2007-10-08 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61
62 #include "memory-map.h"
63
64 /* The size to align memory write packets, when practical. The protocol
65 does not guarantee any alignment, and gdb will generate short
66 writes and unaligned writes, but even as a best-effort attempt this
67 can improve bulk transfers. For instance, if a write is misaligned
68 relative to the target's data bus, the stub may need to make an extra
69 round trip fetching data from the target. This doesn't make a
70 huge difference, but it's easy to do, so we try to be helpful.
71
72 The alignment chosen is arbitrary; usually data bus width is
73 important here, not the possibly larger cache line size. */
74 enum { REMOTE_ALIGN_WRITES = 16 };
75
76 /* Prototypes for local functions. */
77 static void cleanup_sigint_signal_handler (void *dummy);
78 static void initialize_sigint_signal_handler (void);
79 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
80
81 static void handle_remote_sigint (int);
82 static void handle_remote_sigint_twice (int);
83 static void async_remote_interrupt (gdb_client_data);
84 void async_remote_interrupt_twice (gdb_client_data);
85
86 static void remote_files_info (struct target_ops *ignore);
87
88 static void remote_prepare_to_store (struct regcache *regcache);
89
90 static void remote_fetch_registers (struct regcache *regcache, int regno);
91
92 static void remote_resume (ptid_t ptid, int step,
93 enum target_signal siggnal);
94 static void remote_async_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_open (char *name, int from_tty);
97 static void remote_async_open (char *name, int from_tty);
98
99 static void extended_remote_open (char *name, int from_tty);
100 static void extended_remote_async_open (char *name, int from_tty);
101
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
103 int async_p);
104
105 static void remote_close (int quitting);
106
107 static void remote_store_registers (struct regcache *regcache, int regno);
108
109 static void remote_mourn (void);
110 static void remote_async_mourn (void);
111
112 static void extended_remote_restart (void);
113
114 static void extended_remote_mourn (void);
115
116 static void remote_mourn_1 (struct target_ops *);
117
118 static void remote_send (char **buf, long *sizeof_buf_p);
119
120 static int readchar (int timeout);
121
122 static ptid_t remote_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124 static ptid_t remote_async_wait (ptid_t ptid,
125 struct target_waitstatus *status);
126
127 static void remote_kill (void);
128 static void remote_async_kill (void);
129
130 static int tohex (int nib);
131
132 static void remote_detach (char *args, int from_tty);
133
134 static void remote_interrupt (int signo);
135
136 static void remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_thread (int, int);
141
142 static int remote_thread_alive (ptid_t);
143
144 static void get_offsets (void);
145
146 static void skip_frame (void);
147
148 static long read_frame (char **buf_p, long *sizeof_buf);
149
150 static int hexnumlen (ULONGEST num);
151
152 static void init_remote_ops (void);
153
154 static void init_extended_remote_ops (void);
155
156 static void remote_stop (void);
157
158 static int ishex (int ch, int *val);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (char *);
169
170 static unsigned long crc32 (unsigned char *, int, unsigned int);
171
172 static void compare_sections_command (char *, int);
173
174 static void packet_command (char *, int);
175
176 static int stub_unpack_int (char *buff, int fieldlength);
177
178 static ptid_t remote_current_thread (ptid_t oldptid);
179
180 static void remote_find_new_threads (void);
181
182 static void record_currthread (int currthread);
183
184 static int fromhex (int a);
185
186 static int hex2bin (const char *hex, gdb_byte *bin, int count);
187
188 static int bin2hex (const gdb_byte *bin, char *hex, int count);
189
190 static int putpkt_binary (char *buf, int cnt);
191
192 static void check_binary_download (CORE_ADDR addr);
193
194 struct packet_config;
195
196 static void show_packet_config_cmd (struct packet_config *config);
197
198 static void update_packet_config (struct packet_config *config);
199
200 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
201 struct cmd_list_element *c);
202
203 static void show_remote_protocol_packet_cmd (struct ui_file *file,
204 int from_tty,
205 struct cmd_list_element *c,
206 const char *value);
207
208 void _initialize_remote (void);
209
210 /* For "set remote" and "show remote". */
211
212 static struct cmd_list_element *remote_set_cmdlist;
213 static struct cmd_list_element *remote_show_cmdlist;
214
215 /* Description of the remote protocol state for the currently
216 connected target. This is per-target state, and independent of the
217 selected architecture. */
218
219 struct remote_state
220 {
221 /* A buffer to use for incoming packets, and its current size. The
222 buffer is grown dynamically for larger incoming packets.
223 Outgoing packets may also be constructed in this buffer.
224 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
225 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
226 packets. */
227 char *buf;
228 long buf_size;
229
230 /* If we negotiated packet size explicitly (and thus can bypass
231 heuristics for the largest packet size that will not overflow
232 a buffer in the stub), this will be set to that packet size.
233 Otherwise zero, meaning to use the guessed size. */
234 long explicit_packet_size;
235 };
236
237 /* This data could be associated with a target, but we do not always
238 have access to the current target when we need it, so for now it is
239 static. This will be fine for as long as only one target is in use
240 at a time. */
241 static struct remote_state remote_state;
242
243 static struct remote_state *
244 get_remote_state_raw (void)
245 {
246 return &remote_state;
247 }
248
249 /* Description of the remote protocol for a given architecture. */
250
251 struct packet_reg
252 {
253 long offset; /* Offset into G packet. */
254 long regnum; /* GDB's internal register number. */
255 LONGEST pnum; /* Remote protocol register number. */
256 int in_g_packet; /* Always part of G packet. */
257 /* long size in bytes; == register_size (current_gdbarch, regnum);
258 at present. */
259 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
260 at present. */
261 };
262
263 struct remote_arch_state
264 {
265 /* Description of the remote protocol registers. */
266 long sizeof_g_packet;
267
268 /* Description of the remote protocol registers indexed by REGNUM
269 (making an array gdbarch_num_regs in size). */
270 struct packet_reg *regs;
271
272 /* This is the size (in chars) of the first response to the ``g''
273 packet. It is used as a heuristic when determining the maximum
274 size of memory-read and memory-write packets. A target will
275 typically only reserve a buffer large enough to hold the ``g''
276 packet. The size does not include packet overhead (headers and
277 trailers). */
278 long actual_register_packet_size;
279
280 /* This is the maximum size (in chars) of a non read/write packet.
281 It is also used as a cap on the size of read/write packets. */
282 long remote_packet_size;
283 };
284
285
286 /* Handle for retreving the remote protocol data from gdbarch. */
287 static struct gdbarch_data *remote_gdbarch_data_handle;
288
289 static struct remote_arch_state *
290 get_remote_arch_state (void)
291 {
292 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
293 }
294
295 /* Fetch the global remote target state. */
296
297 static struct remote_state *
298 get_remote_state (void)
299 {
300 /* Make sure that the remote architecture state has been
301 initialized, because doing so might reallocate rs->buf. Any
302 function which calls getpkt also needs to be mindful of changes
303 to rs->buf, but this call limits the number of places which run
304 into trouble. */
305 get_remote_arch_state ();
306
307 return get_remote_state_raw ();
308 }
309
310 static int
311 compare_pnums (const void *lhs_, const void *rhs_)
312 {
313 const struct packet_reg * const *lhs = lhs_;
314 const struct packet_reg * const *rhs = rhs_;
315
316 if ((*lhs)->pnum < (*rhs)->pnum)
317 return -1;
318 else if ((*lhs)->pnum == (*rhs)->pnum)
319 return 0;
320 else
321 return 1;
322 }
323
324 static void *
325 init_remote_state (struct gdbarch *gdbarch)
326 {
327 int regnum, num_remote_regs, offset;
328 struct remote_state *rs = get_remote_state_raw ();
329 struct remote_arch_state *rsa;
330 struct packet_reg **remote_regs;
331
332 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
333
334 /* Use the architecture to build a regnum<->pnum table, which will be
335 1:1 unless a feature set specifies otherwise. */
336 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
337 gdbarch_num_regs (current_gdbarch),
338 struct packet_reg);
339 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
340 {
341 struct packet_reg *r = &rsa->regs[regnum];
342
343 if (register_size (current_gdbarch, regnum) == 0)
344 /* Do not try to fetch zero-sized (placeholder) registers. */
345 r->pnum = -1;
346 else
347 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
348
349 r->regnum = regnum;
350 }
351
352 /* Define the g/G packet format as the contents of each register
353 with a remote protocol number, in order of ascending protocol
354 number. */
355
356 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
357 * sizeof (struct packet_reg *));
358 for (num_remote_regs = 0, regnum = 0;
359 regnum < gdbarch_num_regs (current_gdbarch);
360 regnum++)
361 if (rsa->regs[regnum].pnum != -1)
362 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
363
364 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
365 compare_pnums);
366
367 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
368 {
369 remote_regs[regnum]->in_g_packet = 1;
370 remote_regs[regnum]->offset = offset;
371 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
372 }
373
374 /* Record the maximum possible size of the g packet - it may turn out
375 to be smaller. */
376 rsa->sizeof_g_packet = offset;
377
378 /* Default maximum number of characters in a packet body. Many
379 remote stubs have a hardwired buffer size of 400 bytes
380 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
381 as the maximum packet-size to ensure that the packet and an extra
382 NUL character can always fit in the buffer. This stops GDB
383 trashing stubs that try to squeeze an extra NUL into what is
384 already a full buffer (As of 1999-12-04 that was most stubs). */
385 rsa->remote_packet_size = 400 - 1;
386
387 /* This one is filled in when a ``g'' packet is received. */
388 rsa->actual_register_packet_size = 0;
389
390 /* Should rsa->sizeof_g_packet needs more space than the
391 default, adjust the size accordingly. Remember that each byte is
392 encoded as two characters. 32 is the overhead for the packet
393 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
394 (``$NN:G...#NN'') is a better guess, the below has been padded a
395 little. */
396 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
397 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
398
399 /* Make sure that the packet buffer is plenty big enough for
400 this architecture. */
401 if (rs->buf_size < rsa->remote_packet_size)
402 {
403 rs->buf_size = 2 * rsa->remote_packet_size;
404 rs->buf = xrealloc (rs->buf, rs->buf_size);
405 }
406
407 return rsa;
408 }
409
410 /* Return the current allowed size of a remote packet. This is
411 inferred from the current architecture, and should be used to
412 limit the length of outgoing packets. */
413 static long
414 get_remote_packet_size (void)
415 {
416 struct remote_state *rs = get_remote_state ();
417 struct remote_arch_state *rsa = get_remote_arch_state ();
418
419 if (rs->explicit_packet_size)
420 return rs->explicit_packet_size;
421
422 return rsa->remote_packet_size;
423 }
424
425 static struct packet_reg *
426 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
427 {
428 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
429 return NULL;
430 else
431 {
432 struct packet_reg *r = &rsa->regs[regnum];
433 gdb_assert (r->regnum == regnum);
434 return r;
435 }
436 }
437
438 static struct packet_reg *
439 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
440 {
441 int i;
442 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
443 {
444 struct packet_reg *r = &rsa->regs[i];
445 if (r->pnum == pnum)
446 return r;
447 }
448 return NULL;
449 }
450
451 /* FIXME: graces/2002-08-08: These variables should eventually be
452 bound to an instance of the target object (as in gdbarch-tdep()),
453 when such a thing exists. */
454
455 /* This is set to the data address of the access causing the target
456 to stop for a watchpoint. */
457 static CORE_ADDR remote_watch_data_address;
458
459 /* This is non-zero if target stopped for a watchpoint. */
460 static int remote_stopped_by_watchpoint_p;
461
462 static struct target_ops remote_ops;
463
464 static struct target_ops extended_remote_ops;
465
466 /* Temporary target ops. Just like the remote_ops and
467 extended_remote_ops, but with asynchronous support. */
468 static struct target_ops remote_async_ops;
469
470 static struct target_ops extended_async_remote_ops;
471
472 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
473 ``forever'' still use the normal timeout mechanism. This is
474 currently used by the ASYNC code to guarentee that target reads
475 during the initial connect always time-out. Once getpkt has been
476 modified to return a timeout indication and, in turn
477 remote_wait()/wait_for_inferior() have gained a timeout parameter
478 this can go away. */
479 static int wait_forever_enabled_p = 1;
480
481
482 /* This variable chooses whether to send a ^C or a break when the user
483 requests program interruption. Although ^C is usually what remote
484 systems expect, and that is the default here, sometimes a break is
485 preferable instead. */
486
487 static int remote_break;
488
489 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
490 remote_open knows that we don't have a file open when the program
491 starts. */
492 static struct serial *remote_desc = NULL;
493
494 /* This variable sets the number of bits in an address that are to be
495 sent in a memory ("M" or "m") packet. Normally, after stripping
496 leading zeros, the entire address would be sent. This variable
497 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
498 initial implementation of remote.c restricted the address sent in
499 memory packets to ``host::sizeof long'' bytes - (typically 32
500 bits). Consequently, for 64 bit targets, the upper 32 bits of an
501 address was never sent. Since fixing this bug may cause a break in
502 some remote targets this variable is principly provided to
503 facilitate backward compatibility. */
504
505 static int remote_address_size;
506
507 /* Tempoary to track who currently owns the terminal. See
508 target_async_terminal_* for more details. */
509
510 static int remote_async_terminal_ours_p;
511
512 \f
513 /* User configurable variables for the number of characters in a
514 memory read/write packet. MIN (rsa->remote_packet_size,
515 rsa->sizeof_g_packet) is the default. Some targets need smaller
516 values (fifo overruns, et.al.) and some users need larger values
517 (speed up transfers). The variables ``preferred_*'' (the user
518 request), ``current_*'' (what was actually set) and ``forced_*''
519 (Positive - a soft limit, negative - a hard limit). */
520
521 struct memory_packet_config
522 {
523 char *name;
524 long size;
525 int fixed_p;
526 };
527
528 /* Compute the current size of a read/write packet. Since this makes
529 use of ``actual_register_packet_size'' the computation is dynamic. */
530
531 static long
532 get_memory_packet_size (struct memory_packet_config *config)
533 {
534 struct remote_state *rs = get_remote_state ();
535 struct remote_arch_state *rsa = get_remote_arch_state ();
536
537 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
538 law?) that some hosts don't cope very well with large alloca()
539 calls. Eventually the alloca() code will be replaced by calls to
540 xmalloc() and make_cleanups() allowing this restriction to either
541 be lifted or removed. */
542 #ifndef MAX_REMOTE_PACKET_SIZE
543 #define MAX_REMOTE_PACKET_SIZE 16384
544 #endif
545 /* NOTE: 20 ensures we can write at least one byte. */
546 #ifndef MIN_REMOTE_PACKET_SIZE
547 #define MIN_REMOTE_PACKET_SIZE 20
548 #endif
549 long what_they_get;
550 if (config->fixed_p)
551 {
552 if (config->size <= 0)
553 what_they_get = MAX_REMOTE_PACKET_SIZE;
554 else
555 what_they_get = config->size;
556 }
557 else
558 {
559 what_they_get = get_remote_packet_size ();
560 /* Limit the packet to the size specified by the user. */
561 if (config->size > 0
562 && what_they_get > config->size)
563 what_they_get = config->size;
564
565 /* Limit it to the size of the targets ``g'' response unless we have
566 permission from the stub to use a larger packet size. */
567 if (rs->explicit_packet_size == 0
568 && rsa->actual_register_packet_size > 0
569 && what_they_get > rsa->actual_register_packet_size)
570 what_they_get = rsa->actual_register_packet_size;
571 }
572 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
573 what_they_get = MAX_REMOTE_PACKET_SIZE;
574 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
575 what_they_get = MIN_REMOTE_PACKET_SIZE;
576
577 /* Make sure there is room in the global buffer for this packet
578 (including its trailing NUL byte). */
579 if (rs->buf_size < what_they_get + 1)
580 {
581 rs->buf_size = 2 * what_they_get;
582 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
583 }
584
585 return what_they_get;
586 }
587
588 /* Update the size of a read/write packet. If they user wants
589 something really big then do a sanity check. */
590
591 static void
592 set_memory_packet_size (char *args, struct memory_packet_config *config)
593 {
594 int fixed_p = config->fixed_p;
595 long size = config->size;
596 if (args == NULL)
597 error (_("Argument required (integer, `fixed' or `limited')."));
598 else if (strcmp (args, "hard") == 0
599 || strcmp (args, "fixed") == 0)
600 fixed_p = 1;
601 else if (strcmp (args, "soft") == 0
602 || strcmp (args, "limit") == 0)
603 fixed_p = 0;
604 else
605 {
606 char *end;
607 size = strtoul (args, &end, 0);
608 if (args == end)
609 error (_("Invalid %s (bad syntax)."), config->name);
610 #if 0
611 /* Instead of explicitly capping the size of a packet to
612 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
613 instead allowed to set the size to something arbitrarily
614 large. */
615 if (size > MAX_REMOTE_PACKET_SIZE)
616 error (_("Invalid %s (too large)."), config->name);
617 #endif
618 }
619 /* Extra checks? */
620 if (fixed_p && !config->fixed_p)
621 {
622 if (! query (_("The target may not be able to correctly handle a %s\n"
623 "of %ld bytes. Change the packet size? "),
624 config->name, size))
625 error (_("Packet size not changed."));
626 }
627 /* Update the config. */
628 config->fixed_p = fixed_p;
629 config->size = size;
630 }
631
632 static void
633 show_memory_packet_size (struct memory_packet_config *config)
634 {
635 printf_filtered (_("The %s is %ld. "), config->name, config->size);
636 if (config->fixed_p)
637 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
638 get_memory_packet_size (config));
639 else
640 printf_filtered (_("Packets are limited to %ld bytes.\n"),
641 get_memory_packet_size (config));
642 }
643
644 static struct memory_packet_config memory_write_packet_config =
645 {
646 "memory-write-packet-size",
647 };
648
649 static void
650 set_memory_write_packet_size (char *args, int from_tty)
651 {
652 set_memory_packet_size (args, &memory_write_packet_config);
653 }
654
655 static void
656 show_memory_write_packet_size (char *args, int from_tty)
657 {
658 show_memory_packet_size (&memory_write_packet_config);
659 }
660
661 static long
662 get_memory_write_packet_size (void)
663 {
664 return get_memory_packet_size (&memory_write_packet_config);
665 }
666
667 static struct memory_packet_config memory_read_packet_config =
668 {
669 "memory-read-packet-size",
670 };
671
672 static void
673 set_memory_read_packet_size (char *args, int from_tty)
674 {
675 set_memory_packet_size (args, &memory_read_packet_config);
676 }
677
678 static void
679 show_memory_read_packet_size (char *args, int from_tty)
680 {
681 show_memory_packet_size (&memory_read_packet_config);
682 }
683
684 static long
685 get_memory_read_packet_size (void)
686 {
687 long size = get_memory_packet_size (&memory_read_packet_config);
688 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
689 extra buffer size argument before the memory read size can be
690 increased beyond this. */
691 if (size > get_remote_packet_size ())
692 size = get_remote_packet_size ();
693 return size;
694 }
695
696 \f
697 /* Generic configuration support for packets the stub optionally
698 supports. Allows the user to specify the use of the packet as well
699 as allowing GDB to auto-detect support in the remote stub. */
700
701 enum packet_support
702 {
703 PACKET_SUPPORT_UNKNOWN = 0,
704 PACKET_ENABLE,
705 PACKET_DISABLE
706 };
707
708 struct packet_config
709 {
710 const char *name;
711 const char *title;
712 enum auto_boolean detect;
713 enum packet_support support;
714 };
715
716 /* Analyze a packet's return value and update the packet config
717 accordingly. */
718
719 enum packet_result
720 {
721 PACKET_ERROR,
722 PACKET_OK,
723 PACKET_UNKNOWN
724 };
725
726 static void
727 update_packet_config (struct packet_config *config)
728 {
729 switch (config->detect)
730 {
731 case AUTO_BOOLEAN_TRUE:
732 config->support = PACKET_ENABLE;
733 break;
734 case AUTO_BOOLEAN_FALSE:
735 config->support = PACKET_DISABLE;
736 break;
737 case AUTO_BOOLEAN_AUTO:
738 config->support = PACKET_SUPPORT_UNKNOWN;
739 break;
740 }
741 }
742
743 static void
744 show_packet_config_cmd (struct packet_config *config)
745 {
746 char *support = "internal-error";
747 switch (config->support)
748 {
749 case PACKET_ENABLE:
750 support = "enabled";
751 break;
752 case PACKET_DISABLE:
753 support = "disabled";
754 break;
755 case PACKET_SUPPORT_UNKNOWN:
756 support = "unknown";
757 break;
758 }
759 switch (config->detect)
760 {
761 case AUTO_BOOLEAN_AUTO:
762 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
763 config->name, support);
764 break;
765 case AUTO_BOOLEAN_TRUE:
766 case AUTO_BOOLEAN_FALSE:
767 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
768 config->name, support);
769 break;
770 }
771 }
772
773 static void
774 add_packet_config_cmd (struct packet_config *config, const char *name,
775 const char *title, int legacy)
776 {
777 char *set_doc;
778 char *show_doc;
779 char *cmd_name;
780
781 config->name = name;
782 config->title = title;
783 config->detect = AUTO_BOOLEAN_AUTO;
784 config->support = PACKET_SUPPORT_UNKNOWN;
785 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
786 name, title);
787 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
788 name, title);
789 /* set/show TITLE-packet {auto,on,off} */
790 cmd_name = xstrprintf ("%s-packet", title);
791 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
792 &config->detect, set_doc, show_doc, NULL, /* help_doc */
793 set_remote_protocol_packet_cmd,
794 show_remote_protocol_packet_cmd,
795 &remote_set_cmdlist, &remote_show_cmdlist);
796 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
797 if (legacy)
798 {
799 char *legacy_name;
800 legacy_name = xstrprintf ("%s-packet", name);
801 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
802 &remote_set_cmdlist);
803 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
804 &remote_show_cmdlist);
805 }
806 }
807
808 static enum packet_result
809 packet_check_result (const char *buf)
810 {
811 if (buf[0] != '\0')
812 {
813 /* The stub recognized the packet request. Check that the
814 operation succeeded. */
815 if (buf[0] == 'E'
816 && isxdigit (buf[1]) && isxdigit (buf[2])
817 && buf[3] == '\0')
818 /* "Enn" - definitly an error. */
819 return PACKET_ERROR;
820
821 /* Always treat "E." as an error. This will be used for
822 more verbose error messages, such as E.memtypes. */
823 if (buf[0] == 'E' && buf[1] == '.')
824 return PACKET_ERROR;
825
826 /* The packet may or may not be OK. Just assume it is. */
827 return PACKET_OK;
828 }
829 else
830 /* The stub does not support the packet. */
831 return PACKET_UNKNOWN;
832 }
833
834 static enum packet_result
835 packet_ok (const char *buf, struct packet_config *config)
836 {
837 enum packet_result result;
838
839 result = packet_check_result (buf);
840 switch (result)
841 {
842 case PACKET_OK:
843 case PACKET_ERROR:
844 /* The stub recognized the packet request. */
845 switch (config->support)
846 {
847 case PACKET_SUPPORT_UNKNOWN:
848 if (remote_debug)
849 fprintf_unfiltered (gdb_stdlog,
850 "Packet %s (%s) is supported\n",
851 config->name, config->title);
852 config->support = PACKET_ENABLE;
853 break;
854 case PACKET_DISABLE:
855 internal_error (__FILE__, __LINE__,
856 _("packet_ok: attempt to use a disabled packet"));
857 break;
858 case PACKET_ENABLE:
859 break;
860 }
861 break;
862 case PACKET_UNKNOWN:
863 /* The stub does not support the packet. */
864 switch (config->support)
865 {
866 case PACKET_ENABLE:
867 if (config->detect == AUTO_BOOLEAN_AUTO)
868 /* If the stub previously indicated that the packet was
869 supported then there is a protocol error.. */
870 error (_("Protocol error: %s (%s) conflicting enabled responses."),
871 config->name, config->title);
872 else
873 /* The user set it wrong. */
874 error (_("Enabled packet %s (%s) not recognized by stub"),
875 config->name, config->title);
876 break;
877 case PACKET_SUPPORT_UNKNOWN:
878 if (remote_debug)
879 fprintf_unfiltered (gdb_stdlog,
880 "Packet %s (%s) is NOT supported\n",
881 config->name, config->title);
882 config->support = PACKET_DISABLE;
883 break;
884 case PACKET_DISABLE:
885 break;
886 }
887 break;
888 }
889
890 return result;
891 }
892
893 enum {
894 PACKET_vCont = 0,
895 PACKET_X,
896 PACKET_qSymbol,
897 PACKET_P,
898 PACKET_p,
899 PACKET_Z0,
900 PACKET_Z1,
901 PACKET_Z2,
902 PACKET_Z3,
903 PACKET_Z4,
904 PACKET_qXfer_auxv,
905 PACKET_qXfer_features,
906 PACKET_qXfer_libraries,
907 PACKET_qXfer_memory_map,
908 PACKET_qXfer_spu_read,
909 PACKET_qXfer_spu_write,
910 PACKET_qGetTLSAddr,
911 PACKET_qSupported,
912 PACKET_QPassSignals,
913 PACKET_MAX
914 };
915
916 static struct packet_config remote_protocol_packets[PACKET_MAX];
917
918 static void
919 set_remote_protocol_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
921 {
922 struct packet_config *packet;
923
924 for (packet = remote_protocol_packets;
925 packet < &remote_protocol_packets[PACKET_MAX];
926 packet++)
927 {
928 if (&packet->detect == c->var)
929 {
930 update_packet_config (packet);
931 return;
932 }
933 }
934 internal_error (__FILE__, __LINE__, "Could not find config for %s",
935 c->name);
936 }
937
938 static void
939 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
940 struct cmd_list_element *c,
941 const char *value)
942 {
943 struct packet_config *packet;
944
945 for (packet = remote_protocol_packets;
946 packet < &remote_protocol_packets[PACKET_MAX];
947 packet++)
948 {
949 if (&packet->detect == c->var)
950 {
951 show_packet_config_cmd (packet);
952 return;
953 }
954 }
955 internal_error (__FILE__, __LINE__, "Could not find config for %s",
956 c->name);
957 }
958
959 /* Should we try one of the 'Z' requests? */
960
961 enum Z_packet_type
962 {
963 Z_PACKET_SOFTWARE_BP,
964 Z_PACKET_HARDWARE_BP,
965 Z_PACKET_WRITE_WP,
966 Z_PACKET_READ_WP,
967 Z_PACKET_ACCESS_WP,
968 NR_Z_PACKET_TYPES
969 };
970
971 /* For compatibility with older distributions. Provide a ``set remote
972 Z-packet ...'' command that updates all the Z packet types. */
973
974 static enum auto_boolean remote_Z_packet_detect;
975
976 static void
977 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
978 struct cmd_list_element *c)
979 {
980 int i;
981 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
982 {
983 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
984 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
985 }
986 }
987
988 static void
989 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
990 struct cmd_list_element *c,
991 const char *value)
992 {
993 int i;
994 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
995 {
996 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
997 }
998 }
999
1000 /* Should we try the 'ThreadInfo' query packet?
