0);
14408
14409 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14410 "QCatchSyscalls", "catch-syscalls", 0);
14411
14412 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14413 "QProgramSignals", "program-signals", 0);
14414
14415 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14416 "QSetWorkingDir", "set-working-dir", 0);
14417
14418 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14419 "QStartupWithShell", "startup-with-shell", 0);
14420
14421 add_packet_config_cmd (&remote_protocol_packets
14422 [PACKET_QEnvironmentHexEncoded],
14423 "QEnvironmentHexEncoded", "environment-hex-encoded",
14424 0);
14425
14426 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14427 "QEnvironmentReset", "environment-reset",
14428 0);
14429
14430 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14431 "QEnvironmentUnset", "environment-unset",
14432 0);
14433
14434 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14435 "qSymbol", "symbol-lookup", 0);
14436
14437 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14438 "P", "set-register", 1);
14439
14440 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14441 "p", "fetch-register", 1);
14442
14443 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14444 "Z0", "software-breakpoint", 0);
14445
14446 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14447 "Z1", "hardware-breakpoint", 0);
14448
14449 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14450 "Z2", "write-watchpoint", 0);
14451
14452 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14453 "Z3", "read-watchpoint", 0);
14454
14455 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14456 "Z4", "access-watchpoint", 0);
14457
14458 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14459 "qXfer:auxv:read", "read-aux-vector", 0);
14460
14461 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14462 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14463
14464 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14465 "qXfer:features:read", "target-features", 0);
14466
14467 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14468 "qXfer:libraries:read", "library-info", 0);
14469
14470 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14471 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14472
14473 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14474 "qXfer:memory-map:read", "memory-map", 0);
14475
14476 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14477 "qXfer:osdata:read", "osdata", 0);
14478
14479 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14480 "qXfer:threads:read", "threads", 0);
14481
14482 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14483 "qXfer:siginfo:read", "read-siginfo-object", 0);
14484
14485 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14486 "qXfer:siginfo:write", "write-siginfo-object", 0);
14487
14488 add_packet_config_cmd
14489 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14490 "qXfer:traceframe-info:read", "traceframe-info", 0);
14491
14492 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14493 "qXfer:uib:read", "unwind-info-block", 0);
14494
14495 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14496 "qGetTLSAddr", "get-thread-local-storage-address",
14497 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14500 "qGetTIBAddr", "get-thread-information-block-address",
14501 0);
14502
14503 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14504 "bc", "reverse-continue", 0);
14505
14506 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14507 "bs", "reverse-step", 0);
14508
14509 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14510 "qSupported", "supported-packets", 0);
14511
14512 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14513 "qSearch:memory", "search-memory", 0);
14514
14515 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14516 "qTStatus", "trace-status", 0);
14517
14518 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14519 "vFile:setfs", "hostio-setfs", 0);
14520
14521 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14522 "vFile:open", "hostio-open", 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14525 "vFile:pread", "hostio-pread", 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14528 "vFile:pwrite", "hostio-pwrite", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14531 "vFile:close", "hostio-close", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14534 "vFile:unlink", "hostio-unlink", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14537 "vFile:readlink", "hostio-readlink", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14540 "vFile:fstat", "hostio-fstat", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14543 "vAttach", "attach", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14546 "vRun", "run", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14549 "QStartNoAckMode", "noack", 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14552 "vKill", "kill", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14555 "qAttached", "query-attached", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14558 "ConditionalTracepoints",
14559 "conditional-tracepoints", 0);
14560
14561 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14562 "ConditionalBreakpoints",
14563 "conditional-breakpoints", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14566 "BreakpointCommands",
14567 "breakpoint-commands", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14570 "FastTracepoints", "fast-tracepoints", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14573 "TracepointSource", "TracepointSource", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14576 "QAllow", "allow", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14579 "StaticTracepoints", "static-tracepoints", 0);
14580
14581 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14582 "InstallInTrace", "install-in-trace", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14585 "qXfer:statictrace:read", "read-sdata-object", 0);
14586