1001
1002 This variable (NOT available to the user: auto-detect only!)
1003 determines whether GDB will use the new, simpler "ThreadInfo"
1004 query or the older, more complex syntax for thread queries.
1005 This is an auto-detect variable (set to true at each connect,
1006 and set to false when the target fails to recognize it). */
1007
1008 static int use_threadinfo_query;
1009 static int use_threadextra_query;
1010
1011 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1012 static struct async_signal_handler *sigint_remote_twice_token;
1013 static struct async_signal_handler *sigint_remote_token;
1014
1015 /* These are pointers to hook functions that may be set in order to
1016 modify resume/wait behavior for a particular architecture. */
1017
1018 void (*deprecated_target_resume_hook) (void);
1019 void (*deprecated_target_wait_loop_hook) (void);
1020 \f
1021
1022
1023 /* These are the threads which we last sent to the remote system.
1024 -1 for all or -2 for not sent yet. */
1025 static int general_thread;
1026 static int continue_thread;
1027
1028 /* Call this function as a result of
1029 1) A halt indication (T packet) containing a thread id
1030 2) A direct query of currthread
1031 3) Successful execution of set thread
1032 */
1033
1034 static void
1035 record_currthread (int currthread)
1036 {
1037 general_thread = currthread;
1038
1039 /* If this is a new thread, add it to GDB's thread list.
1040 If we leave it up to WFI to do this, bad things will happen. */
1041 if (!in_thread_list (pid_to_ptid (currthread)))
1042 {
1043 add_thread (pid_to_ptid (currthread));
1044 ui_out_text (uiout, "[New ");
1045 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1046 ui_out_text (uiout, "]\n");
1047 }
1048 }
1049
1050 static char *last_pass_packet;
1051
1052 /* If 'QPassSignals' is supported, tell the remote stub what signals
1053 it can simply pass through to the inferior without reporting. */
1054
1055 static void
1056 remote_pass_signals (void)
1057 {
1058 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1059 {
1060 char *pass_packet, *p;
1061 int numsigs = (int) TARGET_SIGNAL_LAST;
1062 int count = 0, i;
1063
1064 gdb_assert (numsigs < 256);
1065 for (i = 0; i < numsigs; i++)
1066 {
1067 if (signal_stop_state (i) == 0
1068 && signal_print_state (i) == 0
1069 && signal_pass_state (i) == 1)
1070 count++;
1071 }
1072 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1073 strcpy (pass_packet, "QPassSignals:");
1074 p = pass_packet + strlen (pass_packet);
1075 for (i = 0; i < numsigs; i++)
1076 {
1077 if (signal_stop_state (i) == 0
1078 && signal_print_state (i) == 0
1079 && signal_pass_state (i) == 1)
1080 {
1081 if (i >= 16)
1082 *p++ = tohex (i >> 4);
1083 *p++ = tohex (i & 15);
1084 if (count)
1085 *p++ = ';';
1086 else
1087 break;
1088 count--;
1089 }
1090 }
1091 *p = 0;
1092 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1093 {
1094 struct remote_state *rs = get_remote_state ();
1095 char *buf = rs->buf;
1096
1097 putpkt (pass_packet);
1098 getpkt (&rs->buf, &rs->buf_size, 0);
1099 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1100 if (last_pass_packet)
1101 xfree (last_pass_packet);
1102 last_pass_packet = pass_packet;
1103 }
1104 else
1105 xfree (pass_packet);
1106 }
1107 }
1108
1109 #define MAGIC_NULL_PID 42000
1110
1111 static void
1112 set_thread (int th, int gen)
1113 {
1114 struct remote_state *rs = get_remote_state ();
1115 char *buf = rs->buf;
1116 int state = gen ? general_thread : continue_thread;
1117
1118 if (state == th)
1119 return;
1120
1121 buf[0] = 'H';
1122 buf[1] = gen ? 'g' : 'c';
1123 if (th == MAGIC_NULL_PID)
1124 {
1125 buf[2] = '0';
1126 buf[3] = '\0';
1127 }
1128 else if (th < 0)
1129 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1130 else
1131 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1132 putpkt (buf);
1133 getpkt (&rs->buf, &rs->buf_size, 0);
1134 if (gen)
1135 general_thread = th;
1136 else
1137 continue_thread = th;
1138 }
1139 \f
1140 /* Return nonzero if the thread TH is still alive on the remote system. */
1141
1142 static int
1143 remote_thread_alive (ptid_t ptid)
1144 {
1145 struct remote_state *rs = get_remote_state ();
1146 int tid = PIDGET (ptid);
1147
1148 if (tid < 0)
1149 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1150 else
1151 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1152 putpkt (rs->buf);
1153 getpkt (&rs->buf, &rs->buf_size, 0);
1154 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1155 }
1156
1157 /* About these extended threadlist and threadinfo packets. They are
1158 variable length packets but, the fields within them are often fixed
1159 length. They are redundent enough to send over UDP as is the
1160 remote protocol in general. There is a matching unit test module
1161 in libstub. */
1162
1163 #define OPAQUETHREADBYTES 8
1164
1165 /* a 64 bit opaque identifier */
1166 typedef unsigned char threadref[OPAQUETHREADBYTES];
1167
1168 /* WARNING: This threadref data structure comes from the remote O.S.,
1169 libstub protocol encoding, and remote.c. it is not particularly
1170 changable. */
1171
1172 /* Right now, the internal structure is int. We want it to be bigger.
1173 Plan to fix this.
1174 */
1175
1176 typedef int gdb_threadref; /* Internal GDB thread reference. */
1177
1178 /* gdb_ext_thread_info is an internal GDB data structure which is
1179 equivalent to the reply of the remote threadinfo packet. */
1180
1181 struct gdb_ext_thread_info
1182 {
1183 threadref threadid; /* External form of thread reference. */
1184 int active; /* Has state interesting to GDB?
1185 regs, stack. */
1186 char display[256]; /* Brief state display, name,
1187 blocked/suspended. */
1188 char shortname[32]; /* To be used to name threads. */
1189 char more_display[256]; /* Long info, statistics, queue depth,
1190 whatever. */
1191 };
1192
1193 /* The volume of remote transfers can be limited by submitting
1194 a mask containing bits specifying the desired information.
1195 Use a union of these values as the 'selection' parameter to
1196 get_thread_info. FIXME: Make these TAG names more thread specific.
1197 */
1198
1199 #define TAG_THREADID 1
1200 #define TAG_EXISTS 2
1201 #define TAG_DISPLAY 4
1202 #define TAG_THREADNAME 8
1203 #define TAG_MOREDISPLAY 16
1204
1205 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1206
1207 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1208
1209 static char *unpack_nibble (char *buf, int *val);
1210
1211 static char *pack_nibble (char *buf, int nibble);
1212
1213 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1214
1215 static char *unpack_byte (char *buf, int *value);
1216
1217 static char *pack_int (char *buf, int value);
1218
1219 static char *unpack_int (char *buf, int *value);
1220
1221 static char *unpack_string (char *src, char *dest, int length);
1222
1223 static char *pack_threadid (char *pkt, threadref *id);
1224
1225 static char *unpack_threadid (char *inbuf, threadref *id);
1226
1227 void int_to_threadref (threadref *id, int value);
1228
1229 static int threadref_to_int (threadref *ref);
1230
1231 static void copy_threadref (threadref *dest, threadref *src);
1232
1233 static int threadmatch (threadref *dest, threadref *src);
1234
1235 static char *pack_threadinfo_request (char *pkt, int mode,
1236 threadref *id);
1237
1238 static int remote_unpack_thread_info_response (char *pkt,
1239 threadref *expectedref,
1240 struct gdb_ext_thread_info
1241 *info);
1242
1243
1244 static int remote_get_threadinfo (threadref *threadid,
1245 int fieldset, /*TAG mask */
1246 struct gdb_ext_thread_info *info);
1247
1248 static char *pack_threadlist_request (char *pkt, int startflag,
1249 int threadcount,
1250 threadref *nextthread);
1251
1252 static int parse_threadlist_response (char *pkt,
1253 int result_limit,
1254 threadref *original_echo,
1255 threadref *resultlist,
1256 int *doneflag);
1257
1258 static int remote_get_threadlist (int startflag,
1259 threadref *nextthread,
1260 int result_limit,
1261 int *done,
1262 int *result_count,
1263 threadref *threadlist);
1264
1265 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1266
1267 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1268 void *context, int looplimit);
1269
1270 static int remote_newthread_step (threadref *ref, void *context);
1271
1272 /* Encode 64 bits in 16 chars of hex. */
1273
1274 static const char hexchars[] = "0123456789abcdef";
1275
1276 static int
1277 ishex (int ch, int *val)
1278 {
1279 if ((ch >= 'a') && (ch <= 'f'))
1280 {
1281 *val = ch - 'a' + 10;
1282 return 1;
1283 }
1284 if ((ch >= 'A') && (ch <= 'F'))
1285 {
1286 *val = ch - 'A' + 10;
1287 return 1;
1288 }
1289 if ((ch >= '0') && (ch <= '9'))
1290 {
1291 *val = ch - '0';
1292 return 1;
1293 }
1294 return 0;
1295 }
1296
1297 static int
1298 stubhex (int ch)
1299 {
1300 if (ch >= 'a' && ch <= 'f')
1301 return ch - 'a' + 10;
1302 if (ch >= '0' && ch <= '9')
1303 return ch - '0';
1304 if (ch >= 'A' && ch <= 'F')
1305 return ch - 'A' + 10;
1306 return -1;
1307 }
1308
1309 static int
1310 stub_unpack_int (char *buff, int fieldlength)
1311 {
1312 int nibble;
1313 int retval = 0;
1314
1315 while (fieldlength)
1316 {
1317 nibble = stubhex (*buff++);
1318 retval |= nibble;
1319 fieldlength--;
1320 if (fieldlength)
1321 retval = retval << 4;
1322 }
1323 return retval;
1324 }
1325
1326 char *
1327 unpack_varlen_hex (char *buff, /* packet to parse */
1328 ULONGEST *result)
1329 {
1330 int nibble;
1331 ULONGEST retval = 0;
1332
1333 while (ishex (*buff, &nibble))
1334 {
1335 buff++;
1336 retval = retval << 4;
1337 retval |= nibble & 0x0f;
1338 }
1339 *result = retval;
1340 return buff;
1341 }
1342
1343 static char *
1344 unpack_nibble (char *buf, int *val)
1345 {
1346 ishex (*buf++, val);
1347 return buf;
1348 }
1349
1350 static char *
1351 pack_nibble (char *buf, int nibble)
1352 {
1353 *buf++ = hexchars[(nibble & 0x0f)];
1354 return buf;
1355 }
1356
1357 static char *
1358 pack_hex_byte (char *pkt, int byte)
1359 {
1360 *pkt++ = hexchars[(byte >> 4) & 0xf];
1361 *pkt++ = hexchars[(byte & 0xf)];
1362 return pkt;
1363 }
1364
1365 static char *
1366 unpack_byte (char *buf, int *value)
1367 {
1368 *value = stub_unpack_int (buf, 2);
1369 return buf + 2;
1370 }
1371
1372 static char *
1373 pack_int (char *buf, int value)
1374 {
1375 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1376 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1377 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1378 buf = pack_hex_byte (buf, (value & 0xff));
1379 return buf;
1380 }
1381
1382 static char *
1383 unpack_int (char *buf, int *value)
1384 {
1385 *value = stub_unpack_int (buf, 8);
1386 return buf + 8;
1387 }
1388
1389 #if 0 /* Currently unused, uncomment when needed. */
1390 static char *pack_string (char *pkt, char *string);
1391
1392 static char *
1393 pack_string (char *pkt, char *string)
1394 {
1395 char ch;
1396 int len;
1397
1398 len = strlen (string);
1399 if (len > 200)
1400 len = 200; /* Bigger than most GDB packets, junk??? */
1401 pkt = pack_hex_byte (pkt, len);
1402 while (len-- > 0)
1403 {
1404 ch = *string++;
1405 if ((ch == '\0') || (ch == '#'))
1406 ch = '*'; /* Protect encapsulation. */
1407 *pkt++ = ch;
1408 }
1409 return pkt;
1410 }
1411 #endif /* 0 (unused) */
1412
1413 static char *
1414 unpack_string (char *src, char *dest, int length)
1415 {
1416 while (length--)
1417 *dest++ = *src++;
1418 *dest = '\0';
1419 return src;
1420 }
1421
1422 static char *
1423 pack_threadid (char *pkt, threadref *id)
1424 {
1425 char *limit;
1426 unsigned char *altid;
1427
1428 altid = (unsigned char *) id;
1429 limit = pkt + BUF_THREAD_ID_SIZE;
1430 while (pkt < limit)
1431 pkt = pack_hex_byte (pkt, *altid++);
1432 return pkt;
1433 }
1434
1435
1436 static char *
1437 unpack_threadid (char *inbuf, threadref *id)
1438 {
1439 char *altref;
1440 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1441 int x, y;
1442
1443 altref = (char *) id;
1444
1445 while (inbuf < limit)
1446 {
1447 x = stubhex (*inbuf++);
1448 y = stubhex (*inbuf++);
1449 *altref++ = (x << 4) | y;
1450 }
1451 return inbuf;
1452 }
1453
1454 /* Externally, threadrefs are 64 bits but internally, they are still
1455 ints. This is due to a mismatch of specifications. We would like
1456 to use 64bit thread references internally. This is an adapter
1457 function. */
1458
1459 void
1460 int_to_threadref (threadref *id, int value)
1461 {
1462 unsigned char *scan;
1463
1464 scan = (unsigned char *) id;
1465 {
1466 int i = 4;
1467 while (i--)
1468 *scan++ = 0;
1469 }
1470 *scan++ = (value >> 24) & 0xff;
1471 *scan++ = (value >> 16) & 0xff;
1472 *scan++ = (value >> 8) & 0xff;
1473 *scan++ = (value & 0xff);
1474 }
1475
1476 static int
1477 threadref_to_int (threadref *ref)
1478 {
1479 int i, value = 0;
1480 unsigned char *scan;
1481
1482 scan = *ref;
1483 scan += 4;
1484 i = 4;
1485 while (i-- > 0)
1486 value = (value << 8) | ((*scan++) & 0xff);
1487 return value;
1488 }
1489
1490 static void
1491 copy_threadref (threadref *dest, threadref *src)
1492 {
1493 int i;
1494 unsigned char *csrc, *cdest;
1495
1496 csrc = (unsigned char *) src;
1497 cdest = (unsigned char *) dest;
1498 i = 8;
1499 while (i--)
1500 *cdest++ = *csrc++;
1501 }
1502
1503 static int
1504 threadmatch (threadref *dest, threadref *src)
1505 {
1506 /* Things are broken right now, so just assume we got a match. */
1507 #if 0
1508 unsigned char *srcp, *destp;
1509 int i, result;
1510 srcp = (char *) src;
1511 destp = (char *) dest;
1512
1513 result = 1;
1514 while (i-- > 0)
1515 result &= (*srcp++ == *destp++) ? 1 : 0;
1516 return result;
1517 #endif
1518 return 1;
1519 }
1520
1521 /*
1522 threadid:1, # always request threadid
1523 context_exists:2,
1524 display:4,
1525 unique_name:8,
1526 more_display:16
1527 */
1528
1529 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1530
1531 static char *
1532 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1533 {
1534 *pkt++ = 'q'; /* Info Query */
1535 *pkt++ = 'P'; /* process or thread info */
1536 pkt = pack_int (pkt, mode); /* mode */
1537 pkt = pack_threadid (pkt, id); /* threadid */
1538 *pkt = '\0'; /* terminate */
1539 return pkt;
1540 }
1541
1542 /* These values tag the fields in a thread info response packet. */
1543 /* Tagging the fields allows us to request specific fields and to
1544 add more fields as time goes by. */
1545
1546 #define TAG_THREADID 1 /* Echo the thread identifier. */
1547 #define TAG_EXISTS 2 /* Is this process defined enough to
1548 fetch registers and its stack? */
1549 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1550 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1551 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1552 the process. */
1553
1554 static int
1555 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1556 struct gdb_ext_thread_info *info)
1557 {
1558 struct remote_state *rs = get_remote_state ();
1559 int mask, length;
1560 int tag;
1561 threadref ref;
1562 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1563 int retval = 1;
1564
1565 /* info->threadid = 0; FIXME: implement zero_threadref. */
1566 info->active = 0;
1567 info->display[0] = '\0';
1568 info->shortname[0] = '\0';
1569 info->more_display[0] = '\0';
1570
1571 /* Assume the characters indicating the packet type have been
1572 stripped. */
1573 pkt = unpack_int (pkt, &mask); /* arg mask */
1574 pkt = unpack_threadid (pkt, &ref);
1575
1576 if (mask == 0)
1577 warning (_("Incomplete response to threadinfo request."));
1578 if (!threadmatch (&ref, expectedref))
1579 { /* This is an answer to a different request. */
1580 warning (_("ERROR RMT Thread info mismatch."));
1581 return 0;
1582 }
1583 copy_threadref (&info->threadid, &ref);
1584
1585 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1586
1587 /* Packets are terminated with nulls. */
1588 while ((pkt < limit) && mask && *pkt)
1589 {
1590 pkt = unpack_int (pkt, &tag); /* tag */
1591 pkt = unpack_byte (pkt, &length); /* length */
1592 if (!(tag & mask)) /* Tags out of synch with mask. */
1593 {
1594 warning (_("ERROR RMT: threadinfo tag mismatch."));
1595 retval = 0;
1596 break;
1597 }
1598 if (tag == TAG_THREADID)
1599 {
1600 if (length != 16)
1601 {
1602 warning (_("ERROR RMT: length of threadid is not 16."));
1603 retval = 0;
1604 break;
1605 }
1606 pkt = unpack_threadid (pkt, &ref);
1607 mask = mask & ~TAG_THREADID;
1608 continue;
1609 }
1610 if (tag == TAG_EXISTS)
1611 {
1612 info->active = stub_unpack_int (pkt, length);
1613 pkt += length;
1614 mask = mask & ~(TAG_EXISTS);
1615 if (length > 8)
1616 {
1617 warning (_("ERROR RMT: 'exists' length too long."));
1618 retval = 0;
1619 break;
1620 }
1621 continue;
1622 }
1623 if (tag == TAG_THREADNAME)
1624 {
1625 pkt = unpack_string (pkt, &info->shortname[0], length);
1626 mask = mask & ~TAG_THREADNAME;
1627 continue;
1628 }
1629 if (tag == TAG_DISPLAY)
1630 {
1631 pkt = unpack_string (pkt, &info->display[0], length);
1632 mask = mask & ~TAG_DISPLAY;
1633 continue;
1634 }
1635 if (tag == TAG_MOREDISPLAY)
1636 {
1637 pkt = unpack_string (pkt, &info->more_display[0], length);
1638 mask = mask & ~TAG_MOREDISPLAY;
1639 continue;
1640 }
1641 warning (_("ERROR RMT: unknown thread info tag."));
1642 break; /* Not a tag we know about. */
1643 }
1644 return retval;
1645 }
1646
1647 static int
1648 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1649 struct gdb_ext_thread_info *info)
1650 {
1651 struct remote_state *rs = get_remote_state ();
1652 int result;
1653
1654 pack_threadinfo_request (rs->buf, fieldset, threadid);
1655 putpkt (rs->buf);
1656 getpkt (&rs->buf, &rs->buf_size, 0);
1657 result = remote_unpack_thread_info_response (rs->buf + 2,
1658 threadid, info);
1659 return result;
1660 }
1661
1662 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1663
1664 static char *
1665 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1666 threadref *nextthread)
1667 {
1668 *pkt++ = 'q'; /* info query packet */
1669 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1670 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1671 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1672 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1673 *pkt = '\0';
1674 return pkt;
1675 }
1676
1677 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1678
1679 static int
1680 parse_threadlist_response (char *pkt, int result_limit,
1681 threadref *original_echo, threadref *resultlist,
1682 int *doneflag)
1683 {
1684 struct remote_state *rs = get_remote_state ();
1685 char *limit;
1686 int count, resultcount, done;
1687
1688 resultcount = 0;
1689 /* Assume the 'q' and 'M chars have been stripped. */
1690 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1691 /* done parse past here */
1692 pkt = unpack_byte (pkt, &count); /* count field */
1693 pkt = unpack_nibble (pkt, &done);
1694 /* The first threadid is the argument threadid. */
1695 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1696 while ((count-- > 0) && (pkt < limit))
1697 {
1698 pkt = unpack_threadid (pkt, resultlist++);
1699 if (resultcount++ >= result_limit)
1700 break;
1701 }
1702 if (doneflag)
1703 *doneflag = done;
1704 return resultcount;
1705 }
1706
1707 static int
1708 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1709 int *done, int *result_count, threadref *threadlist)
1710 {
1711 struct remote_state *rs = get_remote_state ();
1712 static threadref echo_nextthread;
1713 int result = 1;
1714
1715 /* Trancate result limit to be smaller than the packet size. */
1716 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1717 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1718
1719 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1720 putpkt (rs->buf);
1721 getpkt (&rs->buf, &rs->buf_size, 0);
1722
1723 *result_count =
1724 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1725 threadlist, done);
1726
1727 if (!threadmatch (&echo_nextthread, nextthread))
1728 {
1729 /* FIXME: This is a good reason to drop the packet. */
1730 /* Possably, there is a duplicate response. */
1731 /* Possabilities :
1732 retransmit immediatly - race conditions
1733 retransmit after timeout - yes
1734 exit
1735 wait for packet, then exit
1736 */
1737 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1738 return 0; /* I choose simply exiting. */
1739 }
1740 if (*result_count <= 0)
1741 {
1742 if (*done != 1)
1743 {
1744 warning (_("RMT ERROR : failed to get remote thread list."));
1745 result = 0;
1746 }
1747 return result; /* break; */
1748 }
1749 if (*result_count > result_limit)
1750 {
1751 *result_count = 0;
1752 warning (_("RMT ERROR: threadlist response longer than requested."));
1753 return 0;
1754 }
1755 return result;
1756 }
1757
1758 /* This is the interface between remote and threads, remotes upper
1759 interface. */
1760
1761 /* remote_find_new_threads retrieves the thread list and for each
1762 thread in the list, looks up the thread in GDB's internal list,
1763 ading the thread if it does not already exist. This involves
1764 getting partial thread lists from the remote target so, polling the
1765 quit_flag is required. */
1766
1767
1768 /* About this many threadisds fit in a packet. */
1769
1770 #define MAXTHREADLISTRESULTS 32
1771
1772 static int
1773 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1774 int looplimit)
1775 {
1776 int done, i, result_count;
1777 int startflag = 1;
1778 int result = 1;
1779 int loopcount = 0;
1780 static threadref nextthread;
1781 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1782
1783 done = 0;
1784 while (!done)
1785 {
1786 if (loopcount++ > looplimit)
1787 {
1788 result = 0;
1789 warning (_("Remote fetch threadlist -infinite loop-."));
1790 break;
1791 }
1792 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1793 &done, &result_count, resultthreadlist))
1794 {
1795 result = 0;
1796 break;
1797 }
1798 /* Clear for later iterations. */
1799 startflag = 0;
1800 /* Setup to resume next batch of thread references, set nextthread. */
1801 if (result_count >= 1)
1802 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1803 i = 0;
1804 while (result_count--)
1805 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1806 break;
1807 }
1808 return result;
1809 }
1810
1811 static int
1812 remote_newthread_step (threadref *ref, void *context)
1813 {
1814 ptid_t ptid;
1815
1816 ptid = pid_to_ptid (threadref_to_int (ref));
1817
1818 if (!in_thread_list (ptid))
1819 add_thread (ptid);
1820 return 1; /* continue iterator */
1821 }
1822
1823 #define CRAZY_MAX_THREADS 1000
1824
1825 static ptid_t
1826 remote_current_thread (ptid_t oldpid)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829
1830 putpkt ("qC");
1831 getpkt (&rs->buf, &rs->buf_size, 0);
1832 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1833 /* Use strtoul here, so we'll correctly parse values whose highest
1834 bit is set. The protocol carries them as a simple series of
1835 hex digits; in the absence of a sign, strtol will see such
1836 values as positive numbers out of range for signed 'long', and
1837 return LONG_MAX to indicate an overflow. */
1838 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1839 else
1840 return oldpid;
1841 }
1842
1843 /* Find new threads for info threads command.
1844 * Original version, using John Metzler's thread protocol.
1845 */
1846
1847 static void
1848 remote_find_new_threads (void)
1849 {
1850 remote_threadlist_iterator (remote_newthread_step, 0,
1851 CRAZY_MAX_THREADS);
1852 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1853 inferior_ptid = remote_current_thread (inferior_ptid);
1854 }
1855
1856 /*
1857 * Find all threads for info threads command.
1858 * Uses new thread protocol contributed by Cisco.
1859 * Falls back and attempts to use the older method (above)
1860 * if the target doesn't respond to the new method.
1861 */
1862
1863 static void
1864 remote_threads_info (void)
1865 {
1866 struct remote_state *rs = get_remote_state ();
1867 char *bufp;
1868 int tid;
1869
1870 if (remote_desc == 0) /* paranoia */
1871 error (_("Command can only be used when connected to the remote target."));
1872
1873 if (use_threadinfo_query)
1874 {
1875 putpkt ("qfThreadInfo");
1876 getpkt (&rs->buf, &rs->buf_size, 0);
1877 bufp = rs->buf;
1878 if (bufp[0] != '\0') /* q packet recognized */
1879 {
1880 while (*bufp++ == 'm') /* reply contains one or more TID */
1881 {
1882 do
1883 {
1884 /* Use strtoul here, so we'll correctly parse values
1885 whose highest bit is set. The protocol carries
1886 them as a simple series of hex digits; in the
1887 absence of a sign, strtol will see such values as
1888 positive numbers out of range for signed 'long',
1889 and return LONG_MAX to indicate an overflow. */
1890 tid = strtoul (bufp, &bufp, 16);
1891 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1892 add_thread (pid_to_ptid (tid));
1893 }
1894 while (*bufp++ == ','); /* comma-separated list */
1895 putpkt ("qsThreadInfo");
1896 getpkt (&rs->buf, &rs->buf_size, 0);
1897 bufp = rs->buf;
1898 }
1899 return; /* done */
1900 }
1901 }
1902
1903 /* Else fall back to old method based on jmetzler protocol. */
1904 use_threadinfo_query = 0;
1905 remote_find_new_threads ();
1906 return;
1907 }
1908
1909 /*
1910 * Collect a descriptive string about the given thread.
1911 * The target may say anything it wants to about the thread
1912 * (typically info about its blocked / runnable state, name, etc.).
1913 * This string will appear in the info threads display.
1914 *
1915 * Optional: targets are not required to implement this function.
1916 */
1917
1918 static char *
1919 remote_threads_extra_info (struct thread_info *tp)
1920 {
1921 struct remote_state *rs = get_remote_state ();
1922 int result;
1923 int set;
1924 threadref id;
1925 struct gdb_ext_thread_info threadinfo;
1926 static char display_buf[100]; /* arbitrary... */
1927 int n = 0; /* position in display_buf */
1928
1929 if (remote_desc == 0) /* paranoia */
1930 internal_error (__FILE__, __LINE__,
1931 _("remote_threads_extra_info"));
1932
1933 if (use_threadextra_query)
1934 {
1935 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1936 PIDGET (tp->ptid));
1937 putpkt (rs->buf);
1938 getpkt (&rs->buf, &rs->buf_size, 0);
1939 if (rs->buf[0] != 0)
1940 {
1941 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1942 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1943 display_buf [result] = '\0';
1944 return display_buf;
1945 }
1946 }
1947
1948 /* If the above query fails, fall back to the old method. */
1949 use_threadextra_query = 0;
1950 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1951 | TAG_MOREDISPLAY | TAG_DISPLAY;
1952 int_to_threadref (&id, PIDGET (tp->ptid));
1953 if (remote_get_threadinfo (&id, set, &threadinfo))
1954 if (threadinfo.active)
1955 {
1956 if (*threadinfo.shortname)
1957 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1958 " Name: %s,", threadinfo.shortname);
1959 if (*threadinfo.display)
1960 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1961 " State: %s,", threadinfo.display);
1962 if (*threadinfo.more_display)
1963 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1964 " Priority: %s", threadinfo.more_display);
1965
1966 if (n > 0)
1967 {
1968 /* For purely cosmetic reasons, clear up trailing commas. */
1969 if (',' == display_buf[n-1])
1970 display_buf[n-1] = ' ';
1971 return display_buf;
1972 }
1973 }
1974 return NULL;
1975 }
1976 \f
1977
1978 /* Restart the remote side; this is an extended protocol operation. */
1979
1980 static void
1981 extended_remote_restart (void)
1982 {
1983 struct remote_state *rs = get_remote_state ();
1984
1985 /* Send the restart command; for reasons I don't understand the
1986 remote side really expects a number after the "R". */
1987 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1988 putpkt (rs->buf);
1989
1990 remote_fileio_reset ();
1991
1992 /* Now query for status so this looks just like we restarted
1993 gdbserver from scratch. */
1994 putpkt ("?");
1995 getpkt (&rs->buf, &rs->buf_size, 0);
1996 }
1997 \f
1998 /* Clean up connection to a remote debugger. */
1999
2000 static void
2001 remote_close (int quitting)
2002 {
2003 if (remote_desc)
2004 serial_close (remote_desc);
2005 remote_desc = NULL;
2006 }
2007
2008 /* Query the remote side for the text, data and bss offsets. */
2009
2010 static void
2011 get_offsets (void)
2012 {
2013 struct remote_state *rs = get_remote_state ();
2014 char *buf;
2015 char *ptr;
2016 int lose, num_segments = 0, do_sections, do_segments;
2017 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2018 struct section_offsets *offs;
2019 struct symfile_segment_data *data;
2020
2021 if (symfile_objfile == NULL)
2022 return;
2023
2024 putpkt ("qOffsets");
2025 getpkt (&rs->buf, &rs->buf_size, 0);
2026 buf = rs->buf;
2027
2028 if (buf[0] == '\000')
2029 return; /* Return silently. Stub doesn't support
2030 this command. */
2031 if (buf[0] == 'E')
2032 {
2033 warning (_("Remote failure reply: %s"), buf);
2034 return;
2035 }
2036
2037 /* Pick up each field in turn. This used to be done with scanf, but
2038 scanf will make trouble if CORE_ADDR size doesn't match
2039 conversion directives correctly. The following code will work
2040 with any size of CORE_ADDR. */
2041 text_addr = data_addr = bss_addr = 0;
2042 ptr = buf;
2043 lose = 0;
2044
2045 if (strncmp (ptr, "Text=", 5) == 0)
2046 {
2047 ptr += 5;
2048 /* Don't use strtol, could lose on big values. */
2049 while (*ptr && *ptr != ';')
2050 text_addr = (text_addr << 4) + fromhex (*ptr++);
2051
2052 if (strncmp (ptr, ";Data=", 6) == 0)
2053 {
2054 ptr += 6;
2055 while (*ptr && *ptr != ';')
2056 data_addr = (data_addr << 4) + fromhex (*ptr++);
2057 }
2058 else
2059 lose = 1;
2060
2061 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2062 {
2063 ptr += 5;
2064 while (*ptr && *ptr != ';')
2065 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2066
2067 if (bss_addr != data_addr)
2068 warning (_("Target reported unsupported offsets: %s"), buf);
2069 }
2070 else
2071 lose = 1;
2072 }
2073 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2074 {
2075 ptr += 8;
2076 /* Don't use strtol, could lose on big values. */
2077 while (*ptr && *ptr != ';')
2078 text_addr = (text_addr << 4) + fromhex (*ptr++);
2079 num_segments = 1;
2080
2081 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2082 {
2083 ptr += 9;
2084 while (*ptr && *ptr != ';')
2085 data_addr = (data_addr << 4) + fromhex (*ptr++);
2086 num_segments++;
2087 }
2088 }
2089 else
2090 lose = 1;
2091
2092 if (lose)
2093 error (_("Malformed response to offset query, %s"), buf);
2094 else if (*ptr != '\0')
2095 warning (_("Target reported unsupported offsets: %s"), buf);
2096
2097 offs = ((struct section_offsets *)
2098 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2099 memcpy (offs, symfile_objfile->section_offsets,
2100 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2101
2102 data = get_symfile_segment_data (symfile_objfile->obfd);
2103 do_segments = (data != NULL);
2104 do_sections = num_segments == 0;
2105
2106 if (num_segments > 0)
2107 {
2108 segments[0] = text_addr;
2109 segments[1] = data_addr;
2110 }
2111 /* If we have two segments, we can still try to relocate everything
2112 by assuming that the .text and .data offsets apply to the whole
2113 text and data segments. Convert the offsets given in the packet
2114 to base addresses for symfile_map_offsets_to_segments. */
2115 else if (data && data->num_segments == 2)
2116 {
2117 segments[0] = data->segment_bases[0] + text_addr;
2118 segments[1] = data->segment_bases[1] + data_addr;
2119 num_segments = 2;
2120 }
2121 /* There's no way to relocate by segment. */
2122 else
2123 do_segments = 0;
2124
2125 if (do_segments)
2126 {
2127 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2128 offs, num_segments, segments);
2129
2130 if (ret == 0 && !do_sections)
2131 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2132
2133 if (ret > 0)
2134 do_sections = 0;
2135 }
2136
2137 if (data)
2138 free_symfile_segment_data (data);
2139
2140 if (do_sections)
2141 {
2142 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2143
2144 /* This is a temporary kludge to force data and bss to use the same offsets
2145 because that's what nlmconv does now. The real solution requires changes
2146 to the stub and remote.c that I don't have time to do right now. */
2147
2148 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2149 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2150 }
2151
2152 objfile_relocate (symfile_objfile, offs);
2153 }
2154
2155 /* Stub for catch_exception. */
2156
2157 static void
2158 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2159 {
2160 int from_tty = * (int *) from_tty_p;
2161
2162 immediate_quit++; /* Allow user to interrupt it. */
2163
2164 /* Ack any packet which the remote side has already sent. */
2165 serial_write (remote_desc, "+", 1);
2166
2167 /* Let the stub know that we want it to return the thread. */
2168 set_thread (-1, 0);
2169
2170 inferior_ptid = remote_current_thread (inferior_ptid);
2171
2172 get_offsets (); /* Get text, data & bss offsets. */
2173
2174 putpkt ("?"); /* Initiate a query from remote machine. */
2175 immediate_quit--;
2176
2177 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2178 }
2179
2180 /* Open a connection to a remote debugger.
2181 NAME is the filename used for communication. */
2182
2183 static void
2184 remote_open (char *name, int from_tty)
2185 {
2186 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2187 }
2188
2189 /* Just like remote_open, but with asynchronous support. */
2190 static void
2191 remote_async_open (char *name, int from_tty)
2192 {
2193 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2194 }
2195
2196 /* Open a connection to a remote debugger using the extended
2197 remote gdb protocol. NAME is the filename used for communication. */
2198
2199 static void
2200 extended_remote_open (char *name, int from_tty)
2201 {
2202 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2203 0 /* async_p */);
2204 }
2205
2206 /* Just like extended_remote_open, but with asynchronous support. */
2207 static void
2208 extended_remote_async_open (char *name, int from_tty)
2209 {
2210 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2211 1 /*extended_p */, 1 /* async_p */);
2212 }
2213
2214 /* Generic code for opening a connection to a remote target. */
2215
2216 static void
2217 init_all_packet_configs (void)
2218 {
2219 int i;
2220 for (i = 0; i < PACKET_MAX; i++)
2221 update_packet_config (&remote_protocol_packets[i]);
2222 }
2223
2224 /* Symbol look-up. */
2225
2226 static void
2227 remote_check_symbols (struct objfile *objfile)
2228 {
2229 struct remote_state *rs = get_remote_state ();
2230 char *msg, *reply, *tmp;
2231 struct minimal_symbol *sym;
2232 int end;
2233
2234 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2235 return;
2236
2237 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2238 because we need both at the same time. */
2239 msg = alloca (get_remote_packet_size ());
2240
2241 /* Invite target to request symbol lookups. */
2242
2243 putpkt ("qSymbol::");
2244 getpkt (&rs->buf, &rs->buf_size, 0);
2245 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2246 reply = rs->buf;
2247
2248 while (strncmp (reply, "qSymbol:", 8) == 0)
2249 {
2250 tmp = &reply[8];
2251 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2252 msg[end] = '\0';
2253 sym = lookup_minimal_symbol (msg, NULL, NULL);
2254 if (sym == NULL)
2255 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2256 else
2257 {
2258 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2259
2260 /* If this is a function address, return the start of code
2261 instead of any data function descriptor. */
2262 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2263 sym_addr,
2264 &current_target);
2265
2266 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2267 paddr_nz (sym_addr), &reply[8]);
2268 }
2269
2270 putpkt (msg);
2271 getpkt (&rs->buf, &rs->buf_size, 0);
2272 reply = rs->buf;
2273 }
2274 }
2275
2276 static struct serial *
2277 remote_serial_open (char *name)
2278 {
2279 static int udp_warning = 0;
2280
2281 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2282 of in ser-tcp.c, because it is the remote protocol assuming that the
2283 serial connection is reliable and not the serial connection promising
2284 to be. */
2285 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2286 {
2287 warning (_("\
2288 The remote protocol may be unreliable over UDP.\n\
2289 Some events may be lost, rendering further debugging impossible."));
2290 udp_warning = 1;
2291 }
2292
2293 return serial_open (name);
2294 }
2295
2296 /* This type describes each known response to the qSupported
2297 packet. */
2298 struct protocol_feature
2299 {
2300 /* The name of this protocol feature. */
2301 const char *name;
2302
2303 /* The default for this protocol feature. */
2304 enum packet_support default_support;
2305
2306 /* The function to call when this feature is reported, or after
2307 qSupported processing if the feature is not supported.
2308 The first argument points to this structure. The second
2309 argument indicates whether the packet requested support be
2310 enabled, disabled, or probed (or the default, if this function
2311 is being called at the end of processing and this feature was
2312 not reported). The third argument may be NULL; if not NULL, it
2313 is a NUL-terminated string taken from the packet following
2314 this feature's name and an equals sign. */
2315 void (*func) (const struct protocol_feature *, enum packet_support,
2316 const char *);
2317
2318 /* The corresponding packet for this feature. Only used if
2319 FUNC is remote_supported_packet. */
2320 int packet;
2321 };
2322
2323 static void
2324 remote_supported_packet (const struct protocol_feature *feature,
2325 enum packet_support support,
2326 const char *argument)
2327 {
2328 if (argument)
2329 {
2330 warning (_("Remote qSupported response supplied an unexpected value for"
2331 " \"%s\"."), feature->name);
2332 return;
2333 }
2334
2335 if (remote_protocol_packets[feature->packet].support
2336 == PACKET_SUPPORT_UNKNOWN)
2337 remote_protocol_packets[feature->packet].support = support;
2338 }
2339
2340 static void
2341 remote_packet_size (const struct protocol_feature *feature,
2342 enum packet_support support, const char *value)
2343 {
2344 struct remote_state *rs = get_remote_state ();
2345
2346 int packet_size;
2347 char *value_end;
2348
2349 if (support != PACKET_ENABLE)
2350 return;
2351
2352 if (value == NULL || *value == '\0')
2353 {
2354 warning (_("Remote target reported \"%s\" without a size."),
2355 feature->name);
2356 return;
2357 }
2358
2359 errno = 0;
2360 packet_size = strtol (value, &value_end, 16);
2361 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2362 {
2363 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2364 feature->name, value);
2365 return;
2366 }
2367
2368 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2369 {
2370 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2371 packet_size, MAX_REMOTE_PACKET_SIZE);
2372 packet_size = MAX_REMOTE_PACKET_SIZE;
2373 }
2374
2375 /* Record the new maximum packet size. */
2376 rs->explicit_packet_size = packet_size;
2377 }
2378
2379 static struct protocol_feature remote_protocol_features[] = {
2380 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2381 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2382 PACKET_qXfer_auxv },
2383 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2384 PACKET_qXfer_features },
2385 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2386 PACKET_qXfer_libraries },
2387 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2388 PACKET_qXfer_memory_map },
2389 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2390 PACKET_qXfer_spu_read },
2391 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2392 PACKET_qXfer_spu_write },
2393 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2394 PACKET_QPassSignals },
2395 };
2396
2397 static void
2398 remote_query_supported (void)
2399 {
2400 struct remote_state *rs = get_remote_state ();
2401 char *next;
2402 int i;
2403 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2404
2405 /* The packet support flags are handled differently for this packet
2406 than for most others. We treat an error, a disabled packet, and
2407 an empty response identically: any features which must be reported
2408 to be used will be automatically disabled. An empty buffer
2409 accomplishes this, since that is also the representation for a list
2410 containing no features. */
2411
2412 rs->buf[0] = 0;
2413 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2414 {
2415 putpkt ("qSupported");
2416 getpkt (&rs->buf, &rs->buf_size, 0);
2417
2418 /* If an error occured, warn, but do not return - just reset the
2419 buffer to empty and go on to disable features. */
2420 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2421 == PACKET_ERROR)
2422 {
2423 warning (_("Remote failure reply: %s"), rs->buf);
2424 rs->buf[0] = 0;
2425 }
2426 }
2427
2428 memset (seen, 0, sizeof (seen));
2429
2430 next = rs->buf;
2431 while (*next)
2432 {
2433 enum packet_support is_supported;
2434 char *p, *end, *name_end, *value;
2435
2436 /* First separate out this item from the rest of the packet. If
2437 there's another item after this, we overwrite the separator
2438 (terminated strings are much easier to work with). */
2439 p = next;
2440 end = strchr (p, ';');
2441 if (end == NULL)
2442 {
2443 end = p + strlen (p);
2444 next = end;
2445 }
2446 else
2447 {
2448 *end = '\0';
2449 next = end + 1;
2450
2451 if (end == p)
2452 {
2453 warning (_("empty item in \"qSupported\" response"));
2454 continue;
2455 }
2456 }
2457
2458 name_end = strchr (p, '=');
2459 if (name_end)
2460 {
2461 /* This is a name=value entry. */
2462 is_supported = PACKET_ENABLE;
2463 value = name_end + 1;
2464 *name_end = '\0';
2465 }
2466 else
2467 {
2468 value = NULL;
2469 switch (end[-1])
2470 {
2471 case '+':
2472 is_supported = PACKET_ENABLE;
2473 break;
2474
2475 case '-':
2476 is_supported = PACKET_DISABLE;
2477 break;
2478
2479 case '?':
2480 is_supported = PACKET_SUPPORT_UNKNOWN;
2481 break;
2482
2483 default:
2484 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2485 continue;
2486 }
2487 end[-1] = '\0';
2488 }
2489
2490 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2491 if (strcmp (remote_protocol_features[i].name, p) == 0)
2492 {
2493 const struct protocol_feature *feature;
2494
2495 seen[i] = 1;
2496 feature = &remote_protocol_features[i];
2497 feature->func (feature, is_supported, value);
2498 break;
2499 }
2500 }
2501
2502 /* If we increased the packet size, make sure to increase the global
2503 buffer size also. We delay this until after parsing the entire
2504 qSupported packet, because this is the same buffer we were
2505 parsing. */
2506 if (rs->buf_size < rs->explicit_packet_size)
2507 {
2508 rs->buf_size = rs->explicit_packet_size;
2509 rs->buf = xrealloc (rs->buf, rs->buf_size);
2510 }
2511
2512 /* Handle the defaults for unmentioned features. */
2513 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2514 if (!seen[i])
2515 {
2516 const struct protocol_feature *feature;
2517
2518 feature = &remote_protocol_features[i];
2519 feature->func (feature, feature->default_support, NULL);
2520 }
2521 }
2522
2523
2524 static void
2525 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2526 int extended_p, int async_p)
2527 {
2528 struct remote_state *rs = get_remote_state ();
2529 if (name == 0)
2530 error (_("To open a remote debug connection, you need to specify what\n"
2531 "serial device is attached to the remote system\n"
2532 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2533
2534 /* See FIXME above. */
2535 if (!async_p)
2536 wait_forever_enabled_p = 1;
2537
2538 target_preopen (from_tty);
2539
2540 unpush_target (target);
2541
2542 /* Make sure we send the passed signals list the next time we resume. */
2543 xfree (last_pass_packet);
2544 last_pass_packet = NULL;
2545
2546 remote_fileio_reset ();
2547 reopen_exec_file ();
2548 reread_symbols ();
2549
2550 remote_desc = remote_serial_open (name);
2551 if (!remote_desc)
2552 perror_with_name (name);
2553
2554 if (baud_rate != -1)
2555 {
2556 if (serial_setbaudrate (remote_desc, baud_rate))
2557 {
2558 /* The requested speed could not be set. Error out to
2559 top level after closing remote_desc. Take care to
2560 set remote_desc to NULL to avoid closing remote_desc
2561 more than once. */
2562 serial_close (remote_desc);
2563 remote_desc = NULL;
2564 perror_with_name (name);
2565 }
2566 }
2567
2568 serial_raw (remote_desc);
2569
2570 /* If there is something sitting in the buffer we might take it as a
2571 response to a command, which would be bad. */
2572 serial_flush_input (remote_desc);
2573
2574 if (from_tty)
2575 {
2576 puts_filtered ("Remote debugging using ");
2577 puts_filtered (name);
2578 puts_filtered ("\n");
2579 }
2580 push_target (target); /* Switch to using remote target now. */
2581
2582 /* Reset the target state; these things will be queried either by
2583 remote_query_supported or as they are needed. */
2584 init_all_packet_configs ();
2585 rs->explicit_packet_size = 0;
2586
2587 general_thread = -2;
2588 continue_thread = -2;
2589
2590 /* Probe for ability to use "ThreadInfo" query, as required. */
2591 use_threadinfo_query = 1;
2592 use_threadextra_query = 1;
2593
2594 /* The first packet we send to the target is the optional "supported
2595 packets" request. If the target can answer this, it will tell us
2596 which later probes to skip. */
2597 remote_query_supported ();
2598
2599 /* Next, if the target can specify a description, read it. We do
2600 this before anything involving memory or registers. */
2601 target_find_description ();
2602
2603 /* Without this, some commands which require an active target (such
2604 as kill) won't work. This variable serves (at least) double duty
2605 as both the pid of the target process (if it has such), and as a
2606 flag indicating that a target is active. These functions should
2607 be split out into seperate variables, especially since GDB will
2608 someday have a notion of debugging several processes. */
2609
2610 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2611
2612 if (async_p)
2613 {
2614 /* With this target we start out by owning the terminal. */
2615 remote_async_terminal_ours_p = 1;
2616
2617 /* FIXME: cagney/1999-09-23: During the initial connection it is
2618 assumed that the target is already ready and able to respond to
2619 requests. Unfortunately remote_start_remote() eventually calls
2620 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2621 around this. Eventually a mechanism that allows
2622 wait_for_inferior() to expect/get timeouts will be
2623 implemented. */
2624 wait_forever_enabled_p = 0;
2625 }
2626
2627 /* First delete any symbols previously loaded from shared libraries. */
2628 no_shared_libraries (NULL, 0);
2629
2630 /* Start the remote connection. If error() or QUIT, discard this
2631 target (we'd otherwise be in an inconsistent state) and then
2632 propogate the error on up the exception chain. This ensures that
2633 the caller doesn't stumble along blindly assuming that the
2634 function succeeded. The CLI doesn't have this problem but other
2635 UI's, such as MI do.
2636
2637 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2638 this function should return an error indication letting the
2639 caller restore the previous state. Unfortunately the command
2640 ``target remote'' is directly wired to this function making that
2641 impossible. On a positive note, the CLI side of this problem has
2642 been fixed - the function set_cmd_context() makes it possible for
2643 all the ``target ....'' commands to share a common callback
2644 function. See cli-dump.c. */
2645 {
2646 struct gdb_exception ex
2647 = catch_exception (uiout, remote_start_remote, &from_tty,
2648 RETURN_MASK_ALL);
2649 if (ex.reason < 0)
2650 {
2651 pop_target ();
2652 if (async_p)
2653 wait_forever_enabled_p = 1;
2654 throw_exception (ex);
2655 }
2656 }
2657
2658 if (async_p)
2659 wait_forever_enabled_p = 1;
2660
2661 if (extended_p)
2662 {
2663 /* Tell the remote that we are using the extended protocol. */
2664 putpkt ("!");
2665 getpkt (&rs->buf, &rs->buf_size, 0);
2666 }
2667
2668 if (exec_bfd) /* No use without an exec file. */
2669 remote_check_symbols (symfile_objfile);
2670 }
2671
2672 /* This takes a program previously attached to and detaches it. After
2673 this is done, GDB can be used to debug some other program. We
2674 better not have left any breakpoints in the target program or it'll
2675 die when it hits one. */
2676
2677 static void
2678 remote_detach (char *args, int from_tty)
2679 {
2680 struct remote_state *rs = get_remote_state ();
2681
2682 if (args)
2683 error (_("Argument given to \"detach\" when remotely debugging."));
2684
2685 /* Tell the remote target to detach. */
2686 strcpy (rs->buf, "D");
2687 putpkt (rs->buf);
2688 getpkt (&rs->buf, &rs->buf_size, 0);
2689
2690 if (rs->buf[0] == 'E')
2691 error (_("Can't detach process."));
2692
2693 /* Unregister the file descriptor from the event loop. */
2694 if (target_is_async_p ())
2695 serial_async (remote_desc, NULL, 0);
2696
2697 target_mourn_inferior ();
2698 if (from_tty)
2699 puts_filtered ("Ending remote debugging.\n");
2700 }
2701
2702 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2703
2704 static void
2705 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2706 {
2707 if (args)
2708 error (_("Argument given to \"detach\" when remotely debugging."));
2709
2710 /* Unregister the file descriptor from the event loop. */
2711 if (target_is_async_p ())
2712 serial_async (remote_desc, NULL, 0);
2713
2714 target_mourn_inferior ();
2715 if (from_tty)
2716 puts_filtered ("Ending remote debugging.\n");
2717 }
2718
2719 /* Convert hex digit A to a number. */
2720
2721 static int
2722 fromhex (int a)
2723 {
2724 if (a >= '0' && a <= '9')
2725 return a - '0';
2726 else if (a >= 'a' && a <= 'f')
2727 return a - 'a' + 10;
2728 else if (a >= 'A' && a <= 'F')
2729 return a - 'A' + 10;
2730 else
2731 error (_("Reply contains invalid hex digit %d"), a);
2732 }
2733
2734 static int
2735 hex2bin (const char *hex, gdb_byte *bin, int count)
2736 {
2737 int i;
2738
2739 for (i = 0; i < count; i++)
2740 {
2741 if (hex[0] == 0 || hex[1] == 0)
2742 {
2743 /* Hex string is short, or of uneven length.