14587 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14588 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14591 "QDisableRandomization", "disable-randomization", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14594 "QAgent", "agent", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14597 "QTBuffer:size", "trace-buffer-size", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14600 "Qbtrace:off", "disable-btrace", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14603 "Qbtrace:bts", "enable-btrace-bts", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14606 "Qbtrace:pt", "enable-btrace-pt", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14609 "qXfer:btrace", "read-btrace", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14612 "qXfer:btrace-conf", "read-btrace-conf", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14615 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14618 "multiprocess-feature", "multiprocess-feature", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14621 "swbreak-feature", "swbreak-feature", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14624 "hwbreak-feature", "hwbreak-feature", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14627 "fork-event-feature", "fork-event-feature", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14630 "vfork-event-feature", "vfork-event-feature", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14633 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14636 "vContSupported", "verbose-resume-supported", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14639 "exec-event-feature", "exec-event-feature", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14642 "vCtrlC", "ctrl-c", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14645 "QThreadEvents", "thread-events", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14648 "N stop reply", "no-resumed-stop-reply", 0);
14649
14650 /* Assert that we've registered "set remote foo-packet" commands
14651 for all packet configs. */
14652 {
14653 int i;
14654
14655 for (i = 0; i < PACKET_MAX; i++)
14656 {
14657 /* Ideally all configs would have a command associated. Some
14658 still don't though. */
14659 int excepted;
14660
14661 switch (i)
14662 {
14663 case PACKET_QNonStop:
14664 case PACKET_EnableDisableTracepoints_feature:
14665 case PACKET_tracenz_feature:
14666 case PACKET_DisconnectedTracing_feature:
14667 case PACKET_augmented_libraries_svr4_read_feature:
14668 case PACKET_qCRC:
14669 /* Additions to this list need to be well justified:
14670 pre-existing packets are OK; new packets are not. */
14671 excepted = 1;
14672 break;
14673 default:
14674 excepted = 0;
14675 break;
14676 }
14677
14678 /* This catches both forgetting to add a config command, and
14679 forgetting to remove a packet from the exception list. */
14680 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14681 }
14682 }
14683
14684 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14685 Z sub-packet has its own set and show commands, but users may
14686 have sets to this variable in their .gdbinit files (or in their
14687 documentation). */
14688 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14689 &remote_Z_packet_detect, _("\
14690 Set use of remote protocol `Z' packets."), _("\
14691 Show use of remote protocol `Z' packets."), _("\
14692 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14693 packets."),
14694 set_remote_protocol_Z_packet_cmd,
14695 show_remote_protocol_Z_packet_cmd,
14696 /* FIXME: i18n: Use of remote protocol
14697 `Z' packets is %s. */
14698 &remote_set_cmdlist, &remote_show_cmdlist);
14699
14700 add_prefix_cmd ("remote", class_files, remote_command, _("\
14701 Manipulate files on the remote system.\n\
14702 Transfer files to and from the remote target system."),
14703 &remote_cmdlist, "remote ",
14704 0 /* allow-unknown */, &cmdlist);
14705
14706 add_cmd ("put", class_files, remote_put_command,
14707 _("Copy a local file to the remote system."),
14708 &remote_cmdlist);
14709
14710 add_cmd ("get", class_files, remote_get_command,
14711 _("Copy a remote file to the local system."),
14712 &remote_cmdlist);
14713
14714 add_cmd ("delete", class_files, remote_delete_command,
14715 _("Delete a remote file."),
14716 &remote_cmdlist);
14717
14718 add_setshow_string_noescape_cmd ("exec-file", class_files,
14719 &remote_exec_file_var, _("\
14720 Set the remote pathname for \"run\"."), _("\
14721 Show the remote pathname for \"run\"."), NULL,
14722 set_remote_exec_file,
14723 show_remote_exec_file,
14724 &remote_set_cmdlist,
14725 &remote_show_cmdlist);
14726
14727 add_setshow_boolean_cmd ("range-stepping", class_run,
14728 &use_range_stepping, _("\
14729 Enable or disable range stepping."), _("\
14730 Show whether target-assisted range stepping is enabled."), _("\
14731 If on, and the target supports it, when stepping a source line, GDB\n\
14732 tells the target to step the corresponding range of addresses itself instead\n\
14733 of issuing multiple single-steps. This speeds up source level\n\
14734 stepping. If off, GDB always issues single-steps, even if range\n\
14735 stepping is supported by the target. The default is on."),
14736 set_range_stepping,
14737 show_range_stepping,
14738 &setlist,
14739 &showlist);
14740
14741 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14742 Set watchdog timer."), _("\
14743 Show watchdog timer."), _("\
14744 When non-zero, this timeout is used instead of waiting forever for a target\n\
14745 to finish a low-level step or continue operation. If the specified amount\n\
14746 of time passes without a response from the target, an error occurs."),
14747 NULL,
14748 show_watchdog,
14749 &setlist, &showlist);
14750
14751 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14752 &remote_packet_max_chars, _("\
14753 Set the maximum number of characters to display for each remote packet."), _("\
14754 Show the maximum number of characters to display for each remote packet."), _("\
14755 Specify \"unlimited\" to display all the characters."),
14756 NULL, show_remote_packet_max_chars,
14757 &setdebuglist, &showdebuglist);
14758
14759 /* Eventually initialize fileio. See fileio.c */
14760 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14761 }
This page took 0.392868 seconds and 4 git commands to generate.