2744 Return the count that has been converted so far. */
2745 return i;
2746 }
2747 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2748 hex += 2;
2749 }
2750 return i;
2751 }
2752
2753 /* Convert number NIB to a hex digit. */
2754
2755 static int
2756 tohex (int nib)
2757 {
2758 if (nib < 10)
2759 return '0' + nib;
2760 else
2761 return 'a' + nib - 10;
2762 }
2763
2764 static int
2765 bin2hex (const gdb_byte *bin, char *hex, int count)
2766 {
2767 int i;
2768 /* May use a length, or a nul-terminated string as input. */
2769 if (count == 0)
2770 count = strlen ((char *) bin);
2771
2772 for (i = 0; i < count; i++)
2773 {
2774 *hex++ = tohex ((*bin >> 4) & 0xf);
2775 *hex++ = tohex (*bin++ & 0xf);
2776 }
2777 *hex = 0;
2778 return i;
2779 }
2780 \f
2781 /* Check for the availability of vCont. This function should also check
2782 the response. */
2783
2784 static void
2785 remote_vcont_probe (struct remote_state *rs)
2786 {
2787 char *buf;
2788
2789 strcpy (rs->buf, "vCont?");
2790 putpkt (rs->buf);
2791 getpkt (&rs->buf, &rs->buf_size, 0);
2792 buf = rs->buf;
2793
2794 /* Make sure that the features we assume are supported. */
2795 if (strncmp (buf, "vCont", 5) == 0)
2796 {
2797 char *p = &buf[5];
2798 int support_s, support_S, support_c, support_C;
2799
2800 support_s = 0;
2801 support_S = 0;
2802 support_c = 0;
2803 support_C = 0;
2804 while (p && *p == ';')
2805 {
2806 p++;
2807 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2808 support_s = 1;
2809 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2810 support_S = 1;
2811 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2812 support_c = 1;
2813 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2814 support_C = 1;
2815
2816 p = strchr (p, ';');
2817 }
2818
2819 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2820 BUF will make packet_ok disable the packet. */
2821 if (!support_s || !support_S || !support_c || !support_C)
2822 buf[0] = 0;
2823 }
2824
2825 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2826 }
2827
2828 /* Resume the remote inferior by using a "vCont" packet. The thread
2829 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2830 resumed thread should be single-stepped and/or signalled. If PTID's
2831 PID is -1, then all threads are resumed; the thread to be stepped and/or
2832 signalled is given in the global INFERIOR_PTID. This function returns
2833 non-zero iff it resumes the inferior.
2834
2835 This function issues a strict subset of all possible vCont commands at the
2836 moment. */
2837
2838 static int
2839 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2840 {
2841 struct remote_state *rs = get_remote_state ();
2842 int pid = PIDGET (ptid);
2843 char *buf = NULL, *outbuf;
2844 struct cleanup *old_cleanup;
2845
2846 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2847 remote_vcont_probe (rs);
2848
2849 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2850 return 0;
2851
2852 /* If we could generate a wider range of packets, we'd have to worry
2853 about overflowing BUF. Should there be a generic
2854 "multi-part-packet" packet? */
2855
2856 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2857 {
2858 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2859 don't have any PID numbers the inferior will understand. Make sure
2860 to only send forms that do not specify a PID. */
2861 if (step && siggnal != TARGET_SIGNAL_0)
2862 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2863 else if (step)
2864 outbuf = xstrprintf ("vCont;s");
2865 else if (siggnal != TARGET_SIGNAL_0)
2866 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2867 else
2868 outbuf = xstrprintf ("vCont;c");
2869 }
2870 else if (pid == -1)
2871 {
2872 /* Resume all threads, with preference for INFERIOR_PTID. */
2873 if (step && siggnal != TARGET_SIGNAL_0)
2874 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2875 PIDGET (inferior_ptid));
2876 else if (step)
2877 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2878 else if (siggnal != TARGET_SIGNAL_0)
2879 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2880 PIDGET (inferior_ptid));
2881 else
2882 outbuf = xstrprintf ("vCont;c");
2883 }
2884 else
2885 {
2886 /* Scheduler locking; resume only PTID. */
2887 if (step && siggnal != TARGET_SIGNAL_0)
2888 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2889 else if (step)
2890 outbuf = xstrprintf ("vCont;s:%x", pid);
2891 else if (siggnal != TARGET_SIGNAL_0)
2892 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2893 else
2894 outbuf = xstrprintf ("vCont;c:%x", pid);
2895 }
2896
2897 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2898 old_cleanup = make_cleanup (xfree, outbuf);
2899
2900 putpkt (outbuf);
2901
2902 do_cleanups (old_cleanup);
2903
2904 return 1;
2905 }
2906
2907 /* Tell the remote machine to resume. */
2908
2909 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2910
2911 static int last_sent_step;
2912
2913 static void
2914 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2915 {
2916 struct remote_state *rs = get_remote_state ();
2917 char *buf;
2918 int pid = PIDGET (ptid);
2919
2920 last_sent_signal = siggnal;
2921 last_sent_step = step;
2922
2923 /* A hook for when we need to do something at the last moment before
2924 resumption. */
2925 if (deprecated_target_resume_hook)
2926 (*deprecated_target_resume_hook) ();
2927
2928 /* Update the inferior on signals to silently pass, if they've changed. */
2929 remote_pass_signals ();
2930
2931 /* The vCont packet doesn't need to specify threads via Hc. */
2932 if (remote_vcont_resume (ptid, step, siggnal))
2933 return;
2934
2935 /* All other supported resume packets do use Hc, so call set_thread. */
2936 if (pid == -1)
2937 set_thread (0, 0); /* Run any thread. */
2938 else
2939 set_thread (pid, 0); /* Run this thread. */
2940
2941 buf = rs->buf;
2942 if (siggnal != TARGET_SIGNAL_0)
2943 {
2944 buf[0] = step ? 'S' : 'C';
2945 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2946 buf[2] = tohex (((int) siggnal) & 0xf);
2947 buf[3] = '\0';
2948 }
2949 else
2950 strcpy (buf, step ? "s" : "c");
2951
2952 putpkt (buf);
2953 }
2954
2955 /* Same as remote_resume, but with async support. */
2956 static void
2957 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2958 {
2959 remote_resume (ptid, step, siggnal);
2960
2961 /* We are about to start executing the inferior, let's register it
2962 with the event loop. NOTE: this is the one place where all the
2963 execution commands end up. We could alternatively do this in each
2964 of the execution commands in infcmd.c. */
2965 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2966 into infcmd.c in order to allow inferior function calls to work
2967 NOT asynchronously. */
2968 if (target_can_async_p ())
2969 target_async (inferior_event_handler, 0);
2970 /* Tell the world that the target is now executing. */
2971 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2972 this? Instead, should the client of target just assume (for
2973 async targets) that the target is going to start executing? Is
2974 this information already found in the continuation block? */
2975 if (target_is_async_p ())
2976 target_executing = 1;
2977 }
2978 \f
2979
2980 /* Set up the signal handler for SIGINT, while the target is
2981 executing, ovewriting the 'regular' SIGINT signal handler. */
2982 static void
2983 initialize_sigint_signal_handler (void)
2984 {
2985 sigint_remote_token =
2986 create_async_signal_handler (async_remote_interrupt, NULL);
2987 signal (SIGINT, handle_remote_sigint);
2988 }
2989
2990 /* Signal handler for SIGINT, while the target is executing. */
2991 static void
2992 handle_remote_sigint (int sig)
2993 {
2994 signal (sig, handle_remote_sigint_twice);
2995 sigint_remote_twice_token =
2996 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2997 mark_async_signal_handler_wrapper (sigint_remote_token);
2998 }
2999
3000 /* Signal handler for SIGINT, installed after SIGINT has already been
3001 sent once. It will take effect the second time that the user sends
3002 a ^C. */
3003 static void
3004 handle_remote_sigint_twice (int sig)
3005 {
3006 signal (sig, handle_sigint);
3007 sigint_remote_twice_token =
3008 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3009 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3010 }
3011
3012 /* Perform the real interruption of the target execution, in response
3013 to a ^C. */
3014 static void
3015 async_remote_interrupt (gdb_client_data arg)
3016 {
3017 if (remote_debug)
3018 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3019
3020 target_stop ();
3021 }
3022
3023 /* Perform interrupt, if the first attempt did not succeed. Just give
3024 up on the target alltogether. */
3025 void
3026 async_remote_interrupt_twice (gdb_client_data arg)
3027 {
3028 if (remote_debug)
3029 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3030 /* Do something only if the target was not killed by the previous
3031 cntl-C. */
3032 if (target_executing)
3033 {
3034 interrupt_query ();
3035 signal (SIGINT, handle_remote_sigint);
3036 }
3037 }
3038
3039 /* Reinstall the usual SIGINT handlers, after the target has
3040 stopped. */
3041 static void
3042 cleanup_sigint_signal_handler (void *dummy)
3043 {
3044 signal (SIGINT, handle_sigint);
3045 if (sigint_remote_twice_token)
3046 delete_async_signal_handler (&sigint_remote_twice_token);
3047 if (sigint_remote_token)
3048 delete_async_signal_handler (&sigint_remote_token);
3049 }
3050
3051 /* Send ^C to target to halt it. Target will respond, and send us a
3052 packet. */
3053 static void (*ofunc) (int);
3054
3055 /* The command line interface's stop routine. This function is installed
3056 as a signal handler for SIGINT. The first time a user requests a
3057 stop, we call remote_stop to send a break or ^C. If there is no
3058 response from the target (it didn't stop when the user requested it),
3059 we ask the user if he'd like to detach from the target. */
3060 static void
3061 remote_interrupt (int signo)
3062 {
3063 /* If this doesn't work, try more severe steps. */
3064 signal (signo, remote_interrupt_twice);
3065
3066 if (remote_debug)
3067 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3068
3069 target_stop ();
3070 }
3071
3072 /* The user typed ^C twice. */
3073
3074 static void
3075 remote_interrupt_twice (int signo)
3076 {
3077 signal (signo, ofunc);
3078 interrupt_query ();
3079 signal (signo, remote_interrupt);
3080 }
3081
3082 /* This is the generic stop called via the target vector. When a target
3083 interrupt is requested, either by the command line or the GUI, we
3084 will eventually end up here. */
3085 static void
3086 remote_stop (void)
3087 {
3088 /* Send a break or a ^C, depending on user preference. */
3089 if (remote_debug)
3090 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3091
3092 if (remote_break)
3093 serial_send_break (remote_desc);
3094 else
3095 serial_write (remote_desc, "\003", 1);
3096 }
3097
3098 /* Ask the user what to do when an interrupt is received. */
3099
3100 static void
3101 interrupt_query (void)
3102 {
3103 target_terminal_ours ();
3104
3105 if (query ("Interrupted while waiting for the program.\n\
3106 Give up (and stop debugging it)? "))
3107 {
3108 target_mourn_inferior ();
3109 deprecated_throw_reason (RETURN_QUIT);
3110 }
3111
3112 target_terminal_inferior ();
3113 }
3114
3115 /* Enable/disable target terminal ownership. Most targets can use
3116 terminal groups to control terminal ownership. Remote targets are
3117 different in that explicit transfer of ownership to/from GDB/target
3118 is required. */
3119
3120 static void
3121 remote_async_terminal_inferior (void)
3122 {
3123 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3124 sync_execution here. This function should only be called when
3125 GDB is resuming the inferior in the forground. A background
3126 resume (``run&'') should leave GDB in control of the terminal and
3127 consequently should not call this code. */
3128 if (!sync_execution)
3129 return;
3130 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3131 calls target_terminal_*() idenpotent. The event-loop GDB talking
3132 to an asynchronous target with a synchronous command calls this
3133 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3134 stops trying to transfer the terminal to the target when it
3135 shouldn't this guard can go away. */
3136 if (!remote_async_terminal_ours_p)
3137 return;
3138 delete_file_handler (input_fd);
3139 remote_async_terminal_ours_p = 0;
3140 initialize_sigint_signal_handler ();
3141 /* NOTE: At this point we could also register our selves as the
3142 recipient of all input. Any characters typed could then be
3143 passed on down to the target. */
3144 }
3145
3146 static void
3147 remote_async_terminal_ours (void)
3148 {
3149 /* See FIXME in remote_async_terminal_inferior. */
3150 if (!sync_execution)
3151 return;
3152 /* See FIXME in remote_async_terminal_inferior. */
3153 if (remote_async_terminal_ours_p)
3154 return;
3155 cleanup_sigint_signal_handler (NULL);
3156 add_file_handler (input_fd, stdin_event_handler, 0);
3157 remote_async_terminal_ours_p = 1;
3158 }
3159
3160 /* If nonzero, ignore the next kill. */
3161
3162 int kill_kludge;
3163
3164 void
3165 remote_console_output (char *msg)
3166 {
3167 char *p;
3168
3169 for (p = msg; p[0] && p[1]; p += 2)
3170 {
3171 char tb[2];
3172 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3173 tb[0] = c;
3174 tb[1] = 0;
3175 fputs_unfiltered (tb, gdb_stdtarg);
3176 }
3177 gdb_flush (gdb_stdtarg);
3178 }
3179
3180 /* Wait until the remote machine stops, then return,
3181 storing status in STATUS just as `wait' would.
3182 Returns "pid", which in the case of a multi-threaded
3183 remote OS, is the thread-id. */
3184
3185 static ptid_t
3186 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3187 {
3188 struct remote_state *rs = get_remote_state ();
3189 struct remote_arch_state *rsa = get_remote_arch_state ();
3190 ULONGEST thread_num = -1;
3191 ULONGEST addr;
3192 int solibs_changed = 0;
3193
3194 status->kind = TARGET_WAITKIND_EXITED;
3195 status->value.integer = 0;
3196
3197 while (1)
3198 {
3199 char *buf, *p;
3200
3201 ofunc = signal (SIGINT, remote_interrupt);
3202 getpkt (&rs->buf, &rs->buf_size, 1);
3203 signal (SIGINT, ofunc);
3204
3205 buf = rs->buf;
3206
3207 /* This is a hook for when we need to do something (perhaps the
3208 collection of trace data) every time the target stops. */
3209 if (deprecated_target_wait_loop_hook)
3210 (*deprecated_target_wait_loop_hook) ();
3211
3212 remote_stopped_by_watchpoint_p = 0;
3213
3214 switch (buf[0])
3215 {
3216 case 'E': /* Error of some sort. */
3217 warning (_("Remote failure reply: %s"), buf);
3218 continue;
3219 case 'F': /* File-I/O request. */
3220 remote_fileio_request (buf);
3221 continue;
3222 case 'T': /* Status with PC, SP, FP, ... */
3223 {
3224 gdb_byte regs[MAX_REGISTER_SIZE];
3225
3226 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3227 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3228 ss = signal number
3229 n... = register number
3230 r... = register contents
3231 */
3232 p = &buf[3]; /* after Txx */
3233
3234 while (*p)
3235 {
3236 char *p1;
3237 char *p_temp;
3238 int fieldsize;
3239 LONGEST pnum = 0;
3240
3241 /* If the packet contains a register number save it in
3242 pnum and set p1 to point to the character following
3243 it. Otherwise p1 points to p. */
3244
3245 /* If this packet is an awatch packet, don't parse the
3246 'a' as a register number. */
3247
3248 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3249 {
3250 /* Read the ``P'' register number. */
3251 pnum = strtol (p, &p_temp, 16);
3252 p1 = p_temp;
3253 }
3254 else
3255 p1 = p;
3256
3257 if (p1 == p) /* No register number present here. */
3258 {
3259 p1 = strchr (p, ':');
3260 if (p1 == NULL)
3261 error (_("Malformed packet(a) (missing colon): %s\n\
3262 Packet: '%s'\n"),
3263 p, buf);
3264 if (strncmp (p, "thread", p1 - p) == 0)
3265 {
3266 p_temp = unpack_varlen_hex (++p1, &thread_num);
3267 record_currthread (thread_num);
3268 p = p_temp;
3269 }
3270 else if ((strncmp (p, "watch", p1 - p) == 0)
3271 || (strncmp (p, "rwatch", p1 - p) == 0)
3272 || (strncmp (p, "awatch", p1 - p) == 0))
3273 {
3274 remote_stopped_by_watchpoint_p = 1;
3275 p = unpack_varlen_hex (++p1, &addr);
3276 remote_watch_data_address = (CORE_ADDR)addr;
3277 }
3278 else if (strncmp (p, "library", p1 - p) == 0)
3279 {
3280 p1++;
3281 p_temp = p1;
3282 while (*p_temp && *p_temp != ';')
3283 p_temp++;
3284
3285 solibs_changed = 1;
3286 p = p_temp;
3287 }
3288 else
3289 {
3290 /* Silently skip unknown optional info. */
3291 p_temp = strchr (p1 + 1, ';');
3292 if (p_temp)
3293 p = p_temp;
3294 }
3295 }
3296 else
3297 {
3298 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3299 p = p1;
3300
3301 if (*p++ != ':')
3302 error (_("Malformed packet(b) (missing colon): %s\n\
3303 Packet: '%s'\n"),
3304 p, buf);
3305
3306 if (reg == NULL)
3307 error (_("Remote sent bad register number %s: %s\n\
3308 Packet: '%s'\n"),
3309 phex_nz (pnum, 0), p, buf);
3310
3311 fieldsize = hex2bin (p, regs,
3312 register_size (current_gdbarch,
3313 reg->regnum));
3314 p += 2 * fieldsize;
3315 if (fieldsize < register_size (current_gdbarch,
3316 reg->regnum))
3317 warning (_("Remote reply is too short: %s"), buf);
3318 regcache_raw_supply (get_current_regcache (),
3319 reg->regnum, regs);
3320 }
3321
3322 if (*p++ != ';')
3323 error (_("Remote register badly formatted: %s\nhere: %s"),
3324 buf, p);
3325 }
3326 }
3327 /* fall through */
3328 case 'S': /* Old style status, just signal only. */
3329 if (solibs_changed)
3330 status->kind = TARGET_WAITKIND_LOADED;
3331 else
3332 {
3333 status->kind = TARGET_WAITKIND_STOPPED;
3334 status->value.sig = (enum target_signal)
3335 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3336 }
3337
3338 if (buf[3] == 'p')
3339 {
3340 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3341 record_currthread (thread_num);
3342 }
3343 goto got_status;
3344 case 'W': /* Target exited. */
3345 {
3346 /* The remote process exited. */
3347 status->kind = TARGET_WAITKIND_EXITED;
3348 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3349 goto got_status;
3350 }
3351 case 'X':
3352 status->kind = TARGET_WAITKIND_SIGNALLED;
3353 status->value.sig = (enum target_signal)
3354 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3355 kill_kludge = 1;
3356
3357 goto got_status;
3358 case 'O': /* Console output. */
3359 remote_console_output (buf + 1);
3360 continue;
3361 case '\0':
3362 if (last_sent_signal != TARGET_SIGNAL_0)
3363 {
3364 /* Zero length reply means that we tried 'S' or 'C' and
3365 the remote system doesn't support it. */
3366 target_terminal_ours_for_output ();
3367 printf_filtered
3368 ("Can't send signals to this remote system. %s not sent.\n",
3369 target_signal_to_name (last_sent_signal));
3370 last_sent_signal = TARGET_SIGNAL_0;
3371 target_terminal_inferior ();
3372
3373 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3374 putpkt ((char *) buf);
3375 continue;
3376 }
3377 /* else fallthrough */
3378 default:
3379 warning (_("Invalid remote reply: %s"), buf);
3380 continue;
3381 }
3382 }
3383 got_status:
3384 if (thread_num != -1)
3385 {
3386 return pid_to_ptid (thread_num);
3387 }
3388 return inferior_ptid;
3389 }
3390
3391 /* Async version of remote_wait. */
3392 static ptid_t
3393 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3394 {
3395 struct remote_state *rs = get_remote_state ();
3396 struct remote_arch_state *rsa = get_remote_arch_state ();
3397 ULONGEST thread_num = -1;
3398 ULONGEST addr;
3399 int solibs_changed = 0;
3400
3401 status->kind = TARGET_WAITKIND_EXITED;
3402 status->value.integer = 0;
3403
3404 remote_stopped_by_watchpoint_p = 0;
3405
3406 while (1)
3407 {
3408 char *buf, *p;
3409
3410 if (!target_is_async_p ())
3411 ofunc = signal (SIGINT, remote_interrupt);
3412 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3413 _never_ wait for ever -> test on target_is_async_p().
3414 However, before we do that we need to ensure that the caller
3415 knows how to take the target into/out of async mode. */
3416 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3417 if (!target_is_async_p ())
3418 signal (SIGINT, ofunc);
3419
3420 buf = rs->buf;
3421
3422 /* This is a hook for when we need to do something (perhaps the
3423 collection of trace data) every time the target stops. */
3424 if (deprecated_target_wait_loop_hook)
3425 (*deprecated_target_wait_loop_hook) ();
3426
3427 switch (buf[0])
3428 {
3429 case 'E': /* Error of some sort. */
3430 warning (_("Remote failure reply: %s"), buf);
3431 continue;
3432 case 'F': /* File-I/O request. */
3433 remote_fileio_request (buf);
3434 continue;
3435 case 'T': /* Status with PC, SP, FP, ... */
3436 {
3437 gdb_byte regs[MAX_REGISTER_SIZE];
3438
3439 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3440 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3441 ss = signal number
3442 n... = register number
3443 r... = register contents
3444 */
3445 p = &buf[3]; /* after Txx */
3446
3447 while (*p)
3448 {
3449 char *p1;
3450 char *p_temp;
3451 int fieldsize;
3452 long pnum = 0;
3453
3454 /* If the packet contains a register number, save it
3455 in pnum and set p1 to point to the character
3456 following it. Otherwise p1 points to p. */
3457
3458 /* If this packet is an awatch packet, don't parse the 'a'
3459 as a register number. */
3460
3461 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3462 {
3463 /* Read the register number. */
3464 pnum = strtol (p, &p_temp, 16);
3465 p1 = p_temp;
3466 }
3467 else
3468 p1 = p;
3469
3470 if (p1 == p) /* No register number present here. */
3471 {
3472 p1 = strchr (p, ':');
3473 if (p1 == NULL)
3474 error (_("Malformed packet(a) (missing colon): %s\n\
3475 Packet: '%s'\n"),
3476 p, buf);
3477 if (strncmp (p, "thread", p1 - p) == 0)
3478 {
3479 p_temp = unpack_varlen_hex (++p1, &thread_num);
3480 record_currthread (thread_num);
3481 p = p_temp;
3482 }
3483 else if ((strncmp (p, "watch", p1 - p) == 0)
3484 || (strncmp (p, "rwatch", p1 - p) == 0)
3485 || (strncmp (p, "awatch", p1 - p) == 0))
3486 {
3487 remote_stopped_by_watchpoint_p = 1;
3488 p = unpack_varlen_hex (++p1, &addr);
3489 remote_watch_data_address = (CORE_ADDR)addr;
3490 }
3491 else if (strncmp (p, "library", p1 - p) == 0)
3492 {
3493 p1++;
3494 p_temp = p1;
3495 while (*p_temp && *p_temp != ';')
3496 p_temp++;
3497
3498 solibs_changed = 1;
3499 p = p_temp;
3500 }
3501 else
3502 {
3503 /* Silently skip unknown optional info. */
3504 p_temp = strchr (p1 + 1, ';');
3505 if (p_temp)
3506 p = p_temp;
3507 }
3508 }
3509
3510 else
3511 {
3512 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3513 p = p1;
3514 if (*p++ != ':')
3515 error (_("Malformed packet(b) (missing colon): %s\n\
3516 Packet: '%s'\n"),
3517 p, buf);
3518
3519 if (reg == NULL)
3520 error (_("Remote sent bad register number %ld: %s\n\
3521 Packet: '%s'\n"),
3522 pnum, p, buf);
3523
3524 fieldsize = hex2bin (p, regs,
3525 register_size (current_gdbarch,
3526 reg->regnum));
3527 p += 2 * fieldsize;
3528 if (fieldsize < register_size (current_gdbarch,
3529 reg->regnum))
3530 warning (_("Remote reply is too short: %s"), buf);
3531 regcache_raw_supply (get_current_regcache (),
3532 reg->regnum, regs);
3533 }
3534
3535 if (*p++ != ';')
3536 error (_("Remote register badly formatted: %s\nhere: %s"),
3537 buf, p);
3538 }
3539 }
3540 /* fall through */
3541 case 'S': /* Old style status, just signal only. */
3542 if (solibs_changed)
3543 status->kind = TARGET_WAITKIND_LOADED;
3544 else
3545 {
3546 status->kind = TARGET_WAITKIND_STOPPED;
3547 status->value.sig = (enum target_signal)
3548 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3549 }
3550
3551 if (buf[3] == 'p')
3552 {
3553 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3554 record_currthread (thread_num);
3555 }
3556 goto got_status;
3557 case 'W': /* Target exited. */
3558 {
3559 /* The remote process exited. */
3560 status->kind = TARGET_WAITKIND_EXITED;
3561 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3562 goto got_status;
3563 }
3564 case 'X':
3565 status->kind = TARGET_WAITKIND_SIGNALLED;
3566 status->value.sig = (enum target_signal)
3567 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3568 kill_kludge = 1;
3569
3570 goto got_status;
3571 case 'O': /* Console output. */
3572 remote_console_output (buf + 1);
3573 /* Return immediately to the event loop. The event loop will
3574 still be waiting on the inferior afterwards. */
3575 status->kind = TARGET_WAITKIND_IGNORE;
3576 goto got_status;
3577 case '\0':
3578 if (last_sent_signal != TARGET_SIGNAL_0)
3579 {
3580 /* Zero length reply means that we tried 'S' or 'C' and
3581 the remote system doesn't support it. */
3582 target_terminal_ours_for_output ();
3583 printf_filtered
3584 ("Can't send signals to this remote system. %s not sent.\n",
3585 target_signal_to_name (last_sent_signal));
3586 last_sent_signal = TARGET_SIGNAL_0;
3587 target_terminal_inferior ();
3588
3589 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3590 putpkt ((char *) buf);
3591 continue;
3592 }
3593 /* else fallthrough */
3594 default:
3595 warning (_("Invalid remote reply: %s"), buf);
3596 continue;
3597 }
3598 }
3599 got_status:
3600 if (thread_num != -1)
3601 {
3602 return pid_to_ptid (thread_num);
3603 }
3604 return inferior_ptid;
3605 }
3606
3607 /* Fetch a single register using a 'p' packet. */
3608
3609 static int
3610 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3611 {
3612 struct remote_state *rs = get_remote_state ();
3613 char *buf, *p;
3614 char regp[MAX_REGISTER_SIZE];
3615 int i;
3616
3617 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3618 return 0;
3619
3620 if (reg->pnum == -1)
3621 return 0;
3622
3623 p = rs->buf;
3624 *p++ = 'p';
3625 p += hexnumstr (p, reg->pnum);
3626 *p++ = '\0';
3627 remote_send (&rs->buf, &rs->buf_size);
3628
3629 buf = rs->buf;
3630
3631 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3632 {
3633 case PACKET_OK:
3634 break;
3635 case PACKET_UNKNOWN:
3636 return 0;
3637 case PACKET_ERROR:
3638 error (_("Could not fetch register \"%s\""),
3639 gdbarch_register_name (current_gdbarch, reg->regnum));
3640 }
3641
3642 /* If this register is unfetchable, tell the regcache. */
3643 if (buf[0] == 'x')
3644 {
3645 regcache_raw_supply (regcache, reg->regnum, NULL);
3646 return 1;
3647 }
3648
3649 /* Otherwise, parse and supply the value. */
3650 p = buf;
3651 i = 0;
3652 while (p[0] != 0)
3653 {
3654 if (p[1] == 0)
3655 error (_("fetch_register_using_p: early buf termination"));
3656
3657 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3658 p += 2;
3659 }
3660 regcache_raw_supply (regcache, reg->regnum, regp);
3661 return 1;
3662 }
3663
3664 /* Fetch the registers included in the target's 'g' packet. */
3665
3666 static int
3667 send_g_packet (void)
3668 {
3669 struct remote_state *rs = get_remote_state ();
3670 int i, buf_len;
3671 char *p;
3672 char *regs;
3673
3674 sprintf (rs->buf, "g");
3675 remote_send (&rs->buf, &rs->buf_size);
3676
3677 /* We can get out of synch in various cases. If the first character
3678 in the buffer is not a hex character, assume that has happened
3679 and try to fetch another packet to read. */
3680 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3681 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3682 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3683 && rs->buf[0] != 'x') /* New: unavailable register value. */
3684 {
3685 if (remote_debug)
3686 fprintf_unfiltered (gdb_stdlog,
3687 "Bad register packet; fetching a new packet\n");
3688 getpkt (&rs->buf, &rs->buf_size, 0);
3689 }
3690
3691 buf_len = strlen (rs->buf);
3692
3693 /* Sanity check the received packet. */
3694 if (buf_len % 2 != 0)
3695 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3696
3697 return buf_len / 2;
3698 }
3699
3700 static void
3701 process_g_packet (struct regcache *regcache)
3702 {
3703 struct remote_state *rs = get_remote_state ();
3704 struct remote_arch_state *rsa = get_remote_arch_state ();
3705 int i, buf_len;
3706 char *p;
3707 char *regs;
3708
3709 buf_len = strlen (rs->buf);
3710
3711 /* Further sanity checks, with knowledge of the architecture. */
3712 if (buf_len > 2 * rsa->sizeof_g_packet)
3713 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3714
3715 /* Save the size of the packet sent to us by the target. It is used
3716 as a heuristic when determining the max size of packets that the
3717 target can safely receive. */
3718 if (rsa->actual_register_packet_size == 0)
3719 rsa->actual_register_packet_size = buf_len;
3720
3721 /* If this is smaller than we guessed the 'g' packet would be,
3722 update our records. A 'g' reply that doesn't include a register's
3723 value implies either that the register is not available, or that
3724 the 'p' packet must be used. */
3725 if (buf_len < 2 * rsa->sizeof_g_packet)
3726 {
3727 rsa->sizeof_g_packet = buf_len / 2;
3728
3729 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3730 {
3731 if (rsa->regs[i].pnum == -1)
3732 continue;
3733
3734 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3735 rsa->regs[i].in_g_packet = 0;
3736 else
3737 rsa->regs[i].in_g_packet = 1;
3738 }
3739 }
3740
3741 regs = alloca (rsa->sizeof_g_packet);
3742
3743 /* Unimplemented registers read as all bits zero. */
3744 memset (regs, 0, rsa->sizeof_g_packet);
3745
3746 /* Reply describes registers byte by byte, each byte encoded as two
3747 hex characters. Suck them all up, then supply them to the
3748 register cacheing/storage mechanism. */
3749
3750 p = rs->buf;
3751 for (i = 0; i < rsa->sizeof_g_packet; i++)
3752 {
3753 if (p[0] == 0 || p[1] == 0)
3754 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3755 internal_error (__FILE__, __LINE__,
3756 "unexpected end of 'g' packet reply");
3757
3758 if (p[0] == 'x' && p[1] == 'x')
3759 regs[i] = 0; /* 'x' */
3760 else
3761 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3762 p += 2;
3763 }
3764
3765 {
3766 int i;
3767 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3768 {
3769 struct packet_reg *r = &rsa->regs[i];
3770 if (r->in_g_packet)
3771 {
3772 if (r->offset * 2 >= strlen (rs->buf))
3773 /* This shouldn't happen - we adjusted in_g_packet above. */
3774 internal_error (__FILE__, __LINE__,
3775 "unexpected end of 'g' packet reply");
3776 else if (rs->buf[r->offset * 2] == 'x')
3777 {
3778 gdb_assert (r->offset * 2 < strlen (rs->buf));
3779 /* The register isn't available, mark it as such (at
3780 the same time setting the value to zero). */
3781 regcache_raw_supply (regcache, r->regnum, NULL);
3782 }
3783 else
3784 regcache_raw_supply (regcache, r->regnum,
3785 regs + r->offset);
3786 }
3787 }
3788 }
3789 }
3790
3791 static void
3792 fetch_registers_using_g (struct regcache *regcache)
3793 {
3794 send_g_packet ();
3795 process_g_packet (regcache);
3796 }
3797
3798 static void
3799 remote_fetch_registers (struct regcache *regcache, int regnum)
3800 {
3801 struct remote_state *rs = get_remote_state ();
3802 struct remote_arch_state *rsa = get_remote_arch_state ();
3803 int i;
3804
3805 set_thread (PIDGET (inferior_ptid), 1);
3806
3807 if (regnum >= 0)
3808 {
3809 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3810 gdb_assert (reg != NULL);
3811
3812 /* If this register might be in the 'g' packet, try that first -
3813 we are likely to read more than one register. If this is the
3814 first 'g' packet, we might be overly optimistic about its
3815 contents, so fall back to 'p'. */
3816 if (reg->in_g_packet)
3817 {
3818 fetch_registers_using_g (regcache);
3819 if (reg->in_g_packet)
3820 return;
3821 }
3822
3823 if (fetch_register_using_p (regcache, reg))
3824 return;
3825
3826 /* This register is not available. */
3827 regcache_raw_supply (regcache, reg->regnum, NULL);
3828
3829 return;
3830 }
3831
3832 fetch_registers_using_g (regcache);
3833
3834 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3835 if (!rsa->regs[i].in_g_packet)
3836 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3837 {
3838 /* This register is not available. */
3839 regcache_raw_supply (regcache, i, NULL);
3840 }
3841 }
3842
3843 /* Prepare to store registers. Since we may send them all (using a
3844 'G' request), we have to read out the ones we don't want to change
3845 first. */
3846
3847 static void
3848 remote_prepare_to_store (struct regcache *regcache)
3849 {
3850 struct remote_arch_state *rsa = get_remote_arch_state ();
3851 int i;
3852 gdb_byte buf[MAX_REGISTER_SIZE];
3853
3854 /* Make sure the entire registers array is valid. */
3855 switch (remote_protocol_packets[PACKET_P].support)
3856 {
3857 case PACKET_DISABLE:
3858 case PACKET_SUPPORT_UNKNOWN:
3859 /* Make sure all the necessary registers are cached. */
3860 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3861 if (rsa->regs[i].in_g_packet)
3862 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3863 break;
3864 case PACKET_ENABLE:
3865 break;
3866 }
3867 }
3868
3869 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3870 packet was not recognized. */
3871
3872 static int
3873 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3874 {
3875 struct remote_state *rs = get_remote_state ();
3876 struct remote_arch_state *rsa = get_remote_arch_state ();
3877 /* Try storing a single register. */
3878 char *buf = rs->buf;
3879 gdb_byte regp[MAX_REGISTER_SIZE];
3880 char *p;
3881
3882 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3883 return 0;
3884
3885 if (reg->pnum == -1)
3886 return 0;
3887
3888 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3889 p = buf + strlen (buf);
3890 regcache_raw_collect (regcache, reg->regnum, regp);
3891 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3892 remote_send (&rs->buf, &rs->buf_size);
3893
3894 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3895 {
3896 case PACKET_OK:
3897 return 1;
3898 case PACKET_ERROR:
3899 error (_("Could not write register \"%s\""),
3900 gdbarch_register_name (current_gdbarch, reg->regnum));
3901 case PACKET_UNKNOWN:
3902 return 0;
3903 default:
3904 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3905 }
3906 }
3907
3908 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3909 contents of the register cache buffer. FIXME: ignores errors. */
3910
3911 static void
3912 store_registers_using_G (const struct regcache *regcache)
3913 {
3914 struct remote_state *rs = get_remote_state ();
3915 struct remote_arch_state *rsa = get_remote_arch_state ();
3916 gdb_byte *regs;
3917 char *p;
3918
3919 /* Extract all the registers in the regcache copying them into a
3920 local buffer. */
3921 {
3922 int i;
3923 regs = alloca (rsa->sizeof_g_packet);
3924 memset (regs, 0, rsa->sizeof_g_packet);
3925 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3926 {
3927 struct packet_reg *r = &rsa->regs[i];
3928 if (r->in_g_packet)
3929 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3930 }
3931 }
3932
3933 /* Command describes registers byte by byte,
3934 each byte encoded as two hex characters. */
3935 p = rs->buf;
3936 *p++ = 'G';
3937 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3938 updated. */
3939 bin2hex (regs, p, rsa->sizeof_g_packet);
3940 remote_send (&rs->buf, &rs->buf_size);
3941 }
3942
3943 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3944 of the register cache buffer. FIXME: ignores errors. */
3945
3946 static void
3947 remote_store_registers (struct regcache *regcache, int regnum)
3948 {
3949 struct remote_state *rs = get_remote_state ();
3950 struct remote_arch_state *rsa = get_remote_arch_state ();
3951 int i;
3952
3953 set_thread (PIDGET (inferior_ptid), 1);
3954
3955 if (regnum >= 0)
3956 {
3957 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3958 gdb_assert (reg != NULL);
3959
3960 /* Always prefer to store registers using the 'P' packet if
3961 possible; we often change only a small number of registers.
3962 Sometimes we change a larger number; we'd need help from a
3963 higher layer to know to use 'G'. */
3964 if (store_register_using_P (regcache, reg))
3965 return;
3966
3967 /* For now, don't complain if we have no way to write the
3968 register. GDB loses track of unavailable registers too
3969 easily. Some day, this may be an error. We don't have
3970 any way to read the register, either... */
3971 if (!reg->in_g_packet)
3972 return;
3973
3974 store_registers_using_G (regcache);
3975 return;
3976 }
3977
3978 store_registers_using_G (regcache);
3979
3980 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3981 if (!rsa->regs[i].in_g_packet)
3982 if (!store_register_using_P (regcache, &rsa->regs[i]))
3983 /* See above for why we do not issue an error here. */
3984 continue;
3985 }
3986 \f
3987
3988 /* Return the number of hex digits in num. */
3989
3990 static int
3991 hexnumlen (ULONGEST num)
3992 {
3993 int i;
3994
3995 for (i = 0; num != 0; i++)
3996 num >>= 4;
3997
3998 return max (i, 1);
3999 }
4000
4001 /* Set BUF to the minimum number of hex digits representing NUM. */
4002
4003 static int
4004 hexnumstr (char *buf, ULONGEST num)
4005 {
4006 int len = hexnumlen (num);
4007 return hexnumnstr (buf, num, len);
4008 }
4009
4010
4011 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4012
4013 static int
4014 hexnumnstr (char *buf, ULONGEST num, int width)
4015 {
4016 int i;
4017
4018 buf[width] = '\0';
4019
4020 for (i = width - 1; i >= 0; i--)
4021 {
4022 buf[i] = "0123456789abcdef"[(num & 0xf)];
4023 num >>= 4;
4024 }
4025
4026 return width;
4027 }
4028
4029 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4030
4031 static CORE_ADDR
4032 remote_address_masked (CORE_ADDR addr)
4033 {
4034 int address_size = remote_address_size;
4035 /* If "remoteaddresssize" was not set, default to target address size. */
4036 if (!address_size)
4037 address_size = gdbarch_addr_bit (current_gdbarch);
4038
4039 if (address_size > 0
4040 && address_size < (sizeof (ULONGEST) * 8))
4041 {
4042 /* Only create a mask when that mask can safely be constructed
4043 in a ULONGEST variable. */
4044 ULONGEST mask = 1;
4045 mask = (mask << address_size) - 1;
4046 addr &= mask;
4047 }
4048 return addr;
4049 }
4050
4051 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4052 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4053 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4054 (which may be more than *OUT_LEN due to escape characters). The
4055 total number of bytes in the output buffer will be at most
4056 OUT_MAXLEN. */
4057
4058 static int
4059 remote_escape_output (const gdb_byte *buffer, int len,
4060 gdb_byte *out_buf, int *out_len,
4061 int out_maxlen)
4062 {
4063 int input_index, output_index;
4064
4065 output_index = 0;
4066 for (input_index = 0; input_index < len; input_index++)
4067 {
4068 gdb_byte b = buffer[input_index];
4069
4070 if (b == '$' || b == '#' || b == '}')
4071 {
4072 /* These must be escaped. */
4073 if (output_index + 2 > out_maxlen)
4074 break;
4075 out_buf[output_index++] = '}';
4076 out_buf[output_index++] = b ^ 0x20;
4077 }
4078 else
4079 {
4080 if (output_index + 1 > out_maxlen)
4081 break;
4082 out_buf[output_index++] = b;
4083 }
4084 }
4085
4086 *out_len = input_index;
4087 return output_index;
4088 }
4089
4090 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4091 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4092 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4093
4094 This function reverses remote_escape_output. It allows more
4095 escaped characters than that function does, in particular because
4096 '*' must be escaped to avoid the run-length encoding processing
4097 in reading packets. */
4098
4099 static int
4100 remote_unescape_input (const gdb_byte *buffer, int len,
4101 gdb_byte *out_buf, int out_maxlen)
4102 {
4103 int input_index, output_index;
4104 int escaped;
4105
4106 output_index = 0;
4107 escaped = 0;
4108 for (input_index = 0; input_index < len; input_index++)
4109 {
4110 gdb_byte b = buffer[input_index];
4111
4112 if (output_index + 1 > out_maxlen)
4113 {
4114 warning (_("Received too much data from remote target;"
4115 " ignoring overflow."));
4116 return output_index;
4117 }
4118
4119 if (escaped)
4120 {
4121 out_buf[output_index++] = b ^ 0x20;
4122 escaped = 0;
4123 }
4124 else if (b == '}')
4125 escaped = 1;
4126 else
4127 out_buf[output_index++] = b;
4128 }
4129
4130 if (escaped)
4131 error (_("Unmatched escape character in target response."));
4132
4133 return output_index;
4134 }
4135
4136 /* Determine whether the remote target supports binary downloading.
4137 This is accomplished by sending a no-op memory write of zero length
4138 to the target at the specified address. It does not suffice to send
4139 the whole packet, since many stubs strip the eighth bit and
4140 subsequently compute a wrong checksum, which causes real havoc with
4141 remote_write_bytes.
4142
4143 NOTE: This can still lose if the serial line is not eight-bit
4144 clean. In cases like this, the user should clear "remote
4145 X-packet". */
4146
4147 static void
4148 check_binary_download (CORE_ADDR addr)
4149 {
4150 struct remote_state *rs = get_remote_state ();
4151
4152 switch (remote_protocol_packets[PACKET_X].support)
4153 {
4154 case PACKET_DISABLE:
4155 break;
4156 case PACKET_ENABLE:
4157 break;
4158 case PACKET_SUPPORT_UNKNOWN:
4159 {
4160 char *p;
4161
4162 p = rs->buf;
4163 *p++ = 'X';
4164 p += hexnumstr (p, (ULONGEST) addr);
4165 *p++ = ',';
4166 p += hexnumstr (p, (ULONGEST) 0);
4167 *p++ = ':';
4168 *p = '\0';
4169
4170 putpkt_binary (rs->buf, (int) (p - rs->buf));
4171 getpkt (&rs->buf, &rs->buf_size, 0);
4172
4173 if (rs->buf[0] == '\0')
4174 {
4175 if (remote_debug)
4176 fprintf_unfiltered (gdb_stdlog,
4177 "binary downloading NOT suppported by target\n");
4178 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4179 }
4180 else
4181 {
4182 if (remote_debug)
4183 fprintf_unfiltered (gdb_stdlog,
4184 "binary downloading suppported by target\n");
4185 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4186 }
4187 break;
4188 }
4189 }
4190 }
4191
4192 /* Write memory data directly to the remote machine.
4193 This does not inform the data cache; the data cache uses this.
4194 HEADER is the starting part of the packet.
4195 MEMADDR is the address in the remote memory space.
4196 MYADDR is the address of the buffer in our space.
4197 LEN is the number of bytes.
4198 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4199 should send data as binary ('X'), or hex-encoded ('M').
4200
4201 The function creates packet of the form
4202 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4203
4204 where encoding of <DATA> is termined by PACKET_FORMAT.
4205
4206 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4207 are omitted.
4208
4209 Returns the number of bytes transferred, or 0 (setting errno) for
4210 error. Only transfer a single packet. */
4211
4212 static int
4213 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4214 const gdb_byte *myaddr, int len,
4215 char packet_format, int use_length)
4216 {
4217 struct remote_state *rs = get_remote_state ();
4218 char *p;
4219 char *plen = NULL;
4220 int plenlen = 0;
4221 int todo;
4222 int nr_bytes;
4223 int payload_size;
4224 int payload_length;
4225 int header_length;
4226
4227 if (packet_format != 'X' && packet_format != 'M')
4228 internal_error (__FILE__, __LINE__,
4229 "remote_write_bytes_aux: bad packet format");
4230
4231 if (len <= 0)
4232 return 0;
4233
4234 payload_size = get_memory_write_packet_size ();
4235
4236 /* The packet buffer will be large enough for the payload;
4237 get_memory_packet_size ensures this. */
4238 rs->buf[0] = '\0';
4239
4240 /* Compute the size of the actual payload by subtracting out the
4241 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4242 */
4243 payload_size -= strlen ("$,:#NN");
4244 if (!use_length)
4245 /* The comma won't be used. */
4246 payload_size += 1;
4247 header_length = strlen (header);
4248 payload_size -= header_length;
4249 payload_size -= hexnumlen (memaddr);
4250
4251 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4252
4253 strcat (rs->buf, header);
4254 p = rs->buf + strlen (header);
4255
4256 /* Compute a best guess of the number of bytes actually transfered. */
4257 if (packet_format == 'X')
4258 {
4259 /* Best guess at number of bytes that will fit. */
4260 todo = min (len, payload_size);
4261 if (use_length)
4262 payload_size -= hexnumlen (todo);
4263 todo = min (todo, payload_size);
4264 }
4265 else
4266 {
4267 /* Num bytes that will fit. */
4268 todo = min (len, payload_size / 2);
4269 if (use_length)
4270 payload_size -= hexnumlen (todo);
4271 todo = min (todo, payload_size / 2);
4272 }
4273
4274 if (todo <= 0)
4275 internal_error (__FILE__, __LINE__,
4276 _("minumum packet size too small to write data"));
4277
4278 /* If we already need another packet, then try to align the end
4279 of this packet to a useful boundary. */
4280 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4281 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4282
4283 /* Append "<memaddr>". */
4284 memaddr = remote_address_masked (memaddr);
4285 p += hexnumstr (p, (ULONGEST) memaddr);
4286
4287 if (use_length)
4288 {
4289 /* Append ",". */
4290 *p++ = ',';
4291
4292 /* Append <len>. Retain the location/size of <len>. It may need to
4293 be adjusted once the packet body has been created. */
4294 plen = p;
4295 plenlen = hexnumstr (p, (ULONGEST) todo);
4296 p += plenlen;
4297 }
4298
4299 /* Append ":". */
4300 *p++ = ':';
4301 *p = '\0';
4302
4303 /* Append the packet body. */
4304 if (packet_format == 'X')
4305 {
4306 /* Binary mode. Send target system values byte by byte, in
4307 increasing byte addresses. Only escape certain critical
4308 characters. */
4309 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4310 payload_size);
4311
4312 /* If not all TODO bytes fit, then we'll need another packet. Make
4313 a second try to keep the end of the packet aligned. Don't do
4314 this if the packet is tiny. */
4315 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4316 {
4317 int new_nr_bytes;
4318
4319 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4320 - memaddr);
4321 if (new_nr_bytes != nr_bytes)
4322 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4323 p, &nr_bytes,
4324 payload_size);
4325 }
4326
4327 p += payload_length;
4328 if (use_length && nr_bytes < todo)
4329 {
4330 /* Escape chars have filled up the buffer prematurely,
4331 and we have actually sent fewer bytes than planned.
4332 Fix-up the length field of the packet. Use the same
4333 number of characters as before. */
4334 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4335 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4336 }
4337 }
4338 else
4339 {
4340 /* Normal mode: Send target system values byte by byte, in
4341 increasing byte addresses. Each byte is encoded as a two hex
4342 value. */
4343 nr_bytes = bin2hex (myaddr, p, todo);
4344 p += 2 * nr_bytes;
4345 }
4346
4347 putpkt_binary (rs->buf, (int) (p - rs->buf));
4348 getpkt (&rs->buf, &rs->buf_size, 0);
4349
4350 if (rs->buf[0] == 'E')
4351 {
4352 /* There is no correspondance between what the remote protocol
4353 uses for errors and errno codes. We would like a cleaner way
4354 of representing errors (big enough to include errno codes,
4355 bfd_error codes, and others). But for now just return EIO. */
4356 errno = EIO;
4357 return 0;
4358 }
4359
4360 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4361 fewer bytes than we'd planned. */
4362 return nr_bytes;
4363 }
4364
4365 /* Write memory data directly to the remote machine.
4366 This does not inform the data cache; the data cache uses this.
4367 MEMADDR is the address in the remote memory space.
4368 MYADDR is the address of the buffer in our space.
4369 LEN is the number of bytes.
4370
4371 Returns number of bytes transferred, or 0 (setting errno) for
4372 error. Only transfer a single packet. */
4373
4374 int
4375 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4376 {
4377 char *packet_format = 0;
4378
4379 /* Check whether the target supports binary download. */
4380 check_binary_download (memaddr);
4381
4382 switch (remote_protocol_packets[PACKET_X].support)
4383 {
4384 case PACKET_ENABLE:
4385 packet_format = "X";
4386 break;
4387 case PACKET_DISABLE:
4388 packet_format = "M";
4389 break;
4390 case PACKET_SUPPORT_UNKNOWN:
4391 internal_error (__FILE__, __LINE__,
4392 _("remote_write_bytes: bad internal state"));
4393 default:
4394 internal_error (__FILE__, __LINE__, _("bad switch"));
4395 }
4396
4397 return remote_write_bytes_aux (packet_format,
4398 memaddr, myaddr, len, packet_format[0], 1);
4399 }
4400
4401 /* Read memory data directly from the remote machine.
4402 This does not use the data cache; the data cache uses this.
4403 MEMADDR is the address in the remote memory space.
4404 MYADDR is the address of the buffer in our space.
4405 LEN is the number of bytes.
4406
4407 Returns number of bytes transferred, or 0 for error. */
4408
4409 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4410 remote targets) shouldn't attempt to read the entire buffer.
4411 Instead it should read a single packet worth of data and then
4412 return the byte size of that packet to the caller. The caller (its
4413 caller and its callers caller ;-) already contains code for
4414 handling partial reads. */
4415
4416 int
4417 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4418 {
4419 struct remote_state *rs = get_remote_state ();
4420 int max_buf_size; /* Max size of packet output buffer. */
4421 int origlen;
4422
4423 if (len <= 0)
4424 return 0;
4425
4426 max_buf_size = get_memory_read_packet_size ();
4427 /* The packet buffer will be large enough for the payload;
4428 get_memory_packet_size ensures this. */
4429
4430 origlen = len;
4431 while (len > 0)
4432 {
4433 char *p;
4434 int todo;
4435 int i;
4436
4437 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4438
4439 /* construct "m"<memaddr>","<len>" */
4440 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4441 memaddr = remote_address_masked (memaddr);
4442 p = rs->buf;
4443 *p++ = 'm';
4444 p += hexnumstr (p, (ULONGEST) memaddr);
4445 *p++ = ',';
4446 p += hexnumstr (p, (ULONGEST) todo);
4447 *p = '\0';
4448
4449 putpkt (rs->buf);
4450 getpkt (&rs->buf, &rs->buf_size, 0);
4451
4452 if (rs->buf[0] == 'E'
4453 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4454 && rs->buf[3] == '\0')
4455 {
4456 /* There is no correspondance between what the remote
4457 protocol uses for errors and errno codes. We would like
4458 a cleaner way of representing errors (big enough to
4459 include errno codes, bfd_error codes, and others). But
4460 for now just return EIO. */
4461 errno = EIO;
4462 return 0;
4463 }
4464
4465 /* Reply describes memory byte by byte,
4466 each byte encoded as two hex characters. */
4467
4468 p = rs->buf;
4469 if ((i = hex2bin (p, myaddr, todo)) < todo)
4470 {
4471 /* Reply is short. This means that we were able to read
4472 only part of what we wanted to. */
4473 return i + (origlen - len);
4474 }
4475 myaddr += todo;
4476 memaddr += todo;
4477 len -= todo;
4478 }
4479 return origlen;
4480 }
4481 \f
4482 /* Read or write LEN bytes from inferior memory at MEMADDR,
4483 transferring to or from debugger address BUFFER. Write to inferior
4484 if SHOULD_WRITE is nonzero. Returns length of data written or
4485 read; 0 for error. TARGET is unused. */
4486
4487 static int
4488 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4489 int should_write, struct mem_attrib *attrib,
4490 struct target_ops *target)
4491 {
4492 int res;
4493
4494 if (should_write)
4495 res = remote_write_bytes (mem_addr, buffer, mem_len);
4496 else
4497 res = remote_read_bytes (mem_addr, buffer, mem_len);
4498
4499 return res;
4500 }
4501
4502 /* Sends a packet with content determined by the printf format string
4503 FORMAT and the remaining arguments, then gets the reply. Returns
4504 whether the packet was a success, a failure, or unknown. */
4505
4506 enum packet_result
4507 remote_send_printf (const char *format, ...)
4508 {
4509 struct remote_state *rs = get_remote_state ();
4510 int max_size = get_remote_packet_size ();
4511
4512 va_list ap;
4513 va_start (ap, format);
4514
4515 rs->buf[0] = '\0';
4516 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4517 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4518
4519 if (putpkt (rs->buf) < 0)
4520 error (_("Communication problem with target."));
4521
4522 rs->buf[0] = '\0';
4523 getpkt (&rs->buf, &rs->buf_size, 0);
4524
4525 return packet_check_result (rs->buf);
4526 }
4527
4528 static void
4529 restore_remote_timeout (void *p)
4530 {
4531 int value = *(int *)p;
4532 remote_timeout = value;
4533 }
4534
4535 /* Flash writing can take quite some time. We'll set
4536 effectively infinite timeout for flash operations.
4537 In future, we'll need to decide on a better approach. */
4538 static const int remote_flash_timeout = 1000;
4539
4540 static void
4541 remote_flash_erase (struct target_ops *ops,
4542 ULONGEST address, LONGEST length)
4543 {
4544 int saved_remote_timeout = remote_timeout;
4545 enum packet_result ret;
4546
4547 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4548 &saved_remote_timeout);
4549 remote_timeout = remote_flash_timeout;
4550
4551 ret = remote_send_printf ("vFlashErase:%s,%s",
4552 paddr (address),
4553 phex (length, 4));
4554 switch (ret)
4555 {
4556 case PACKET_UNKNOWN:
4557 error (_("Remote target does not support flash erase"));
4558 case PACKET_ERROR:
4559 error (_("Error erasing flash with vFlashErase packet"));
4560 default:
4561 break;
4562 }
4563
4564 do_cleanups (back_to);
4565 }
4566
4567 static LONGEST
4568 remote_flash_write (struct target_ops *ops,
4569 ULONGEST address, LONGEST length,
4570 const gdb_byte *data)
4571 {
4572 int saved_remote_timeout = remote_timeout;
4573 int ret;
4574 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4575 &saved_remote_timeout);
4576
4577 remote_timeout = remote_flash_timeout;
4578 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4579 do_cleanups (back_to);
4580
4581 return ret;
4582 }
4583
4584 static void
4585 remote_flash_done (struct target_ops *ops)
4586 {
4587 int saved_remote_timeout = remote_timeout;
4588 int ret;
4589 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4590 &saved_remote_timeout);
4591
4592 remote_timeout = remote_flash_timeout;
4593 ret = remote_send_printf ("vFlashDone");
4594 do_cleanups (back_to);
4595
4596 switch (ret)
4597 {
4598 case PACKET_UNKNOWN:
4599 error (_("Remote target does not support vFlashDone"));
4600 case PACKET_ERROR:
4601 error (_("Error finishing flash operation"));
4602 default:
4603 break;
4604 }
4605 }
4606
4607 static void
4608 remote_files_info (struct target_ops *ignore)
4609 {
4610 puts_filtered ("Debugging a target over a serial line.\n");
4611 }
4612 \f
4613 /* Stuff for dealing with the packets which are part of this protocol.
4614 See comment at top of file for details. */
4615
4616 /* Read a single character from the remote end. */
4617
4618 static int
4619 readchar (int timeout)
4620 {
4621 int ch;
4622
4623 ch = serial_readchar (remote_desc, timeout);
4624
4625 if (ch >= 0)
4626 return ch;
4627
4628 switch ((enum serial_rc) ch)
4629 {
4630 case SERIAL_EOF:
4631 target_mourn_inferior ();
4632 error (_("Remote connection closed"));
4633 /* no return */
4634 case SERIAL_ERROR:
4635 perror_with_name (_("Remote communication error"));
4636 /* no return */
4637 case SERIAL_TIMEOUT:
4638 break;
4639 }
4640 return ch;
4641 }
4642
4643 /* Send the command in *BUF to the remote machine, and read the reply
4644 into *BUF. Report an error if we get an error reply. Resize
4645 *BUF using xrealloc if necessary to hold the result, and update
4646 *SIZEOF_BUF. */
4647
4648 static void
4649 remote_send (char **buf,
4650 long *sizeof_buf)
4651 {
4652 putpkt (*buf);
4653 getpkt (buf, sizeof_buf, 0);
4654
4655 if ((*buf)[0] == 'E')
4656 error (_("Remote failure reply: %s"), *buf);
4657 }
4658
4659 /* Display a null-terminated packet on stdout, for debugging, using C
4660 string notation. */
4661
4662 static void
4663 print_packet (char *buf)
4664 {
4665 puts_filtered ("\"");
4666 fputstr_filtered (buf, '"', gdb_stdout);
4667 puts_filtered ("\"");
4668 }
4669
4670 int
4671 putpkt (char *buf)
4672 {
4673 return putpkt_binary (buf, strlen (buf));
4674 }
4675
4676 /* Send a packet to the remote machine, with error checking. The data
4677 of the packet is in BUF. The string in BUF can be at most
4678 get_remote_packet_size () - 5 to account for the $, # and checksum,
4679 and for a possible /0 if we are debugging (remote_debug) and want
4680 to print the sent packet as a string. */
4681
4682 static int
4683 putpkt_binary (char *buf, int cnt)
4684 {
4685 int i;
4686 unsigned char csum = 0;
4687 char *buf2 = alloca (cnt + 6);
4688
4689 int ch;
4690 int tcount = 0;
4691 char *p;
4692
4693 /* Copy the packet into buffer BUF2, encapsulating it
4694 and giving it a checksum. */
4695
4696 p = buf2;
4697 *p++ = '$';
4698
4699 for (i = 0; i < cnt; i++)
4700 {
4701 csum += buf[i];
4702 *p++ = buf[i];
4703 }
4704 *p++ = '#';
4705 *p++ = tohex ((csum >> 4) & 0xf);
4706 *p++ = tohex (csum & 0xf);
4707
4708 /* Send it over and over until we get a positive ack. */
4709
4710 while (1)
4711 {
4712 int started_error_output = 0;
4713
4714 if (remote_debug)
4715 {
4716 *p = '\0';
4717 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4718 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4719 fprintf_unfiltered (gdb_stdlog, "...");
4720 gdb_flush (gdb_stdlog);
4721 }
4722 if (serial_write (remote_desc, buf2, p - buf2))
4723 perror_with_name (_("putpkt: write failed"));
4724
4725 /* Read until either a timeout occurs (-2) or '+' is read. */
4726 while (1)
4727 {
4728 ch = readchar (remote_timeout);
4729
4730 if (remote_debug)
4731 {
4732 switch (ch)
4733 {
4734 case '+':
4735 case '-':
4736 case SERIAL_TIMEOUT:
4737 case '$':
4738 if (started_error_output)
4739 {
4740 putchar_unfiltered ('\n');
4741 started_error_output = 0;
4742 }
4743 }
4744 }
4745
4746 switch (ch)
4747 {
4748 case '+':
4749 if (remote_debug)
4750 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4751 return 1;
4752 case '-':
4753 if (remote_debug)
4754 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4755 case SERIAL_TIMEOUT:
4756 tcount++;
4757 if (tcount > 3)
4758 return 0;
4759 break; /* Retransmit buffer. */
4760 case '$':
4761 {
4762 if (remote_debug)
4763 fprintf_unfiltered (gdb_stdlog,
4764 "Packet instead of Ack, ignoring it\n");
4765 /* It's probably an old response sent because an ACK
4766 was lost. Gobble up the packet and ack it so it
4767 doesn't get retransmitted when we resend this
4768 packet. */
4769 skip_frame ();
4770 serial_write (remote_desc, "+", 1);
4771 continue; /* Now, go look for +. */
4772 }
4773 default:
4774 if (remote_debug)
4775 {
4776 if (!started_error_output)
4777 {
4778 started_error_output = 1;
4779 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4780 }
4781 fputc_unfiltered (ch & 0177, gdb_stdlog);
4782 }
4783 continue;
4784 }
4785 break; /* Here to retransmit. */
4786 }
4787
4788 #if 0
4789 /* This is wrong. If doing a long backtrace, the user should be
4790 able to get out next time we call QUIT, without anything as
4791 violent as interrupt_query. If we want to provide a way out of
4792 here without getting to the next QUIT, it should be based on
4793 hitting ^C twice as in remote_wait. */
4794 if (quit_flag)
4795 {
4796 quit_flag = 0;
4797 interrupt_query ();
4798 }
4799 #endif
4800 }
4801 }
4802
4803 /* Come here after finding the start of a frame when we expected an
4804 ack. Do our best to discard the rest of this packet. */
4805
4806 static void
4807 skip_frame (void)
4808 {
4809 int c;
4810
4811 while (1)
4812 {
4813 c = readchar (remote_timeout);
4814 switch (c)
4815 {
4816 case SERIAL_TIMEOUT:
4817 /* Nothing we can do. */
4818 return;
4819 case '#':
4820 /* Discard the two bytes of checksum and stop. */
4821 c = readchar (remote_timeout);
4822 if (c >= 0)
4823 c = readchar (remote_timeout);
4824
4825 return;
4826 case '*': /* Run length encoding. */
4827 /* Discard the repeat count. */
4828 c = readchar (remote_timeout);
4829 if (c < 0)
4830 return;
4831 break;
4832 default:
4833 /* A regular character. */
4834 break;
4835 }
4836 }
4837 }
4838
4839 /* Come here after finding the start of the frame. Collect the rest
4840 into *BUF, verifying the checksum, length, and handling run-length
4841 compression. NUL terminate the buffer. If there is not enough room,
4842 expand *BUF using xrealloc.
4843
4844 Returns -1 on error, number of characters in buffer (ignoring the
4845 trailing NULL) on success. (could be extended to return one of the
4846 SERIAL status indications). */
4847
4848 static long
4849 read_frame (char **buf_p,
4850 long *sizeof_buf)
4851 {
4852 unsigned char csum;
4853 long bc;
4854 int c;
4855 char *buf = *buf_p;
4856
4857 csum = 0;
4858 bc = 0;
4859
4860 while (1)
4861 {
4862 c = readchar (remote_timeout);
4863 switch (c)
4864 {
4865 case SERIAL_TIMEOUT:
4866 if (remote_debug)
4867 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4868 return -1;
4869 case '$':
4870 if (remote_debug)
4871 fputs_filtered ("Saw new packet start in middle of old one\n",
4872 gdb_stdlog);
4873 return -1; /* Start a new packet, count retries. */
4874 case '#':
4875 {
4876 unsigned char pktcsum;
4877 int check_0 = 0;
4878 int check_1 = 0;
4879
4880 buf[bc] = '\0';
4881
4882 check_0 = readchar (remote_timeout);
4883 if (check_0 >= 0)
4884 check_1 = readchar (remote_timeout);
4885
4886 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4887 {
4888 if (remote_debug)
4889 fputs_filtered ("Timeout in checksum, retrying\n",
4890 gdb_stdlog);
4891 return -1;
4892 }
4893 else if (check_0 < 0 || check_1 < 0)
4894 {
4895 if (remote_debug)
4896 fputs_filtered ("Communication error in checksum\n",
4897 gdb_stdlog);
4898 return -1;
4899 }
4900
4901 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4902 if (csum == pktcsum)
4903 return bc;
4904
4905 if (remote_debug)
4906 {
4907 fprintf_filtered (gdb_stdlog,
4908 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4909 pktcsum, csum);
4910 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4911 fputs_filtered ("\n", gdb_stdlog);
4912 }
4913 /* Number of characters in buffer ignoring trailing
4914 NULL. */
4915 return -1;
4916 }
4917 case '*': /* Run length encoding. */
4918 {
4919 int repeat;
4920 csum += c;
4921
4922 c = readchar (remote_timeout);
4923 csum += c;
4924 repeat = c - ' ' + 3; /* Compute repeat count. */
4925
4926 /* The character before ``*'' is repeated. */
4927
4928 if (repeat > 0 && repeat <= 255 && bc > 0)
4929 {
4930 if (bc + repeat - 1 >= *sizeof_buf - 1)
4931 {
4932 /* Make some more room in the buffer. */
4933 *sizeof_buf += repeat;
4934 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4935 buf = *buf_p;
4936 }
4937
4938 memset (&buf[bc], buf[bc - 1], repeat);
4939 bc += repeat;
4940 continue;
4941 }
4942
4943 buf[bc] = '\0';
4944 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4945 return -1;
4946 }
4947 default:
4948 if (bc >= *sizeof_buf - 1)
4949 {
4950 /* Make some more room in the buffer. */
4951 *sizeof_buf *= 2;
4952 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4953 buf = *buf_p;
4954 }
4955
4956 buf[bc++] = c;
4957 csum += c;
4958 continue;
4959 }
4960 }
4961 }
4962
4963 /* Read a packet from the remote machine, with error checking, and
4964 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4965 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4966 rather than timing out; this is used (in synchronous mode) to wait
4967 for a target that is is executing user code to stop. */
4968 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4969 don't have to change all the calls to getpkt to deal with the
4970 return value, because at the moment I don't know what the right
4971 thing to do it for those. */
4972 void
4973 getpkt (char **buf,
4974 long *sizeof_buf,
4975 int forever)
4976 {
4977 int timed_out;
4978
4979 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4980 }
4981
4982
4983 /* Read a packet from the remote machine, with error checking, and
4984 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4985 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4986 rather than timing out; this is used (in synchronous mode) to wait
4987 for a target that is is executing user code to stop. If FOREVER ==
4988 0, this function is allowed to time out gracefully and return an
4989 indication of this to the caller. Otherwise return the number
4990 of bytes read. */
4991 static int
4992 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4993 {
4994 int c;
4995 int tries;
4996 int timeout;
4997 int val;
4998
4999 strcpy (*buf, "timeout");
5000
5001 if (forever)
5002 {
5003 timeout = watchdog > 0 ? watchdog : -1;
5004 }
5005
5006 else
5007 timeout = remote_timeout;
5008
5009 #define MAX_TRIES 3
5010
5011 for (tries = 1; tries <= MAX_TRIES; tries++)
5012 {
5013 /* This can loop forever if the remote side sends us characters
5014 continuously, but if it pauses, we'll get a zero from
5015 readchar because of timeout. Then we'll count that as a
5016 retry. */
5017
5018 /* Note that we will only wait forever prior to the start of a
5019 packet. After that, we expect characters to arrive at a
5020 brisk pace. They should show up within remote_timeout
5021 intervals. */
5022
5023 do
5024 {
5025 c = readchar (timeout);
5026
5027 if (c == SERIAL_TIMEOUT)
5028 {
5029 if (forever) /* Watchdog went off? Kill the target. */
5030 {
5031 QUIT;
5032 target_mourn_inferior ();
5033 error (_("Watchdog timeout has expired. Target detached."));
5034 }
5035 if (remote_debug)
5036 fputs_filtered ("Timed out.\n", gdb_stdlog);
5037 goto retry;
5038 }
5039 }
5040 while (c != '$');
5041
5042 /* We've found the start of a packet, now collect the data. */
5043
5044 val = read_frame (buf, sizeof_buf);
5045
5046 if (val >= 0)
5047 {
5048 if (remote_debug)
5049 {
5050 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5051 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5052 fprintf_unfiltered (gdb_stdlog, "\n");
5053 }
5054 serial_write (remote_desc, "+", 1);
5055 return val;
5056 }
5057
5058 /* Try the whole thing again. */
5059 retry:
5060 serial_write (remote_desc, "-", 1);
5061 }
5062
5063 /* We have tried hard enough, and just can't receive the packet.
5064 Give up. */
5065
5066 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5067 serial_write (remote_desc, "+", 1);
5068 return -1;
5069 }
5070 \f
5071 static void
5072 remote_kill (void)
5073 {
5074 /* For some mysterious reason, wait_for_inferior calls kill instead of
5075 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5076 if (kill_kludge)
5077 {
5078 kill_kludge = 0;
5079 target_mourn_inferior ();
5080 return;
5081 }
5082
5083 /* Use catch_errors so the user can quit from gdb even when we aren't on
5084 speaking terms with the remote system. */
5085 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5086
5087 /* Don't wait for it to die. I'm not really sure it matters whether
5088 we do or not. For the existing stubs, kill is a noop. */
5089 target_mourn_inferior ();
5090 }
5091
5092 /* Async version of remote_kill. */
5093 static void
5094 remote_async_kill (void)
5095 {
5096 /* Unregister the file descriptor from the event loop. */
5097 if (target_is_async_p ())
5098 serial_async (remote_desc, NULL, 0);
5099
5100 /* For some mysterious reason, wait_for_inferior calls kill instead of
5101 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5102 if (kill_kludge)
5103 {
5104 kill_kludge = 0;
5105 target_mourn_inferior ();
5106 return;
5107 }
5108
5109 /* Use catch_errors so the user can quit from gdb even when we
5110 aren't on speaking terms with the remote system. */
5111 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5112
5113 /* Don't wait for it to die. I'm not really sure it matters whether
5114 we do or not. For the existing stubs, kill is a noop. */
5115 target_mourn_inferior ();
5116 }
5117
5118 static void
5119 remote_mourn (void)
5120 {
5121 remote_mourn_1 (&remote_ops);
5122 }
5123
5124 static void
5125 remote_async_mourn (void)
5126 {
5127 remote_mourn_1 (&remote_async_ops);
5128 }
5129
5130 static void
5131 extended_remote_mourn (void)
5132 {
5133 /* We do _not_ want to mourn the target like this; this will
5134 remove the extended remote target from the target stack,
5135 and the next time the user says "run" it'll fail.
5136
5137 FIXME: What is the right thing to do here? */
5138 #if 0
5139 remote_mourn_1 (&extended_remote_ops);
5140 #endif
5141 }
5142
5143 /* Worker function for remote_mourn. */
5144 static void
5145 remote_mourn_1 (struct target_ops *target)
5146 {
5147 unpush_target (target);
5148 generic_mourn_inferior ();
5149 }
5150
5151 /* In the extended protocol we want to be able to do things like
5152 "run" and have them basically work as expected. So we need
5153 a special create_inferior function.
5154
5155 FIXME: One day add support for changing the exec file
5156 we're debugging, arguments and an environment. */
5157
5158 static void
5159 extended_remote_create_inferior (char *exec_file, char *args,
5160 char **env, int from_tty)
5161 {
5162 /* Rip out the breakpoints; we'll reinsert them after restarting
5163 the remote server. */
5164 remove_breakpoints ();
5165
5166 /* Now restart the remote server. */
5167 extended_remote_restart ();
5168
5169 /* NOTE: We don't need to recheck for a target description here; but
5170 if we gain the ability to switch the remote executable we may
5171 need to, if for instance we are running a process which requested
5172 different emulated hardware from the operating system. A
5173 concrete example of this is ARM GNU/Linux, where some binaries
5174 will have a legacy FPA coprocessor emulated and others may have
5175 access to a hardware VFP unit. */
5176
5177 /* Now put the breakpoints back in. This way we're safe if the
5178 restart function works via a unix fork on the remote side. */
5179 insert_breakpoints ();
5180
5181 /* Clean up from the last time we were running. */
5182 clear_proceed_status ();
5183 }
5184
5185 /* Async version of extended_remote_create_inferior. */
5186 static void
5187 extended_remote_async_create_inferior (char *exec_file, char *args,
5188 char **env, int from_tty)
5189 {
5190 /* Rip out the breakpoints; we'll reinsert them after restarting
5191 the remote server. */
5192 remove_breakpoints ();
5193
5194 /* If running asynchronously, register the target file descriptor
5195 with the event loop. */
5196 if (target_can_async_p ())
5197 target_async (inferior_event_handler, 0);
5198
5199 /* Now restart the remote server. */
5200 extended_remote_restart ();
5201
5202 /* NOTE: We don't need to recheck for a target description here; but
5203 if we gain the ability to switch the remote executable we may
5204 need to, if for instance we are running a process which requested
5205 different emulated hardware from the operating system. A
5206 concrete example of this is ARM GNU/Linux, where some binaries
5207 will have a legacy FPA coprocessor emulated and others may have
5208 access to a hardware VFP unit. */
5209
5210 /* Now put the breakpoints back in. This way we're safe if the
5211 restart function works via a unix fork on the remote side. */
5212 insert_breakpoints ();
5213
5214 /* Clean up from the last time we were running. */
5215 clear_proceed_status ();
5216 }
5217 \f
5218
5219 /* Insert a breakpoint. On targets that have software breakpoint
5220 support, we ask the remote target to do the work; on targets
5221 which don't, we insert a traditional memory breakpoint. */
5222
5223 static int
5224 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5225 {
5226 CORE_ADDR addr = bp_tgt->placed_address;
5227 struct remote_state *rs = get_remote_state ();
5228
5229 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5230 If it succeeds, then set the support to PACKET_ENABLE. If it
5231 fails, and the user has explicitly requested the Z support then
5232 report an error, otherwise, mark it disabled and go on. */
5233
5234 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5235 {
5236 char *p = rs->buf;
5237
5238 *(p++) = 'Z';
5239 *(p++) = '0';
5240 *(p++) = ',';
5241 gdbarch_breakpoint_from_pc
5242 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5243 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5244 p += hexnumstr (p, addr);
5245 sprintf (p, ",%d", bp_tgt->placed_size);
5246
5247 putpkt (rs->buf);
5248 getpkt (&rs->buf, &rs->buf_size, 0);
5249
5250 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5251 {
5252 case PACKET_ERROR:
5253 return -1;
5254 case PACKET_OK:
5255 return 0;
5256 case PACKET_UNKNOWN:
5257 break;
5258 }
5259 }
5260
5261 return memory_insert_breakpoint (bp_tgt);
5262 }
5263
5264 static int
5265 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5266 {
5267 CORE_ADDR addr = bp_tgt->placed_address;
5268 struct remote_state *rs = get_remote_state ();
5269 int bp_size;
5270
5271 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5272 {
5273 char *p = rs->buf;
5274
5275 *(p++) = 'z';
5276 *(p++) = '0';
5277 *(p++) = ',';
5278
5279 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5280 p += hexnumstr (p, addr);
5281 sprintf (p, ",%d", bp_tgt->placed_size);
5282
5283 putpkt (rs->buf);
5284 getpkt (&rs->buf, &rs->buf_size, 0);
5285
5286 return (rs->buf[0] == 'E');
5287 }
5288
5289 return memory_remove_breakpoint (bp_tgt);
5290 }
5291
5292 static int
5293 watchpoint_to_Z_packet (int type)
5294 {
5295 switch (type)
5296 {
5297 case hw_write:
5298 return Z_PACKET_WRITE_WP;
5299 break;
5300 case hw_read:
5301 return Z_PACKET_READ_WP;
5302 break;
5303 case hw_access:
5304 return Z_PACKET_ACCESS_WP;
5305 break;
5306 default:
5307 internal_error (__FILE__, __LINE__,
5308 _("hw_bp_to_z: bad watchpoint type %d"), type);
5309 }
5310 }
5311
5312 static int
5313 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5314 {
5315 struct remote_state *rs = get_remote_state ();
5316 char *p;
5317 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5318
5319 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5320 return -1;
5321
5322 sprintf (rs->buf, "Z%x,", packet);
5323 p = strchr (rs->buf, '\0');
5324 addr = remote_address_masked (addr);
5325 p += hexnumstr (p, (ULONGEST) addr);
5326 sprintf (p, ",%x", len);
5327
5328 putpkt (rs->buf);
5329 getpkt (&rs->buf, &rs->buf_size, 0);
5330
5331 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5332 {
5333 case PACKET_ERROR:
5334 case PACKET_UNKNOWN:
5335 return -1;
5336 case PACKET_OK:
5337 return 0;
5338 }
5339 internal_error (__FILE__, __LINE__,
5340 _("remote_insert_watchpoint: reached end of function"));
5341 }
5342
5343
5344 static int
5345 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5346 {
5347 struct remote_state *rs = get_remote_state ();
5348 char *p;
5349 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5350
5351 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5352 return -1;
5353
5354 sprintf (rs->buf, "z%x,", packet);
5355 p = strchr (rs->buf, '\0');
5356 addr = remote_address_masked (addr);
5357 p += hexnumstr (p, (ULONGEST) addr);
5358 sprintf (p, ",%x", len);
5359 putpkt (rs->buf);
5360 getpkt (&rs->buf, &rs->buf_size, 0);
5361
5362 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5363 {
5364 case PACKET_ERROR:
5365 case PACKET_UNKNOWN:
5366 return -1;
5367 case PACKET_OK:
5368 return 0;
5369 }
5370 internal_error (__FILE__, __LINE__,
5371 _("remote_remove_watchpoint: reached end of function"));
5372 }
5373
5374
5375 int remote_hw_watchpoint_limit = -1;
5376 int remote_hw_breakpoint_limit = -1;
5377
5378 static int
5379 remote_check_watch_resources (int type, int cnt, int ot)
5380 {
5381 if (type == bp_hardware_breakpoint)
5382 {
5383 if (remote_hw_breakpoint_limit == 0)
5384 return 0;
5385 else if (remote_hw_breakpoint_limit < 0)
5386 return 1;
5387 else if (cnt <= remote_hw_breakpoint_limit)
5388 return 1;
5389 }
5390 else
5391 {
5392 if (remote_hw_watchpoint_limit == 0)
5393 return 0;
5394 else if (remote_hw_watchpoint_limit < 0)
5395 return 1;
5396 else if (ot)
5397 return -1;
5398 else if (cnt <= remote_hw_watchpoint_limit)
5399 return 1;
5400 }
5401 return -1;
5402 }
5403
5404 static int
5405 remote_stopped_by_watchpoint (void)
5406 {
5407 return remote_stopped_by_watchpoint_p;
5408 }
5409
5410 static int
5411 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5412 {
5413 int rc = 0;
5414 if (remote_stopped_by_watchpoint ())
5415 {
5416 *addr_p = remote_watch_data_address;
5417 rc = 1;
5418 }
5419
5420 return rc;
5421 }
5422
5423
5424 static int
5425 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5426 {
5427 CORE_ADDR addr;
5428 struct remote_state *rs = get_remote_state ();
5429 char *p = rs->buf;
5430
5431 /* The length field should be set to the size of a breakpoint
5432 instruction, even though we aren't inserting one ourselves. */
5433
5434 gdbarch_breakpoint_from_pc
5435 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5436
5437 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5438 return -1;
5439
5440 *(p++) = 'Z';
5441 *(p++) = '1';
5442 *(p++) = ',';
5443
5444 addr = remote_address_masked (bp_tgt->placed_address);
5445 p += hexnumstr (p, (ULONGEST) addr);
5446 sprintf (p, ",%x", bp_tgt->placed_size);
5447
5448 putpkt (rs->buf);
5449 getpkt (&rs->buf, &rs->buf_size, 0);
5450
5451 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5452 {
5453 case PACKET_ERROR:
5454 case PACKET_UNKNOWN:
5455 return -1;
5456 case PACKET_OK:
5457 return 0;
5458 }
5459 internal_error (__FILE__, __LINE__,
5460 _("remote_insert_hw_breakpoint: reached end of function"));
5461 }
5462
5463
5464 static int
5465 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5466 {
5467 CORE_ADDR addr;
5468 struct remote_state *rs = get_remote_state ();
5469 char *p = rs->buf;
5470
5471 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5472 return -1;
5473
5474 *(p++) = 'z';
5475 *(p++) = '1';
5476 *(p++) = ',';
5477
5478 addr = remote_address_masked (bp_tgt->placed_address);
5479 p += hexnumstr (p, (ULONGEST) addr);
5480 sprintf (p, ",%x", bp_tgt->placed_size);
5481
5482 putpkt (rs->buf);
5483 getpkt (&rs->buf, &rs->buf_size, 0);
5484
5485 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5486 {
5487 case PACKET_ERROR:
5488 case PACKET_UNKNOWN:
5489 return -1;
5490 case PACKET_OK:
5491 return 0;
5492 }
5493 internal_error (__FILE__, __LINE__,
5494 _("remote_remove_hw_breakpoint: reached end of function"));
5495 }
5496
5497 /* Some targets are only capable of doing downloads, and afterwards
5498 they switch to the remote serial protocol. This function provides
5499 a clean way to get from the download target to the remote target.
5500 It's basically just a wrapper so that we don't have to expose any
5501 of the internal workings of remote.c.
5502
5503 Prior to calling this routine, you should shutdown the current
5504 target code, else you will get the "A program is being debugged
5505 already..." message. Usually a call to pop_target() suffices. */
5506
5507 void
5508 push_remote_target (char *name, int from_tty)
5509 {
5510 printf_filtered (_("Switching to remote protocol\n"));
5511 remote_open (name, from_tty);
5512 }
5513
5514 /* Table used by the crc32 function to calcuate the checksum. */
5515
5516 static unsigned long crc32_table[256] =
5517 {0, 0};
5518
5519 static unsigned long
5520 crc32 (unsigned char *buf, int len, unsigned int crc)
5521 {
5522 if (!crc32_table[1])
5523 {
5524 /* Initialize the CRC table and the decoding table. */
5525 int i, j;
5526 unsigned int c;
5527
5528 for (i = 0; i < 256; i++)
5529 {
5530 for (c = i << 24, j = 8; j > 0; --j)
5531 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5532 crc32_table[i] = c;
5533 }
5534 }
5535
5536 while (len--)
5537 {
5538 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5539 buf++;
5540 }
5541 return crc;
5542 }
5543
5544 /* compare-sections command
5545
5546 With no arguments, compares each loadable section in the exec bfd
5547 with the same memory range on the target, and reports mismatches.
5548 Useful for verifying the image on the target against the exec file.
5549 Depends on the target understanding the new "qCRC:" request. */
5550
5551 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5552 target method (target verify memory) and generic version of the
5553 actual command. This will allow other high-level code (especially
5554 generic_load()) to make use of this target functionality. */
5555
5556 static void
5557 compare_sections_command (char *args, int from_tty)
5558 {
5559 struct remote_state *rs = get_remote_state ();
5560 asection *s;
5561 unsigned long host_crc, target_crc;
5562 extern bfd *exec_bfd;
5563 struct cleanup *old_chain;
5564 char *tmp;
5565 char *sectdata;
5566 const char *sectname;
5567 bfd_size_type size;
5568 bfd_vma lma;
5569 int matched = 0;
5570 int mismatched = 0;
5571
5572 if (!exec_bfd)
5573 error (_("command cannot be used without an exec file"));
5574 if (!current_target.to_shortname ||
5575 strcmp (current_target.to_shortname, "remote") != 0)
5576 error (_("command can only be used with remote target"));
5577
5578 for (s = exec_bfd->sections; s; s = s->next)
5579 {
5580 if (!(s->flags & SEC_LOAD))
5581 continue; /* skip non-loadable section */
5582
5583 size = bfd_get_section_size (s);
5584 if (size == 0)
5585 continue; /* skip zero-length section */
5586
5587 sectname = bfd_get_section_name (exec_bfd, s);
5588 if (args && strcmp (args, sectname) != 0)
5589 continue; /* not the section selected by user */
5590
5591 matched = 1; /* do this section */
5592 lma = s->lma;
5593 /* FIXME: assumes lma can fit into long. */
5594 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5595 (long) lma, (long) size);
5596 putpkt (rs->buf);
5597
5598 /* Be clever; compute the host_crc before waiting for target
5599 reply. */
5600 sectdata = xmalloc (size);
5601 old_chain = make_cleanup (xfree, sectdata);
5602 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5603 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5604
5605 getpkt (&rs->buf, &rs->buf_size, 0);
5606 if (rs->buf[0] == 'E')
5607 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5608 sectname, paddr (lma), paddr (lma + size));
5609 if (rs->buf[0] != 'C')
5610 error (_("remote target does not support this operation"));
5611
5612 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5613 target_crc = target_crc * 16 + fromhex (*tmp);
5614
5615 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5616 sectname, paddr (lma), paddr (lma + size));
5617 if (host_crc == target_crc)
5618 printf_filtered ("matched.\n");
5619 else
5620 {
5621 printf_filtered ("MIS-MATCHED!\n");
5622 mismatched++;
5623 }
5624
5625 do_cleanups (old_chain);
5626 }
5627 if (mismatched > 0)
5628 warning (_("One or more sections of the remote executable does not match\n\
5629 the loaded file\n"));
5630 if (args && !matched)
5631 printf_filtered (_("No loaded section named '%s'.\n"), args);
5632 }
5633
5634 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5635 into remote target. The number of bytes written to the remote
5636 target is returned, or -1 for error. */
5637
5638 static LONGEST
5639 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5640 const char *annex, const gdb_byte *writebuf,
5641 ULONGEST offset, LONGEST len,
5642 struct packet_config *packet)
5643 {
5644 int i, buf_len;
5645 ULONGEST n;
5646 gdb_byte *wbuf;
5647 struct remote_state *rs = get_remote_state ();
5648 int max_size = get_memory_write_packet_size ();
5649
5650 if (packet->support == PACKET_DISABLE)
5651 return -1;
5652
5653 /* Insert header. */
5654 i = snprintf (rs->buf, max_size,
5655 "qXfer:%s:write:%s:%s:",
5656 object_name, annex ? annex : "",
5657 phex_nz (offset, sizeof offset));
5658 max_size -= (i + 1);
5659
5660 /* Escape as much data as fits into rs->buf. */
5661 buf_len = remote_escape_output
5662 (writebuf, len, (rs->buf + i), &max_size, max_size);
5663
5664 if (putpkt_binary (rs->buf, i + buf_len) < 0
5665 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5666 || packet_ok (rs->buf, packet) != PACKET_OK)
5667 return -1;
5668
5669 unpack_varlen_hex (rs->buf, &n);
5670 return n;
5671 }
5672
5673 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5674 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5675 number of bytes read is returned, or 0 for EOF, or -1 for error.
5676 The number of bytes read may be less than LEN without indicating an
5677 EOF. PACKET is checked and updated to indicate whether the remote
5678 target supports this object. */
5679
5680 static LONGEST
5681 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5682 const char *annex,
5683 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5684 struct packet_config *packet)
5685 {
5686 static char *finished_object;
5687 static char *finished_annex;
5688 static ULONGEST finished_offset;
5689
5690 struct remote_state *rs = get_remote_state ();
5691 unsigned int total = 0;
5692 LONGEST i, n, packet_len;
5693
5694 if (packet->support == PACKET_DISABLE)
5695 return -1;
5696
5697 /* Check whether we've cached an end-of-object packet that matches
5698 this request. */
5699 if (finished_object)
5700 {
5701 if (strcmp (object_name, finished_object) == 0
5702 && strcmp (annex ? annex : "", finished_annex) == 0
5703 && offset == finished_offset)
5704 return 0;
5705
5706 /* Otherwise, we're now reading something different. Discard
5707 the cache. */
5708 xfree (finished_object);
5709 xfree (finished_annex);
5710 finished_object = NULL;
5711 finished_annex = NULL;
5712 }
5713
5714 /* Request only enough to fit in a single packet. The actual data
5715 may not, since we don't know how much of it will need to be escaped;
5716 the target is free to respond with slightly less data. We subtract
5717 five to account for the response type and the protocol frame. */
5718 n = min (get_remote_packet_size () - 5, len);
5719 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5720 object_name, annex ? annex : "",
5721 phex_nz (offset, sizeof offset),
5722 phex_nz (n, sizeof n));
5723 i = putpkt (rs->buf);
5724 if (i < 0)
5725 return -1;
5726
5727 rs->buf[0] = '\0';
5728 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5729 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5730 return -1;
5731
5732 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5733 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5734
5735 /* 'm' means there is (or at least might be) more data after this
5736 batch. That does not make sense unless there's at least one byte
5737 of data in this reply. */
5738 if (rs->buf[0] == 'm' && packet_len == 1)
5739 error (_("Remote qXfer reply contained no data."));
5740
5741 /* Got some data. */
5742 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5743
5744 /* 'l' is an EOF marker, possibly including a final block of data,
5745 or possibly empty. If we have the final block of a non-empty
5746 object, record this fact to bypass a subsequent partial read. */
5747 if (rs->buf[0] == 'l' && offset + i > 0)
5748 {
5749 finished_object = xstrdup (object_name);
5750 finished_annex = xstrdup (annex ? annex : "");
5751 finished_offset = offset + i;
5752 }
5753
5754 return i;
5755 }
5756
5757 static LONGEST
5758 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5759 const char *annex, gdb_byte *readbuf,
5760 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5761 {
5762 struct remote_state *rs = get_remote_state ();
5763 int i;
5764 char *p2;
5765 char query_type;
5766
5767 /* Handle memory using the standard memory routines. */
5768 if (object == TARGET_OBJECT_MEMORY)
5769 {
5770 int xfered;
5771 errno = 0;
5772
5773 if (writebuf != NULL)
5774 xfered = remote_write_bytes (offset, writebuf, len);
5775 else
5776 xfered = remote_read_bytes (offset, readbuf, len);
5777
5778 if (xfered > 0)
5779 return xfered;
5780 else if (xfered == 0 && errno == 0)
5781 return 0;
5782 else
5783 return -1;
5784 }
5785
5786 /* Handle SPU memory using qxfer packets. */
5787 if (object == TARGET_OBJECT_SPU)
5788 {
5789 if (readbuf)
5790 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5791 &remote_protocol_packets
5792 [PACKET_qXfer_spu_read]);
5793 else
5794 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5795 &remote_protocol_packets
5796 [PACKET_qXfer_spu_write]);
5797 }
5798
5799 /* Only handle flash writes. */
5800 if (writebuf != NULL)
5801 {
5802 LONGEST xfered;
5803
5804 switch (object)
5805 {
5806 case TARGET_OBJECT_FLASH:
5807 xfered = remote_flash_write (ops, offset, len, writebuf);
5808
5809 if (xfered > 0)
5810 return xfered;
5811 else if (xfered == 0 && errno == 0)
5812 return 0;
5813 else
5814 return -1;
5815
5816 default:
5817 return -1;
5818 }
5819 }
5820
5821 /* Map pre-existing objects onto letters. DO NOT do this for new
5822 objects!!! Instead specify new query packets. */
5823 switch (object)
5824 {
5825 case TARGET_OBJECT_AVR:
5826 query_type = 'R';
5827 break;
5828
5829 case TARGET_OBJECT_AUXV:
5830 gdb_assert (annex == NULL);
5831 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5832 &remote_protocol_packets[PACKET_qXfer_auxv]);
5833
5834 case TARGET_OBJECT_AVAILABLE_FEATURES:
5835 return remote_read_qxfer
5836 (ops, "features", annex, readbuf, offset, len,
5837 &remote_protocol_packets[PACKET_qXfer_features]);
5838
5839 case TARGET_OBJECT_LIBRARIES:
5840 return remote_read_qxfer
5841 (ops, "libraries", annex, readbuf, offset, len,
5842 &remote_protocol_packets[PACKET_qXfer_libraries]);
5843
5844 case TARGET_OBJECT_MEMORY_MAP:
5845 gdb_assert (annex == NULL);
5846 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5847 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5848
5849 default:
5850 return -1;
5851 }
5852
5853 /* Note: a zero OFFSET and LEN can be used to query the minimum
5854 buffer size. */
5855 if (offset == 0 && len == 0)
5856 return (get_remote_packet_size ());
5857 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5858 large enough let the caller deal with it. */
5859 if (len < get_remote_packet_size ())
5860 return -1;
5861 len = get_remote_packet_size ();
5862
5863 /* Except for querying the minimum buffer size, target must be open. */
5864 if (!remote_desc)
5865 error (_("remote query is only available after target open"));
5866
5867 gdb_assert (annex != NULL);
5868 gdb_assert (readbuf != NULL);
5869
5870 p2 = rs->buf;
5871 *p2++ = 'q';
5872 *p2++ = query_type;
5873
5874 /* We used one buffer char for the remote protocol q command and
5875 another for the query type. As the remote protocol encapsulation
5876 uses 4 chars plus one extra in case we are debugging
5877 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5878 string. */
5879 i = 0;
5880 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5881 {
5882 /* Bad caller may have sent forbidden characters. */
5883 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5884 *p2++ = annex[i];
5885 i++;
5886 }
5887 *p2 = '\0';
5888 gdb_assert (annex[i] == '\0');
5889
5890 i = putpkt (rs->buf);
5891 if (i < 0)
5892 return i;
5893
5894 getpkt (&rs->buf, &rs->buf_size, 0);
5895 strcpy ((char *) readbuf, rs->buf);
5896
5897 return strlen ((char *) readbuf);
5898 }
5899
5900 static void
5901 remote_rcmd (char *command,
5902 struct ui_file *outbuf)
5903 {
5904 struct remote_state *rs = get_remote_state ();
5905 char *p = rs->buf;
5906
5907 if (!remote_desc)
5908 error (_("remote rcmd is only available after target open"));
5909
5910 /* Send a NULL command across as an empty command. */
5911 if (command == NULL)
5912 command = "";
5913
5914 /* The query prefix. */
5915 strcpy (rs->buf, "qRcmd,");
5916 p = strchr (rs->buf, '\0');
5917
5918 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5919 error (_("\"monitor\" command ``%s'' is too long."), command);
5920
5921 /* Encode the actual command. */
5922 bin2hex ((gdb_byte *) command, p, 0);
5923
5924 if (putpkt (rs->buf) < 0)
5925 error (_("Communication problem with target."));
5926
5927 /* get/display the response */
5928 while (1)
5929 {
5930 char *buf;
5931
5932 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5933 rs->buf[0] = '\0';
5934 getpkt (&rs->buf, &rs->buf_size, 0);
5935 buf = rs->buf;
5936 if (buf[0] == '\0')
5937 error (_("Target does not support this command."));
5938 if (buf[0] == 'O' && buf[1] != 'K')
5939 {
5940 remote_console_output (buf + 1); /* 'O' message from stub. */
5941 continue;
5942 }
5943 if (strcmp (buf, "OK") == 0)
5944 break;
5945 if (strlen (buf) == 3 && buf[0] == 'E'
5946 && isdigit (buf[1]) && isdigit (buf[2]))
5947 {
5948 error (_("Protocol error with Rcmd"));
5949 }
5950 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5951 {
5952 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5953 fputc_unfiltered (c, outbuf);
5954 }
5955 break;
5956 }
5957 }
5958
5959 static VEC(mem_region_s) *
5960 remote_memory_map (struct target_ops *ops)
5961 {
5962 VEC(mem_region_s) *result = NULL;
5963 char *text = target_read_stralloc (&current_target,
5964 TARGET_OBJECT_MEMORY_MAP, NULL);
5965
5966 if (text)
5967 {
5968 struct cleanup *back_to = make_cleanup (xfree, text);
5969 result = parse_memory_map (text);
5970 do_cleanups (back_to);
5971 }
5972
5973 return result;
5974 }
5975
5976 static void
5977 packet_command (char *args, int from_tty)
5978 {
5979 struct remote_state *rs = get_remote_state ();
5980
5981 if (!remote_desc)
5982 error (_("command can only be used with remote target"));
5983
5984 if (!args)
5985 error (_("remote-packet command requires packet text as argument"));
5986
5987 puts_filtered ("sending: ");
5988 print_packet (args);
5989 puts_filtered ("\n");
5990 putpkt (args);
5991
5992 getpkt (&rs->buf, &rs->buf_size, 0);
5993 puts_filtered ("received: ");
5994 print_packet (rs->buf);
5995 puts_filtered ("\n");
5996 }
5997
5998 #if 0
5999 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6000
6001 static void display_thread_info (struct gdb_ext_thread_info *info);
6002
6003 static void threadset_test_cmd (char *cmd, int tty);
6004
6005 static void threadalive_test (char *cmd, int tty);
6006
6007 static void threadlist_test_cmd (char *cmd, int tty);
6008
6009 int get_and_display_threadinfo (threadref *ref);
6010
6011 static void threadinfo_test_cmd (char *cmd, int tty);
6012
6013 static int thread_display_step (threadref *ref, void *context);
6014
6015 static void threadlist_update_test_cmd (char *cmd, int tty);
6016
6017 static void init_remote_threadtests (void);
6018
6019 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6020
6021 static void
6022 threadset_test_cmd (char *cmd, int tty)
6023 {
6024 int sample_thread = SAMPLE_THREAD;
6025
6026 printf_filtered (_("Remote threadset test\n"));
6027 set_thread (sample_thread, 1);
6028 }
6029
6030
6031 static void
6032 threadalive_test (char *cmd, int tty)
6033 {
6034 int sample_thread = SAMPLE_THREAD;
6035
6036 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6037 printf_filtered ("PASS: Thread alive test\n");
6038 else
6039 printf_filtered ("FAIL: Thread alive test\n");
6040 }
6041
6042 void output_threadid (char *title, threadref *ref);
6043
6044 void
6045 output_threadid (char *title, threadref *ref)
6046 {
6047 char hexid[20];
6048
6049 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6050 hexid[16] = 0;
6051 printf_filtered ("%s %s\n", title, (&hexid[0]));
6052 }
6053
6054 static void
6055 threadlist_test_cmd (char *cmd, int tty)
6056 {
6057 int startflag = 1;
6058 threadref nextthread;
6059 int done, result_count;
6060 threadref threadlist[3];
6061
6062 printf_filtered ("Remote Threadlist test\n");
6063 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6064 &result_count, &threadlist[0]))
6065 printf_filtered ("FAIL: threadlist test\n");
6066 else
6067 {
6068 threadref *scan = threadlist;
6069 threadref *limit = scan + result_count;
6070
6071 while (scan < limit)
6072 output_threadid (" thread ", scan++);
6073 }
6074 }
6075
6076 void
6077 display_thread_info (struct gdb_ext_thread_info *info)
6078 {
6079 output_threadid ("Threadid: ", &info->threadid);
6080 printf_filtered ("Name: %s\n ", info->shortname);
6081 printf_filtered ("State: %s\n", info->display);
6082 printf_filtered ("other: %s\n\n", info->more_display);
6083 }
6084
6085 int
6086 get_and_display_threadinfo (threadref *ref)
6087 {
6088 int result;
6089 int set;
6090 struct gdb_ext_thread_info threadinfo;
6091
6092 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6093 | TAG_MOREDISPLAY | TAG_DISPLAY;
6094 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6095 display_thread_info (&threadinfo);
6096 return result;
6097 }
6098
6099 static void
6100 threadinfo_test_cmd (char *cmd, int tty)
6101 {
6102 int athread = SAMPLE_THREAD;
6103 threadref thread;
6104 int set;
6105
6106 int_to_threadref (&thread, athread);
6107 printf_filtered ("Remote Threadinfo test\n");
6108 if (!get_and_display_threadinfo (&thread))
6109 printf_filtered ("FAIL cannot get thread info\n");
6110 }
6111
6112 static int
6113 thread_display_step (threadref *ref, void *context)
6114 {
6115 /* output_threadid(" threadstep ",ref); *//* simple test */
6116 return get_and_display_threadinfo (ref);
6117 }
6118
6119 static void
6120 threadlist_update_test_cmd (char *cmd, int tty)
6121 {
6122 printf_filtered ("Remote Threadlist update test\n");
6123 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6124 }
6125
6126 static void
6127 init_remote_threadtests (void)
6128 {
6129 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6130 Fetch and print the remote list of thread identifiers, one pkt only"));
6131 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6132 _("Fetch and display info about one thread"));
6133 add_com ("tset", class_obscure, threadset_test_cmd,
6134 _("Test setting to a different thread"));
6135 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6136 _("Iterate through updating all remote thread info"));
6137 add_com ("talive", class_obscure, threadalive_test,
6138 _(" Remote thread alive test "));
6139 }
6140
6141 #endif /* 0 */
6142
6143 /* Convert a thread ID to a string. Returns the string in a static
6144 buffer. */
6145
6146 static char *
6147 remote_pid_to_str (ptid_t ptid)
6148 {
6149 static char buf[32];
6150
6151 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6152 return buf;
6153 }
6154
6155 /* Get the address of the thread local variable in OBJFILE which is
6156 stored at OFFSET within the thread local storage for thread PTID. */
6157
6158 static CORE_ADDR
6159 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6160 {
6161 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6162 {
6163 struct remote_state *rs = get_remote_state ();
6164 char *p = rs->buf;
6165 enum packet_result result;
6166
6167 strcpy (p, "qGetTLSAddr:");
6168 p += strlen (p);
6169 p += hexnumstr (p, PIDGET (ptid));
6170 *p++ = ',';
6171 p += hexnumstr (p, offset);
6172 *p++ = ',';
6173 p += hexnumstr (p, lm);
6174 *p++ = '\0';
6175
6176 putpkt (rs->buf);
6177 getpkt (&rs->buf, &rs->buf_size, 0);
6178 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6179 if (result == PACKET_OK)
6180 {
6181 ULONGEST result;
6182
6183 unpack_varlen_hex (rs->buf, &result);
6184 return result;
6185 }
6186 else if (result == PACKET_UNKNOWN)
6187 throw_error (TLS_GENERIC_ERROR,
6188 _("Remote target doesn't support qGetTLSAddr packet"));
6189 else
6190 throw_error (TLS_GENERIC_ERROR,
6191 _("Remote target failed to process qGetTLSAddr request"));
6192 }
6193 else
6194 throw_error (TLS_GENERIC_ERROR,
6195 _("TLS not supported or disabled on this target"));
6196 /* Not reached. */
6197 return 0;
6198 }
6199
6200 /* Support for inferring a target description based on the current
6201 architecture and the size of a 'g' packet. While the 'g' packet
6202 can have any size (since optional registers can be left off the
6203 end), some sizes are easily recognizable given knowledge of the
6204 approximate architecture. */
6205
6206 struct remote_g_packet_guess
6207 {
6208 int bytes;
6209 const struct target_desc *tdesc;
6210 };
6211 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6212 DEF_VEC_O(remote_g_packet_guess_s);
6213
6214 struct remote_g_packet_data
6215 {
6216 VEC(remote_g_packet_guess_s) *guesses;
6217 };
6218
6219 static struct gdbarch_data *remote_g_packet_data_handle;
6220
6221 static void *
6222 remote_g_packet_data_init (struct obstack *obstack)
6223 {
6224 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6225 }
6226
6227 void
6228 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6229 const struct target_desc *tdesc)
6230 {
6231 struct remote_g_packet_data *data
6232 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6233 struct remote_g_packet_guess new_guess, *guess;
6234 int ix;
6235
6236 gdb_assert (tdesc != NULL);
6237
6238 for (ix = 0;
6239 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6240 ix++)
6241 if (guess->bytes == bytes)
6242 internal_error (__FILE__, __LINE__,
6243 "Duplicate g packet description added for size %d",
6244 bytes);
6245
6246 new_guess.bytes = bytes;
6247 new_guess.tdesc = tdesc;
6248 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6249 }
6250
6251 static const struct target_desc *
6252 remote_read_description (struct target_ops *target)
6253 {
6254 struct remote_g_packet_data *data
6255 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6256
6257 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6258 {
6259 struct remote_g_packet_guess *guess;
6260 int ix;
6261 int bytes = send_g_packet ();
6262
6263 for (ix = 0;
6264 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6265 ix++)
6266 if (guess->bytes == bytes)
6267 return guess->tdesc;
6268
6269 /* We discard the g packet. A minor optimization would be to
6270 hold on to it, and fill the register cache once we have selected
6271 an architecture, but it's too tricky to do safely. */
6272 }
6273
6274 return NULL;
6275 }
6276
6277 static void
6278 init_remote_ops (void)
6279 {
6280 remote_ops.to_shortname = "remote";
6281 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6282 remote_ops.to_doc =
6283 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6284 Specify the serial device it is connected to\n\
6285 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6286 remote_ops.to_open = remote_open;
6287 remote_ops.to_close = remote_close;
6288 remote_ops.to_detach = remote_detach;
6289 remote_ops.to_disconnect = remote_disconnect;
6290 remote_ops.to_resume = remote_resume;
6291 remote_ops.to_wait = remote_wait;
6292 remote_ops.to_fetch_registers = remote_fetch_registers;
6293 remote_ops.to_store_registers = remote_store_registers;
6294 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6295 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6296 remote_ops.to_files_info = remote_files_info;
6297 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6298 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6299 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6300 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6301 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6302 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6303 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6304 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6305 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6306 remote_ops.to_kill = remote_kill;
6307 remote_ops.to_load = generic_load;
6308 remote_ops.to_mourn_inferior = remote_mourn;
6309 remote_ops.to_thread_alive = remote_thread_alive;
6310 remote_ops.to_find_new_threads = remote_threads_info;
6311 remote_ops.to_pid_to_str = remote_pid_to_str;
6312 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6313 remote_ops.to_stop = remote_stop;
6314 remote_ops.to_xfer_partial = remote_xfer_partial;
6315 remote_ops.to_rcmd = remote_rcmd;
6316 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6317 remote_ops.to_stratum = process_stratum;
6318 remote_ops.to_has_all_memory = 1;
6319 remote_ops.to_has_memory = 1;
6320 remote_ops.to_has_stack = 1;
6321 remote_ops.to_has_registers = 1;
6322 remote_ops.to_has_execution = 1;
6323 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6324 remote_ops.to_magic = OPS_MAGIC;
6325 remote_ops.to_memory_map = remote_memory_map;
6326 remote_ops.to_flash_erase = remote_flash_erase;
6327 remote_ops.to_flash_done = remote_flash_done;
6328 remote_ops.to_read_description = remote_read_description;
6329 }
6330
6331 /* Set up the extended remote vector by making a copy of the standard
6332 remote vector and adding to it. */
6333
6334 static void
6335 init_extended_remote_ops (void)
6336 {
6337 extended_remote_ops = remote_ops;
6338
6339 extended_remote_ops.to_shortname = "extended-remote";
6340 extended_remote_ops.to_longname =
6341 "Extended remote serial target in gdb-specific protocol";
6342 extended_remote_ops.to_doc =
6343 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6344 Specify the serial device it is connected to (e.g. /dev/ttya).",
6345 extended_remote_ops.to_open = extended_remote_open;
6346 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6347 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6348 }
6349
6350 static int
6351 remote_can_async_p (void)
6352 {
6353 /* We're async whenever the serial device is. */
6354 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6355 }
6356
6357 static int
6358 remote_is_async_p (void)
6359 {
6360 /* We're async whenever the serial device is. */
6361 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6362 }
6363
6364 /* Pass the SERIAL event on and up to the client. One day this code
6365 will be able to delay notifying the client of an event until the
6366 point where an entire packet has been received. */
6367
6368 static void (*async_client_callback) (enum inferior_event_type event_type,
6369 void *context);
6370 static void *async_client_context;
6371 static serial_event_ftype remote_async_serial_handler;
6372
6373 static void
6374 remote_async_serial_handler (struct serial *scb, void *context)
6375 {
6376 /* Don't propogate error information up to the client. Instead let
6377 the client find out about the error by querying the target. */
6378 async_client_callback (INF_REG_EVENT, async_client_context);
6379 }
6380
6381 static void
6382 remote_async (void (*callback) (enum inferior_event_type event_type,
6383 void *context), void *context)
6384 {
6385 if (current_target.to_async_mask_value == 0)
6386 internal_error (__FILE__, __LINE__,
6387 _("Calling remote_async when async is masked"));
6388
6389 if (callback != NULL)
6390 {
6391 serial_async (remote_desc, remote_async_serial_handler, NULL);
6392 async_client_callback = callback;
6393 async_client_context = context;
6394 }
6395 else
6396 serial_async (remote_desc, NULL, NULL);
6397 }
6398
6399 /* Target async and target extended-async.
6400
6401 This are temporary targets, until it is all tested. Eventually
6402 async support will be incorporated int the usual 'remote'
6403 target. */
6404
6405 static void
6406 init_remote_async_ops (void)
6407 {
6408 remote_async_ops.to_shortname = "async";
6409 remote_async_ops.to_longname =
6410 "Remote serial target in async version of the gdb-specific protocol";
6411 remote_async_ops.to_doc =
6412 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6413 Specify the serial device it is connected to (e.g. /dev/ttya).";
6414 remote_async_ops.to_open = remote_async_open;
6415 remote_async_ops.to_close = remote_close;
6416 remote_async_ops.to_detach = remote_detach;
6417 remote_async_ops.to_disconnect = remote_disconnect;
6418 remote_async_ops.to_resume = remote_async_resume;
6419 remote_async_ops.to_wait = remote_async_wait;
6420 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6421 remote_async_ops.to_store_registers = remote_store_registers;
6422 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6423 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6424 remote_async_ops.to_files_info = remote_files_info;
6425 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6426 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6427 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6428 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6429 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6430 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6431 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6432 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6433 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6434 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6435 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6436 remote_async_ops.to_kill = remote_async_kill;
6437 remote_async_ops.to_load = generic_load;
6438 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6439 remote_async_ops.to_thread_alive = remote_thread_alive;
6440 remote_async_ops.to_find_new_threads = remote_threads_info;
6441 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6442 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6443 remote_async_ops.to_stop = remote_stop;
6444 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6445 remote_async_ops.to_rcmd = remote_rcmd;
6446 remote_async_ops.to_stratum = process_stratum;
6447 remote_async_ops.to_has_all_memory = 1;
6448 remote_async_ops.to_has_memory = 1;
6449 remote_async_ops.to_has_stack = 1;
6450 remote_async_ops.to_has_registers = 1;
6451 remote_async_ops.to_has_execution = 1;
6452 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6453 remote_async_ops.to_can_async_p = remote_can_async_p;
6454 remote_async_ops.to_is_async_p = remote_is_async_p;
6455 remote_async_ops.to_async = remote_async;
6456 remote_async_ops.to_async_mask_value = 1;
6457 remote_async_ops.to_magic = OPS_MAGIC;
6458 remote_async_ops.to_memory_map = remote_memory_map;
6459 remote_async_ops.to_flash_erase = remote_flash_erase;
6460 remote_async_ops.to_flash_done = remote_flash_done;
6461 remote_async_ops.to_read_description = remote_read_description;
6462 }
6463
6464 /* Set up the async extended remote vector by making a copy of the standard
6465 remote vector and adding to it. */
6466
6467 static void
6468 init_extended_async_remote_ops (void)
6469 {
6470 extended_async_remote_ops = remote_async_ops;
6471
6472 extended_async_remote_ops.to_shortname = "extended-async";
6473 extended_async_remote_ops.to_longname =
6474 "Extended remote serial target in async gdb-specific protocol";
6475 extended_async_remote_ops.to_doc =
6476 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6477 Specify the serial device it is connected to (e.g. /dev/ttya).",
6478 extended_async_remote_ops.to_open = extended_remote_async_open;
6479 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6480 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6481 }
6482
6483 static void
6484 set_remote_cmd (char *args, int from_tty)
6485 {
6486 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6487 }
6488
6489 static void
6490 show_remote_cmd (char *args, int from_tty)
6491 {
6492 /* We can't just use cmd_show_list here, because we want to skip
6493 the redundant "show remote Z-packet" and the legacy aliases. */
6494 struct cleanup *showlist_chain;
6495 struct cmd_list_element *list = remote_show_cmdlist;
6496
6497 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6498 for (; list != NULL; list = list->next)
6499 if (strcmp (list->name, "Z-packet") == 0)
6500 continue;
6501 else if (list->type == not_set_cmd)
6502 /* Alias commands are exactly like the original, except they
6503 don't have the normal type. */
6504 continue;
6505 else
6506 {
6507 struct cleanup *option_chain
6508 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6509 ui_out_field_string (uiout, "name", list->name);
6510 ui_out_text (uiout, ": ");
6511 if (list->type == show_cmd)
6512 do_setshow_command ((char *) NULL, from_tty, list);
6513 else
6514 cmd_func (list, NULL, from_tty);
6515 /* Close the tuple. */
6516 do_cleanups (option_chain);
6517 }
6518
6519 /* Close the tuple. */
6520 do_cleanups (showlist_chain);
6521 }
6522
6523
6524 /* Function to be called whenever a new objfile (shlib) is detected. */
6525 static void
6526 remote_new_objfile (struct objfile *objfile)
6527 {
6528 if (remote_desc != 0) /* Have a remote connection. */
6529 remote_check_symbols (objfile);
6530 }
6531
6532 void
6533 _initialize_remote (void)
6534 {
6535 struct remote_state *rs;
6536
6537 /* architecture specific data */
6538 remote_gdbarch_data_handle =
6539 gdbarch_data_register_post_init (init_remote_state);
6540 remote_g_packet_data_handle =
6541 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6542
6543 /* Initialize the per-target state. At the moment there is only one
6544 of these, not one per target. Only one target is active at a
6545 time. The default buffer size is unimportant; it will be expanded
6546 whenever a larger buffer is needed. */
6547 rs = get_remote_state_raw ();
6548 rs->buf_size = 400;
6549 rs->buf = xmalloc (rs->buf_size);
6550
6551 init_remote_ops ();
6552 add_target (&remote_ops);
6553
6554 init_extended_remote_ops ();
6555 add_target (&extended_remote_ops);
6556
6557 init_remote_async_ops ();
6558 add_target (&remote_async_ops);
6559
6560 init_extended_async_remote_ops ();
6561 add_target (&extended_async_remote_ops);
6562
6563 /* Hook into new objfile notification. */
6564 observer_attach_new_objfile (remote_new_objfile);
6565
6566 #if 0
6567 init_remote_threadtests ();
6568 #endif
6569
6570 /* set/show remote ... */
6571
6572 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6573 Remote protocol specific variables\n\
6574 Configure various remote-protocol specific variables such as\n\
6575 the packets being used"),
6576 &remote_set_cmdlist, "set remote ",
6577 0 /* allow-unknown */, &setlist);
6578 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6579 Remote protocol specific variables\n\
6580 Configure various remote-protocol specific variables such as\n\
6581 the packets being used"),
6582 &remote_show_cmdlist, "show remote ",
6583 0 /* allow-unknown */, &showlist);
6584
6585 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6586 Compare section data on target to the exec file.\n\
6587 Argument is a single section name (default: all loaded sections)."),
6588 &cmdlist);
6589
6590 add_cmd ("packet", class_maintenance, packet_command, _("\
6591 Send an arbitrary packet to a remote target.\n\
6592 maintenance packet TEXT\n\
6593 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6594 this command sends the string TEXT to the inferior, and displays the\n\
6595 response packet. GDB supplies the initial `$' character, and the\n\
6596 terminating `#' character and checksum."),
6597 &maintenancelist);
6598
6599 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6600 Set whether to send break if interrupted."), _("\
6601 Show whether to send break if interrupted."), _("\
6602 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6603 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6604 &setlist, &showlist);
6605
6606 /* Install commands for configuring memory read/write packets. */
6607
6608 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6609 Set the maximum number of bytes per memory write packet (deprecated)."),
6610 &setlist);
6611 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6612 Show the maximum number of bytes per memory write packet (deprecated)."),
6613 &showlist);
6614 add_cmd ("memory-write-packet-size", no_class,
6615 set_memory_write_packet_size, _("\
6616 Set the maximum number of bytes per memory-write packet.\n\
6617 Specify the number of bytes in a packet or 0 (zero) for the\n\
6618 default packet size. The actual limit is further reduced\n\
6619 dependent on the target. Specify ``fixed'' to disable the\n\
6620 further restriction and ``limit'' to enable that restriction."),
6621 &remote_set_cmdlist);
6622 add_cmd ("memory-read-packet-size", no_class,
6623 set_memory_read_packet_size, _("\
6624 Set the maximum number of bytes per memory-read packet.\n\
6625 Specify the number of bytes in a packet or 0 (zero) for the\n\
6626 default packet size. The actual limit is further reduced\n\
6627 dependent on the target. Specify ``fixed'' to disable the\n\
6628 further restriction and ``limit'' to enable that restriction."),
6629 &remote_set_cmdlist);
6630 add_cmd ("memory-write-packet-size", no_class,
6631 show_memory_write_packet_size,
6632 _("Show the maximum number of bytes per memory-write packet."),
6633 &remote_show_cmdlist);
6634 add_cmd ("memory-read-packet-size", no_class,
6635 show_memory_read_packet_size,
6636 _("Show the maximum number of bytes per memory-read packet."),
6637 &remote_show_cmdlist);
6638
6639 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6640 &remote_hw_watchpoint_limit, _("\
6641 Set the maximum number of target hardware watchpoints."), _("\
6642 Show the maximum number of target hardware watchpoints."), _("\
6643 Specify a negative limit for unlimited."),
6644 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6645 &remote_set_cmdlist, &remote_show_cmdlist);
6646 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6647 &remote_hw_breakpoint_limit, _("\
6648 Set the maximum number of target hardware breakpoints."), _("\
6649 Show the maximum number of target hardware breakpoints."), _("\
6650 Specify a negative limit for unlimited."),
6651 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6652 &remote_set_cmdlist, &remote_show_cmdlist);
6653
6654 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6655 &remote_address_size, _("\
6656 Set the maximum size of the address (in bits) in a memory packet."), _("\
6657 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6658 NULL,
6659 NULL, /* FIXME: i18n: */
6660 &setlist, &showlist);
6661
6662 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6663 "X", "binary-download", 1);
6664
6665 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6666 "vCont", "verbose-resume", 0);
6667
6668 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6669 "QPassSignals", "pass-signals", 0);
6670
6671 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6672 "qSymbol", "symbol-lookup", 0);
6673
6674 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6675 "P", "set-register", 1);
6676
6677 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6678 "p", "fetch-register", 1);
6679
6680 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6681 "Z0", "software-breakpoint", 0);
6682
6683 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6684 "Z1", "hardware-breakpoint", 0);
6685
6686 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6687 "Z2", "write-watchpoint", 0);
6688
6689 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6690 "Z3", "read-watchpoint", 0);
6691
6692 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6693 "Z4", "access-watchpoint", 0);
6694
6695 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6696 "qXfer:auxv:read", "read-aux-vector", 0);
6697
6698 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6699 "qXfer:features:read", "target-features", 0);
6700
6701 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
6702 "qXfer:libraries:read", "library-info", 0);
6703
6704 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6705 "qXfer:memory-map:read", "memory-map", 0);
6706
6707 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6708 "qXfer:spu:read", "read-spu-object", 0);
6709
6710 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6711 "qXfer:spu:write", "write-spu-object", 0);
6712
6713 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6714 "qGetTLSAddr", "get-thread-local-storage-address",
6715 0);
6716
6717 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6718 "qSupported", "supported-packets", 0);
6719
6720 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6721 Z sub-packet has its own set and show commands, but users may
6722 have sets to this variable in their .gdbinit files (or in their
6723 documentation). */
6724 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6725 &remote_Z_packet_detect, _("\
6726 Set use of remote protocol `Z' packets"), _("\
6727 Show use of remote protocol `Z' packets "), _("\
6728 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6729 packets."),
6730 set_remote_protocol_Z_packet_cmd,
6731 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6732 &remote_set_cmdlist, &remote_show_cmdlist);
6733
6734 /* Eventually initialize fileio. See fileio.c */
6735 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6736 }
This page took 0.17976 seconds and 4 git commands to generate.